b896ad9f40689ffa840d50d636cba8a942ed1baa
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63 #include "ctf-api.h"
64
65 #include "elf/common.h"
66 #include "elf/external.h"
67 #include "elf/internal.h"
68
69
70 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
71 we can obtain the H8 reloc numbers. We need these for the
72 get_reloc_size() function. We include h8.h again after defining
73 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
74
75 #include "elf/h8.h"
76 #undef _ELF_H8_H
77
78 /* Undo the effects of #including reloc-macros.h. */
79
80 #undef START_RELOC_NUMBERS
81 #undef RELOC_NUMBER
82 #undef FAKE_RELOC
83 #undef EMPTY_RELOC
84 #undef END_RELOC_NUMBERS
85 #undef _RELOC_MACROS_H
86
87 /* The following headers use the elf/reloc-macros.h file to
88 automatically generate relocation recognition functions
89 such as elf_mips_reloc_type() */
90
91 #define RELOC_MACROS_GEN_FUNC
92
93 #include "elf/aarch64.h"
94 #include "elf/alpha.h"
95 #include "elf/arc.h"
96 #include "elf/arm.h"
97 #include "elf/avr.h"
98 #include "elf/bfin.h"
99 #include "elf/cr16.h"
100 #include "elf/cris.h"
101 #include "elf/crx.h"
102 #include "elf/csky.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/bpf.h"
107 #include "elf/epiphany.h"
108 #include "elf/fr30.h"
109 #include "elf/frv.h"
110 #include "elf/ft32.h"
111 #include "elf/h8.h"
112 #include "elf/hppa.h"
113 #include "elf/i386.h"
114 #include "elf/i370.h"
115 #include "elf/i860.h"
116 #include "elf/i960.h"
117 #include "elf/ia64.h"
118 #include "elf/ip2k.h"
119 #include "elf/lm32.h"
120 #include "elf/iq2000.h"
121 #include "elf/m32c.h"
122 #include "elf/m32r.h"
123 #include "elf/m68k.h"
124 #include "elf/m68hc11.h"
125 #include "elf/s12z.h"
126 #include "elf/mcore.h"
127 #include "elf/mep.h"
128 #include "elf/metag.h"
129 #include "elf/microblaze.h"
130 #include "elf/mips.h"
131 #include "elf/mmix.h"
132 #include "elf/mn10200.h"
133 #include "elf/mn10300.h"
134 #include "elf/moxie.h"
135 #include "elf/mt.h"
136 #include "elf/msp430.h"
137 #include "elf/nds32.h"
138 #include "elf/nfp.h"
139 #include "elf/nios2.h"
140 #include "elf/or1k.h"
141 #include "elf/pj.h"
142 #include "elf/ppc.h"
143 #include "elf/ppc64.h"
144 #include "elf/pru.h"
145 #include "elf/riscv.h"
146 #include "elf/rl78.h"
147 #include "elf/rx.h"
148 #include "elf/s390.h"
149 #include "elf/score.h"
150 #include "elf/sh.h"
151 #include "elf/sparc.h"
152 #include "elf/spu.h"
153 #include "elf/tic6x.h"
154 #include "elf/tilegx.h"
155 #include "elf/tilepro.h"
156 #include "elf/v850.h"
157 #include "elf/vax.h"
158 #include "elf/visium.h"
159 #include "elf/wasm32.h"
160 #include "elf/x86-64.h"
161 #include "elf/xc16x.h"
162 #include "elf/xgate.h"
163 #include "elf/xstormy16.h"
164 #include "elf/xtensa.h"
165
166 #include "getopt.h"
167 #include "libiberty.h"
168 #include "safe-ctype.h"
169 #include "filenames.h"
170
171 #ifndef offsetof
172 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
173 #endif
174
175 typedef struct elf_section_list
176 {
177 Elf_Internal_Shdr * hdr;
178 struct elf_section_list * next;
179 } elf_section_list;
180
181 /* Flag bits indicating particular types of dump. */
182 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
183 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
184 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
185 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
186 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
187 #define CTF_DUMP (1 << 5) /* The --ctf command line switch. */
188
189 typedef unsigned char dump_type;
190
191 /* A linked list of the section names for which dumps were requested. */
192 struct dump_list_entry
193 {
194 char * name;
195 dump_type type;
196 struct dump_list_entry * next;
197 };
198
199 typedef struct filedata
200 {
201 const char * file_name;
202 FILE * handle;
203 bfd_size_type file_size;
204 Elf_Internal_Ehdr file_header;
205 Elf_Internal_Shdr * section_headers;
206 Elf_Internal_Phdr * program_headers;
207 char * string_table;
208 unsigned long string_table_length;
209 /* A dynamic array of flags indicating for which sections a dump of
210 some kind has been requested. It is reset on a per-object file
211 basis and then initialised from the cmdline_dump_sects array,
212 the results of interpreting the -w switch, and the
213 dump_sects_byname list. */
214 dump_type * dump_sects;
215 unsigned int num_dump_sects;
216 } Filedata;
217
218 char * program_name = "readelf";
219
220 static unsigned long archive_file_offset;
221 static unsigned long archive_file_size;
222 static unsigned long dynamic_addr;
223 static bfd_size_type dynamic_size;
224 static size_t dynamic_nent;
225 static char * dynamic_strings;
226 static unsigned long dynamic_strings_length;
227 static unsigned long num_dynamic_syms;
228 static Elf_Internal_Sym * dynamic_symbols;
229 static Elf_Internal_Syminfo * dynamic_syminfo;
230 static unsigned long dynamic_syminfo_offset;
231 static unsigned int dynamic_syminfo_nent;
232 static char program_interpreter[PATH_MAX];
233 static bfd_vma dynamic_info[DT_ENCODING];
234 static bfd_vma dynamic_info_DT_GNU_HASH;
235 static bfd_vma version_info[16];
236 static Elf_Internal_Dyn * dynamic_section;
237 static elf_section_list * symtab_shndx_list;
238 static bfd_boolean show_name = FALSE;
239 static bfd_boolean do_dynamic = FALSE;
240 static bfd_boolean do_syms = FALSE;
241 static bfd_boolean do_dyn_syms = FALSE;
242 static bfd_boolean do_reloc = FALSE;
243 static bfd_boolean do_sections = FALSE;
244 static bfd_boolean do_section_groups = FALSE;
245 static bfd_boolean do_section_details = FALSE;
246 static bfd_boolean do_segments = FALSE;
247 static bfd_boolean do_unwind = FALSE;
248 static bfd_boolean do_using_dynamic = FALSE;
249 static bfd_boolean do_header = FALSE;
250 static bfd_boolean do_dump = FALSE;
251 static bfd_boolean do_version = FALSE;
252 static bfd_boolean do_histogram = FALSE;
253 static bfd_boolean do_debugging = FALSE;
254 static bfd_boolean do_ctf = FALSE;
255 static bfd_boolean do_arch = FALSE;
256 static bfd_boolean do_notes = FALSE;
257 static bfd_boolean do_archive_index = FALSE;
258 static bfd_boolean is_32bit_elf = FALSE;
259 static bfd_boolean decompress_dumps = FALSE;
260
261 static char *dump_ctf_parent_name;
262 static char *dump_ctf_symtab_name;
263 static char *dump_ctf_strtab_name;
264
265 struct group_list
266 {
267 struct group_list * next;
268 unsigned int section_index;
269 };
270
271 struct group
272 {
273 struct group_list * root;
274 unsigned int group_index;
275 };
276
277 static size_t group_count;
278 static struct group * section_groups;
279 static struct group ** section_headers_groups;
280
281 /* A dynamic array of flags indicating for which sections a dump
282 has been requested via command line switches. */
283 static Filedata cmdline;
284
285 static struct dump_list_entry * dump_sects_byname;
286
287 /* How to print a vma value. */
288 typedef enum print_mode
289 {
290 HEX,
291 DEC,
292 DEC_5,
293 UNSIGNED,
294 PREFIX_HEX,
295 FULL_HEX,
296 LONG_HEX
297 }
298 print_mode;
299
300 /* Versioned symbol info. */
301 enum versioned_symbol_info
302 {
303 symbol_undefined,
304 symbol_hidden,
305 symbol_public
306 };
307
308 static const char * get_symbol_version_string
309 (Filedata *, bfd_boolean, const char *, unsigned long, unsigned,
310 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
311
312 #define UNKNOWN -1
313
314 #define SECTION_NAME(X) \
315 ((X) == NULL ? _("<none>") \
316 : filedata->string_table == NULL ? _("<no-strings>") \
317 : ((X)->sh_name >= filedata->string_table_length ? _("<corrupt>") \
318 : filedata->string_table + (X)->sh_name))
319
320 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
321
322 #define GET_ELF_SYMBOLS(file, section, sym_count) \
323 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
324 : get_64bit_elf_symbols (file, section, sym_count))
325
326 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
327 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
328 already been called and verified that the string exists. */
329 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
330
331 #define REMOVE_ARCH_BITS(ADDR) \
332 do \
333 { \
334 if (filedata->file_header.e_machine == EM_ARM) \
335 (ADDR) &= ~1; \
336 } \
337 while (0)
338 \f
339 /* Print a BFD_VMA to an internal buffer, for use in error messages.
340 BFD_FMA_FMT can't be used in translated strings. */
341
342 static const char *
343 bfd_vmatoa (char *fmtch, bfd_vma value)
344 {
345 /* bfd_vmatoa is used more then once in a printf call for output.
346 Cycle through an array of buffers. */
347 static int buf_pos = 0;
348 static struct bfd_vmatoa_buf
349 {
350 char place[64];
351 } buf[4];
352 char *ret;
353 char fmt[32];
354
355 ret = buf[buf_pos++].place;
356 buf_pos %= ARRAY_SIZE (buf);
357
358 sprintf (fmt, "%%%s%s", BFD_VMA_FMT, fmtch);
359 snprintf (ret, sizeof (buf[0].place), fmt, value);
360 return ret;
361 }
362
363 /* Retrieve NMEMB structures, each SIZE bytes long from FILEDATA starting at
364 OFFSET + the offset of the current archive member, if we are examining an
365 archive. Put the retrieved data into VAR, if it is not NULL. Otherwise
366 allocate a buffer using malloc and fill that. In either case return the
367 pointer to the start of the retrieved data or NULL if something went wrong.
368 If something does go wrong and REASON is not NULL then emit an error
369 message using REASON as part of the context. */
370
371 static void *
372 get_data (void * var,
373 Filedata * filedata,
374 unsigned long offset,
375 bfd_size_type size,
376 bfd_size_type nmemb,
377 const char * reason)
378 {
379 void * mvar;
380 bfd_size_type amt = size * nmemb;
381
382 if (size == 0 || nmemb == 0)
383 return NULL;
384
385 /* If the size_t type is smaller than the bfd_size_type, eg because
386 you are building a 32-bit tool on a 64-bit host, then make sure
387 that when the sizes are cast to (size_t) no information is lost. */
388 if (sizeof (size_t) < sizeof (bfd_size_type)
389 && ( (bfd_size_type) ((size_t) size) != size
390 || (bfd_size_type) ((size_t) nmemb) != nmemb))
391 {
392 if (reason)
393 error (_("Size truncation prevents reading %s"
394 " elements of size %s for %s\n"),
395 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
396 return NULL;
397 }
398
399 /* Check for size overflow. */
400 if (amt < nmemb)
401 {
402 if (reason)
403 error (_("Size overflow prevents reading %s"
404 " elements of size %s for %s\n"),
405 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
406 return NULL;
407 }
408
409 /* Be kind to memory checkers (eg valgrind, address sanitizer) by not
410 attempting to allocate memory when the read is bound to fail. */
411 if (archive_file_offset > filedata->file_size
412 || offset > filedata->file_size - archive_file_offset
413 || amt > filedata->file_size - archive_file_offset - offset)
414 {
415 if (reason)
416 error (_("Reading %s bytes extends past end of file for %s\n"),
417 bfd_vmatoa ("u", amt), reason);
418 return NULL;
419 }
420
421 if (fseek (filedata->handle, archive_file_offset + offset, SEEK_SET))
422 {
423 if (reason)
424 error (_("Unable to seek to 0x%lx for %s\n"),
425 archive_file_offset + offset, reason);
426 return NULL;
427 }
428
429 mvar = var;
430 if (mvar == NULL)
431 {
432 /* Check for overflow. */
433 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
434 /* + 1 so that we can '\0' terminate invalid string table sections. */
435 mvar = malloc ((size_t) amt + 1);
436
437 if (mvar == NULL)
438 {
439 if (reason)
440 error (_("Out of memory allocating %s bytes for %s\n"),
441 bfd_vmatoa ("u", amt), reason);
442 return NULL;
443 }
444
445 ((char *) mvar)[amt] = '\0';
446 }
447
448 if (fread (mvar, (size_t) size, (size_t) nmemb, filedata->handle) != nmemb)
449 {
450 if (reason)
451 error (_("Unable to read in %s bytes of %s\n"),
452 bfd_vmatoa ("u", amt), reason);
453 if (mvar != var)
454 free (mvar);
455 return NULL;
456 }
457
458 return mvar;
459 }
460
461 /* Print a VMA value in the MODE specified.
462 Returns the number of characters displayed. */
463
464 static unsigned int
465 print_vma (bfd_vma vma, print_mode mode)
466 {
467 unsigned int nc = 0;
468
469 switch (mode)
470 {
471 case FULL_HEX:
472 nc = printf ("0x");
473 /* Fall through. */
474 case LONG_HEX:
475 #ifdef BFD64
476 if (is_32bit_elf)
477 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
478 #endif
479 printf_vma (vma);
480 return nc + 16;
481
482 case DEC_5:
483 if (vma <= 99999)
484 return printf ("%5" BFD_VMA_FMT "d", vma);
485 /* Fall through. */
486 case PREFIX_HEX:
487 nc = printf ("0x");
488 /* Fall through. */
489 case HEX:
490 return nc + printf ("%" BFD_VMA_FMT "x", vma);
491
492 case DEC:
493 return printf ("%" BFD_VMA_FMT "d", vma);
494
495 case UNSIGNED:
496 return printf ("%" BFD_VMA_FMT "u", vma);
497
498 default:
499 /* FIXME: Report unrecognised mode ? */
500 return 0;
501 }
502 }
503
504 /* Display a symbol on stdout. Handles the display of control characters and
505 multibye characters (assuming the host environment supports them).
506
507 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
508
509 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
510 padding as necessary.
511
512 Returns the number of emitted characters. */
513
514 static unsigned int
515 print_symbol (signed int width, const char *symbol)
516 {
517 bfd_boolean extra_padding = FALSE;
518 signed int num_printed = 0;
519 #ifdef HAVE_MBSTATE_T
520 mbstate_t state;
521 #endif
522 unsigned int width_remaining;
523
524 if (width < 0)
525 {
526 /* Keep the width positive. This helps the code below. */
527 width = - width;
528 extra_padding = TRUE;
529 }
530 else if (width == 0)
531 return 0;
532
533 if (do_wide)
534 /* Set the remaining width to a very large value.
535 This simplifies the code below. */
536 width_remaining = INT_MAX;
537 else
538 width_remaining = width;
539
540 #ifdef HAVE_MBSTATE_T
541 /* Initialise the multibyte conversion state. */
542 memset (& state, 0, sizeof (state));
543 #endif
544
545 while (width_remaining)
546 {
547 size_t n;
548 const char c = *symbol++;
549
550 if (c == 0)
551 break;
552
553 /* Do not print control characters directly as they can affect terminal
554 settings. Such characters usually appear in the names generated
555 by the assembler for local labels. */
556 if (ISCNTRL (c))
557 {
558 if (width_remaining < 2)
559 break;
560
561 printf ("^%c", c + 0x40);
562 width_remaining -= 2;
563 num_printed += 2;
564 }
565 else if (ISPRINT (c))
566 {
567 putchar (c);
568 width_remaining --;
569 num_printed ++;
570 }
571 else
572 {
573 #ifdef HAVE_MBSTATE_T
574 wchar_t w;
575 #endif
576 /* Let printf do the hard work of displaying multibyte characters. */
577 printf ("%.1s", symbol - 1);
578 width_remaining --;
579 num_printed ++;
580
581 #ifdef HAVE_MBSTATE_T
582 /* Try to find out how many bytes made up the character that was
583 just printed. Advance the symbol pointer past the bytes that
584 were displayed. */
585 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
586 #else
587 n = 1;
588 #endif
589 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
590 symbol += (n - 1);
591 }
592 }
593
594 if (extra_padding && num_printed < width)
595 {
596 /* Fill in the remaining spaces. */
597 printf ("%-*s", width - num_printed, " ");
598 num_printed = width;
599 }
600
601 return num_printed;
602 }
603
604 /* Returns a pointer to a static buffer containing a printable version of
605 the given section's name. Like print_symbol, except that it does not try
606 to print multibyte characters, it just interprets them as hex values. */
607
608 static const char *
609 printable_section_name (Filedata * filedata, const Elf_Internal_Shdr * sec)
610 {
611 #define MAX_PRINT_SEC_NAME_LEN 128
612 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
613 const char * name = SECTION_NAME (sec);
614 char * buf = sec_name_buf;
615 char c;
616 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
617
618 while ((c = * name ++) != 0)
619 {
620 if (ISCNTRL (c))
621 {
622 if (remaining < 2)
623 break;
624
625 * buf ++ = '^';
626 * buf ++ = c + 0x40;
627 remaining -= 2;
628 }
629 else if (ISPRINT (c))
630 {
631 * buf ++ = c;
632 remaining -= 1;
633 }
634 else
635 {
636 static char hex[17] = "0123456789ABCDEF";
637
638 if (remaining < 4)
639 break;
640 * buf ++ = '<';
641 * buf ++ = hex[(c & 0xf0) >> 4];
642 * buf ++ = hex[c & 0x0f];
643 * buf ++ = '>';
644 remaining -= 4;
645 }
646
647 if (remaining == 0)
648 break;
649 }
650
651 * buf = 0;
652 return sec_name_buf;
653 }
654
655 static const char *
656 printable_section_name_from_index (Filedata * filedata, unsigned long ndx)
657 {
658 if (ndx >= filedata->file_header.e_shnum)
659 return _("<corrupt>");
660
661 return printable_section_name (filedata, filedata->section_headers + ndx);
662 }
663
664 /* Return a pointer to section NAME, or NULL if no such section exists. */
665
666 static Elf_Internal_Shdr *
667 find_section (Filedata * filedata, const char * name)
668 {
669 unsigned int i;
670
671 if (filedata->section_headers == NULL)
672 return NULL;
673
674 for (i = 0; i < filedata->file_header.e_shnum; i++)
675 if (streq (SECTION_NAME (filedata->section_headers + i), name))
676 return filedata->section_headers + i;
677
678 return NULL;
679 }
680
681 /* Return a pointer to a section containing ADDR, or NULL if no such
682 section exists. */
683
684 static Elf_Internal_Shdr *
685 find_section_by_address (Filedata * filedata, bfd_vma addr)
686 {
687 unsigned int i;
688
689 if (filedata->section_headers == NULL)
690 return NULL;
691
692 for (i = 0; i < filedata->file_header.e_shnum; i++)
693 {
694 Elf_Internal_Shdr *sec = filedata->section_headers + i;
695
696 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
697 return sec;
698 }
699
700 return NULL;
701 }
702
703 static Elf_Internal_Shdr *
704 find_section_by_type (Filedata * filedata, unsigned int type)
705 {
706 unsigned int i;
707
708 if (filedata->section_headers == NULL)
709 return NULL;
710
711 for (i = 0; i < filedata->file_header.e_shnum; i++)
712 {
713 Elf_Internal_Shdr *sec = filedata->section_headers + i;
714
715 if (sec->sh_type == type)
716 return sec;
717 }
718
719 return NULL;
720 }
721
722 /* Return a pointer to section NAME, or NULL if no such section exists,
723 restricted to the list of sections given in SET. */
724
725 static Elf_Internal_Shdr *
726 find_section_in_set (Filedata * filedata, const char * name, unsigned int * set)
727 {
728 unsigned int i;
729
730 if (filedata->section_headers == NULL)
731 return NULL;
732
733 if (set != NULL)
734 {
735 while ((i = *set++) > 0)
736 {
737 /* See PR 21156 for a reproducer. */
738 if (i >= filedata->file_header.e_shnum)
739 continue; /* FIXME: Should we issue an error message ? */
740
741 if (streq (SECTION_NAME (filedata->section_headers + i), name))
742 return filedata->section_headers + i;
743 }
744 }
745
746 return find_section (filedata, name);
747 }
748
749 /* Read an unsigned LEB128 encoded value from DATA.
750 Set *LENGTH_RETURN to the number of bytes read. */
751
752 static inline unsigned long
753 read_uleb128 (unsigned char * data,
754 unsigned int * length_return,
755 const unsigned char * const end)
756 {
757 return read_leb128 (data, length_return, FALSE, end);
758 }
759
760 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
761 This OS has so many departures from the ELF standard that we test it at
762 many places. */
763
764 static inline bfd_boolean
765 is_ia64_vms (Filedata * filedata)
766 {
767 return filedata->file_header.e_machine == EM_IA_64
768 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
769 }
770
771 /* Guess the relocation size commonly used by the specific machines. */
772
773 static bfd_boolean
774 guess_is_rela (unsigned int e_machine)
775 {
776 switch (e_machine)
777 {
778 /* Targets that use REL relocations. */
779 case EM_386:
780 case EM_IAMCU:
781 case EM_960:
782 case EM_ARM:
783 case EM_D10V:
784 case EM_CYGNUS_D10V:
785 case EM_DLX:
786 case EM_MIPS:
787 case EM_MIPS_RS3_LE:
788 case EM_CYGNUS_M32R:
789 case EM_SCORE:
790 case EM_XGATE:
791 case EM_NFP:
792 case EM_BPF:
793 return FALSE;
794
795 /* Targets that use RELA relocations. */
796 case EM_68K:
797 case EM_860:
798 case EM_AARCH64:
799 case EM_ADAPTEVA_EPIPHANY:
800 case EM_ALPHA:
801 case EM_ALTERA_NIOS2:
802 case EM_ARC:
803 case EM_ARC_COMPACT:
804 case EM_ARC_COMPACT2:
805 case EM_AVR:
806 case EM_AVR_OLD:
807 case EM_BLACKFIN:
808 case EM_CR16:
809 case EM_CRIS:
810 case EM_CRX:
811 case EM_CSKY:
812 case EM_D30V:
813 case EM_CYGNUS_D30V:
814 case EM_FR30:
815 case EM_FT32:
816 case EM_CYGNUS_FR30:
817 case EM_CYGNUS_FRV:
818 case EM_H8S:
819 case EM_H8_300:
820 case EM_H8_300H:
821 case EM_IA_64:
822 case EM_IP2K:
823 case EM_IP2K_OLD:
824 case EM_IQ2000:
825 case EM_LATTICEMICO32:
826 case EM_M32C_OLD:
827 case EM_M32C:
828 case EM_M32R:
829 case EM_MCORE:
830 case EM_CYGNUS_MEP:
831 case EM_METAG:
832 case EM_MMIX:
833 case EM_MN10200:
834 case EM_CYGNUS_MN10200:
835 case EM_MN10300:
836 case EM_CYGNUS_MN10300:
837 case EM_MOXIE:
838 case EM_MSP430:
839 case EM_MSP430_OLD:
840 case EM_MT:
841 case EM_NDS32:
842 case EM_NIOS32:
843 case EM_OR1K:
844 case EM_PPC64:
845 case EM_PPC:
846 case EM_TI_PRU:
847 case EM_RISCV:
848 case EM_RL78:
849 case EM_RX:
850 case EM_S390:
851 case EM_S390_OLD:
852 case EM_SH:
853 case EM_SPARC:
854 case EM_SPARC32PLUS:
855 case EM_SPARCV9:
856 case EM_SPU:
857 case EM_TI_C6000:
858 case EM_TILEGX:
859 case EM_TILEPRO:
860 case EM_V800:
861 case EM_V850:
862 case EM_CYGNUS_V850:
863 case EM_VAX:
864 case EM_VISIUM:
865 case EM_X86_64:
866 case EM_L1OM:
867 case EM_K1OM:
868 case EM_XSTORMY16:
869 case EM_XTENSA:
870 case EM_XTENSA_OLD:
871 case EM_MICROBLAZE:
872 case EM_MICROBLAZE_OLD:
873 case EM_WEBASSEMBLY:
874 return TRUE;
875
876 case EM_68HC05:
877 case EM_68HC08:
878 case EM_68HC11:
879 case EM_68HC16:
880 case EM_FX66:
881 case EM_ME16:
882 case EM_MMA:
883 case EM_NCPU:
884 case EM_NDR1:
885 case EM_PCP:
886 case EM_ST100:
887 case EM_ST19:
888 case EM_ST7:
889 case EM_ST9PLUS:
890 case EM_STARCORE:
891 case EM_SVX:
892 case EM_TINYJ:
893 default:
894 warn (_("Don't know about relocations on this machine architecture\n"));
895 return FALSE;
896 }
897 }
898
899 /* Load RELA type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
900 Returns TRUE upon success, FALSE otherwise. If successful then a
901 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
902 and the number of relocs loaded is placed in *NRELASP. It is the caller's
903 responsibility to free the allocated buffer. */
904
905 static bfd_boolean
906 slurp_rela_relocs (Filedata * filedata,
907 unsigned long rel_offset,
908 unsigned long rel_size,
909 Elf_Internal_Rela ** relasp,
910 unsigned long * nrelasp)
911 {
912 Elf_Internal_Rela * relas;
913 size_t nrelas;
914 unsigned int i;
915
916 if (is_32bit_elf)
917 {
918 Elf32_External_Rela * erelas;
919
920 erelas = (Elf32_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
921 rel_size, _("32-bit relocation data"));
922 if (!erelas)
923 return FALSE;
924
925 nrelas = rel_size / sizeof (Elf32_External_Rela);
926
927 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
928 sizeof (Elf_Internal_Rela));
929
930 if (relas == NULL)
931 {
932 free (erelas);
933 error (_("out of memory parsing relocs\n"));
934 return FALSE;
935 }
936
937 for (i = 0; i < nrelas; i++)
938 {
939 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
940 relas[i].r_info = BYTE_GET (erelas[i].r_info);
941 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
942 }
943
944 free (erelas);
945 }
946 else
947 {
948 Elf64_External_Rela * erelas;
949
950 erelas = (Elf64_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
951 rel_size, _("64-bit relocation data"));
952 if (!erelas)
953 return FALSE;
954
955 nrelas = rel_size / sizeof (Elf64_External_Rela);
956
957 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
958 sizeof (Elf_Internal_Rela));
959
960 if (relas == NULL)
961 {
962 free (erelas);
963 error (_("out of memory parsing relocs\n"));
964 return FALSE;
965 }
966
967 for (i = 0; i < nrelas; i++)
968 {
969 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
970 relas[i].r_info = BYTE_GET (erelas[i].r_info);
971 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
972
973 /* The #ifdef BFD64 below is to prevent a compile time
974 warning. We know that if we do not have a 64 bit data
975 type that we will never execute this code anyway. */
976 #ifdef BFD64
977 if (filedata->file_header.e_machine == EM_MIPS
978 && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
979 {
980 /* In little-endian objects, r_info isn't really a
981 64-bit little-endian value: it has a 32-bit
982 little-endian symbol index followed by four
983 individual byte fields. Reorder INFO
984 accordingly. */
985 bfd_vma inf = relas[i].r_info;
986 inf = (((inf & 0xffffffff) << 32)
987 | ((inf >> 56) & 0xff)
988 | ((inf >> 40) & 0xff00)
989 | ((inf >> 24) & 0xff0000)
990 | ((inf >> 8) & 0xff000000));
991 relas[i].r_info = inf;
992 }
993 #endif /* BFD64 */
994 }
995
996 free (erelas);
997 }
998
999 *relasp = relas;
1000 *nrelasp = nrelas;
1001 return TRUE;
1002 }
1003
1004 /* Load REL type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
1005 Returns TRUE upon success, FALSE otherwise. If successful then a
1006 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
1007 and the number of relocs loaded is placed in *NRELSP. It is the caller's
1008 responsibility to free the allocated buffer. */
1009
1010 static bfd_boolean
1011 slurp_rel_relocs (Filedata * filedata,
1012 unsigned long rel_offset,
1013 unsigned long rel_size,
1014 Elf_Internal_Rela ** relsp,
1015 unsigned long * nrelsp)
1016 {
1017 Elf_Internal_Rela * rels;
1018 size_t nrels;
1019 unsigned int i;
1020
1021 if (is_32bit_elf)
1022 {
1023 Elf32_External_Rel * erels;
1024
1025 erels = (Elf32_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
1026 rel_size, _("32-bit relocation data"));
1027 if (!erels)
1028 return FALSE;
1029
1030 nrels = rel_size / sizeof (Elf32_External_Rel);
1031
1032 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1033
1034 if (rels == NULL)
1035 {
1036 free (erels);
1037 error (_("out of memory parsing relocs\n"));
1038 return FALSE;
1039 }
1040
1041 for (i = 0; i < nrels; i++)
1042 {
1043 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1044 rels[i].r_info = BYTE_GET (erels[i].r_info);
1045 rels[i].r_addend = 0;
1046 }
1047
1048 free (erels);
1049 }
1050 else
1051 {
1052 Elf64_External_Rel * erels;
1053
1054 erels = (Elf64_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
1055 rel_size, _("64-bit relocation data"));
1056 if (!erels)
1057 return FALSE;
1058
1059 nrels = rel_size / sizeof (Elf64_External_Rel);
1060
1061 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1062
1063 if (rels == NULL)
1064 {
1065 free (erels);
1066 error (_("out of memory parsing relocs\n"));
1067 return FALSE;
1068 }
1069
1070 for (i = 0; i < nrels; i++)
1071 {
1072 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1073 rels[i].r_info = BYTE_GET (erels[i].r_info);
1074 rels[i].r_addend = 0;
1075
1076 /* The #ifdef BFD64 below is to prevent a compile time
1077 warning. We know that if we do not have a 64 bit data
1078 type that we will never execute this code anyway. */
1079 #ifdef BFD64
1080 if (filedata->file_header.e_machine == EM_MIPS
1081 && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
1082 {
1083 /* In little-endian objects, r_info isn't really a
1084 64-bit little-endian value: it has a 32-bit
1085 little-endian symbol index followed by four
1086 individual byte fields. Reorder INFO
1087 accordingly. */
1088 bfd_vma inf = rels[i].r_info;
1089 inf = (((inf & 0xffffffff) << 32)
1090 | ((inf >> 56) & 0xff)
1091 | ((inf >> 40) & 0xff00)
1092 | ((inf >> 24) & 0xff0000)
1093 | ((inf >> 8) & 0xff000000));
1094 rels[i].r_info = inf;
1095 }
1096 #endif /* BFD64 */
1097 }
1098
1099 free (erels);
1100 }
1101
1102 *relsp = rels;
1103 *nrelsp = nrels;
1104 return TRUE;
1105 }
1106
1107 /* Returns the reloc type extracted from the reloc info field. */
1108
1109 static unsigned int
1110 get_reloc_type (Filedata * filedata, bfd_vma reloc_info)
1111 {
1112 if (is_32bit_elf)
1113 return ELF32_R_TYPE (reloc_info);
1114
1115 switch (filedata->file_header.e_machine)
1116 {
1117 case EM_MIPS:
1118 /* Note: We assume that reloc_info has already been adjusted for us. */
1119 return ELF64_MIPS_R_TYPE (reloc_info);
1120
1121 case EM_SPARCV9:
1122 return ELF64_R_TYPE_ID (reloc_info);
1123
1124 default:
1125 return ELF64_R_TYPE (reloc_info);
1126 }
1127 }
1128
1129 /* Return the symbol index extracted from the reloc info field. */
1130
1131 static bfd_vma
1132 get_reloc_symindex (bfd_vma reloc_info)
1133 {
1134 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1135 }
1136
1137 static inline bfd_boolean
1138 uses_msp430x_relocs (Filedata * filedata)
1139 {
1140 return
1141 filedata->file_header.e_machine == EM_MSP430 /* Paranoia. */
1142 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1143 && (((filedata->file_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1144 /* TI compiler uses ELFOSABI_NONE. */
1145 || (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1146 }
1147
1148 /* Display the contents of the relocation data found at the specified
1149 offset. */
1150
1151 static bfd_boolean
1152 dump_relocations (Filedata * filedata,
1153 unsigned long rel_offset,
1154 unsigned long rel_size,
1155 Elf_Internal_Sym * symtab,
1156 unsigned long nsyms,
1157 char * strtab,
1158 unsigned long strtablen,
1159 int is_rela,
1160 bfd_boolean is_dynsym)
1161 {
1162 unsigned long i;
1163 Elf_Internal_Rela * rels;
1164 bfd_boolean res = TRUE;
1165
1166 if (is_rela == UNKNOWN)
1167 is_rela = guess_is_rela (filedata->file_header.e_machine);
1168
1169 if (is_rela)
1170 {
1171 if (!slurp_rela_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
1172 return FALSE;
1173 }
1174 else
1175 {
1176 if (!slurp_rel_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
1177 return FALSE;
1178 }
1179
1180 if (is_32bit_elf)
1181 {
1182 if (is_rela)
1183 {
1184 if (do_wide)
1185 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1186 else
1187 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1188 }
1189 else
1190 {
1191 if (do_wide)
1192 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1193 else
1194 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1195 }
1196 }
1197 else
1198 {
1199 if (is_rela)
1200 {
1201 if (do_wide)
1202 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1203 else
1204 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1205 }
1206 else
1207 {
1208 if (do_wide)
1209 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1210 else
1211 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1212 }
1213 }
1214
1215 for (i = 0; i < rel_size; i++)
1216 {
1217 const char * rtype;
1218 bfd_vma offset;
1219 bfd_vma inf;
1220 bfd_vma symtab_index;
1221 bfd_vma type;
1222
1223 offset = rels[i].r_offset;
1224 inf = rels[i].r_info;
1225
1226 type = get_reloc_type (filedata, inf);
1227 symtab_index = get_reloc_symindex (inf);
1228
1229 if (is_32bit_elf)
1230 {
1231 printf ("%8.8lx %8.8lx ",
1232 (unsigned long) offset & 0xffffffff,
1233 (unsigned long) inf & 0xffffffff);
1234 }
1235 else
1236 {
1237 #if BFD_HOST_64BIT_LONG
1238 printf (do_wide
1239 ? "%16.16lx %16.16lx "
1240 : "%12.12lx %12.12lx ",
1241 offset, inf);
1242 #elif BFD_HOST_64BIT_LONG_LONG
1243 #ifndef __MSVCRT__
1244 printf (do_wide
1245 ? "%16.16llx %16.16llx "
1246 : "%12.12llx %12.12llx ",
1247 offset, inf);
1248 #else
1249 printf (do_wide
1250 ? "%16.16I64x %16.16I64x "
1251 : "%12.12I64x %12.12I64x ",
1252 offset, inf);
1253 #endif
1254 #else
1255 printf (do_wide
1256 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1257 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1258 _bfd_int64_high (offset),
1259 _bfd_int64_low (offset),
1260 _bfd_int64_high (inf),
1261 _bfd_int64_low (inf));
1262 #endif
1263 }
1264
1265 switch (filedata->file_header.e_machine)
1266 {
1267 default:
1268 rtype = NULL;
1269 break;
1270
1271 case EM_AARCH64:
1272 rtype = elf_aarch64_reloc_type (type);
1273 break;
1274
1275 case EM_M32R:
1276 case EM_CYGNUS_M32R:
1277 rtype = elf_m32r_reloc_type (type);
1278 break;
1279
1280 case EM_386:
1281 case EM_IAMCU:
1282 rtype = elf_i386_reloc_type (type);
1283 break;
1284
1285 case EM_68HC11:
1286 case EM_68HC12:
1287 rtype = elf_m68hc11_reloc_type (type);
1288 break;
1289
1290 case EM_S12Z:
1291 rtype = elf_s12z_reloc_type (type);
1292 break;
1293
1294 case EM_68K:
1295 rtype = elf_m68k_reloc_type (type);
1296 break;
1297
1298 case EM_960:
1299 rtype = elf_i960_reloc_type (type);
1300 break;
1301
1302 case EM_AVR:
1303 case EM_AVR_OLD:
1304 rtype = elf_avr_reloc_type (type);
1305 break;
1306
1307 case EM_OLD_SPARCV9:
1308 case EM_SPARC32PLUS:
1309 case EM_SPARCV9:
1310 case EM_SPARC:
1311 rtype = elf_sparc_reloc_type (type);
1312 break;
1313
1314 case EM_SPU:
1315 rtype = elf_spu_reloc_type (type);
1316 break;
1317
1318 case EM_V800:
1319 rtype = v800_reloc_type (type);
1320 break;
1321 case EM_V850:
1322 case EM_CYGNUS_V850:
1323 rtype = v850_reloc_type (type);
1324 break;
1325
1326 case EM_D10V:
1327 case EM_CYGNUS_D10V:
1328 rtype = elf_d10v_reloc_type (type);
1329 break;
1330
1331 case EM_D30V:
1332 case EM_CYGNUS_D30V:
1333 rtype = elf_d30v_reloc_type (type);
1334 break;
1335
1336 case EM_DLX:
1337 rtype = elf_dlx_reloc_type (type);
1338 break;
1339
1340 case EM_SH:
1341 rtype = elf_sh_reloc_type (type);
1342 break;
1343
1344 case EM_MN10300:
1345 case EM_CYGNUS_MN10300:
1346 rtype = elf_mn10300_reloc_type (type);
1347 break;
1348
1349 case EM_MN10200:
1350 case EM_CYGNUS_MN10200:
1351 rtype = elf_mn10200_reloc_type (type);
1352 break;
1353
1354 case EM_FR30:
1355 case EM_CYGNUS_FR30:
1356 rtype = elf_fr30_reloc_type (type);
1357 break;
1358
1359 case EM_CYGNUS_FRV:
1360 rtype = elf_frv_reloc_type (type);
1361 break;
1362
1363 case EM_CSKY:
1364 rtype = elf_csky_reloc_type (type);
1365 break;
1366
1367 case EM_FT32:
1368 rtype = elf_ft32_reloc_type (type);
1369 break;
1370
1371 case EM_MCORE:
1372 rtype = elf_mcore_reloc_type (type);
1373 break;
1374
1375 case EM_MMIX:
1376 rtype = elf_mmix_reloc_type (type);
1377 break;
1378
1379 case EM_MOXIE:
1380 rtype = elf_moxie_reloc_type (type);
1381 break;
1382
1383 case EM_MSP430:
1384 if (uses_msp430x_relocs (filedata))
1385 {
1386 rtype = elf_msp430x_reloc_type (type);
1387 break;
1388 }
1389 /* Fall through. */
1390 case EM_MSP430_OLD:
1391 rtype = elf_msp430_reloc_type (type);
1392 break;
1393
1394 case EM_NDS32:
1395 rtype = elf_nds32_reloc_type (type);
1396 break;
1397
1398 case EM_PPC:
1399 rtype = elf_ppc_reloc_type (type);
1400 break;
1401
1402 case EM_PPC64:
1403 rtype = elf_ppc64_reloc_type (type);
1404 break;
1405
1406 case EM_MIPS:
1407 case EM_MIPS_RS3_LE:
1408 rtype = elf_mips_reloc_type (type);
1409 break;
1410
1411 case EM_RISCV:
1412 rtype = elf_riscv_reloc_type (type);
1413 break;
1414
1415 case EM_ALPHA:
1416 rtype = elf_alpha_reloc_type (type);
1417 break;
1418
1419 case EM_ARM:
1420 rtype = elf_arm_reloc_type (type);
1421 break;
1422
1423 case EM_ARC:
1424 case EM_ARC_COMPACT:
1425 case EM_ARC_COMPACT2:
1426 rtype = elf_arc_reloc_type (type);
1427 break;
1428
1429 case EM_PARISC:
1430 rtype = elf_hppa_reloc_type (type);
1431 break;
1432
1433 case EM_H8_300:
1434 case EM_H8_300H:
1435 case EM_H8S:
1436 rtype = elf_h8_reloc_type (type);
1437 break;
1438
1439 case EM_OR1K:
1440 rtype = elf_or1k_reloc_type (type);
1441 break;
1442
1443 case EM_PJ:
1444 case EM_PJ_OLD:
1445 rtype = elf_pj_reloc_type (type);
1446 break;
1447 case EM_IA_64:
1448 rtype = elf_ia64_reloc_type (type);
1449 break;
1450
1451 case EM_CRIS:
1452 rtype = elf_cris_reloc_type (type);
1453 break;
1454
1455 case EM_860:
1456 rtype = elf_i860_reloc_type (type);
1457 break;
1458
1459 case EM_X86_64:
1460 case EM_L1OM:
1461 case EM_K1OM:
1462 rtype = elf_x86_64_reloc_type (type);
1463 break;
1464
1465 case EM_S370:
1466 rtype = i370_reloc_type (type);
1467 break;
1468
1469 case EM_S390_OLD:
1470 case EM_S390:
1471 rtype = elf_s390_reloc_type (type);
1472 break;
1473
1474 case EM_SCORE:
1475 rtype = elf_score_reloc_type (type);
1476 break;
1477
1478 case EM_XSTORMY16:
1479 rtype = elf_xstormy16_reloc_type (type);
1480 break;
1481
1482 case EM_CRX:
1483 rtype = elf_crx_reloc_type (type);
1484 break;
1485
1486 case EM_VAX:
1487 rtype = elf_vax_reloc_type (type);
1488 break;
1489
1490 case EM_VISIUM:
1491 rtype = elf_visium_reloc_type (type);
1492 break;
1493
1494 case EM_BPF:
1495 rtype = elf_bpf_reloc_type (type);
1496 break;
1497
1498 case EM_ADAPTEVA_EPIPHANY:
1499 rtype = elf_epiphany_reloc_type (type);
1500 break;
1501
1502 case EM_IP2K:
1503 case EM_IP2K_OLD:
1504 rtype = elf_ip2k_reloc_type (type);
1505 break;
1506
1507 case EM_IQ2000:
1508 rtype = elf_iq2000_reloc_type (type);
1509 break;
1510
1511 case EM_XTENSA_OLD:
1512 case EM_XTENSA:
1513 rtype = elf_xtensa_reloc_type (type);
1514 break;
1515
1516 case EM_LATTICEMICO32:
1517 rtype = elf_lm32_reloc_type (type);
1518 break;
1519
1520 case EM_M32C_OLD:
1521 case EM_M32C:
1522 rtype = elf_m32c_reloc_type (type);
1523 break;
1524
1525 case EM_MT:
1526 rtype = elf_mt_reloc_type (type);
1527 break;
1528
1529 case EM_BLACKFIN:
1530 rtype = elf_bfin_reloc_type (type);
1531 break;
1532
1533 case EM_CYGNUS_MEP:
1534 rtype = elf_mep_reloc_type (type);
1535 break;
1536
1537 case EM_CR16:
1538 rtype = elf_cr16_reloc_type (type);
1539 break;
1540
1541 case EM_MICROBLAZE:
1542 case EM_MICROBLAZE_OLD:
1543 rtype = elf_microblaze_reloc_type (type);
1544 break;
1545
1546 case EM_RL78:
1547 rtype = elf_rl78_reloc_type (type);
1548 break;
1549
1550 case EM_RX:
1551 rtype = elf_rx_reloc_type (type);
1552 break;
1553
1554 case EM_METAG:
1555 rtype = elf_metag_reloc_type (type);
1556 break;
1557
1558 case EM_XC16X:
1559 case EM_C166:
1560 rtype = elf_xc16x_reloc_type (type);
1561 break;
1562
1563 case EM_TI_C6000:
1564 rtype = elf_tic6x_reloc_type (type);
1565 break;
1566
1567 case EM_TILEGX:
1568 rtype = elf_tilegx_reloc_type (type);
1569 break;
1570
1571 case EM_TILEPRO:
1572 rtype = elf_tilepro_reloc_type (type);
1573 break;
1574
1575 case EM_WEBASSEMBLY:
1576 rtype = elf_wasm32_reloc_type (type);
1577 break;
1578
1579 case EM_XGATE:
1580 rtype = elf_xgate_reloc_type (type);
1581 break;
1582
1583 case EM_ALTERA_NIOS2:
1584 rtype = elf_nios2_reloc_type (type);
1585 break;
1586
1587 case EM_TI_PRU:
1588 rtype = elf_pru_reloc_type (type);
1589 break;
1590
1591 case EM_NFP:
1592 if (EF_NFP_MACH (filedata->file_header.e_flags) == E_NFP_MACH_3200)
1593 rtype = elf_nfp3200_reloc_type (type);
1594 else
1595 rtype = elf_nfp_reloc_type (type);
1596 break;
1597 }
1598
1599 if (rtype == NULL)
1600 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1601 else
1602 printf (do_wide ? "%-22s" : "%-17.17s", rtype);
1603
1604 if (filedata->file_header.e_machine == EM_ALPHA
1605 && rtype != NULL
1606 && streq (rtype, "R_ALPHA_LITUSE")
1607 && is_rela)
1608 {
1609 switch (rels[i].r_addend)
1610 {
1611 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1612 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1613 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1614 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1615 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1616 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1617 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1618 default: rtype = NULL;
1619 }
1620
1621 if (rtype)
1622 printf (" (%s)", rtype);
1623 else
1624 {
1625 putchar (' ');
1626 printf (_("<unknown addend: %lx>"),
1627 (unsigned long) rels[i].r_addend);
1628 res = FALSE;
1629 }
1630 }
1631 else if (symtab_index)
1632 {
1633 if (symtab == NULL || symtab_index >= nsyms)
1634 {
1635 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1636 res = FALSE;
1637 }
1638 else
1639 {
1640 Elf_Internal_Sym * psym;
1641 const char * version_string;
1642 enum versioned_symbol_info sym_info;
1643 unsigned short vna_other;
1644
1645 psym = symtab + symtab_index;
1646
1647 version_string
1648 = get_symbol_version_string (filedata, is_dynsym,
1649 strtab, strtablen,
1650 symtab_index,
1651 psym,
1652 &sym_info,
1653 &vna_other);
1654
1655 printf (" ");
1656
1657 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1658 {
1659 const char * name;
1660 unsigned int len;
1661 unsigned int width = is_32bit_elf ? 8 : 14;
1662
1663 /* Relocations against GNU_IFUNC symbols do not use the value
1664 of the symbol as the address to relocate against. Instead
1665 they invoke the function named by the symbol and use its
1666 result as the address for relocation.
1667
1668 To indicate this to the user, do not display the value of
1669 the symbol in the "Symbols's Value" field. Instead show
1670 its name followed by () as a hint that the symbol is
1671 invoked. */
1672
1673 if (strtab == NULL
1674 || psym->st_name == 0
1675 || psym->st_name >= strtablen)
1676 name = "??";
1677 else
1678 name = strtab + psym->st_name;
1679
1680 len = print_symbol (width, name);
1681 if (version_string)
1682 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1683 version_string);
1684 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1685 }
1686 else
1687 {
1688 print_vma (psym->st_value, LONG_HEX);
1689
1690 printf (is_32bit_elf ? " " : " ");
1691 }
1692
1693 if (psym->st_name == 0)
1694 {
1695 const char * sec_name = "<null>";
1696 char name_buf[40];
1697
1698 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1699 {
1700 if (psym->st_shndx < filedata->file_header.e_shnum)
1701 sec_name = SECTION_NAME (filedata->section_headers + psym->st_shndx);
1702 else if (psym->st_shndx == SHN_ABS)
1703 sec_name = "ABS";
1704 else if (psym->st_shndx == SHN_COMMON)
1705 sec_name = "COMMON";
1706 else if ((filedata->file_header.e_machine == EM_MIPS
1707 && psym->st_shndx == SHN_MIPS_SCOMMON)
1708 || (filedata->file_header.e_machine == EM_TI_C6000
1709 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1710 sec_name = "SCOMMON";
1711 else if (filedata->file_header.e_machine == EM_MIPS
1712 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1713 sec_name = "SUNDEF";
1714 else if ((filedata->file_header.e_machine == EM_X86_64
1715 || filedata->file_header.e_machine == EM_L1OM
1716 || filedata->file_header.e_machine == EM_K1OM)
1717 && psym->st_shndx == SHN_X86_64_LCOMMON)
1718 sec_name = "LARGE_COMMON";
1719 else if (filedata->file_header.e_machine == EM_IA_64
1720 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1721 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1722 sec_name = "ANSI_COM";
1723 else if (is_ia64_vms (filedata)
1724 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1725 sec_name = "VMS_SYMVEC";
1726 else
1727 {
1728 sprintf (name_buf, "<section 0x%x>",
1729 (unsigned int) psym->st_shndx);
1730 sec_name = name_buf;
1731 }
1732 }
1733 print_symbol (22, sec_name);
1734 }
1735 else if (strtab == NULL)
1736 printf (_("<string table index: %3ld>"), psym->st_name);
1737 else if (psym->st_name >= strtablen)
1738 {
1739 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1740 res = FALSE;
1741 }
1742 else
1743 {
1744 print_symbol (22, strtab + psym->st_name);
1745 if (version_string)
1746 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1747 version_string);
1748 }
1749
1750 if (is_rela)
1751 {
1752 bfd_vma off = rels[i].r_addend;
1753
1754 if ((bfd_signed_vma) off < 0)
1755 printf (" - %" BFD_VMA_FMT "x", - off);
1756 else
1757 printf (" + %" BFD_VMA_FMT "x", off);
1758 }
1759 }
1760 }
1761 else if (is_rela)
1762 {
1763 bfd_vma off = rels[i].r_addend;
1764
1765 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1766 if ((bfd_signed_vma) off < 0)
1767 printf ("-%" BFD_VMA_FMT "x", - off);
1768 else
1769 printf ("%" BFD_VMA_FMT "x", off);
1770 }
1771
1772 if (filedata->file_header.e_machine == EM_SPARCV9
1773 && rtype != NULL
1774 && streq (rtype, "R_SPARC_OLO10"))
1775 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1776
1777 putchar ('\n');
1778
1779 #ifdef BFD64
1780 if (! is_32bit_elf && filedata->file_header.e_machine == EM_MIPS)
1781 {
1782 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1783 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1784 const char * rtype2 = elf_mips_reloc_type (type2);
1785 const char * rtype3 = elf_mips_reloc_type (type3);
1786
1787 printf (" Type2: ");
1788
1789 if (rtype2 == NULL)
1790 printf (_("unrecognized: %-7lx"),
1791 (unsigned long) type2 & 0xffffffff);
1792 else
1793 printf ("%-17.17s", rtype2);
1794
1795 printf ("\n Type3: ");
1796
1797 if (rtype3 == NULL)
1798 printf (_("unrecognized: %-7lx"),
1799 (unsigned long) type3 & 0xffffffff);
1800 else
1801 printf ("%-17.17s", rtype3);
1802
1803 putchar ('\n');
1804 }
1805 #endif /* BFD64 */
1806 }
1807
1808 free (rels);
1809
1810 return res;
1811 }
1812
1813 static const char *
1814 get_aarch64_dynamic_type (unsigned long type)
1815 {
1816 switch (type)
1817 {
1818 case DT_AARCH64_BTI_PLT: return "AARCH64_BTI_PLT";
1819 case DT_AARCH64_PAC_PLT: return "AARCH64_PAC_PLT";
1820 case DT_AARCH64_VARIANT_PCS: return "AARCH64_VARIANT_PCS";
1821 default:
1822 return NULL;
1823 }
1824 }
1825
1826 static const char *
1827 get_mips_dynamic_type (unsigned long type)
1828 {
1829 switch (type)
1830 {
1831 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1832 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1833 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1834 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1835 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1836 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1837 case DT_MIPS_MSYM: return "MIPS_MSYM";
1838 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1839 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1840 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1841 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1842 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1843 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1844 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1845 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1846 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1847 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1848 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1849 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1850 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1851 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1852 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1853 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1854 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1855 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1856 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1857 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1858 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1859 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1860 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1861 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1862 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1863 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1864 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1865 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1866 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1867 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1868 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1869 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1870 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1871 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1872 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1873 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1874 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1875 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1876 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1877 default:
1878 return NULL;
1879 }
1880 }
1881
1882 static const char *
1883 get_sparc64_dynamic_type (unsigned long type)
1884 {
1885 switch (type)
1886 {
1887 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1888 default:
1889 return NULL;
1890 }
1891 }
1892
1893 static const char *
1894 get_ppc_dynamic_type (unsigned long type)
1895 {
1896 switch (type)
1897 {
1898 case DT_PPC_GOT: return "PPC_GOT";
1899 case DT_PPC_OPT: return "PPC_OPT";
1900 default:
1901 return NULL;
1902 }
1903 }
1904
1905 static const char *
1906 get_ppc64_dynamic_type (unsigned long type)
1907 {
1908 switch (type)
1909 {
1910 case DT_PPC64_GLINK: return "PPC64_GLINK";
1911 case DT_PPC64_OPD: return "PPC64_OPD";
1912 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1913 case DT_PPC64_OPT: return "PPC64_OPT";
1914 default:
1915 return NULL;
1916 }
1917 }
1918
1919 static const char *
1920 get_parisc_dynamic_type (unsigned long type)
1921 {
1922 switch (type)
1923 {
1924 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1925 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1926 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1927 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1928 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1929 case DT_HP_PREINIT: return "HP_PREINIT";
1930 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1931 case DT_HP_NEEDED: return "HP_NEEDED";
1932 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1933 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1934 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1935 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1936 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1937 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1938 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1939 case DT_HP_FILTERED: return "HP_FILTERED";
1940 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1941 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1942 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1943 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1944 case DT_PLT: return "PLT";
1945 case DT_PLT_SIZE: return "PLT_SIZE";
1946 case DT_DLT: return "DLT";
1947 case DT_DLT_SIZE: return "DLT_SIZE";
1948 default:
1949 return NULL;
1950 }
1951 }
1952
1953 static const char *
1954 get_ia64_dynamic_type (unsigned long type)
1955 {
1956 switch (type)
1957 {
1958 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1959 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1960 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1961 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1962 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1963 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1964 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1965 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1966 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1967 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1968 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1969 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1970 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1971 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1972 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1973 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1974 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1975 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1976 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1977 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1978 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1979 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1980 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1981 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1982 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1983 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1984 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1985 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1986 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1987 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1988 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1989 default:
1990 return NULL;
1991 }
1992 }
1993
1994 static const char *
1995 get_solaris_section_type (unsigned long type)
1996 {
1997 switch (type)
1998 {
1999 case 0x6fffffee: return "SUNW_ancillary";
2000 case 0x6fffffef: return "SUNW_capchain";
2001 case 0x6ffffff0: return "SUNW_capinfo";
2002 case 0x6ffffff1: return "SUNW_symsort";
2003 case 0x6ffffff2: return "SUNW_tlssort";
2004 case 0x6ffffff3: return "SUNW_LDYNSYM";
2005 case 0x6ffffff4: return "SUNW_dof";
2006 case 0x6ffffff5: return "SUNW_cap";
2007 case 0x6ffffff6: return "SUNW_SIGNATURE";
2008 case 0x6ffffff7: return "SUNW_ANNOTATE";
2009 case 0x6ffffff8: return "SUNW_DEBUGSTR";
2010 case 0x6ffffff9: return "SUNW_DEBUG";
2011 case 0x6ffffffa: return "SUNW_move";
2012 case 0x6ffffffb: return "SUNW_COMDAT";
2013 case 0x6ffffffc: return "SUNW_syminfo";
2014 case 0x6ffffffd: return "SUNW_verdef";
2015 case 0x6ffffffe: return "SUNW_verneed";
2016 case 0x6fffffff: return "SUNW_versym";
2017 case 0x70000000: return "SPARC_GOTDATA";
2018 default: return NULL;
2019 }
2020 }
2021
2022 static const char *
2023 get_alpha_dynamic_type (unsigned long type)
2024 {
2025 switch (type)
2026 {
2027 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
2028 default: return NULL;
2029 }
2030 }
2031
2032 static const char *
2033 get_score_dynamic_type (unsigned long type)
2034 {
2035 switch (type)
2036 {
2037 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
2038 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
2039 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
2040 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
2041 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
2042 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
2043 default: return NULL;
2044 }
2045 }
2046
2047 static const char *
2048 get_tic6x_dynamic_type (unsigned long type)
2049 {
2050 switch (type)
2051 {
2052 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
2053 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
2054 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
2055 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
2056 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
2057 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
2058 default: return NULL;
2059 }
2060 }
2061
2062 static const char *
2063 get_nios2_dynamic_type (unsigned long type)
2064 {
2065 switch (type)
2066 {
2067 case DT_NIOS2_GP: return "NIOS2_GP";
2068 default: return NULL;
2069 }
2070 }
2071
2072 static const char *
2073 get_solaris_dynamic_type (unsigned long type)
2074 {
2075 switch (type)
2076 {
2077 case 0x6000000d: return "SUNW_AUXILIARY";
2078 case 0x6000000e: return "SUNW_RTLDINF";
2079 case 0x6000000f: return "SUNW_FILTER";
2080 case 0x60000010: return "SUNW_CAP";
2081 case 0x60000011: return "SUNW_SYMTAB";
2082 case 0x60000012: return "SUNW_SYMSZ";
2083 case 0x60000013: return "SUNW_SORTENT";
2084 case 0x60000014: return "SUNW_SYMSORT";
2085 case 0x60000015: return "SUNW_SYMSORTSZ";
2086 case 0x60000016: return "SUNW_TLSSORT";
2087 case 0x60000017: return "SUNW_TLSSORTSZ";
2088 case 0x60000018: return "SUNW_CAPINFO";
2089 case 0x60000019: return "SUNW_STRPAD";
2090 case 0x6000001a: return "SUNW_CAPCHAIN";
2091 case 0x6000001b: return "SUNW_LDMACH";
2092 case 0x6000001d: return "SUNW_CAPCHAINENT";
2093 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2094 case 0x60000021: return "SUNW_PARENT";
2095 case 0x60000023: return "SUNW_ASLR";
2096 case 0x60000025: return "SUNW_RELAX";
2097 case 0x60000029: return "SUNW_NXHEAP";
2098 case 0x6000002b: return "SUNW_NXSTACK";
2099
2100 case 0x70000001: return "SPARC_REGISTER";
2101 case 0x7ffffffd: return "AUXILIARY";
2102 case 0x7ffffffe: return "USED";
2103 case 0x7fffffff: return "FILTER";
2104
2105 default: return NULL;
2106 }
2107 }
2108
2109 static const char *
2110 get_dynamic_type (Filedata * filedata, unsigned long type)
2111 {
2112 static char buff[64];
2113
2114 switch (type)
2115 {
2116 case DT_NULL: return "NULL";
2117 case DT_NEEDED: return "NEEDED";
2118 case DT_PLTRELSZ: return "PLTRELSZ";
2119 case DT_PLTGOT: return "PLTGOT";
2120 case DT_HASH: return "HASH";
2121 case DT_STRTAB: return "STRTAB";
2122 case DT_SYMTAB: return "SYMTAB";
2123 case DT_RELA: return "RELA";
2124 case DT_RELASZ: return "RELASZ";
2125 case DT_RELAENT: return "RELAENT";
2126 case DT_STRSZ: return "STRSZ";
2127 case DT_SYMENT: return "SYMENT";
2128 case DT_INIT: return "INIT";
2129 case DT_FINI: return "FINI";
2130 case DT_SONAME: return "SONAME";
2131 case DT_RPATH: return "RPATH";
2132 case DT_SYMBOLIC: return "SYMBOLIC";
2133 case DT_REL: return "REL";
2134 case DT_RELSZ: return "RELSZ";
2135 case DT_RELENT: return "RELENT";
2136 case DT_PLTREL: return "PLTREL";
2137 case DT_DEBUG: return "DEBUG";
2138 case DT_TEXTREL: return "TEXTREL";
2139 case DT_JMPREL: return "JMPREL";
2140 case DT_BIND_NOW: return "BIND_NOW";
2141 case DT_INIT_ARRAY: return "INIT_ARRAY";
2142 case DT_FINI_ARRAY: return "FINI_ARRAY";
2143 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2144 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2145 case DT_RUNPATH: return "RUNPATH";
2146 case DT_FLAGS: return "FLAGS";
2147
2148 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2149 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2150 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2151
2152 case DT_CHECKSUM: return "CHECKSUM";
2153 case DT_PLTPADSZ: return "PLTPADSZ";
2154 case DT_MOVEENT: return "MOVEENT";
2155 case DT_MOVESZ: return "MOVESZ";
2156 case DT_FEATURE: return "FEATURE";
2157 case DT_POSFLAG_1: return "POSFLAG_1";
2158 case DT_SYMINSZ: return "SYMINSZ";
2159 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2160
2161 case DT_ADDRRNGLO: return "ADDRRNGLO";
2162 case DT_CONFIG: return "CONFIG";
2163 case DT_DEPAUDIT: return "DEPAUDIT";
2164 case DT_AUDIT: return "AUDIT";
2165 case DT_PLTPAD: return "PLTPAD";
2166 case DT_MOVETAB: return "MOVETAB";
2167 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2168
2169 case DT_VERSYM: return "VERSYM";
2170
2171 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2172 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2173 case DT_RELACOUNT: return "RELACOUNT";
2174 case DT_RELCOUNT: return "RELCOUNT";
2175 case DT_FLAGS_1: return "FLAGS_1";
2176 case DT_VERDEF: return "VERDEF";
2177 case DT_VERDEFNUM: return "VERDEFNUM";
2178 case DT_VERNEED: return "VERNEED";
2179 case DT_VERNEEDNUM: return "VERNEEDNUM";
2180
2181 case DT_AUXILIARY: return "AUXILIARY";
2182 case DT_USED: return "USED";
2183 case DT_FILTER: return "FILTER";
2184
2185 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2186 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2187 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2188 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2189 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2190 case DT_GNU_HASH: return "GNU_HASH";
2191
2192 default:
2193 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2194 {
2195 const char * result;
2196
2197 switch (filedata->file_header.e_machine)
2198 {
2199 case EM_AARCH64:
2200 result = get_aarch64_dynamic_type (type);
2201 break;
2202 case EM_MIPS:
2203 case EM_MIPS_RS3_LE:
2204 result = get_mips_dynamic_type (type);
2205 break;
2206 case EM_SPARCV9:
2207 result = get_sparc64_dynamic_type (type);
2208 break;
2209 case EM_PPC:
2210 result = get_ppc_dynamic_type (type);
2211 break;
2212 case EM_PPC64:
2213 result = get_ppc64_dynamic_type (type);
2214 break;
2215 case EM_IA_64:
2216 result = get_ia64_dynamic_type (type);
2217 break;
2218 case EM_ALPHA:
2219 result = get_alpha_dynamic_type (type);
2220 break;
2221 case EM_SCORE:
2222 result = get_score_dynamic_type (type);
2223 break;
2224 case EM_TI_C6000:
2225 result = get_tic6x_dynamic_type (type);
2226 break;
2227 case EM_ALTERA_NIOS2:
2228 result = get_nios2_dynamic_type (type);
2229 break;
2230 default:
2231 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2232 result = get_solaris_dynamic_type (type);
2233 else
2234 result = NULL;
2235 break;
2236 }
2237
2238 if (result != NULL)
2239 return result;
2240
2241 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2242 }
2243 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2244 || (filedata->file_header.e_machine == EM_PARISC
2245 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2246 {
2247 const char * result;
2248
2249 switch (filedata->file_header.e_machine)
2250 {
2251 case EM_PARISC:
2252 result = get_parisc_dynamic_type (type);
2253 break;
2254 case EM_IA_64:
2255 result = get_ia64_dynamic_type (type);
2256 break;
2257 default:
2258 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2259 result = get_solaris_dynamic_type (type);
2260 else
2261 result = NULL;
2262 break;
2263 }
2264
2265 if (result != NULL)
2266 return result;
2267
2268 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2269 type);
2270 }
2271 else
2272 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2273
2274 return buff;
2275 }
2276 }
2277
2278 static char *
2279 get_file_type (unsigned e_type)
2280 {
2281 static char buff[32];
2282
2283 switch (e_type)
2284 {
2285 case ET_NONE: return _("NONE (None)");
2286 case ET_REL: return _("REL (Relocatable file)");
2287 case ET_EXEC: return _("EXEC (Executable file)");
2288 case ET_DYN: return _("DYN (Shared object file)");
2289 case ET_CORE: return _("CORE (Core file)");
2290
2291 default:
2292 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2293 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2294 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2295 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2296 else
2297 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2298 return buff;
2299 }
2300 }
2301
2302 static char *
2303 get_machine_name (unsigned e_machine)
2304 {
2305 static char buff[64]; /* XXX */
2306
2307 switch (e_machine)
2308 {
2309 /* Please keep this switch table sorted by increasing EM_ value. */
2310 /* 0 */
2311 case EM_NONE: return _("None");
2312 case EM_M32: return "WE32100";
2313 case EM_SPARC: return "Sparc";
2314 case EM_386: return "Intel 80386";
2315 case EM_68K: return "MC68000";
2316 case EM_88K: return "MC88000";
2317 case EM_IAMCU: return "Intel MCU";
2318 case EM_860: return "Intel 80860";
2319 case EM_MIPS: return "MIPS R3000";
2320 case EM_S370: return "IBM System/370";
2321 /* 10 */
2322 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2323 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2324 case EM_PARISC: return "HPPA";
2325 case EM_VPP550: return "Fujitsu VPP500";
2326 case EM_SPARC32PLUS: return "Sparc v8+" ;
2327 case EM_960: return "Intel 80960";
2328 case EM_PPC: return "PowerPC";
2329 /* 20 */
2330 case EM_PPC64: return "PowerPC64";
2331 case EM_S390_OLD:
2332 case EM_S390: return "IBM S/390";
2333 case EM_SPU: return "SPU";
2334 /* 30 */
2335 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2336 case EM_FR20: return "Fujitsu FR20";
2337 case EM_RH32: return "TRW RH32";
2338 case EM_MCORE: return "MCORE";
2339 /* 40 */
2340 case EM_ARM: return "ARM";
2341 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2342 case EM_SH: return "Renesas / SuperH SH";
2343 case EM_SPARCV9: return "Sparc v9";
2344 case EM_TRICORE: return "Siemens Tricore";
2345 case EM_ARC: return "ARC";
2346 case EM_H8_300: return "Renesas H8/300";
2347 case EM_H8_300H: return "Renesas H8/300H";
2348 case EM_H8S: return "Renesas H8S";
2349 case EM_H8_500: return "Renesas H8/500";
2350 /* 50 */
2351 case EM_IA_64: return "Intel IA-64";
2352 case EM_MIPS_X: return "Stanford MIPS-X";
2353 case EM_COLDFIRE: return "Motorola Coldfire";
2354 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2355 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2356 case EM_PCP: return "Siemens PCP";
2357 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2358 case EM_NDR1: return "Denso NDR1 microprocesspr";
2359 case EM_STARCORE: return "Motorola Star*Core processor";
2360 case EM_ME16: return "Toyota ME16 processor";
2361 /* 60 */
2362 case EM_ST100: return "STMicroelectronics ST100 processor";
2363 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2364 case EM_X86_64: return "Advanced Micro Devices X86-64";
2365 case EM_PDSP: return "Sony DSP processor";
2366 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2367 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2368 case EM_FX66: return "Siemens FX66 microcontroller";
2369 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2370 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2371 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2372 /* 70 */
2373 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2374 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2375 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2376 case EM_SVX: return "Silicon Graphics SVx";
2377 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2378 case EM_VAX: return "Digital VAX";
2379 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2380 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2381 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2382 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2383 /* 80 */
2384 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2385 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2386 case EM_PRISM: return "Vitesse Prism";
2387 case EM_AVR_OLD:
2388 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2389 case EM_CYGNUS_FR30:
2390 case EM_FR30: return "Fujitsu FR30";
2391 case EM_CYGNUS_D10V:
2392 case EM_D10V: return "d10v";
2393 case EM_CYGNUS_D30V:
2394 case EM_D30V: return "d30v";
2395 case EM_CYGNUS_V850:
2396 case EM_V850: return "Renesas V850";
2397 case EM_CYGNUS_M32R:
2398 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2399 case EM_CYGNUS_MN10300:
2400 case EM_MN10300: return "mn10300";
2401 /* 90 */
2402 case EM_CYGNUS_MN10200:
2403 case EM_MN10200: return "mn10200";
2404 case EM_PJ: return "picoJava";
2405 case EM_OR1K: return "OpenRISC 1000";
2406 case EM_ARC_COMPACT: return "ARCompact";
2407 case EM_XTENSA_OLD:
2408 case EM_XTENSA: return "Tensilica Xtensa Processor";
2409 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2410 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2411 case EM_NS32K: return "National Semiconductor 32000 series";
2412 case EM_TPC: return "Tenor Network TPC processor";
2413 case EM_SNP1K: return "Trebia SNP 1000 processor";
2414 /* 100 */
2415 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2416 case EM_IP2K_OLD:
2417 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2418 case EM_MAX: return "MAX Processor";
2419 case EM_CR: return "National Semiconductor CompactRISC";
2420 case EM_F2MC16: return "Fujitsu F2MC16";
2421 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2422 case EM_BLACKFIN: return "Analog Devices Blackfin";
2423 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2424 case EM_SEP: return "Sharp embedded microprocessor";
2425 case EM_ARCA: return "Arca RISC microprocessor";
2426 /* 110 */
2427 case EM_UNICORE: return "Unicore";
2428 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2429 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2430 case EM_ALTERA_NIOS2: return "Altera Nios II";
2431 case EM_CRX: return "National Semiconductor CRX microprocessor";
2432 case EM_XGATE: return "Motorola XGATE embedded processor";
2433 case EM_C166:
2434 case EM_XC16X: return "Infineon Technologies xc16x";
2435 case EM_M16C: return "Renesas M16C series microprocessors";
2436 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2437 case EM_CE: return "Freescale Communication Engine RISC core";
2438 /* 120 */
2439 case EM_M32C: return "Renesas M32c";
2440 /* 130 */
2441 case EM_TSK3000: return "Altium TSK3000 core";
2442 case EM_RS08: return "Freescale RS08 embedded processor";
2443 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2444 case EM_SCORE: return "SUNPLUS S+Core";
2445 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2446 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2447 case EM_LATTICEMICO32: return "Lattice Mico32";
2448 case EM_SE_C17: return "Seiko Epson C17 family";
2449 /* 140 */
2450 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2451 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2452 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2453 case EM_TI_PRU: return "TI PRU I/O processor";
2454 /* 160 */
2455 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2456 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2457 case EM_R32C: return "Renesas R32C series microprocessors";
2458 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2459 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2460 case EM_8051: return "Intel 8051 and variants";
2461 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2462 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2463 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2464 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2465 /* 170 */
2466 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2467 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2468 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2469 case EM_RX: return "Renesas RX";
2470 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2471 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2472 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2473 case EM_CR16:
2474 case EM_MICROBLAZE:
2475 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2476 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2477 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2478 /* 180 */
2479 case EM_L1OM: return "Intel L1OM";
2480 case EM_K1OM: return "Intel K1OM";
2481 case EM_INTEL182: return "Intel (reserved)";
2482 case EM_AARCH64: return "AArch64";
2483 case EM_ARM184: return "ARM (reserved)";
2484 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2485 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2486 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2487 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2488 /* 190 */
2489 case EM_CUDA: return "NVIDIA CUDA architecture";
2490 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2491 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2492 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2493 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2494 case EM_ARC_COMPACT2: return "ARCv2";
2495 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2496 case EM_RL78: return "Renesas RL78";
2497 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2498 case EM_78K0R: return "Renesas 78K0R";
2499 /* 200 */
2500 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2501 case EM_BA1: return "Beyond BA1 CPU architecture";
2502 case EM_BA2: return "Beyond BA2 CPU architecture";
2503 case EM_XCORE: return "XMOS xCORE processor family";
2504 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2505 /* 210 */
2506 case EM_KM32: return "KM211 KM32 32-bit processor";
2507 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2508 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2509 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2510 case EM_KVARC: return "KM211 KVARC processor";
2511 case EM_CDP: return "Paneve CDP architecture family";
2512 case EM_COGE: return "Cognitive Smart Memory Processor";
2513 case EM_COOL: return "Bluechip Systems CoolEngine";
2514 case EM_NORC: return "Nanoradio Optimized RISC";
2515 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2516 /* 220 */
2517 case EM_Z80: return "Zilog Z80";
2518 case EM_VISIUM: return "CDS VISIUMcore processor";
2519 case EM_FT32: return "FTDI Chip FT32";
2520 case EM_MOXIE: return "Moxie";
2521 case EM_AMDGPU: return "AMD GPU";
2522 case EM_RISCV: return "RISC-V";
2523 case EM_LANAI: return "Lanai 32-bit processor";
2524 case EM_BPF: return "Linux BPF";
2525 case EM_NFP: return "Netronome Flow Processor";
2526
2527 /* Large numbers... */
2528 case EM_MT: return "Morpho Techologies MT processor";
2529 case EM_ALPHA: return "Alpha";
2530 case EM_WEBASSEMBLY: return "Web Assembly";
2531 case EM_DLX: return "OpenDLX";
2532 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2533 case EM_IQ2000: return "Vitesse IQ2000";
2534 case EM_M32C_OLD:
2535 case EM_NIOS32: return "Altera Nios";
2536 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2537 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2538 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2539 case EM_S12Z: return "Freescale S12Z";
2540 case EM_CSKY: return "C-SKY";
2541
2542 default:
2543 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2544 return buff;
2545 }
2546 }
2547
2548 static void
2549 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2550 {
2551 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2552 other compilers don't a specific architecture type in the e_flags, and
2553 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2554 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2555 architectures.
2556
2557 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2558 but also sets a specific architecture type in the e_flags field.
2559
2560 However, when decoding the flags we don't worry if we see an
2561 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2562 ARCEM architecture type. */
2563
2564 switch (e_flags & EF_ARC_MACH_MSK)
2565 {
2566 /* We only expect these to occur for EM_ARC_COMPACT2. */
2567 case EF_ARC_CPU_ARCV2EM:
2568 strcat (buf, ", ARC EM");
2569 break;
2570 case EF_ARC_CPU_ARCV2HS:
2571 strcat (buf, ", ARC HS");
2572 break;
2573
2574 /* We only expect these to occur for EM_ARC_COMPACT. */
2575 case E_ARC_MACH_ARC600:
2576 strcat (buf, ", ARC600");
2577 break;
2578 case E_ARC_MACH_ARC601:
2579 strcat (buf, ", ARC601");
2580 break;
2581 case E_ARC_MACH_ARC700:
2582 strcat (buf, ", ARC700");
2583 break;
2584
2585 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2586 new ELF with new architecture being read by an old version of
2587 readelf, or (c) An ELF built with non-GNU compiler that does not
2588 set the architecture in the e_flags. */
2589 default:
2590 if (e_machine == EM_ARC_COMPACT)
2591 strcat (buf, ", Unknown ARCompact");
2592 else
2593 strcat (buf, ", Unknown ARC");
2594 break;
2595 }
2596
2597 switch (e_flags & EF_ARC_OSABI_MSK)
2598 {
2599 case E_ARC_OSABI_ORIG:
2600 strcat (buf, ", (ABI:legacy)");
2601 break;
2602 case E_ARC_OSABI_V2:
2603 strcat (buf, ", (ABI:v2)");
2604 break;
2605 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2606 case E_ARC_OSABI_V3:
2607 strcat (buf, ", v3 no-legacy-syscalls ABI");
2608 break;
2609 case E_ARC_OSABI_V4:
2610 strcat (buf, ", v4 ABI");
2611 break;
2612 default:
2613 strcat (buf, ", unrecognised ARC OSABI flag");
2614 break;
2615 }
2616 }
2617
2618 static void
2619 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2620 {
2621 unsigned eabi;
2622 bfd_boolean unknown = FALSE;
2623
2624 eabi = EF_ARM_EABI_VERSION (e_flags);
2625 e_flags &= ~ EF_ARM_EABIMASK;
2626
2627 /* Handle "generic" ARM flags. */
2628 if (e_flags & EF_ARM_RELEXEC)
2629 {
2630 strcat (buf, ", relocatable executable");
2631 e_flags &= ~ EF_ARM_RELEXEC;
2632 }
2633
2634 if (e_flags & EF_ARM_PIC)
2635 {
2636 strcat (buf, ", position independent");
2637 e_flags &= ~ EF_ARM_PIC;
2638 }
2639
2640 /* Now handle EABI specific flags. */
2641 switch (eabi)
2642 {
2643 default:
2644 strcat (buf, ", <unrecognized EABI>");
2645 if (e_flags)
2646 unknown = TRUE;
2647 break;
2648
2649 case EF_ARM_EABI_VER1:
2650 strcat (buf, ", Version1 EABI");
2651 while (e_flags)
2652 {
2653 unsigned flag;
2654
2655 /* Process flags one bit at a time. */
2656 flag = e_flags & - e_flags;
2657 e_flags &= ~ flag;
2658
2659 switch (flag)
2660 {
2661 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2662 strcat (buf, ", sorted symbol tables");
2663 break;
2664
2665 default:
2666 unknown = TRUE;
2667 break;
2668 }
2669 }
2670 break;
2671
2672 case EF_ARM_EABI_VER2:
2673 strcat (buf, ", Version2 EABI");
2674 while (e_flags)
2675 {
2676 unsigned flag;
2677
2678 /* Process flags one bit at a time. */
2679 flag = e_flags & - e_flags;
2680 e_flags &= ~ flag;
2681
2682 switch (flag)
2683 {
2684 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2685 strcat (buf, ", sorted symbol tables");
2686 break;
2687
2688 case EF_ARM_DYNSYMSUSESEGIDX:
2689 strcat (buf, ", dynamic symbols use segment index");
2690 break;
2691
2692 case EF_ARM_MAPSYMSFIRST:
2693 strcat (buf, ", mapping symbols precede others");
2694 break;
2695
2696 default:
2697 unknown = TRUE;
2698 break;
2699 }
2700 }
2701 break;
2702
2703 case EF_ARM_EABI_VER3:
2704 strcat (buf, ", Version3 EABI");
2705 break;
2706
2707 case EF_ARM_EABI_VER4:
2708 strcat (buf, ", Version4 EABI");
2709 while (e_flags)
2710 {
2711 unsigned flag;
2712
2713 /* Process flags one bit at a time. */
2714 flag = e_flags & - e_flags;
2715 e_flags &= ~ flag;
2716
2717 switch (flag)
2718 {
2719 case EF_ARM_BE8:
2720 strcat (buf, ", BE8");
2721 break;
2722
2723 case EF_ARM_LE8:
2724 strcat (buf, ", LE8");
2725 break;
2726
2727 default:
2728 unknown = TRUE;
2729 break;
2730 }
2731 }
2732 break;
2733
2734 case EF_ARM_EABI_VER5:
2735 strcat (buf, ", Version5 EABI");
2736 while (e_flags)
2737 {
2738 unsigned flag;
2739
2740 /* Process flags one bit at a time. */
2741 flag = e_flags & - e_flags;
2742 e_flags &= ~ flag;
2743
2744 switch (flag)
2745 {
2746 case EF_ARM_BE8:
2747 strcat (buf, ", BE8");
2748 break;
2749
2750 case EF_ARM_LE8:
2751 strcat (buf, ", LE8");
2752 break;
2753
2754 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2755 strcat (buf, ", soft-float ABI");
2756 break;
2757
2758 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2759 strcat (buf, ", hard-float ABI");
2760 break;
2761
2762 default:
2763 unknown = TRUE;
2764 break;
2765 }
2766 }
2767 break;
2768
2769 case EF_ARM_EABI_UNKNOWN:
2770 strcat (buf, ", GNU EABI");
2771 while (e_flags)
2772 {
2773 unsigned flag;
2774
2775 /* Process flags one bit at a time. */
2776 flag = e_flags & - e_flags;
2777 e_flags &= ~ flag;
2778
2779 switch (flag)
2780 {
2781 case EF_ARM_INTERWORK:
2782 strcat (buf, ", interworking enabled");
2783 break;
2784
2785 case EF_ARM_APCS_26:
2786 strcat (buf, ", uses APCS/26");
2787 break;
2788
2789 case EF_ARM_APCS_FLOAT:
2790 strcat (buf, ", uses APCS/float");
2791 break;
2792
2793 case EF_ARM_PIC:
2794 strcat (buf, ", position independent");
2795 break;
2796
2797 case EF_ARM_ALIGN8:
2798 strcat (buf, ", 8 bit structure alignment");
2799 break;
2800
2801 case EF_ARM_NEW_ABI:
2802 strcat (buf, ", uses new ABI");
2803 break;
2804
2805 case EF_ARM_OLD_ABI:
2806 strcat (buf, ", uses old ABI");
2807 break;
2808
2809 case EF_ARM_SOFT_FLOAT:
2810 strcat (buf, ", software FP");
2811 break;
2812
2813 case EF_ARM_VFP_FLOAT:
2814 strcat (buf, ", VFP");
2815 break;
2816
2817 case EF_ARM_MAVERICK_FLOAT:
2818 strcat (buf, ", Maverick FP");
2819 break;
2820
2821 default:
2822 unknown = TRUE;
2823 break;
2824 }
2825 }
2826 }
2827
2828 if (unknown)
2829 strcat (buf,_(", <unknown>"));
2830 }
2831
2832 static void
2833 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2834 {
2835 --size; /* Leave space for null terminator. */
2836
2837 switch (e_flags & EF_AVR_MACH)
2838 {
2839 case E_AVR_MACH_AVR1:
2840 strncat (buf, ", avr:1", size);
2841 break;
2842 case E_AVR_MACH_AVR2:
2843 strncat (buf, ", avr:2", size);
2844 break;
2845 case E_AVR_MACH_AVR25:
2846 strncat (buf, ", avr:25", size);
2847 break;
2848 case E_AVR_MACH_AVR3:
2849 strncat (buf, ", avr:3", size);
2850 break;
2851 case E_AVR_MACH_AVR31:
2852 strncat (buf, ", avr:31", size);
2853 break;
2854 case E_AVR_MACH_AVR35:
2855 strncat (buf, ", avr:35", size);
2856 break;
2857 case E_AVR_MACH_AVR4:
2858 strncat (buf, ", avr:4", size);
2859 break;
2860 case E_AVR_MACH_AVR5:
2861 strncat (buf, ", avr:5", size);
2862 break;
2863 case E_AVR_MACH_AVR51:
2864 strncat (buf, ", avr:51", size);
2865 break;
2866 case E_AVR_MACH_AVR6:
2867 strncat (buf, ", avr:6", size);
2868 break;
2869 case E_AVR_MACH_AVRTINY:
2870 strncat (buf, ", avr:100", size);
2871 break;
2872 case E_AVR_MACH_XMEGA1:
2873 strncat (buf, ", avr:101", size);
2874 break;
2875 case E_AVR_MACH_XMEGA2:
2876 strncat (buf, ", avr:102", size);
2877 break;
2878 case E_AVR_MACH_XMEGA3:
2879 strncat (buf, ", avr:103", size);
2880 break;
2881 case E_AVR_MACH_XMEGA4:
2882 strncat (buf, ", avr:104", size);
2883 break;
2884 case E_AVR_MACH_XMEGA5:
2885 strncat (buf, ", avr:105", size);
2886 break;
2887 case E_AVR_MACH_XMEGA6:
2888 strncat (buf, ", avr:106", size);
2889 break;
2890 case E_AVR_MACH_XMEGA7:
2891 strncat (buf, ", avr:107", size);
2892 break;
2893 default:
2894 strncat (buf, ", avr:<unknown>", size);
2895 break;
2896 }
2897
2898 size -= strlen (buf);
2899 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2900 strncat (buf, ", link-relax", size);
2901 }
2902
2903 static void
2904 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2905 {
2906 unsigned abi;
2907 unsigned arch;
2908 unsigned config;
2909 unsigned version;
2910 bfd_boolean has_fpu = FALSE;
2911 unsigned int r = 0;
2912
2913 static const char *ABI_STRINGS[] =
2914 {
2915 "ABI v0", /* use r5 as return register; only used in N1213HC */
2916 "ABI v1", /* use r0 as return register */
2917 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2918 "ABI v2fp", /* for FPU */
2919 "AABI",
2920 "ABI2 FP+"
2921 };
2922 static const char *VER_STRINGS[] =
2923 {
2924 "Andes ELF V1.3 or older",
2925 "Andes ELF V1.3.1",
2926 "Andes ELF V1.4"
2927 };
2928 static const char *ARCH_STRINGS[] =
2929 {
2930 "",
2931 "Andes Star v1.0",
2932 "Andes Star v2.0",
2933 "Andes Star v3.0",
2934 "Andes Star v3.0m"
2935 };
2936
2937 abi = EF_NDS_ABI & e_flags;
2938 arch = EF_NDS_ARCH & e_flags;
2939 config = EF_NDS_INST & e_flags;
2940 version = EF_NDS32_ELF_VERSION & e_flags;
2941
2942 memset (buf, 0, size);
2943
2944 switch (abi)
2945 {
2946 case E_NDS_ABI_V0:
2947 case E_NDS_ABI_V1:
2948 case E_NDS_ABI_V2:
2949 case E_NDS_ABI_V2FP:
2950 case E_NDS_ABI_AABI:
2951 case E_NDS_ABI_V2FP_PLUS:
2952 /* In case there are holes in the array. */
2953 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2954 break;
2955
2956 default:
2957 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2958 break;
2959 }
2960
2961 switch (version)
2962 {
2963 case E_NDS32_ELF_VER_1_2:
2964 case E_NDS32_ELF_VER_1_3:
2965 case E_NDS32_ELF_VER_1_4:
2966 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2967 break;
2968
2969 default:
2970 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2971 break;
2972 }
2973
2974 if (E_NDS_ABI_V0 == abi)
2975 {
2976 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2977 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2978 if (arch == E_NDS_ARCH_STAR_V1_0)
2979 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2980 return;
2981 }
2982
2983 switch (arch)
2984 {
2985 case E_NDS_ARCH_STAR_V1_0:
2986 case E_NDS_ARCH_STAR_V2_0:
2987 case E_NDS_ARCH_STAR_V3_0:
2988 case E_NDS_ARCH_STAR_V3_M:
2989 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2990 break;
2991
2992 default:
2993 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2994 /* ARCH version determines how the e_flags are interpreted.
2995 If it is unknown, we cannot proceed. */
2996 return;
2997 }
2998
2999 /* Newer ABI; Now handle architecture specific flags. */
3000 if (arch == E_NDS_ARCH_STAR_V1_0)
3001 {
3002 if (config & E_NDS32_HAS_MFUSR_PC_INST)
3003 r += snprintf (buf + r, size -r, ", MFUSR_PC");
3004
3005 if (!(config & E_NDS32_HAS_NO_MAC_INST))
3006 r += snprintf (buf + r, size -r, ", MAC");
3007
3008 if (config & E_NDS32_HAS_DIV_INST)
3009 r += snprintf (buf + r, size -r, ", DIV");
3010
3011 if (config & E_NDS32_HAS_16BIT_INST)
3012 r += snprintf (buf + r, size -r, ", 16b");
3013 }
3014 else
3015 {
3016 if (config & E_NDS32_HAS_MFUSR_PC_INST)
3017 {
3018 if (version <= E_NDS32_ELF_VER_1_3)
3019 r += snprintf (buf + r, size -r, ", [B8]");
3020 else
3021 r += snprintf (buf + r, size -r, ", EX9");
3022 }
3023
3024 if (config & E_NDS32_HAS_MAC_DX_INST)
3025 r += snprintf (buf + r, size -r, ", MAC_DX");
3026
3027 if (config & E_NDS32_HAS_DIV_DX_INST)
3028 r += snprintf (buf + r, size -r, ", DIV_DX");
3029
3030 if (config & E_NDS32_HAS_16BIT_INST)
3031 {
3032 if (version <= E_NDS32_ELF_VER_1_3)
3033 r += snprintf (buf + r, size -r, ", 16b");
3034 else
3035 r += snprintf (buf + r, size -r, ", IFC");
3036 }
3037 }
3038
3039 if (config & E_NDS32_HAS_EXT_INST)
3040 r += snprintf (buf + r, size -r, ", PERF1");
3041
3042 if (config & E_NDS32_HAS_EXT2_INST)
3043 r += snprintf (buf + r, size -r, ", PERF2");
3044
3045 if (config & E_NDS32_HAS_FPU_INST)
3046 {
3047 has_fpu = TRUE;
3048 r += snprintf (buf + r, size -r, ", FPU_SP");
3049 }
3050
3051 if (config & E_NDS32_HAS_FPU_DP_INST)
3052 {
3053 has_fpu = TRUE;
3054 r += snprintf (buf + r, size -r, ", FPU_DP");
3055 }
3056
3057 if (config & E_NDS32_HAS_FPU_MAC_INST)
3058 {
3059 has_fpu = TRUE;
3060 r += snprintf (buf + r, size -r, ", FPU_MAC");
3061 }
3062
3063 if (has_fpu)
3064 {
3065 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
3066 {
3067 case E_NDS32_FPU_REG_8SP_4DP:
3068 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
3069 break;
3070 case E_NDS32_FPU_REG_16SP_8DP:
3071 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
3072 break;
3073 case E_NDS32_FPU_REG_32SP_16DP:
3074 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
3075 break;
3076 case E_NDS32_FPU_REG_32SP_32DP:
3077 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
3078 break;
3079 }
3080 }
3081
3082 if (config & E_NDS32_HAS_AUDIO_INST)
3083 r += snprintf (buf + r, size -r, ", AUDIO");
3084
3085 if (config & E_NDS32_HAS_STRING_INST)
3086 r += snprintf (buf + r, size -r, ", STR");
3087
3088 if (config & E_NDS32_HAS_REDUCED_REGS)
3089 r += snprintf (buf + r, size -r, ", 16REG");
3090
3091 if (config & E_NDS32_HAS_VIDEO_INST)
3092 {
3093 if (version <= E_NDS32_ELF_VER_1_3)
3094 r += snprintf (buf + r, size -r, ", VIDEO");
3095 else
3096 r += snprintf (buf + r, size -r, ", SATURATION");
3097 }
3098
3099 if (config & E_NDS32_HAS_ENCRIPT_INST)
3100 r += snprintf (buf + r, size -r, ", ENCRP");
3101
3102 if (config & E_NDS32_HAS_L2C_INST)
3103 r += snprintf (buf + r, size -r, ", L2C");
3104 }
3105
3106 static char *
3107 get_machine_flags (Filedata * filedata, unsigned e_flags, unsigned e_machine)
3108 {
3109 static char buf[1024];
3110
3111 buf[0] = '\0';
3112
3113 if (e_flags)
3114 {
3115 switch (e_machine)
3116 {
3117 default:
3118 break;
3119
3120 case EM_ARC_COMPACT2:
3121 case EM_ARC_COMPACT:
3122 decode_ARC_machine_flags (e_flags, e_machine, buf);
3123 break;
3124
3125 case EM_ARM:
3126 decode_ARM_machine_flags (e_flags, buf);
3127 break;
3128
3129 case EM_AVR:
3130 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3131 break;
3132
3133 case EM_BLACKFIN:
3134 if (e_flags & EF_BFIN_PIC)
3135 strcat (buf, ", PIC");
3136
3137 if (e_flags & EF_BFIN_FDPIC)
3138 strcat (buf, ", FDPIC");
3139
3140 if (e_flags & EF_BFIN_CODE_IN_L1)
3141 strcat (buf, ", code in L1");
3142
3143 if (e_flags & EF_BFIN_DATA_IN_L1)
3144 strcat (buf, ", data in L1");
3145
3146 break;
3147
3148 case EM_CYGNUS_FRV:
3149 switch (e_flags & EF_FRV_CPU_MASK)
3150 {
3151 case EF_FRV_CPU_GENERIC:
3152 break;
3153
3154 default:
3155 strcat (buf, ", fr???");
3156 break;
3157
3158 case EF_FRV_CPU_FR300:
3159 strcat (buf, ", fr300");
3160 break;
3161
3162 case EF_FRV_CPU_FR400:
3163 strcat (buf, ", fr400");
3164 break;
3165 case EF_FRV_CPU_FR405:
3166 strcat (buf, ", fr405");
3167 break;
3168
3169 case EF_FRV_CPU_FR450:
3170 strcat (buf, ", fr450");
3171 break;
3172
3173 case EF_FRV_CPU_FR500:
3174 strcat (buf, ", fr500");
3175 break;
3176 case EF_FRV_CPU_FR550:
3177 strcat (buf, ", fr550");
3178 break;
3179
3180 case EF_FRV_CPU_SIMPLE:
3181 strcat (buf, ", simple");
3182 break;
3183 case EF_FRV_CPU_TOMCAT:
3184 strcat (buf, ", tomcat");
3185 break;
3186 }
3187 break;
3188
3189 case EM_68K:
3190 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3191 strcat (buf, ", m68000");
3192 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3193 strcat (buf, ", cpu32");
3194 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3195 strcat (buf, ", fido_a");
3196 else
3197 {
3198 char const * isa = _("unknown");
3199 char const * mac = _("unknown mac");
3200 char const * additional = NULL;
3201
3202 switch (e_flags & EF_M68K_CF_ISA_MASK)
3203 {
3204 case EF_M68K_CF_ISA_A_NODIV:
3205 isa = "A";
3206 additional = ", nodiv";
3207 break;
3208 case EF_M68K_CF_ISA_A:
3209 isa = "A";
3210 break;
3211 case EF_M68K_CF_ISA_A_PLUS:
3212 isa = "A+";
3213 break;
3214 case EF_M68K_CF_ISA_B_NOUSP:
3215 isa = "B";
3216 additional = ", nousp";
3217 break;
3218 case EF_M68K_CF_ISA_B:
3219 isa = "B";
3220 break;
3221 case EF_M68K_CF_ISA_C:
3222 isa = "C";
3223 break;
3224 case EF_M68K_CF_ISA_C_NODIV:
3225 isa = "C";
3226 additional = ", nodiv";
3227 break;
3228 }
3229 strcat (buf, ", cf, isa ");
3230 strcat (buf, isa);
3231 if (additional)
3232 strcat (buf, additional);
3233 if (e_flags & EF_M68K_CF_FLOAT)
3234 strcat (buf, ", float");
3235 switch (e_flags & EF_M68K_CF_MAC_MASK)
3236 {
3237 case 0:
3238 mac = NULL;
3239 break;
3240 case EF_M68K_CF_MAC:
3241 mac = "mac";
3242 break;
3243 case EF_M68K_CF_EMAC:
3244 mac = "emac";
3245 break;
3246 case EF_M68K_CF_EMAC_B:
3247 mac = "emac_b";
3248 break;
3249 }
3250 if (mac)
3251 {
3252 strcat (buf, ", ");
3253 strcat (buf, mac);
3254 }
3255 }
3256 break;
3257
3258 case EM_CYGNUS_MEP:
3259 switch (e_flags & EF_MEP_CPU_MASK)
3260 {
3261 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3262 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3263 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3264 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3265 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3266 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3267 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3268 }
3269
3270 switch (e_flags & EF_MEP_COP_MASK)
3271 {
3272 case EF_MEP_COP_NONE: break;
3273 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3274 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3275 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3276 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3277 default: strcat (buf, _("<unknown MeP copro type>")); break;
3278 }
3279
3280 if (e_flags & EF_MEP_LIBRARY)
3281 strcat (buf, ", Built for Library");
3282
3283 if (e_flags & EF_MEP_INDEX_MASK)
3284 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3285 e_flags & EF_MEP_INDEX_MASK);
3286
3287 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3288 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3289 e_flags & ~ EF_MEP_ALL_FLAGS);
3290 break;
3291
3292 case EM_PPC:
3293 if (e_flags & EF_PPC_EMB)
3294 strcat (buf, ", emb");
3295
3296 if (e_flags & EF_PPC_RELOCATABLE)
3297 strcat (buf, _(", relocatable"));
3298
3299 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3300 strcat (buf, _(", relocatable-lib"));
3301 break;
3302
3303 case EM_PPC64:
3304 if (e_flags & EF_PPC64_ABI)
3305 {
3306 char abi[] = ", abiv0";
3307
3308 abi[6] += e_flags & EF_PPC64_ABI;
3309 strcat (buf, abi);
3310 }
3311 break;
3312
3313 case EM_V800:
3314 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3315 strcat (buf, ", RH850 ABI");
3316
3317 if (e_flags & EF_V800_850E3)
3318 strcat (buf, ", V3 architecture");
3319
3320 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3321 strcat (buf, ", FPU not used");
3322
3323 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3324 strcat (buf, ", regmode: COMMON");
3325
3326 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3327 strcat (buf, ", r4 not used");
3328
3329 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3330 strcat (buf, ", r30 not used");
3331
3332 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3333 strcat (buf, ", r5 not used");
3334
3335 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3336 strcat (buf, ", r2 not used");
3337
3338 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3339 {
3340 switch (e_flags & - e_flags)
3341 {
3342 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3343 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3344 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3345 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3346 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3347 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3348 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3349 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3350 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3351 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3352 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3353 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3354 default: break;
3355 }
3356 }
3357 break;
3358
3359 case EM_V850:
3360 case EM_CYGNUS_V850:
3361 switch (e_flags & EF_V850_ARCH)
3362 {
3363 case E_V850E3V5_ARCH:
3364 strcat (buf, ", v850e3v5");
3365 break;
3366 case E_V850E2V3_ARCH:
3367 strcat (buf, ", v850e2v3");
3368 break;
3369 case E_V850E2_ARCH:
3370 strcat (buf, ", v850e2");
3371 break;
3372 case E_V850E1_ARCH:
3373 strcat (buf, ", v850e1");
3374 break;
3375 case E_V850E_ARCH:
3376 strcat (buf, ", v850e");
3377 break;
3378 case E_V850_ARCH:
3379 strcat (buf, ", v850");
3380 break;
3381 default:
3382 strcat (buf, _(", unknown v850 architecture variant"));
3383 break;
3384 }
3385 break;
3386
3387 case EM_M32R:
3388 case EM_CYGNUS_M32R:
3389 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3390 strcat (buf, ", m32r");
3391 break;
3392
3393 case EM_MIPS:
3394 case EM_MIPS_RS3_LE:
3395 if (e_flags & EF_MIPS_NOREORDER)
3396 strcat (buf, ", noreorder");
3397
3398 if (e_flags & EF_MIPS_PIC)
3399 strcat (buf, ", pic");
3400
3401 if (e_flags & EF_MIPS_CPIC)
3402 strcat (buf, ", cpic");
3403
3404 if (e_flags & EF_MIPS_UCODE)
3405 strcat (buf, ", ugen_reserved");
3406
3407 if (e_flags & EF_MIPS_ABI2)
3408 strcat (buf, ", abi2");
3409
3410 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3411 strcat (buf, ", odk first");
3412
3413 if (e_flags & EF_MIPS_32BITMODE)
3414 strcat (buf, ", 32bitmode");
3415
3416 if (e_flags & EF_MIPS_NAN2008)
3417 strcat (buf, ", nan2008");
3418
3419 if (e_flags & EF_MIPS_FP64)
3420 strcat (buf, ", fp64");
3421
3422 switch ((e_flags & EF_MIPS_MACH))
3423 {
3424 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3425 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3426 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3427 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3428 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3429 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3430 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3431 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3432 case E_MIPS_MACH_5900: strcat (buf, ", 5900"); break;
3433 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3434 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3435 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3436 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3437 case E_MIPS_MACH_GS464: strcat (buf, ", gs464"); break;
3438 case E_MIPS_MACH_GS464E: strcat (buf, ", gs464e"); break;
3439 case E_MIPS_MACH_GS264E: strcat (buf, ", gs264e"); break;
3440 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3441 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3442 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3443 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3444 case E_MIPS_MACH_IAMR2: strcat (buf, ", interaptiv-mr2"); break;
3445 case 0:
3446 /* We simply ignore the field in this case to avoid confusion:
3447 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3448 extension. */
3449 break;
3450 default: strcat (buf, _(", unknown CPU")); break;
3451 }
3452
3453 switch ((e_flags & EF_MIPS_ABI))
3454 {
3455 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3456 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3457 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3458 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3459 case 0:
3460 /* We simply ignore the field in this case to avoid confusion:
3461 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3462 This means it is likely to be an o32 file, but not for
3463 sure. */
3464 break;
3465 default: strcat (buf, _(", unknown ABI")); break;
3466 }
3467
3468 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3469 strcat (buf, ", mdmx");
3470
3471 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3472 strcat (buf, ", mips16");
3473
3474 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3475 strcat (buf, ", micromips");
3476
3477 switch ((e_flags & EF_MIPS_ARCH))
3478 {
3479 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3480 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3481 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3482 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3483 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3484 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3485 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3486 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3487 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3488 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3489 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3490 default: strcat (buf, _(", unknown ISA")); break;
3491 }
3492 break;
3493
3494 case EM_NDS32:
3495 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3496 break;
3497
3498 case EM_NFP:
3499 switch (EF_NFP_MACH (e_flags))
3500 {
3501 case E_NFP_MACH_3200:
3502 strcat (buf, ", NFP-32xx");
3503 break;
3504 case E_NFP_MACH_6000:
3505 strcat (buf, ", NFP-6xxx");
3506 break;
3507 }
3508 break;
3509
3510 case EM_RISCV:
3511 if (e_flags & EF_RISCV_RVC)
3512 strcat (buf, ", RVC");
3513
3514 if (e_flags & EF_RISCV_RVE)
3515 strcat (buf, ", RVE");
3516
3517 switch (e_flags & EF_RISCV_FLOAT_ABI)
3518 {
3519 case EF_RISCV_FLOAT_ABI_SOFT:
3520 strcat (buf, ", soft-float ABI");
3521 break;
3522
3523 case EF_RISCV_FLOAT_ABI_SINGLE:
3524 strcat (buf, ", single-float ABI");
3525 break;
3526
3527 case EF_RISCV_FLOAT_ABI_DOUBLE:
3528 strcat (buf, ", double-float ABI");
3529 break;
3530
3531 case EF_RISCV_FLOAT_ABI_QUAD:
3532 strcat (buf, ", quad-float ABI");
3533 break;
3534 }
3535 break;
3536
3537 case EM_SH:
3538 switch ((e_flags & EF_SH_MACH_MASK))
3539 {
3540 case EF_SH1: strcat (buf, ", sh1"); break;
3541 case EF_SH2: strcat (buf, ", sh2"); break;
3542 case EF_SH3: strcat (buf, ", sh3"); break;
3543 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3544 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3545 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3546 case EF_SH3E: strcat (buf, ", sh3e"); break;
3547 case EF_SH4: strcat (buf, ", sh4"); break;
3548 case EF_SH5: strcat (buf, ", sh5"); break;
3549 case EF_SH2E: strcat (buf, ", sh2e"); break;
3550 case EF_SH4A: strcat (buf, ", sh4a"); break;
3551 case EF_SH2A: strcat (buf, ", sh2a"); break;
3552 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3553 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3554 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3555 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3556 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3557 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3558 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3559 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3560 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3561 default: strcat (buf, _(", unknown ISA")); break;
3562 }
3563
3564 if (e_flags & EF_SH_PIC)
3565 strcat (buf, ", pic");
3566
3567 if (e_flags & EF_SH_FDPIC)
3568 strcat (buf, ", fdpic");
3569 break;
3570
3571 case EM_OR1K:
3572 if (e_flags & EF_OR1K_NODELAY)
3573 strcat (buf, ", no delay");
3574 break;
3575
3576 case EM_SPARCV9:
3577 if (e_flags & EF_SPARC_32PLUS)
3578 strcat (buf, ", v8+");
3579
3580 if (e_flags & EF_SPARC_SUN_US1)
3581 strcat (buf, ", ultrasparcI");
3582
3583 if (e_flags & EF_SPARC_SUN_US3)
3584 strcat (buf, ", ultrasparcIII");
3585
3586 if (e_flags & EF_SPARC_HAL_R1)
3587 strcat (buf, ", halr1");
3588
3589 if (e_flags & EF_SPARC_LEDATA)
3590 strcat (buf, ", ledata");
3591
3592 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3593 strcat (buf, ", tso");
3594
3595 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3596 strcat (buf, ", pso");
3597
3598 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3599 strcat (buf, ", rmo");
3600 break;
3601
3602 case EM_PARISC:
3603 switch (e_flags & EF_PARISC_ARCH)
3604 {
3605 case EFA_PARISC_1_0:
3606 strcpy (buf, ", PA-RISC 1.0");
3607 break;
3608 case EFA_PARISC_1_1:
3609 strcpy (buf, ", PA-RISC 1.1");
3610 break;
3611 case EFA_PARISC_2_0:
3612 strcpy (buf, ", PA-RISC 2.0");
3613 break;
3614 default:
3615 break;
3616 }
3617 if (e_flags & EF_PARISC_TRAPNIL)
3618 strcat (buf, ", trapnil");
3619 if (e_flags & EF_PARISC_EXT)
3620 strcat (buf, ", ext");
3621 if (e_flags & EF_PARISC_LSB)
3622 strcat (buf, ", lsb");
3623 if (e_flags & EF_PARISC_WIDE)
3624 strcat (buf, ", wide");
3625 if (e_flags & EF_PARISC_NO_KABP)
3626 strcat (buf, ", no kabp");
3627 if (e_flags & EF_PARISC_LAZYSWAP)
3628 strcat (buf, ", lazyswap");
3629 break;
3630
3631 case EM_PJ:
3632 case EM_PJ_OLD:
3633 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3634 strcat (buf, ", new calling convention");
3635
3636 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3637 strcat (buf, ", gnu calling convention");
3638 break;
3639
3640 case EM_IA_64:
3641 if ((e_flags & EF_IA_64_ABI64))
3642 strcat (buf, ", 64-bit");
3643 else
3644 strcat (buf, ", 32-bit");
3645 if ((e_flags & EF_IA_64_REDUCEDFP))
3646 strcat (buf, ", reduced fp model");
3647 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3648 strcat (buf, ", no function descriptors, constant gp");
3649 else if ((e_flags & EF_IA_64_CONS_GP))
3650 strcat (buf, ", constant gp");
3651 if ((e_flags & EF_IA_64_ABSOLUTE))
3652 strcat (buf, ", absolute");
3653 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3654 {
3655 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3656 strcat (buf, ", vms_linkages");
3657 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3658 {
3659 case EF_IA_64_VMS_COMCOD_SUCCESS:
3660 break;
3661 case EF_IA_64_VMS_COMCOD_WARNING:
3662 strcat (buf, ", warning");
3663 break;
3664 case EF_IA_64_VMS_COMCOD_ERROR:
3665 strcat (buf, ", error");
3666 break;
3667 case EF_IA_64_VMS_COMCOD_ABORT:
3668 strcat (buf, ", abort");
3669 break;
3670 default:
3671 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3672 e_flags & EF_IA_64_VMS_COMCOD);
3673 strcat (buf, ", <unknown>");
3674 }
3675 }
3676 break;
3677
3678 case EM_VAX:
3679 if ((e_flags & EF_VAX_NONPIC))
3680 strcat (buf, ", non-PIC");
3681 if ((e_flags & EF_VAX_DFLOAT))
3682 strcat (buf, ", D-Float");
3683 if ((e_flags & EF_VAX_GFLOAT))
3684 strcat (buf, ", G-Float");
3685 break;
3686
3687 case EM_VISIUM:
3688 if (e_flags & EF_VISIUM_ARCH_MCM)
3689 strcat (buf, ", mcm");
3690 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3691 strcat (buf, ", mcm24");
3692 if (e_flags & EF_VISIUM_ARCH_GR6)
3693 strcat (buf, ", gr6");
3694 break;
3695
3696 case EM_RL78:
3697 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3698 {
3699 case E_FLAG_RL78_ANY_CPU: break;
3700 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3701 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3702 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3703 }
3704 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3705 strcat (buf, ", 64-bit doubles");
3706 break;
3707
3708 case EM_RX:
3709 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3710 strcat (buf, ", 64-bit doubles");
3711 if (e_flags & E_FLAG_RX_DSP)
3712 strcat (buf, ", dsp");
3713 if (e_flags & E_FLAG_RX_PID)
3714 strcat (buf, ", pid");
3715 if (e_flags & E_FLAG_RX_ABI)
3716 strcat (buf, ", RX ABI");
3717 if (e_flags & E_FLAG_RX_SINSNS_SET)
3718 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3719 ? ", uses String instructions" : ", bans String instructions");
3720 if (e_flags & E_FLAG_RX_V2)
3721 strcat (buf, ", V2");
3722 if (e_flags & E_FLAG_RX_V3)
3723 strcat (buf, ", V3");
3724 break;
3725
3726 case EM_S390:
3727 if (e_flags & EF_S390_HIGH_GPRS)
3728 strcat (buf, ", highgprs");
3729 break;
3730
3731 case EM_TI_C6000:
3732 if ((e_flags & EF_C6000_REL))
3733 strcat (buf, ", relocatable module");
3734 break;
3735
3736 case EM_MSP430:
3737 strcat (buf, _(": architecture variant: "));
3738 switch (e_flags & EF_MSP430_MACH)
3739 {
3740 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3741 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3742 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3743 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3744 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3745 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3746 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3747 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3748 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3749 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3750 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3751 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3752 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3753 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3754 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3755 default:
3756 strcat (buf, _(": unknown")); break;
3757 }
3758
3759 if (e_flags & ~ EF_MSP430_MACH)
3760 strcat (buf, _(": unknown extra flag bits also present"));
3761 }
3762 }
3763
3764 return buf;
3765 }
3766
3767 static const char *
3768 get_osabi_name (Filedata * filedata, unsigned int osabi)
3769 {
3770 static char buff[32];
3771
3772 switch (osabi)
3773 {
3774 case ELFOSABI_NONE: return "UNIX - System V";
3775 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3776 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3777 case ELFOSABI_GNU: return "UNIX - GNU";
3778 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3779 case ELFOSABI_AIX: return "UNIX - AIX";
3780 case ELFOSABI_IRIX: return "UNIX - IRIX";
3781 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3782 case ELFOSABI_TRU64: return "UNIX - TRU64";
3783 case ELFOSABI_MODESTO: return "Novell - Modesto";
3784 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3785 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3786 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3787 case ELFOSABI_AROS: return "AROS";
3788 case ELFOSABI_FENIXOS: return "FenixOS";
3789 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3790 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3791 default:
3792 if (osabi >= 64)
3793 switch (filedata->file_header.e_machine)
3794 {
3795 case EM_ARM:
3796 switch (osabi)
3797 {
3798 case ELFOSABI_ARM: return "ARM";
3799 case ELFOSABI_ARM_FDPIC: return "ARM FDPIC";
3800 default:
3801 break;
3802 }
3803 break;
3804
3805 case EM_MSP430:
3806 case EM_MSP430_OLD:
3807 case EM_VISIUM:
3808 switch (osabi)
3809 {
3810 case ELFOSABI_STANDALONE: return _("Standalone App");
3811 default:
3812 break;
3813 }
3814 break;
3815
3816 case EM_TI_C6000:
3817 switch (osabi)
3818 {
3819 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3820 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3821 default:
3822 break;
3823 }
3824 break;
3825
3826 default:
3827 break;
3828 }
3829 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3830 return buff;
3831 }
3832 }
3833
3834 static const char *
3835 get_aarch64_segment_type (unsigned long type)
3836 {
3837 switch (type)
3838 {
3839 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3840 default: return NULL;
3841 }
3842 }
3843
3844 static const char *
3845 get_arm_segment_type (unsigned long type)
3846 {
3847 switch (type)
3848 {
3849 case PT_ARM_EXIDX: return "EXIDX";
3850 default: return NULL;
3851 }
3852 }
3853
3854 static const char *
3855 get_s390_segment_type (unsigned long type)
3856 {
3857 switch (type)
3858 {
3859 case PT_S390_PGSTE: return "S390_PGSTE";
3860 default: return NULL;
3861 }
3862 }
3863
3864 static const char *
3865 get_mips_segment_type (unsigned long type)
3866 {
3867 switch (type)
3868 {
3869 case PT_MIPS_REGINFO: return "REGINFO";
3870 case PT_MIPS_RTPROC: return "RTPROC";
3871 case PT_MIPS_OPTIONS: return "OPTIONS";
3872 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3873 default: return NULL;
3874 }
3875 }
3876
3877 static const char *
3878 get_parisc_segment_type (unsigned long type)
3879 {
3880 switch (type)
3881 {
3882 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3883 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3884 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3885 default: return NULL;
3886 }
3887 }
3888
3889 static const char *
3890 get_ia64_segment_type (unsigned long type)
3891 {
3892 switch (type)
3893 {
3894 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3895 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3896 default: return NULL;
3897 }
3898 }
3899
3900 static const char *
3901 get_tic6x_segment_type (unsigned long type)
3902 {
3903 switch (type)
3904 {
3905 case PT_C6000_PHATTR: return "C6000_PHATTR";
3906 default: return NULL;
3907 }
3908 }
3909
3910 static const char *
3911 get_hpux_segment_type (unsigned long type, unsigned e_machine)
3912 {
3913 if (e_machine == EM_PARISC)
3914 switch (type)
3915 {
3916 case PT_HP_TLS: return "HP_TLS";
3917 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3918 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3919 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3920 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3921 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3922 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3923 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3924 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3925 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3926 case PT_HP_PARALLEL: return "HP_PARALLEL";
3927 case PT_HP_FASTBIND: return "HP_FASTBIND";
3928 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3929 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3930 case PT_HP_STACK: return "HP_STACK";
3931 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3932 default: return NULL;
3933 }
3934
3935 if (e_machine == EM_IA_64)
3936 switch (type)
3937 {
3938 case PT_HP_TLS: return "HP_TLS";
3939 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3940 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3941 case PT_IA_64_HP_STACK: return "HP_STACK";
3942 default: return NULL;
3943 }
3944
3945 return NULL;
3946 }
3947
3948 static const char *
3949 get_solaris_segment_type (unsigned long type)
3950 {
3951 switch (type)
3952 {
3953 case 0x6464e550: return "PT_SUNW_UNWIND";
3954 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3955 case 0x6ffffff7: return "PT_LOSUNW";
3956 case 0x6ffffffa: return "PT_SUNWBSS";
3957 case 0x6ffffffb: return "PT_SUNWSTACK";
3958 case 0x6ffffffc: return "PT_SUNWDTRACE";
3959 case 0x6ffffffd: return "PT_SUNWCAP";
3960 case 0x6fffffff: return "PT_HISUNW";
3961 default: return NULL;
3962 }
3963 }
3964
3965 static const char *
3966 get_segment_type (Filedata * filedata, unsigned long p_type)
3967 {
3968 static char buff[32];
3969
3970 switch (p_type)
3971 {
3972 case PT_NULL: return "NULL";
3973 case PT_LOAD: return "LOAD";
3974 case PT_DYNAMIC: return "DYNAMIC";
3975 case PT_INTERP: return "INTERP";
3976 case PT_NOTE: return "NOTE";
3977 case PT_SHLIB: return "SHLIB";
3978 case PT_PHDR: return "PHDR";
3979 case PT_TLS: return "TLS";
3980 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3981 case PT_GNU_STACK: return "GNU_STACK";
3982 case PT_GNU_RELRO: return "GNU_RELRO";
3983 case PT_GNU_PROPERTY: return "GNU_PROPERTY";
3984
3985 default:
3986 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3987 {
3988 const char * result;
3989
3990 switch (filedata->file_header.e_machine)
3991 {
3992 case EM_AARCH64:
3993 result = get_aarch64_segment_type (p_type);
3994 break;
3995 case EM_ARM:
3996 result = get_arm_segment_type (p_type);
3997 break;
3998 case EM_MIPS:
3999 case EM_MIPS_RS3_LE:
4000 result = get_mips_segment_type (p_type);
4001 break;
4002 case EM_PARISC:
4003 result = get_parisc_segment_type (p_type);
4004 break;
4005 case EM_IA_64:
4006 result = get_ia64_segment_type (p_type);
4007 break;
4008 case EM_TI_C6000:
4009 result = get_tic6x_segment_type (p_type);
4010 break;
4011 case EM_S390:
4012 case EM_S390_OLD:
4013 result = get_s390_segment_type (p_type);
4014 break;
4015 default:
4016 result = NULL;
4017 break;
4018 }
4019
4020 if (result != NULL)
4021 return result;
4022
4023 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
4024 }
4025 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
4026 {
4027 const char * result = NULL;
4028
4029 switch (filedata->file_header.e_ident[EI_OSABI])
4030 {
4031 case ELFOSABI_GNU:
4032 case ELFOSABI_FREEBSD:
4033 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
4034 {
4035 sprintf (buff, "GNU_MBIND+%#lx", p_type - PT_GNU_MBIND_LO);
4036 result = buff;
4037 }
4038 break;
4039 case ELFOSABI_HPUX:
4040 result = get_hpux_segment_type (p_type,
4041 filedata->file_header.e_machine);
4042 break;
4043 case ELFOSABI_SOLARIS:
4044 result = get_solaris_segment_type (p_type);
4045 break;
4046 default:
4047 break;
4048 }
4049 if (result != NULL)
4050 return result;
4051
4052 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
4053 }
4054 else
4055 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
4056
4057 return buff;
4058 }
4059 }
4060
4061 static const char *
4062 get_arc_section_type_name (unsigned int sh_type)
4063 {
4064 switch (sh_type)
4065 {
4066 case SHT_ARC_ATTRIBUTES: return "ARC_ATTRIBUTES";
4067 default:
4068 break;
4069 }
4070 return NULL;
4071 }
4072
4073 static const char *
4074 get_mips_section_type_name (unsigned int sh_type)
4075 {
4076 switch (sh_type)
4077 {
4078 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
4079 case SHT_MIPS_MSYM: return "MIPS_MSYM";
4080 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
4081 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
4082 case SHT_MIPS_UCODE: return "MIPS_UCODE";
4083 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
4084 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
4085 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
4086 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
4087 case SHT_MIPS_RELD: return "MIPS_RELD";
4088 case SHT_MIPS_IFACE: return "MIPS_IFACE";
4089 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
4090 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
4091 case SHT_MIPS_SHDR: return "MIPS_SHDR";
4092 case SHT_MIPS_FDESC: return "MIPS_FDESC";
4093 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
4094 case SHT_MIPS_DENSE: return "MIPS_DENSE";
4095 case SHT_MIPS_PDESC: return "MIPS_PDESC";
4096 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
4097 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
4098 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
4099 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
4100 case SHT_MIPS_LINE: return "MIPS_LINE";
4101 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
4102 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
4103 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
4104 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
4105 case SHT_MIPS_DWARF: return "MIPS_DWARF";
4106 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
4107 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
4108 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
4109 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
4110 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
4111 case SHT_MIPS_XLATE: return "MIPS_XLATE";
4112 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
4113 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
4114 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
4115 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
4116 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
4117 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
4118 default:
4119 break;
4120 }
4121 return NULL;
4122 }
4123
4124 static const char *
4125 get_parisc_section_type_name (unsigned int sh_type)
4126 {
4127 switch (sh_type)
4128 {
4129 case SHT_PARISC_EXT: return "PARISC_EXT";
4130 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
4131 case SHT_PARISC_DOC: return "PARISC_DOC";
4132 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
4133 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
4134 case SHT_PARISC_STUBS: return "PARISC_STUBS";
4135 case SHT_PARISC_DLKM: return "PARISC_DLKM";
4136 default: return NULL;
4137 }
4138 }
4139
4140 static const char *
4141 get_ia64_section_type_name (Filedata * filedata, unsigned int sh_type)
4142 {
4143 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
4144 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
4145 return get_osabi_name (filedata, (sh_type & 0x00FF0000) >> 16);
4146
4147 switch (sh_type)
4148 {
4149 case SHT_IA_64_EXT: return "IA_64_EXT";
4150 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
4151 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
4152 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
4153 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
4154 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
4155 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
4156 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
4157 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
4158 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
4159 default:
4160 break;
4161 }
4162 return NULL;
4163 }
4164
4165 static const char *
4166 get_x86_64_section_type_name (unsigned int sh_type)
4167 {
4168 switch (sh_type)
4169 {
4170 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
4171 default: return NULL;
4172 }
4173 }
4174
4175 static const char *
4176 get_aarch64_section_type_name (unsigned int sh_type)
4177 {
4178 switch (sh_type)
4179 {
4180 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4181 default: return NULL;
4182 }
4183 }
4184
4185 static const char *
4186 get_arm_section_type_name (unsigned int sh_type)
4187 {
4188 switch (sh_type)
4189 {
4190 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4191 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4192 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4193 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4194 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4195 default: return NULL;
4196 }
4197 }
4198
4199 static const char *
4200 get_tic6x_section_type_name (unsigned int sh_type)
4201 {
4202 switch (sh_type)
4203 {
4204 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4205 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4206 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4207 case SHT_TI_ICODE: return "TI_ICODE";
4208 case SHT_TI_XREF: return "TI_XREF";
4209 case SHT_TI_HANDLER: return "TI_HANDLER";
4210 case SHT_TI_INITINFO: return "TI_INITINFO";
4211 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4212 default: return NULL;
4213 }
4214 }
4215
4216 static const char *
4217 get_msp430x_section_type_name (unsigned int sh_type)
4218 {
4219 switch (sh_type)
4220 {
4221 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4222 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4223 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4224 default: return NULL;
4225 }
4226 }
4227
4228 static const char *
4229 get_nfp_section_type_name (unsigned int sh_type)
4230 {
4231 switch (sh_type)
4232 {
4233 case SHT_NFP_MECONFIG: return "NFP_MECONFIG";
4234 case SHT_NFP_INITREG: return "NFP_INITREG";
4235 case SHT_NFP_UDEBUG: return "NFP_UDEBUG";
4236 default: return NULL;
4237 }
4238 }
4239
4240 static const char *
4241 get_v850_section_type_name (unsigned int sh_type)
4242 {
4243 switch (sh_type)
4244 {
4245 case SHT_V850_SCOMMON: return "V850 Small Common";
4246 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4247 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4248 case SHT_RENESAS_IOP: return "RENESAS IOP";
4249 case SHT_RENESAS_INFO: return "RENESAS INFO";
4250 default: return NULL;
4251 }
4252 }
4253
4254 static const char *
4255 get_riscv_section_type_name (unsigned int sh_type)
4256 {
4257 switch (sh_type)
4258 {
4259 case SHT_RISCV_ATTRIBUTES: return "RISCV_ATTRIBUTES";
4260 default: return NULL;
4261 }
4262 }
4263
4264 static const char *
4265 get_section_type_name (Filedata * filedata, unsigned int sh_type)
4266 {
4267 static char buff[32];
4268 const char * result;
4269
4270 switch (sh_type)
4271 {
4272 case SHT_NULL: return "NULL";
4273 case SHT_PROGBITS: return "PROGBITS";
4274 case SHT_SYMTAB: return "SYMTAB";
4275 case SHT_STRTAB: return "STRTAB";
4276 case SHT_RELA: return "RELA";
4277 case SHT_HASH: return "HASH";
4278 case SHT_DYNAMIC: return "DYNAMIC";
4279 case SHT_NOTE: return "NOTE";
4280 case SHT_NOBITS: return "NOBITS";
4281 case SHT_REL: return "REL";
4282 case SHT_SHLIB: return "SHLIB";
4283 case SHT_DYNSYM: return "DYNSYM";
4284 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4285 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4286 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4287 case SHT_GNU_HASH: return "GNU_HASH";
4288 case SHT_GROUP: return "GROUP";
4289 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICES";
4290 case SHT_GNU_verdef: return "VERDEF";
4291 case SHT_GNU_verneed: return "VERNEED";
4292 case SHT_GNU_versym: return "VERSYM";
4293 case 0x6ffffff0: return "VERSYM";
4294 case 0x6ffffffc: return "VERDEF";
4295 case 0x7ffffffd: return "AUXILIARY";
4296 case 0x7fffffff: return "FILTER";
4297 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4298
4299 default:
4300 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4301 {
4302 switch (filedata->file_header.e_machine)
4303 {
4304 case EM_ARC:
4305 case EM_ARC_COMPACT:
4306 case EM_ARC_COMPACT2:
4307 result = get_arc_section_type_name (sh_type);
4308 break;
4309 case EM_MIPS:
4310 case EM_MIPS_RS3_LE:
4311 result = get_mips_section_type_name (sh_type);
4312 break;
4313 case EM_PARISC:
4314 result = get_parisc_section_type_name (sh_type);
4315 break;
4316 case EM_IA_64:
4317 result = get_ia64_section_type_name (filedata, sh_type);
4318 break;
4319 case EM_X86_64:
4320 case EM_L1OM:
4321 case EM_K1OM:
4322 result = get_x86_64_section_type_name (sh_type);
4323 break;
4324 case EM_AARCH64:
4325 result = get_aarch64_section_type_name (sh_type);
4326 break;
4327 case EM_ARM:
4328 result = get_arm_section_type_name (sh_type);
4329 break;
4330 case EM_TI_C6000:
4331 result = get_tic6x_section_type_name (sh_type);
4332 break;
4333 case EM_MSP430:
4334 result = get_msp430x_section_type_name (sh_type);
4335 break;
4336 case EM_NFP:
4337 result = get_nfp_section_type_name (sh_type);
4338 break;
4339 case EM_V800:
4340 case EM_V850:
4341 case EM_CYGNUS_V850:
4342 result = get_v850_section_type_name (sh_type);
4343 break;
4344 case EM_RISCV:
4345 result = get_riscv_section_type_name (sh_type);
4346 break;
4347 default:
4348 result = NULL;
4349 break;
4350 }
4351
4352 if (result != NULL)
4353 return result;
4354
4355 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4356 }
4357 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4358 {
4359 switch (filedata->file_header.e_machine)
4360 {
4361 case EM_IA_64:
4362 result = get_ia64_section_type_name (filedata, sh_type);
4363 break;
4364 default:
4365 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4366 result = get_solaris_section_type (sh_type);
4367 else
4368 {
4369 switch (sh_type)
4370 {
4371 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4372 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4373 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4374 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4375 default:
4376 result = NULL;
4377 break;
4378 }
4379 }
4380 break;
4381 }
4382
4383 if (result != NULL)
4384 return result;
4385
4386 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4387 }
4388 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4389 {
4390 switch (filedata->file_header.e_machine)
4391 {
4392 case EM_V800:
4393 case EM_V850:
4394 case EM_CYGNUS_V850:
4395 result = get_v850_section_type_name (sh_type);
4396 break;
4397 default:
4398 result = NULL;
4399 break;
4400 }
4401
4402 if (result != NULL)
4403 return result;
4404
4405 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4406 }
4407 else
4408 /* This message is probably going to be displayed in a 15
4409 character wide field, so put the hex value first. */
4410 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4411
4412 return buff;
4413 }
4414 }
4415
4416 #define OPTION_DEBUG_DUMP 512
4417 #define OPTION_DYN_SYMS 513
4418 #define OPTION_DWARF_DEPTH 514
4419 #define OPTION_DWARF_START 515
4420 #define OPTION_DWARF_CHECK 516
4421 #define OPTION_CTF_DUMP 517
4422 #define OPTION_CTF_PARENT 518
4423 #define OPTION_CTF_SYMBOLS 519
4424 #define OPTION_CTF_STRINGS 520
4425
4426 static struct option options[] =
4427 {
4428 {"all", no_argument, 0, 'a'},
4429 {"file-header", no_argument, 0, 'h'},
4430 {"program-headers", no_argument, 0, 'l'},
4431 {"headers", no_argument, 0, 'e'},
4432 {"histogram", no_argument, 0, 'I'},
4433 {"segments", no_argument, 0, 'l'},
4434 {"sections", no_argument, 0, 'S'},
4435 {"section-headers", no_argument, 0, 'S'},
4436 {"section-groups", no_argument, 0, 'g'},
4437 {"section-details", no_argument, 0, 't'},
4438 {"full-section-name",no_argument, 0, 'N'},
4439 {"symbols", no_argument, 0, 's'},
4440 {"syms", no_argument, 0, 's'},
4441 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4442 {"relocs", no_argument, 0, 'r'},
4443 {"notes", no_argument, 0, 'n'},
4444 {"dynamic", no_argument, 0, 'd'},
4445 {"arch-specific", no_argument, 0, 'A'},
4446 {"version-info", no_argument, 0, 'V'},
4447 {"use-dynamic", no_argument, 0, 'D'},
4448 {"unwind", no_argument, 0, 'u'},
4449 {"archive-index", no_argument, 0, 'c'},
4450 {"hex-dump", required_argument, 0, 'x'},
4451 {"relocated-dump", required_argument, 0, 'R'},
4452 {"string-dump", required_argument, 0, 'p'},
4453 {"decompress", no_argument, 0, 'z'},
4454 #ifdef SUPPORT_DISASSEMBLY
4455 {"instruction-dump", required_argument, 0, 'i'},
4456 #endif
4457 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4458
4459 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4460 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4461 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4462
4463 {"ctf", required_argument, 0, OPTION_CTF_DUMP},
4464
4465 {"ctf-symbols", required_argument, 0, OPTION_CTF_SYMBOLS},
4466 {"ctf-strings", required_argument, 0, OPTION_CTF_STRINGS},
4467 {"ctf-parent", required_argument, 0, OPTION_CTF_PARENT},
4468
4469 {"version", no_argument, 0, 'v'},
4470 {"wide", no_argument, 0, 'W'},
4471 {"help", no_argument, 0, 'H'},
4472 {0, no_argument, 0, 0}
4473 };
4474
4475 static void
4476 usage (FILE * stream)
4477 {
4478 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4479 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4480 fprintf (stream, _(" Options are:\n\
4481 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4482 -h --file-header Display the ELF file header\n\
4483 -l --program-headers Display the program headers\n\
4484 --segments An alias for --program-headers\n\
4485 -S --section-headers Display the sections' header\n\
4486 --sections An alias for --section-headers\n\
4487 -g --section-groups Display the section groups\n\
4488 -t --section-details Display the section details\n\
4489 -e --headers Equivalent to: -h -l -S\n\
4490 -s --syms Display the symbol table\n\
4491 --symbols An alias for --syms\n\
4492 --dyn-syms Display the dynamic symbol table\n\
4493 -n --notes Display the core notes (if present)\n\
4494 -r --relocs Display the relocations (if present)\n\
4495 -u --unwind Display the unwind info (if present)\n\
4496 -d --dynamic Display the dynamic section (if present)\n\
4497 -V --version-info Display the version sections (if present)\n\
4498 -A --arch-specific Display architecture specific information (if any)\n\
4499 -c --archive-index Display the symbol/file index in an archive\n\
4500 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4501 -x --hex-dump=<number|name>\n\
4502 Dump the contents of section <number|name> as bytes\n\
4503 -p --string-dump=<number|name>\n\
4504 Dump the contents of section <number|name> as strings\n\
4505 -R --relocated-dump=<number|name>\n\
4506 Dump the contents of section <number|name> as relocated bytes\n\
4507 -z --decompress Decompress section before dumping it\n\
4508 -w[lLiaprmfFsoRtUuTgAckK] or\n\
4509 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4510 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4511 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4512 =addr,=cu_index,=links,=follow-links]\n\
4513 Display the contents of DWARF debug sections\n"));
4514 fprintf (stream, _("\
4515 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4516 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4517 or deeper\n"));
4518 fprintf (stream, _("\
4519 --ctf=<number|name> Display CTF info from section <number|name>\n\
4520 --ctf-parent=<number|name>\n\
4521 Use section <number|name> as the CTF parent\n\n\
4522 --ctf-symbols=<number|name>\n\
4523 Use section <number|name> as the CTF external symtab\n\n\
4524 --ctf-strings=<number|name>\n\
4525 Use section <number|name> as the CTF external strtab\n\n"));
4526
4527 #ifdef SUPPORT_DISASSEMBLY
4528 fprintf (stream, _("\
4529 -i --instruction-dump=<number|name>\n\
4530 Disassemble the contents of section <number|name>\n"));
4531 #endif
4532 fprintf (stream, _("\
4533 -I --histogram Display histogram of bucket list lengths\n\
4534 -W --wide Allow output width to exceed 80 characters\n\
4535 @<file> Read options from <file>\n\
4536 -H --help Display this information\n\
4537 -v --version Display the version number of readelf\n"));
4538
4539 if (REPORT_BUGS_TO[0] && stream == stdout)
4540 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4541
4542 exit (stream == stdout ? 0 : 1);
4543 }
4544
4545 /* Record the fact that the user wants the contents of section number
4546 SECTION to be displayed using the method(s) encoded as flags bits
4547 in TYPE. Note, TYPE can be zero if we are creating the array for
4548 the first time. */
4549
4550 static void
4551 request_dump_bynumber (Filedata * filedata, unsigned int section, dump_type type)
4552 {
4553 if (section >= filedata->num_dump_sects)
4554 {
4555 dump_type * new_dump_sects;
4556
4557 new_dump_sects = (dump_type *) calloc (section + 1,
4558 sizeof (* new_dump_sects));
4559
4560 if (new_dump_sects == NULL)
4561 error (_("Out of memory allocating dump request table.\n"));
4562 else
4563 {
4564 if (filedata->dump_sects)
4565 {
4566 /* Copy current flag settings. */
4567 memcpy (new_dump_sects, filedata->dump_sects,
4568 filedata->num_dump_sects * sizeof (* new_dump_sects));
4569
4570 free (filedata->dump_sects);
4571 }
4572
4573 filedata->dump_sects = new_dump_sects;
4574 filedata->num_dump_sects = section + 1;
4575 }
4576 }
4577
4578 if (filedata->dump_sects)
4579 filedata->dump_sects[section] |= type;
4580 }
4581
4582 /* Request a dump by section name. */
4583
4584 static void
4585 request_dump_byname (const char * section, dump_type type)
4586 {
4587 struct dump_list_entry * new_request;
4588
4589 new_request = (struct dump_list_entry *)
4590 malloc (sizeof (struct dump_list_entry));
4591 if (!new_request)
4592 error (_("Out of memory allocating dump request table.\n"));
4593
4594 new_request->name = strdup (section);
4595 if (!new_request->name)
4596 error (_("Out of memory allocating dump request table.\n"));
4597
4598 new_request->type = type;
4599
4600 new_request->next = dump_sects_byname;
4601 dump_sects_byname = new_request;
4602 }
4603
4604 static inline void
4605 request_dump (Filedata * filedata, dump_type type)
4606 {
4607 int section;
4608 char * cp;
4609
4610 do_dump++;
4611 section = strtoul (optarg, & cp, 0);
4612
4613 if (! *cp && section >= 0)
4614 request_dump_bynumber (filedata, section, type);
4615 else
4616 request_dump_byname (optarg, type);
4617 }
4618
4619 static void
4620 parse_args (Filedata * filedata, int argc, char ** argv)
4621 {
4622 int c;
4623
4624 if (argc < 2)
4625 usage (stderr);
4626
4627 while ((c = getopt_long
4628 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4629 {
4630 switch (c)
4631 {
4632 case 0:
4633 /* Long options. */
4634 break;
4635 case 'H':
4636 usage (stdout);
4637 break;
4638
4639 case 'a':
4640 do_syms = TRUE;
4641 do_reloc = TRUE;
4642 do_unwind = TRUE;
4643 do_dynamic = TRUE;
4644 do_header = TRUE;
4645 do_sections = TRUE;
4646 do_section_groups = TRUE;
4647 do_segments = TRUE;
4648 do_version = TRUE;
4649 do_histogram = TRUE;
4650 do_arch = TRUE;
4651 do_notes = TRUE;
4652 break;
4653 case 'g':
4654 do_section_groups = TRUE;
4655 break;
4656 case 't':
4657 case 'N':
4658 do_sections = TRUE;
4659 do_section_details = TRUE;
4660 break;
4661 case 'e':
4662 do_header = TRUE;
4663 do_sections = TRUE;
4664 do_segments = TRUE;
4665 break;
4666 case 'A':
4667 do_arch = TRUE;
4668 break;
4669 case 'D':
4670 do_using_dynamic = TRUE;
4671 break;
4672 case 'r':
4673 do_reloc = TRUE;
4674 break;
4675 case 'u':
4676 do_unwind = TRUE;
4677 break;
4678 case 'h':
4679 do_header = TRUE;
4680 break;
4681 case 'l':
4682 do_segments = TRUE;
4683 break;
4684 case 's':
4685 do_syms = TRUE;
4686 break;
4687 case 'S':
4688 do_sections = TRUE;
4689 break;
4690 case 'd':
4691 do_dynamic = TRUE;
4692 break;
4693 case 'I':
4694 do_histogram = TRUE;
4695 break;
4696 case 'n':
4697 do_notes = TRUE;
4698 break;
4699 case 'c':
4700 do_archive_index = TRUE;
4701 break;
4702 case 'x':
4703 request_dump (filedata, HEX_DUMP);
4704 break;
4705 case 'p':
4706 request_dump (filedata, STRING_DUMP);
4707 break;
4708 case 'R':
4709 request_dump (filedata, RELOC_DUMP);
4710 break;
4711 case 'z':
4712 decompress_dumps = TRUE;
4713 break;
4714 case 'w':
4715 do_dump = TRUE;
4716 if (optarg == 0)
4717 {
4718 do_debugging = TRUE;
4719 dwarf_select_sections_all ();
4720 }
4721 else
4722 {
4723 do_debugging = FALSE;
4724 dwarf_select_sections_by_letters (optarg);
4725 }
4726 break;
4727 case OPTION_DEBUG_DUMP:
4728 do_dump = TRUE;
4729 if (optarg == 0)
4730 do_debugging = TRUE;
4731 else
4732 {
4733 do_debugging = FALSE;
4734 dwarf_select_sections_by_names (optarg);
4735 }
4736 break;
4737 case OPTION_DWARF_DEPTH:
4738 {
4739 char *cp;
4740
4741 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4742 }
4743 break;
4744 case OPTION_DWARF_START:
4745 {
4746 char *cp;
4747
4748 dwarf_start_die = strtoul (optarg, & cp, 0);
4749 }
4750 break;
4751 case OPTION_DWARF_CHECK:
4752 dwarf_check = TRUE;
4753 break;
4754 case OPTION_CTF_DUMP:
4755 do_ctf = TRUE;
4756 request_dump (filedata, CTF_DUMP);
4757 break;
4758 case OPTION_CTF_SYMBOLS:
4759 dump_ctf_symtab_name = strdup (optarg);
4760 break;
4761 case OPTION_CTF_STRINGS:
4762 dump_ctf_strtab_name = strdup (optarg);
4763 break;
4764 case OPTION_CTF_PARENT:
4765 dump_ctf_parent_name = strdup (optarg);
4766 break;
4767 case OPTION_DYN_SYMS:
4768 do_dyn_syms = TRUE;
4769 break;
4770 #ifdef SUPPORT_DISASSEMBLY
4771 case 'i':
4772 request_dump (filedata, DISASS_DUMP);
4773 break;
4774 #endif
4775 case 'v':
4776 print_version (program_name);
4777 break;
4778 case 'V':
4779 do_version = TRUE;
4780 break;
4781 case 'W':
4782 do_wide = TRUE;
4783 break;
4784 default:
4785 /* xgettext:c-format */
4786 error (_("Invalid option '-%c'\n"), c);
4787 /* Fall through. */
4788 case '?':
4789 usage (stderr);
4790 }
4791 }
4792
4793 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4794 && !do_segments && !do_header && !do_dump && !do_version
4795 && !do_histogram && !do_debugging && !do_arch && !do_notes
4796 && !do_section_groups && !do_archive_index
4797 && !do_dyn_syms)
4798 usage (stderr);
4799 }
4800
4801 static const char *
4802 get_elf_class (unsigned int elf_class)
4803 {
4804 static char buff[32];
4805
4806 switch (elf_class)
4807 {
4808 case ELFCLASSNONE: return _("none");
4809 case ELFCLASS32: return "ELF32";
4810 case ELFCLASS64: return "ELF64";
4811 default:
4812 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4813 return buff;
4814 }
4815 }
4816
4817 static const char *
4818 get_data_encoding (unsigned int encoding)
4819 {
4820 static char buff[32];
4821
4822 switch (encoding)
4823 {
4824 case ELFDATANONE: return _("none");
4825 case ELFDATA2LSB: return _("2's complement, little endian");
4826 case ELFDATA2MSB: return _("2's complement, big endian");
4827 default:
4828 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4829 return buff;
4830 }
4831 }
4832
4833 /* Decode the data held in 'filedata->file_header'. */
4834
4835 static bfd_boolean
4836 process_file_header (Filedata * filedata)
4837 {
4838 Elf_Internal_Ehdr * header = & filedata->file_header;
4839
4840 if ( header->e_ident[EI_MAG0] != ELFMAG0
4841 || header->e_ident[EI_MAG1] != ELFMAG1
4842 || header->e_ident[EI_MAG2] != ELFMAG2
4843 || header->e_ident[EI_MAG3] != ELFMAG3)
4844 {
4845 error
4846 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4847 return FALSE;
4848 }
4849
4850 init_dwarf_regnames (header->e_machine);
4851
4852 if (do_header)
4853 {
4854 unsigned i;
4855
4856 printf (_("ELF Header:\n"));
4857 printf (_(" Magic: "));
4858 for (i = 0; i < EI_NIDENT; i++)
4859 printf ("%2.2x ", header->e_ident[i]);
4860 printf ("\n");
4861 printf (_(" Class: %s\n"),
4862 get_elf_class (header->e_ident[EI_CLASS]));
4863 printf (_(" Data: %s\n"),
4864 get_data_encoding (header->e_ident[EI_DATA]));
4865 printf (_(" Version: %d%s\n"),
4866 header->e_ident[EI_VERSION],
4867 (header->e_ident[EI_VERSION] == EV_CURRENT
4868 ? _(" (current)")
4869 : (header->e_ident[EI_VERSION] != EV_NONE
4870 ? _(" <unknown>")
4871 : "")));
4872 printf (_(" OS/ABI: %s\n"),
4873 get_osabi_name (filedata, header->e_ident[EI_OSABI]));
4874 printf (_(" ABI Version: %d\n"),
4875 header->e_ident[EI_ABIVERSION]);
4876 printf (_(" Type: %s\n"),
4877 get_file_type (header->e_type));
4878 printf (_(" Machine: %s\n"),
4879 get_machine_name (header->e_machine));
4880 printf (_(" Version: 0x%lx\n"),
4881 header->e_version);
4882
4883 printf (_(" Entry point address: "));
4884 print_vma (header->e_entry, PREFIX_HEX);
4885 printf (_("\n Start of program headers: "));
4886 print_vma (header->e_phoff, DEC);
4887 printf (_(" (bytes into file)\n Start of section headers: "));
4888 print_vma (header->e_shoff, DEC);
4889 printf (_(" (bytes into file)\n"));
4890
4891 printf (_(" Flags: 0x%lx%s\n"),
4892 header->e_flags,
4893 get_machine_flags (filedata, header->e_flags, header->e_machine));
4894 printf (_(" Size of this header: %u (bytes)\n"),
4895 header->e_ehsize);
4896 printf (_(" Size of program headers: %u (bytes)\n"),
4897 header->e_phentsize);
4898 printf (_(" Number of program headers: %u"),
4899 header->e_phnum);
4900 if (filedata->section_headers != NULL
4901 && header->e_phnum == PN_XNUM
4902 && filedata->section_headers[0].sh_info != 0)
4903 {
4904 header->e_phnum = filedata->section_headers[0].sh_info;
4905 printf (" (%u)", header->e_phnum);
4906 }
4907 putc ('\n', stdout);
4908 printf (_(" Size of section headers: %u (bytes)\n"),
4909 header->e_shentsize);
4910 printf (_(" Number of section headers: %u"),
4911 header->e_shnum);
4912 if (filedata->section_headers != NULL && header->e_shnum == SHN_UNDEF)
4913 {
4914 header->e_shnum = filedata->section_headers[0].sh_size;
4915 printf (" (%u)", header->e_shnum);
4916 }
4917 putc ('\n', stdout);
4918 printf (_(" Section header string table index: %u"),
4919 header->e_shstrndx);
4920 if (filedata->section_headers != NULL
4921 && header->e_shstrndx == (SHN_XINDEX & 0xffff))
4922 {
4923 header->e_shstrndx = filedata->section_headers[0].sh_link;
4924 printf (" (%u)", header->e_shstrndx);
4925 }
4926 if (header->e_shstrndx != SHN_UNDEF
4927 && header->e_shstrndx >= header->e_shnum)
4928 {
4929 header->e_shstrndx = SHN_UNDEF;
4930 printf (_(" <corrupt: out of range>"));
4931 }
4932 putc ('\n', stdout);
4933 }
4934
4935 if (filedata->section_headers != NULL)
4936 {
4937 if (header->e_phnum == PN_XNUM
4938 && filedata->section_headers[0].sh_info != 0)
4939 header->e_phnum = filedata->section_headers[0].sh_info;
4940 if (header->e_shnum == SHN_UNDEF)
4941 header->e_shnum = filedata->section_headers[0].sh_size;
4942 if (header->e_shstrndx == (SHN_XINDEX & 0xffff))
4943 header->e_shstrndx = filedata->section_headers[0].sh_link;
4944 if (header->e_shstrndx >= header->e_shnum)
4945 header->e_shstrndx = SHN_UNDEF;
4946 free (filedata->section_headers);
4947 filedata->section_headers = NULL;
4948 }
4949
4950 return TRUE;
4951 }
4952
4953 /* Read in the program headers from FILEDATA and store them in PHEADERS.
4954 Returns TRUE upon success, FALSE otherwise. Loads 32-bit headers. */
4955
4956 static bfd_boolean
4957 get_32bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
4958 {
4959 Elf32_External_Phdr * phdrs;
4960 Elf32_External_Phdr * external;
4961 Elf_Internal_Phdr * internal;
4962 unsigned int i;
4963 unsigned int size = filedata->file_header.e_phentsize;
4964 unsigned int num = filedata->file_header.e_phnum;
4965
4966 /* PR binutils/17531: Cope with unexpected section header sizes. */
4967 if (size == 0 || num == 0)
4968 return FALSE;
4969 if (size < sizeof * phdrs)
4970 {
4971 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4972 return FALSE;
4973 }
4974 if (size > sizeof * phdrs)
4975 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4976
4977 phdrs = (Elf32_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
4978 size, num, _("program headers"));
4979 if (phdrs == NULL)
4980 return FALSE;
4981
4982 for (i = 0, internal = pheaders, external = phdrs;
4983 i < filedata->file_header.e_phnum;
4984 i++, internal++, external++)
4985 {
4986 internal->p_type = BYTE_GET (external->p_type);
4987 internal->p_offset = BYTE_GET (external->p_offset);
4988 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4989 internal->p_paddr = BYTE_GET (external->p_paddr);
4990 internal->p_filesz = BYTE_GET (external->p_filesz);
4991 internal->p_memsz = BYTE_GET (external->p_memsz);
4992 internal->p_flags = BYTE_GET (external->p_flags);
4993 internal->p_align = BYTE_GET (external->p_align);
4994 }
4995
4996 free (phdrs);
4997 return TRUE;
4998 }
4999
5000 /* Read in the program headers from FILEDATA and store them in PHEADERS.
5001 Returns TRUE upon success, FALSE otherwise. Loads 64-bit headers. */
5002
5003 static bfd_boolean
5004 get_64bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
5005 {
5006 Elf64_External_Phdr * phdrs;
5007 Elf64_External_Phdr * external;
5008 Elf_Internal_Phdr * internal;
5009 unsigned int i;
5010 unsigned int size = filedata->file_header.e_phentsize;
5011 unsigned int num = filedata->file_header.e_phnum;
5012
5013 /* PR binutils/17531: Cope with unexpected section header sizes. */
5014 if (size == 0 || num == 0)
5015 return FALSE;
5016 if (size < sizeof * phdrs)
5017 {
5018 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
5019 return FALSE;
5020 }
5021 if (size > sizeof * phdrs)
5022 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
5023
5024 phdrs = (Elf64_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
5025 size, num, _("program headers"));
5026 if (!phdrs)
5027 return FALSE;
5028
5029 for (i = 0, internal = pheaders, external = phdrs;
5030 i < filedata->file_header.e_phnum;
5031 i++, internal++, external++)
5032 {
5033 internal->p_type = BYTE_GET (external->p_type);
5034 internal->p_flags = BYTE_GET (external->p_flags);
5035 internal->p_offset = BYTE_GET (external->p_offset);
5036 internal->p_vaddr = BYTE_GET (external->p_vaddr);
5037 internal->p_paddr = BYTE_GET (external->p_paddr);
5038 internal->p_filesz = BYTE_GET (external->p_filesz);
5039 internal->p_memsz = BYTE_GET (external->p_memsz);
5040 internal->p_align = BYTE_GET (external->p_align);
5041 }
5042
5043 free (phdrs);
5044 return TRUE;
5045 }
5046
5047 /* Returns TRUE if the program headers were read into `program_headers'. */
5048
5049 static bfd_boolean
5050 get_program_headers (Filedata * filedata)
5051 {
5052 Elf_Internal_Phdr * phdrs;
5053
5054 /* Check cache of prior read. */
5055 if (filedata->program_headers != NULL)
5056 return TRUE;
5057
5058 /* Be kind to memory checkers by looking for
5059 e_phnum values which we know must be invalid. */
5060 if (filedata->file_header.e_phnum
5061 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
5062 >= filedata->file_size)
5063 {
5064 error (_("Too many program headers - %#x - the file is not that big\n"),
5065 filedata->file_header.e_phnum);
5066 return FALSE;
5067 }
5068
5069 phdrs = (Elf_Internal_Phdr *) cmalloc (filedata->file_header.e_phnum,
5070 sizeof (Elf_Internal_Phdr));
5071 if (phdrs == NULL)
5072 {
5073 error (_("Out of memory reading %u program headers\n"),
5074 filedata->file_header.e_phnum);
5075 return FALSE;
5076 }
5077
5078 if (is_32bit_elf
5079 ? get_32bit_program_headers (filedata, phdrs)
5080 : get_64bit_program_headers (filedata, phdrs))
5081 {
5082 filedata->program_headers = phdrs;
5083 return TRUE;
5084 }
5085
5086 free (phdrs);
5087 return FALSE;
5088 }
5089
5090 /* Returns TRUE if the program headers were loaded. */
5091
5092 static bfd_boolean
5093 process_program_headers (Filedata * filedata)
5094 {
5095 Elf_Internal_Phdr * segment;
5096 unsigned int i;
5097 Elf_Internal_Phdr * previous_load = NULL;
5098
5099 if (filedata->file_header.e_phnum == 0)
5100 {
5101 /* PR binutils/12467. */
5102 if (filedata->file_header.e_phoff != 0)
5103 {
5104 warn (_("possibly corrupt ELF header - it has a non-zero program"
5105 " header offset, but no program headers\n"));
5106 return FALSE;
5107 }
5108 else if (do_segments)
5109 printf (_("\nThere are no program headers in this file.\n"));
5110 return TRUE;
5111 }
5112
5113 if (do_segments && !do_header)
5114 {
5115 printf (_("\nElf file type is %s\n"), get_file_type (filedata->file_header.e_type));
5116 printf (_("Entry point 0x%s\n"), bfd_vmatoa ("x", filedata->file_header.e_entry));
5117 printf (ngettext ("There is %d program header, starting at offset %s\n",
5118 "There are %d program headers, starting at offset %s\n",
5119 filedata->file_header.e_phnum),
5120 filedata->file_header.e_phnum,
5121 bfd_vmatoa ("u", filedata->file_header.e_phoff));
5122 }
5123
5124 if (! get_program_headers (filedata))
5125 return TRUE;
5126
5127 if (do_segments)
5128 {
5129 if (filedata->file_header.e_phnum > 1)
5130 printf (_("\nProgram Headers:\n"));
5131 else
5132 printf (_("\nProgram Headers:\n"));
5133
5134 if (is_32bit_elf)
5135 printf
5136 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
5137 else if (do_wide)
5138 printf
5139 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
5140 else
5141 {
5142 printf
5143 (_(" Type Offset VirtAddr PhysAddr\n"));
5144 printf
5145 (_(" FileSiz MemSiz Flags Align\n"));
5146 }
5147 }
5148
5149 dynamic_addr = 0;
5150 dynamic_size = 0;
5151
5152 for (i = 0, segment = filedata->program_headers;
5153 i < filedata->file_header.e_phnum;
5154 i++, segment++)
5155 {
5156 if (do_segments)
5157 {
5158 printf (" %-14.14s ", get_segment_type (filedata, segment->p_type));
5159
5160 if (is_32bit_elf)
5161 {
5162 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
5163 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
5164 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
5165 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
5166 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
5167 printf ("%c%c%c ",
5168 (segment->p_flags & PF_R ? 'R' : ' '),
5169 (segment->p_flags & PF_W ? 'W' : ' '),
5170 (segment->p_flags & PF_X ? 'E' : ' '));
5171 printf ("%#lx", (unsigned long) segment->p_align);
5172 }
5173 else if (do_wide)
5174 {
5175 if ((unsigned long) segment->p_offset == segment->p_offset)
5176 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
5177 else
5178 {
5179 print_vma (segment->p_offset, FULL_HEX);
5180 putchar (' ');
5181 }
5182
5183 print_vma (segment->p_vaddr, FULL_HEX);
5184 putchar (' ');
5185 print_vma (segment->p_paddr, FULL_HEX);
5186 putchar (' ');
5187
5188 if ((unsigned long) segment->p_filesz == segment->p_filesz)
5189 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
5190 else
5191 {
5192 print_vma (segment->p_filesz, FULL_HEX);
5193 putchar (' ');
5194 }
5195
5196 if ((unsigned long) segment->p_memsz == segment->p_memsz)
5197 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
5198 else
5199 {
5200 print_vma (segment->p_memsz, FULL_HEX);
5201 }
5202
5203 printf (" %c%c%c ",
5204 (segment->p_flags & PF_R ? 'R' : ' '),
5205 (segment->p_flags & PF_W ? 'W' : ' '),
5206 (segment->p_flags & PF_X ? 'E' : ' '));
5207
5208 if ((unsigned long) segment->p_align == segment->p_align)
5209 printf ("%#lx", (unsigned long) segment->p_align);
5210 else
5211 {
5212 print_vma (segment->p_align, PREFIX_HEX);
5213 }
5214 }
5215 else
5216 {
5217 print_vma (segment->p_offset, FULL_HEX);
5218 putchar (' ');
5219 print_vma (segment->p_vaddr, FULL_HEX);
5220 putchar (' ');
5221 print_vma (segment->p_paddr, FULL_HEX);
5222 printf ("\n ");
5223 print_vma (segment->p_filesz, FULL_HEX);
5224 putchar (' ');
5225 print_vma (segment->p_memsz, FULL_HEX);
5226 printf (" %c%c%c ",
5227 (segment->p_flags & PF_R ? 'R' : ' '),
5228 (segment->p_flags & PF_W ? 'W' : ' '),
5229 (segment->p_flags & PF_X ? 'E' : ' '));
5230 print_vma (segment->p_align, PREFIX_HEX);
5231 }
5232
5233 putc ('\n', stdout);
5234 }
5235
5236 switch (segment->p_type)
5237 {
5238 case PT_LOAD:
5239 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
5240 required by the ELF standard, several programs, including the Linux
5241 kernel, make use of non-ordered segments. */
5242 if (previous_load
5243 && previous_load->p_vaddr > segment->p_vaddr)
5244 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
5245 #endif
5246 if (segment->p_memsz < segment->p_filesz)
5247 error (_("the segment's file size is larger than its memory size\n"));
5248 previous_load = segment;
5249 break;
5250
5251 case PT_PHDR:
5252 /* PR 20815 - Verify that the program header is loaded into memory. */
5253 if (i > 0 && previous_load != NULL)
5254 error (_("the PHDR segment must occur before any LOAD segment\n"));
5255 if (filedata->file_header.e_machine != EM_PARISC)
5256 {
5257 unsigned int j;
5258
5259 for (j = 1; j < filedata->file_header.e_phnum; j++)
5260 if (filedata->program_headers[j].p_vaddr <= segment->p_vaddr
5261 && (filedata->program_headers[j].p_vaddr
5262 + filedata->program_headers[j].p_memsz)
5263 >= (segment->p_vaddr + segment->p_filesz))
5264 break;
5265 if (j == filedata->file_header.e_phnum)
5266 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5267 }
5268 break;
5269
5270 case PT_DYNAMIC:
5271 if (dynamic_addr)
5272 error (_("more than one dynamic segment\n"));
5273
5274 /* By default, assume that the .dynamic section is the first
5275 section in the DYNAMIC segment. */
5276 dynamic_addr = segment->p_offset;
5277 dynamic_size = segment->p_filesz;
5278
5279 /* Try to locate the .dynamic section. If there is
5280 a section header table, we can easily locate it. */
5281 if (filedata->section_headers != NULL)
5282 {
5283 Elf_Internal_Shdr * sec;
5284
5285 sec = find_section (filedata, ".dynamic");
5286 if (sec == NULL || sec->sh_size == 0)
5287 {
5288 /* A corresponding .dynamic section is expected, but on
5289 IA-64/OpenVMS it is OK for it to be missing. */
5290 if (!is_ia64_vms (filedata))
5291 error (_("no .dynamic section in the dynamic segment\n"));
5292 break;
5293 }
5294
5295 if (sec->sh_type == SHT_NOBITS)
5296 {
5297 dynamic_size = 0;
5298 break;
5299 }
5300
5301 dynamic_addr = sec->sh_offset;
5302 dynamic_size = sec->sh_size;
5303
5304 if (dynamic_addr < segment->p_offset
5305 || dynamic_addr > segment->p_offset + segment->p_filesz)
5306 warn (_("the .dynamic section is not contained"
5307 " within the dynamic segment\n"));
5308 else if (dynamic_addr > segment->p_offset)
5309 warn (_("the .dynamic section is not the first section"
5310 " in the dynamic segment.\n"));
5311 }
5312
5313 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5314 segment. Check this after matching against the section headers
5315 so we don't warn on debuginfo file (which have NOBITS .dynamic
5316 sections). */
5317 if (dynamic_addr > filedata->file_size
5318 || dynamic_size > filedata->file_size - dynamic_addr)
5319 {
5320 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5321 dynamic_addr = dynamic_size = 0;
5322 }
5323 break;
5324
5325 case PT_INTERP:
5326 if (fseek (filedata->handle, archive_file_offset + (long) segment->p_offset,
5327 SEEK_SET))
5328 error (_("Unable to find program interpreter name\n"));
5329 else
5330 {
5331 char fmt [32];
5332 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5333
5334 if (ret >= (int) sizeof (fmt) || ret < 0)
5335 error (_("Internal error: failed to create format string to display program interpreter\n"));
5336
5337 program_interpreter[0] = 0;
5338 if (fscanf (filedata->handle, fmt, program_interpreter) <= 0)
5339 error (_("Unable to read program interpreter name\n"));
5340
5341 if (do_segments)
5342 printf (_(" [Requesting program interpreter: %s]\n"),
5343 program_interpreter);
5344 }
5345 break;
5346 }
5347 }
5348
5349 if (do_segments
5350 && filedata->section_headers != NULL
5351 && filedata->string_table != NULL)
5352 {
5353 printf (_("\n Section to Segment mapping:\n"));
5354 printf (_(" Segment Sections...\n"));
5355
5356 for (i = 0; i < filedata->file_header.e_phnum; i++)
5357 {
5358 unsigned int j;
5359 Elf_Internal_Shdr * section;
5360
5361 segment = filedata->program_headers + i;
5362 section = filedata->section_headers + 1;
5363
5364 printf (" %2.2d ", i);
5365
5366 for (j = 1; j < filedata->file_header.e_shnum; j++, section++)
5367 {
5368 if (!ELF_TBSS_SPECIAL (section, segment)
5369 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5370 printf ("%s ", printable_section_name (filedata, section));
5371 }
5372
5373 putc ('\n',stdout);
5374 }
5375 }
5376
5377 return TRUE;
5378 }
5379
5380
5381 /* Find the file offset corresponding to VMA by using the program headers. */
5382
5383 static long
5384 offset_from_vma (Filedata * filedata, bfd_vma vma, bfd_size_type size)
5385 {
5386 Elf_Internal_Phdr * seg;
5387
5388 if (! get_program_headers (filedata))
5389 {
5390 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5391 return (long) vma;
5392 }
5393
5394 for (seg = filedata->program_headers;
5395 seg < filedata->program_headers + filedata->file_header.e_phnum;
5396 ++seg)
5397 {
5398 if (seg->p_type != PT_LOAD)
5399 continue;
5400
5401 if (vma >= (seg->p_vaddr & -seg->p_align)
5402 && vma + size <= seg->p_vaddr + seg->p_filesz)
5403 return vma - seg->p_vaddr + seg->p_offset;
5404 }
5405
5406 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5407 (unsigned long) vma);
5408 return (long) vma;
5409 }
5410
5411
5412 /* Allocate memory and load the sections headers into FILEDATA->filedata->section_headers.
5413 If PROBE is true, this is just a probe and we do not generate any error
5414 messages if the load fails. */
5415
5416 static bfd_boolean
5417 get_32bit_section_headers (Filedata * filedata, bfd_boolean probe)
5418 {
5419 Elf32_External_Shdr * shdrs;
5420 Elf_Internal_Shdr * internal;
5421 unsigned int i;
5422 unsigned int size = filedata->file_header.e_shentsize;
5423 unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
5424
5425 /* PR binutils/17531: Cope with unexpected section header sizes. */
5426 if (size == 0 || num == 0)
5427 return FALSE;
5428 if (size < sizeof * shdrs)
5429 {
5430 if (! probe)
5431 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5432 return FALSE;
5433 }
5434 if (!probe && size > sizeof * shdrs)
5435 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5436
5437 shdrs = (Elf32_External_Shdr *) get_data (NULL, filedata, filedata->file_header.e_shoff,
5438 size, num,
5439 probe ? NULL : _("section headers"));
5440 if (shdrs == NULL)
5441 return FALSE;
5442
5443 free (filedata->section_headers);
5444 filedata->section_headers = (Elf_Internal_Shdr *)
5445 cmalloc (num, sizeof (Elf_Internal_Shdr));
5446 if (filedata->section_headers == NULL)
5447 {
5448 if (!probe)
5449 error (_("Out of memory reading %u section headers\n"), num);
5450 free (shdrs);
5451 return FALSE;
5452 }
5453
5454 for (i = 0, internal = filedata->section_headers;
5455 i < num;
5456 i++, internal++)
5457 {
5458 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5459 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5460 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5461 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5462 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5463 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5464 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5465 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5466 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5467 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5468 if (!probe && internal->sh_link > num)
5469 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5470 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5471 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5472 }
5473
5474 free (shdrs);
5475 return TRUE;
5476 }
5477
5478 /* Like get_32bit_section_headers, except that it fetches 64-bit headers. */
5479
5480 static bfd_boolean
5481 get_64bit_section_headers (Filedata * filedata, bfd_boolean probe)
5482 {
5483 Elf64_External_Shdr * shdrs;
5484 Elf_Internal_Shdr * internal;
5485 unsigned int i;
5486 unsigned int size = filedata->file_header.e_shentsize;
5487 unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
5488
5489 /* PR binutils/17531: Cope with unexpected section header sizes. */
5490 if (size == 0 || num == 0)
5491 return FALSE;
5492
5493 if (size < sizeof * shdrs)
5494 {
5495 if (! probe)
5496 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5497 return FALSE;
5498 }
5499
5500 if (! probe && size > sizeof * shdrs)
5501 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5502
5503 shdrs = (Elf64_External_Shdr *) get_data (NULL, filedata,
5504 filedata->file_header.e_shoff,
5505 size, num,
5506 probe ? NULL : _("section headers"));
5507 if (shdrs == NULL)
5508 return FALSE;
5509
5510 free (filedata->section_headers);
5511 filedata->section_headers = (Elf_Internal_Shdr *)
5512 cmalloc (num, sizeof (Elf_Internal_Shdr));
5513 if (filedata->section_headers == NULL)
5514 {
5515 if (! probe)
5516 error (_("Out of memory reading %u section headers\n"), num);
5517 free (shdrs);
5518 return FALSE;
5519 }
5520
5521 for (i = 0, internal = filedata->section_headers;
5522 i < num;
5523 i++, internal++)
5524 {
5525 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5526 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5527 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5528 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5529 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5530 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5531 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5532 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5533 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5534 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5535 if (!probe && internal->sh_link > num)
5536 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5537 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5538 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5539 }
5540
5541 free (shdrs);
5542 return TRUE;
5543 }
5544
5545 static Elf_Internal_Sym *
5546 get_32bit_elf_symbols (Filedata * filedata,
5547 Elf_Internal_Shdr * section,
5548 unsigned long * num_syms_return)
5549 {
5550 unsigned long number = 0;
5551 Elf32_External_Sym * esyms = NULL;
5552 Elf_External_Sym_Shndx * shndx = NULL;
5553 Elf_Internal_Sym * isyms = NULL;
5554 Elf_Internal_Sym * psym;
5555 unsigned int j;
5556 elf_section_list * entry;
5557
5558 if (section->sh_size == 0)
5559 {
5560 if (num_syms_return != NULL)
5561 * num_syms_return = 0;
5562 return NULL;
5563 }
5564
5565 /* Run some sanity checks first. */
5566 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5567 {
5568 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5569 printable_section_name (filedata, section),
5570 (unsigned long) section->sh_entsize);
5571 goto exit_point;
5572 }
5573
5574 if (section->sh_size > filedata->file_size)
5575 {
5576 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5577 printable_section_name (filedata, section),
5578 (unsigned long) section->sh_size);
5579 goto exit_point;
5580 }
5581
5582 number = section->sh_size / section->sh_entsize;
5583
5584 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5585 {
5586 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5587 (unsigned long) section->sh_size,
5588 printable_section_name (filedata, section),
5589 (unsigned long) section->sh_entsize);
5590 goto exit_point;
5591 }
5592
5593 esyms = (Elf32_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
5594 section->sh_size, _("symbols"));
5595 if (esyms == NULL)
5596 goto exit_point;
5597
5598 shndx = NULL;
5599 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5600 {
5601 if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
5602 continue;
5603
5604 if (shndx != NULL)
5605 {
5606 error (_("Multiple symbol table index sections associated with the same symbol section\n"));
5607 free (shndx);
5608 }
5609
5610 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
5611 entry->hdr->sh_offset,
5612 1, entry->hdr->sh_size,
5613 _("symbol table section indices"));
5614 if (shndx == NULL)
5615 goto exit_point;
5616
5617 /* PR17531: file: heap-buffer-overflow */
5618 if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5619 {
5620 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5621 printable_section_name (filedata, entry->hdr),
5622 (unsigned long) entry->hdr->sh_size,
5623 (unsigned long) section->sh_size);
5624 goto exit_point;
5625 }
5626 }
5627
5628 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5629
5630 if (isyms == NULL)
5631 {
5632 error (_("Out of memory reading %lu symbols\n"),
5633 (unsigned long) number);
5634 goto exit_point;
5635 }
5636
5637 for (j = 0, psym = isyms; j < number; j++, psym++)
5638 {
5639 psym->st_name = BYTE_GET (esyms[j].st_name);
5640 psym->st_value = BYTE_GET (esyms[j].st_value);
5641 psym->st_size = BYTE_GET (esyms[j].st_size);
5642 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5643 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5644 psym->st_shndx
5645 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5646 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5647 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5648 psym->st_info = BYTE_GET (esyms[j].st_info);
5649 psym->st_other = BYTE_GET (esyms[j].st_other);
5650 }
5651
5652 exit_point:
5653 free (shndx);
5654 free (esyms);
5655
5656 if (num_syms_return != NULL)
5657 * num_syms_return = isyms == NULL ? 0 : number;
5658
5659 return isyms;
5660 }
5661
5662 static Elf_Internal_Sym *
5663 get_64bit_elf_symbols (Filedata * filedata,
5664 Elf_Internal_Shdr * section,
5665 unsigned long * num_syms_return)
5666 {
5667 unsigned long number = 0;
5668 Elf64_External_Sym * esyms = NULL;
5669 Elf_External_Sym_Shndx * shndx = NULL;
5670 Elf_Internal_Sym * isyms = NULL;
5671 Elf_Internal_Sym * psym;
5672 unsigned int j;
5673 elf_section_list * entry;
5674
5675 if (section->sh_size == 0)
5676 {
5677 if (num_syms_return != NULL)
5678 * num_syms_return = 0;
5679 return NULL;
5680 }
5681
5682 /* Run some sanity checks first. */
5683 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5684 {
5685 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5686 printable_section_name (filedata, section),
5687 (unsigned long) section->sh_entsize);
5688 goto exit_point;
5689 }
5690
5691 if (section->sh_size > filedata->file_size)
5692 {
5693 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5694 printable_section_name (filedata, section),
5695 (unsigned long) section->sh_size);
5696 goto exit_point;
5697 }
5698
5699 number = section->sh_size / section->sh_entsize;
5700
5701 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5702 {
5703 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5704 (unsigned long) section->sh_size,
5705 printable_section_name (filedata, section),
5706 (unsigned long) section->sh_entsize);
5707 goto exit_point;
5708 }
5709
5710 esyms = (Elf64_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
5711 section->sh_size, _("symbols"));
5712 if (!esyms)
5713 goto exit_point;
5714
5715 shndx = NULL;
5716 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5717 {
5718 if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
5719 continue;
5720
5721 if (shndx != NULL)
5722 {
5723 error (_("Multiple symbol table index sections associated with the same symbol section\n"));
5724 free (shndx);
5725 }
5726
5727 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
5728 entry->hdr->sh_offset,
5729 1, entry->hdr->sh_size,
5730 _("symbol table section indices"));
5731 if (shndx == NULL)
5732 goto exit_point;
5733
5734 /* PR17531: file: heap-buffer-overflow */
5735 if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5736 {
5737 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5738 printable_section_name (filedata, entry->hdr),
5739 (unsigned long) entry->hdr->sh_size,
5740 (unsigned long) section->sh_size);
5741 goto exit_point;
5742 }
5743 }
5744
5745 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5746
5747 if (isyms == NULL)
5748 {
5749 error (_("Out of memory reading %lu symbols\n"),
5750 (unsigned long) number);
5751 goto exit_point;
5752 }
5753
5754 for (j = 0, psym = isyms; j < number; j++, psym++)
5755 {
5756 psym->st_name = BYTE_GET (esyms[j].st_name);
5757 psym->st_info = BYTE_GET (esyms[j].st_info);
5758 psym->st_other = BYTE_GET (esyms[j].st_other);
5759 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5760
5761 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5762 psym->st_shndx
5763 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5764 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5765 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5766
5767 psym->st_value = BYTE_GET (esyms[j].st_value);
5768 psym->st_size = BYTE_GET (esyms[j].st_size);
5769 }
5770
5771 exit_point:
5772 free (shndx);
5773 free (esyms);
5774
5775 if (num_syms_return != NULL)
5776 * num_syms_return = isyms == NULL ? 0 : number;
5777
5778 return isyms;
5779 }
5780
5781 static const char *
5782 get_elf_section_flags (Filedata * filedata, bfd_vma sh_flags)
5783 {
5784 static char buff[1024];
5785 char * p = buff;
5786 unsigned int field_size = is_32bit_elf ? 8 : 16;
5787 signed int sindex;
5788 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5789 bfd_vma os_flags = 0;
5790 bfd_vma proc_flags = 0;
5791 bfd_vma unknown_flags = 0;
5792 static const struct
5793 {
5794 const char * str;
5795 unsigned int len;
5796 }
5797 flags [] =
5798 {
5799 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5800 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5801 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5802 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5803 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5804 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5805 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5806 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5807 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5808 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5809 /* IA-64 specific. */
5810 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5811 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5812 /* IA-64 OpenVMS specific. */
5813 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5814 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5815 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5816 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5817 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5818 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5819 /* Generic. */
5820 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5821 /* SPARC specific. */
5822 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5823 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5824 /* ARM specific. */
5825 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5826 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5827 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5828 /* GNU specific. */
5829 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5830 /* VLE specific. */
5831 /* 25 */ { STRING_COMMA_LEN ("VLE") },
5832 };
5833
5834 if (do_section_details)
5835 {
5836 sprintf (buff, "[%*.*lx]: ",
5837 field_size, field_size, (unsigned long) sh_flags);
5838 p += field_size + 4;
5839 }
5840
5841 while (sh_flags)
5842 {
5843 bfd_vma flag;
5844
5845 flag = sh_flags & - sh_flags;
5846 sh_flags &= ~ flag;
5847
5848 if (do_section_details)
5849 {
5850 switch (flag)
5851 {
5852 case SHF_WRITE: sindex = 0; break;
5853 case SHF_ALLOC: sindex = 1; break;
5854 case SHF_EXECINSTR: sindex = 2; break;
5855 case SHF_MERGE: sindex = 3; break;
5856 case SHF_STRINGS: sindex = 4; break;
5857 case SHF_INFO_LINK: sindex = 5; break;
5858 case SHF_LINK_ORDER: sindex = 6; break;
5859 case SHF_OS_NONCONFORMING: sindex = 7; break;
5860 case SHF_GROUP: sindex = 8; break;
5861 case SHF_TLS: sindex = 9; break;
5862 case SHF_EXCLUDE: sindex = 18; break;
5863 case SHF_COMPRESSED: sindex = 20; break;
5864 case SHF_GNU_MBIND: sindex = 24; break;
5865
5866 default:
5867 sindex = -1;
5868 switch (filedata->file_header.e_machine)
5869 {
5870 case EM_IA_64:
5871 if (flag == SHF_IA_64_SHORT)
5872 sindex = 10;
5873 else if (flag == SHF_IA_64_NORECOV)
5874 sindex = 11;
5875 #ifdef BFD64
5876 else if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5877 switch (flag)
5878 {
5879 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5880 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5881 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5882 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5883 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5884 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5885 default: break;
5886 }
5887 #endif
5888 break;
5889
5890 case EM_386:
5891 case EM_IAMCU:
5892 case EM_X86_64:
5893 case EM_L1OM:
5894 case EM_K1OM:
5895 case EM_OLD_SPARCV9:
5896 case EM_SPARC32PLUS:
5897 case EM_SPARCV9:
5898 case EM_SPARC:
5899 if (flag == SHF_ORDERED)
5900 sindex = 19;
5901 break;
5902
5903 case EM_ARM:
5904 switch (flag)
5905 {
5906 case SHF_ENTRYSECT: sindex = 21; break;
5907 case SHF_ARM_PURECODE: sindex = 22; break;
5908 case SHF_COMDEF: sindex = 23; break;
5909 default: break;
5910 }
5911 break;
5912 case EM_PPC:
5913 if (flag == SHF_PPC_VLE)
5914 sindex = 25;
5915 break;
5916
5917 default:
5918 break;
5919 }
5920 }
5921
5922 if (sindex != -1)
5923 {
5924 if (p != buff + field_size + 4)
5925 {
5926 if (size < (10 + 2))
5927 {
5928 warn (_("Internal error: not enough buffer room for section flag info"));
5929 return _("<unknown>");
5930 }
5931 size -= 2;
5932 *p++ = ',';
5933 *p++ = ' ';
5934 }
5935
5936 size -= flags [sindex].len;
5937 p = stpcpy (p, flags [sindex].str);
5938 }
5939 else if (flag & SHF_MASKOS)
5940 os_flags |= flag;
5941 else if (flag & SHF_MASKPROC)
5942 proc_flags |= flag;
5943 else
5944 unknown_flags |= flag;
5945 }
5946 else
5947 {
5948 switch (flag)
5949 {
5950 case SHF_WRITE: *p = 'W'; break;
5951 case SHF_ALLOC: *p = 'A'; break;
5952 case SHF_EXECINSTR: *p = 'X'; break;
5953 case SHF_MERGE: *p = 'M'; break;
5954 case SHF_STRINGS: *p = 'S'; break;
5955 case SHF_INFO_LINK: *p = 'I'; break;
5956 case SHF_LINK_ORDER: *p = 'L'; break;
5957 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5958 case SHF_GROUP: *p = 'G'; break;
5959 case SHF_TLS: *p = 'T'; break;
5960 case SHF_EXCLUDE: *p = 'E'; break;
5961 case SHF_COMPRESSED: *p = 'C'; break;
5962 case SHF_GNU_MBIND: *p = 'D'; break;
5963
5964 default:
5965 if ((filedata->file_header.e_machine == EM_X86_64
5966 || filedata->file_header.e_machine == EM_L1OM
5967 || filedata->file_header.e_machine == EM_K1OM)
5968 && flag == SHF_X86_64_LARGE)
5969 *p = 'l';
5970 else if (filedata->file_header.e_machine == EM_ARM
5971 && flag == SHF_ARM_PURECODE)
5972 *p = 'y';
5973 else if (filedata->file_header.e_machine == EM_PPC
5974 && flag == SHF_PPC_VLE)
5975 *p = 'v';
5976 else if (flag & SHF_MASKOS)
5977 {
5978 *p = 'o';
5979 sh_flags &= ~ SHF_MASKOS;
5980 }
5981 else if (flag & SHF_MASKPROC)
5982 {
5983 *p = 'p';
5984 sh_flags &= ~ SHF_MASKPROC;
5985 }
5986 else
5987 *p = 'x';
5988 break;
5989 }
5990 p++;
5991 }
5992 }
5993
5994 if (do_section_details)
5995 {
5996 if (os_flags)
5997 {
5998 size -= 5 + field_size;
5999 if (p != buff + field_size + 4)
6000 {
6001 if (size < (2 + 1))
6002 {
6003 warn (_("Internal error: not enough buffer room for section flag info"));
6004 return _("<unknown>");
6005 }
6006 size -= 2;
6007 *p++ = ',';
6008 *p++ = ' ';
6009 }
6010 sprintf (p, "OS (%*.*lx)", field_size, field_size,
6011 (unsigned long) os_flags);
6012 p += 5 + field_size;
6013 }
6014 if (proc_flags)
6015 {
6016 size -= 7 + field_size;
6017 if (p != buff + field_size + 4)
6018 {
6019 if (size < (2 + 1))
6020 {
6021 warn (_("Internal error: not enough buffer room for section flag info"));
6022 return _("<unknown>");
6023 }
6024 size -= 2;
6025 *p++ = ',';
6026 *p++ = ' ';
6027 }
6028 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
6029 (unsigned long) proc_flags);
6030 p += 7 + field_size;
6031 }
6032 if (unknown_flags)
6033 {
6034 size -= 10 + field_size;
6035 if (p != buff + field_size + 4)
6036 {
6037 if (size < (2 + 1))
6038 {
6039 warn (_("Internal error: not enough buffer room for section flag info"));
6040 return _("<unknown>");
6041 }
6042 size -= 2;
6043 *p++ = ',';
6044 *p++ = ' ';
6045 }
6046 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
6047 (unsigned long) unknown_flags);
6048 p += 10 + field_size;
6049 }
6050 }
6051
6052 *p = '\0';
6053 return buff;
6054 }
6055
6056 static unsigned int
6057 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
6058 {
6059 if (is_32bit_elf)
6060 {
6061 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
6062
6063 if (size < sizeof (* echdr))
6064 {
6065 error (_("Compressed section is too small even for a compression header\n"));
6066 return 0;
6067 }
6068
6069 chdr->ch_type = BYTE_GET (echdr->ch_type);
6070 chdr->ch_size = BYTE_GET (echdr->ch_size);
6071 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
6072 return sizeof (*echdr);
6073 }
6074 else
6075 {
6076 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
6077
6078 if (size < sizeof (* echdr))
6079 {
6080 error (_("Compressed section is too small even for a compression header\n"));
6081 return 0;
6082 }
6083
6084 chdr->ch_type = BYTE_GET (echdr->ch_type);
6085 chdr->ch_size = BYTE_GET (echdr->ch_size);
6086 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
6087 return sizeof (*echdr);
6088 }
6089 }
6090
6091 static bfd_boolean
6092 process_section_headers (Filedata * filedata)
6093 {
6094 Elf_Internal_Shdr * section;
6095 unsigned int i;
6096
6097 filedata->section_headers = NULL;
6098
6099 if (filedata->file_header.e_shnum == 0)
6100 {
6101 /* PR binutils/12467. */
6102 if (filedata->file_header.e_shoff != 0)
6103 {
6104 warn (_("possibly corrupt ELF file header - it has a non-zero"
6105 " section header offset, but no section headers\n"));
6106 return FALSE;
6107 }
6108 else if (do_sections)
6109 printf (_("\nThere are no sections in this file.\n"));
6110
6111 return TRUE;
6112 }
6113
6114 if (do_sections && !do_header)
6115 printf (ngettext ("There is %d section header, "
6116 "starting at offset 0x%lx:\n",
6117 "There are %d section headers, "
6118 "starting at offset 0x%lx:\n",
6119 filedata->file_header.e_shnum),
6120 filedata->file_header.e_shnum,
6121 (unsigned long) filedata->file_header.e_shoff);
6122
6123 if (is_32bit_elf)
6124 {
6125 if (! get_32bit_section_headers (filedata, FALSE))
6126 return FALSE;
6127 }
6128 else
6129 {
6130 if (! get_64bit_section_headers (filedata, FALSE))
6131 return FALSE;
6132 }
6133
6134 /* Read in the string table, so that we have names to display. */
6135 if (filedata->file_header.e_shstrndx != SHN_UNDEF
6136 && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum)
6137 {
6138 section = filedata->section_headers + filedata->file_header.e_shstrndx;
6139
6140 if (section->sh_size != 0)
6141 {
6142 filedata->string_table = (char *) get_data (NULL, filedata, section->sh_offset,
6143 1, section->sh_size,
6144 _("string table"));
6145
6146 filedata->string_table_length = filedata->string_table != NULL ? section->sh_size : 0;
6147 }
6148 }
6149
6150 /* Scan the sections for the dynamic symbol table
6151 and dynamic string table and debug sections. */
6152 dynamic_symbols = NULL;
6153 dynamic_strings = NULL;
6154 dynamic_syminfo = NULL;
6155 symtab_shndx_list = NULL;
6156
6157 eh_addr_size = is_32bit_elf ? 4 : 8;
6158 switch (filedata->file_header.e_machine)
6159 {
6160 case EM_MIPS:
6161 case EM_MIPS_RS3_LE:
6162 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
6163 FDE addresses. However, the ABI also has a semi-official ILP32
6164 variant for which the normal FDE address size rules apply.
6165
6166 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
6167 section, where XX is the size of longs in bits. Unfortunately,
6168 earlier compilers provided no way of distinguishing ILP32 objects
6169 from LP64 objects, so if there's any doubt, we should assume that
6170 the official LP64 form is being used. */
6171 if ((filedata->file_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
6172 && find_section (filedata, ".gcc_compiled_long32") == NULL)
6173 eh_addr_size = 8;
6174 break;
6175
6176 case EM_H8_300:
6177 case EM_H8_300H:
6178 switch (filedata->file_header.e_flags & EF_H8_MACH)
6179 {
6180 case E_H8_MACH_H8300:
6181 case E_H8_MACH_H8300HN:
6182 case E_H8_MACH_H8300SN:
6183 case E_H8_MACH_H8300SXN:
6184 eh_addr_size = 2;
6185 break;
6186 case E_H8_MACH_H8300H:
6187 case E_H8_MACH_H8300S:
6188 case E_H8_MACH_H8300SX:
6189 eh_addr_size = 4;
6190 break;
6191 }
6192 break;
6193
6194 case EM_M32C_OLD:
6195 case EM_M32C:
6196 switch (filedata->file_header.e_flags & EF_M32C_CPU_MASK)
6197 {
6198 case EF_M32C_CPU_M16C:
6199 eh_addr_size = 2;
6200 break;
6201 }
6202 break;
6203 }
6204
6205 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
6206 do \
6207 { \
6208 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
6209 if (section->sh_entsize != expected_entsize) \
6210 { \
6211 char buf[40]; \
6212 sprintf_vma (buf, section->sh_entsize); \
6213 /* Note: coded this way so that there is a single string for \
6214 translation. */ \
6215 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
6216 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
6217 (unsigned) expected_entsize); \
6218 section->sh_entsize = expected_entsize; \
6219 } \
6220 } \
6221 while (0)
6222
6223 #define CHECK_ENTSIZE(section, i, type) \
6224 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
6225 sizeof (Elf64_External_##type))
6226
6227 for (i = 0, section = filedata->section_headers;
6228 i < filedata->file_header.e_shnum;
6229 i++, section++)
6230 {
6231 char * name = SECTION_NAME (section);
6232
6233 if (section->sh_type == SHT_DYNSYM)
6234 {
6235 if (dynamic_symbols != NULL)
6236 {
6237 error (_("File contains multiple dynamic symbol tables\n"));
6238 continue;
6239 }
6240
6241 CHECK_ENTSIZE (section, i, Sym);
6242 dynamic_symbols = GET_ELF_SYMBOLS (filedata, section, & num_dynamic_syms);
6243 }
6244 else if (section->sh_type == SHT_STRTAB
6245 && streq (name, ".dynstr"))
6246 {
6247 if (dynamic_strings != NULL)
6248 {
6249 error (_("File contains multiple dynamic string tables\n"));
6250 continue;
6251 }
6252
6253 dynamic_strings = (char *) get_data (NULL, filedata, section->sh_offset,
6254 1, section->sh_size,
6255 _("dynamic strings"));
6256 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
6257 }
6258 else if (section->sh_type == SHT_SYMTAB_SHNDX)
6259 {
6260 elf_section_list * entry = xmalloc (sizeof * entry);
6261
6262 entry->hdr = section;
6263 entry->next = symtab_shndx_list;
6264 symtab_shndx_list = entry;
6265 }
6266 else if (section->sh_type == SHT_SYMTAB)
6267 CHECK_ENTSIZE (section, i, Sym);
6268 else if (section->sh_type == SHT_GROUP)
6269 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
6270 else if (section->sh_type == SHT_REL)
6271 CHECK_ENTSIZE (section, i, Rel);
6272 else if (section->sh_type == SHT_RELA)
6273 CHECK_ENTSIZE (section, i, Rela);
6274 else if ((do_debugging || do_debug_info || do_debug_abbrevs
6275 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
6276 || do_debug_aranges || do_debug_frames || do_debug_macinfo
6277 || do_debug_str || do_debug_loc || do_debug_ranges
6278 || do_debug_addr || do_debug_cu_index || do_debug_links)
6279 && (const_strneq (name, ".debug_")
6280 || const_strneq (name, ".zdebug_")))
6281 {
6282 if (name[1] == 'z')
6283 name += sizeof (".zdebug_") - 1;
6284 else
6285 name += sizeof (".debug_") - 1;
6286
6287 if (do_debugging
6288 || (do_debug_info && const_strneq (name, "info"))
6289 || (do_debug_info && const_strneq (name, "types"))
6290 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6291 || (do_debug_lines && strcmp (name, "line") == 0)
6292 || (do_debug_lines && const_strneq (name, "line."))
6293 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6294 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6295 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6296 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6297 || (do_debug_aranges && const_strneq (name, "aranges"))
6298 || (do_debug_ranges && const_strneq (name, "ranges"))
6299 || (do_debug_ranges && const_strneq (name, "rnglists"))
6300 || (do_debug_frames && const_strneq (name, "frame"))
6301 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6302 || (do_debug_macinfo && const_strneq (name, "macro"))
6303 || (do_debug_str && const_strneq (name, "str"))
6304 || (do_debug_loc && const_strneq (name, "loc"))
6305 || (do_debug_loc && const_strneq (name, "loclists"))
6306 || (do_debug_addr && const_strneq (name, "addr"))
6307 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6308 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6309 )
6310 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6311 }
6312 /* Linkonce section to be combined with .debug_info at link time. */
6313 else if ((do_debugging || do_debug_info)
6314 && const_strneq (name, ".gnu.linkonce.wi."))
6315 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6316 else if (do_debug_frames && streq (name, ".eh_frame"))
6317 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6318 else if (do_gdb_index && (streq (name, ".gdb_index")
6319 || streq (name, ".debug_names")))
6320 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6321 /* Trace sections for Itanium VMS. */
6322 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6323 || do_trace_aranges)
6324 && const_strneq (name, ".trace_"))
6325 {
6326 name += sizeof (".trace_") - 1;
6327
6328 if (do_debugging
6329 || (do_trace_info && streq (name, "info"))
6330 || (do_trace_abbrevs && streq (name, "abbrev"))
6331 || (do_trace_aranges && streq (name, "aranges"))
6332 )
6333 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6334 }
6335 else if ((do_debugging || do_debug_links)
6336 && (const_strneq (name, ".gnu_debuglink")
6337 || const_strneq (name, ".gnu_debugaltlink")))
6338 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6339 }
6340
6341 if (! do_sections)
6342 return TRUE;
6343
6344 if (filedata->file_header.e_shnum > 1)
6345 printf (_("\nSection Headers:\n"));
6346 else
6347 printf (_("\nSection Header:\n"));
6348
6349 if (is_32bit_elf)
6350 {
6351 if (do_section_details)
6352 {
6353 printf (_(" [Nr] Name\n"));
6354 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6355 }
6356 else
6357 printf
6358 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6359 }
6360 else if (do_wide)
6361 {
6362 if (do_section_details)
6363 {
6364 printf (_(" [Nr] Name\n"));
6365 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6366 }
6367 else
6368 printf
6369 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6370 }
6371 else
6372 {
6373 if (do_section_details)
6374 {
6375 printf (_(" [Nr] Name\n"));
6376 printf (_(" Type Address Offset Link\n"));
6377 printf (_(" Size EntSize Info Align\n"));
6378 }
6379 else
6380 {
6381 printf (_(" [Nr] Name Type Address Offset\n"));
6382 printf (_(" Size EntSize Flags Link Info Align\n"));
6383 }
6384 }
6385
6386 if (do_section_details)
6387 printf (_(" Flags\n"));
6388
6389 for (i = 0, section = filedata->section_headers;
6390 i < filedata->file_header.e_shnum;
6391 i++, section++)
6392 {
6393 /* Run some sanity checks on the section header. */
6394
6395 /* Check the sh_link field. */
6396 switch (section->sh_type)
6397 {
6398 case SHT_REL:
6399 case SHT_RELA:
6400 if (section->sh_link == 0
6401 && (filedata->file_header.e_type == ET_EXEC
6402 || filedata->file_header.e_type == ET_DYN))
6403 /* A dynamic relocation section where all entries use a
6404 zero symbol index need not specify a symtab section. */
6405 break;
6406 /* Fall through. */
6407 case SHT_SYMTAB_SHNDX:
6408 case SHT_GROUP:
6409 case SHT_HASH:
6410 case SHT_GNU_HASH:
6411 case SHT_GNU_versym:
6412 if (section->sh_link == 0
6413 || section->sh_link >= filedata->file_header.e_shnum
6414 || (filedata->section_headers[section->sh_link].sh_type != SHT_SYMTAB
6415 && filedata->section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6416 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6417 i, section->sh_link);
6418 break;
6419
6420 case SHT_DYNAMIC:
6421 case SHT_SYMTAB:
6422 case SHT_DYNSYM:
6423 case SHT_GNU_verneed:
6424 case SHT_GNU_verdef:
6425 case SHT_GNU_LIBLIST:
6426 if (section->sh_link == 0
6427 || section->sh_link >= filedata->file_header.e_shnum
6428 || filedata->section_headers[section->sh_link].sh_type != SHT_STRTAB)
6429 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6430 i, section->sh_link);
6431 break;
6432
6433 case SHT_INIT_ARRAY:
6434 case SHT_FINI_ARRAY:
6435 case SHT_PREINIT_ARRAY:
6436 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6437 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6438 i, section->sh_link);
6439 break;
6440
6441 default:
6442 /* FIXME: Add support for target specific section types. */
6443 #if 0 /* Currently we do not check other section types as there are too
6444 many special cases. Stab sections for example have a type
6445 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6446 section. */
6447 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6448 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6449 i, section->sh_link);
6450 #endif
6451 break;
6452 }
6453
6454 /* Check the sh_info field. */
6455 switch (section->sh_type)
6456 {
6457 case SHT_REL:
6458 case SHT_RELA:
6459 if (section->sh_info == 0
6460 && (filedata->file_header.e_type == ET_EXEC
6461 || filedata->file_header.e_type == ET_DYN))
6462 /* Dynamic relocations apply to segments, so they do not
6463 need to specify the section they relocate. */
6464 break;
6465 if (section->sh_info == 0
6466 || section->sh_info >= filedata->file_header.e_shnum
6467 || (filedata->section_headers[section->sh_info].sh_type != SHT_PROGBITS
6468 && filedata->section_headers[section->sh_info].sh_type != SHT_NOBITS
6469 && filedata->section_headers[section->sh_info].sh_type != SHT_NOTE
6470 && filedata->section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6471 && filedata->section_headers[section->sh_info].sh_type != SHT_FINI_ARRAY
6472 && filedata->section_headers[section->sh_info].sh_type != SHT_PREINIT_ARRAY
6473 /* FIXME: Are other section types valid ? */
6474 && filedata->section_headers[section->sh_info].sh_type < SHT_LOOS))
6475 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6476 i, section->sh_info);
6477 break;
6478
6479 case SHT_DYNAMIC:
6480 case SHT_HASH:
6481 case SHT_SYMTAB_SHNDX:
6482 case SHT_INIT_ARRAY:
6483 case SHT_FINI_ARRAY:
6484 case SHT_PREINIT_ARRAY:
6485 if (section->sh_info != 0)
6486 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6487 i, section->sh_info);
6488 break;
6489
6490 case SHT_GROUP:
6491 case SHT_SYMTAB:
6492 case SHT_DYNSYM:
6493 /* A symbol index - we assume that it is valid. */
6494 break;
6495
6496 default:
6497 /* FIXME: Add support for target specific section types. */
6498 if (section->sh_type == SHT_NOBITS)
6499 /* NOBITS section headers with non-zero sh_info fields can be
6500 created when a binary is stripped of everything but its debug
6501 information. The stripped sections have their headers
6502 preserved but their types set to SHT_NOBITS. So do not check
6503 this type of section. */
6504 ;
6505 else if (section->sh_flags & SHF_INFO_LINK)
6506 {
6507 if (section->sh_info < 1 || section->sh_info >= filedata->file_header.e_shnum)
6508 warn (_("[%2u]: Expected link to another section in info field"), i);
6509 }
6510 else if (section->sh_type < SHT_LOOS
6511 && (section->sh_flags & SHF_GNU_MBIND) == 0
6512 && section->sh_info != 0)
6513 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6514 i, section->sh_info);
6515 break;
6516 }
6517
6518 /* Check the sh_size field. */
6519 if (section->sh_size > filedata->file_size
6520 && section->sh_type != SHT_NOBITS
6521 && section->sh_type != SHT_NULL
6522 && section->sh_type < SHT_LOOS)
6523 warn (_("Size of section %u is larger than the entire file!\n"), i);
6524
6525 printf (" [%2u] ", i);
6526 if (do_section_details)
6527 printf ("%s\n ", printable_section_name (filedata, section));
6528 else
6529 print_symbol (-17, SECTION_NAME (section));
6530
6531 printf (do_wide ? " %-15s " : " %-15.15s ",
6532 get_section_type_name (filedata, section->sh_type));
6533
6534 if (is_32bit_elf)
6535 {
6536 const char * link_too_big = NULL;
6537
6538 print_vma (section->sh_addr, LONG_HEX);
6539
6540 printf ( " %6.6lx %6.6lx %2.2lx",
6541 (unsigned long) section->sh_offset,
6542 (unsigned long) section->sh_size,
6543 (unsigned long) section->sh_entsize);
6544
6545 if (do_section_details)
6546 fputs (" ", stdout);
6547 else
6548 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6549
6550 if (section->sh_link >= filedata->file_header.e_shnum)
6551 {
6552 link_too_big = "";
6553 /* The sh_link value is out of range. Normally this indicates
6554 an error but it can have special values in Solaris binaries. */
6555 switch (filedata->file_header.e_machine)
6556 {
6557 case EM_386:
6558 case EM_IAMCU:
6559 case EM_X86_64:
6560 case EM_L1OM:
6561 case EM_K1OM:
6562 case EM_OLD_SPARCV9:
6563 case EM_SPARC32PLUS:
6564 case EM_SPARCV9:
6565 case EM_SPARC:
6566 if (section->sh_link == (SHN_BEFORE & 0xffff))
6567 link_too_big = "BEFORE";
6568 else if (section->sh_link == (SHN_AFTER & 0xffff))
6569 link_too_big = "AFTER";
6570 break;
6571 default:
6572 break;
6573 }
6574 }
6575
6576 if (do_section_details)
6577 {
6578 if (link_too_big != NULL && * link_too_big)
6579 printf ("<%s> ", link_too_big);
6580 else
6581 printf ("%2u ", section->sh_link);
6582 printf ("%3u %2lu\n", section->sh_info,
6583 (unsigned long) section->sh_addralign);
6584 }
6585 else
6586 printf ("%2u %3u %2lu\n",
6587 section->sh_link,
6588 section->sh_info,
6589 (unsigned long) section->sh_addralign);
6590
6591 if (link_too_big && ! * link_too_big)
6592 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6593 i, section->sh_link);
6594 }
6595 else if (do_wide)
6596 {
6597 print_vma (section->sh_addr, LONG_HEX);
6598
6599 if ((long) section->sh_offset == section->sh_offset)
6600 printf (" %6.6lx", (unsigned long) section->sh_offset);
6601 else
6602 {
6603 putchar (' ');
6604 print_vma (section->sh_offset, LONG_HEX);
6605 }
6606
6607 if ((unsigned long) section->sh_size == section->sh_size)
6608 printf (" %6.6lx", (unsigned long) section->sh_size);
6609 else
6610 {
6611 putchar (' ');
6612 print_vma (section->sh_size, LONG_HEX);
6613 }
6614
6615 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6616 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6617 else
6618 {
6619 putchar (' ');
6620 print_vma (section->sh_entsize, LONG_HEX);
6621 }
6622
6623 if (do_section_details)
6624 fputs (" ", stdout);
6625 else
6626 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6627
6628 printf ("%2u %3u ", section->sh_link, section->sh_info);
6629
6630 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6631 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6632 else
6633 {
6634 print_vma (section->sh_addralign, DEC);
6635 putchar ('\n');
6636 }
6637 }
6638 else if (do_section_details)
6639 {
6640 putchar (' ');
6641 print_vma (section->sh_addr, LONG_HEX);
6642 if ((long) section->sh_offset == section->sh_offset)
6643 printf (" %16.16lx", (unsigned long) section->sh_offset);
6644 else
6645 {
6646 printf (" ");
6647 print_vma (section->sh_offset, LONG_HEX);
6648 }
6649 printf (" %u\n ", section->sh_link);
6650 print_vma (section->sh_size, LONG_HEX);
6651 putchar (' ');
6652 print_vma (section->sh_entsize, LONG_HEX);
6653
6654 printf (" %-16u %lu\n",
6655 section->sh_info,
6656 (unsigned long) section->sh_addralign);
6657 }
6658 else
6659 {
6660 putchar (' ');
6661 print_vma (section->sh_addr, LONG_HEX);
6662 if ((long) section->sh_offset == section->sh_offset)
6663 printf (" %8.8lx", (unsigned long) section->sh_offset);
6664 else
6665 {
6666 printf (" ");
6667 print_vma (section->sh_offset, LONG_HEX);
6668 }
6669 printf ("\n ");
6670 print_vma (section->sh_size, LONG_HEX);
6671 printf (" ");
6672 print_vma (section->sh_entsize, LONG_HEX);
6673
6674 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6675
6676 printf (" %2u %3u %lu\n",
6677 section->sh_link,
6678 section->sh_info,
6679 (unsigned long) section->sh_addralign);
6680 }
6681
6682 if (do_section_details)
6683 {
6684 printf (" %s\n", get_elf_section_flags (filedata, section->sh_flags));
6685 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6686 {
6687 /* Minimum section size is 12 bytes for 32-bit compression
6688 header + 12 bytes for compressed data header. */
6689 unsigned char buf[24];
6690
6691 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6692 if (get_data (&buf, filedata, section->sh_offset, 1,
6693 sizeof (buf), _("compression header")))
6694 {
6695 Elf_Internal_Chdr chdr;
6696
6697 (void) get_compression_header (&chdr, buf, sizeof (buf));
6698
6699 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6700 printf (" ZLIB, ");
6701 else
6702 printf (_(" [<unknown>: 0x%x], "),
6703 chdr.ch_type);
6704 print_vma (chdr.ch_size, LONG_HEX);
6705 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6706 }
6707 }
6708 }
6709 }
6710
6711 if (!do_section_details)
6712 {
6713 /* The ordering of the letters shown here matches the ordering of the
6714 corresponding SHF_xxx values, and hence the order in which these
6715 letters will be displayed to the user. */
6716 printf (_("Key to Flags:\n\
6717 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6718 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6719 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6720 if (filedata->file_header.e_machine == EM_X86_64
6721 || filedata->file_header.e_machine == EM_L1OM
6722 || filedata->file_header.e_machine == EM_K1OM)
6723 printf (_("l (large), "));
6724 else if (filedata->file_header.e_machine == EM_ARM)
6725 printf (_("y (purecode), "));
6726 else if (filedata->file_header.e_machine == EM_PPC)
6727 printf (_("v (VLE), "));
6728 printf ("p (processor specific)\n");
6729 }
6730
6731 return TRUE;
6732 }
6733
6734 static const char *
6735 get_group_flags (unsigned int flags)
6736 {
6737 static char buff[128];
6738
6739 if (flags == 0)
6740 return "";
6741 else if (flags == GRP_COMDAT)
6742 return "COMDAT ";
6743
6744 snprintf (buff, 14, _("[0x%x: "), flags);
6745
6746 flags &= ~ GRP_COMDAT;
6747 if (flags & GRP_MASKOS)
6748 {
6749 strcat (buff, "<OS specific>");
6750 flags &= ~ GRP_MASKOS;
6751 }
6752
6753 if (flags & GRP_MASKPROC)
6754 {
6755 strcat (buff, "<PROC specific>");
6756 flags &= ~ GRP_MASKPROC;
6757 }
6758
6759 if (flags)
6760 strcat (buff, "<unknown>");
6761
6762 strcat (buff, "]");
6763 return buff;
6764 }
6765
6766 static bfd_boolean
6767 process_section_groups (Filedata * filedata)
6768 {
6769 Elf_Internal_Shdr * section;
6770 unsigned int i;
6771 struct group * group;
6772 Elf_Internal_Shdr * symtab_sec;
6773 Elf_Internal_Shdr * strtab_sec;
6774 Elf_Internal_Sym * symtab;
6775 unsigned long num_syms;
6776 char * strtab;
6777 size_t strtab_size;
6778
6779 /* Don't process section groups unless needed. */
6780 if (!do_unwind && !do_section_groups)
6781 return TRUE;
6782
6783 if (filedata->file_header.e_shnum == 0)
6784 {
6785 if (do_section_groups)
6786 printf (_("\nThere are no sections to group in this file.\n"));
6787
6788 return TRUE;
6789 }
6790
6791 if (filedata->section_headers == NULL)
6792 {
6793 error (_("Section headers are not available!\n"));
6794 /* PR 13622: This can happen with a corrupt ELF header. */
6795 return FALSE;
6796 }
6797
6798 section_headers_groups = (struct group **) calloc (filedata->file_header.e_shnum,
6799 sizeof (struct group *));
6800
6801 if (section_headers_groups == NULL)
6802 {
6803 error (_("Out of memory reading %u section group headers\n"),
6804 filedata->file_header.e_shnum);
6805 return FALSE;
6806 }
6807
6808 /* Scan the sections for the group section. */
6809 group_count = 0;
6810 for (i = 0, section = filedata->section_headers;
6811 i < filedata->file_header.e_shnum;
6812 i++, section++)
6813 if (section->sh_type == SHT_GROUP)
6814 group_count++;
6815
6816 if (group_count == 0)
6817 {
6818 if (do_section_groups)
6819 printf (_("\nThere are no section groups in this file.\n"));
6820
6821 return TRUE;
6822 }
6823
6824 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6825
6826 if (section_groups == NULL)
6827 {
6828 error (_("Out of memory reading %lu groups\n"),
6829 (unsigned long) group_count);
6830 return FALSE;
6831 }
6832
6833 symtab_sec = NULL;
6834 strtab_sec = NULL;
6835 symtab = NULL;
6836 num_syms = 0;
6837 strtab = NULL;
6838 strtab_size = 0;
6839 for (i = 0, section = filedata->section_headers, group = section_groups;
6840 i < filedata->file_header.e_shnum;
6841 i++, section++)
6842 {
6843 if (section->sh_type == SHT_GROUP)
6844 {
6845 const char * name = printable_section_name (filedata, section);
6846 const char * group_name;
6847 unsigned char * start;
6848 unsigned char * indices;
6849 unsigned int entry, j, size;
6850 Elf_Internal_Shdr * sec;
6851 Elf_Internal_Sym * sym;
6852
6853 /* Get the symbol table. */
6854 if (section->sh_link >= filedata->file_header.e_shnum
6855 || ((sec = filedata->section_headers + section->sh_link)->sh_type
6856 != SHT_SYMTAB))
6857 {
6858 error (_("Bad sh_link in group section `%s'\n"), name);
6859 continue;
6860 }
6861
6862 if (symtab_sec != sec)
6863 {
6864 symtab_sec = sec;
6865 if (symtab)
6866 free (symtab);
6867 symtab = GET_ELF_SYMBOLS (filedata, symtab_sec, & num_syms);
6868 }
6869
6870 if (symtab == NULL)
6871 {
6872 error (_("Corrupt header in group section `%s'\n"), name);
6873 continue;
6874 }
6875
6876 if (section->sh_info >= num_syms)
6877 {
6878 error (_("Bad sh_info in group section `%s'\n"), name);
6879 continue;
6880 }
6881
6882 sym = symtab + section->sh_info;
6883
6884 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6885 {
6886 if (sym->st_shndx == 0
6887 || sym->st_shndx >= filedata->file_header.e_shnum)
6888 {
6889 error (_("Bad sh_info in group section `%s'\n"), name);
6890 continue;
6891 }
6892
6893 group_name = SECTION_NAME (filedata->section_headers + sym->st_shndx);
6894 strtab_sec = NULL;
6895 if (strtab)
6896 free (strtab);
6897 strtab = NULL;
6898 strtab_size = 0;
6899 }
6900 else
6901 {
6902 /* Get the string table. */
6903 if (symtab_sec->sh_link >= filedata->file_header.e_shnum)
6904 {
6905 strtab_sec = NULL;
6906 if (strtab)
6907 free (strtab);
6908 strtab = NULL;
6909 strtab_size = 0;
6910 }
6911 else if (strtab_sec
6912 != (sec = filedata->section_headers + symtab_sec->sh_link))
6913 {
6914 strtab_sec = sec;
6915 if (strtab)
6916 free (strtab);
6917
6918 strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset,
6919 1, strtab_sec->sh_size,
6920 _("string table"));
6921 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6922 }
6923 group_name = sym->st_name < strtab_size
6924 ? strtab + sym->st_name : _("<corrupt>");
6925 }
6926
6927 /* PR 17531: file: loop. */
6928 if (section->sh_entsize > section->sh_size)
6929 {
6930 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6931 printable_section_name (filedata, section),
6932 (unsigned long) section->sh_entsize,
6933 (unsigned long) section->sh_size);
6934 continue;
6935 }
6936
6937 start = (unsigned char *) get_data (NULL, filedata, section->sh_offset,
6938 1, section->sh_size,
6939 _("section data"));
6940 if (start == NULL)
6941 continue;
6942
6943 indices = start;
6944 size = (section->sh_size / section->sh_entsize) - 1;
6945 entry = byte_get (indices, 4);
6946 indices += 4;
6947
6948 if (do_section_groups)
6949 {
6950 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6951 get_group_flags (entry), i, name, group_name, size);
6952
6953 printf (_(" [Index] Name\n"));
6954 }
6955
6956 group->group_index = i;
6957
6958 for (j = 0; j < size; j++)
6959 {
6960 struct group_list * g;
6961
6962 entry = byte_get (indices, 4);
6963 indices += 4;
6964
6965 if (entry >= filedata->file_header.e_shnum)
6966 {
6967 static unsigned num_group_errors = 0;
6968
6969 if (num_group_errors ++ < 10)
6970 {
6971 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6972 entry, i, filedata->file_header.e_shnum - 1);
6973 if (num_group_errors == 10)
6974 warn (_("Further error messages about overlarge group section indices suppressed\n"));
6975 }
6976 continue;
6977 }
6978
6979 if (section_headers_groups [entry] != NULL)
6980 {
6981 if (entry)
6982 {
6983 static unsigned num_errs = 0;
6984
6985 if (num_errs ++ < 10)
6986 {
6987 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6988 entry, i,
6989 section_headers_groups [entry]->group_index);
6990 if (num_errs == 10)
6991 warn (_("Further error messages about already contained group sections suppressed\n"));
6992 }
6993 continue;
6994 }
6995 else
6996 {
6997 /* Intel C/C++ compiler may put section 0 in a
6998 section group. We just warn it the first time
6999 and ignore it afterwards. */
7000 static bfd_boolean warned = FALSE;
7001 if (!warned)
7002 {
7003 error (_("section 0 in group section [%5u]\n"),
7004 section_headers_groups [entry]->group_index);
7005 warned = TRUE;
7006 }
7007 }
7008 }
7009
7010 section_headers_groups [entry] = group;
7011
7012 if (do_section_groups)
7013 {
7014 sec = filedata->section_headers + entry;
7015 printf (" [%5u] %s\n", entry, printable_section_name (filedata, sec));
7016 }
7017
7018 g = (struct group_list *) xmalloc (sizeof (struct group_list));
7019 g->section_index = entry;
7020 g->next = group->root;
7021 group->root = g;
7022 }
7023
7024 if (start)
7025 free (start);
7026
7027 group++;
7028 }
7029 }
7030
7031 if (symtab)
7032 free (symtab);
7033 if (strtab)
7034 free (strtab);
7035 return TRUE;
7036 }
7037
7038 /* Data used to display dynamic fixups. */
7039
7040 struct ia64_vms_dynfixup
7041 {
7042 bfd_vma needed_ident; /* Library ident number. */
7043 bfd_vma needed; /* Index in the dstrtab of the library name. */
7044 bfd_vma fixup_needed; /* Index of the library. */
7045 bfd_vma fixup_rela_cnt; /* Number of fixups. */
7046 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
7047 };
7048
7049 /* Data used to display dynamic relocations. */
7050
7051 struct ia64_vms_dynimgrela
7052 {
7053 bfd_vma img_rela_cnt; /* Number of relocations. */
7054 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
7055 };
7056
7057 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
7058 library). */
7059
7060 static bfd_boolean
7061 dump_ia64_vms_dynamic_fixups (Filedata * filedata,
7062 struct ia64_vms_dynfixup * fixup,
7063 const char * strtab,
7064 unsigned int strtab_sz)
7065 {
7066 Elf64_External_VMS_IMAGE_FIXUP * imfs;
7067 long i;
7068 const char * lib_name;
7069
7070 imfs = get_data (NULL, filedata, dynamic_addr + fixup->fixup_rela_off,
7071 1, fixup->fixup_rela_cnt * sizeof (*imfs),
7072 _("dynamic section image fixups"));
7073 if (!imfs)
7074 return FALSE;
7075
7076 if (fixup->needed < strtab_sz)
7077 lib_name = strtab + fixup->needed;
7078 else
7079 {
7080 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
7081 (unsigned long) fixup->needed);
7082 lib_name = "???";
7083 }
7084 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
7085 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
7086 printf
7087 (_("Seg Offset Type SymVec DataType\n"));
7088
7089 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
7090 {
7091 unsigned int type;
7092 const char *rtype;
7093
7094 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
7095 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
7096 type = BYTE_GET (imfs [i].type);
7097 rtype = elf_ia64_reloc_type (type);
7098 if (rtype == NULL)
7099 printf (" 0x%08x ", type);
7100 else
7101 printf (" %-32s ", rtype);
7102 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
7103 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
7104 }
7105
7106 free (imfs);
7107 return TRUE;
7108 }
7109
7110 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
7111
7112 static bfd_boolean
7113 dump_ia64_vms_dynamic_relocs (Filedata * filedata, struct ia64_vms_dynimgrela *imgrela)
7114 {
7115 Elf64_External_VMS_IMAGE_RELA *imrs;
7116 long i;
7117
7118 imrs = get_data (NULL, filedata, dynamic_addr + imgrela->img_rela_off,
7119 1, imgrela->img_rela_cnt * sizeof (*imrs),
7120 _("dynamic section image relocations"));
7121 if (!imrs)
7122 return FALSE;
7123
7124 printf (_("\nImage relocs\n"));
7125 printf
7126 (_("Seg Offset Type Addend Seg Sym Off\n"));
7127
7128 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
7129 {
7130 unsigned int type;
7131 const char *rtype;
7132
7133 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
7134 printf ("%08" BFD_VMA_FMT "x ",
7135 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
7136 type = BYTE_GET (imrs [i].type);
7137 rtype = elf_ia64_reloc_type (type);
7138 if (rtype == NULL)
7139 printf ("0x%08x ", type);
7140 else
7141 printf ("%-31s ", rtype);
7142 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
7143 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
7144 printf ("%08" BFD_VMA_FMT "x\n",
7145 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
7146 }
7147
7148 free (imrs);
7149 return TRUE;
7150 }
7151
7152 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
7153
7154 static bfd_boolean
7155 process_ia64_vms_dynamic_relocs (Filedata * filedata)
7156 {
7157 struct ia64_vms_dynfixup fixup;
7158 struct ia64_vms_dynimgrela imgrela;
7159 Elf_Internal_Dyn *entry;
7160 bfd_vma strtab_off = 0;
7161 bfd_vma strtab_sz = 0;
7162 char *strtab = NULL;
7163 bfd_boolean res = TRUE;
7164
7165 memset (&fixup, 0, sizeof (fixup));
7166 memset (&imgrela, 0, sizeof (imgrela));
7167
7168 /* Note: the order of the entries is specified by the OpenVMS specs. */
7169 for (entry = dynamic_section;
7170 entry < dynamic_section + dynamic_nent;
7171 entry++)
7172 {
7173 switch (entry->d_tag)
7174 {
7175 case DT_IA_64_VMS_STRTAB_OFFSET:
7176 strtab_off = entry->d_un.d_val;
7177 break;
7178 case DT_STRSZ:
7179 strtab_sz = entry->d_un.d_val;
7180 if (strtab == NULL)
7181 strtab = get_data (NULL, filedata, dynamic_addr + strtab_off,
7182 1, strtab_sz, _("dynamic string section"));
7183 break;
7184
7185 case DT_IA_64_VMS_NEEDED_IDENT:
7186 fixup.needed_ident = entry->d_un.d_val;
7187 break;
7188 case DT_NEEDED:
7189 fixup.needed = entry->d_un.d_val;
7190 break;
7191 case DT_IA_64_VMS_FIXUP_NEEDED:
7192 fixup.fixup_needed = entry->d_un.d_val;
7193 break;
7194 case DT_IA_64_VMS_FIXUP_RELA_CNT:
7195 fixup.fixup_rela_cnt = entry->d_un.d_val;
7196 break;
7197 case DT_IA_64_VMS_FIXUP_RELA_OFF:
7198 fixup.fixup_rela_off = entry->d_un.d_val;
7199 if (! dump_ia64_vms_dynamic_fixups (filedata, &fixup, strtab, strtab_sz))
7200 res = FALSE;
7201 break;
7202 case DT_IA_64_VMS_IMG_RELA_CNT:
7203 imgrela.img_rela_cnt = entry->d_un.d_val;
7204 break;
7205 case DT_IA_64_VMS_IMG_RELA_OFF:
7206 imgrela.img_rela_off = entry->d_un.d_val;
7207 if (! dump_ia64_vms_dynamic_relocs (filedata, &imgrela))
7208 res = FALSE;
7209 break;
7210
7211 default:
7212 break;
7213 }
7214 }
7215
7216 if (strtab != NULL)
7217 free (strtab);
7218
7219 return res;
7220 }
7221
7222 static struct
7223 {
7224 const char * name;
7225 int reloc;
7226 int size;
7227 int rela;
7228 }
7229 dynamic_relocations [] =
7230 {
7231 { "REL", DT_REL, DT_RELSZ, FALSE },
7232 { "RELA", DT_RELA, DT_RELASZ, TRUE },
7233 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
7234 };
7235
7236 /* Process the reloc section. */
7237
7238 static bfd_boolean
7239 process_relocs (Filedata * filedata)
7240 {
7241 unsigned long rel_size;
7242 unsigned long rel_offset;
7243
7244 if (!do_reloc)
7245 return TRUE;
7246
7247 if (do_using_dynamic)
7248 {
7249 int is_rela;
7250 const char * name;
7251 bfd_boolean has_dynamic_reloc;
7252 unsigned int i;
7253
7254 has_dynamic_reloc = FALSE;
7255
7256 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7257 {
7258 is_rela = dynamic_relocations [i].rela;
7259 name = dynamic_relocations [i].name;
7260 rel_size = dynamic_info [dynamic_relocations [i].size];
7261 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
7262
7263 if (rel_size)
7264 has_dynamic_reloc = TRUE;
7265
7266 if (is_rela == UNKNOWN)
7267 {
7268 if (dynamic_relocations [i].reloc == DT_JMPREL)
7269 switch (dynamic_info[DT_PLTREL])
7270 {
7271 case DT_REL:
7272 is_rela = FALSE;
7273 break;
7274 case DT_RELA:
7275 is_rela = TRUE;
7276 break;
7277 }
7278 }
7279
7280 if (rel_size)
7281 {
7282 printf
7283 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
7284 name, rel_offset, rel_size);
7285
7286 dump_relocations (filedata,
7287 offset_from_vma (filedata, rel_offset, rel_size),
7288 rel_size,
7289 dynamic_symbols, num_dynamic_syms,
7290 dynamic_strings, dynamic_strings_length,
7291 is_rela, TRUE /* is_dynamic */);
7292 }
7293 }
7294
7295 if (is_ia64_vms (filedata))
7296 if (process_ia64_vms_dynamic_relocs (filedata))
7297 has_dynamic_reloc = TRUE;
7298
7299 if (! has_dynamic_reloc)
7300 printf (_("\nThere are no dynamic relocations in this file.\n"));
7301 }
7302 else
7303 {
7304 Elf_Internal_Shdr * section;
7305 unsigned long i;
7306 bfd_boolean found = FALSE;
7307
7308 for (i = 0, section = filedata->section_headers;
7309 i < filedata->file_header.e_shnum;
7310 i++, section++)
7311 {
7312 if ( section->sh_type != SHT_RELA
7313 && section->sh_type != SHT_REL)
7314 continue;
7315
7316 rel_offset = section->sh_offset;
7317 rel_size = section->sh_size;
7318
7319 if (rel_size)
7320 {
7321 Elf_Internal_Shdr * strsec;
7322 int is_rela;
7323 unsigned long num_rela;
7324
7325 printf (_("\nRelocation section "));
7326
7327 if (filedata->string_table == NULL)
7328 printf ("%d", section->sh_name);
7329 else
7330 printf ("'%s'", printable_section_name (filedata, section));
7331
7332 num_rela = rel_size / section->sh_entsize;
7333 printf (ngettext (" at offset 0x%lx contains %lu entry:\n",
7334 " at offset 0x%lx contains %lu entries:\n",
7335 num_rela),
7336 rel_offset, num_rela);
7337
7338 is_rela = section->sh_type == SHT_RELA;
7339
7340 if (section->sh_link != 0
7341 && section->sh_link < filedata->file_header.e_shnum)
7342 {
7343 Elf_Internal_Shdr * symsec;
7344 Elf_Internal_Sym * symtab;
7345 unsigned long nsyms;
7346 unsigned long strtablen = 0;
7347 char * strtab = NULL;
7348
7349 symsec = filedata->section_headers + section->sh_link;
7350 if (symsec->sh_type != SHT_SYMTAB
7351 && symsec->sh_type != SHT_DYNSYM)
7352 continue;
7353
7354 symtab = GET_ELF_SYMBOLS (filedata, symsec, & nsyms);
7355
7356 if (symtab == NULL)
7357 continue;
7358
7359 if (symsec->sh_link != 0
7360 && symsec->sh_link < filedata->file_header.e_shnum)
7361 {
7362 strsec = filedata->section_headers + symsec->sh_link;
7363
7364 strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
7365 1, strsec->sh_size,
7366 _("string table"));
7367 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7368 }
7369
7370 dump_relocations (filedata, rel_offset, rel_size,
7371 symtab, nsyms, strtab, strtablen,
7372 is_rela,
7373 symsec->sh_type == SHT_DYNSYM);
7374 if (strtab)
7375 free (strtab);
7376 free (symtab);
7377 }
7378 else
7379 dump_relocations (filedata, rel_offset, rel_size,
7380 NULL, 0, NULL, 0, is_rela,
7381 FALSE /* is_dynamic */);
7382
7383 found = TRUE;
7384 }
7385 }
7386
7387 if (! found)
7388 {
7389 /* Users sometimes forget the -D option, so try to be helpful. */
7390 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7391 {
7392 if (dynamic_info [dynamic_relocations [i].size])
7393 {
7394 printf (_("\nThere are no static relocations in this file."));
7395 printf (_("\nTo see the dynamic relocations add --use-dynamic to the command line.\n"));
7396
7397 break;
7398 }
7399 }
7400 if (i == ARRAY_SIZE (dynamic_relocations))
7401 printf (_("\nThere are no relocations in this file.\n"));
7402 }
7403 }
7404
7405 return TRUE;
7406 }
7407
7408 /* An absolute address consists of a section and an offset. If the
7409 section is NULL, the offset itself is the address, otherwise, the
7410 address equals to LOAD_ADDRESS(section) + offset. */
7411
7412 struct absaddr
7413 {
7414 unsigned short section;
7415 bfd_vma offset;
7416 };
7417
7418 /* Find the nearest symbol at or below ADDR. Returns the symbol
7419 name, if found, and the offset from the symbol to ADDR. */
7420
7421 static void
7422 find_symbol_for_address (Filedata * filedata,
7423 Elf_Internal_Sym * symtab,
7424 unsigned long nsyms,
7425 const char * strtab,
7426 unsigned long strtab_size,
7427 struct absaddr addr,
7428 const char ** symname,
7429 bfd_vma * offset)
7430 {
7431 bfd_vma dist = 0x100000;
7432 Elf_Internal_Sym * sym;
7433 Elf_Internal_Sym * beg;
7434 Elf_Internal_Sym * end;
7435 Elf_Internal_Sym * best = NULL;
7436
7437 REMOVE_ARCH_BITS (addr.offset);
7438 beg = symtab;
7439 end = symtab + nsyms;
7440
7441 while (beg < end)
7442 {
7443 bfd_vma value;
7444
7445 sym = beg + (end - beg) / 2;
7446
7447 value = sym->st_value;
7448 REMOVE_ARCH_BITS (value);
7449
7450 if (sym->st_name != 0
7451 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7452 && addr.offset >= value
7453 && addr.offset - value < dist)
7454 {
7455 best = sym;
7456 dist = addr.offset - value;
7457 if (!dist)
7458 break;
7459 }
7460
7461 if (addr.offset < value)
7462 end = sym;
7463 else
7464 beg = sym + 1;
7465 }
7466
7467 if (best)
7468 {
7469 *symname = (best->st_name >= strtab_size
7470 ? _("<corrupt>") : strtab + best->st_name);
7471 *offset = dist;
7472 return;
7473 }
7474
7475 *symname = NULL;
7476 *offset = addr.offset;
7477 }
7478
7479 static /* signed */ int
7480 symcmp (const void *p, const void *q)
7481 {
7482 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7483 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7484
7485 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7486 }
7487
7488 /* Process the unwind section. */
7489
7490 #include "unwind-ia64.h"
7491
7492 struct ia64_unw_table_entry
7493 {
7494 struct absaddr start;
7495 struct absaddr end;
7496 struct absaddr info;
7497 };
7498
7499 struct ia64_unw_aux_info
7500 {
7501 struct ia64_unw_table_entry * table; /* Unwind table. */
7502 unsigned long table_len; /* Length of unwind table. */
7503 unsigned char * info; /* Unwind info. */
7504 unsigned long info_size; /* Size of unwind info. */
7505 bfd_vma info_addr; /* Starting address of unwind info. */
7506 bfd_vma seg_base; /* Starting address of segment. */
7507 Elf_Internal_Sym * symtab; /* The symbol table. */
7508 unsigned long nsyms; /* Number of symbols. */
7509 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7510 unsigned long nfuns; /* Number of entries in funtab. */
7511 char * strtab; /* The string table. */
7512 unsigned long strtab_size; /* Size of string table. */
7513 };
7514
7515 static bfd_boolean
7516 dump_ia64_unwind (Filedata * filedata, struct ia64_unw_aux_info * aux)
7517 {
7518 struct ia64_unw_table_entry * tp;
7519 unsigned long j, nfuns;
7520 int in_body;
7521 bfd_boolean res = TRUE;
7522
7523 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7524 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7525 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7526 aux->funtab[nfuns++] = aux->symtab[j];
7527 aux->nfuns = nfuns;
7528 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7529
7530 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7531 {
7532 bfd_vma stamp;
7533 bfd_vma offset;
7534 const unsigned char * dp;
7535 const unsigned char * head;
7536 const unsigned char * end;
7537 const char * procname;
7538
7539 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
7540 aux->strtab_size, tp->start, &procname, &offset);
7541
7542 fputs ("\n<", stdout);
7543
7544 if (procname)
7545 {
7546 fputs (procname, stdout);
7547
7548 if (offset)
7549 printf ("+%lx", (unsigned long) offset);
7550 }
7551
7552 fputs (">: [", stdout);
7553 print_vma (tp->start.offset, PREFIX_HEX);
7554 fputc ('-', stdout);
7555 print_vma (tp->end.offset, PREFIX_HEX);
7556 printf ("], info at +0x%lx\n",
7557 (unsigned long) (tp->info.offset - aux->seg_base));
7558
7559 /* PR 17531: file: 86232b32. */
7560 if (aux->info == NULL)
7561 continue;
7562
7563 offset = tp->info.offset;
7564 if (tp->info.section)
7565 {
7566 if (tp->info.section >= filedata->file_header.e_shnum)
7567 {
7568 warn (_("Invalid section %u in table entry %ld\n"),
7569 tp->info.section, (long) (tp - aux->table));
7570 res = FALSE;
7571 continue;
7572 }
7573 offset += filedata->section_headers[tp->info.section].sh_addr;
7574 }
7575 offset -= aux->info_addr;
7576 /* PR 17531: file: 0997b4d1. */
7577 if (offset >= aux->info_size)
7578 {
7579 warn (_("Invalid offset %lx in table entry %ld\n"),
7580 (long) tp->info.offset, (long) (tp - aux->table));
7581 res = FALSE;
7582 continue;
7583 }
7584
7585 head = aux->info + offset;
7586 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7587
7588 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7589 (unsigned) UNW_VER (stamp),
7590 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7591 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7592 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7593 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7594
7595 if (UNW_VER (stamp) != 1)
7596 {
7597 printf (_("\tUnknown version.\n"));
7598 continue;
7599 }
7600
7601 in_body = 0;
7602 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7603 /* PR 17531: file: 16ceda89. */
7604 if (end > aux->info + aux->info_size)
7605 end = aux->info + aux->info_size;
7606 for (dp = head + 8; dp < end;)
7607 dp = unw_decode (dp, in_body, & in_body, end);
7608 }
7609
7610 free (aux->funtab);
7611
7612 return res;
7613 }
7614
7615 static bfd_boolean
7616 slurp_ia64_unwind_table (Filedata * filedata,
7617 struct ia64_unw_aux_info * aux,
7618 Elf_Internal_Shdr * sec)
7619 {
7620 unsigned long size, nrelas, i;
7621 Elf_Internal_Phdr * seg;
7622 struct ia64_unw_table_entry * tep;
7623 Elf_Internal_Shdr * relsec;
7624 Elf_Internal_Rela * rela;
7625 Elf_Internal_Rela * rp;
7626 unsigned char * table;
7627 unsigned char * tp;
7628 Elf_Internal_Sym * sym;
7629 const char * relname;
7630
7631 aux->table_len = 0;
7632
7633 /* First, find the starting address of the segment that includes
7634 this section: */
7635
7636 if (filedata->file_header.e_phnum)
7637 {
7638 if (! get_program_headers (filedata))
7639 return FALSE;
7640
7641 for (seg = filedata->program_headers;
7642 seg < filedata->program_headers + filedata->file_header.e_phnum;
7643 ++seg)
7644 {
7645 if (seg->p_type != PT_LOAD)
7646 continue;
7647
7648 if (sec->sh_addr >= seg->p_vaddr
7649 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7650 {
7651 aux->seg_base = seg->p_vaddr;
7652 break;
7653 }
7654 }
7655 }
7656
7657 /* Second, build the unwind table from the contents of the unwind section: */
7658 size = sec->sh_size;
7659 table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
7660 _("unwind table"));
7661 if (!table)
7662 return FALSE;
7663
7664 aux->table_len = size / (3 * eh_addr_size);
7665 aux->table = (struct ia64_unw_table_entry *)
7666 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7667 tep = aux->table;
7668
7669 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7670 {
7671 tep->start.section = SHN_UNDEF;
7672 tep->end.section = SHN_UNDEF;
7673 tep->info.section = SHN_UNDEF;
7674 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7675 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7676 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7677 tep->start.offset += aux->seg_base;
7678 tep->end.offset += aux->seg_base;
7679 tep->info.offset += aux->seg_base;
7680 }
7681 free (table);
7682
7683 /* Third, apply any relocations to the unwind table: */
7684 for (relsec = filedata->section_headers;
7685 relsec < filedata->section_headers + filedata->file_header.e_shnum;
7686 ++relsec)
7687 {
7688 if (relsec->sh_type != SHT_RELA
7689 || relsec->sh_info >= filedata->file_header.e_shnum
7690 || filedata->section_headers + relsec->sh_info != sec)
7691 continue;
7692
7693 if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
7694 & rela, & nrelas))
7695 {
7696 free (aux->table);
7697 aux->table = NULL;
7698 aux->table_len = 0;
7699 return FALSE;
7700 }
7701
7702 for (rp = rela; rp < rela + nrelas; ++rp)
7703 {
7704 unsigned int sym_ndx;
7705 unsigned int r_type = get_reloc_type (filedata, rp->r_info);
7706 relname = elf_ia64_reloc_type (r_type);
7707
7708 /* PR 17531: file: 9fa67536. */
7709 if (relname == NULL)
7710 {
7711 warn (_("Skipping unknown relocation type: %u\n"), r_type);
7712 continue;
7713 }
7714
7715 if (! const_strneq (relname, "R_IA64_SEGREL"))
7716 {
7717 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7718 continue;
7719 }
7720
7721 i = rp->r_offset / (3 * eh_addr_size);
7722
7723 /* PR 17531: file: 5bc8d9bf. */
7724 if (i >= aux->table_len)
7725 {
7726 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7727 continue;
7728 }
7729
7730 sym_ndx = get_reloc_symindex (rp->r_info);
7731 if (sym_ndx >= aux->nsyms)
7732 {
7733 warn (_("Skipping reloc with invalid symbol index: %u\n"),
7734 sym_ndx);
7735 continue;
7736 }
7737 sym = aux->symtab + sym_ndx;
7738
7739 switch (rp->r_offset / eh_addr_size % 3)
7740 {
7741 case 0:
7742 aux->table[i].start.section = sym->st_shndx;
7743 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7744 break;
7745 case 1:
7746 aux->table[i].end.section = sym->st_shndx;
7747 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7748 break;
7749 case 2:
7750 aux->table[i].info.section = sym->st_shndx;
7751 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7752 break;
7753 default:
7754 break;
7755 }
7756 }
7757
7758 free (rela);
7759 }
7760
7761 return TRUE;
7762 }
7763
7764 static bfd_boolean
7765 ia64_process_unwind (Filedata * filedata)
7766 {
7767 Elf_Internal_Shdr * sec;
7768 Elf_Internal_Shdr * unwsec = NULL;
7769 Elf_Internal_Shdr * strsec;
7770 unsigned long i, unwcount = 0, unwstart = 0;
7771 struct ia64_unw_aux_info aux;
7772 bfd_boolean res = TRUE;
7773
7774 memset (& aux, 0, sizeof (aux));
7775
7776 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
7777 {
7778 if (sec->sh_type == SHT_SYMTAB
7779 && sec->sh_link < filedata->file_header.e_shnum)
7780 {
7781 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
7782
7783 strsec = filedata->section_headers + sec->sh_link;
7784 if (aux.strtab != NULL)
7785 {
7786 error (_("Multiple auxillary string tables encountered\n"));
7787 free (aux.strtab);
7788 res = FALSE;
7789 }
7790 aux.strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
7791 1, strsec->sh_size,
7792 _("string table"));
7793 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7794 }
7795 else if (sec->sh_type == SHT_IA_64_UNWIND)
7796 unwcount++;
7797 }
7798
7799 if (!unwcount)
7800 printf (_("\nThere are no unwind sections in this file.\n"));
7801
7802 while (unwcount-- > 0)
7803 {
7804 char * suffix;
7805 size_t len, len2;
7806
7807 for (i = unwstart, sec = filedata->section_headers + unwstart, unwsec = NULL;
7808 i < filedata->file_header.e_shnum; ++i, ++sec)
7809 if (sec->sh_type == SHT_IA_64_UNWIND)
7810 {
7811 unwsec = sec;
7812 break;
7813 }
7814 /* We have already counted the number of SHT_IA64_UNWIND
7815 sections so the loop above should never fail. */
7816 assert (unwsec != NULL);
7817
7818 unwstart = i + 1;
7819 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7820
7821 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7822 {
7823 /* We need to find which section group it is in. */
7824 struct group_list * g;
7825
7826 if (section_headers_groups == NULL
7827 || section_headers_groups [i] == NULL)
7828 i = filedata->file_header.e_shnum;
7829 else
7830 {
7831 g = section_headers_groups [i]->root;
7832
7833 for (; g != NULL; g = g->next)
7834 {
7835 sec = filedata->section_headers + g->section_index;
7836
7837 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7838 break;
7839 }
7840
7841 if (g == NULL)
7842 i = filedata->file_header.e_shnum;
7843 }
7844 }
7845 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7846 {
7847 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7848 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7849 suffix = SECTION_NAME (unwsec) + len;
7850 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum;
7851 ++i, ++sec)
7852 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7853 && streq (SECTION_NAME (sec) + len2, suffix))
7854 break;
7855 }
7856 else
7857 {
7858 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7859 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7860 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7861 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7862 suffix = "";
7863 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7864 suffix = SECTION_NAME (unwsec) + len;
7865 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum;
7866 ++i, ++sec)
7867 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7868 && streq (SECTION_NAME (sec) + len2, suffix))
7869 break;
7870 }
7871
7872 if (i == filedata->file_header.e_shnum)
7873 {
7874 printf (_("\nCould not find unwind info section for "));
7875
7876 if (filedata->string_table == NULL)
7877 printf ("%d", unwsec->sh_name);
7878 else
7879 printf ("'%s'", printable_section_name (filedata, unwsec));
7880 }
7881 else
7882 {
7883 aux.info_addr = sec->sh_addr;
7884 aux.info = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1,
7885 sec->sh_size,
7886 _("unwind info"));
7887 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7888
7889 printf (_("\nUnwind section "));
7890
7891 if (filedata->string_table == NULL)
7892 printf ("%d", unwsec->sh_name);
7893 else
7894 printf ("'%s'", printable_section_name (filedata, unwsec));
7895
7896 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7897 (unsigned long) unwsec->sh_offset,
7898 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7899
7900 if (slurp_ia64_unwind_table (filedata, & aux, unwsec)
7901 && aux.table_len > 0)
7902 dump_ia64_unwind (filedata, & aux);
7903
7904 if (aux.table)
7905 free ((char *) aux.table);
7906 if (aux.info)
7907 free ((char *) aux.info);
7908 aux.table = NULL;
7909 aux.info = NULL;
7910 }
7911 }
7912
7913 if (aux.symtab)
7914 free (aux.symtab);
7915 if (aux.strtab)
7916 free ((char *) aux.strtab);
7917
7918 return res;
7919 }
7920
7921 struct hppa_unw_table_entry
7922 {
7923 struct absaddr start;
7924 struct absaddr end;
7925 unsigned int Cannot_unwind:1; /* 0 */
7926 unsigned int Millicode:1; /* 1 */
7927 unsigned int Millicode_save_sr0:1; /* 2 */
7928 unsigned int Region_description:2; /* 3..4 */
7929 unsigned int reserved1:1; /* 5 */
7930 unsigned int Entry_SR:1; /* 6 */
7931 unsigned int Entry_FR:4; /* Number saved 7..10 */
7932 unsigned int Entry_GR:5; /* Number saved 11..15 */
7933 unsigned int Args_stored:1; /* 16 */
7934 unsigned int Variable_Frame:1; /* 17 */
7935 unsigned int Separate_Package_Body:1; /* 18 */
7936 unsigned int Frame_Extension_Millicode:1; /* 19 */
7937 unsigned int Stack_Overflow_Check:1; /* 20 */
7938 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7939 unsigned int Ada_Region:1; /* 22 */
7940 unsigned int cxx_info:1; /* 23 */
7941 unsigned int cxx_try_catch:1; /* 24 */
7942 unsigned int sched_entry_seq:1; /* 25 */
7943 unsigned int reserved2:1; /* 26 */
7944 unsigned int Save_SP:1; /* 27 */
7945 unsigned int Save_RP:1; /* 28 */
7946 unsigned int Save_MRP_in_frame:1; /* 29 */
7947 unsigned int extn_ptr_defined:1; /* 30 */
7948 unsigned int Cleanup_defined:1; /* 31 */
7949
7950 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7951 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7952 unsigned int Large_frame:1; /* 2 */
7953 unsigned int Pseudo_SP_Set:1; /* 3 */
7954 unsigned int reserved4:1; /* 4 */
7955 unsigned int Total_frame_size:27; /* 5..31 */
7956 };
7957
7958 struct hppa_unw_aux_info
7959 {
7960 struct hppa_unw_table_entry * table; /* Unwind table. */
7961 unsigned long table_len; /* Length of unwind table. */
7962 bfd_vma seg_base; /* Starting address of segment. */
7963 Elf_Internal_Sym * symtab; /* The symbol table. */
7964 unsigned long nsyms; /* Number of symbols. */
7965 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7966 unsigned long nfuns; /* Number of entries in funtab. */
7967 char * strtab; /* The string table. */
7968 unsigned long strtab_size; /* Size of string table. */
7969 };
7970
7971 static bfd_boolean
7972 dump_hppa_unwind (Filedata * filedata, struct hppa_unw_aux_info * aux)
7973 {
7974 struct hppa_unw_table_entry * tp;
7975 unsigned long j, nfuns;
7976 bfd_boolean res = TRUE;
7977
7978 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7979 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7980 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7981 aux->funtab[nfuns++] = aux->symtab[j];
7982 aux->nfuns = nfuns;
7983 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7984
7985 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7986 {
7987 bfd_vma offset;
7988 const char * procname;
7989
7990 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
7991 aux->strtab_size, tp->start, &procname,
7992 &offset);
7993
7994 fputs ("\n<", stdout);
7995
7996 if (procname)
7997 {
7998 fputs (procname, stdout);
7999
8000 if (offset)
8001 printf ("+%lx", (unsigned long) offset);
8002 }
8003
8004 fputs (">: [", stdout);
8005 print_vma (tp->start.offset, PREFIX_HEX);
8006 fputc ('-', stdout);
8007 print_vma (tp->end.offset, PREFIX_HEX);
8008 printf ("]\n\t");
8009
8010 #define PF(_m) if (tp->_m) printf (#_m " ");
8011 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
8012 PF(Cannot_unwind);
8013 PF(Millicode);
8014 PF(Millicode_save_sr0);
8015 /* PV(Region_description); */
8016 PF(Entry_SR);
8017 PV(Entry_FR);
8018 PV(Entry_GR);
8019 PF(Args_stored);
8020 PF(Variable_Frame);
8021 PF(Separate_Package_Body);
8022 PF(Frame_Extension_Millicode);
8023 PF(Stack_Overflow_Check);
8024 PF(Two_Instruction_SP_Increment);
8025 PF(Ada_Region);
8026 PF(cxx_info);
8027 PF(cxx_try_catch);
8028 PF(sched_entry_seq);
8029 PF(Save_SP);
8030 PF(Save_RP);
8031 PF(Save_MRP_in_frame);
8032 PF(extn_ptr_defined);
8033 PF(Cleanup_defined);
8034 PF(MPE_XL_interrupt_marker);
8035 PF(HP_UX_interrupt_marker);
8036 PF(Large_frame);
8037 PF(Pseudo_SP_Set);
8038 PV(Total_frame_size);
8039 #undef PF
8040 #undef PV
8041 }
8042
8043 printf ("\n");
8044
8045 free (aux->funtab);
8046
8047 return res;
8048 }
8049
8050 static bfd_boolean
8051 slurp_hppa_unwind_table (Filedata * filedata,
8052 struct hppa_unw_aux_info * aux,
8053 Elf_Internal_Shdr * sec)
8054 {
8055 unsigned long size, unw_ent_size, nentries, nrelas, i;
8056 Elf_Internal_Phdr * seg;
8057 struct hppa_unw_table_entry * tep;
8058 Elf_Internal_Shdr * relsec;
8059 Elf_Internal_Rela * rela;
8060 Elf_Internal_Rela * rp;
8061 unsigned char * table;
8062 unsigned char * tp;
8063 Elf_Internal_Sym * sym;
8064 const char * relname;
8065
8066 /* First, find the starting address of the segment that includes
8067 this section. */
8068 if (filedata->file_header.e_phnum)
8069 {
8070 if (! get_program_headers (filedata))
8071 return FALSE;
8072
8073 for (seg = filedata->program_headers;
8074 seg < filedata->program_headers + filedata->file_header.e_phnum;
8075 ++seg)
8076 {
8077 if (seg->p_type != PT_LOAD)
8078 continue;
8079
8080 if (sec->sh_addr >= seg->p_vaddr
8081 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
8082 {
8083 aux->seg_base = seg->p_vaddr;
8084 break;
8085 }
8086 }
8087 }
8088
8089 /* Second, build the unwind table from the contents of the unwind
8090 section. */
8091 size = sec->sh_size;
8092 table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
8093 _("unwind table"));
8094 if (!table)
8095 return FALSE;
8096
8097 unw_ent_size = 16;
8098 nentries = size / unw_ent_size;
8099 size = unw_ent_size * nentries;
8100
8101 tep = aux->table = (struct hppa_unw_table_entry *)
8102 xcmalloc (nentries, sizeof (aux->table[0]));
8103
8104 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
8105 {
8106 unsigned int tmp1, tmp2;
8107
8108 tep->start.section = SHN_UNDEF;
8109 tep->end.section = SHN_UNDEF;
8110
8111 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
8112 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
8113 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
8114 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
8115
8116 tep->start.offset += aux->seg_base;
8117 tep->end.offset += aux->seg_base;
8118
8119 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
8120 tep->Millicode = (tmp1 >> 30) & 0x1;
8121 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
8122 tep->Region_description = (tmp1 >> 27) & 0x3;
8123 tep->reserved1 = (tmp1 >> 26) & 0x1;
8124 tep->Entry_SR = (tmp1 >> 25) & 0x1;
8125 tep->Entry_FR = (tmp1 >> 21) & 0xf;
8126 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
8127 tep->Args_stored = (tmp1 >> 15) & 0x1;
8128 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
8129 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
8130 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
8131 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
8132 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
8133 tep->Ada_Region = (tmp1 >> 9) & 0x1;
8134 tep->cxx_info = (tmp1 >> 8) & 0x1;
8135 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
8136 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
8137 tep->reserved2 = (tmp1 >> 5) & 0x1;
8138 tep->Save_SP = (tmp1 >> 4) & 0x1;
8139 tep->Save_RP = (tmp1 >> 3) & 0x1;
8140 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
8141 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
8142 tep->Cleanup_defined = tmp1 & 0x1;
8143
8144 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
8145 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
8146 tep->Large_frame = (tmp2 >> 29) & 0x1;
8147 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
8148 tep->reserved4 = (tmp2 >> 27) & 0x1;
8149 tep->Total_frame_size = tmp2 & 0x7ffffff;
8150 }
8151 free (table);
8152
8153 /* Third, apply any relocations to the unwind table. */
8154 for (relsec = filedata->section_headers;
8155 relsec < filedata->section_headers + filedata->file_header.e_shnum;
8156 ++relsec)
8157 {
8158 if (relsec->sh_type != SHT_RELA
8159 || relsec->sh_info >= filedata->file_header.e_shnum
8160 || filedata->section_headers + relsec->sh_info != sec)
8161 continue;
8162
8163 if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
8164 & rela, & nrelas))
8165 return FALSE;
8166
8167 for (rp = rela; rp < rela + nrelas; ++rp)
8168 {
8169 unsigned int sym_ndx;
8170 unsigned int r_type = get_reloc_type (filedata, rp->r_info);
8171 relname = elf_hppa_reloc_type (r_type);
8172
8173 if (relname == NULL)
8174 {
8175 warn (_("Skipping unknown relocation type: %u\n"), r_type);
8176 continue;
8177 }
8178
8179 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
8180 if (! const_strneq (relname, "R_PARISC_SEGREL"))
8181 {
8182 warn (_("Skipping unexpected relocation type: %s\n"), relname);
8183 continue;
8184 }
8185
8186 i = rp->r_offset / unw_ent_size;
8187 if (i >= aux->table_len)
8188 {
8189 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
8190 continue;
8191 }
8192
8193 sym_ndx = get_reloc_symindex (rp->r_info);
8194 if (sym_ndx >= aux->nsyms)
8195 {
8196 warn (_("Skipping reloc with invalid symbol index: %u\n"),
8197 sym_ndx);
8198 continue;
8199 }
8200 sym = aux->symtab + sym_ndx;
8201
8202 switch ((rp->r_offset % unw_ent_size) / 4)
8203 {
8204 case 0:
8205 aux->table[i].start.section = sym->st_shndx;
8206 aux->table[i].start.offset = sym->st_value + rp->r_addend;
8207 break;
8208 case 1:
8209 aux->table[i].end.section = sym->st_shndx;
8210 aux->table[i].end.offset = sym->st_value + rp->r_addend;
8211 break;
8212 default:
8213 break;
8214 }
8215 }
8216
8217 free (rela);
8218 }
8219
8220 aux->table_len = nentries;
8221
8222 return TRUE;
8223 }
8224
8225 static bfd_boolean
8226 hppa_process_unwind (Filedata * filedata)
8227 {
8228 struct hppa_unw_aux_info aux;
8229 Elf_Internal_Shdr * unwsec = NULL;
8230 Elf_Internal_Shdr * strsec;
8231 Elf_Internal_Shdr * sec;
8232 unsigned long i;
8233 bfd_boolean res = TRUE;
8234
8235 if (filedata->string_table == NULL)
8236 return FALSE;
8237
8238 memset (& aux, 0, sizeof (aux));
8239
8240 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
8241 {
8242 if (sec->sh_type == SHT_SYMTAB
8243 && sec->sh_link < filedata->file_header.e_shnum)
8244 {
8245 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
8246
8247 strsec = filedata->section_headers + sec->sh_link;
8248 if (aux.strtab != NULL)
8249 {
8250 error (_("Multiple auxillary string tables encountered\n"));
8251 free (aux.strtab);
8252 res = FALSE;
8253 }
8254 aux.strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
8255 1, strsec->sh_size,
8256 _("string table"));
8257 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8258 }
8259 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
8260 unwsec = sec;
8261 }
8262
8263 if (!unwsec)
8264 printf (_("\nThere are no unwind sections in this file.\n"));
8265
8266 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
8267 {
8268 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
8269 {
8270 unsigned long num_unwind = sec->sh_size / 16;
8271
8272 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
8273 "contains %lu entry:\n",
8274 "\nUnwind section '%s' at offset 0x%lx "
8275 "contains %lu entries:\n",
8276 num_unwind),
8277 printable_section_name (filedata, sec),
8278 (unsigned long) sec->sh_offset,
8279 num_unwind);
8280
8281 if (! slurp_hppa_unwind_table (filedata, &aux, sec))
8282 res = FALSE;
8283
8284 if (res && aux.table_len > 0)
8285 {
8286 if (! dump_hppa_unwind (filedata, &aux))
8287 res = FALSE;
8288 }
8289
8290 if (aux.table)
8291 free ((char *) aux.table);
8292 aux.table = NULL;
8293 }
8294 }
8295
8296 if (aux.symtab)
8297 free (aux.symtab);
8298 if (aux.strtab)
8299 free ((char *) aux.strtab);
8300
8301 return res;
8302 }
8303
8304 struct arm_section
8305 {
8306 unsigned char * data; /* The unwind data. */
8307 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
8308 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
8309 unsigned long nrelas; /* The number of relocations. */
8310 unsigned int rel_type; /* REL or RELA ? */
8311 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
8312 };
8313
8314 struct arm_unw_aux_info
8315 {
8316 Filedata * filedata; /* The file containing the unwind sections. */
8317 Elf_Internal_Sym * symtab; /* The file's symbol table. */
8318 unsigned long nsyms; /* Number of symbols. */
8319 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
8320 unsigned long nfuns; /* Number of these symbols. */
8321 char * strtab; /* The file's string table. */
8322 unsigned long strtab_size; /* Size of string table. */
8323 };
8324
8325 static const char *
8326 arm_print_vma_and_name (Filedata * filedata,
8327 struct arm_unw_aux_info * aux,
8328 bfd_vma fn,
8329 struct absaddr addr)
8330 {
8331 const char *procname;
8332 bfd_vma sym_offset;
8333
8334 if (addr.section == SHN_UNDEF)
8335 addr.offset = fn;
8336
8337 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
8338 aux->strtab_size, addr, &procname,
8339 &sym_offset);
8340
8341 print_vma (fn, PREFIX_HEX);
8342
8343 if (procname)
8344 {
8345 fputs (" <", stdout);
8346 fputs (procname, stdout);
8347
8348 if (sym_offset)
8349 printf ("+0x%lx", (unsigned long) sym_offset);
8350 fputc ('>', stdout);
8351 }
8352
8353 return procname;
8354 }
8355
8356 static void
8357 arm_free_section (struct arm_section *arm_sec)
8358 {
8359 if (arm_sec->data != NULL)
8360 free (arm_sec->data);
8361
8362 if (arm_sec->rela != NULL)
8363 free (arm_sec->rela);
8364 }
8365
8366 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
8367 cached section and install SEC instead.
8368 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
8369 and return its valued in * WORDP, relocating if necessary.
8370 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
8371 relocation's offset in ADDR.
8372 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
8373 into the string table of the symbol associated with the reloc. If no
8374 reloc was applied store -1 there.
8375 5) Return TRUE upon success, FALSE otherwise. */
8376
8377 static bfd_boolean
8378 get_unwind_section_word (Filedata * filedata,
8379 struct arm_unw_aux_info * aux,
8380 struct arm_section * arm_sec,
8381 Elf_Internal_Shdr * sec,
8382 bfd_vma word_offset,
8383 unsigned int * wordp,
8384 struct absaddr * addr,
8385 bfd_vma * sym_name)
8386 {
8387 Elf_Internal_Rela *rp;
8388 Elf_Internal_Sym *sym;
8389 const char * relname;
8390 unsigned int word;
8391 bfd_boolean wrapped;
8392
8393 if (sec == NULL || arm_sec == NULL)
8394 return FALSE;
8395
8396 addr->section = SHN_UNDEF;
8397 addr->offset = 0;
8398
8399 if (sym_name != NULL)
8400 *sym_name = (bfd_vma) -1;
8401
8402 /* If necessary, update the section cache. */
8403 if (sec != arm_sec->sec)
8404 {
8405 Elf_Internal_Shdr *relsec;
8406
8407 arm_free_section (arm_sec);
8408
8409 arm_sec->sec = sec;
8410 arm_sec->data = get_data (NULL, aux->filedata, sec->sh_offset, 1,
8411 sec->sh_size, _("unwind data"));
8412 arm_sec->rela = NULL;
8413 arm_sec->nrelas = 0;
8414
8415 for (relsec = filedata->section_headers;
8416 relsec < filedata->section_headers + filedata->file_header.e_shnum;
8417 ++relsec)
8418 {
8419 if (relsec->sh_info >= filedata->file_header.e_shnum
8420 || filedata->section_headers + relsec->sh_info != sec
8421 /* PR 15745: Check the section type as well. */
8422 || (relsec->sh_type != SHT_REL
8423 && relsec->sh_type != SHT_RELA))
8424 continue;
8425
8426 arm_sec->rel_type = relsec->sh_type;
8427 if (relsec->sh_type == SHT_REL)
8428 {
8429 if (!slurp_rel_relocs (aux->filedata, relsec->sh_offset,
8430 relsec->sh_size,
8431 & arm_sec->rela, & arm_sec->nrelas))
8432 return FALSE;
8433 }
8434 else /* relsec->sh_type == SHT_RELA */
8435 {
8436 if (!slurp_rela_relocs (aux->filedata, relsec->sh_offset,
8437 relsec->sh_size,
8438 & arm_sec->rela, & arm_sec->nrelas))
8439 return FALSE;
8440 }
8441 break;
8442 }
8443
8444 arm_sec->next_rela = arm_sec->rela;
8445 }
8446
8447 /* If there is no unwind data we can do nothing. */
8448 if (arm_sec->data == NULL)
8449 return FALSE;
8450
8451 /* If the offset is invalid then fail. */
8452 if (/* PR 21343 *//* PR 18879 */
8453 sec->sh_size < 4
8454 || word_offset > (sec->sh_size - 4)
8455 || ((bfd_signed_vma) word_offset) < 0)
8456 return FALSE;
8457
8458 /* Get the word at the required offset. */
8459 word = byte_get (arm_sec->data + word_offset, 4);
8460
8461 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8462 if (arm_sec->rela == NULL)
8463 {
8464 * wordp = word;
8465 return TRUE;
8466 }
8467
8468 /* Look through the relocs to find the one that applies to the provided offset. */
8469 wrapped = FALSE;
8470 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8471 {
8472 bfd_vma prelval, offset;
8473
8474 if (rp->r_offset > word_offset && !wrapped)
8475 {
8476 rp = arm_sec->rela;
8477 wrapped = TRUE;
8478 }
8479 if (rp->r_offset > word_offset)
8480 break;
8481
8482 if (rp->r_offset & 3)
8483 {
8484 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8485 (unsigned long) rp->r_offset);
8486 continue;
8487 }
8488
8489 if (rp->r_offset < word_offset)
8490 continue;
8491
8492 /* PR 17531: file: 027-161405-0.004 */
8493 if (aux->symtab == NULL)
8494 continue;
8495
8496 if (arm_sec->rel_type == SHT_REL)
8497 {
8498 offset = word & 0x7fffffff;
8499 if (offset & 0x40000000)
8500 offset |= ~ (bfd_vma) 0x7fffffff;
8501 }
8502 else if (arm_sec->rel_type == SHT_RELA)
8503 offset = rp->r_addend;
8504 else
8505 {
8506 error (_("Unknown section relocation type %d encountered\n"),
8507 arm_sec->rel_type);
8508 break;
8509 }
8510
8511 /* PR 17531 file: 027-1241568-0.004. */
8512 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8513 {
8514 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8515 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8516 break;
8517 }
8518
8519 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8520 offset += sym->st_value;
8521 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8522
8523 /* Check that we are processing the expected reloc type. */
8524 if (filedata->file_header.e_machine == EM_ARM)
8525 {
8526 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8527 if (relname == NULL)
8528 {
8529 warn (_("Skipping unknown ARM relocation type: %d\n"),
8530 (int) ELF32_R_TYPE (rp->r_info));
8531 continue;
8532 }
8533
8534 if (streq (relname, "R_ARM_NONE"))
8535 continue;
8536
8537 if (! streq (relname, "R_ARM_PREL31"))
8538 {
8539 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8540 continue;
8541 }
8542 }
8543 else if (filedata->file_header.e_machine == EM_TI_C6000)
8544 {
8545 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8546 if (relname == NULL)
8547 {
8548 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8549 (int) ELF32_R_TYPE (rp->r_info));
8550 continue;
8551 }
8552
8553 if (streq (relname, "R_C6000_NONE"))
8554 continue;
8555
8556 if (! streq (relname, "R_C6000_PREL31"))
8557 {
8558 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8559 continue;
8560 }
8561
8562 prelval >>= 1;
8563 }
8564 else
8565 {
8566 /* This function currently only supports ARM and TI unwinders. */
8567 warn (_("Only TI and ARM unwinders are currently supported\n"));
8568 break;
8569 }
8570
8571 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8572 addr->section = sym->st_shndx;
8573 addr->offset = offset;
8574
8575 if (sym_name)
8576 * sym_name = sym->st_name;
8577 break;
8578 }
8579
8580 *wordp = word;
8581 arm_sec->next_rela = rp;
8582
8583 return TRUE;
8584 }
8585
8586 static const char *tic6x_unwind_regnames[16] =
8587 {
8588 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8589 "A14", "A13", "A12", "A11", "A10",
8590 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8591 };
8592
8593 static void
8594 decode_tic6x_unwind_regmask (unsigned int mask)
8595 {
8596 int i;
8597
8598 for (i = 12; mask; mask >>= 1, i--)
8599 {
8600 if (mask & 1)
8601 {
8602 fputs (tic6x_unwind_regnames[i], stdout);
8603 if (mask > 1)
8604 fputs (", ", stdout);
8605 }
8606 }
8607 }
8608
8609 #define ADVANCE \
8610 if (remaining == 0 && more_words) \
8611 { \
8612 data_offset += 4; \
8613 if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, \
8614 data_offset, & word, & addr, NULL)) \
8615 return FALSE; \
8616 remaining = 4; \
8617 more_words--; \
8618 } \
8619
8620 #define GET_OP(OP) \
8621 ADVANCE; \
8622 if (remaining) \
8623 { \
8624 remaining--; \
8625 (OP) = word >> 24; \
8626 word <<= 8; \
8627 } \
8628 else \
8629 { \
8630 printf (_("[Truncated opcode]\n")); \
8631 return FALSE; \
8632 } \
8633 printf ("0x%02x ", OP)
8634
8635 static bfd_boolean
8636 decode_arm_unwind_bytecode (Filedata * filedata,
8637 struct arm_unw_aux_info * aux,
8638 unsigned int word,
8639 unsigned int remaining,
8640 unsigned int more_words,
8641 bfd_vma data_offset,
8642 Elf_Internal_Shdr * data_sec,
8643 struct arm_section * data_arm_sec)
8644 {
8645 struct absaddr addr;
8646 bfd_boolean res = TRUE;
8647
8648 /* Decode the unwinding instructions. */
8649 while (1)
8650 {
8651 unsigned int op, op2;
8652
8653 ADVANCE;
8654 if (remaining == 0)
8655 break;
8656 remaining--;
8657 op = word >> 24;
8658 word <<= 8;
8659
8660 printf (" 0x%02x ", op);
8661
8662 if ((op & 0xc0) == 0x00)
8663 {
8664 int offset = ((op & 0x3f) << 2) + 4;
8665
8666 printf (" vsp = vsp + %d", offset);
8667 }
8668 else if ((op & 0xc0) == 0x40)
8669 {
8670 int offset = ((op & 0x3f) << 2) + 4;
8671
8672 printf (" vsp = vsp - %d", offset);
8673 }
8674 else if ((op & 0xf0) == 0x80)
8675 {
8676 GET_OP (op2);
8677 if (op == 0x80 && op2 == 0)
8678 printf (_("Refuse to unwind"));
8679 else
8680 {
8681 unsigned int mask = ((op & 0x0f) << 8) | op2;
8682 bfd_boolean first = TRUE;
8683 int i;
8684
8685 printf ("pop {");
8686 for (i = 0; i < 12; i++)
8687 if (mask & (1 << i))
8688 {
8689 if (first)
8690 first = FALSE;
8691 else
8692 printf (", ");
8693 printf ("r%d", 4 + i);
8694 }
8695 printf ("}");
8696 }
8697 }
8698 else if ((op & 0xf0) == 0x90)
8699 {
8700 if (op == 0x9d || op == 0x9f)
8701 printf (_(" [Reserved]"));
8702 else
8703 printf (" vsp = r%d", op & 0x0f);
8704 }
8705 else if ((op & 0xf0) == 0xa0)
8706 {
8707 int end = 4 + (op & 0x07);
8708 bfd_boolean first = TRUE;
8709 int i;
8710
8711 printf (" pop {");
8712 for (i = 4; i <= end; i++)
8713 {
8714 if (first)
8715 first = FALSE;
8716 else
8717 printf (", ");
8718 printf ("r%d", i);
8719 }
8720 if (op & 0x08)
8721 {
8722 if (!first)
8723 printf (", ");
8724 printf ("r14");
8725 }
8726 printf ("}");
8727 }
8728 else if (op == 0xb0)
8729 printf (_(" finish"));
8730 else if (op == 0xb1)
8731 {
8732 GET_OP (op2);
8733 if (op2 == 0 || (op2 & 0xf0) != 0)
8734 printf (_("[Spare]"));
8735 else
8736 {
8737 unsigned int mask = op2 & 0x0f;
8738 bfd_boolean first = TRUE;
8739 int i;
8740
8741 printf ("pop {");
8742 for (i = 0; i < 12; i++)
8743 if (mask & (1 << i))
8744 {
8745 if (first)
8746 first = FALSE;
8747 else
8748 printf (", ");
8749 printf ("r%d", i);
8750 }
8751 printf ("}");
8752 }
8753 }
8754 else if (op == 0xb2)
8755 {
8756 unsigned char buf[9];
8757 unsigned int i, len;
8758 unsigned long offset;
8759
8760 for (i = 0; i < sizeof (buf); i++)
8761 {
8762 GET_OP (buf[i]);
8763 if ((buf[i] & 0x80) == 0)
8764 break;
8765 }
8766 if (i == sizeof (buf))
8767 {
8768 error (_("corrupt change to vsp"));
8769 res = FALSE;
8770 }
8771 else
8772 {
8773 offset = read_uleb128 (buf, &len, buf + i + 1);
8774 assert (len == i + 1);
8775 offset = offset * 4 + 0x204;
8776 printf ("vsp = vsp + %ld", offset);
8777 }
8778 }
8779 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8780 {
8781 unsigned int first, last;
8782
8783 GET_OP (op2);
8784 first = op2 >> 4;
8785 last = op2 & 0x0f;
8786 if (op == 0xc8)
8787 first = first + 16;
8788 printf ("pop {D%d", first);
8789 if (last)
8790 printf ("-D%d", first + last);
8791 printf ("}");
8792 }
8793 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8794 {
8795 unsigned int count = op & 0x07;
8796
8797 printf ("pop {D8");
8798 if (count)
8799 printf ("-D%d", 8 + count);
8800 printf ("}");
8801 }
8802 else if (op >= 0xc0 && op <= 0xc5)
8803 {
8804 unsigned int count = op & 0x07;
8805
8806 printf (" pop {wR10");
8807 if (count)
8808 printf ("-wR%d", 10 + count);
8809 printf ("}");
8810 }
8811 else if (op == 0xc6)
8812 {
8813 unsigned int first, last;
8814
8815 GET_OP (op2);
8816 first = op2 >> 4;
8817 last = op2 & 0x0f;
8818 printf ("pop {wR%d", first);
8819 if (last)
8820 printf ("-wR%d", first + last);
8821 printf ("}");
8822 }
8823 else if (op == 0xc7)
8824 {
8825 GET_OP (op2);
8826 if (op2 == 0 || (op2 & 0xf0) != 0)
8827 printf (_("[Spare]"));
8828 else
8829 {
8830 unsigned int mask = op2 & 0x0f;
8831 bfd_boolean first = TRUE;
8832 int i;
8833
8834 printf ("pop {");
8835 for (i = 0; i < 4; i++)
8836 if (mask & (1 << i))
8837 {
8838 if (first)
8839 first = FALSE;
8840 else
8841 printf (", ");
8842 printf ("wCGR%d", i);
8843 }
8844 printf ("}");
8845 }
8846 }
8847 else
8848 {
8849 printf (_(" [unsupported opcode]"));
8850 res = FALSE;
8851 }
8852
8853 printf ("\n");
8854 }
8855
8856 return res;
8857 }
8858
8859 static bfd_boolean
8860 decode_tic6x_unwind_bytecode (Filedata * filedata,
8861 struct arm_unw_aux_info * aux,
8862 unsigned int word,
8863 unsigned int remaining,
8864 unsigned int more_words,
8865 bfd_vma data_offset,
8866 Elf_Internal_Shdr * data_sec,
8867 struct arm_section * data_arm_sec)
8868 {
8869 struct absaddr addr;
8870
8871 /* Decode the unwinding instructions. */
8872 while (1)
8873 {
8874 unsigned int op, op2;
8875
8876 ADVANCE;
8877 if (remaining == 0)
8878 break;
8879 remaining--;
8880 op = word >> 24;
8881 word <<= 8;
8882
8883 printf (" 0x%02x ", op);
8884
8885 if ((op & 0xc0) == 0x00)
8886 {
8887 int offset = ((op & 0x3f) << 3) + 8;
8888 printf (" sp = sp + %d", offset);
8889 }
8890 else if ((op & 0xc0) == 0x80)
8891 {
8892 GET_OP (op2);
8893 if (op == 0x80 && op2 == 0)
8894 printf (_("Refuse to unwind"));
8895 else
8896 {
8897 unsigned int mask = ((op & 0x1f) << 8) | op2;
8898 if (op & 0x20)
8899 printf ("pop compact {");
8900 else
8901 printf ("pop {");
8902
8903 decode_tic6x_unwind_regmask (mask);
8904 printf("}");
8905 }
8906 }
8907 else if ((op & 0xf0) == 0xc0)
8908 {
8909 unsigned int reg;
8910 unsigned int nregs;
8911 unsigned int i;
8912 const char *name;
8913 struct
8914 {
8915 unsigned int offset;
8916 unsigned int reg;
8917 } regpos[16];
8918
8919 /* Scan entire instruction first so that GET_OP output is not
8920 interleaved with disassembly. */
8921 nregs = 0;
8922 for (i = 0; nregs < (op & 0xf); i++)
8923 {
8924 GET_OP (op2);
8925 reg = op2 >> 4;
8926 if (reg != 0xf)
8927 {
8928 regpos[nregs].offset = i * 2;
8929 regpos[nregs].reg = reg;
8930 nregs++;
8931 }
8932
8933 reg = op2 & 0xf;
8934 if (reg != 0xf)
8935 {
8936 regpos[nregs].offset = i * 2 + 1;
8937 regpos[nregs].reg = reg;
8938 nregs++;
8939 }
8940 }
8941
8942 printf (_("pop frame {"));
8943 if (nregs == 0)
8944 {
8945 printf (_("*corrupt* - no registers specified"));
8946 }
8947 else
8948 {
8949 reg = nregs - 1;
8950 for (i = i * 2; i > 0; i--)
8951 {
8952 if (regpos[reg].offset == i - 1)
8953 {
8954 name = tic6x_unwind_regnames[regpos[reg].reg];
8955 if (reg > 0)
8956 reg--;
8957 }
8958 else
8959 name = _("[pad]");
8960
8961 fputs (name, stdout);
8962 if (i > 1)
8963 printf (", ");
8964 }
8965 }
8966
8967 printf ("}");
8968 }
8969 else if (op == 0xd0)
8970 printf (" MOV FP, SP");
8971 else if (op == 0xd1)
8972 printf (" __c6xabi_pop_rts");
8973 else if (op == 0xd2)
8974 {
8975 unsigned char buf[9];
8976 unsigned int i, len;
8977 unsigned long offset;
8978
8979 for (i = 0; i < sizeof (buf); i++)
8980 {
8981 GET_OP (buf[i]);
8982 if ((buf[i] & 0x80) == 0)
8983 break;
8984 }
8985 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8986 if (i == sizeof (buf))
8987 {
8988 warn (_("Corrupt stack pointer adjustment detected\n"));
8989 return FALSE;
8990 }
8991
8992 offset = read_uleb128 (buf, &len, buf + i + 1);
8993 assert (len == i + 1);
8994 offset = offset * 8 + 0x408;
8995 printf (_("sp = sp + %ld"), offset);
8996 }
8997 else if ((op & 0xf0) == 0xe0)
8998 {
8999 if ((op & 0x0f) == 7)
9000 printf (" RETURN");
9001 else
9002 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
9003 }
9004 else
9005 {
9006 printf (_(" [unsupported opcode]"));
9007 }
9008 putchar ('\n');
9009 }
9010
9011 return TRUE;
9012 }
9013
9014 static bfd_vma
9015 arm_expand_prel31 (Filedata * filedata, bfd_vma word, bfd_vma where)
9016 {
9017 bfd_vma offset;
9018
9019 offset = word & 0x7fffffff;
9020 if (offset & 0x40000000)
9021 offset |= ~ (bfd_vma) 0x7fffffff;
9022
9023 if (filedata->file_header.e_machine == EM_TI_C6000)
9024 offset <<= 1;
9025
9026 return offset + where;
9027 }
9028
9029 static bfd_boolean
9030 decode_arm_unwind (Filedata * filedata,
9031 struct arm_unw_aux_info * aux,
9032 unsigned int word,
9033 unsigned int remaining,
9034 bfd_vma data_offset,
9035 Elf_Internal_Shdr * data_sec,
9036 struct arm_section * data_arm_sec)
9037 {
9038 int per_index;
9039 unsigned int more_words = 0;
9040 struct absaddr addr;
9041 bfd_vma sym_name = (bfd_vma) -1;
9042 bfd_boolean res = TRUE;
9043
9044 if (remaining == 0)
9045 {
9046 /* Fetch the first word.
9047 Note - when decoding an object file the address extracted
9048 here will always be 0. So we also pass in the sym_name
9049 parameter so that we can find the symbol associated with
9050 the personality routine. */
9051 if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, data_offset,
9052 & word, & addr, & sym_name))
9053 return FALSE;
9054
9055 remaining = 4;
9056 }
9057 else
9058 {
9059 addr.section = SHN_UNDEF;
9060 addr.offset = 0;
9061 }
9062
9063 if ((word & 0x80000000) == 0)
9064 {
9065 /* Expand prel31 for personality routine. */
9066 bfd_vma fn;
9067 const char *procname;
9068
9069 fn = arm_expand_prel31 (filedata, word, data_sec->sh_addr + data_offset);
9070 printf (_(" Personality routine: "));
9071 if (fn == 0
9072 && addr.section == SHN_UNDEF && addr.offset == 0
9073 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
9074 {
9075 procname = aux->strtab + sym_name;
9076 print_vma (fn, PREFIX_HEX);
9077 if (procname)
9078 {
9079 fputs (" <", stdout);
9080 fputs (procname, stdout);
9081 fputc ('>', stdout);
9082 }
9083 }
9084 else
9085 procname = arm_print_vma_and_name (filedata, aux, fn, addr);
9086 fputc ('\n', stdout);
9087
9088 /* The GCC personality routines use the standard compact
9089 encoding, starting with one byte giving the number of
9090 words. */
9091 if (procname != NULL
9092 && (const_strneq (procname, "__gcc_personality_v0")
9093 || const_strneq (procname, "__gxx_personality_v0")
9094 || const_strneq (procname, "__gcj_personality_v0")
9095 || const_strneq (procname, "__gnu_objc_personality_v0")))
9096 {
9097 remaining = 0;
9098 more_words = 1;
9099 ADVANCE;
9100 if (!remaining)
9101 {
9102 printf (_(" [Truncated data]\n"));
9103 return FALSE;
9104 }
9105 more_words = word >> 24;
9106 word <<= 8;
9107 remaining--;
9108 per_index = -1;
9109 }
9110 else
9111 return TRUE;
9112 }
9113 else
9114 {
9115 /* ARM EHABI Section 6.3:
9116
9117 An exception-handling table entry for the compact model looks like:
9118
9119 31 30-28 27-24 23-0
9120 -- ----- ----- ----
9121 1 0 index Data for personalityRoutine[index] */
9122
9123 if (filedata->file_header.e_machine == EM_ARM
9124 && (word & 0x70000000))
9125 {
9126 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
9127 res = FALSE;
9128 }
9129
9130 per_index = (word >> 24) & 0x7f;
9131 printf (_(" Compact model index: %d\n"), per_index);
9132 if (per_index == 0)
9133 {
9134 more_words = 0;
9135 word <<= 8;
9136 remaining--;
9137 }
9138 else if (per_index < 3)
9139 {
9140 more_words = (word >> 16) & 0xff;
9141 word <<= 16;
9142 remaining -= 2;
9143 }
9144 }
9145
9146 switch (filedata->file_header.e_machine)
9147 {
9148 case EM_ARM:
9149 if (per_index < 3)
9150 {
9151 if (! decode_arm_unwind_bytecode (filedata, aux, word, remaining, more_words,
9152 data_offset, data_sec, data_arm_sec))
9153 res = FALSE;
9154 }
9155 else
9156 {
9157 warn (_("Unknown ARM compact model index encountered\n"));
9158 printf (_(" [reserved]\n"));
9159 res = FALSE;
9160 }
9161 break;
9162
9163 case EM_TI_C6000:
9164 if (per_index < 3)
9165 {
9166 if (! decode_tic6x_unwind_bytecode (filedata, aux, word, remaining, more_words,
9167 data_offset, data_sec, data_arm_sec))
9168 res = FALSE;
9169 }
9170 else if (per_index < 5)
9171 {
9172 if (((word >> 17) & 0x7f) == 0x7f)
9173 printf (_(" Restore stack from frame pointer\n"));
9174 else
9175 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
9176 printf (_(" Registers restored: "));
9177 if (per_index == 4)
9178 printf (" (compact) ");
9179 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
9180 putchar ('\n');
9181 printf (_(" Return register: %s\n"),
9182 tic6x_unwind_regnames[word & 0xf]);
9183 }
9184 else
9185 printf (_(" [reserved (%d)]\n"), per_index);
9186 break;
9187
9188 default:
9189 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
9190 filedata->file_header.e_machine);
9191 res = FALSE;
9192 }
9193
9194 /* Decode the descriptors. Not implemented. */
9195
9196 return res;
9197 }
9198
9199 static bfd_boolean
9200 dump_arm_unwind (Filedata * filedata,
9201 struct arm_unw_aux_info * aux,
9202 Elf_Internal_Shdr * exidx_sec)
9203 {
9204 struct arm_section exidx_arm_sec, extab_arm_sec;
9205 unsigned int i, exidx_len;
9206 unsigned long j, nfuns;
9207 bfd_boolean res = TRUE;
9208
9209 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
9210 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
9211 exidx_len = exidx_sec->sh_size / 8;
9212
9213 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
9214 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
9215 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
9216 aux->funtab[nfuns++] = aux->symtab[j];
9217 aux->nfuns = nfuns;
9218 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
9219
9220 for (i = 0; i < exidx_len; i++)
9221 {
9222 unsigned int exidx_fn, exidx_entry;
9223 struct absaddr fn_addr, entry_addr;
9224 bfd_vma fn;
9225
9226 fputc ('\n', stdout);
9227
9228 if (! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
9229 8 * i, & exidx_fn, & fn_addr, NULL)
9230 || ! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
9231 8 * i + 4, & exidx_entry, & entry_addr, NULL))
9232 {
9233 free (aux->funtab);
9234 arm_free_section (& exidx_arm_sec);
9235 arm_free_section (& extab_arm_sec);
9236 return FALSE;
9237 }
9238
9239 /* ARM EHABI, Section 5:
9240 An index table entry consists of 2 words.
9241 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
9242 if (exidx_fn & 0x80000000)
9243 {
9244 warn (_("corrupt index table entry: %x\n"), exidx_fn);
9245 res = FALSE;
9246 }
9247
9248 fn = arm_expand_prel31 (filedata, exidx_fn, exidx_sec->sh_addr + 8 * i);
9249
9250 arm_print_vma_and_name (filedata, aux, fn, fn_addr);
9251 fputs (": ", stdout);
9252
9253 if (exidx_entry == 1)
9254 {
9255 print_vma (exidx_entry, PREFIX_HEX);
9256 fputs (" [cantunwind]\n", stdout);
9257 }
9258 else if (exidx_entry & 0x80000000)
9259 {
9260 print_vma (exidx_entry, PREFIX_HEX);
9261 fputc ('\n', stdout);
9262 decode_arm_unwind (filedata, aux, exidx_entry, 4, 0, NULL, NULL);
9263 }
9264 else
9265 {
9266 bfd_vma table, table_offset = 0;
9267 Elf_Internal_Shdr *table_sec;
9268
9269 fputs ("@", stdout);
9270 table = arm_expand_prel31 (filedata, exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
9271 print_vma (table, PREFIX_HEX);
9272 printf ("\n");
9273
9274 /* Locate the matching .ARM.extab. */
9275 if (entry_addr.section != SHN_UNDEF
9276 && entry_addr.section < filedata->file_header.e_shnum)
9277 {
9278 table_sec = filedata->section_headers + entry_addr.section;
9279 table_offset = entry_addr.offset;
9280 /* PR 18879 */
9281 if (table_offset > table_sec->sh_size
9282 || ((bfd_signed_vma) table_offset) < 0)
9283 {
9284 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
9285 (unsigned long) table_offset,
9286 printable_section_name (filedata, table_sec));
9287 res = FALSE;
9288 continue;
9289 }
9290 }
9291 else
9292 {
9293 table_sec = find_section_by_address (filedata, table);
9294 if (table_sec != NULL)
9295 table_offset = table - table_sec->sh_addr;
9296 }
9297
9298 if (table_sec == NULL)
9299 {
9300 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
9301 (unsigned long) table);
9302 res = FALSE;
9303 continue;
9304 }
9305
9306 if (! decode_arm_unwind (filedata, aux, 0, 0, table_offset, table_sec,
9307 &extab_arm_sec))
9308 res = FALSE;
9309 }
9310 }
9311
9312 printf ("\n");
9313
9314 free (aux->funtab);
9315 arm_free_section (&exidx_arm_sec);
9316 arm_free_section (&extab_arm_sec);
9317
9318 return res;
9319 }
9320
9321 /* Used for both ARM and C6X unwinding tables. */
9322
9323 static bfd_boolean
9324 arm_process_unwind (Filedata * filedata)
9325 {
9326 struct arm_unw_aux_info aux;
9327 Elf_Internal_Shdr *unwsec = NULL;
9328 Elf_Internal_Shdr *strsec;
9329 Elf_Internal_Shdr *sec;
9330 unsigned long i;
9331 unsigned int sec_type;
9332 bfd_boolean res = TRUE;
9333
9334 switch (filedata->file_header.e_machine)
9335 {
9336 case EM_ARM:
9337 sec_type = SHT_ARM_EXIDX;
9338 break;
9339
9340 case EM_TI_C6000:
9341 sec_type = SHT_C6000_UNWIND;
9342 break;
9343
9344 default:
9345 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
9346 filedata->file_header.e_machine);
9347 return FALSE;
9348 }
9349
9350 if (filedata->string_table == NULL)
9351 return FALSE;
9352
9353 memset (& aux, 0, sizeof (aux));
9354 aux.filedata = filedata;
9355
9356 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
9357 {
9358 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < filedata->file_header.e_shnum)
9359 {
9360 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
9361
9362 strsec = filedata->section_headers + sec->sh_link;
9363
9364 /* PR binutils/17531 file: 011-12666-0.004. */
9365 if (aux.strtab != NULL)
9366 {
9367 error (_("Multiple string tables found in file.\n"));
9368 free (aux.strtab);
9369 res = FALSE;
9370 }
9371 aux.strtab = get_data (NULL, filedata, strsec->sh_offset,
9372 1, strsec->sh_size, _("string table"));
9373 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
9374 }
9375 else if (sec->sh_type == sec_type)
9376 unwsec = sec;
9377 }
9378
9379 if (unwsec == NULL)
9380 printf (_("\nThere are no unwind sections in this file.\n"));
9381 else
9382 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
9383 {
9384 if (sec->sh_type == sec_type)
9385 {
9386 unsigned long num_unwind = sec->sh_size / (2 * eh_addr_size);
9387 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
9388 "contains %lu entry:\n",
9389 "\nUnwind section '%s' at offset 0x%lx "
9390 "contains %lu entries:\n",
9391 num_unwind),
9392 printable_section_name (filedata, sec),
9393 (unsigned long) sec->sh_offset,
9394 num_unwind);
9395
9396 if (! dump_arm_unwind (filedata, &aux, sec))
9397 res = FALSE;
9398 }
9399 }
9400
9401 if (aux.symtab)
9402 free (aux.symtab);
9403 if (aux.strtab)
9404 free ((char *) aux.strtab);
9405
9406 return res;
9407 }
9408
9409 static bfd_boolean
9410 process_unwind (Filedata * filedata)
9411 {
9412 struct unwind_handler
9413 {
9414 unsigned int machtype;
9415 bfd_boolean (* handler)(Filedata *);
9416 } handlers[] =
9417 {
9418 { EM_ARM, arm_process_unwind },
9419 { EM_IA_64, ia64_process_unwind },
9420 { EM_PARISC, hppa_process_unwind },
9421 { EM_TI_C6000, arm_process_unwind },
9422 { 0, NULL }
9423 };
9424 int i;
9425
9426 if (!do_unwind)
9427 return TRUE;
9428
9429 for (i = 0; handlers[i].handler != NULL; i++)
9430 if (filedata->file_header.e_machine == handlers[i].machtype)
9431 return handlers[i].handler (filedata);
9432
9433 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9434 get_machine_name (filedata->file_header.e_machine));
9435 return TRUE;
9436 }
9437
9438 static void
9439 dynamic_section_aarch64_val (Elf_Internal_Dyn * entry)
9440 {
9441 switch (entry->d_tag)
9442 {
9443 case DT_AARCH64_BTI_PLT:
9444 case DT_AARCH64_PAC_PLT:
9445 break;
9446 default:
9447 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9448 break;
9449 }
9450 putchar ('\n');
9451 }
9452
9453 static void
9454 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9455 {
9456 switch (entry->d_tag)
9457 {
9458 case DT_MIPS_FLAGS:
9459 if (entry->d_un.d_val == 0)
9460 printf (_("NONE"));
9461 else
9462 {
9463 static const char * opts[] =
9464 {
9465 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9466 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9467 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9468 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9469 "RLD_ORDER_SAFE"
9470 };
9471 unsigned int cnt;
9472 bfd_boolean first = TRUE;
9473
9474 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9475 if (entry->d_un.d_val & (1 << cnt))
9476 {
9477 printf ("%s%s", first ? "" : " ", opts[cnt]);
9478 first = FALSE;
9479 }
9480 }
9481 break;
9482
9483 case DT_MIPS_IVERSION:
9484 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9485 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9486 else
9487 {
9488 char buf[40];
9489 sprintf_vma (buf, entry->d_un.d_ptr);
9490 /* Note: coded this way so that there is a single string for translation. */
9491 printf (_("<corrupt: %s>"), buf);
9492 }
9493 break;
9494
9495 case DT_MIPS_TIME_STAMP:
9496 {
9497 char timebuf[128];
9498 struct tm * tmp;
9499 time_t atime = entry->d_un.d_val;
9500
9501 tmp = gmtime (&atime);
9502 /* PR 17531: file: 6accc532. */
9503 if (tmp == NULL)
9504 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9505 else
9506 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9507 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9508 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9509 printf (_("Time Stamp: %s"), timebuf);
9510 }
9511 break;
9512
9513 case DT_MIPS_RLD_VERSION:
9514 case DT_MIPS_LOCAL_GOTNO:
9515 case DT_MIPS_CONFLICTNO:
9516 case DT_MIPS_LIBLISTNO:
9517 case DT_MIPS_SYMTABNO:
9518 case DT_MIPS_UNREFEXTNO:
9519 case DT_MIPS_HIPAGENO:
9520 case DT_MIPS_DELTA_CLASS_NO:
9521 case DT_MIPS_DELTA_INSTANCE_NO:
9522 case DT_MIPS_DELTA_RELOC_NO:
9523 case DT_MIPS_DELTA_SYM_NO:
9524 case DT_MIPS_DELTA_CLASSSYM_NO:
9525 case DT_MIPS_COMPACT_SIZE:
9526 print_vma (entry->d_un.d_val, DEC);
9527 break;
9528
9529 default:
9530 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9531 }
9532 putchar ('\n');
9533 }
9534
9535 static void
9536 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9537 {
9538 switch (entry->d_tag)
9539 {
9540 case DT_HP_DLD_FLAGS:
9541 {
9542 static struct
9543 {
9544 long int bit;
9545 const char * str;
9546 }
9547 flags[] =
9548 {
9549 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9550 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9551 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9552 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9553 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9554 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9555 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9556 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9557 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9558 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9559 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9560 { DT_HP_GST, "HP_GST" },
9561 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9562 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9563 { DT_HP_NODELETE, "HP_NODELETE" },
9564 { DT_HP_GROUP, "HP_GROUP" },
9565 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9566 };
9567 bfd_boolean first = TRUE;
9568 size_t cnt;
9569 bfd_vma val = entry->d_un.d_val;
9570
9571 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9572 if (val & flags[cnt].bit)
9573 {
9574 if (! first)
9575 putchar (' ');
9576 fputs (flags[cnt].str, stdout);
9577 first = FALSE;
9578 val ^= flags[cnt].bit;
9579 }
9580
9581 if (val != 0 || first)
9582 {
9583 if (! first)
9584 putchar (' ');
9585 print_vma (val, HEX);
9586 }
9587 }
9588 break;
9589
9590 default:
9591 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9592 break;
9593 }
9594 putchar ('\n');
9595 }
9596
9597 #ifdef BFD64
9598
9599 /* VMS vs Unix time offset and factor. */
9600
9601 #define VMS_EPOCH_OFFSET 35067168000000000LL
9602 #define VMS_GRANULARITY_FACTOR 10000000
9603
9604 /* Display a VMS time in a human readable format. */
9605
9606 static void
9607 print_vms_time (bfd_int64_t vmstime)
9608 {
9609 struct tm *tm;
9610 time_t unxtime;
9611
9612 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9613 tm = gmtime (&unxtime);
9614 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9615 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9616 tm->tm_hour, tm->tm_min, tm->tm_sec);
9617 }
9618 #endif /* BFD64 */
9619
9620 static void
9621 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9622 {
9623 switch (entry->d_tag)
9624 {
9625 case DT_IA_64_PLT_RESERVE:
9626 /* First 3 slots reserved. */
9627 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9628 printf (" -- ");
9629 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9630 break;
9631
9632 case DT_IA_64_VMS_LINKTIME:
9633 #ifdef BFD64
9634 print_vms_time (entry->d_un.d_val);
9635 #endif
9636 break;
9637
9638 case DT_IA_64_VMS_LNKFLAGS:
9639 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9640 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9641 printf (" CALL_DEBUG");
9642 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9643 printf (" NOP0BUFS");
9644 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9645 printf (" P0IMAGE");
9646 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9647 printf (" MKTHREADS");
9648 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9649 printf (" UPCALLS");
9650 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9651 printf (" IMGSTA");
9652 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9653 printf (" INITIALIZE");
9654 if (entry->d_un.d_val & VMS_LF_MAIN)
9655 printf (" MAIN");
9656 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9657 printf (" EXE_INIT");
9658 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9659 printf (" TBK_IN_IMG");
9660 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9661 printf (" DBG_IN_IMG");
9662 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9663 printf (" TBK_IN_DSF");
9664 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9665 printf (" DBG_IN_DSF");
9666 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9667 printf (" SIGNATURES");
9668 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9669 printf (" REL_SEG_OFF");
9670 break;
9671
9672 default:
9673 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9674 break;
9675 }
9676 putchar ('\n');
9677 }
9678
9679 static bfd_boolean
9680 get_32bit_dynamic_section (Filedata * filedata)
9681 {
9682 Elf32_External_Dyn * edyn;
9683 Elf32_External_Dyn * ext;
9684 Elf_Internal_Dyn * entry;
9685
9686 edyn = (Elf32_External_Dyn *) get_data (NULL, filedata, dynamic_addr, 1,
9687 dynamic_size, _("dynamic section"));
9688 if (!edyn)
9689 return FALSE;
9690
9691 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9692 might not have the luxury of section headers. Look for the DT_NULL
9693 terminator to determine the number of entries. */
9694 for (ext = edyn, dynamic_nent = 0;
9695 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9696 ext++)
9697 {
9698 dynamic_nent++;
9699 if (BYTE_GET (ext->d_tag) == DT_NULL)
9700 break;
9701 }
9702
9703 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9704 sizeof (* entry));
9705 if (dynamic_section == NULL)
9706 {
9707 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9708 (unsigned long) dynamic_nent);
9709 free (edyn);
9710 return FALSE;
9711 }
9712
9713 for (ext = edyn, entry = dynamic_section;
9714 entry < dynamic_section + dynamic_nent;
9715 ext++, entry++)
9716 {
9717 entry->d_tag = BYTE_GET (ext->d_tag);
9718 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9719 }
9720
9721 free (edyn);
9722
9723 return TRUE;
9724 }
9725
9726 static bfd_boolean
9727 get_64bit_dynamic_section (Filedata * filedata)
9728 {
9729 Elf64_External_Dyn * edyn;
9730 Elf64_External_Dyn * ext;
9731 Elf_Internal_Dyn * entry;
9732
9733 /* Read in the data. */
9734 edyn = (Elf64_External_Dyn *) get_data (NULL, filedata, dynamic_addr, 1,
9735 dynamic_size, _("dynamic section"));
9736 if (!edyn)
9737 return FALSE;
9738
9739 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9740 might not have the luxury of section headers. Look for the DT_NULL
9741 terminator to determine the number of entries. */
9742 for (ext = edyn, dynamic_nent = 0;
9743 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9744 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9745 ext++)
9746 {
9747 dynamic_nent++;
9748 if (BYTE_GET (ext->d_tag) == DT_NULL)
9749 break;
9750 }
9751
9752 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9753 sizeof (* entry));
9754 if (dynamic_section == NULL)
9755 {
9756 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9757 (unsigned long) dynamic_nent);
9758 free (edyn);
9759 return FALSE;
9760 }
9761
9762 /* Convert from external to internal formats. */
9763 for (ext = edyn, entry = dynamic_section;
9764 entry < dynamic_section + dynamic_nent;
9765 ext++, entry++)
9766 {
9767 entry->d_tag = BYTE_GET (ext->d_tag);
9768 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9769 }
9770
9771 free (edyn);
9772
9773 return TRUE;
9774 }
9775
9776 static void
9777 print_dynamic_flags (bfd_vma flags)
9778 {
9779 bfd_boolean first = TRUE;
9780
9781 while (flags)
9782 {
9783 bfd_vma flag;
9784
9785 flag = flags & - flags;
9786 flags &= ~ flag;
9787
9788 if (first)
9789 first = FALSE;
9790 else
9791 putc (' ', stdout);
9792
9793 switch (flag)
9794 {
9795 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9796 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9797 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9798 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9799 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9800 default: fputs (_("unknown"), stdout); break;
9801 }
9802 }
9803 puts ("");
9804 }
9805
9806 /* Parse and display the contents of the dynamic section. */
9807
9808 static bfd_boolean
9809 process_dynamic_section (Filedata * filedata)
9810 {
9811 Elf_Internal_Dyn * entry;
9812
9813 if (dynamic_size == 0)
9814 {
9815 if (do_dynamic)
9816 printf (_("\nThere is no dynamic section in this file.\n"));
9817
9818 return TRUE;
9819 }
9820
9821 if (is_32bit_elf)
9822 {
9823 if (! get_32bit_dynamic_section (filedata))
9824 return FALSE;
9825 }
9826 else
9827 {
9828 if (! get_64bit_dynamic_section (filedata))
9829 return FALSE;
9830 }
9831
9832 /* Find the appropriate symbol table. */
9833 if (dynamic_symbols == NULL)
9834 {
9835 for (entry = dynamic_section;
9836 entry < dynamic_section + dynamic_nent;
9837 ++entry)
9838 {
9839 Elf_Internal_Shdr section;
9840
9841 if (entry->d_tag != DT_SYMTAB)
9842 continue;
9843
9844 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9845
9846 /* Since we do not know how big the symbol table is,
9847 we default to reading in the entire file (!) and
9848 processing that. This is overkill, I know, but it
9849 should work. */
9850 section.sh_offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
9851 if ((bfd_size_type) section.sh_offset > filedata->file_size)
9852 {
9853 /* See PR 21379 for a reproducer. */
9854 error (_("Invalid DT_SYMTAB entry: %lx"), (long) section.sh_offset);
9855 return FALSE;
9856 }
9857
9858 if (archive_file_offset != 0)
9859 section.sh_size = archive_file_size - section.sh_offset;
9860 else
9861 section.sh_size = filedata->file_size - section.sh_offset;
9862
9863 if (is_32bit_elf)
9864 section.sh_entsize = sizeof (Elf32_External_Sym);
9865 else
9866 section.sh_entsize = sizeof (Elf64_External_Sym);
9867 section.sh_name = filedata->string_table_length;
9868
9869 if (dynamic_symbols != NULL)
9870 {
9871 error (_("Multiple dynamic symbol table sections found\n"));
9872 free (dynamic_symbols);
9873 }
9874 dynamic_symbols = GET_ELF_SYMBOLS (filedata, &section, & num_dynamic_syms);
9875 if (num_dynamic_syms < 1)
9876 {
9877 error (_("Unable to determine the number of symbols to load\n"));
9878 continue;
9879 }
9880 }
9881 }
9882
9883 /* Similarly find a string table. */
9884 if (dynamic_strings == NULL)
9885 {
9886 for (entry = dynamic_section;
9887 entry < dynamic_section + dynamic_nent;
9888 ++entry)
9889 {
9890 unsigned long offset;
9891 long str_tab_len;
9892
9893 if (entry->d_tag != DT_STRTAB)
9894 continue;
9895
9896 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9897
9898 /* Since we do not know how big the string table is,
9899 we default to reading in the entire file (!) and
9900 processing that. This is overkill, I know, but it
9901 should work. */
9902
9903 offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
9904
9905 if (archive_file_offset != 0)
9906 str_tab_len = archive_file_size - offset;
9907 else
9908 str_tab_len = filedata->file_size - offset;
9909
9910 if (str_tab_len < 1)
9911 {
9912 error
9913 (_("Unable to determine the length of the dynamic string table\n"));
9914 continue;
9915 }
9916
9917 if (dynamic_strings != NULL)
9918 {
9919 error (_("Multiple dynamic string tables found\n"));
9920 free (dynamic_strings);
9921 }
9922
9923 dynamic_strings = (char *) get_data (NULL, filedata, offset, 1,
9924 str_tab_len,
9925 _("dynamic string table"));
9926 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9927 }
9928 }
9929
9930 /* And find the syminfo section if available. */
9931 if (dynamic_syminfo == NULL)
9932 {
9933 unsigned long syminsz = 0;
9934
9935 for (entry = dynamic_section;
9936 entry < dynamic_section + dynamic_nent;
9937 ++entry)
9938 {
9939 if (entry->d_tag == DT_SYMINENT)
9940 {
9941 /* Note: these braces are necessary to avoid a syntax
9942 error from the SunOS4 C compiler. */
9943 /* PR binutils/17531: A corrupt file can trigger this test.
9944 So do not use an assert, instead generate an error message. */
9945 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9946 error (_("Bad value (%d) for SYMINENT entry\n"),
9947 (int) entry->d_un.d_val);
9948 }
9949 else if (entry->d_tag == DT_SYMINSZ)
9950 syminsz = entry->d_un.d_val;
9951 else if (entry->d_tag == DT_SYMINFO)
9952 dynamic_syminfo_offset = offset_from_vma (filedata, entry->d_un.d_val,
9953 syminsz);
9954 }
9955
9956 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9957 {
9958 Elf_External_Syminfo * extsyminfo;
9959 Elf_External_Syminfo * extsym;
9960 Elf_Internal_Syminfo * syminfo;
9961
9962 /* There is a syminfo section. Read the data. */
9963 extsyminfo = (Elf_External_Syminfo *)
9964 get_data (NULL, filedata, dynamic_syminfo_offset, 1, syminsz,
9965 _("symbol information"));
9966 if (!extsyminfo)
9967 return FALSE;
9968
9969 if (dynamic_syminfo != NULL)
9970 {
9971 error (_("Multiple dynamic symbol information sections found\n"));
9972 free (dynamic_syminfo);
9973 }
9974 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9975 if (dynamic_syminfo == NULL)
9976 {
9977 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9978 (unsigned long) syminsz);
9979 return FALSE;
9980 }
9981
9982 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9983 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9984 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9985 ++syminfo, ++extsym)
9986 {
9987 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9988 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9989 }
9990
9991 free (extsyminfo);
9992 }
9993 }
9994
9995 if (do_dynamic && dynamic_addr)
9996 printf (ngettext ("\nDynamic section at offset 0x%lx "
9997 "contains %lu entry:\n",
9998 "\nDynamic section at offset 0x%lx "
9999 "contains %lu entries:\n",
10000 dynamic_nent),
10001 dynamic_addr, (unsigned long) dynamic_nent);
10002 if (do_dynamic)
10003 printf (_(" Tag Type Name/Value\n"));
10004
10005 for (entry = dynamic_section;
10006 entry < dynamic_section + dynamic_nent;
10007 entry++)
10008 {
10009 if (do_dynamic)
10010 {
10011 const char * dtype;
10012
10013 putchar (' ');
10014 print_vma (entry->d_tag, FULL_HEX);
10015 dtype = get_dynamic_type (filedata, entry->d_tag);
10016 printf (" (%s)%*s", dtype,
10017 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
10018 }
10019
10020 switch (entry->d_tag)
10021 {
10022 case DT_FLAGS:
10023 if (do_dynamic)
10024 print_dynamic_flags (entry->d_un.d_val);
10025 break;
10026
10027 case DT_AUXILIARY:
10028 case DT_FILTER:
10029 case DT_CONFIG:
10030 case DT_DEPAUDIT:
10031 case DT_AUDIT:
10032 if (do_dynamic)
10033 {
10034 switch (entry->d_tag)
10035 {
10036 case DT_AUXILIARY:
10037 printf (_("Auxiliary library"));
10038 break;
10039
10040 case DT_FILTER:
10041 printf (_("Filter library"));
10042 break;
10043
10044 case DT_CONFIG:
10045 printf (_("Configuration file"));
10046 break;
10047
10048 case DT_DEPAUDIT:
10049 printf (_("Dependency audit library"));
10050 break;
10051
10052 case DT_AUDIT:
10053 printf (_("Audit library"));
10054 break;
10055 }
10056
10057 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
10058 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
10059 else
10060 {
10061 printf (": ");
10062 print_vma (entry->d_un.d_val, PREFIX_HEX);
10063 putchar ('\n');
10064 }
10065 }
10066 break;
10067
10068 case DT_FEATURE:
10069 if (do_dynamic)
10070 {
10071 printf (_("Flags:"));
10072
10073 if (entry->d_un.d_val == 0)
10074 printf (_(" None\n"));
10075 else
10076 {
10077 unsigned long int val = entry->d_un.d_val;
10078
10079 if (val & DTF_1_PARINIT)
10080 {
10081 printf (" PARINIT");
10082 val ^= DTF_1_PARINIT;
10083 }
10084 if (val & DTF_1_CONFEXP)
10085 {
10086 printf (" CONFEXP");
10087 val ^= DTF_1_CONFEXP;
10088 }
10089 if (val != 0)
10090 printf (" %lx", val);
10091 puts ("");
10092 }
10093 }
10094 break;
10095
10096 case DT_POSFLAG_1:
10097 if (do_dynamic)
10098 {
10099 printf (_("Flags:"));
10100
10101 if (entry->d_un.d_val == 0)
10102 printf (_(" None\n"));
10103 else
10104 {
10105 unsigned long int val = entry->d_un.d_val;
10106
10107 if (val & DF_P1_LAZYLOAD)
10108 {
10109 printf (" LAZYLOAD");
10110 val ^= DF_P1_LAZYLOAD;
10111 }
10112 if (val & DF_P1_GROUPPERM)
10113 {
10114 printf (" GROUPPERM");
10115 val ^= DF_P1_GROUPPERM;
10116 }
10117 if (val != 0)
10118 printf (" %lx", val);
10119 puts ("");
10120 }
10121 }
10122 break;
10123
10124 case DT_FLAGS_1:
10125 if (do_dynamic)
10126 {
10127 printf (_("Flags:"));
10128 if (entry->d_un.d_val == 0)
10129 printf (_(" None\n"));
10130 else
10131 {
10132 unsigned long int val = entry->d_un.d_val;
10133
10134 if (val & DF_1_NOW)
10135 {
10136 printf (" NOW");
10137 val ^= DF_1_NOW;
10138 }
10139 if (val & DF_1_GLOBAL)
10140 {
10141 printf (" GLOBAL");
10142 val ^= DF_1_GLOBAL;
10143 }
10144 if (val & DF_1_GROUP)
10145 {
10146 printf (" GROUP");
10147 val ^= DF_1_GROUP;
10148 }
10149 if (val & DF_1_NODELETE)
10150 {
10151 printf (" NODELETE");
10152 val ^= DF_1_NODELETE;
10153 }
10154 if (val & DF_1_LOADFLTR)
10155 {
10156 printf (" LOADFLTR");
10157 val ^= DF_1_LOADFLTR;
10158 }
10159 if (val & DF_1_INITFIRST)
10160 {
10161 printf (" INITFIRST");
10162 val ^= DF_1_INITFIRST;
10163 }
10164 if (val & DF_1_NOOPEN)
10165 {
10166 printf (" NOOPEN");
10167 val ^= DF_1_NOOPEN;
10168 }
10169 if (val & DF_1_ORIGIN)
10170 {
10171 printf (" ORIGIN");
10172 val ^= DF_1_ORIGIN;
10173 }
10174 if (val & DF_1_DIRECT)
10175 {
10176 printf (" DIRECT");
10177 val ^= DF_1_DIRECT;
10178 }
10179 if (val & DF_1_TRANS)
10180 {
10181 printf (" TRANS");
10182 val ^= DF_1_TRANS;
10183 }
10184 if (val & DF_1_INTERPOSE)
10185 {
10186 printf (" INTERPOSE");
10187 val ^= DF_1_INTERPOSE;
10188 }
10189 if (val & DF_1_NODEFLIB)
10190 {
10191 printf (" NODEFLIB");
10192 val ^= DF_1_NODEFLIB;
10193 }
10194 if (val & DF_1_NODUMP)
10195 {
10196 printf (" NODUMP");
10197 val ^= DF_1_NODUMP;
10198 }
10199 if (val & DF_1_CONFALT)
10200 {
10201 printf (" CONFALT");
10202 val ^= DF_1_CONFALT;
10203 }
10204 if (val & DF_1_ENDFILTEE)
10205 {
10206 printf (" ENDFILTEE");
10207 val ^= DF_1_ENDFILTEE;
10208 }
10209 if (val & DF_1_DISPRELDNE)
10210 {
10211 printf (" DISPRELDNE");
10212 val ^= DF_1_DISPRELDNE;
10213 }
10214 if (val & DF_1_DISPRELPND)
10215 {
10216 printf (" DISPRELPND");
10217 val ^= DF_1_DISPRELPND;
10218 }
10219 if (val & DF_1_NODIRECT)
10220 {
10221 printf (" NODIRECT");
10222 val ^= DF_1_NODIRECT;
10223 }
10224 if (val & DF_1_IGNMULDEF)
10225 {
10226 printf (" IGNMULDEF");
10227 val ^= DF_1_IGNMULDEF;
10228 }
10229 if (val & DF_1_NOKSYMS)
10230 {
10231 printf (" NOKSYMS");
10232 val ^= DF_1_NOKSYMS;
10233 }
10234 if (val & DF_1_NOHDR)
10235 {
10236 printf (" NOHDR");
10237 val ^= DF_1_NOHDR;
10238 }
10239 if (val & DF_1_EDITED)
10240 {
10241 printf (" EDITED");
10242 val ^= DF_1_EDITED;
10243 }
10244 if (val & DF_1_NORELOC)
10245 {
10246 printf (" NORELOC");
10247 val ^= DF_1_NORELOC;
10248 }
10249 if (val & DF_1_SYMINTPOSE)
10250 {
10251 printf (" SYMINTPOSE");
10252 val ^= DF_1_SYMINTPOSE;
10253 }
10254 if (val & DF_1_GLOBAUDIT)
10255 {
10256 printf (" GLOBAUDIT");
10257 val ^= DF_1_GLOBAUDIT;
10258 }
10259 if (val & DF_1_SINGLETON)
10260 {
10261 printf (" SINGLETON");
10262 val ^= DF_1_SINGLETON;
10263 }
10264 if (val & DF_1_STUB)
10265 {
10266 printf (" STUB");
10267 val ^= DF_1_STUB;
10268 }
10269 if (val & DF_1_PIE)
10270 {
10271 printf (" PIE");
10272 val ^= DF_1_PIE;
10273 }
10274 if (val & DF_1_KMOD)
10275 {
10276 printf (" KMOD");
10277 val ^= DF_1_KMOD;
10278 }
10279 if (val & DF_1_WEAKFILTER)
10280 {
10281 printf (" WEAKFILTER");
10282 val ^= DF_1_WEAKFILTER;
10283 }
10284 if (val & DF_1_NOCOMMON)
10285 {
10286 printf (" NOCOMMON");
10287 val ^= DF_1_NOCOMMON;
10288 }
10289 if (val != 0)
10290 printf (" %lx", val);
10291 puts ("");
10292 }
10293 }
10294 break;
10295
10296 case DT_PLTREL:
10297 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10298 if (do_dynamic)
10299 puts (get_dynamic_type (filedata, entry->d_un.d_val));
10300 break;
10301
10302 case DT_NULL :
10303 case DT_NEEDED :
10304 case DT_PLTGOT :
10305 case DT_HASH :
10306 case DT_STRTAB :
10307 case DT_SYMTAB :
10308 case DT_RELA :
10309 case DT_INIT :
10310 case DT_FINI :
10311 case DT_SONAME :
10312 case DT_RPATH :
10313 case DT_SYMBOLIC:
10314 case DT_REL :
10315 case DT_DEBUG :
10316 case DT_TEXTREL :
10317 case DT_JMPREL :
10318 case DT_RUNPATH :
10319 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10320
10321 if (do_dynamic)
10322 {
10323 char * name;
10324
10325 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
10326 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10327 else
10328 name = NULL;
10329
10330 if (name)
10331 {
10332 switch (entry->d_tag)
10333 {
10334 case DT_NEEDED:
10335 printf (_("Shared library: [%s]"), name);
10336
10337 if (streq (name, program_interpreter))
10338 printf (_(" program interpreter"));
10339 break;
10340
10341 case DT_SONAME:
10342 printf (_("Library soname: [%s]"), name);
10343 break;
10344
10345 case DT_RPATH:
10346 printf (_("Library rpath: [%s]"), name);
10347 break;
10348
10349 case DT_RUNPATH:
10350 printf (_("Library runpath: [%s]"), name);
10351 break;
10352
10353 default:
10354 print_vma (entry->d_un.d_val, PREFIX_HEX);
10355 break;
10356 }
10357 }
10358 else
10359 print_vma (entry->d_un.d_val, PREFIX_HEX);
10360
10361 putchar ('\n');
10362 }
10363 break;
10364
10365 case DT_PLTRELSZ:
10366 case DT_RELASZ :
10367 case DT_STRSZ :
10368 case DT_RELSZ :
10369 case DT_RELAENT :
10370 case DT_SYMENT :
10371 case DT_RELENT :
10372 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10373 /* Fall through. */
10374 case DT_PLTPADSZ:
10375 case DT_MOVEENT :
10376 case DT_MOVESZ :
10377 case DT_INIT_ARRAYSZ:
10378 case DT_FINI_ARRAYSZ:
10379 case DT_GNU_CONFLICTSZ:
10380 case DT_GNU_LIBLISTSZ:
10381 if (do_dynamic)
10382 {
10383 print_vma (entry->d_un.d_val, UNSIGNED);
10384 printf (_(" (bytes)\n"));
10385 }
10386 break;
10387
10388 case DT_VERDEFNUM:
10389 case DT_VERNEEDNUM:
10390 case DT_RELACOUNT:
10391 case DT_RELCOUNT:
10392 if (do_dynamic)
10393 {
10394 print_vma (entry->d_un.d_val, UNSIGNED);
10395 putchar ('\n');
10396 }
10397 break;
10398
10399 case DT_SYMINSZ:
10400 case DT_SYMINENT:
10401 case DT_SYMINFO:
10402 case DT_USED:
10403 case DT_INIT_ARRAY:
10404 case DT_FINI_ARRAY:
10405 if (do_dynamic)
10406 {
10407 if (entry->d_tag == DT_USED
10408 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
10409 {
10410 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10411
10412 if (*name)
10413 {
10414 printf (_("Not needed object: [%s]\n"), name);
10415 break;
10416 }
10417 }
10418
10419 print_vma (entry->d_un.d_val, PREFIX_HEX);
10420 putchar ('\n');
10421 }
10422 break;
10423
10424 case DT_BIND_NOW:
10425 /* The value of this entry is ignored. */
10426 if (do_dynamic)
10427 putchar ('\n');
10428 break;
10429
10430 case DT_GNU_PRELINKED:
10431 if (do_dynamic)
10432 {
10433 struct tm * tmp;
10434 time_t atime = entry->d_un.d_val;
10435
10436 tmp = gmtime (&atime);
10437 /* PR 17533 file: 041-1244816-0.004. */
10438 if (tmp == NULL)
10439 printf (_("<corrupt time val: %lx"),
10440 (unsigned long) atime);
10441 else
10442 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10443 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10444 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10445
10446 }
10447 break;
10448
10449 case DT_GNU_HASH:
10450 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10451 if (do_dynamic)
10452 {
10453 print_vma (entry->d_un.d_val, PREFIX_HEX);
10454 putchar ('\n');
10455 }
10456 break;
10457
10458 default:
10459 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10460 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10461 entry->d_un.d_val;
10462
10463 if (do_dynamic)
10464 {
10465 switch (filedata->file_header.e_machine)
10466 {
10467 case EM_AARCH64:
10468 dynamic_section_aarch64_val (entry);
10469 break;
10470 case EM_MIPS:
10471 case EM_MIPS_RS3_LE:
10472 dynamic_section_mips_val (entry);
10473 break;
10474 case EM_PARISC:
10475 dynamic_section_parisc_val (entry);
10476 break;
10477 case EM_IA_64:
10478 dynamic_section_ia64_val (entry);
10479 break;
10480 default:
10481 print_vma (entry->d_un.d_val, PREFIX_HEX);
10482 putchar ('\n');
10483 }
10484 }
10485 break;
10486 }
10487 }
10488
10489 return TRUE;
10490 }
10491
10492 static char *
10493 get_ver_flags (unsigned int flags)
10494 {
10495 static char buff[128];
10496
10497 buff[0] = 0;
10498
10499 if (flags == 0)
10500 return _("none");
10501
10502 if (flags & VER_FLG_BASE)
10503 strcat (buff, "BASE");
10504
10505 if (flags & VER_FLG_WEAK)
10506 {
10507 if (flags & VER_FLG_BASE)
10508 strcat (buff, " | ");
10509
10510 strcat (buff, "WEAK");
10511 }
10512
10513 if (flags & VER_FLG_INFO)
10514 {
10515 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10516 strcat (buff, " | ");
10517
10518 strcat (buff, "INFO");
10519 }
10520
10521 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10522 {
10523 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10524 strcat (buff, " | ");
10525
10526 strcat (buff, _("<unknown>"));
10527 }
10528
10529 return buff;
10530 }
10531
10532 /* Display the contents of the version sections. */
10533
10534 static bfd_boolean
10535 process_version_sections (Filedata * filedata)
10536 {
10537 Elf_Internal_Shdr * section;
10538 unsigned i;
10539 bfd_boolean found = FALSE;
10540
10541 if (! do_version)
10542 return TRUE;
10543
10544 for (i = 0, section = filedata->section_headers;
10545 i < filedata->file_header.e_shnum;
10546 i++, section++)
10547 {
10548 switch (section->sh_type)
10549 {
10550 case SHT_GNU_verdef:
10551 {
10552 Elf_External_Verdef * edefs;
10553 unsigned long idx;
10554 unsigned long cnt;
10555 char * endbuf;
10556
10557 found = TRUE;
10558
10559 printf (ngettext ("\nVersion definition section '%s' "
10560 "contains %u entry:\n",
10561 "\nVersion definition section '%s' "
10562 "contains %u entries:\n",
10563 section->sh_info),
10564 printable_section_name (filedata, section),
10565 section->sh_info);
10566
10567 printf (_(" Addr: 0x"));
10568 printf_vma (section->sh_addr);
10569 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10570 (unsigned long) section->sh_offset, section->sh_link,
10571 printable_section_name_from_index (filedata, section->sh_link));
10572
10573 edefs = (Elf_External_Verdef *)
10574 get_data (NULL, filedata, section->sh_offset, 1,section->sh_size,
10575 _("version definition section"));
10576 if (!edefs)
10577 break;
10578 endbuf = (char *) edefs + section->sh_size;
10579
10580 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10581 {
10582 char * vstart;
10583 Elf_External_Verdef * edef;
10584 Elf_Internal_Verdef ent;
10585 Elf_External_Verdaux * eaux;
10586 Elf_Internal_Verdaux aux;
10587 unsigned long isum;
10588 int j;
10589
10590 vstart = ((char *) edefs) + idx;
10591 if (vstart + sizeof (*edef) > endbuf)
10592 break;
10593
10594 edef = (Elf_External_Verdef *) vstart;
10595
10596 ent.vd_version = BYTE_GET (edef->vd_version);
10597 ent.vd_flags = BYTE_GET (edef->vd_flags);
10598 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10599 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10600 ent.vd_hash = BYTE_GET (edef->vd_hash);
10601 ent.vd_aux = BYTE_GET (edef->vd_aux);
10602 ent.vd_next = BYTE_GET (edef->vd_next);
10603
10604 printf (_(" %#06lx: Rev: %d Flags: %s"),
10605 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10606
10607 printf (_(" Index: %d Cnt: %d "),
10608 ent.vd_ndx, ent.vd_cnt);
10609
10610 /* Check for overflow. */
10611 if (ent.vd_aux > (size_t) (endbuf - vstart))
10612 break;
10613
10614 vstart += ent.vd_aux;
10615
10616 if (vstart + sizeof (*eaux) > endbuf)
10617 break;
10618 eaux = (Elf_External_Verdaux *) vstart;
10619
10620 aux.vda_name = BYTE_GET (eaux->vda_name);
10621 aux.vda_next = BYTE_GET (eaux->vda_next);
10622
10623 if (VALID_DYNAMIC_NAME (aux.vda_name))
10624 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10625 else
10626 printf (_("Name index: %ld\n"), aux.vda_name);
10627
10628 isum = idx + ent.vd_aux;
10629
10630 for (j = 1; j < ent.vd_cnt; j++)
10631 {
10632 if (aux.vda_next < sizeof (*eaux)
10633 && !(j == ent.vd_cnt - 1 && aux.vda_next == 0))
10634 {
10635 warn (_("Invalid vda_next field of %lx\n"),
10636 aux.vda_next);
10637 j = ent.vd_cnt;
10638 break;
10639 }
10640 /* Check for overflow. */
10641 if (aux.vda_next > (size_t) (endbuf - vstart))
10642 break;
10643
10644 isum += aux.vda_next;
10645 vstart += aux.vda_next;
10646
10647 if (vstart + sizeof (*eaux) > endbuf)
10648 break;
10649 eaux = (Elf_External_Verdaux *) vstart;
10650
10651 aux.vda_name = BYTE_GET (eaux->vda_name);
10652 aux.vda_next = BYTE_GET (eaux->vda_next);
10653
10654 if (VALID_DYNAMIC_NAME (aux.vda_name))
10655 printf (_(" %#06lx: Parent %d: %s\n"),
10656 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10657 else
10658 printf (_(" %#06lx: Parent %d, name index: %ld\n"),
10659 isum, j, aux.vda_name);
10660 }
10661
10662 if (j < ent.vd_cnt)
10663 printf (_(" Version def aux past end of section\n"));
10664
10665 /* PR 17531:
10666 file: id:000001,src:000172+005151,op:splice,rep:2. */
10667 if (ent.vd_next < sizeof (*edef)
10668 && !(cnt == section->sh_info - 1 && ent.vd_next == 0))
10669 {
10670 warn (_("Invalid vd_next field of %lx\n"), ent.vd_next);
10671 cnt = section->sh_info;
10672 break;
10673 }
10674 if (ent.vd_next > (size_t) (endbuf - ((char *) edefs + idx)))
10675 break;
10676
10677 idx += ent.vd_next;
10678 }
10679
10680 if (cnt < section->sh_info)
10681 printf (_(" Version definition past end of section\n"));
10682
10683 free (edefs);
10684 }
10685 break;
10686
10687 case SHT_GNU_verneed:
10688 {
10689 Elf_External_Verneed * eneed;
10690 unsigned long idx;
10691 unsigned long cnt;
10692 char * endbuf;
10693
10694 found = TRUE;
10695
10696 printf (ngettext ("\nVersion needs section '%s' "
10697 "contains %u entry:\n",
10698 "\nVersion needs section '%s' "
10699 "contains %u entries:\n",
10700 section->sh_info),
10701 printable_section_name (filedata, section), section->sh_info);
10702
10703 printf (_(" Addr: 0x"));
10704 printf_vma (section->sh_addr);
10705 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10706 (unsigned long) section->sh_offset, section->sh_link,
10707 printable_section_name_from_index (filedata, section->sh_link));
10708
10709 eneed = (Elf_External_Verneed *) get_data (NULL, filedata,
10710 section->sh_offset, 1,
10711 section->sh_size,
10712 _("Version Needs section"));
10713 if (!eneed)
10714 break;
10715 endbuf = (char *) eneed + section->sh_size;
10716
10717 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10718 {
10719 Elf_External_Verneed * entry;
10720 Elf_Internal_Verneed ent;
10721 unsigned long isum;
10722 int j;
10723 char * vstart;
10724
10725 vstart = ((char *) eneed) + idx;
10726 if (vstart + sizeof (*entry) > endbuf)
10727 break;
10728
10729 entry = (Elf_External_Verneed *) vstart;
10730
10731 ent.vn_version = BYTE_GET (entry->vn_version);
10732 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10733 ent.vn_file = BYTE_GET (entry->vn_file);
10734 ent.vn_aux = BYTE_GET (entry->vn_aux);
10735 ent.vn_next = BYTE_GET (entry->vn_next);
10736
10737 printf (_(" %#06lx: Version: %d"), idx, ent.vn_version);
10738
10739 if (VALID_DYNAMIC_NAME (ent.vn_file))
10740 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10741 else
10742 printf (_(" File: %lx"), ent.vn_file);
10743
10744 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10745
10746 /* Check for overflow. */
10747 if (ent.vn_aux > (size_t) (endbuf - vstart))
10748 break;
10749 vstart += ent.vn_aux;
10750
10751 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10752 {
10753 Elf_External_Vernaux * eaux;
10754 Elf_Internal_Vernaux aux;
10755
10756 if (vstart + sizeof (*eaux) > endbuf)
10757 break;
10758 eaux = (Elf_External_Vernaux *) vstart;
10759
10760 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10761 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10762 aux.vna_other = BYTE_GET (eaux->vna_other);
10763 aux.vna_name = BYTE_GET (eaux->vna_name);
10764 aux.vna_next = BYTE_GET (eaux->vna_next);
10765
10766 if (VALID_DYNAMIC_NAME (aux.vna_name))
10767 printf (_(" %#06lx: Name: %s"),
10768 isum, GET_DYNAMIC_NAME (aux.vna_name));
10769 else
10770 printf (_(" %#06lx: Name index: %lx"),
10771 isum, aux.vna_name);
10772
10773 printf (_(" Flags: %s Version: %d\n"),
10774 get_ver_flags (aux.vna_flags), aux.vna_other);
10775
10776 if (aux.vna_next < sizeof (*eaux)
10777 && !(j == ent.vn_cnt - 1 && aux.vna_next == 0))
10778 {
10779 warn (_("Invalid vna_next field of %lx\n"),
10780 aux.vna_next);
10781 j = ent.vn_cnt;
10782 break;
10783 }
10784 /* Check for overflow. */
10785 if (aux.vna_next > (size_t) (endbuf - vstart))
10786 break;
10787 isum += aux.vna_next;
10788 vstart += aux.vna_next;
10789 }
10790
10791 if (j < ent.vn_cnt)
10792 warn (_("Missing Version Needs auxillary information\n"));
10793
10794 if (ent.vn_next < sizeof (*entry)
10795 && !(cnt == section->sh_info - 1 && ent.vn_next == 0))
10796 {
10797 warn (_("Invalid vn_next field of %lx\n"), ent.vn_next);
10798 cnt = section->sh_info;
10799 break;
10800 }
10801 if (ent.vn_next > (size_t) (endbuf - ((char *) eneed + idx)))
10802 break;
10803 idx += ent.vn_next;
10804 }
10805
10806 if (cnt < section->sh_info)
10807 warn (_("Missing Version Needs information\n"));
10808
10809 free (eneed);
10810 }
10811 break;
10812
10813 case SHT_GNU_versym:
10814 {
10815 Elf_Internal_Shdr * link_section;
10816 size_t total;
10817 unsigned int cnt;
10818 unsigned char * edata;
10819 unsigned short * data;
10820 char * strtab;
10821 Elf_Internal_Sym * symbols;
10822 Elf_Internal_Shdr * string_sec;
10823 unsigned long num_syms;
10824 long off;
10825
10826 if (section->sh_link >= filedata->file_header.e_shnum)
10827 break;
10828
10829 link_section = filedata->section_headers + section->sh_link;
10830 total = section->sh_size / sizeof (Elf_External_Versym);
10831
10832 if (link_section->sh_link >= filedata->file_header.e_shnum)
10833 break;
10834
10835 found = TRUE;
10836
10837 symbols = GET_ELF_SYMBOLS (filedata, link_section, & num_syms);
10838 if (symbols == NULL)
10839 break;
10840
10841 string_sec = filedata->section_headers + link_section->sh_link;
10842
10843 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1,
10844 string_sec->sh_size,
10845 _("version string table"));
10846 if (!strtab)
10847 {
10848 free (symbols);
10849 break;
10850 }
10851
10852 printf (ngettext ("\nVersion symbols section '%s' "
10853 "contains %lu entry:\n",
10854 "\nVersion symbols section '%s' "
10855 "contains %lu entries:\n",
10856 total),
10857 printable_section_name (filedata, section), (unsigned long) total);
10858
10859 printf (_(" Addr: 0x"));
10860 printf_vma (section->sh_addr);
10861 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10862 (unsigned long) section->sh_offset, section->sh_link,
10863 printable_section_name (filedata, link_section));
10864
10865 off = offset_from_vma (filedata,
10866 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10867 total * sizeof (short));
10868 edata = (unsigned char *) get_data (NULL, filedata, off, total,
10869 sizeof (short),
10870 _("version symbol data"));
10871 if (!edata)
10872 {
10873 free (strtab);
10874 free (symbols);
10875 break;
10876 }
10877
10878 data = (short unsigned int *) cmalloc (total, sizeof (short));
10879
10880 for (cnt = total; cnt --;)
10881 data[cnt] = byte_get (edata + cnt * sizeof (short),
10882 sizeof (short));
10883
10884 free (edata);
10885
10886 for (cnt = 0; cnt < total; cnt += 4)
10887 {
10888 int j, nn;
10889 char *name;
10890 char *invalid = _("*invalid*");
10891
10892 printf (" %03x:", cnt);
10893
10894 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10895 switch (data[cnt + j])
10896 {
10897 case 0:
10898 fputs (_(" 0 (*local*) "), stdout);
10899 break;
10900
10901 case 1:
10902 fputs (_(" 1 (*global*) "), stdout);
10903 break;
10904
10905 default:
10906 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10907 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10908
10909 /* If this index value is greater than the size of the symbols
10910 array, break to avoid an out-of-bounds read. */
10911 if ((unsigned long)(cnt + j) >= num_syms)
10912 {
10913 warn (_("invalid index into symbol array\n"));
10914 break;
10915 }
10916
10917 name = NULL;
10918 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10919 {
10920 Elf_Internal_Verneed ivn;
10921 unsigned long offset;
10922
10923 offset = offset_from_vma
10924 (filedata, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10925 sizeof (Elf_External_Verneed));
10926
10927 do
10928 {
10929 Elf_Internal_Vernaux ivna;
10930 Elf_External_Verneed evn;
10931 Elf_External_Vernaux evna;
10932 unsigned long a_off;
10933
10934 if (get_data (&evn, filedata, offset, sizeof (evn), 1,
10935 _("version need")) == NULL)
10936 break;
10937
10938 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10939 ivn.vn_next = BYTE_GET (evn.vn_next);
10940
10941 a_off = offset + ivn.vn_aux;
10942
10943 do
10944 {
10945 if (get_data (&evna, filedata, a_off, sizeof (evna),
10946 1, _("version need aux (2)")) == NULL)
10947 {
10948 ivna.vna_next = 0;
10949 ivna.vna_other = 0;
10950 }
10951 else
10952 {
10953 ivna.vna_next = BYTE_GET (evna.vna_next);
10954 ivna.vna_other = BYTE_GET (evna.vna_other);
10955 }
10956
10957 a_off += ivna.vna_next;
10958 }
10959 while (ivna.vna_other != data[cnt + j]
10960 && ivna.vna_next != 0);
10961
10962 if (ivna.vna_other == data[cnt + j])
10963 {
10964 ivna.vna_name = BYTE_GET (evna.vna_name);
10965
10966 if (ivna.vna_name >= string_sec->sh_size)
10967 name = invalid;
10968 else
10969 name = strtab + ivna.vna_name;
10970 break;
10971 }
10972
10973 offset += ivn.vn_next;
10974 }
10975 while (ivn.vn_next);
10976 }
10977
10978 if (data[cnt + j] != 0x8001
10979 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10980 {
10981 Elf_Internal_Verdef ivd;
10982 Elf_External_Verdef evd;
10983 unsigned long offset;
10984
10985 offset = offset_from_vma
10986 (filedata, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10987 sizeof evd);
10988
10989 do
10990 {
10991 if (get_data (&evd, filedata, offset, sizeof (evd), 1,
10992 _("version def")) == NULL)
10993 {
10994 ivd.vd_next = 0;
10995 /* PR 17531: file: 046-1082287-0.004. */
10996 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10997 break;
10998 }
10999 else
11000 {
11001 ivd.vd_next = BYTE_GET (evd.vd_next);
11002 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11003 }
11004
11005 offset += ivd.vd_next;
11006 }
11007 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
11008 && ivd.vd_next != 0);
11009
11010 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
11011 {
11012 Elf_External_Verdaux evda;
11013 Elf_Internal_Verdaux ivda;
11014
11015 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11016
11017 if (get_data (&evda, filedata,
11018 offset - ivd.vd_next + ivd.vd_aux,
11019 sizeof (evda), 1,
11020 _("version def aux")) == NULL)
11021 break;
11022
11023 ivda.vda_name = BYTE_GET (evda.vda_name);
11024
11025 if (ivda.vda_name >= string_sec->sh_size)
11026 name = invalid;
11027 else if (name != NULL && name != invalid)
11028 name = _("*both*");
11029 else
11030 name = strtab + ivda.vda_name;
11031 }
11032 }
11033 if (name != NULL)
11034 nn += printf ("(%s%-*s",
11035 name,
11036 12 - (int) strlen (name),
11037 ")");
11038
11039 if (nn < 18)
11040 printf ("%*c", 18 - nn, ' ');
11041 }
11042
11043 putchar ('\n');
11044 }
11045
11046 free (data);
11047 free (strtab);
11048 free (symbols);
11049 }
11050 break;
11051
11052 default:
11053 break;
11054 }
11055 }
11056
11057 if (! found)
11058 printf (_("\nNo version information found in this file.\n"));
11059
11060 return TRUE;
11061 }
11062
11063 static const char *
11064 get_symbol_binding (Filedata * filedata, unsigned int binding)
11065 {
11066 static char buff[32];
11067
11068 switch (binding)
11069 {
11070 case STB_LOCAL: return "LOCAL";
11071 case STB_GLOBAL: return "GLOBAL";
11072 case STB_WEAK: return "WEAK";
11073 default:
11074 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
11075 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
11076 binding);
11077 else if (binding >= STB_LOOS && binding <= STB_HIOS)
11078 {
11079 if (binding == STB_GNU_UNIQUE
11080 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU)
11081 return "UNIQUE";
11082 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
11083 }
11084 else
11085 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
11086 return buff;
11087 }
11088 }
11089
11090 static const char *
11091 get_symbol_type (Filedata * filedata, unsigned int type)
11092 {
11093 static char buff[32];
11094
11095 switch (type)
11096 {
11097 case STT_NOTYPE: return "NOTYPE";
11098 case STT_OBJECT: return "OBJECT";
11099 case STT_FUNC: return "FUNC";
11100 case STT_SECTION: return "SECTION";
11101 case STT_FILE: return "FILE";
11102 case STT_COMMON: return "COMMON";
11103 case STT_TLS: return "TLS";
11104 case STT_RELC: return "RELC";
11105 case STT_SRELC: return "SRELC";
11106 default:
11107 if (type >= STT_LOPROC && type <= STT_HIPROC)
11108 {
11109 if (filedata->file_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
11110 return "THUMB_FUNC";
11111
11112 if (filedata->file_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
11113 return "REGISTER";
11114
11115 if (filedata->file_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
11116 return "PARISC_MILLI";
11117
11118 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
11119 }
11120 else if (type >= STT_LOOS && type <= STT_HIOS)
11121 {
11122 if (filedata->file_header.e_machine == EM_PARISC)
11123 {
11124 if (type == STT_HP_OPAQUE)
11125 return "HP_OPAQUE";
11126 if (type == STT_HP_STUB)
11127 return "HP_STUB";
11128 }
11129
11130 if (type == STT_GNU_IFUNC
11131 && (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU
11132 || filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD))
11133 return "IFUNC";
11134
11135 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
11136 }
11137 else
11138 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
11139 return buff;
11140 }
11141 }
11142
11143 static const char *
11144 get_symbol_visibility (unsigned int visibility)
11145 {
11146 switch (visibility)
11147 {
11148 case STV_DEFAULT: return "DEFAULT";
11149 case STV_INTERNAL: return "INTERNAL";
11150 case STV_HIDDEN: return "HIDDEN";
11151 case STV_PROTECTED: return "PROTECTED";
11152 default:
11153 error (_("Unrecognized visibility value: %u"), visibility);
11154 return _("<unknown>");
11155 }
11156 }
11157
11158 static const char *
11159 get_alpha_symbol_other (unsigned int other)
11160 {
11161 switch (other)
11162 {
11163 case STO_ALPHA_NOPV: return "NOPV";
11164 case STO_ALPHA_STD_GPLOAD: return "STD GPLOAD";
11165 default:
11166 error (_("Unrecognized alpah specific other value: %u"), other);
11167 return _("<unknown>");
11168 }
11169 }
11170
11171 static const char *
11172 get_solaris_symbol_visibility (unsigned int visibility)
11173 {
11174 switch (visibility)
11175 {
11176 case 4: return "EXPORTED";
11177 case 5: return "SINGLETON";
11178 case 6: return "ELIMINATE";
11179 default: return get_symbol_visibility (visibility);
11180 }
11181 }
11182
11183 static const char *
11184 get_aarch64_symbol_other (unsigned int other)
11185 {
11186 static char buf[32];
11187
11188 if (other & STO_AARCH64_VARIANT_PCS)
11189 {
11190 other &= ~STO_AARCH64_VARIANT_PCS;
11191 if (other == 0)
11192 return "VARIANT_PCS";
11193 snprintf (buf, sizeof buf, "VARIANT_PCS | %x", other);
11194 return buf;
11195 }
11196 return NULL;
11197 }
11198
11199 static const char *
11200 get_mips_symbol_other (unsigned int other)
11201 {
11202 switch (other)
11203 {
11204 case STO_OPTIONAL: return "OPTIONAL";
11205 case STO_MIPS_PLT: return "MIPS PLT";
11206 case STO_MIPS_PIC: return "MIPS PIC";
11207 case STO_MICROMIPS: return "MICROMIPS";
11208 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
11209 case STO_MIPS16: return "MIPS16";
11210 default: return NULL;
11211 }
11212 }
11213
11214 static const char *
11215 get_ia64_symbol_other (Filedata * filedata, unsigned int other)
11216 {
11217 if (is_ia64_vms (filedata))
11218 {
11219 static char res[32];
11220
11221 res[0] = 0;
11222
11223 /* Function types is for images and .STB files only. */
11224 switch (filedata->file_header.e_type)
11225 {
11226 case ET_DYN:
11227 case ET_EXEC:
11228 switch (VMS_ST_FUNC_TYPE (other))
11229 {
11230 case VMS_SFT_CODE_ADDR:
11231 strcat (res, " CA");
11232 break;
11233 case VMS_SFT_SYMV_IDX:
11234 strcat (res, " VEC");
11235 break;
11236 case VMS_SFT_FD:
11237 strcat (res, " FD");
11238 break;
11239 case VMS_SFT_RESERVE:
11240 strcat (res, " RSV");
11241 break;
11242 default:
11243 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
11244 VMS_ST_FUNC_TYPE (other));
11245 strcat (res, " <unknown>");
11246 break;
11247 }
11248 break;
11249 default:
11250 break;
11251 }
11252 switch (VMS_ST_LINKAGE (other))
11253 {
11254 case VMS_STL_IGNORE:
11255 strcat (res, " IGN");
11256 break;
11257 case VMS_STL_RESERVE:
11258 strcat (res, " RSV");
11259 break;
11260 case VMS_STL_STD:
11261 strcat (res, " STD");
11262 break;
11263 case VMS_STL_LNK:
11264 strcat (res, " LNK");
11265 break;
11266 default:
11267 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
11268 VMS_ST_LINKAGE (other));
11269 strcat (res, " <unknown>");
11270 break;
11271 }
11272
11273 if (res[0] != 0)
11274 return res + 1;
11275 else
11276 return res;
11277 }
11278 return NULL;
11279 }
11280
11281 static const char *
11282 get_ppc64_symbol_other (unsigned int other)
11283 {
11284 if ((other & ~STO_PPC64_LOCAL_MASK) != 0)
11285 return NULL;
11286
11287 other >>= STO_PPC64_LOCAL_BIT;
11288 if (other <= 6)
11289 {
11290 static char buf[32];
11291 if (other >= 2)
11292 other = ppc64_decode_local_entry (other);
11293 snprintf (buf, sizeof buf, _("<localentry>: %d"), other);
11294 return buf;
11295 }
11296 return NULL;
11297 }
11298
11299 static const char *
11300 get_symbol_other (Filedata * filedata, unsigned int other)
11301 {
11302 const char * result = NULL;
11303 static char buff [32];
11304
11305 if (other == 0)
11306 return "";
11307
11308 switch (filedata->file_header.e_machine)
11309 {
11310 case EM_ALPHA:
11311 result = get_alpha_symbol_other (other);
11312 break;
11313 case EM_AARCH64:
11314 result = get_aarch64_symbol_other (other);
11315 break;
11316 case EM_MIPS:
11317 result = get_mips_symbol_other (other);
11318 break;
11319 case EM_IA_64:
11320 result = get_ia64_symbol_other (filedata, other);
11321 break;
11322 case EM_PPC64:
11323 result = get_ppc64_symbol_other (other);
11324 break;
11325 default:
11326 result = NULL;
11327 break;
11328 }
11329
11330 if (result)
11331 return result;
11332
11333 snprintf (buff, sizeof buff, _("<other>: %x"), other);
11334 return buff;
11335 }
11336
11337 static const char *
11338 get_symbol_index_type (Filedata * filedata, unsigned int type)
11339 {
11340 static char buff[32];
11341
11342 switch (type)
11343 {
11344 case SHN_UNDEF: return "UND";
11345 case SHN_ABS: return "ABS";
11346 case SHN_COMMON: return "COM";
11347 default:
11348 if (type == SHN_IA_64_ANSI_COMMON
11349 && filedata->file_header.e_machine == EM_IA_64
11350 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
11351 return "ANSI_COM";
11352 else if ((filedata->file_header.e_machine == EM_X86_64
11353 || filedata->file_header.e_machine == EM_L1OM
11354 || filedata->file_header.e_machine == EM_K1OM)
11355 && type == SHN_X86_64_LCOMMON)
11356 return "LARGE_COM";
11357 else if ((type == SHN_MIPS_SCOMMON
11358 && filedata->file_header.e_machine == EM_MIPS)
11359 || (type == SHN_TIC6X_SCOMMON
11360 && filedata->file_header.e_machine == EM_TI_C6000))
11361 return "SCOM";
11362 else if (type == SHN_MIPS_SUNDEFINED
11363 && filedata->file_header.e_machine == EM_MIPS)
11364 return "SUND";
11365 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
11366 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
11367 else if (type >= SHN_LOOS && type <= SHN_HIOS)
11368 sprintf (buff, "OS [0x%04x]", type & 0xffff);
11369 else if (type >= SHN_LORESERVE)
11370 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
11371 else if (type >= filedata->file_header.e_shnum)
11372 sprintf (buff, _("bad section index[%3d]"), type);
11373 else
11374 sprintf (buff, "%3d", type);
11375 break;
11376 }
11377
11378 return buff;
11379 }
11380
11381 static bfd_vma *
11382 get_dynamic_data (Filedata * filedata, bfd_size_type number, unsigned int ent_size)
11383 {
11384 unsigned char * e_data;
11385 bfd_vma * i_data;
11386
11387 /* If the size_t type is smaller than the bfd_size_type, eg because
11388 you are building a 32-bit tool on a 64-bit host, then make sure
11389 that when (number) is cast to (size_t) no information is lost. */
11390 if (sizeof (size_t) < sizeof (bfd_size_type)
11391 && (bfd_size_type) ((size_t) number) != number)
11392 {
11393 error (_("Size truncation prevents reading %s elements of size %u\n"),
11394 bfd_vmatoa ("u", number), ent_size);
11395 return NULL;
11396 }
11397
11398 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
11399 attempting to allocate memory when the read is bound to fail. */
11400 if (ent_size * number > filedata->file_size)
11401 {
11402 error (_("Invalid number of dynamic entries: %s\n"),
11403 bfd_vmatoa ("u", number));
11404 return NULL;
11405 }
11406
11407 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
11408 if (e_data == NULL)
11409 {
11410 error (_("Out of memory reading %s dynamic entries\n"),
11411 bfd_vmatoa ("u", number));
11412 return NULL;
11413 }
11414
11415 if (fread (e_data, ent_size, (size_t) number, filedata->handle) != number)
11416 {
11417 error (_("Unable to read in %s bytes of dynamic data\n"),
11418 bfd_vmatoa ("u", number * ent_size));
11419 free (e_data);
11420 return NULL;
11421 }
11422
11423 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
11424 if (i_data == NULL)
11425 {
11426 error (_("Out of memory allocating space for %s dynamic entries\n"),
11427 bfd_vmatoa ("u", number));
11428 free (e_data);
11429 return NULL;
11430 }
11431
11432 while (number--)
11433 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
11434
11435 free (e_data);
11436
11437 return i_data;
11438 }
11439
11440 static void
11441 print_dynamic_symbol (Filedata * filedata, bfd_vma si, unsigned long hn)
11442 {
11443 Elf_Internal_Sym * psym;
11444 int n;
11445
11446 n = print_vma (si, DEC_5);
11447 if (n < 5)
11448 fputs (&" "[n], stdout);
11449 printf (" %3lu: ", hn);
11450
11451 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
11452 {
11453 printf (_("<No info available for dynamic symbol number %lu>\n"),
11454 (unsigned long) si);
11455 return;
11456 }
11457
11458 psym = dynamic_symbols + si;
11459 print_vma (psym->st_value, LONG_HEX);
11460 putchar (' ');
11461 print_vma (psym->st_size, DEC_5);
11462
11463 printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)));
11464 printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info)));
11465
11466 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11467 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11468 else
11469 {
11470 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11471
11472 printf (" %-7s", get_symbol_visibility (vis));
11473 /* Check to see if any other bits in the st_other field are set.
11474 Note - displaying this information disrupts the layout of the
11475 table being generated, but for the moment this case is very
11476 rare. */
11477 if (psym->st_other ^ vis)
11478 printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis));
11479 }
11480
11481 printf (" %3.3s ", get_symbol_index_type (filedata, psym->st_shndx));
11482 if (VALID_DYNAMIC_NAME (psym->st_name))
11483 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
11484 else
11485 printf (_(" <corrupt: %14ld>"), psym->st_name);
11486 putchar ('\n');
11487 }
11488
11489 static const char *
11490 get_symbol_version_string (Filedata * filedata,
11491 bfd_boolean is_dynsym,
11492 const char * strtab,
11493 unsigned long int strtab_size,
11494 unsigned int si,
11495 Elf_Internal_Sym * psym,
11496 enum versioned_symbol_info * sym_info,
11497 unsigned short * vna_other)
11498 {
11499 unsigned char data[2];
11500 unsigned short vers_data;
11501 unsigned long offset;
11502 unsigned short max_vd_ndx;
11503
11504 if (!is_dynsym
11505 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11506 return NULL;
11507
11508 offset = offset_from_vma (filedata, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11509 sizeof data + si * sizeof (vers_data));
11510
11511 if (get_data (&data, filedata, offset + si * sizeof (vers_data),
11512 sizeof (data), 1, _("version data")) == NULL)
11513 return NULL;
11514
11515 vers_data = byte_get (data, 2);
11516
11517 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data == 0)
11518 return NULL;
11519
11520 max_vd_ndx = 0;
11521
11522 /* Usually we'd only see verdef for defined symbols, and verneed for
11523 undefined symbols. However, symbols defined by the linker in
11524 .dynbss for variables copied from a shared library in order to
11525 avoid text relocations are defined yet have verneed. We could
11526 use a heuristic to detect the special case, for example, check
11527 for verneed first on symbols defined in SHT_NOBITS sections, but
11528 it is simpler and more reliable to just look for both verdef and
11529 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11530
11531 if (psym->st_shndx != SHN_UNDEF
11532 && vers_data != 0x8001
11533 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11534 {
11535 Elf_Internal_Verdef ivd;
11536 Elf_Internal_Verdaux ivda;
11537 Elf_External_Verdaux evda;
11538 unsigned long off;
11539
11540 off = offset_from_vma (filedata,
11541 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11542 sizeof (Elf_External_Verdef));
11543
11544 do
11545 {
11546 Elf_External_Verdef evd;
11547
11548 if (get_data (&evd, filedata, off, sizeof (evd), 1,
11549 _("version def")) == NULL)
11550 {
11551 ivd.vd_ndx = 0;
11552 ivd.vd_aux = 0;
11553 ivd.vd_next = 0;
11554 ivd.vd_flags = 0;
11555 }
11556 else
11557 {
11558 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11559 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11560 ivd.vd_next = BYTE_GET (evd.vd_next);
11561 ivd.vd_flags = BYTE_GET (evd.vd_flags);
11562 }
11563
11564 if ((ivd.vd_ndx & VERSYM_VERSION) > max_vd_ndx)
11565 max_vd_ndx = ivd.vd_ndx & VERSYM_VERSION;
11566
11567 off += ivd.vd_next;
11568 }
11569 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11570
11571 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11572 {
11573 if (ivd.vd_ndx == 1 && ivd.vd_flags == VER_FLG_BASE)
11574 return NULL;
11575
11576 off -= ivd.vd_next;
11577 off += ivd.vd_aux;
11578
11579 if (get_data (&evda, filedata, off, sizeof (evda), 1,
11580 _("version def aux")) != NULL)
11581 {
11582 ivda.vda_name = BYTE_GET (evda.vda_name);
11583
11584 if (psym->st_name != ivda.vda_name)
11585 {
11586 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11587 ? symbol_hidden : symbol_public);
11588 return (ivda.vda_name < strtab_size
11589 ? strtab + ivda.vda_name : _("<corrupt>"));
11590 }
11591 }
11592 }
11593 }
11594
11595 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11596 {
11597 Elf_External_Verneed evn;
11598 Elf_Internal_Verneed ivn;
11599 Elf_Internal_Vernaux ivna;
11600
11601 offset = offset_from_vma (filedata,
11602 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11603 sizeof evn);
11604 do
11605 {
11606 unsigned long vna_off;
11607
11608 if (get_data (&evn, filedata, offset, sizeof (evn), 1,
11609 _("version need")) == NULL)
11610 {
11611 ivna.vna_next = 0;
11612 ivna.vna_other = 0;
11613 ivna.vna_name = 0;
11614 break;
11615 }
11616
11617 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11618 ivn.vn_next = BYTE_GET (evn.vn_next);
11619
11620 vna_off = offset + ivn.vn_aux;
11621
11622 do
11623 {
11624 Elf_External_Vernaux evna;
11625
11626 if (get_data (&evna, filedata, vna_off, sizeof (evna), 1,
11627 _("version need aux (3)")) == NULL)
11628 {
11629 ivna.vna_next = 0;
11630 ivna.vna_other = 0;
11631 ivna.vna_name = 0;
11632 }
11633 else
11634 {
11635 ivna.vna_other = BYTE_GET (evna.vna_other);
11636 ivna.vna_next = BYTE_GET (evna.vna_next);
11637 ivna.vna_name = BYTE_GET (evna.vna_name);
11638 }
11639
11640 vna_off += ivna.vna_next;
11641 }
11642 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11643
11644 if (ivna.vna_other == vers_data)
11645 break;
11646
11647 offset += ivn.vn_next;
11648 }
11649 while (ivn.vn_next != 0);
11650
11651 if (ivna.vna_other == vers_data)
11652 {
11653 *sym_info = symbol_undefined;
11654 *vna_other = ivna.vna_other;
11655 return (ivna.vna_name < strtab_size
11656 ? strtab + ivna.vna_name : _("<corrupt>"));
11657 }
11658 else if ((max_vd_ndx || (vers_data & VERSYM_VERSION) != 1)
11659 && (vers_data & VERSYM_VERSION) > max_vd_ndx)
11660 return _("<corrupt>");
11661 }
11662 return NULL;
11663 }
11664
11665 /* Dump the symbol table. */
11666 static bfd_boolean
11667 process_symbol_table (Filedata * filedata)
11668 {
11669 Elf_Internal_Shdr * section;
11670 bfd_size_type nbuckets = 0;
11671 bfd_size_type nchains = 0;
11672 bfd_vma * buckets = NULL;
11673 bfd_vma * chains = NULL;
11674 bfd_vma ngnubuckets = 0;
11675 bfd_vma * gnubuckets = NULL;
11676 bfd_vma * gnuchains = NULL;
11677 bfd_vma gnusymidx = 0;
11678 bfd_size_type ngnuchains = 0;
11679
11680 if (!do_syms && !do_dyn_syms && !do_histogram)
11681 return TRUE;
11682
11683 if (dynamic_info[DT_HASH]
11684 && (do_histogram
11685 || (do_using_dynamic
11686 && !do_dyn_syms
11687 && dynamic_strings != NULL)))
11688 {
11689 unsigned char nb[8];
11690 unsigned char nc[8];
11691 unsigned int hash_ent_size = 4;
11692
11693 if ((filedata->file_header.e_machine == EM_ALPHA
11694 || filedata->file_header.e_machine == EM_S390
11695 || filedata->file_header.e_machine == EM_S390_OLD)
11696 && filedata->file_header.e_ident[EI_CLASS] == ELFCLASS64)
11697 hash_ent_size = 8;
11698
11699 if (fseek (filedata->handle,
11700 (archive_file_offset
11701 + offset_from_vma (filedata, dynamic_info[DT_HASH],
11702 sizeof nb + sizeof nc)),
11703 SEEK_SET))
11704 {
11705 error (_("Unable to seek to start of dynamic information\n"));
11706 goto no_hash;
11707 }
11708
11709 if (fread (nb, hash_ent_size, 1, filedata->handle) != 1)
11710 {
11711 error (_("Failed to read in number of buckets\n"));
11712 goto no_hash;
11713 }
11714
11715 if (fread (nc, hash_ent_size, 1, filedata->handle) != 1)
11716 {
11717 error (_("Failed to read in number of chains\n"));
11718 goto no_hash;
11719 }
11720
11721 nbuckets = byte_get (nb, hash_ent_size);
11722 nchains = byte_get (nc, hash_ent_size);
11723
11724 buckets = get_dynamic_data (filedata, nbuckets, hash_ent_size);
11725 chains = get_dynamic_data (filedata, nchains, hash_ent_size);
11726
11727 no_hash:
11728 if (buckets == NULL || chains == NULL)
11729 {
11730 if (do_using_dynamic)
11731 return FALSE;
11732 free (buckets);
11733 free (chains);
11734 buckets = NULL;
11735 chains = NULL;
11736 nbuckets = 0;
11737 nchains = 0;
11738 }
11739 }
11740
11741 if (dynamic_info_DT_GNU_HASH
11742 && (do_histogram
11743 || (do_using_dynamic
11744 && !do_dyn_syms
11745 && dynamic_strings != NULL)))
11746 {
11747 unsigned char nb[16];
11748 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11749 bfd_vma buckets_vma;
11750
11751 if (fseek (filedata->handle,
11752 (archive_file_offset
11753 + offset_from_vma (filedata, dynamic_info_DT_GNU_HASH,
11754 sizeof nb)),
11755 SEEK_SET))
11756 {
11757 error (_("Unable to seek to start of dynamic information\n"));
11758 goto no_gnu_hash;
11759 }
11760
11761 if (fread (nb, 16, 1, filedata->handle) != 1)
11762 {
11763 error (_("Failed to read in number of buckets\n"));
11764 goto no_gnu_hash;
11765 }
11766
11767 ngnubuckets = byte_get (nb, 4);
11768 gnusymidx = byte_get (nb + 4, 4);
11769 bitmaskwords = byte_get (nb + 8, 4);
11770 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11771 if (is_32bit_elf)
11772 buckets_vma += bitmaskwords * 4;
11773 else
11774 buckets_vma += bitmaskwords * 8;
11775
11776 if (fseek (filedata->handle,
11777 (archive_file_offset
11778 + offset_from_vma (filedata, buckets_vma, 4)),
11779 SEEK_SET))
11780 {
11781 error (_("Unable to seek to start of dynamic information\n"));
11782 goto no_gnu_hash;
11783 }
11784
11785 gnubuckets = get_dynamic_data (filedata, ngnubuckets, 4);
11786
11787 if (gnubuckets == NULL)
11788 goto no_gnu_hash;
11789
11790 for (i = 0; i < ngnubuckets; i++)
11791 if (gnubuckets[i] != 0)
11792 {
11793 if (gnubuckets[i] < gnusymidx)
11794 return FALSE;
11795
11796 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11797 maxchain = gnubuckets[i];
11798 }
11799
11800 if (maxchain == 0xffffffff)
11801 goto no_gnu_hash;
11802
11803 maxchain -= gnusymidx;
11804
11805 if (fseek (filedata->handle,
11806 (archive_file_offset
11807 + offset_from_vma (filedata, buckets_vma
11808 + 4 * (ngnubuckets + maxchain), 4)),
11809 SEEK_SET))
11810 {
11811 error (_("Unable to seek to start of dynamic information\n"));
11812 goto no_gnu_hash;
11813 }
11814
11815 do
11816 {
11817 if (fread (nb, 4, 1, filedata->handle) != 1)
11818 {
11819 error (_("Failed to determine last chain length\n"));
11820 goto no_gnu_hash;
11821 }
11822
11823 if (maxchain + 1 == 0)
11824 goto no_gnu_hash;
11825
11826 ++maxchain;
11827 }
11828 while ((byte_get (nb, 4) & 1) == 0);
11829
11830 if (fseek (filedata->handle,
11831 (archive_file_offset
11832 + offset_from_vma (filedata, buckets_vma + 4 * ngnubuckets, 4)),
11833 SEEK_SET))
11834 {
11835 error (_("Unable to seek to start of dynamic information\n"));
11836 goto no_gnu_hash;
11837 }
11838
11839 gnuchains = get_dynamic_data (filedata, maxchain, 4);
11840 ngnuchains = maxchain;
11841
11842 no_gnu_hash:
11843 if (gnuchains == NULL)
11844 {
11845 free (gnubuckets);
11846 gnubuckets = NULL;
11847 ngnubuckets = 0;
11848 if (do_using_dynamic)
11849 return FALSE;
11850 }
11851 }
11852
11853 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11854 && do_syms
11855 && do_using_dynamic
11856 && dynamic_strings != NULL
11857 && dynamic_symbols != NULL)
11858 {
11859 unsigned long hn;
11860
11861 if (dynamic_info[DT_HASH])
11862 {
11863 bfd_vma si;
11864 char *visited;
11865
11866 printf (_("\nSymbol table for image:\n"));
11867 if (is_32bit_elf)
11868 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11869 else
11870 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11871
11872 visited = xcmalloc (nchains, 1);
11873 memset (visited, 0, nchains);
11874 for (hn = 0; hn < nbuckets; hn++)
11875 {
11876 for (si = buckets[hn]; si > 0; si = chains[si])
11877 {
11878 print_dynamic_symbol (filedata, si, hn);
11879 if (si >= nchains || visited[si])
11880 {
11881 error (_("histogram chain is corrupt\n"));
11882 break;
11883 }
11884 visited[si] = 1;
11885 }
11886 }
11887 free (visited);
11888 }
11889
11890 if (dynamic_info_DT_GNU_HASH)
11891 {
11892 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11893 if (is_32bit_elf)
11894 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11895 else
11896 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11897
11898 for (hn = 0; hn < ngnubuckets; ++hn)
11899 if (gnubuckets[hn] != 0)
11900 {
11901 bfd_vma si = gnubuckets[hn];
11902 bfd_vma off = si - gnusymidx;
11903
11904 do
11905 {
11906 print_dynamic_symbol (filedata, si, hn);
11907 si++;
11908 }
11909 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11910 }
11911 }
11912 }
11913 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11914 && filedata->section_headers != NULL)
11915 {
11916 unsigned int i;
11917
11918 for (i = 0, section = filedata->section_headers;
11919 i < filedata->file_header.e_shnum;
11920 i++, section++)
11921 {
11922 unsigned int si;
11923 char * strtab = NULL;
11924 unsigned long int strtab_size = 0;
11925 Elf_Internal_Sym * symtab;
11926 Elf_Internal_Sym * psym;
11927 unsigned long num_syms;
11928
11929 if ((section->sh_type != SHT_SYMTAB
11930 && section->sh_type != SHT_DYNSYM)
11931 || (!do_syms
11932 && section->sh_type == SHT_SYMTAB))
11933 continue;
11934
11935 if (section->sh_entsize == 0)
11936 {
11937 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11938 printable_section_name (filedata, section));
11939 continue;
11940 }
11941
11942 num_syms = section->sh_size / section->sh_entsize;
11943 printf (ngettext ("\nSymbol table '%s' contains %lu entry:\n",
11944 "\nSymbol table '%s' contains %lu entries:\n",
11945 num_syms),
11946 printable_section_name (filedata, section),
11947 num_syms);
11948
11949 if (is_32bit_elf)
11950 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11951 else
11952 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11953
11954 symtab = GET_ELF_SYMBOLS (filedata, section, & num_syms);
11955 if (symtab == NULL)
11956 continue;
11957
11958 if (section->sh_link == filedata->file_header.e_shstrndx)
11959 {
11960 strtab = filedata->string_table;
11961 strtab_size = filedata->string_table_length;
11962 }
11963 else if (section->sh_link < filedata->file_header.e_shnum)
11964 {
11965 Elf_Internal_Shdr * string_sec;
11966
11967 string_sec = filedata->section_headers + section->sh_link;
11968
11969 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset,
11970 1, string_sec->sh_size,
11971 _("string table"));
11972 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11973 }
11974
11975 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11976 {
11977 const char *version_string;
11978 enum versioned_symbol_info sym_info;
11979 unsigned short vna_other;
11980
11981 printf ("%6d: ", si);
11982 print_vma (psym->st_value, LONG_HEX);
11983 putchar (' ');
11984 print_vma (psym->st_size, DEC_5);
11985 printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)));
11986 printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info)));
11987 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11988 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11989 else
11990 {
11991 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11992
11993 printf (" %-7s", get_symbol_visibility (vis));
11994 /* Check to see if any other bits in the st_other field are set.
11995 Note - displaying this information disrupts the layout of the
11996 table being generated, but for the moment this case is very rare. */
11997 if (psym->st_other ^ vis)
11998 printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis));
11999 }
12000 printf (" %4s ", get_symbol_index_type (filedata, psym->st_shndx));
12001 print_symbol (25, psym->st_name < strtab_size
12002 ? strtab + psym->st_name : _("<corrupt>"));
12003
12004 version_string
12005 = get_symbol_version_string (filedata,
12006 section->sh_type == SHT_DYNSYM,
12007 strtab, strtab_size, si,
12008 psym, &sym_info, &vna_other);
12009 if (version_string)
12010 {
12011 if (sym_info == symbol_undefined)
12012 printf ("@%s (%d)", version_string, vna_other);
12013 else
12014 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
12015 version_string);
12016 }
12017
12018 putchar ('\n');
12019
12020 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
12021 && si >= section->sh_info
12022 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
12023 && filedata->file_header.e_machine != EM_MIPS
12024 /* Solaris binaries have been found to violate this requirement as
12025 well. Not sure if this is a bug or an ABI requirement. */
12026 && filedata->file_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
12027 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
12028 si, printable_section_name (filedata, section), section->sh_info);
12029 }
12030
12031 free (symtab);
12032 if (strtab != filedata->string_table)
12033 free (strtab);
12034 }
12035 }
12036 else if (do_syms)
12037 printf
12038 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
12039
12040 if (do_histogram && buckets != NULL)
12041 {
12042 unsigned long * lengths;
12043 unsigned long * counts;
12044 unsigned long hn;
12045 bfd_vma si;
12046 unsigned long maxlength = 0;
12047 unsigned long nzero_counts = 0;
12048 unsigned long nsyms = 0;
12049 char *visited;
12050
12051 printf (ngettext ("\nHistogram for bucket list length "
12052 "(total of %lu bucket):\n",
12053 "\nHistogram for bucket list length "
12054 "(total of %lu buckets):\n",
12055 (unsigned long) nbuckets),
12056 (unsigned long) nbuckets);
12057
12058 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
12059 if (lengths == NULL)
12060 {
12061 error (_("Out of memory allocating space for histogram buckets\n"));
12062 return FALSE;
12063 }
12064 visited = xcmalloc (nchains, 1);
12065 memset (visited, 0, nchains);
12066
12067 printf (_(" Length Number %% of total Coverage\n"));
12068 for (hn = 0; hn < nbuckets; ++hn)
12069 {
12070 for (si = buckets[hn]; si > 0; si = chains[si])
12071 {
12072 ++nsyms;
12073 if (maxlength < ++lengths[hn])
12074 ++maxlength;
12075 if (si >= nchains || visited[si])
12076 {
12077 error (_("histogram chain is corrupt\n"));
12078 break;
12079 }
12080 visited[si] = 1;
12081 }
12082 }
12083 free (visited);
12084
12085 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
12086 if (counts == NULL)
12087 {
12088 free (lengths);
12089 error (_("Out of memory allocating space for histogram counts\n"));
12090 return FALSE;
12091 }
12092
12093 for (hn = 0; hn < nbuckets; ++hn)
12094 ++counts[lengths[hn]];
12095
12096 if (nbuckets > 0)
12097 {
12098 unsigned long i;
12099 printf (" 0 %-10lu (%5.1f%%)\n",
12100 counts[0], (counts[0] * 100.0) / nbuckets);
12101 for (i = 1; i <= maxlength; ++i)
12102 {
12103 nzero_counts += counts[i] * i;
12104 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
12105 i, counts[i], (counts[i] * 100.0) / nbuckets,
12106 (nzero_counts * 100.0) / nsyms);
12107 }
12108 }
12109
12110 free (counts);
12111 free (lengths);
12112 }
12113
12114 if (buckets != NULL)
12115 {
12116 free (buckets);
12117 free (chains);
12118 }
12119
12120 if (do_histogram && gnubuckets != NULL)
12121 {
12122 unsigned long * lengths;
12123 unsigned long * counts;
12124 unsigned long hn;
12125 unsigned long maxlength = 0;
12126 unsigned long nzero_counts = 0;
12127 unsigned long nsyms = 0;
12128
12129 printf (ngettext ("\nHistogram for `.gnu.hash' bucket list length "
12130 "(total of %lu bucket):\n",
12131 "\nHistogram for `.gnu.hash' bucket list length "
12132 "(total of %lu buckets):\n",
12133 (unsigned long) ngnubuckets),
12134 (unsigned long) ngnubuckets);
12135
12136 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
12137 if (lengths == NULL)
12138 {
12139 error (_("Out of memory allocating space for gnu histogram buckets\n"));
12140 return FALSE;
12141 }
12142
12143 printf (_(" Length Number %% of total Coverage\n"));
12144
12145 for (hn = 0; hn < ngnubuckets; ++hn)
12146 if (gnubuckets[hn] != 0)
12147 {
12148 bfd_vma off, length = 1;
12149
12150 for (off = gnubuckets[hn] - gnusymidx;
12151 /* PR 17531 file: 010-77222-0.004. */
12152 off < ngnuchains && (gnuchains[off] & 1) == 0;
12153 ++off)
12154 ++length;
12155 lengths[hn] = length;
12156 if (length > maxlength)
12157 maxlength = length;
12158 nsyms += length;
12159 }
12160
12161 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
12162 if (counts == NULL)
12163 {
12164 free (lengths);
12165 error (_("Out of memory allocating space for gnu histogram counts\n"));
12166 return FALSE;
12167 }
12168
12169 for (hn = 0; hn < ngnubuckets; ++hn)
12170 ++counts[lengths[hn]];
12171
12172 if (ngnubuckets > 0)
12173 {
12174 unsigned long j;
12175 printf (" 0 %-10lu (%5.1f%%)\n",
12176 counts[0], (counts[0] * 100.0) / ngnubuckets);
12177 for (j = 1; j <= maxlength; ++j)
12178 {
12179 nzero_counts += counts[j] * j;
12180 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
12181 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
12182 (nzero_counts * 100.0) / nsyms);
12183 }
12184 }
12185
12186 free (counts);
12187 free (lengths);
12188 free (gnubuckets);
12189 free (gnuchains);
12190 }
12191
12192 return TRUE;
12193 }
12194
12195 static bfd_boolean
12196 process_syminfo (Filedata * filedata ATTRIBUTE_UNUSED)
12197 {
12198 unsigned int i;
12199
12200 if (dynamic_syminfo == NULL
12201 || !do_dynamic)
12202 /* No syminfo, this is ok. */
12203 return TRUE;
12204
12205 /* There better should be a dynamic symbol section. */
12206 if (dynamic_symbols == NULL || dynamic_strings == NULL)
12207 return FALSE;
12208
12209 if (dynamic_addr)
12210 printf (ngettext ("\nDynamic info segment at offset 0x%lx "
12211 "contains %d entry:\n",
12212 "\nDynamic info segment at offset 0x%lx "
12213 "contains %d entries:\n",
12214 dynamic_syminfo_nent),
12215 dynamic_syminfo_offset, dynamic_syminfo_nent);
12216
12217 printf (_(" Num: Name BoundTo Flags\n"));
12218 for (i = 0; i < dynamic_syminfo_nent; ++i)
12219 {
12220 unsigned short int flags = dynamic_syminfo[i].si_flags;
12221
12222 printf ("%4d: ", i);
12223 if (i >= num_dynamic_syms)
12224 printf (_("<corrupt index>"));
12225 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
12226 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
12227 else
12228 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
12229 putchar (' ');
12230
12231 switch (dynamic_syminfo[i].si_boundto)
12232 {
12233 case SYMINFO_BT_SELF:
12234 fputs ("SELF ", stdout);
12235 break;
12236 case SYMINFO_BT_PARENT:
12237 fputs ("PARENT ", stdout);
12238 break;
12239 default:
12240 if (dynamic_syminfo[i].si_boundto > 0
12241 && dynamic_syminfo[i].si_boundto < dynamic_nent
12242 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
12243 {
12244 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
12245 putchar (' ' );
12246 }
12247 else
12248 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
12249 break;
12250 }
12251
12252 if (flags & SYMINFO_FLG_DIRECT)
12253 printf (" DIRECT");
12254 if (flags & SYMINFO_FLG_PASSTHRU)
12255 printf (" PASSTHRU");
12256 if (flags & SYMINFO_FLG_COPY)
12257 printf (" COPY");
12258 if (flags & SYMINFO_FLG_LAZYLOAD)
12259 printf (" LAZYLOAD");
12260
12261 puts ("");
12262 }
12263
12264 return TRUE;
12265 }
12266
12267 #define IN_RANGE(START,END,ADDR,OFF) \
12268 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
12269
12270 /* Check to see if the given reloc needs to be handled in a target specific
12271 manner. If so then process the reloc and return TRUE otherwise return
12272 FALSE.
12273
12274 If called with reloc == NULL, then this is a signal that reloc processing
12275 for the current section has finished, and any saved state should be
12276 discarded. */
12277
12278 static bfd_boolean
12279 target_specific_reloc_handling (Filedata * filedata,
12280 Elf_Internal_Rela * reloc,
12281 unsigned char * start,
12282 unsigned char * end,
12283 Elf_Internal_Sym * symtab,
12284 unsigned long num_syms)
12285 {
12286 unsigned int reloc_type = 0;
12287 unsigned long sym_index = 0;
12288
12289 if (reloc)
12290 {
12291 reloc_type = get_reloc_type (filedata, reloc->r_info);
12292 sym_index = get_reloc_symindex (reloc->r_info);
12293 }
12294
12295 switch (filedata->file_header.e_machine)
12296 {
12297 case EM_MSP430:
12298 case EM_MSP430_OLD:
12299 {
12300 static Elf_Internal_Sym * saved_sym = NULL;
12301
12302 if (reloc == NULL)
12303 {
12304 saved_sym = NULL;
12305 return TRUE;
12306 }
12307
12308 switch (reloc_type)
12309 {
12310 case 10: /* R_MSP430_SYM_DIFF */
12311 if (uses_msp430x_relocs (filedata))
12312 break;
12313 /* Fall through. */
12314 case 21: /* R_MSP430X_SYM_DIFF */
12315 /* PR 21139. */
12316 if (sym_index >= num_syms)
12317 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
12318 sym_index);
12319 else
12320 saved_sym = symtab + sym_index;
12321 return TRUE;
12322
12323 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
12324 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
12325 goto handle_sym_diff;
12326
12327 case 5: /* R_MSP430_16_BYTE */
12328 case 9: /* R_MSP430_8 */
12329 if (uses_msp430x_relocs (filedata))
12330 break;
12331 goto handle_sym_diff;
12332
12333 case 2: /* R_MSP430_ABS16 */
12334 case 15: /* R_MSP430X_ABS16 */
12335 if (! uses_msp430x_relocs (filedata))
12336 break;
12337 goto handle_sym_diff;
12338
12339 handle_sym_diff:
12340 if (saved_sym != NULL)
12341 {
12342 int reloc_size = reloc_type == 1 ? 4 : 2;
12343 bfd_vma value;
12344
12345 if (sym_index >= num_syms)
12346 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
12347 sym_index);
12348 else
12349 {
12350 value = reloc->r_addend + (symtab[sym_index].st_value
12351 - saved_sym->st_value);
12352
12353 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
12354 byte_put (start + reloc->r_offset, value, reloc_size);
12355 else
12356 /* PR 21137 */
12357 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
12358 (long) reloc->r_offset);
12359 }
12360
12361 saved_sym = NULL;
12362 return TRUE;
12363 }
12364 break;
12365
12366 default:
12367 if (saved_sym != NULL)
12368 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
12369 break;
12370 }
12371 break;
12372 }
12373
12374 case EM_MN10300:
12375 case EM_CYGNUS_MN10300:
12376 {
12377 static Elf_Internal_Sym * saved_sym = NULL;
12378
12379 if (reloc == NULL)
12380 {
12381 saved_sym = NULL;
12382 return TRUE;
12383 }
12384
12385 switch (reloc_type)
12386 {
12387 case 34: /* R_MN10300_ALIGN */
12388 return TRUE;
12389 case 33: /* R_MN10300_SYM_DIFF */
12390 if (sym_index >= num_syms)
12391 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
12392 sym_index);
12393 else
12394 saved_sym = symtab + sym_index;
12395 return TRUE;
12396
12397 case 1: /* R_MN10300_32 */
12398 case 2: /* R_MN10300_16 */
12399 if (saved_sym != NULL)
12400 {
12401 int reloc_size = reloc_type == 1 ? 4 : 2;
12402 bfd_vma value;
12403
12404 if (sym_index >= num_syms)
12405 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
12406 sym_index);
12407 else
12408 {
12409 value = reloc->r_addend + (symtab[sym_index].st_value
12410 - saved_sym->st_value);
12411
12412 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
12413 byte_put (start + reloc->r_offset, value, reloc_size);
12414 else
12415 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
12416 (long) reloc->r_offset);
12417 }
12418
12419 saved_sym = NULL;
12420 return TRUE;
12421 }
12422 break;
12423 default:
12424 if (saved_sym != NULL)
12425 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
12426 break;
12427 }
12428 break;
12429 }
12430
12431 case EM_RL78:
12432 {
12433 static bfd_vma saved_sym1 = 0;
12434 static bfd_vma saved_sym2 = 0;
12435 static bfd_vma value;
12436
12437 if (reloc == NULL)
12438 {
12439 saved_sym1 = saved_sym2 = 0;
12440 return TRUE;
12441 }
12442
12443 switch (reloc_type)
12444 {
12445 case 0x80: /* R_RL78_SYM. */
12446 saved_sym1 = saved_sym2;
12447 if (sym_index >= num_syms)
12448 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
12449 sym_index);
12450 else
12451 {
12452 saved_sym2 = symtab[sym_index].st_value;
12453 saved_sym2 += reloc->r_addend;
12454 }
12455 return TRUE;
12456
12457 case 0x83: /* R_RL78_OPsub. */
12458 value = saved_sym1 - saved_sym2;
12459 saved_sym2 = saved_sym1 = 0;
12460 return TRUE;
12461 break;
12462
12463 case 0x41: /* R_RL78_ABS32. */
12464 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
12465 byte_put (start + reloc->r_offset, value, 4);
12466 else
12467 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12468 (long) reloc->r_offset);
12469 value = 0;
12470 return TRUE;
12471
12472 case 0x43: /* R_RL78_ABS16. */
12473 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
12474 byte_put (start + reloc->r_offset, value, 2);
12475 else
12476 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12477 (long) reloc->r_offset);
12478 value = 0;
12479 return TRUE;
12480
12481 default:
12482 break;
12483 }
12484 break;
12485 }
12486 }
12487
12488 return FALSE;
12489 }
12490
12491 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
12492 DWARF debug sections. This is a target specific test. Note - we do not
12493 go through the whole including-target-headers-multiple-times route, (as
12494 we have already done with <elf/h8.h>) because this would become very
12495 messy and even then this function would have to contain target specific
12496 information (the names of the relocs instead of their numeric values).
12497 FIXME: This is not the correct way to solve this problem. The proper way
12498 is to have target specific reloc sizing and typing functions created by
12499 the reloc-macros.h header, in the same way that it already creates the
12500 reloc naming functions. */
12501
12502 static bfd_boolean
12503 is_32bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12504 {
12505 /* Please keep this table alpha-sorted for ease of visual lookup. */
12506 switch (filedata->file_header.e_machine)
12507 {
12508 case EM_386:
12509 case EM_IAMCU:
12510 return reloc_type == 1; /* R_386_32. */
12511 case EM_68K:
12512 return reloc_type == 1; /* R_68K_32. */
12513 case EM_860:
12514 return reloc_type == 1; /* R_860_32. */
12515 case EM_960:
12516 return reloc_type == 2; /* R_960_32. */
12517 case EM_AARCH64:
12518 return (reloc_type == 258
12519 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
12520 case EM_BPF:
12521 return reloc_type == 11; /* R_BPF_DATA_32 */
12522 case EM_ADAPTEVA_EPIPHANY:
12523 return reloc_type == 3;
12524 case EM_ALPHA:
12525 return reloc_type == 1; /* R_ALPHA_REFLONG. */
12526 case EM_ARC:
12527 return reloc_type == 1; /* R_ARC_32. */
12528 case EM_ARC_COMPACT:
12529 case EM_ARC_COMPACT2:
12530 return reloc_type == 4; /* R_ARC_32. */
12531 case EM_ARM:
12532 return reloc_type == 2; /* R_ARM_ABS32 */
12533 case EM_AVR_OLD:
12534 case EM_AVR:
12535 return reloc_type == 1;
12536 case EM_BLACKFIN:
12537 return reloc_type == 0x12; /* R_byte4_data. */
12538 case EM_CRIS:
12539 return reloc_type == 3; /* R_CRIS_32. */
12540 case EM_CR16:
12541 return reloc_type == 3; /* R_CR16_NUM32. */
12542 case EM_CRX:
12543 return reloc_type == 15; /* R_CRX_NUM32. */
12544 case EM_CSKY:
12545 return reloc_type == 1; /* R_CKCORE_ADDR32. */
12546 case EM_CYGNUS_FRV:
12547 return reloc_type == 1;
12548 case EM_CYGNUS_D10V:
12549 case EM_D10V:
12550 return reloc_type == 6; /* R_D10V_32. */
12551 case EM_CYGNUS_D30V:
12552 case EM_D30V:
12553 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12554 case EM_DLX:
12555 return reloc_type == 3; /* R_DLX_RELOC_32. */
12556 case EM_CYGNUS_FR30:
12557 case EM_FR30:
12558 return reloc_type == 3; /* R_FR30_32. */
12559 case EM_FT32:
12560 return reloc_type == 1; /* R_FT32_32. */
12561 case EM_H8S:
12562 case EM_H8_300:
12563 case EM_H8_300H:
12564 return reloc_type == 1; /* R_H8_DIR32. */
12565 case EM_IA_64:
12566 return (reloc_type == 0x64 /* R_IA64_SECREL32MSB. */
12567 || reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12568 || reloc_type == 0x24 /* R_IA64_DIR32MSB. */
12569 || reloc_type == 0x25 /* R_IA64_DIR32LSB. */);
12570 case EM_IP2K_OLD:
12571 case EM_IP2K:
12572 return reloc_type == 2; /* R_IP2K_32. */
12573 case EM_IQ2000:
12574 return reloc_type == 2; /* R_IQ2000_32. */
12575 case EM_LATTICEMICO32:
12576 return reloc_type == 3; /* R_LM32_32. */
12577 case EM_M32C_OLD:
12578 case EM_M32C:
12579 return reloc_type == 3; /* R_M32C_32. */
12580 case EM_M32R:
12581 return reloc_type == 34; /* R_M32R_32_RELA. */
12582 case EM_68HC11:
12583 case EM_68HC12:
12584 return reloc_type == 6; /* R_M68HC11_32. */
12585 case EM_S12Z:
12586 return reloc_type == 7 || /* R_S12Z_EXT32 */
12587 reloc_type == 6; /* R_S12Z_CW32. */
12588 case EM_MCORE:
12589 return reloc_type == 1; /* R_MCORE_ADDR32. */
12590 case EM_CYGNUS_MEP:
12591 return reloc_type == 4; /* R_MEP_32. */
12592 case EM_METAG:
12593 return reloc_type == 2; /* R_METAG_ADDR32. */
12594 case EM_MICROBLAZE:
12595 return reloc_type == 1; /* R_MICROBLAZE_32. */
12596 case EM_MIPS:
12597 return reloc_type == 2; /* R_MIPS_32. */
12598 case EM_MMIX:
12599 return reloc_type == 4; /* R_MMIX_32. */
12600 case EM_CYGNUS_MN10200:
12601 case EM_MN10200:
12602 return reloc_type == 1; /* R_MN10200_32. */
12603 case EM_CYGNUS_MN10300:
12604 case EM_MN10300:
12605 return reloc_type == 1; /* R_MN10300_32. */
12606 case EM_MOXIE:
12607 return reloc_type == 1; /* R_MOXIE_32. */
12608 case EM_MSP430_OLD:
12609 case EM_MSP430:
12610 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12611 case EM_MT:
12612 return reloc_type == 2; /* R_MT_32. */
12613 case EM_NDS32:
12614 return reloc_type == 20; /* R_NDS32_RELA. */
12615 case EM_ALTERA_NIOS2:
12616 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12617 case EM_NIOS32:
12618 return reloc_type == 1; /* R_NIOS_32. */
12619 case EM_OR1K:
12620 return reloc_type == 1; /* R_OR1K_32. */
12621 case EM_PARISC:
12622 return (reloc_type == 1 /* R_PARISC_DIR32. */
12623 || reloc_type == 2 /* R_PARISC_DIR21L. */
12624 || reloc_type == 41); /* R_PARISC_SECREL32. */
12625 case EM_PJ:
12626 case EM_PJ_OLD:
12627 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12628 case EM_PPC64:
12629 return reloc_type == 1; /* R_PPC64_ADDR32. */
12630 case EM_PPC:
12631 return reloc_type == 1; /* R_PPC_ADDR32. */
12632 case EM_TI_PRU:
12633 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12634 case EM_RISCV:
12635 return reloc_type == 1; /* R_RISCV_32. */
12636 case EM_RL78:
12637 return reloc_type == 1; /* R_RL78_DIR32. */
12638 case EM_RX:
12639 return reloc_type == 1; /* R_RX_DIR32. */
12640 case EM_S370:
12641 return reloc_type == 1; /* R_I370_ADDR31. */
12642 case EM_S390_OLD:
12643 case EM_S390:
12644 return reloc_type == 4; /* R_S390_32. */
12645 case EM_SCORE:
12646 return reloc_type == 8; /* R_SCORE_ABS32. */
12647 case EM_SH:
12648 return reloc_type == 1; /* R_SH_DIR32. */
12649 case EM_SPARC32PLUS:
12650 case EM_SPARCV9:
12651 case EM_SPARC:
12652 return reloc_type == 3 /* R_SPARC_32. */
12653 || reloc_type == 23; /* R_SPARC_UA32. */
12654 case EM_SPU:
12655 return reloc_type == 6; /* R_SPU_ADDR32 */
12656 case EM_TI_C6000:
12657 return reloc_type == 1; /* R_C6000_ABS32. */
12658 case EM_TILEGX:
12659 return reloc_type == 2; /* R_TILEGX_32. */
12660 case EM_TILEPRO:
12661 return reloc_type == 1; /* R_TILEPRO_32. */
12662 case EM_CYGNUS_V850:
12663 case EM_V850:
12664 return reloc_type == 6; /* R_V850_ABS32. */
12665 case EM_V800:
12666 return reloc_type == 0x33; /* R_V810_WORD. */
12667 case EM_VAX:
12668 return reloc_type == 1; /* R_VAX_32. */
12669 case EM_VISIUM:
12670 return reloc_type == 3; /* R_VISIUM_32. */
12671 case EM_WEBASSEMBLY:
12672 return reloc_type == 1; /* R_WASM32_32. */
12673 case EM_X86_64:
12674 case EM_L1OM:
12675 case EM_K1OM:
12676 return reloc_type == 10; /* R_X86_64_32. */
12677 case EM_XC16X:
12678 case EM_C166:
12679 return reloc_type == 3; /* R_XC16C_ABS_32. */
12680 case EM_XGATE:
12681 return reloc_type == 4; /* R_XGATE_32. */
12682 case EM_XSTORMY16:
12683 return reloc_type == 1; /* R_XSTROMY16_32. */
12684 case EM_XTENSA_OLD:
12685 case EM_XTENSA:
12686 return reloc_type == 1; /* R_XTENSA_32. */
12687 default:
12688 {
12689 static unsigned int prev_warn = 0;
12690
12691 /* Avoid repeating the same warning multiple times. */
12692 if (prev_warn != filedata->file_header.e_machine)
12693 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12694 filedata->file_header.e_machine);
12695 prev_warn = filedata->file_header.e_machine;
12696 return FALSE;
12697 }
12698 }
12699 }
12700
12701 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12702 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12703
12704 static bfd_boolean
12705 is_32bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
12706 {
12707 switch (filedata->file_header.e_machine)
12708 /* Please keep this table alpha-sorted for ease of visual lookup. */
12709 {
12710 case EM_386:
12711 case EM_IAMCU:
12712 return reloc_type == 2; /* R_386_PC32. */
12713 case EM_68K:
12714 return reloc_type == 4; /* R_68K_PC32. */
12715 case EM_AARCH64:
12716 return reloc_type == 261; /* R_AARCH64_PREL32 */
12717 case EM_ADAPTEVA_EPIPHANY:
12718 return reloc_type == 6;
12719 case EM_ALPHA:
12720 return reloc_type == 10; /* R_ALPHA_SREL32. */
12721 case EM_ARC_COMPACT:
12722 case EM_ARC_COMPACT2:
12723 return reloc_type == 49; /* R_ARC_32_PCREL. */
12724 case EM_ARM:
12725 return reloc_type == 3; /* R_ARM_REL32 */
12726 case EM_AVR_OLD:
12727 case EM_AVR:
12728 return reloc_type == 36; /* R_AVR_32_PCREL. */
12729 case EM_MICROBLAZE:
12730 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12731 case EM_OR1K:
12732 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12733 case EM_PARISC:
12734 return reloc_type == 9; /* R_PARISC_PCREL32. */
12735 case EM_PPC:
12736 return reloc_type == 26; /* R_PPC_REL32. */
12737 case EM_PPC64:
12738 return reloc_type == 26; /* R_PPC64_REL32. */
12739 case EM_RISCV:
12740 return reloc_type == 57; /* R_RISCV_32_PCREL. */
12741 case EM_S390_OLD:
12742 case EM_S390:
12743 return reloc_type == 5; /* R_390_PC32. */
12744 case EM_SH:
12745 return reloc_type == 2; /* R_SH_REL32. */
12746 case EM_SPARC32PLUS:
12747 case EM_SPARCV9:
12748 case EM_SPARC:
12749 return reloc_type == 6; /* R_SPARC_DISP32. */
12750 case EM_SPU:
12751 return reloc_type == 13; /* R_SPU_REL32. */
12752 case EM_TILEGX:
12753 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12754 case EM_TILEPRO:
12755 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12756 case EM_VISIUM:
12757 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12758 case EM_X86_64:
12759 case EM_L1OM:
12760 case EM_K1OM:
12761 return reloc_type == 2; /* R_X86_64_PC32. */
12762 case EM_VAX:
12763 return reloc_type == 4; /* R_VAX_PCREL32. */
12764 case EM_XTENSA_OLD:
12765 case EM_XTENSA:
12766 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12767 default:
12768 /* Do not abort or issue an error message here. Not all targets use
12769 pc-relative 32-bit relocs in their DWARF debug information and we
12770 have already tested for target coverage in is_32bit_abs_reloc. A
12771 more helpful warning message will be generated by apply_relocations
12772 anyway, so just return. */
12773 return FALSE;
12774 }
12775 }
12776
12777 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12778 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12779
12780 static bfd_boolean
12781 is_64bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12782 {
12783 switch (filedata->file_header.e_machine)
12784 {
12785 case EM_AARCH64:
12786 return reloc_type == 257; /* R_AARCH64_ABS64. */
12787 case EM_ALPHA:
12788 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12789 case EM_IA_64:
12790 return (reloc_type == 0x26 /* R_IA64_DIR64MSB. */
12791 || reloc_type == 0x27 /* R_IA64_DIR64LSB. */);
12792 case EM_PARISC:
12793 return reloc_type == 80; /* R_PARISC_DIR64. */
12794 case EM_PPC64:
12795 return reloc_type == 38; /* R_PPC64_ADDR64. */
12796 case EM_RISCV:
12797 return reloc_type == 2; /* R_RISCV_64. */
12798 case EM_SPARC32PLUS:
12799 case EM_SPARCV9:
12800 case EM_SPARC:
12801 return reloc_type == 32 /* R_SPARC_64. */
12802 || reloc_type == 54; /* R_SPARC_UA64. */
12803 case EM_X86_64:
12804 case EM_L1OM:
12805 case EM_K1OM:
12806 return reloc_type == 1; /* R_X86_64_64. */
12807 case EM_S390_OLD:
12808 case EM_S390:
12809 return reloc_type == 22; /* R_S390_64. */
12810 case EM_TILEGX:
12811 return reloc_type == 1; /* R_TILEGX_64. */
12812 case EM_MIPS:
12813 return reloc_type == 18; /* R_MIPS_64. */
12814 default:
12815 return FALSE;
12816 }
12817 }
12818
12819 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12820 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12821
12822 static bfd_boolean
12823 is_64bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
12824 {
12825 switch (filedata->file_header.e_machine)
12826 {
12827 case EM_AARCH64:
12828 return reloc_type == 260; /* R_AARCH64_PREL64. */
12829 case EM_ALPHA:
12830 return reloc_type == 11; /* R_ALPHA_SREL64. */
12831 case EM_IA_64:
12832 return (reloc_type == 0x4e /* R_IA64_PCREL64MSB. */
12833 || reloc_type == 0x4f /* R_IA64_PCREL64LSB. */);
12834 case EM_PARISC:
12835 return reloc_type == 72; /* R_PARISC_PCREL64. */
12836 case EM_PPC64:
12837 return reloc_type == 44; /* R_PPC64_REL64. */
12838 case EM_SPARC32PLUS:
12839 case EM_SPARCV9:
12840 case EM_SPARC:
12841 return reloc_type == 46; /* R_SPARC_DISP64. */
12842 case EM_X86_64:
12843 case EM_L1OM:
12844 case EM_K1OM:
12845 return reloc_type == 24; /* R_X86_64_PC64. */
12846 case EM_S390_OLD:
12847 case EM_S390:
12848 return reloc_type == 23; /* R_S390_PC64. */
12849 case EM_TILEGX:
12850 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12851 default:
12852 return FALSE;
12853 }
12854 }
12855
12856 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12857 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12858
12859 static bfd_boolean
12860 is_24bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12861 {
12862 switch (filedata->file_header.e_machine)
12863 {
12864 case EM_CYGNUS_MN10200:
12865 case EM_MN10200:
12866 return reloc_type == 4; /* R_MN10200_24. */
12867 case EM_FT32:
12868 return reloc_type == 5; /* R_FT32_20. */
12869 default:
12870 return FALSE;
12871 }
12872 }
12873
12874 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12875 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12876
12877 static bfd_boolean
12878 is_16bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12879 {
12880 /* Please keep this table alpha-sorted for ease of visual lookup. */
12881 switch (filedata->file_header.e_machine)
12882 {
12883 case EM_ARC:
12884 case EM_ARC_COMPACT:
12885 case EM_ARC_COMPACT2:
12886 return reloc_type == 2; /* R_ARC_16. */
12887 case EM_ADAPTEVA_EPIPHANY:
12888 return reloc_type == 5;
12889 case EM_AVR_OLD:
12890 case EM_AVR:
12891 return reloc_type == 4; /* R_AVR_16. */
12892 case EM_CYGNUS_D10V:
12893 case EM_D10V:
12894 return reloc_type == 3; /* R_D10V_16. */
12895 case EM_FT32:
12896 return reloc_type == 2; /* R_FT32_16. */
12897 case EM_H8S:
12898 case EM_H8_300:
12899 case EM_H8_300H:
12900 return reloc_type == R_H8_DIR16;
12901 case EM_IP2K_OLD:
12902 case EM_IP2K:
12903 return reloc_type == 1; /* R_IP2K_16. */
12904 case EM_M32C_OLD:
12905 case EM_M32C:
12906 return reloc_type == 1; /* R_M32C_16 */
12907 case EM_CYGNUS_MN10200:
12908 case EM_MN10200:
12909 return reloc_type == 2; /* R_MN10200_16. */
12910 case EM_CYGNUS_MN10300:
12911 case EM_MN10300:
12912 return reloc_type == 2; /* R_MN10300_16. */
12913 case EM_MSP430:
12914 if (uses_msp430x_relocs (filedata))
12915 return reloc_type == 2; /* R_MSP430_ABS16. */
12916 /* Fall through. */
12917 case EM_MSP430_OLD:
12918 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12919 case EM_NDS32:
12920 return reloc_type == 19; /* R_NDS32_RELA. */
12921 case EM_ALTERA_NIOS2:
12922 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12923 case EM_NIOS32:
12924 return reloc_type == 9; /* R_NIOS_16. */
12925 case EM_OR1K:
12926 return reloc_type == 2; /* R_OR1K_16. */
12927 case EM_RISCV:
12928 return reloc_type == 55; /* R_RISCV_SET16. */
12929 case EM_TI_PRU:
12930 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12931 case EM_TI_C6000:
12932 return reloc_type == 2; /* R_C6000_ABS16. */
12933 case EM_VISIUM:
12934 return reloc_type == 2; /* R_VISIUM_16. */
12935 case EM_XC16X:
12936 case EM_C166:
12937 return reloc_type == 2; /* R_XC16C_ABS_16. */
12938 case EM_XGATE:
12939 return reloc_type == 3; /* R_XGATE_16. */
12940 default:
12941 return FALSE;
12942 }
12943 }
12944
12945 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12946 a 8-bit absolute RELA relocation used in DWARF debug sections. */
12947
12948 static bfd_boolean
12949 is_8bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12950 {
12951 switch (filedata->file_header.e_machine)
12952 {
12953 case EM_RISCV:
12954 return reloc_type == 54; /* R_RISCV_SET8. */
12955 default:
12956 return FALSE;
12957 }
12958 }
12959
12960 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12961 a 6-bit absolute RELA relocation used in DWARF debug sections. */
12962
12963 static bfd_boolean
12964 is_6bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12965 {
12966 switch (filedata->file_header.e_machine)
12967 {
12968 case EM_RISCV:
12969 return reloc_type == 53; /* R_RISCV_SET6. */
12970 default:
12971 return FALSE;
12972 }
12973 }
12974
12975 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12976 a 32-bit inplace add RELA relocation used in DWARF debug sections. */
12977
12978 static bfd_boolean
12979 is_32bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
12980 {
12981 /* Please keep this table alpha-sorted for ease of visual lookup. */
12982 switch (filedata->file_header.e_machine)
12983 {
12984 case EM_RISCV:
12985 return reloc_type == 35; /* R_RISCV_ADD32. */
12986 default:
12987 return FALSE;
12988 }
12989 }
12990
12991 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12992 a 32-bit inplace sub RELA relocation used in DWARF debug sections. */
12993
12994 static bfd_boolean
12995 is_32bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
12996 {
12997 /* Please keep this table alpha-sorted for ease of visual lookup. */
12998 switch (filedata->file_header.e_machine)
12999 {
13000 case EM_RISCV:
13001 return reloc_type == 39; /* R_RISCV_SUB32. */
13002 default:
13003 return FALSE;
13004 }
13005 }
13006
13007 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13008 a 64-bit inplace add RELA relocation used in DWARF debug sections. */
13009
13010 static bfd_boolean
13011 is_64bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13012 {
13013 /* Please keep this table alpha-sorted for ease of visual lookup. */
13014 switch (filedata->file_header.e_machine)
13015 {
13016 case EM_RISCV:
13017 return reloc_type == 36; /* R_RISCV_ADD64. */
13018 default:
13019 return FALSE;
13020 }
13021 }
13022
13023 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13024 a 64-bit inplace sub RELA relocation used in DWARF debug sections. */
13025
13026 static bfd_boolean
13027 is_64bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13028 {
13029 /* Please keep this table alpha-sorted for ease of visual lookup. */
13030 switch (filedata->file_header.e_machine)
13031 {
13032 case EM_RISCV:
13033 return reloc_type == 40; /* R_RISCV_SUB64. */
13034 default:
13035 return FALSE;
13036 }
13037 }
13038
13039 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13040 a 16-bit inplace add RELA relocation used in DWARF debug sections. */
13041
13042 static bfd_boolean
13043 is_16bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13044 {
13045 /* Please keep this table alpha-sorted for ease of visual lookup. */
13046 switch (filedata->file_header.e_machine)
13047 {
13048 case EM_RISCV:
13049 return reloc_type == 34; /* R_RISCV_ADD16. */
13050 default:
13051 return FALSE;
13052 }
13053 }
13054
13055 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13056 a 16-bit inplace sub RELA relocation used in DWARF debug sections. */
13057
13058 static bfd_boolean
13059 is_16bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13060 {
13061 /* Please keep this table alpha-sorted for ease of visual lookup. */
13062 switch (filedata->file_header.e_machine)
13063 {
13064 case EM_RISCV:
13065 return reloc_type == 38; /* R_RISCV_SUB16. */
13066 default:
13067 return FALSE;
13068 }
13069 }
13070
13071 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13072 a 8-bit inplace add RELA relocation used in DWARF debug sections. */
13073
13074 static bfd_boolean
13075 is_8bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13076 {
13077 /* Please keep this table alpha-sorted for ease of visual lookup. */
13078 switch (filedata->file_header.e_machine)
13079 {
13080 case EM_RISCV:
13081 return reloc_type == 33; /* R_RISCV_ADD8. */
13082 default:
13083 return FALSE;
13084 }
13085 }
13086
13087 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13088 a 8-bit inplace sub RELA relocation used in DWARF debug sections. */
13089
13090 static bfd_boolean
13091 is_8bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13092 {
13093 /* Please keep this table alpha-sorted for ease of visual lookup. */
13094 switch (filedata->file_header.e_machine)
13095 {
13096 case EM_RISCV:
13097 return reloc_type == 37; /* R_RISCV_SUB8. */
13098 default:
13099 return FALSE;
13100 }
13101 }
13102
13103 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13104 a 6-bit inplace sub RELA relocation used in DWARF debug sections. */
13105
13106 static bfd_boolean
13107 is_6bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13108 {
13109 switch (filedata->file_header.e_machine)
13110 {
13111 case EM_RISCV:
13112 return reloc_type == 52; /* R_RISCV_SUB6. */
13113 default:
13114 return FALSE;
13115 }
13116 }
13117
13118 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
13119 relocation entries (possibly formerly used for SHT_GROUP sections). */
13120
13121 static bfd_boolean
13122 is_none_reloc (Filedata * filedata, unsigned int reloc_type)
13123 {
13124 switch (filedata->file_header.e_machine)
13125 {
13126 case EM_386: /* R_386_NONE. */
13127 case EM_68K: /* R_68K_NONE. */
13128 case EM_ADAPTEVA_EPIPHANY:
13129 case EM_ALPHA: /* R_ALPHA_NONE. */
13130 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
13131 case EM_ARC: /* R_ARC_NONE. */
13132 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
13133 case EM_ARC_COMPACT: /* R_ARC_NONE. */
13134 case EM_ARM: /* R_ARM_NONE. */
13135 case EM_C166: /* R_XC16X_NONE. */
13136 case EM_CRIS: /* R_CRIS_NONE. */
13137 case EM_FT32: /* R_FT32_NONE. */
13138 case EM_IA_64: /* R_IA64_NONE. */
13139 case EM_K1OM: /* R_X86_64_NONE. */
13140 case EM_L1OM: /* R_X86_64_NONE. */
13141 case EM_M32R: /* R_M32R_NONE. */
13142 case EM_MIPS: /* R_MIPS_NONE. */
13143 case EM_MN10300: /* R_MN10300_NONE. */
13144 case EM_MOXIE: /* R_MOXIE_NONE. */
13145 case EM_NIOS32: /* R_NIOS_NONE. */
13146 case EM_OR1K: /* R_OR1K_NONE. */
13147 case EM_PARISC: /* R_PARISC_NONE. */
13148 case EM_PPC64: /* R_PPC64_NONE. */
13149 case EM_PPC: /* R_PPC_NONE. */
13150 case EM_RISCV: /* R_RISCV_NONE. */
13151 case EM_S390: /* R_390_NONE. */
13152 case EM_S390_OLD:
13153 case EM_SH: /* R_SH_NONE. */
13154 case EM_SPARC32PLUS:
13155 case EM_SPARC: /* R_SPARC_NONE. */
13156 case EM_SPARCV9:
13157 case EM_TILEGX: /* R_TILEGX_NONE. */
13158 case EM_TILEPRO: /* R_TILEPRO_NONE. */
13159 case EM_TI_C6000:/* R_C6000_NONE. */
13160 case EM_X86_64: /* R_X86_64_NONE. */
13161 case EM_XC16X:
13162 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
13163 return reloc_type == 0;
13164
13165 case EM_AARCH64:
13166 return reloc_type == 0 || reloc_type == 256;
13167 case EM_AVR_OLD:
13168 case EM_AVR:
13169 return (reloc_type == 0 /* R_AVR_NONE. */
13170 || reloc_type == 30 /* R_AVR_DIFF8. */
13171 || reloc_type == 31 /* R_AVR_DIFF16. */
13172 || reloc_type == 32 /* R_AVR_DIFF32. */);
13173 case EM_METAG:
13174 return reloc_type == 3; /* R_METAG_NONE. */
13175 case EM_NDS32:
13176 return (reloc_type == 0 /* R_XTENSA_NONE. */
13177 || reloc_type == 204 /* R_NDS32_DIFF8. */
13178 || reloc_type == 205 /* R_NDS32_DIFF16. */
13179 || reloc_type == 206 /* R_NDS32_DIFF32. */
13180 || reloc_type == 207 /* R_NDS32_ULEB128. */);
13181 case EM_TI_PRU:
13182 return (reloc_type == 0 /* R_PRU_NONE. */
13183 || reloc_type == 65 /* R_PRU_DIFF8. */
13184 || reloc_type == 66 /* R_PRU_DIFF16. */
13185 || reloc_type == 67 /* R_PRU_DIFF32. */);
13186 case EM_XTENSA_OLD:
13187 case EM_XTENSA:
13188 return (reloc_type == 0 /* R_XTENSA_NONE. */
13189 || reloc_type == 17 /* R_XTENSA_DIFF8. */
13190 || reloc_type == 18 /* R_XTENSA_DIFF16. */
13191 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
13192 }
13193 return FALSE;
13194 }
13195
13196 /* Returns TRUE if there is a relocation against
13197 section NAME at OFFSET bytes. */
13198
13199 bfd_boolean
13200 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
13201 {
13202 Elf_Internal_Rela * relocs;
13203 Elf_Internal_Rela * rp;
13204
13205 if (dsec == NULL || dsec->reloc_info == NULL)
13206 return FALSE;
13207
13208 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
13209
13210 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
13211 if (rp->r_offset == offset)
13212 return TRUE;
13213
13214 return FALSE;
13215 }
13216
13217 /* Apply relocations to a section.
13218 Returns TRUE upon success, FALSE otherwise.
13219 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
13220 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
13221 will be set to the number of relocs loaded.
13222
13223 Note: So far support has been added only for those relocations
13224 which can be found in debug sections. FIXME: Add support for
13225 more relocations ? */
13226
13227 static bfd_boolean
13228 apply_relocations (Filedata * filedata,
13229 const Elf_Internal_Shdr * section,
13230 unsigned char * start,
13231 bfd_size_type size,
13232 void ** relocs_return,
13233 unsigned long * num_relocs_return)
13234 {
13235 Elf_Internal_Shdr * relsec;
13236 unsigned char * end = start + size;
13237
13238 if (relocs_return != NULL)
13239 {
13240 * (Elf_Internal_Rela **) relocs_return = NULL;
13241 * num_relocs_return = 0;
13242 }
13243
13244 if (filedata->file_header.e_type != ET_REL)
13245 /* No relocs to apply. */
13246 return TRUE;
13247
13248 /* Find the reloc section associated with the section. */
13249 for (relsec = filedata->section_headers;
13250 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13251 ++relsec)
13252 {
13253 bfd_boolean is_rela;
13254 unsigned long num_relocs;
13255 Elf_Internal_Rela * relocs;
13256 Elf_Internal_Rela * rp;
13257 Elf_Internal_Shdr * symsec;
13258 Elf_Internal_Sym * symtab;
13259 unsigned long num_syms;
13260 Elf_Internal_Sym * sym;
13261
13262 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13263 || relsec->sh_info >= filedata->file_header.e_shnum
13264 || filedata->section_headers + relsec->sh_info != section
13265 || relsec->sh_size == 0
13266 || relsec->sh_link >= filedata->file_header.e_shnum)
13267 continue;
13268
13269 is_rela = relsec->sh_type == SHT_RELA;
13270
13271 if (is_rela)
13272 {
13273 if (!slurp_rela_relocs (filedata, relsec->sh_offset,
13274 relsec->sh_size, & relocs, & num_relocs))
13275 return FALSE;
13276 }
13277 else
13278 {
13279 if (!slurp_rel_relocs (filedata, relsec->sh_offset,
13280 relsec->sh_size, & relocs, & num_relocs))
13281 return FALSE;
13282 }
13283
13284 /* SH uses RELA but uses in place value instead of the addend field. */
13285 if (filedata->file_header.e_machine == EM_SH)
13286 is_rela = FALSE;
13287
13288 symsec = filedata->section_headers + relsec->sh_link;
13289 if (symsec->sh_type != SHT_SYMTAB
13290 && symsec->sh_type != SHT_DYNSYM)
13291 return FALSE;
13292 symtab = GET_ELF_SYMBOLS (filedata, symsec, & num_syms);
13293
13294 for (rp = relocs; rp < relocs + num_relocs; ++rp)
13295 {
13296 bfd_vma addend;
13297 unsigned int reloc_type;
13298 unsigned int reloc_size;
13299 bfd_boolean reloc_inplace = FALSE;
13300 bfd_boolean reloc_subtract = FALSE;
13301 unsigned char * rloc;
13302 unsigned long sym_index;
13303
13304 reloc_type = get_reloc_type (filedata, rp->r_info);
13305
13306 if (target_specific_reloc_handling (filedata, rp, start, end, symtab, num_syms))
13307 continue;
13308 else if (is_none_reloc (filedata, reloc_type))
13309 continue;
13310 else if (is_32bit_abs_reloc (filedata, reloc_type)
13311 || is_32bit_pcrel_reloc (filedata, reloc_type))
13312 reloc_size = 4;
13313 else if (is_64bit_abs_reloc (filedata, reloc_type)
13314 || is_64bit_pcrel_reloc (filedata, reloc_type))
13315 reloc_size = 8;
13316 else if (is_24bit_abs_reloc (filedata, reloc_type))
13317 reloc_size = 3;
13318 else if (is_16bit_abs_reloc (filedata, reloc_type))
13319 reloc_size = 2;
13320 else if (is_8bit_abs_reloc (filedata, reloc_type)
13321 || is_6bit_abs_reloc (filedata, reloc_type))
13322 reloc_size = 1;
13323 else if ((reloc_subtract = is_32bit_inplace_sub_reloc (filedata,
13324 reloc_type))
13325 || is_32bit_inplace_add_reloc (filedata, reloc_type))
13326 {
13327 reloc_size = 4;
13328 reloc_inplace = TRUE;
13329 }
13330 else if ((reloc_subtract = is_64bit_inplace_sub_reloc (filedata,
13331 reloc_type))
13332 || is_64bit_inplace_add_reloc (filedata, reloc_type))
13333 {
13334 reloc_size = 8;
13335 reloc_inplace = TRUE;
13336 }
13337 else if ((reloc_subtract = is_16bit_inplace_sub_reloc (filedata,
13338 reloc_type))
13339 || is_16bit_inplace_add_reloc (filedata, reloc_type))
13340 {
13341 reloc_size = 2;
13342 reloc_inplace = TRUE;
13343 }
13344 else if ((reloc_subtract = is_8bit_inplace_sub_reloc (filedata,
13345 reloc_type))
13346 || is_8bit_inplace_add_reloc (filedata, reloc_type))
13347 {
13348 reloc_size = 1;
13349 reloc_inplace = TRUE;
13350 }
13351 else if ((reloc_subtract = is_6bit_inplace_sub_reloc (filedata,
13352 reloc_type)))
13353 {
13354 reloc_size = 1;
13355 reloc_inplace = TRUE;
13356 }
13357 else
13358 {
13359 static unsigned int prev_reloc = 0;
13360
13361 if (reloc_type != prev_reloc)
13362 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
13363 reloc_type, printable_section_name (filedata, section));
13364 prev_reloc = reloc_type;
13365 continue;
13366 }
13367
13368 rloc = start + rp->r_offset;
13369 if ((rloc + reloc_size) > end || (rloc < start))
13370 {
13371 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
13372 (unsigned long) rp->r_offset,
13373 printable_section_name (filedata, section));
13374 continue;
13375 }
13376
13377 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
13378 if (sym_index >= num_syms)
13379 {
13380 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
13381 sym_index, printable_section_name (filedata, section));
13382 continue;
13383 }
13384 sym = symtab + sym_index;
13385
13386 /* If the reloc has a symbol associated with it,
13387 make sure that it is of an appropriate type.
13388
13389 Relocations against symbols without type can happen.
13390 Gcc -feliminate-dwarf2-dups may generate symbols
13391 without type for debug info.
13392
13393 Icc generates relocations against function symbols
13394 instead of local labels.
13395
13396 Relocations against object symbols can happen, eg when
13397 referencing a global array. For an example of this see
13398 the _clz.o binary in libgcc.a. */
13399 if (sym != symtab
13400 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
13401 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
13402 {
13403 warn (_("skipping unexpected symbol type %s in section %s relocation %ld\n"),
13404 get_symbol_type (filedata, ELF_ST_TYPE (sym->st_info)),
13405 printable_section_name (filedata, relsec),
13406 (long int)(rp - relocs));
13407 continue;
13408 }
13409
13410 addend = 0;
13411 if (is_rela)
13412 addend += rp->r_addend;
13413 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
13414 partial_inplace. */
13415 if (!is_rela
13416 || (filedata->file_header.e_machine == EM_XTENSA
13417 && reloc_type == 1)
13418 || ((filedata->file_header.e_machine == EM_PJ
13419 || filedata->file_header.e_machine == EM_PJ_OLD)
13420 && reloc_type == 1)
13421 || ((filedata->file_header.e_machine == EM_D30V
13422 || filedata->file_header.e_machine == EM_CYGNUS_D30V)
13423 && reloc_type == 12)
13424 || reloc_inplace)
13425 {
13426 if (is_6bit_inplace_sub_reloc (filedata, reloc_type))
13427 addend += byte_get (rloc, reloc_size) & 0x3f;
13428 else
13429 addend += byte_get (rloc, reloc_size);
13430 }
13431
13432 if (is_32bit_pcrel_reloc (filedata, reloc_type)
13433 || is_64bit_pcrel_reloc (filedata, reloc_type))
13434 {
13435 /* On HPPA, all pc-relative relocations are biased by 8. */
13436 if (filedata->file_header.e_machine == EM_PARISC)
13437 addend -= 8;
13438 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
13439 reloc_size);
13440 }
13441 else if (is_6bit_abs_reloc (filedata, reloc_type)
13442 || is_6bit_inplace_sub_reloc (filedata, reloc_type))
13443 {
13444 if (reloc_subtract)
13445 addend -= sym->st_value;
13446 else
13447 addend += sym->st_value;
13448 addend = (addend & 0x3f) | (byte_get (rloc, reloc_size) & 0xc0);
13449 byte_put (rloc, addend, reloc_size);
13450 }
13451 else if (reloc_subtract)
13452 byte_put (rloc, addend - sym->st_value, reloc_size);
13453 else
13454 byte_put (rloc, addend + sym->st_value, reloc_size);
13455 }
13456
13457 free (symtab);
13458 /* Let the target specific reloc processing code know that
13459 we have finished with these relocs. */
13460 target_specific_reloc_handling (filedata, NULL, NULL, NULL, NULL, 0);
13461
13462 if (relocs_return)
13463 {
13464 * (Elf_Internal_Rela **) relocs_return = relocs;
13465 * num_relocs_return = num_relocs;
13466 }
13467 else
13468 free (relocs);
13469
13470 break;
13471 }
13472
13473 return TRUE;
13474 }
13475
13476 #ifdef SUPPORT_DISASSEMBLY
13477 static bfd_boolean
13478 disassemble_section (Elf_Internal_Shdr * section, Filedata * filedata)
13479 {
13480 printf (_("\nAssembly dump of section %s\n"), printable_section_name (filedata, section));
13481
13482 /* FIXME: XXX -- to be done --- XXX */
13483
13484 return TRUE;
13485 }
13486 #endif
13487
13488 /* Reads in the contents of SECTION from FILE, returning a pointer
13489 to a malloc'ed buffer or NULL if something went wrong. */
13490
13491 static char *
13492 get_section_contents (Elf_Internal_Shdr * section, Filedata * filedata)
13493 {
13494 bfd_size_type num_bytes = section->sh_size;
13495
13496 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
13497 {
13498 printf (_("Section '%s' has no data to dump.\n"),
13499 printable_section_name (filedata, section));
13500 return NULL;
13501 }
13502
13503 return (char *) get_data (NULL, filedata, section->sh_offset, 1, num_bytes,
13504 _("section contents"));
13505 }
13506
13507 /* Uncompresses a section that was compressed using zlib, in place. */
13508
13509 static bfd_boolean
13510 uncompress_section_contents (unsigned char ** buffer,
13511 dwarf_size_type uncompressed_size,
13512 dwarf_size_type * size)
13513 {
13514 dwarf_size_type compressed_size = *size;
13515 unsigned char * compressed_buffer = *buffer;
13516 unsigned char * uncompressed_buffer;
13517 z_stream strm;
13518 int rc;
13519
13520 /* It is possible the section consists of several compressed
13521 buffers concatenated together, so we uncompress in a loop. */
13522 /* PR 18313: The state field in the z_stream structure is supposed
13523 to be invisible to the user (ie us), but some compilers will
13524 still complain about it being used without initialisation. So
13525 we first zero the entire z_stream structure and then set the fields
13526 that we need. */
13527 memset (& strm, 0, sizeof strm);
13528 strm.avail_in = compressed_size;
13529 strm.next_in = (Bytef *) compressed_buffer;
13530 strm.avail_out = uncompressed_size;
13531 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
13532
13533 rc = inflateInit (& strm);
13534 while (strm.avail_in > 0)
13535 {
13536 if (rc != Z_OK)
13537 goto fail;
13538 strm.next_out = ((Bytef *) uncompressed_buffer
13539 + (uncompressed_size - strm.avail_out));
13540 rc = inflate (&strm, Z_FINISH);
13541 if (rc != Z_STREAM_END)
13542 goto fail;
13543 rc = inflateReset (& strm);
13544 }
13545 rc = inflateEnd (& strm);
13546 if (rc != Z_OK
13547 || strm.avail_out != 0)
13548 goto fail;
13549
13550 *buffer = uncompressed_buffer;
13551 *size = uncompressed_size;
13552 return TRUE;
13553
13554 fail:
13555 free (uncompressed_buffer);
13556 /* Indicate decompression failure. */
13557 *buffer = NULL;
13558 return FALSE;
13559 }
13560
13561 static bfd_boolean
13562 dump_section_as_strings (Elf_Internal_Shdr * section, Filedata * filedata)
13563 {
13564 Elf_Internal_Shdr * relsec;
13565 bfd_size_type num_bytes;
13566 unsigned char * data;
13567 unsigned char * end;
13568 unsigned char * real_start;
13569 unsigned char * start;
13570 bfd_boolean some_strings_shown;
13571
13572 real_start = start = (unsigned char *) get_section_contents (section, filedata);
13573 if (start == NULL)
13574 /* PR 21820: Do not fail if the section was empty. */
13575 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13576
13577 num_bytes = section->sh_size;
13578
13579 printf (_("\nString dump of section '%s':\n"), printable_section_name (filedata, section));
13580
13581 if (decompress_dumps)
13582 {
13583 dwarf_size_type new_size = num_bytes;
13584 dwarf_size_type uncompressed_size = 0;
13585
13586 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13587 {
13588 Elf_Internal_Chdr chdr;
13589 unsigned int compression_header_size
13590 = get_compression_header (& chdr, (unsigned char *) start,
13591 num_bytes);
13592
13593 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13594 {
13595 warn (_("section '%s' has unsupported compress type: %d\n"),
13596 printable_section_name (filedata, section), chdr.ch_type);
13597 return FALSE;
13598 }
13599 uncompressed_size = chdr.ch_size;
13600 start += compression_header_size;
13601 new_size -= compression_header_size;
13602 }
13603 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13604 {
13605 /* Read the zlib header. In this case, it should be "ZLIB"
13606 followed by the uncompressed section size, 8 bytes in
13607 big-endian order. */
13608 uncompressed_size = start[4]; uncompressed_size <<= 8;
13609 uncompressed_size += start[5]; uncompressed_size <<= 8;
13610 uncompressed_size += start[6]; uncompressed_size <<= 8;
13611 uncompressed_size += start[7]; uncompressed_size <<= 8;
13612 uncompressed_size += start[8]; uncompressed_size <<= 8;
13613 uncompressed_size += start[9]; uncompressed_size <<= 8;
13614 uncompressed_size += start[10]; uncompressed_size <<= 8;
13615 uncompressed_size += start[11];
13616 start += 12;
13617 new_size -= 12;
13618 }
13619
13620 if (uncompressed_size)
13621 {
13622 if (uncompress_section_contents (& start,
13623 uncompressed_size, & new_size))
13624 num_bytes = new_size;
13625 else
13626 {
13627 error (_("Unable to decompress section %s\n"),
13628 printable_section_name (filedata, section));
13629 return FALSE;
13630 }
13631 }
13632 else
13633 start = real_start;
13634 }
13635
13636 /* If the section being dumped has relocations against it the user might
13637 be expecting these relocations to have been applied. Check for this
13638 case and issue a warning message in order to avoid confusion.
13639 FIXME: Maybe we ought to have an option that dumps a section with
13640 relocs applied ? */
13641 for (relsec = filedata->section_headers;
13642 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13643 ++relsec)
13644 {
13645 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13646 || relsec->sh_info >= filedata->file_header.e_shnum
13647 || filedata->section_headers + relsec->sh_info != section
13648 || relsec->sh_size == 0
13649 || relsec->sh_link >= filedata->file_header.e_shnum)
13650 continue;
13651
13652 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13653 break;
13654 }
13655
13656 data = start;
13657 end = start + num_bytes;
13658 some_strings_shown = FALSE;
13659
13660 while (data < end)
13661 {
13662 while (!ISPRINT (* data))
13663 if (++ data >= end)
13664 break;
13665
13666 if (data < end)
13667 {
13668 size_t maxlen = end - data;
13669
13670 #ifndef __MSVCRT__
13671 /* PR 11128: Use two separate invocations in order to work
13672 around bugs in the Solaris 8 implementation of printf. */
13673 printf (" [%6tx] ", data - start);
13674 #else
13675 printf (" [%6Ix] ", (size_t) (data - start));
13676 #endif
13677 if (maxlen > 0)
13678 {
13679 print_symbol ((int) maxlen, (const char *) data);
13680 putchar ('\n');
13681 data += strnlen ((const char *) data, maxlen);
13682 }
13683 else
13684 {
13685 printf (_("<corrupt>\n"));
13686 data = end;
13687 }
13688 some_strings_shown = TRUE;
13689 }
13690 }
13691
13692 if (! some_strings_shown)
13693 printf (_(" No strings found in this section."));
13694
13695 free (real_start);
13696
13697 putchar ('\n');
13698 return TRUE;
13699 }
13700
13701 static bfd_boolean
13702 dump_section_as_bytes (Elf_Internal_Shdr * section,
13703 Filedata * filedata,
13704 bfd_boolean relocate)
13705 {
13706 Elf_Internal_Shdr * relsec;
13707 bfd_size_type bytes;
13708 bfd_size_type section_size;
13709 bfd_vma addr;
13710 unsigned char * data;
13711 unsigned char * real_start;
13712 unsigned char * start;
13713
13714 real_start = start = (unsigned char *) get_section_contents (section, filedata);
13715 if (start == NULL)
13716 /* PR 21820: Do not fail if the section was empty. */
13717 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13718
13719 section_size = section->sh_size;
13720
13721 printf (_("\nHex dump of section '%s':\n"), printable_section_name (filedata, section));
13722
13723 if (decompress_dumps)
13724 {
13725 dwarf_size_type new_size = section_size;
13726 dwarf_size_type uncompressed_size = 0;
13727
13728 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13729 {
13730 Elf_Internal_Chdr chdr;
13731 unsigned int compression_header_size
13732 = get_compression_header (& chdr, start, section_size);
13733
13734 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13735 {
13736 warn (_("section '%s' has unsupported compress type: %d\n"),
13737 printable_section_name (filedata, section), chdr.ch_type);
13738 return FALSE;
13739 }
13740 uncompressed_size = chdr.ch_size;
13741 start += compression_header_size;
13742 new_size -= compression_header_size;
13743 }
13744 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13745 {
13746 /* Read the zlib header. In this case, it should be "ZLIB"
13747 followed by the uncompressed section size, 8 bytes in
13748 big-endian order. */
13749 uncompressed_size = start[4]; uncompressed_size <<= 8;
13750 uncompressed_size += start[5]; uncompressed_size <<= 8;
13751 uncompressed_size += start[6]; uncompressed_size <<= 8;
13752 uncompressed_size += start[7]; uncompressed_size <<= 8;
13753 uncompressed_size += start[8]; uncompressed_size <<= 8;
13754 uncompressed_size += start[9]; uncompressed_size <<= 8;
13755 uncompressed_size += start[10]; uncompressed_size <<= 8;
13756 uncompressed_size += start[11];
13757 start += 12;
13758 new_size -= 12;
13759 }
13760
13761 if (uncompressed_size)
13762 {
13763 if (uncompress_section_contents (& start, uncompressed_size,
13764 & new_size))
13765 {
13766 section_size = new_size;
13767 }
13768 else
13769 {
13770 error (_("Unable to decompress section %s\n"),
13771 printable_section_name (filedata, section));
13772 /* FIXME: Print the section anyway ? */
13773 return FALSE;
13774 }
13775 }
13776 else
13777 start = real_start;
13778 }
13779
13780 if (relocate)
13781 {
13782 if (! apply_relocations (filedata, section, start, section_size, NULL, NULL))
13783 return FALSE;
13784 }
13785 else
13786 {
13787 /* If the section being dumped has relocations against it the user might
13788 be expecting these relocations to have been applied. Check for this
13789 case and issue a warning message in order to avoid confusion.
13790 FIXME: Maybe we ought to have an option that dumps a section with
13791 relocs applied ? */
13792 for (relsec = filedata->section_headers;
13793 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13794 ++relsec)
13795 {
13796 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13797 || relsec->sh_info >= filedata->file_header.e_shnum
13798 || filedata->section_headers + relsec->sh_info != section
13799 || relsec->sh_size == 0
13800 || relsec->sh_link >= filedata->file_header.e_shnum)
13801 continue;
13802
13803 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13804 break;
13805 }
13806 }
13807
13808 addr = section->sh_addr;
13809 bytes = section_size;
13810 data = start;
13811
13812 while (bytes)
13813 {
13814 int j;
13815 int k;
13816 int lbytes;
13817
13818 lbytes = (bytes > 16 ? 16 : bytes);
13819
13820 printf (" 0x%8.8lx ", (unsigned long) addr);
13821
13822 for (j = 0; j < 16; j++)
13823 {
13824 if (j < lbytes)
13825 printf ("%2.2x", data[j]);
13826 else
13827 printf (" ");
13828
13829 if ((j & 3) == 3)
13830 printf (" ");
13831 }
13832
13833 for (j = 0; j < lbytes; j++)
13834 {
13835 k = data[j];
13836 if (k >= ' ' && k < 0x7f)
13837 printf ("%c", k);
13838 else
13839 printf (".");
13840 }
13841
13842 putchar ('\n');
13843
13844 data += lbytes;
13845 addr += lbytes;
13846 bytes -= lbytes;
13847 }
13848
13849 free (real_start);
13850
13851 putchar ('\n');
13852 return TRUE;
13853 }
13854
13855 static ctf_sect_t *
13856 shdr_to_ctf_sect (ctf_sect_t *buf, Elf_Internal_Shdr *shdr, Filedata *filedata)
13857 {
13858 buf->cts_name = SECTION_NAME (shdr);
13859 buf->cts_size = shdr->sh_size;
13860 buf->cts_entsize = shdr->sh_entsize;
13861
13862 return buf;
13863 }
13864
13865 /* Formatting callback function passed to ctf_dump. Returns either the pointer
13866 it is passed, or a pointer to newly-allocated storage, in which case
13867 dump_ctf() will free it when it no longer needs it. */
13868
13869 static char *dump_ctf_indent_lines (ctf_sect_names_t sect ATTRIBUTE_UNUSED,
13870 char *s, void *arg)
13871 {
13872 const char *blanks = arg;
13873 char *new_s;
13874
13875 if (asprintf (&new_s, "%s%s", blanks, s) < 0)
13876 return s;
13877 return new_s;
13878 }
13879
13880 static bfd_boolean
13881 dump_section_as_ctf (Elf_Internal_Shdr * section, Filedata * filedata)
13882 {
13883 Elf_Internal_Shdr * parent_sec = NULL;
13884 Elf_Internal_Shdr * symtab_sec = NULL;
13885 Elf_Internal_Shdr * strtab_sec = NULL;
13886 void * data = NULL;
13887 void * symdata = NULL;
13888 void * strdata = NULL;
13889 void * parentdata = NULL;
13890 ctf_sect_t ctfsect, symsect, strsect, parentsect;
13891 ctf_sect_t * symsectp = NULL;
13892 ctf_sect_t * strsectp = NULL;
13893 ctf_file_t * ctf = NULL;
13894 ctf_file_t * parent = NULL;
13895
13896 const char *things[] = {"Labels", "Data objects", "Function objects",
13897 "Variables", "Types", "Strings", ""};
13898 const char **thing;
13899 int err;
13900 bfd_boolean ret = FALSE;
13901 size_t i;
13902
13903 shdr_to_ctf_sect (&ctfsect, section, filedata);
13904 data = get_section_contents (section, filedata);
13905 ctfsect.cts_data = data;
13906
13907 if (dump_ctf_symtab_name)
13908 {
13909 if ((symtab_sec = find_section (filedata, dump_ctf_symtab_name)) == NULL)
13910 {
13911 error (_("No symbol section named %s\n"), dump_ctf_symtab_name);
13912 goto fail;
13913 }
13914 if ((symdata = (void *) get_data (NULL, filedata,
13915 symtab_sec->sh_offset, 1,
13916 symtab_sec->sh_size,
13917 _("symbols"))) == NULL)
13918 goto fail;
13919 symsectp = shdr_to_ctf_sect (&symsect, symtab_sec, filedata);
13920 symsect.cts_data = symdata;
13921 }
13922 if (dump_ctf_strtab_name)
13923 {
13924 if ((strtab_sec = find_section (filedata, dump_ctf_strtab_name)) == NULL)
13925 {
13926 error (_("No string table section named %s\n"),
13927 dump_ctf_strtab_name);
13928 goto fail;
13929 }
13930 if ((strdata = (void *) get_data (NULL, filedata,
13931 strtab_sec->sh_offset, 1,
13932 strtab_sec->sh_size,
13933 _("strings"))) == NULL)
13934 goto fail;
13935 strsectp = shdr_to_ctf_sect (&strsect, strtab_sec, filedata);
13936 strsect.cts_data = strdata;
13937 }
13938 if (dump_ctf_parent_name)
13939 {
13940 if ((parent_sec = find_section (filedata, dump_ctf_parent_name)) == NULL)
13941 {
13942 error (_("No CTF parent section named %s\n"), dump_ctf_parent_name);
13943 goto fail;
13944 }
13945 if ((parentdata = (void *) get_data (NULL, filedata,
13946 parent_sec->sh_offset, 1,
13947 parent_sec->sh_size,
13948 _("CTF parent"))) == NULL)
13949 goto fail;
13950 shdr_to_ctf_sect (&parentsect, parent_sec, filedata);
13951 parentsect.cts_data = parentdata;
13952 }
13953
13954 /* Load the CTF file and dump it. */
13955
13956 if ((ctf = ctf_bufopen (&ctfsect, symsectp, strsectp, &err)) == NULL)
13957 {
13958 error (_("CTF open failure: %s\n"), ctf_errmsg (err));
13959 goto fail;
13960 }
13961
13962 if (parentdata)
13963 {
13964 if ((parent = ctf_bufopen (&parentsect, symsectp, strsectp, &err)) == NULL)
13965 {
13966 error (_("CTF open failure: %s\n"), ctf_errmsg (err));
13967 goto fail;
13968 }
13969
13970 ctf_import (ctf, parent);
13971 }
13972
13973 ret = TRUE;
13974
13975 printf (_("\nDump of CTF section '%s':\n"),
13976 printable_section_name (filedata, section));
13977
13978 for (i = 1, thing = things; *thing[0]; thing++, i++)
13979 {
13980 ctf_dump_state_t *s = NULL;
13981 char *item;
13982
13983 printf ("\n %s:\n", *thing);
13984 while ((item = ctf_dump (ctf, &s, i, dump_ctf_indent_lines,
13985 (void *) " ")) != NULL)
13986 {
13987 printf ("%s\n", item);
13988 free (item);
13989 }
13990
13991 if (ctf_errno (ctf))
13992 {
13993 error (_("Iteration failed: %s, %s\n"), *thing,
13994 ctf_errmsg (ctf_errno (ctf)));
13995 ret = FALSE;
13996 }
13997 }
13998
13999 fail:
14000 ctf_file_close (ctf);
14001 ctf_file_close (parent);
14002 free (parentdata);
14003 free (data);
14004 free (symdata);
14005 free (strdata);
14006 return ret;
14007 }
14008
14009 static bfd_boolean
14010 load_specific_debug_section (enum dwarf_section_display_enum debug,
14011 const Elf_Internal_Shdr * sec,
14012 void * data)
14013 {
14014 struct dwarf_section * section = &debug_displays [debug].section;
14015 char buf [64];
14016 Filedata * filedata = (Filedata *) data;
14017
14018 if (section->start != NULL)
14019 {
14020 /* If it is already loaded, do nothing. */
14021 if (streq (section->filename, filedata->file_name))
14022 return TRUE;
14023 free (section->start);
14024 }
14025
14026 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
14027 section->address = sec->sh_addr;
14028 section->user_data = NULL;
14029 section->filename = filedata->file_name;
14030 section->start = (unsigned char *) get_data (NULL, filedata,
14031 sec->sh_offset, 1,
14032 sec->sh_size, buf);
14033 if (section->start == NULL)
14034 section->size = 0;
14035 else
14036 {
14037 unsigned char *start = section->start;
14038 dwarf_size_type size = sec->sh_size;
14039 dwarf_size_type uncompressed_size = 0;
14040
14041 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
14042 {
14043 Elf_Internal_Chdr chdr;
14044 unsigned int compression_header_size;
14045
14046 if (size < (is_32bit_elf
14047 ? sizeof (Elf32_External_Chdr)
14048 : sizeof (Elf64_External_Chdr)))
14049 {
14050 warn (_("compressed section %s is too small to contain a compression header"),
14051 section->name);
14052 return FALSE;
14053 }
14054
14055 compression_header_size = get_compression_header (&chdr, start, size);
14056
14057 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
14058 {
14059 warn (_("section '%s' has unsupported compress type: %d\n"),
14060 section->name, chdr.ch_type);
14061 return FALSE;
14062 }
14063 uncompressed_size = chdr.ch_size;
14064 start += compression_header_size;
14065 size -= compression_header_size;
14066 }
14067 else if (size > 12 && streq ((char *) start, "ZLIB"))
14068 {
14069 /* Read the zlib header. In this case, it should be "ZLIB"
14070 followed by the uncompressed section size, 8 bytes in
14071 big-endian order. */
14072 uncompressed_size = start[4]; uncompressed_size <<= 8;
14073 uncompressed_size += start[5]; uncompressed_size <<= 8;
14074 uncompressed_size += start[6]; uncompressed_size <<= 8;
14075 uncompressed_size += start[7]; uncompressed_size <<= 8;
14076 uncompressed_size += start[8]; uncompressed_size <<= 8;
14077 uncompressed_size += start[9]; uncompressed_size <<= 8;
14078 uncompressed_size += start[10]; uncompressed_size <<= 8;
14079 uncompressed_size += start[11];
14080 start += 12;
14081 size -= 12;
14082 }
14083
14084 if (uncompressed_size)
14085 {
14086 if (uncompress_section_contents (&start, uncompressed_size,
14087 &size))
14088 {
14089 /* Free the compressed buffer, update the section buffer
14090 and the section size if uncompress is successful. */
14091 free (section->start);
14092 section->start = start;
14093 }
14094 else
14095 {
14096 error (_("Unable to decompress section %s\n"),
14097 printable_section_name (filedata, sec));
14098 return FALSE;
14099 }
14100 }
14101
14102 section->size = size;
14103 }
14104
14105 if (section->start == NULL)
14106 return FALSE;
14107
14108 if (debug_displays [debug].relocate)
14109 {
14110 if (! apply_relocations (filedata, sec, section->start, section->size,
14111 & section->reloc_info, & section->num_relocs))
14112 return FALSE;
14113 }
14114 else
14115 {
14116 section->reloc_info = NULL;
14117 section->num_relocs = 0;
14118 }
14119
14120 return TRUE;
14121 }
14122
14123 /* If this is not NULL, load_debug_section will only look for sections
14124 within the list of sections given here. */
14125 static unsigned int * section_subset = NULL;
14126
14127 bfd_boolean
14128 load_debug_section (enum dwarf_section_display_enum debug, void * data)
14129 {
14130 struct dwarf_section * section = &debug_displays [debug].section;
14131 Elf_Internal_Shdr * sec;
14132 Filedata * filedata = (Filedata *) data;
14133
14134 /* Without section headers we cannot find any sections. */
14135 if (filedata->section_headers == NULL)
14136 return FALSE;
14137
14138 if (filedata->string_table == NULL
14139 && filedata->file_header.e_shstrndx != SHN_UNDEF
14140 && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum)
14141 {
14142 Elf_Internal_Shdr * strs;
14143
14144 /* Read in the string table, so that we have section names to scan. */
14145 strs = filedata->section_headers + filedata->file_header.e_shstrndx;
14146
14147 if (strs != NULL && strs->sh_size != 0)
14148 {
14149 filedata->string_table
14150 = (char *) get_data (NULL, filedata, strs->sh_offset,
14151 1, strs->sh_size, _("string table"));
14152
14153 filedata->string_table_length
14154 = filedata->string_table != NULL ? strs->sh_size : 0;
14155 }
14156 }
14157
14158 /* Locate the debug section. */
14159 sec = find_section_in_set (filedata, section->uncompressed_name, section_subset);
14160 if (sec != NULL)
14161 section->name = section->uncompressed_name;
14162 else
14163 {
14164 sec = find_section_in_set (filedata, section->compressed_name, section_subset);
14165 if (sec != NULL)
14166 section->name = section->compressed_name;
14167 }
14168 if (sec == NULL)
14169 return FALSE;
14170
14171 /* If we're loading from a subset of sections, and we've loaded
14172 a section matching this name before, it's likely that it's a
14173 different one. */
14174 if (section_subset != NULL)
14175 free_debug_section (debug);
14176
14177 return load_specific_debug_section (debug, sec, data);
14178 }
14179
14180 void
14181 free_debug_section (enum dwarf_section_display_enum debug)
14182 {
14183 struct dwarf_section * section = &debug_displays [debug].section;
14184
14185 if (section->start == NULL)
14186 return;
14187
14188 free ((char *) section->start);
14189 section->start = NULL;
14190 section->address = 0;
14191 section->size = 0;
14192 }
14193
14194 static bfd_boolean
14195 display_debug_section (int shndx, Elf_Internal_Shdr * section, Filedata * filedata)
14196 {
14197 char * name = SECTION_NAME (section);
14198 const char * print_name = printable_section_name (filedata, section);
14199 bfd_size_type length;
14200 bfd_boolean result = TRUE;
14201 int i;
14202
14203 length = section->sh_size;
14204 if (length == 0)
14205 {
14206 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
14207 return TRUE;
14208 }
14209 if (section->sh_type == SHT_NOBITS)
14210 {
14211 /* There is no point in dumping the contents of a debugging section
14212 which has the NOBITS type - the bits in the file will be random.
14213 This can happen when a file containing a .eh_frame section is
14214 stripped with the --only-keep-debug command line option. */
14215 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
14216 print_name);
14217 return FALSE;
14218 }
14219
14220 if (const_strneq (name, ".gnu.linkonce.wi."))
14221 name = ".debug_info";
14222
14223 /* See if we know how to display the contents of this section. */
14224 for (i = 0; i < max; i++)
14225 {
14226 enum dwarf_section_display_enum id = (enum dwarf_section_display_enum) i;
14227 struct dwarf_section_display * display = debug_displays + i;
14228 struct dwarf_section * sec = & display->section;
14229
14230 if (streq (sec->uncompressed_name, name)
14231 || (id == line && const_strneq (name, ".debug_line."))
14232 || streq (sec->compressed_name, name))
14233 {
14234 bfd_boolean secondary = (section != find_section (filedata, name));
14235
14236 if (secondary)
14237 free_debug_section (id);
14238
14239 if (i == line && const_strneq (name, ".debug_line."))
14240 sec->name = name;
14241 else if (streq (sec->uncompressed_name, name))
14242 sec->name = sec->uncompressed_name;
14243 else
14244 sec->name = sec->compressed_name;
14245
14246 if (load_specific_debug_section (id, section, filedata))
14247 {
14248 /* If this debug section is part of a CU/TU set in a .dwp file,
14249 restrict load_debug_section to the sections in that set. */
14250 section_subset = find_cu_tu_set (filedata, shndx);
14251
14252 result &= display->display (sec, filedata);
14253
14254 section_subset = NULL;
14255
14256 if (secondary || (id != info && id != abbrev))
14257 free_debug_section (id);
14258 }
14259 break;
14260 }
14261 }
14262
14263 if (i == max)
14264 {
14265 printf (_("Unrecognized debug section: %s\n"), print_name);
14266 result = FALSE;
14267 }
14268
14269 return result;
14270 }
14271
14272 /* Set DUMP_SECTS for all sections where dumps were requested
14273 based on section name. */
14274
14275 static void
14276 initialise_dumps_byname (Filedata * filedata)
14277 {
14278 struct dump_list_entry * cur;
14279
14280 for (cur = dump_sects_byname; cur; cur = cur->next)
14281 {
14282 unsigned int i;
14283 bfd_boolean any = FALSE;
14284
14285 for (i = 0; i < filedata->file_header.e_shnum; i++)
14286 if (streq (SECTION_NAME (filedata->section_headers + i), cur->name))
14287 {
14288 request_dump_bynumber (filedata, i, cur->type);
14289 any = TRUE;
14290 }
14291
14292 if (!any)
14293 warn (_("Section '%s' was not dumped because it does not exist!\n"),
14294 cur->name);
14295 }
14296 }
14297
14298 static bfd_boolean
14299 process_section_contents (Filedata * filedata)
14300 {
14301 Elf_Internal_Shdr * section;
14302 unsigned int i;
14303 bfd_boolean res = TRUE;
14304
14305 if (! do_dump)
14306 return TRUE;
14307
14308 initialise_dumps_byname (filedata);
14309
14310 for (i = 0, section = filedata->section_headers;
14311 i < filedata->file_header.e_shnum && i < filedata->num_dump_sects;
14312 i++, section++)
14313 {
14314 dump_type dump = filedata->dump_sects[i];
14315
14316 #ifdef SUPPORT_DISASSEMBLY
14317 if (dump & DISASS_DUMP)
14318 {
14319 if (! disassemble_section (section, filedata))
14320 res = FALSE;
14321 }
14322 #endif
14323 if (dump & HEX_DUMP)
14324 {
14325 if (! dump_section_as_bytes (section, filedata, FALSE))
14326 res = FALSE;
14327 }
14328
14329 if (dump & RELOC_DUMP)
14330 {
14331 if (! dump_section_as_bytes (section, filedata, TRUE))
14332 res = FALSE;
14333 }
14334
14335 if (dump & STRING_DUMP)
14336 {
14337 if (! dump_section_as_strings (section, filedata))
14338 res = FALSE;
14339 }
14340
14341 if (dump & DEBUG_DUMP)
14342 {
14343 if (! display_debug_section (i, section, filedata))
14344 res = FALSE;
14345 }
14346
14347 if (dump & CTF_DUMP)
14348 {
14349 if (! dump_section_as_ctf (section, filedata))
14350 res = FALSE;
14351 }
14352 }
14353
14354 /* Check to see if the user requested a
14355 dump of a section that does not exist. */
14356 while (i < filedata->num_dump_sects)
14357 {
14358 if (filedata->dump_sects[i])
14359 {
14360 warn (_("Section %d was not dumped because it does not exist!\n"), i);
14361 res = FALSE;
14362 }
14363 i++;
14364 }
14365
14366 return res;
14367 }
14368
14369 static void
14370 process_mips_fpe_exception (int mask)
14371 {
14372 if (mask)
14373 {
14374 bfd_boolean first = TRUE;
14375
14376 if (mask & OEX_FPU_INEX)
14377 fputs ("INEX", stdout), first = FALSE;
14378 if (mask & OEX_FPU_UFLO)
14379 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
14380 if (mask & OEX_FPU_OFLO)
14381 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
14382 if (mask & OEX_FPU_DIV0)
14383 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
14384 if (mask & OEX_FPU_INVAL)
14385 printf ("%sINVAL", first ? "" : "|");
14386 }
14387 else
14388 fputs ("0", stdout);
14389 }
14390
14391 /* Display's the value of TAG at location P. If TAG is
14392 greater than 0 it is assumed to be an unknown tag, and
14393 a message is printed to this effect. Otherwise it is
14394 assumed that a message has already been printed.
14395
14396 If the bottom bit of TAG is set it assumed to have a
14397 string value, otherwise it is assumed to have an integer
14398 value.
14399
14400 Returns an updated P pointing to the first unread byte
14401 beyond the end of TAG's value.
14402
14403 Reads at or beyond END will not be made. */
14404
14405 static unsigned char *
14406 display_tag_value (signed int tag,
14407 unsigned char * p,
14408 const unsigned char * const end)
14409 {
14410 unsigned long val;
14411
14412 if (tag > 0)
14413 printf (" Tag_unknown_%d: ", tag);
14414
14415 if (p >= end)
14416 {
14417 warn (_("<corrupt tag>\n"));
14418 }
14419 else if (tag & 1)
14420 {
14421 /* PR 17531 file: 027-19978-0.004. */
14422 size_t maxlen = (end - p) - 1;
14423
14424 putchar ('"');
14425 if (maxlen > 0)
14426 {
14427 print_symbol ((int) maxlen, (const char *) p);
14428 p += strnlen ((char *) p, maxlen) + 1;
14429 }
14430 else
14431 {
14432 printf (_("<corrupt string tag>"));
14433 p = (unsigned char *) end;
14434 }
14435 printf ("\"\n");
14436 }
14437 else
14438 {
14439 unsigned int len;
14440
14441 val = read_uleb128 (p, &len, end);
14442 p += len;
14443 printf ("%ld (0x%lx)\n", val, val);
14444 }
14445
14446 assert (p <= end);
14447 return p;
14448 }
14449
14450 /* ARC ABI attributes section. */
14451
14452 static unsigned char *
14453 display_arc_attribute (unsigned char * p,
14454 const unsigned char * const end)
14455 {
14456 unsigned int tag;
14457 unsigned int len;
14458 unsigned int val;
14459
14460 tag = read_uleb128 (p, &len, end);
14461 p += len;
14462
14463 switch (tag)
14464 {
14465 case Tag_ARC_PCS_config:
14466 val = read_uleb128 (p, &len, end);
14467 p += len;
14468 printf (" Tag_ARC_PCS_config: ");
14469 switch (val)
14470 {
14471 case 0:
14472 printf (_("Absent/Non standard\n"));
14473 break;
14474 case 1:
14475 printf (_("Bare metal/mwdt\n"));
14476 break;
14477 case 2:
14478 printf (_("Bare metal/newlib\n"));
14479 break;
14480 case 3:
14481 printf (_("Linux/uclibc\n"));
14482 break;
14483 case 4:
14484 printf (_("Linux/glibc\n"));
14485 break;
14486 default:
14487 printf (_("Unknown\n"));
14488 break;
14489 }
14490 break;
14491
14492 case Tag_ARC_CPU_base:
14493 val = read_uleb128 (p, &len, end);
14494 p += len;
14495 printf (" Tag_ARC_CPU_base: ");
14496 switch (val)
14497 {
14498 default:
14499 case TAG_CPU_NONE:
14500 printf (_("Absent\n"));
14501 break;
14502 case TAG_CPU_ARC6xx:
14503 printf ("ARC6xx\n");
14504 break;
14505 case TAG_CPU_ARC7xx:
14506 printf ("ARC7xx\n");
14507 break;
14508 case TAG_CPU_ARCEM:
14509 printf ("ARCEM\n");
14510 break;
14511 case TAG_CPU_ARCHS:
14512 printf ("ARCHS\n");
14513 break;
14514 }
14515 break;
14516
14517 case Tag_ARC_CPU_variation:
14518 val = read_uleb128 (p, &len, end);
14519 p += len;
14520 printf (" Tag_ARC_CPU_variation: ");
14521 switch (val)
14522 {
14523 default:
14524 if (val > 0 && val < 16)
14525 printf ("Core%d\n", val);
14526 else
14527 printf ("Unknown\n");
14528 break;
14529
14530 case 0:
14531 printf (_("Absent\n"));
14532 break;
14533 }
14534 break;
14535
14536 case Tag_ARC_CPU_name:
14537 printf (" Tag_ARC_CPU_name: ");
14538 p = display_tag_value (-1, p, end);
14539 break;
14540
14541 case Tag_ARC_ABI_rf16:
14542 val = read_uleb128 (p, &len, end);
14543 p += len;
14544 printf (" Tag_ARC_ABI_rf16: %s\n", val ? _("yes") : _("no"));
14545 break;
14546
14547 case Tag_ARC_ABI_osver:
14548 val = read_uleb128 (p, &len, end);
14549 p += len;
14550 printf (" Tag_ARC_ABI_osver: v%d\n", val);
14551 break;
14552
14553 case Tag_ARC_ABI_pic:
14554 case Tag_ARC_ABI_sda:
14555 val = read_uleb128 (p, &len, end);
14556 p += len;
14557 printf (tag == Tag_ARC_ABI_sda ? " Tag_ARC_ABI_sda: "
14558 : " Tag_ARC_ABI_pic: ");
14559 switch (val)
14560 {
14561 case 0:
14562 printf (_("Absent\n"));
14563 break;
14564 case 1:
14565 printf ("MWDT\n");
14566 break;
14567 case 2:
14568 printf ("GNU\n");
14569 break;
14570 default:
14571 printf (_("Unknown\n"));
14572 break;
14573 }
14574 break;
14575
14576 case Tag_ARC_ABI_tls:
14577 val = read_uleb128 (p, &len, end);
14578 p += len;
14579 printf (" Tag_ARC_ABI_tls: %s\n", val ? "r25": "none");
14580 break;
14581
14582 case Tag_ARC_ABI_enumsize:
14583 val = read_uleb128 (p, &len, end);
14584 p += len;
14585 printf (" Tag_ARC_ABI_enumsize: %s\n", val ? _("default") :
14586 _("smallest"));
14587 break;
14588
14589 case Tag_ARC_ABI_exceptions:
14590 val = read_uleb128 (p, &len, end);
14591 p += len;
14592 printf (" Tag_ARC_ABI_exceptions: %s\n", val ? _("OPTFP")
14593 : _("default"));
14594 break;
14595
14596 case Tag_ARC_ABI_double_size:
14597 val = read_uleb128 (p, &len, end);
14598 p += len;
14599 printf (" Tag_ARC_ABI_double_size: %d\n", val);
14600 break;
14601
14602 case Tag_ARC_ISA_config:
14603 printf (" Tag_ARC_ISA_config: ");
14604 p = display_tag_value (-1, p, end);
14605 break;
14606
14607 case Tag_ARC_ISA_apex:
14608 printf (" Tag_ARC_ISA_apex: ");
14609 p = display_tag_value (-1, p, end);
14610 break;
14611
14612 case Tag_ARC_ISA_mpy_option:
14613 val = read_uleb128 (p, &len, end);
14614 p += len;
14615 printf (" Tag_ARC_ISA_mpy_option: %d\n", val);
14616 break;
14617
14618 case Tag_ARC_ATR_version:
14619 val = read_uleb128 (p, &len, end);
14620 p += len;
14621 printf (" Tag_ARC_ATR_version: %d\n", val);
14622 break;
14623
14624 default:
14625 return display_tag_value (tag & 1, p, end);
14626 }
14627
14628 return p;
14629 }
14630
14631 /* ARM EABI attributes section. */
14632 typedef struct
14633 {
14634 unsigned int tag;
14635 const char * name;
14636 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
14637 unsigned int type;
14638 const char ** table;
14639 } arm_attr_public_tag;
14640
14641 static const char * arm_attr_tag_CPU_arch[] =
14642 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
14643 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "v8-R", "v8-M.baseline",
14644 "v8-M.mainline", "", "", "", "v8.1-M.mainline"};
14645 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
14646 static const char * arm_attr_tag_THUMB_ISA_use[] =
14647 {"No", "Thumb-1", "Thumb-2", "Yes"};
14648 static const char * arm_attr_tag_FP_arch[] =
14649 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
14650 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
14651 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
14652 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
14653 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
14654 "NEON for ARMv8.1"};
14655 static const char * arm_attr_tag_PCS_config[] =
14656 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
14657 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
14658 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
14659 {"V6", "SB", "TLS", "Unused"};
14660 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
14661 {"Absolute", "PC-relative", "SB-relative", "None"};
14662 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
14663 {"Absolute", "PC-relative", "None"};
14664 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
14665 {"None", "direct", "GOT-indirect"};
14666 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
14667 {"None", "??? 1", "2", "??? 3", "4"};
14668 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
14669 static const char * arm_attr_tag_ABI_FP_denormal[] =
14670 {"Unused", "Needed", "Sign only"};
14671 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
14672 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
14673 static const char * arm_attr_tag_ABI_FP_number_model[] =
14674 {"Unused", "Finite", "RTABI", "IEEE 754"};
14675 static const char * arm_attr_tag_ABI_enum_size[] =
14676 {"Unused", "small", "int", "forced to int"};
14677 static const char * arm_attr_tag_ABI_HardFP_use[] =
14678 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
14679 static const char * arm_attr_tag_ABI_VFP_args[] =
14680 {"AAPCS", "VFP registers", "custom", "compatible"};
14681 static const char * arm_attr_tag_ABI_WMMX_args[] =
14682 {"AAPCS", "WMMX registers", "custom"};
14683 static const char * arm_attr_tag_ABI_optimization_goals[] =
14684 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
14685 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
14686 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
14687 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
14688 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
14689 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
14690 static const char * arm_attr_tag_FP_HP_extension[] =
14691 {"Not Allowed", "Allowed"};
14692 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
14693 {"None", "IEEE 754", "Alternative Format"};
14694 static const char * arm_attr_tag_DSP_extension[] =
14695 {"Follow architecture", "Allowed"};
14696 static const char * arm_attr_tag_MPextension_use[] =
14697 {"Not Allowed", "Allowed"};
14698 static const char * arm_attr_tag_DIV_use[] =
14699 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
14700 "Allowed in v7-A with integer division extension"};
14701 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
14702 static const char * arm_attr_tag_Virtualization_use[] =
14703 {"Not Allowed", "TrustZone", "Virtualization Extensions",
14704 "TrustZone and Virtualization Extensions"};
14705 static const char * arm_attr_tag_MPextension_use_legacy[] =
14706 {"Not Allowed", "Allowed"};
14707
14708 static const char * arm_attr_tag_MVE_arch[] =
14709 {"No MVE", "MVE Integer only", "MVE Integer and FP"};
14710
14711 #define LOOKUP(id, name) \
14712 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
14713 static arm_attr_public_tag arm_attr_public_tags[] =
14714 {
14715 {4, "CPU_raw_name", 1, NULL},
14716 {5, "CPU_name", 1, NULL},
14717 LOOKUP(6, CPU_arch),
14718 {7, "CPU_arch_profile", 0, NULL},
14719 LOOKUP(8, ARM_ISA_use),
14720 LOOKUP(9, THUMB_ISA_use),
14721 LOOKUP(10, FP_arch),
14722 LOOKUP(11, WMMX_arch),
14723 LOOKUP(12, Advanced_SIMD_arch),
14724 LOOKUP(13, PCS_config),
14725 LOOKUP(14, ABI_PCS_R9_use),
14726 LOOKUP(15, ABI_PCS_RW_data),
14727 LOOKUP(16, ABI_PCS_RO_data),
14728 LOOKUP(17, ABI_PCS_GOT_use),
14729 LOOKUP(18, ABI_PCS_wchar_t),
14730 LOOKUP(19, ABI_FP_rounding),
14731 LOOKUP(20, ABI_FP_denormal),
14732 LOOKUP(21, ABI_FP_exceptions),
14733 LOOKUP(22, ABI_FP_user_exceptions),
14734 LOOKUP(23, ABI_FP_number_model),
14735 {24, "ABI_align_needed", 0, NULL},
14736 {25, "ABI_align_preserved", 0, NULL},
14737 LOOKUP(26, ABI_enum_size),
14738 LOOKUP(27, ABI_HardFP_use),
14739 LOOKUP(28, ABI_VFP_args),
14740 LOOKUP(29, ABI_WMMX_args),
14741 LOOKUP(30, ABI_optimization_goals),
14742 LOOKUP(31, ABI_FP_optimization_goals),
14743 {32, "compatibility", 0, NULL},
14744 LOOKUP(34, CPU_unaligned_access),
14745 LOOKUP(36, FP_HP_extension),
14746 LOOKUP(38, ABI_FP_16bit_format),
14747 LOOKUP(42, MPextension_use),
14748 LOOKUP(44, DIV_use),
14749 LOOKUP(46, DSP_extension),
14750 LOOKUP(48, MVE_arch),
14751 {64, "nodefaults", 0, NULL},
14752 {65, "also_compatible_with", 0, NULL},
14753 LOOKUP(66, T2EE_use),
14754 {67, "conformance", 1, NULL},
14755 LOOKUP(68, Virtualization_use),
14756 LOOKUP(70, MPextension_use_legacy)
14757 };
14758 #undef LOOKUP
14759
14760 static unsigned char *
14761 display_arm_attribute (unsigned char * p,
14762 const unsigned char * const end)
14763 {
14764 unsigned int tag;
14765 unsigned int len;
14766 unsigned int val;
14767 arm_attr_public_tag * attr;
14768 unsigned i;
14769 unsigned int type;
14770
14771 tag = read_uleb128 (p, &len, end);
14772 p += len;
14773 attr = NULL;
14774 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
14775 {
14776 if (arm_attr_public_tags[i].tag == tag)
14777 {
14778 attr = &arm_attr_public_tags[i];
14779 break;
14780 }
14781 }
14782
14783 if (attr)
14784 {
14785 printf (" Tag_%s: ", attr->name);
14786 switch (attr->type)
14787 {
14788 case 0:
14789 switch (tag)
14790 {
14791 case 7: /* Tag_CPU_arch_profile. */
14792 val = read_uleb128 (p, &len, end);
14793 p += len;
14794 switch (val)
14795 {
14796 case 0: printf (_("None\n")); break;
14797 case 'A': printf (_("Application\n")); break;
14798 case 'R': printf (_("Realtime\n")); break;
14799 case 'M': printf (_("Microcontroller\n")); break;
14800 case 'S': printf (_("Application or Realtime\n")); break;
14801 default: printf ("??? (%d)\n", val); break;
14802 }
14803 break;
14804
14805 case 24: /* Tag_align_needed. */
14806 val = read_uleb128 (p, &len, end);
14807 p += len;
14808 switch (val)
14809 {
14810 case 0: printf (_("None\n")); break;
14811 case 1: printf (_("8-byte\n")); break;
14812 case 2: printf (_("4-byte\n")); break;
14813 case 3: printf ("??? 3\n"); break;
14814 default:
14815 if (val <= 12)
14816 printf (_("8-byte and up to %d-byte extended\n"),
14817 1 << val);
14818 else
14819 printf ("??? (%d)\n", val);
14820 break;
14821 }
14822 break;
14823
14824 case 25: /* Tag_align_preserved. */
14825 val = read_uleb128 (p, &len, end);
14826 p += len;
14827 switch (val)
14828 {
14829 case 0: printf (_("None\n")); break;
14830 case 1: printf (_("8-byte, except leaf SP\n")); break;
14831 case 2: printf (_("8-byte\n")); break;
14832 case 3: printf ("??? 3\n"); break;
14833 default:
14834 if (val <= 12)
14835 printf (_("8-byte and up to %d-byte extended\n"),
14836 1 << val);
14837 else
14838 printf ("??? (%d)\n", val);
14839 break;
14840 }
14841 break;
14842
14843 case 32: /* Tag_compatibility. */
14844 {
14845 val = read_uleb128 (p, &len, end);
14846 p += len;
14847 printf (_("flag = %d, vendor = "), val);
14848 if (p < end - 1)
14849 {
14850 size_t maxlen = (end - p) - 1;
14851
14852 print_symbol ((int) maxlen, (const char *) p);
14853 p += strnlen ((char *) p, maxlen) + 1;
14854 }
14855 else
14856 {
14857 printf (_("<corrupt>"));
14858 p = (unsigned char *) end;
14859 }
14860 putchar ('\n');
14861 }
14862 break;
14863
14864 case 64: /* Tag_nodefaults. */
14865 /* PR 17531: file: 001-505008-0.01. */
14866 if (p < end)
14867 p++;
14868 printf (_("True\n"));
14869 break;
14870
14871 case 65: /* Tag_also_compatible_with. */
14872 val = read_uleb128 (p, &len, end);
14873 p += len;
14874 if (val == 6 /* Tag_CPU_arch. */)
14875 {
14876 val = read_uleb128 (p, &len, end);
14877 p += len;
14878 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
14879 printf ("??? (%d)\n", val);
14880 else
14881 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
14882 }
14883 else
14884 printf ("???\n");
14885 while (p < end && *(p++) != '\0' /* NUL terminator. */)
14886 ;
14887 break;
14888
14889 default:
14890 printf (_("<unknown: %d>\n"), tag);
14891 break;
14892 }
14893 return p;
14894
14895 case 1:
14896 return display_tag_value (-1, p, end);
14897 case 2:
14898 return display_tag_value (0, p, end);
14899
14900 default:
14901 assert (attr->type & 0x80);
14902 val = read_uleb128 (p, &len, end);
14903 p += len;
14904 type = attr->type & 0x7f;
14905 if (val >= type)
14906 printf ("??? (%d)\n", val);
14907 else
14908 printf ("%s\n", attr->table[val]);
14909 return p;
14910 }
14911 }
14912
14913 return display_tag_value (tag, p, end);
14914 }
14915
14916 static unsigned char *
14917 display_gnu_attribute (unsigned char * p,
14918 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
14919 const unsigned char * const end)
14920 {
14921 int tag;
14922 unsigned int len;
14923 unsigned int val;
14924
14925 tag = read_uleb128 (p, &len, end);
14926 p += len;
14927
14928 /* Tag_compatibility is the only generic GNU attribute defined at
14929 present. */
14930 if (tag == 32)
14931 {
14932 val = read_uleb128 (p, &len, end);
14933 p += len;
14934
14935 printf (_("flag = %d, vendor = "), val);
14936 if (p == end)
14937 {
14938 printf (_("<corrupt>\n"));
14939 warn (_("corrupt vendor attribute\n"));
14940 }
14941 else
14942 {
14943 if (p < end - 1)
14944 {
14945 size_t maxlen = (end - p) - 1;
14946
14947 print_symbol ((int) maxlen, (const char *) p);
14948 p += strnlen ((char *) p, maxlen) + 1;
14949 }
14950 else
14951 {
14952 printf (_("<corrupt>"));
14953 p = (unsigned char *) end;
14954 }
14955 putchar ('\n');
14956 }
14957 return p;
14958 }
14959
14960 if ((tag & 2) == 0 && display_proc_gnu_attribute)
14961 return display_proc_gnu_attribute (p, tag, end);
14962
14963 return display_tag_value (tag, p, end);
14964 }
14965
14966 static unsigned char *
14967 display_power_gnu_attribute (unsigned char * p,
14968 unsigned int tag,
14969 const unsigned char * const end)
14970 {
14971 unsigned int len;
14972 unsigned int val;
14973
14974 if (tag == Tag_GNU_Power_ABI_FP)
14975 {
14976 val = read_uleb128 (p, &len, end);
14977 p += len;
14978 printf (" Tag_GNU_Power_ABI_FP: ");
14979 if (len == 0)
14980 {
14981 printf (_("<corrupt>\n"));
14982 return p;
14983 }
14984
14985 if (val > 15)
14986 printf ("(%#x), ", val);
14987
14988 switch (val & 3)
14989 {
14990 case 0:
14991 printf (_("unspecified hard/soft float, "));
14992 break;
14993 case 1:
14994 printf (_("hard float, "));
14995 break;
14996 case 2:
14997 printf (_("soft float, "));
14998 break;
14999 case 3:
15000 printf (_("single-precision hard float, "));
15001 break;
15002 }
15003
15004 switch (val & 0xC)
15005 {
15006 case 0:
15007 printf (_("unspecified long double\n"));
15008 break;
15009 case 4:
15010 printf (_("128-bit IBM long double\n"));
15011 break;
15012 case 8:
15013 printf (_("64-bit long double\n"));
15014 break;
15015 case 12:
15016 printf (_("128-bit IEEE long double\n"));
15017 break;
15018 }
15019 return p;
15020 }
15021
15022 if (tag == Tag_GNU_Power_ABI_Vector)
15023 {
15024 val = read_uleb128 (p, &len, end);
15025 p += len;
15026 printf (" Tag_GNU_Power_ABI_Vector: ");
15027 if (len == 0)
15028 {
15029 printf (_("<corrupt>\n"));
15030 return p;
15031 }
15032
15033 if (val > 3)
15034 printf ("(%#x), ", val);
15035
15036 switch (val & 3)
15037 {
15038 case 0:
15039 printf (_("unspecified\n"));
15040 break;
15041 case 1:
15042 printf (_("generic\n"));
15043 break;
15044 case 2:
15045 printf ("AltiVec\n");
15046 break;
15047 case 3:
15048 printf ("SPE\n");
15049 break;
15050 }
15051 return p;
15052 }
15053
15054 if (tag == Tag_GNU_Power_ABI_Struct_Return)
15055 {
15056 val = read_uleb128 (p, &len, end);
15057 p += len;
15058 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
15059 if (len == 0)
15060 {
15061 printf (_("<corrupt>\n"));
15062 return p;
15063 }
15064
15065 if (val > 2)
15066 printf ("(%#x), ", val);
15067
15068 switch (val & 3)
15069 {
15070 case 0:
15071 printf (_("unspecified\n"));
15072 break;
15073 case 1:
15074 printf ("r3/r4\n");
15075 break;
15076 case 2:
15077 printf (_("memory\n"));
15078 break;
15079 case 3:
15080 printf ("???\n");
15081 break;
15082 }
15083 return p;
15084 }
15085
15086 return display_tag_value (tag & 1, p, end);
15087 }
15088
15089 static unsigned char *
15090 display_s390_gnu_attribute (unsigned char * p,
15091 unsigned int tag,
15092 const unsigned char * const end)
15093 {
15094 unsigned int len;
15095 int val;
15096
15097 if (tag == Tag_GNU_S390_ABI_Vector)
15098 {
15099 val = read_uleb128 (p, &len, end);
15100 p += len;
15101 printf (" Tag_GNU_S390_ABI_Vector: ");
15102
15103 switch (val)
15104 {
15105 case 0:
15106 printf (_("any\n"));
15107 break;
15108 case 1:
15109 printf (_("software\n"));
15110 break;
15111 case 2:
15112 printf (_("hardware\n"));
15113 break;
15114 default:
15115 printf ("??? (%d)\n", val);
15116 break;
15117 }
15118 return p;
15119 }
15120
15121 return display_tag_value (tag & 1, p, end);
15122 }
15123
15124 static void
15125 display_sparc_hwcaps (unsigned int mask)
15126 {
15127 if (mask)
15128 {
15129 bfd_boolean first = TRUE;
15130
15131 if (mask & ELF_SPARC_HWCAP_MUL32)
15132 fputs ("mul32", stdout), first = FALSE;
15133 if (mask & ELF_SPARC_HWCAP_DIV32)
15134 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
15135 if (mask & ELF_SPARC_HWCAP_FSMULD)
15136 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
15137 if (mask & ELF_SPARC_HWCAP_V8PLUS)
15138 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
15139 if (mask & ELF_SPARC_HWCAP_POPC)
15140 printf ("%spopc", first ? "" : "|"), first = FALSE;
15141 if (mask & ELF_SPARC_HWCAP_VIS)
15142 printf ("%svis", first ? "" : "|"), first = FALSE;
15143 if (mask & ELF_SPARC_HWCAP_VIS2)
15144 printf ("%svis2", first ? "" : "|"), first = FALSE;
15145 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
15146 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
15147 if (mask & ELF_SPARC_HWCAP_FMAF)
15148 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
15149 if (mask & ELF_SPARC_HWCAP_VIS3)
15150 printf ("%svis3", first ? "" : "|"), first = FALSE;
15151 if (mask & ELF_SPARC_HWCAP_HPC)
15152 printf ("%shpc", first ? "" : "|"), first = FALSE;
15153 if (mask & ELF_SPARC_HWCAP_RANDOM)
15154 printf ("%srandom", first ? "" : "|"), first = FALSE;
15155 if (mask & ELF_SPARC_HWCAP_TRANS)
15156 printf ("%strans", first ? "" : "|"), first = FALSE;
15157 if (mask & ELF_SPARC_HWCAP_FJFMAU)
15158 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
15159 if (mask & ELF_SPARC_HWCAP_IMA)
15160 printf ("%sima", first ? "" : "|"), first = FALSE;
15161 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
15162 printf ("%scspare", first ? "" : "|"), first = FALSE;
15163 }
15164 else
15165 fputc ('0', stdout);
15166 fputc ('\n', stdout);
15167 }
15168
15169 static void
15170 display_sparc_hwcaps2 (unsigned int mask)
15171 {
15172 if (mask)
15173 {
15174 bfd_boolean first = TRUE;
15175
15176 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
15177 fputs ("fjathplus", stdout), first = FALSE;
15178 if (mask & ELF_SPARC_HWCAP2_VIS3B)
15179 printf ("%svis3b", first ? "" : "|"), first = FALSE;
15180 if (mask & ELF_SPARC_HWCAP2_ADP)
15181 printf ("%sadp", first ? "" : "|"), first = FALSE;
15182 if (mask & ELF_SPARC_HWCAP2_SPARC5)
15183 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
15184 if (mask & ELF_SPARC_HWCAP2_MWAIT)
15185 printf ("%smwait", first ? "" : "|"), first = FALSE;
15186 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
15187 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
15188 if (mask & ELF_SPARC_HWCAP2_XMONT)
15189 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
15190 if (mask & ELF_SPARC_HWCAP2_NSEC)
15191 printf ("%snsec", first ? "" : "|"), first = FALSE;
15192 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
15193 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
15194 if (mask & ELF_SPARC_HWCAP2_FJDES)
15195 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
15196 if (mask & ELF_SPARC_HWCAP2_FJAES)
15197 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
15198 }
15199 else
15200 fputc ('0', stdout);
15201 fputc ('\n', stdout);
15202 }
15203
15204 static unsigned char *
15205 display_sparc_gnu_attribute (unsigned char * p,
15206 unsigned int tag,
15207 const unsigned char * const end)
15208 {
15209 unsigned int len;
15210 int val;
15211
15212 if (tag == Tag_GNU_Sparc_HWCAPS)
15213 {
15214 val = read_uleb128 (p, &len, end);
15215 p += len;
15216 printf (" Tag_GNU_Sparc_HWCAPS: ");
15217 display_sparc_hwcaps (val);
15218 return p;
15219 }
15220 if (tag == Tag_GNU_Sparc_HWCAPS2)
15221 {
15222 val = read_uleb128 (p, &len, end);
15223 p += len;
15224 printf (" Tag_GNU_Sparc_HWCAPS2: ");
15225 display_sparc_hwcaps2 (val);
15226 return p;
15227 }
15228
15229 return display_tag_value (tag, p, end);
15230 }
15231
15232 static void
15233 print_mips_fp_abi_value (unsigned int val)
15234 {
15235 switch (val)
15236 {
15237 case Val_GNU_MIPS_ABI_FP_ANY:
15238 printf (_("Hard or soft float\n"));
15239 break;
15240 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15241 printf (_("Hard float (double precision)\n"));
15242 break;
15243 case Val_GNU_MIPS_ABI_FP_SINGLE:
15244 printf (_("Hard float (single precision)\n"));
15245 break;
15246 case Val_GNU_MIPS_ABI_FP_SOFT:
15247 printf (_("Soft float\n"));
15248 break;
15249 case Val_GNU_MIPS_ABI_FP_OLD_64:
15250 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15251 break;
15252 case Val_GNU_MIPS_ABI_FP_XX:
15253 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
15254 break;
15255 case Val_GNU_MIPS_ABI_FP_64:
15256 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
15257 break;
15258 case Val_GNU_MIPS_ABI_FP_64A:
15259 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15260 break;
15261 case Val_GNU_MIPS_ABI_FP_NAN2008:
15262 printf (_("NaN 2008 compatibility\n"));
15263 break;
15264 default:
15265 printf ("??? (%d)\n", val);
15266 break;
15267 }
15268 }
15269
15270 static unsigned char *
15271 display_mips_gnu_attribute (unsigned char * p,
15272 unsigned int tag,
15273 const unsigned char * const end)
15274 {
15275 if (tag == Tag_GNU_MIPS_ABI_FP)
15276 {
15277 unsigned int len;
15278 unsigned int val;
15279
15280 val = read_uleb128 (p, &len, end);
15281 p += len;
15282 printf (" Tag_GNU_MIPS_ABI_FP: ");
15283
15284 print_mips_fp_abi_value (val);
15285
15286 return p;
15287 }
15288
15289 if (tag == Tag_GNU_MIPS_ABI_MSA)
15290 {
15291 unsigned int len;
15292 unsigned int val;
15293
15294 val = read_uleb128 (p, &len, end);
15295 p += len;
15296 printf (" Tag_GNU_MIPS_ABI_MSA: ");
15297
15298 switch (val)
15299 {
15300 case Val_GNU_MIPS_ABI_MSA_ANY:
15301 printf (_("Any MSA or not\n"));
15302 break;
15303 case Val_GNU_MIPS_ABI_MSA_128:
15304 printf (_("128-bit MSA\n"));
15305 break;
15306 default:
15307 printf ("??? (%d)\n", val);
15308 break;
15309 }
15310 return p;
15311 }
15312
15313 return display_tag_value (tag & 1, p, end);
15314 }
15315
15316 static unsigned char *
15317 display_tic6x_attribute (unsigned char * p,
15318 const unsigned char * const end)
15319 {
15320 unsigned int tag;
15321 unsigned int len;
15322 int val;
15323
15324 tag = read_uleb128 (p, &len, end);
15325 p += len;
15326
15327 switch (tag)
15328 {
15329 case Tag_ISA:
15330 val = read_uleb128 (p, &len, end);
15331 p += len;
15332 printf (" Tag_ISA: ");
15333
15334 switch (val)
15335 {
15336 case C6XABI_Tag_ISA_none:
15337 printf (_("None\n"));
15338 break;
15339 case C6XABI_Tag_ISA_C62X:
15340 printf ("C62x\n");
15341 break;
15342 case C6XABI_Tag_ISA_C67X:
15343 printf ("C67x\n");
15344 break;
15345 case C6XABI_Tag_ISA_C67XP:
15346 printf ("C67x+\n");
15347 break;
15348 case C6XABI_Tag_ISA_C64X:
15349 printf ("C64x\n");
15350 break;
15351 case C6XABI_Tag_ISA_C64XP:
15352 printf ("C64x+\n");
15353 break;
15354 case C6XABI_Tag_ISA_C674X:
15355 printf ("C674x\n");
15356 break;
15357 default:
15358 printf ("??? (%d)\n", val);
15359 break;
15360 }
15361 return p;
15362
15363 case Tag_ABI_wchar_t:
15364 val = read_uleb128 (p, &len, end);
15365 p += len;
15366 printf (" Tag_ABI_wchar_t: ");
15367 switch (val)
15368 {
15369 case 0:
15370 printf (_("Not used\n"));
15371 break;
15372 case 1:
15373 printf (_("2 bytes\n"));
15374 break;
15375 case 2:
15376 printf (_("4 bytes\n"));
15377 break;
15378 default:
15379 printf ("??? (%d)\n", val);
15380 break;
15381 }
15382 return p;
15383
15384 case Tag_ABI_stack_align_needed:
15385 val = read_uleb128 (p, &len, end);
15386 p += len;
15387 printf (" Tag_ABI_stack_align_needed: ");
15388 switch (val)
15389 {
15390 case 0:
15391 printf (_("8-byte\n"));
15392 break;
15393 case 1:
15394 printf (_("16-byte\n"));
15395 break;
15396 default:
15397 printf ("??? (%d)\n", val);
15398 break;
15399 }
15400 return p;
15401
15402 case Tag_ABI_stack_align_preserved:
15403 val = read_uleb128 (p, &len, end);
15404 p += len;
15405 printf (" Tag_ABI_stack_align_preserved: ");
15406 switch (val)
15407 {
15408 case 0:
15409 printf (_("8-byte\n"));
15410 break;
15411 case 1:
15412 printf (_("16-byte\n"));
15413 break;
15414 default:
15415 printf ("??? (%d)\n", val);
15416 break;
15417 }
15418 return p;
15419
15420 case Tag_ABI_DSBT:
15421 val = read_uleb128 (p, &len, end);
15422 p += len;
15423 printf (" Tag_ABI_DSBT: ");
15424 switch (val)
15425 {
15426 case 0:
15427 printf (_("DSBT addressing not used\n"));
15428 break;
15429 case 1:
15430 printf (_("DSBT addressing used\n"));
15431 break;
15432 default:
15433 printf ("??? (%d)\n", val);
15434 break;
15435 }
15436 return p;
15437
15438 case Tag_ABI_PID:
15439 val = read_uleb128 (p, &len, end);
15440 p += len;
15441 printf (" Tag_ABI_PID: ");
15442 switch (val)
15443 {
15444 case 0:
15445 printf (_("Data addressing position-dependent\n"));
15446 break;
15447 case 1:
15448 printf (_("Data addressing position-independent, GOT near DP\n"));
15449 break;
15450 case 2:
15451 printf (_("Data addressing position-independent, GOT far from DP\n"));
15452 break;
15453 default:
15454 printf ("??? (%d)\n", val);
15455 break;
15456 }
15457 return p;
15458
15459 case Tag_ABI_PIC:
15460 val = read_uleb128 (p, &len, end);
15461 p += len;
15462 printf (" Tag_ABI_PIC: ");
15463 switch (val)
15464 {
15465 case 0:
15466 printf (_("Code addressing position-dependent\n"));
15467 break;
15468 case 1:
15469 printf (_("Code addressing position-independent\n"));
15470 break;
15471 default:
15472 printf ("??? (%d)\n", val);
15473 break;
15474 }
15475 return p;
15476
15477 case Tag_ABI_array_object_alignment:
15478 val = read_uleb128 (p, &len, end);
15479 p += len;
15480 printf (" Tag_ABI_array_object_alignment: ");
15481 switch (val)
15482 {
15483 case 0:
15484 printf (_("8-byte\n"));
15485 break;
15486 case 1:
15487 printf (_("4-byte\n"));
15488 break;
15489 case 2:
15490 printf (_("16-byte\n"));
15491 break;
15492 default:
15493 printf ("??? (%d)\n", val);
15494 break;
15495 }
15496 return p;
15497
15498 case Tag_ABI_array_object_align_expected:
15499 val = read_uleb128 (p, &len, end);
15500 p += len;
15501 printf (" Tag_ABI_array_object_align_expected: ");
15502 switch (val)
15503 {
15504 case 0:
15505 printf (_("8-byte\n"));
15506 break;
15507 case 1:
15508 printf (_("4-byte\n"));
15509 break;
15510 case 2:
15511 printf (_("16-byte\n"));
15512 break;
15513 default:
15514 printf ("??? (%d)\n", val);
15515 break;
15516 }
15517 return p;
15518
15519 case Tag_ABI_compatibility:
15520 {
15521 val = read_uleb128 (p, &len, end);
15522 p += len;
15523 printf (" Tag_ABI_compatibility: ");
15524 printf (_("flag = %d, vendor = "), val);
15525 if (p < end - 1)
15526 {
15527 size_t maxlen = (end - p) - 1;
15528
15529 print_symbol ((int) maxlen, (const char *) p);
15530 p += strnlen ((char *) p, maxlen) + 1;
15531 }
15532 else
15533 {
15534 printf (_("<corrupt>"));
15535 p = (unsigned char *) end;
15536 }
15537 putchar ('\n');
15538 return p;
15539 }
15540
15541 case Tag_ABI_conformance:
15542 {
15543 printf (" Tag_ABI_conformance: \"");
15544 if (p < end - 1)
15545 {
15546 size_t maxlen = (end - p) - 1;
15547
15548 print_symbol ((int) maxlen, (const char *) p);
15549 p += strnlen ((char *) p, maxlen) + 1;
15550 }
15551 else
15552 {
15553 printf (_("<corrupt>"));
15554 p = (unsigned char *) end;
15555 }
15556 printf ("\"\n");
15557 return p;
15558 }
15559 }
15560
15561 return display_tag_value (tag, p, end);
15562 }
15563
15564 static void
15565 display_raw_attribute (unsigned char * p, unsigned char const * const end)
15566 {
15567 unsigned long addr = 0;
15568 size_t bytes = end - p;
15569
15570 assert (end >= p);
15571 while (bytes)
15572 {
15573 int j;
15574 int k;
15575 int lbytes = (bytes > 16 ? 16 : bytes);
15576
15577 printf (" 0x%8.8lx ", addr);
15578
15579 for (j = 0; j < 16; j++)
15580 {
15581 if (j < lbytes)
15582 printf ("%2.2x", p[j]);
15583 else
15584 printf (" ");
15585
15586 if ((j & 3) == 3)
15587 printf (" ");
15588 }
15589
15590 for (j = 0; j < lbytes; j++)
15591 {
15592 k = p[j];
15593 if (k >= ' ' && k < 0x7f)
15594 printf ("%c", k);
15595 else
15596 printf (".");
15597 }
15598
15599 putchar ('\n');
15600
15601 p += lbytes;
15602 bytes -= lbytes;
15603 addr += lbytes;
15604 }
15605
15606 putchar ('\n');
15607 }
15608
15609 static unsigned char *
15610 display_msp430x_attribute (unsigned char * p,
15611 const unsigned char * const end)
15612 {
15613 unsigned int len;
15614 unsigned int val;
15615 unsigned int tag;
15616
15617 tag = read_uleb128 (p, & len, end);
15618 p += len;
15619
15620 switch (tag)
15621 {
15622 case OFBA_MSPABI_Tag_ISA:
15623 val = read_uleb128 (p, &len, end);
15624 p += len;
15625 printf (" Tag_ISA: ");
15626 switch (val)
15627 {
15628 case 0: printf (_("None\n")); break;
15629 case 1: printf (_("MSP430\n")); break;
15630 case 2: printf (_("MSP430X\n")); break;
15631 default: printf ("??? (%d)\n", val); break;
15632 }
15633 break;
15634
15635 case OFBA_MSPABI_Tag_Code_Model:
15636 val = read_uleb128 (p, &len, end);
15637 p += len;
15638 printf (" Tag_Code_Model: ");
15639 switch (val)
15640 {
15641 case 0: printf (_("None\n")); break;
15642 case 1: printf (_("Small\n")); break;
15643 case 2: printf (_("Large\n")); break;
15644 default: printf ("??? (%d)\n", val); break;
15645 }
15646 break;
15647
15648 case OFBA_MSPABI_Tag_Data_Model:
15649 val = read_uleb128 (p, &len, end);
15650 p += len;
15651 printf (" Tag_Data_Model: ");
15652 switch (val)
15653 {
15654 case 0: printf (_("None\n")); break;
15655 case 1: printf (_("Small\n")); break;
15656 case 2: printf (_("Large\n")); break;
15657 case 3: printf (_("Restricted Large\n")); break;
15658 default: printf ("??? (%d)\n", val); break;
15659 }
15660 break;
15661
15662 default:
15663 printf (_(" <unknown tag %d>: "), tag);
15664
15665 if (tag & 1)
15666 {
15667 putchar ('"');
15668 if (p < end - 1)
15669 {
15670 size_t maxlen = (end - p) - 1;
15671
15672 print_symbol ((int) maxlen, (const char *) p);
15673 p += strnlen ((char *) p, maxlen) + 1;
15674 }
15675 else
15676 {
15677 printf (_("<corrupt>"));
15678 p = (unsigned char *) end;
15679 }
15680 printf ("\"\n");
15681 }
15682 else
15683 {
15684 val = read_uleb128 (p, &len, end);
15685 p += len;
15686 printf ("%d (0x%x)\n", val, val);
15687 }
15688 break;
15689 }
15690
15691 assert (p <= end);
15692 return p;
15693 }
15694
15695 struct riscv_attr_tag_t {
15696 const char *name;
15697 int tag;
15698 };
15699
15700 static struct riscv_attr_tag_t riscv_attr_tag[] =
15701 {
15702 #define T(tag) {"Tag_RISCV_" #tag, Tag_RISCV_##tag}
15703 T(arch),
15704 T(priv_spec),
15705 T(priv_spec_minor),
15706 T(priv_spec_revision),
15707 T(unaligned_access),
15708 T(stack_align),
15709 #undef T
15710 };
15711
15712 static unsigned char *
15713 display_riscv_attribute (unsigned char *p,
15714 const unsigned char * const end)
15715 {
15716 unsigned int len;
15717 int val;
15718 int tag;
15719 struct riscv_attr_tag_t *attr = NULL;
15720 unsigned i;
15721
15722 tag = read_uleb128 (p, &len, end);
15723 p += len;
15724
15725 /* Find the name of attribute. */
15726 for (i = 0; i < ARRAY_SIZE (riscv_attr_tag); i++)
15727 {
15728 if (riscv_attr_tag[i].tag == tag)
15729 {
15730 attr = &riscv_attr_tag[i];
15731 break;
15732 }
15733 }
15734
15735 if (attr)
15736 printf (" %s: ", attr->name);
15737 else
15738 return display_tag_value (tag, p, end);
15739
15740 switch (tag)
15741 {
15742 case Tag_RISCV_priv_spec:
15743 case Tag_RISCV_priv_spec_minor:
15744 case Tag_RISCV_priv_spec_revision:
15745 val = read_uleb128 (p, &len, end);
15746 p += len;
15747 printf (_("%d\n"), val);
15748 break;
15749 case Tag_RISCV_unaligned_access:
15750 val = read_uleb128 (p, &len, end);
15751 p += len;
15752 switch (val)
15753 {
15754 case 0:
15755 printf (_("No unaligned access\n"));
15756 break;
15757 case 1:
15758 printf (_("Unaligned access\n"));
15759 break;
15760 }
15761 break;
15762 case Tag_RISCV_stack_align:
15763 val = read_uleb128 (p, &len, end);
15764 p += len;
15765 printf (_("%d-bytes\n"), val);
15766 break;
15767 case Tag_RISCV_arch:
15768 p = display_tag_value (-1, p, end);
15769 break;
15770 default:
15771 return display_tag_value (tag, p, end);
15772 }
15773
15774 return p;
15775 }
15776
15777 static bfd_boolean
15778 process_attributes (Filedata * filedata,
15779 const char * public_name,
15780 unsigned int proc_type,
15781 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
15782 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
15783 {
15784 Elf_Internal_Shdr * sect;
15785 unsigned i;
15786 bfd_boolean res = TRUE;
15787
15788 /* Find the section header so that we get the size. */
15789 for (i = 0, sect = filedata->section_headers;
15790 i < filedata->file_header.e_shnum;
15791 i++, sect++)
15792 {
15793 unsigned char * contents;
15794 unsigned char * p;
15795
15796 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
15797 continue;
15798
15799 contents = (unsigned char *) get_data (NULL, filedata, sect->sh_offset, 1,
15800 sect->sh_size, _("attributes"));
15801 if (contents == NULL)
15802 {
15803 res = FALSE;
15804 continue;
15805 }
15806
15807 p = contents;
15808 /* The first character is the version of the attributes.
15809 Currently only version 1, (aka 'A') is recognised here. */
15810 if (*p != 'A')
15811 {
15812 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
15813 res = FALSE;
15814 }
15815 else
15816 {
15817 bfd_vma section_len;
15818
15819 section_len = sect->sh_size - 1;
15820 p++;
15821
15822 while (section_len > 0)
15823 {
15824 bfd_vma attr_len;
15825 unsigned int namelen;
15826 bfd_boolean public_section;
15827 bfd_boolean gnu_section;
15828
15829 if (section_len <= 4)
15830 {
15831 error (_("Tag section ends prematurely\n"));
15832 res = FALSE;
15833 break;
15834 }
15835 attr_len = byte_get (p, 4);
15836 p += 4;
15837
15838 if (attr_len > section_len)
15839 {
15840 error (_("Bad attribute length (%u > %u)\n"),
15841 (unsigned) attr_len, (unsigned) section_len);
15842 attr_len = section_len;
15843 res = FALSE;
15844 }
15845 /* PR 17531: file: 001-101425-0.004 */
15846 else if (attr_len < 5)
15847 {
15848 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
15849 res = FALSE;
15850 break;
15851 }
15852
15853 section_len -= attr_len;
15854 attr_len -= 4;
15855
15856 namelen = strnlen ((char *) p, attr_len) + 1;
15857 if (namelen == 0 || namelen >= attr_len)
15858 {
15859 error (_("Corrupt attribute section name\n"));
15860 res = FALSE;
15861 break;
15862 }
15863
15864 printf (_("Attribute Section: "));
15865 print_symbol (INT_MAX, (const char *) p);
15866 putchar ('\n');
15867
15868 if (public_name && streq ((char *) p, public_name))
15869 public_section = TRUE;
15870 else
15871 public_section = FALSE;
15872
15873 if (streq ((char *) p, "gnu"))
15874 gnu_section = TRUE;
15875 else
15876 gnu_section = FALSE;
15877
15878 p += namelen;
15879 attr_len -= namelen;
15880
15881 while (attr_len > 0 && p < contents + sect->sh_size)
15882 {
15883 int tag;
15884 int val;
15885 bfd_vma size;
15886 unsigned char * end;
15887
15888 /* PR binutils/17531: Safe handling of corrupt files. */
15889 if (attr_len < 6)
15890 {
15891 error (_("Unused bytes at end of section\n"));
15892 res = FALSE;
15893 section_len = 0;
15894 break;
15895 }
15896
15897 tag = *(p++);
15898 size = byte_get (p, 4);
15899 if (size > attr_len)
15900 {
15901 error (_("Bad subsection length (%u > %u)\n"),
15902 (unsigned) size, (unsigned) attr_len);
15903 res = FALSE;
15904 size = attr_len;
15905 }
15906 /* PR binutils/17531: Safe handling of corrupt files. */
15907 if (size < 6)
15908 {
15909 error (_("Bad subsection length (%u < 6)\n"),
15910 (unsigned) size);
15911 res = FALSE;
15912 section_len = 0;
15913 break;
15914 }
15915
15916 attr_len -= size;
15917 end = p + size - 1;
15918 assert (end <= contents + sect->sh_size);
15919 p += 4;
15920
15921 switch (tag)
15922 {
15923 case 1:
15924 printf (_("File Attributes\n"));
15925 break;
15926 case 2:
15927 printf (_("Section Attributes:"));
15928 goto do_numlist;
15929 case 3:
15930 printf (_("Symbol Attributes:"));
15931 /* Fall through. */
15932 do_numlist:
15933 for (;;)
15934 {
15935 unsigned int j;
15936
15937 val = read_uleb128 (p, &j, end);
15938 p += j;
15939 if (val == 0)
15940 break;
15941 printf (" %d", val);
15942 }
15943 printf ("\n");
15944 break;
15945 default:
15946 printf (_("Unknown tag: %d\n"), tag);
15947 public_section = FALSE;
15948 break;
15949 }
15950
15951 if (public_section && display_pub_attribute != NULL)
15952 {
15953 while (p < end)
15954 p = display_pub_attribute (p, end);
15955 assert (p == end);
15956 }
15957 else if (gnu_section && display_proc_gnu_attribute != NULL)
15958 {
15959 while (p < end)
15960 p = display_gnu_attribute (p,
15961 display_proc_gnu_attribute,
15962 end);
15963 assert (p == end);
15964 }
15965 else if (p < end)
15966 {
15967 printf (_(" Unknown attribute:\n"));
15968 display_raw_attribute (p, end);
15969 p = end;
15970 }
15971 else
15972 attr_len = 0;
15973 }
15974 }
15975 }
15976
15977 free (contents);
15978 }
15979
15980 return res;
15981 }
15982
15983 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
15984 Print the Address, Access and Initial fields of an entry at VMA ADDR
15985 and return the VMA of the next entry, or -1 if there was a problem.
15986 Does not read from DATA_END or beyond. */
15987
15988 static bfd_vma
15989 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
15990 unsigned char * data_end)
15991 {
15992 printf (" ");
15993 print_vma (addr, LONG_HEX);
15994 printf (" ");
15995 if (addr < pltgot + 0xfff0)
15996 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
15997 else
15998 printf ("%10s", "");
15999 printf (" ");
16000 if (data == NULL)
16001 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
16002 else
16003 {
16004 bfd_vma entry;
16005 unsigned char * from = data + addr - pltgot;
16006
16007 if (from + (is_32bit_elf ? 4 : 8) > data_end)
16008 {
16009 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
16010 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
16011 return (bfd_vma) -1;
16012 }
16013 else
16014 {
16015 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
16016 print_vma (entry, LONG_HEX);
16017 }
16018 }
16019 return addr + (is_32bit_elf ? 4 : 8);
16020 }
16021
16022 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
16023 PLTGOT. Print the Address and Initial fields of an entry at VMA
16024 ADDR and return the VMA of the next entry. */
16025
16026 static bfd_vma
16027 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
16028 {
16029 printf (" ");
16030 print_vma (addr, LONG_HEX);
16031 printf (" ");
16032 if (data == NULL)
16033 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
16034 else
16035 {
16036 bfd_vma entry;
16037
16038 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
16039 print_vma (entry, LONG_HEX);
16040 }
16041 return addr + (is_32bit_elf ? 4 : 8);
16042 }
16043
16044 static void
16045 print_mips_ases (unsigned int mask)
16046 {
16047 if (mask & AFL_ASE_DSP)
16048 fputs ("\n\tDSP ASE", stdout);
16049 if (mask & AFL_ASE_DSPR2)
16050 fputs ("\n\tDSP R2 ASE", stdout);
16051 if (mask & AFL_ASE_DSPR3)
16052 fputs ("\n\tDSP R3 ASE", stdout);
16053 if (mask & AFL_ASE_EVA)
16054 fputs ("\n\tEnhanced VA Scheme", stdout);
16055 if (mask & AFL_ASE_MCU)
16056 fputs ("\n\tMCU (MicroController) ASE", stdout);
16057 if (mask & AFL_ASE_MDMX)
16058 fputs ("\n\tMDMX ASE", stdout);
16059 if (mask & AFL_ASE_MIPS3D)
16060 fputs ("\n\tMIPS-3D ASE", stdout);
16061 if (mask & AFL_ASE_MT)
16062 fputs ("\n\tMT ASE", stdout);
16063 if (mask & AFL_ASE_SMARTMIPS)
16064 fputs ("\n\tSmartMIPS ASE", stdout);
16065 if (mask & AFL_ASE_VIRT)
16066 fputs ("\n\tVZ ASE", stdout);
16067 if (mask & AFL_ASE_MSA)
16068 fputs ("\n\tMSA ASE", stdout);
16069 if (mask & AFL_ASE_MIPS16)
16070 fputs ("\n\tMIPS16 ASE", stdout);
16071 if (mask & AFL_ASE_MICROMIPS)
16072 fputs ("\n\tMICROMIPS ASE", stdout);
16073 if (mask & AFL_ASE_XPA)
16074 fputs ("\n\tXPA ASE", stdout);
16075 if (mask & AFL_ASE_MIPS16E2)
16076 fputs ("\n\tMIPS16e2 ASE", stdout);
16077 if (mask & AFL_ASE_CRC)
16078 fputs ("\n\tCRC ASE", stdout);
16079 if (mask & AFL_ASE_GINV)
16080 fputs ("\n\tGINV ASE", stdout);
16081 if (mask & AFL_ASE_LOONGSON_MMI)
16082 fputs ("\n\tLoongson MMI ASE", stdout);
16083 if (mask & AFL_ASE_LOONGSON_CAM)
16084 fputs ("\n\tLoongson CAM ASE", stdout);
16085 if (mask & AFL_ASE_LOONGSON_EXT)
16086 fputs ("\n\tLoongson EXT ASE", stdout);
16087 if (mask & AFL_ASE_LOONGSON_EXT2)
16088 fputs ("\n\tLoongson EXT2 ASE", stdout);
16089 if (mask == 0)
16090 fprintf (stdout, "\n\t%s", _("None"));
16091 else if ((mask & ~AFL_ASE_MASK) != 0)
16092 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16093 }
16094
16095 static void
16096 print_mips_isa_ext (unsigned int isa_ext)
16097 {
16098 switch (isa_ext)
16099 {
16100 case 0:
16101 fputs (_("None"), stdout);
16102 break;
16103 case AFL_EXT_XLR:
16104 fputs ("RMI XLR", stdout);
16105 break;
16106 case AFL_EXT_OCTEON3:
16107 fputs ("Cavium Networks Octeon3", stdout);
16108 break;
16109 case AFL_EXT_OCTEON2:
16110 fputs ("Cavium Networks Octeon2", stdout);
16111 break;
16112 case AFL_EXT_OCTEONP:
16113 fputs ("Cavium Networks OcteonP", stdout);
16114 break;
16115 case AFL_EXT_OCTEON:
16116 fputs ("Cavium Networks Octeon", stdout);
16117 break;
16118 case AFL_EXT_5900:
16119 fputs ("Toshiba R5900", stdout);
16120 break;
16121 case AFL_EXT_4650:
16122 fputs ("MIPS R4650", stdout);
16123 break;
16124 case AFL_EXT_4010:
16125 fputs ("LSI R4010", stdout);
16126 break;
16127 case AFL_EXT_4100:
16128 fputs ("NEC VR4100", stdout);
16129 break;
16130 case AFL_EXT_3900:
16131 fputs ("Toshiba R3900", stdout);
16132 break;
16133 case AFL_EXT_10000:
16134 fputs ("MIPS R10000", stdout);
16135 break;
16136 case AFL_EXT_SB1:
16137 fputs ("Broadcom SB-1", stdout);
16138 break;
16139 case AFL_EXT_4111:
16140 fputs ("NEC VR4111/VR4181", stdout);
16141 break;
16142 case AFL_EXT_4120:
16143 fputs ("NEC VR4120", stdout);
16144 break;
16145 case AFL_EXT_5400:
16146 fputs ("NEC VR5400", stdout);
16147 break;
16148 case AFL_EXT_5500:
16149 fputs ("NEC VR5500", stdout);
16150 break;
16151 case AFL_EXT_LOONGSON_2E:
16152 fputs ("ST Microelectronics Loongson 2E", stdout);
16153 break;
16154 case AFL_EXT_LOONGSON_2F:
16155 fputs ("ST Microelectronics Loongson 2F", stdout);
16156 break;
16157 case AFL_EXT_INTERAPTIV_MR2:
16158 fputs ("Imagination interAptiv MR2", stdout);
16159 break;
16160 default:
16161 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
16162 }
16163 }
16164
16165 static signed int
16166 get_mips_reg_size (int reg_size)
16167 {
16168 return (reg_size == AFL_REG_NONE) ? 0
16169 : (reg_size == AFL_REG_32) ? 32
16170 : (reg_size == AFL_REG_64) ? 64
16171 : (reg_size == AFL_REG_128) ? 128
16172 : -1;
16173 }
16174
16175 static bfd_boolean
16176 process_mips_specific (Filedata * filedata)
16177 {
16178 Elf_Internal_Dyn * entry;
16179 Elf_Internal_Shdr *sect = NULL;
16180 size_t liblist_offset = 0;
16181 size_t liblistno = 0;
16182 size_t conflictsno = 0;
16183 size_t options_offset = 0;
16184 size_t conflicts_offset = 0;
16185 size_t pltrelsz = 0;
16186 size_t pltrel = 0;
16187 bfd_vma pltgot = 0;
16188 bfd_vma mips_pltgot = 0;
16189 bfd_vma jmprel = 0;
16190 bfd_vma local_gotno = 0;
16191 bfd_vma gotsym = 0;
16192 bfd_vma symtabno = 0;
16193 bfd_boolean res = TRUE;
16194
16195 if (! process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
16196 display_mips_gnu_attribute))
16197 res = FALSE;
16198
16199 sect = find_section (filedata, ".MIPS.abiflags");
16200
16201 if (sect != NULL)
16202 {
16203 Elf_External_ABIFlags_v0 *abiflags_ext;
16204 Elf_Internal_ABIFlags_v0 abiflags_in;
16205
16206 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
16207 {
16208 error (_("Corrupt MIPS ABI Flags section.\n"));
16209 res = FALSE;
16210 }
16211 else
16212 {
16213 abiflags_ext = get_data (NULL, filedata, sect->sh_offset, 1,
16214 sect->sh_size, _("MIPS ABI Flags section"));
16215 if (abiflags_ext)
16216 {
16217 abiflags_in.version = BYTE_GET (abiflags_ext->version);
16218 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
16219 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
16220 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
16221 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
16222 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
16223 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
16224 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
16225 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
16226 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
16227 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
16228
16229 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
16230 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
16231 if (abiflags_in.isa_rev > 1)
16232 printf ("r%d", abiflags_in.isa_rev);
16233 printf ("\nGPR size: %d",
16234 get_mips_reg_size (abiflags_in.gpr_size));
16235 printf ("\nCPR1 size: %d",
16236 get_mips_reg_size (abiflags_in.cpr1_size));
16237 printf ("\nCPR2 size: %d",
16238 get_mips_reg_size (abiflags_in.cpr2_size));
16239 fputs ("\nFP ABI: ", stdout);
16240 print_mips_fp_abi_value (abiflags_in.fp_abi);
16241 fputs ("ISA Extension: ", stdout);
16242 print_mips_isa_ext (abiflags_in.isa_ext);
16243 fputs ("\nASEs:", stdout);
16244 print_mips_ases (abiflags_in.ases);
16245 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
16246 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
16247 fputc ('\n', stdout);
16248 free (abiflags_ext);
16249 }
16250 }
16251 }
16252
16253 /* We have a lot of special sections. Thanks SGI! */
16254 if (dynamic_section == NULL)
16255 {
16256 /* No dynamic information available. See if there is static GOT. */
16257 sect = find_section (filedata, ".got");
16258 if (sect != NULL)
16259 {
16260 unsigned char *data_end;
16261 unsigned char *data;
16262 bfd_vma ent, end;
16263 int addr_size;
16264
16265 pltgot = sect->sh_addr;
16266
16267 ent = pltgot;
16268 addr_size = (is_32bit_elf ? 4 : 8);
16269 end = pltgot + sect->sh_size;
16270
16271 data = (unsigned char *) get_data (NULL, filedata, sect->sh_offset,
16272 end - pltgot, 1,
16273 _("Global Offset Table data"));
16274 /* PR 12855: Null data is handled gracefully throughout. */
16275 data_end = data + (end - pltgot);
16276
16277 printf (_("\nStatic GOT:\n"));
16278 printf (_(" Canonical gp value: "));
16279 print_vma (ent + 0x7ff0, LONG_HEX);
16280 printf ("\n\n");
16281
16282 /* In a dynamic binary GOT[0] is reserved for the dynamic
16283 loader to store the lazy resolver pointer, however in
16284 a static binary it may well have been omitted and GOT
16285 reduced to a table of addresses.
16286 PR 21344: Check for the entry being fully available
16287 before fetching it. */
16288 if (data
16289 && data + ent - pltgot + addr_size <= data_end
16290 && byte_get (data + ent - pltgot, addr_size) == 0)
16291 {
16292 printf (_(" Reserved entries:\n"));
16293 printf (_(" %*s %10s %*s\n"),
16294 addr_size * 2, _("Address"), _("Access"),
16295 addr_size * 2, _("Value"));
16296 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16297 printf ("\n");
16298 if (ent == (bfd_vma) -1)
16299 goto sgot_print_fail;
16300
16301 /* Check for the MSB of GOT[1] being set, identifying a
16302 GNU object. This entry will be used by some runtime
16303 loaders, to store the module pointer. Otherwise this
16304 is an ordinary local entry.
16305 PR 21344: Check for the entry being fully available
16306 before fetching it. */
16307 if (data
16308 && data + ent - pltgot + addr_size <= data_end
16309 && (byte_get (data + ent - pltgot, addr_size)
16310 >> (addr_size * 8 - 1)) != 0)
16311 {
16312 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16313 printf ("\n");
16314 if (ent == (bfd_vma) -1)
16315 goto sgot_print_fail;
16316 }
16317 printf ("\n");
16318 }
16319
16320 if (data != NULL && ent < end)
16321 {
16322 printf (_(" Local entries:\n"));
16323 printf (" %*s %10s %*s\n",
16324 addr_size * 2, _("Address"), _("Access"),
16325 addr_size * 2, _("Value"));
16326 while (ent < end)
16327 {
16328 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16329 printf ("\n");
16330 if (ent == (bfd_vma) -1)
16331 goto sgot_print_fail;
16332 }
16333 printf ("\n");
16334 }
16335
16336 sgot_print_fail:
16337 if (data)
16338 free (data);
16339 }
16340 return res;
16341 }
16342
16343 for (entry = dynamic_section;
16344 /* PR 17531 file: 012-50589-0.004. */
16345 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
16346 ++entry)
16347 switch (entry->d_tag)
16348 {
16349 case DT_MIPS_LIBLIST:
16350 liblist_offset
16351 = offset_from_vma (filedata, entry->d_un.d_val,
16352 liblistno * sizeof (Elf32_External_Lib));
16353 break;
16354 case DT_MIPS_LIBLISTNO:
16355 liblistno = entry->d_un.d_val;
16356 break;
16357 case DT_MIPS_OPTIONS:
16358 options_offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
16359 break;
16360 case DT_MIPS_CONFLICT:
16361 conflicts_offset
16362 = offset_from_vma (filedata, entry->d_un.d_val,
16363 conflictsno * sizeof (Elf32_External_Conflict));
16364 break;
16365 case DT_MIPS_CONFLICTNO:
16366 conflictsno = entry->d_un.d_val;
16367 break;
16368 case DT_PLTGOT:
16369 pltgot = entry->d_un.d_ptr;
16370 break;
16371 case DT_MIPS_LOCAL_GOTNO:
16372 local_gotno = entry->d_un.d_val;
16373 break;
16374 case DT_MIPS_GOTSYM:
16375 gotsym = entry->d_un.d_val;
16376 break;
16377 case DT_MIPS_SYMTABNO:
16378 symtabno = entry->d_un.d_val;
16379 break;
16380 case DT_MIPS_PLTGOT:
16381 mips_pltgot = entry->d_un.d_ptr;
16382 break;
16383 case DT_PLTREL:
16384 pltrel = entry->d_un.d_val;
16385 break;
16386 case DT_PLTRELSZ:
16387 pltrelsz = entry->d_un.d_val;
16388 break;
16389 case DT_JMPREL:
16390 jmprel = entry->d_un.d_ptr;
16391 break;
16392 default:
16393 break;
16394 }
16395
16396 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
16397 {
16398 Elf32_External_Lib * elib;
16399 size_t cnt;
16400
16401 elib = (Elf32_External_Lib *) get_data (NULL, filedata, liblist_offset,
16402 liblistno,
16403 sizeof (Elf32_External_Lib),
16404 _("liblist section data"));
16405 if (elib)
16406 {
16407 printf (ngettext ("\nSection '.liblist' contains %lu entry:\n",
16408 "\nSection '.liblist' contains %lu entries:\n",
16409 (unsigned long) liblistno),
16410 (unsigned long) liblistno);
16411 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
16412 stdout);
16413
16414 for (cnt = 0; cnt < liblistno; ++cnt)
16415 {
16416 Elf32_Lib liblist;
16417 time_t atime;
16418 char timebuf[128];
16419 struct tm * tmp;
16420
16421 liblist.l_name = BYTE_GET (elib[cnt].l_name);
16422 atime = BYTE_GET (elib[cnt].l_time_stamp);
16423 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
16424 liblist.l_version = BYTE_GET (elib[cnt].l_version);
16425 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
16426
16427 tmp = gmtime (&atime);
16428 snprintf (timebuf, sizeof (timebuf),
16429 "%04u-%02u-%02uT%02u:%02u:%02u",
16430 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
16431 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
16432
16433 printf ("%3lu: ", (unsigned long) cnt);
16434 if (VALID_DYNAMIC_NAME (liblist.l_name))
16435 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
16436 else
16437 printf (_("<corrupt: %9ld>"), liblist.l_name);
16438 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
16439 liblist.l_version);
16440
16441 if (liblist.l_flags == 0)
16442 puts (_(" NONE"));
16443 else
16444 {
16445 static const struct
16446 {
16447 const char * name;
16448 int bit;
16449 }
16450 l_flags_vals[] =
16451 {
16452 { " EXACT_MATCH", LL_EXACT_MATCH },
16453 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
16454 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
16455 { " EXPORTS", LL_EXPORTS },
16456 { " DELAY_LOAD", LL_DELAY_LOAD },
16457 { " DELTA", LL_DELTA }
16458 };
16459 int flags = liblist.l_flags;
16460 size_t fcnt;
16461
16462 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
16463 if ((flags & l_flags_vals[fcnt].bit) != 0)
16464 {
16465 fputs (l_flags_vals[fcnt].name, stdout);
16466 flags ^= l_flags_vals[fcnt].bit;
16467 }
16468 if (flags != 0)
16469 printf (" %#x", (unsigned int) flags);
16470
16471 puts ("");
16472 }
16473 }
16474
16475 free (elib);
16476 }
16477 else
16478 res = FALSE;
16479 }
16480
16481 if (options_offset != 0)
16482 {
16483 Elf_External_Options * eopt;
16484 size_t offset;
16485 int cnt;
16486 sect = filedata->section_headers;
16487
16488 /* Find the section header so that we get the size. */
16489 sect = find_section_by_type (filedata, SHT_MIPS_OPTIONS);
16490 /* PR 17533 file: 012-277276-0.004. */
16491 if (sect == NULL)
16492 {
16493 error (_("No MIPS_OPTIONS header found\n"));
16494 return FALSE;
16495 }
16496 /* PR 24243 */
16497 if (sect->sh_size < sizeof (* eopt))
16498 {
16499 error (_("The MIPS options section is too small.\n"));
16500 return FALSE;
16501 }
16502
16503 eopt = (Elf_External_Options *) get_data (NULL, filedata, options_offset, 1,
16504 sect->sh_size, _("options"));
16505 if (eopt)
16506 {
16507 Elf_Internal_Options * iopt;
16508 Elf_Internal_Options * option;
16509 Elf_Internal_Options * iopt_end;
16510
16511 iopt = (Elf_Internal_Options *)
16512 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
16513 if (iopt == NULL)
16514 {
16515 error (_("Out of memory allocating space for MIPS options\n"));
16516 return FALSE;
16517 }
16518
16519 offset = cnt = 0;
16520 option = iopt;
16521 iopt_end = iopt + (sect->sh_size / sizeof (eopt));
16522
16523 while (offset <= sect->sh_size - sizeof (* eopt))
16524 {
16525 Elf_External_Options * eoption;
16526
16527 eoption = (Elf_External_Options *) ((char *) eopt + offset);
16528
16529 option->kind = BYTE_GET (eoption->kind);
16530 option->size = BYTE_GET (eoption->size);
16531 option->section = BYTE_GET (eoption->section);
16532 option->info = BYTE_GET (eoption->info);
16533
16534 /* PR 17531: file: ffa0fa3b. */
16535 if (option->size < sizeof (* eopt)
16536 || offset + option->size > sect->sh_size)
16537 {
16538 error (_("Invalid size (%u) for MIPS option\n"), option->size);
16539 return FALSE;
16540 }
16541 offset += option->size;
16542
16543 ++option;
16544 ++cnt;
16545 }
16546
16547 printf (ngettext ("\nSection '%s' contains %d entry:\n",
16548 "\nSection '%s' contains %d entries:\n",
16549 cnt),
16550 printable_section_name (filedata, sect), cnt);
16551
16552 option = iopt;
16553 offset = 0;
16554
16555 while (cnt-- > 0)
16556 {
16557 size_t len;
16558
16559 switch (option->kind)
16560 {
16561 case ODK_NULL:
16562 /* This shouldn't happen. */
16563 printf (" NULL %d %lx", option->section, option->info);
16564 break;
16565
16566 case ODK_REGINFO:
16567 printf (" REGINFO ");
16568 if (filedata->file_header.e_machine == EM_MIPS)
16569 {
16570 Elf32_External_RegInfo * ereg;
16571 Elf32_RegInfo reginfo;
16572
16573 /* 32bit form. */
16574 if (option + 2 > iopt_end)
16575 {
16576 printf (_("<corrupt>\n"));
16577 error (_("Truncated MIPS REGINFO option\n"));
16578 cnt = 0;
16579 break;
16580 }
16581
16582 ereg = (Elf32_External_RegInfo *) (option + 1);
16583
16584 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
16585 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
16586 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
16587 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
16588 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
16589 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
16590
16591 printf ("GPR %08lx GP 0x%lx\n",
16592 reginfo.ri_gprmask,
16593 (unsigned long) reginfo.ri_gp_value);
16594 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
16595 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
16596 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
16597 }
16598 else
16599 {
16600 /* 64 bit form. */
16601 Elf64_External_RegInfo * ereg;
16602 Elf64_Internal_RegInfo reginfo;
16603
16604 if (option + 2 > iopt_end)
16605 {
16606 printf (_("<corrupt>\n"));
16607 error (_("Truncated MIPS REGINFO option\n"));
16608 cnt = 0;
16609 break;
16610 }
16611
16612 ereg = (Elf64_External_RegInfo *) (option + 1);
16613 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
16614 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
16615 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
16616 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
16617 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
16618 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
16619
16620 printf ("GPR %08lx GP 0x",
16621 reginfo.ri_gprmask);
16622 printf_vma (reginfo.ri_gp_value);
16623 printf ("\n");
16624
16625 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
16626 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
16627 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
16628 }
16629 ++option;
16630 continue;
16631
16632 case ODK_EXCEPTIONS:
16633 fputs (" EXCEPTIONS fpe_min(", stdout);
16634 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
16635 fputs (") fpe_max(", stdout);
16636 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
16637 fputs (")", stdout);
16638
16639 if (option->info & OEX_PAGE0)
16640 fputs (" PAGE0", stdout);
16641 if (option->info & OEX_SMM)
16642 fputs (" SMM", stdout);
16643 if (option->info & OEX_FPDBUG)
16644 fputs (" FPDBUG", stdout);
16645 if (option->info & OEX_DISMISS)
16646 fputs (" DISMISS", stdout);
16647 break;
16648
16649 case ODK_PAD:
16650 fputs (" PAD ", stdout);
16651 if (option->info & OPAD_PREFIX)
16652 fputs (" PREFIX", stdout);
16653 if (option->info & OPAD_POSTFIX)
16654 fputs (" POSTFIX", stdout);
16655 if (option->info & OPAD_SYMBOL)
16656 fputs (" SYMBOL", stdout);
16657 break;
16658
16659 case ODK_HWPATCH:
16660 fputs (" HWPATCH ", stdout);
16661 if (option->info & OHW_R4KEOP)
16662 fputs (" R4KEOP", stdout);
16663 if (option->info & OHW_R8KPFETCH)
16664 fputs (" R8KPFETCH", stdout);
16665 if (option->info & OHW_R5KEOP)
16666 fputs (" R5KEOP", stdout);
16667 if (option->info & OHW_R5KCVTL)
16668 fputs (" R5KCVTL", stdout);
16669 break;
16670
16671 case ODK_FILL:
16672 fputs (" FILL ", stdout);
16673 /* XXX Print content of info word? */
16674 break;
16675
16676 case ODK_TAGS:
16677 fputs (" TAGS ", stdout);
16678 /* XXX Print content of info word? */
16679 break;
16680
16681 case ODK_HWAND:
16682 fputs (" HWAND ", stdout);
16683 if (option->info & OHWA0_R4KEOP_CHECKED)
16684 fputs (" R4KEOP_CHECKED", stdout);
16685 if (option->info & OHWA0_R4KEOP_CLEAN)
16686 fputs (" R4KEOP_CLEAN", stdout);
16687 break;
16688
16689 case ODK_HWOR:
16690 fputs (" HWOR ", stdout);
16691 if (option->info & OHWA0_R4KEOP_CHECKED)
16692 fputs (" R4KEOP_CHECKED", stdout);
16693 if (option->info & OHWA0_R4KEOP_CLEAN)
16694 fputs (" R4KEOP_CLEAN", stdout);
16695 break;
16696
16697 case ODK_GP_GROUP:
16698 printf (" GP_GROUP %#06lx self-contained %#06lx",
16699 option->info & OGP_GROUP,
16700 (option->info & OGP_SELF) >> 16);
16701 break;
16702
16703 case ODK_IDENT:
16704 printf (" IDENT %#06lx self-contained %#06lx",
16705 option->info & OGP_GROUP,
16706 (option->info & OGP_SELF) >> 16);
16707 break;
16708
16709 default:
16710 /* This shouldn't happen. */
16711 printf (" %3d ??? %d %lx",
16712 option->kind, option->section, option->info);
16713 break;
16714 }
16715
16716 len = sizeof (* eopt);
16717 while (len < option->size)
16718 {
16719 unsigned char datum = * ((unsigned char *) eopt + offset + len);
16720
16721 if (ISPRINT (datum))
16722 printf ("%c", datum);
16723 else
16724 printf ("\\%03o", datum);
16725 len ++;
16726 }
16727 fputs ("\n", stdout);
16728
16729 offset += option->size;
16730 ++option;
16731 }
16732
16733 free (eopt);
16734 }
16735 else
16736 res = FALSE;
16737 }
16738
16739 if (conflicts_offset != 0 && conflictsno != 0)
16740 {
16741 Elf32_Conflict * iconf;
16742 size_t cnt;
16743
16744 if (dynamic_symbols == NULL)
16745 {
16746 error (_("conflict list found without a dynamic symbol table\n"));
16747 return FALSE;
16748 }
16749
16750 /* PR 21345 - print a slightly more helpful error message
16751 if we are sure that the cmalloc will fail. */
16752 if (conflictsno * sizeof (* iconf) > filedata->file_size)
16753 {
16754 error (_("Overlarge number of conflicts detected: %lx\n"),
16755 (long) conflictsno);
16756 return FALSE;
16757 }
16758
16759 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
16760 if (iconf == NULL)
16761 {
16762 error (_("Out of memory allocating space for dynamic conflicts\n"));
16763 return FALSE;
16764 }
16765
16766 if (is_32bit_elf)
16767 {
16768 Elf32_External_Conflict * econf32;
16769
16770 econf32 = (Elf32_External_Conflict *)
16771 get_data (NULL, filedata, conflicts_offset, conflictsno,
16772 sizeof (* econf32), _("conflict"));
16773 if (!econf32)
16774 return FALSE;
16775
16776 for (cnt = 0; cnt < conflictsno; ++cnt)
16777 iconf[cnt] = BYTE_GET (econf32[cnt]);
16778
16779 free (econf32);
16780 }
16781 else
16782 {
16783 Elf64_External_Conflict * econf64;
16784
16785 econf64 = (Elf64_External_Conflict *)
16786 get_data (NULL, filedata, conflicts_offset, conflictsno,
16787 sizeof (* econf64), _("conflict"));
16788 if (!econf64)
16789 return FALSE;
16790
16791 for (cnt = 0; cnt < conflictsno; ++cnt)
16792 iconf[cnt] = BYTE_GET (econf64[cnt]);
16793
16794 free (econf64);
16795 }
16796
16797 printf (ngettext ("\nSection '.conflict' contains %lu entry:\n",
16798 "\nSection '.conflict' contains %lu entries:\n",
16799 (unsigned long) conflictsno),
16800 (unsigned long) conflictsno);
16801 puts (_(" Num: Index Value Name"));
16802
16803 for (cnt = 0; cnt < conflictsno; ++cnt)
16804 {
16805 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
16806
16807 if (iconf[cnt] >= num_dynamic_syms)
16808 printf (_("<corrupt symbol index>"));
16809 else
16810 {
16811 Elf_Internal_Sym * psym;
16812
16813 psym = & dynamic_symbols[iconf[cnt]];
16814 print_vma (psym->st_value, FULL_HEX);
16815 putchar (' ');
16816 if (VALID_DYNAMIC_NAME (psym->st_name))
16817 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
16818 else
16819 printf (_("<corrupt: %14ld>"), psym->st_name);
16820 }
16821 putchar ('\n');
16822 }
16823
16824 free (iconf);
16825 }
16826
16827 if (pltgot != 0 && local_gotno != 0)
16828 {
16829 bfd_vma ent, local_end, global_end;
16830 size_t i, offset;
16831 unsigned char * data;
16832 unsigned char * data_end;
16833 int addr_size;
16834
16835 ent = pltgot;
16836 addr_size = (is_32bit_elf ? 4 : 8);
16837 local_end = pltgot + local_gotno * addr_size;
16838
16839 /* PR binutils/17533 file: 012-111227-0.004 */
16840 if (symtabno < gotsym)
16841 {
16842 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
16843 (unsigned long) gotsym, (unsigned long) symtabno);
16844 return FALSE;
16845 }
16846
16847 global_end = local_end + (symtabno - gotsym) * addr_size;
16848 /* PR 17531: file: 54c91a34. */
16849 if (global_end < local_end)
16850 {
16851 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
16852 return FALSE;
16853 }
16854
16855 offset = offset_from_vma (filedata, pltgot, global_end - pltgot);
16856 data = (unsigned char *) get_data (NULL, filedata, offset,
16857 global_end - pltgot, 1,
16858 _("Global Offset Table data"));
16859 /* PR 12855: Null data is handled gracefully throughout. */
16860 data_end = data + (global_end - pltgot);
16861
16862 printf (_("\nPrimary GOT:\n"));
16863 printf (_(" Canonical gp value: "));
16864 print_vma (pltgot + 0x7ff0, LONG_HEX);
16865 printf ("\n\n");
16866
16867 printf (_(" Reserved entries:\n"));
16868 printf (_(" %*s %10s %*s Purpose\n"),
16869 addr_size * 2, _("Address"), _("Access"),
16870 addr_size * 2, _("Initial"));
16871 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16872 printf (_(" Lazy resolver\n"));
16873 if (ent == (bfd_vma) -1)
16874 goto got_print_fail;
16875
16876 /* Check for the MSB of GOT[1] being set, denoting a GNU object.
16877 This entry will be used by some runtime loaders, to store the
16878 module pointer. Otherwise this is an ordinary local entry.
16879 PR 21344: Check for the entry being fully available before
16880 fetching it. */
16881 if (data
16882 && data + ent - pltgot + addr_size <= data_end
16883 && (byte_get (data + ent - pltgot, addr_size)
16884 >> (addr_size * 8 - 1)) != 0)
16885 {
16886 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16887 printf (_(" Module pointer (GNU extension)\n"));
16888 if (ent == (bfd_vma) -1)
16889 goto got_print_fail;
16890 }
16891 printf ("\n");
16892
16893 if (data != NULL && ent < local_end)
16894 {
16895 printf (_(" Local entries:\n"));
16896 printf (" %*s %10s %*s\n",
16897 addr_size * 2, _("Address"), _("Access"),
16898 addr_size * 2, _("Initial"));
16899 while (ent < local_end)
16900 {
16901 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16902 printf ("\n");
16903 if (ent == (bfd_vma) -1)
16904 goto got_print_fail;
16905 }
16906 printf ("\n");
16907 }
16908
16909 if (data != NULL && gotsym < symtabno)
16910 {
16911 int sym_width;
16912
16913 printf (_(" Global entries:\n"));
16914 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
16915 addr_size * 2, _("Address"),
16916 _("Access"),
16917 addr_size * 2, _("Initial"),
16918 addr_size * 2, _("Sym.Val."),
16919 _("Type"),
16920 /* Note for translators: "Ndx" = abbreviated form of "Index". */
16921 _("Ndx"), _("Name"));
16922
16923 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
16924
16925 for (i = gotsym; i < symtabno; i++)
16926 {
16927 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16928 printf (" ");
16929
16930 if (dynamic_symbols == NULL)
16931 printf (_("<no dynamic symbols>"));
16932 else if (i < num_dynamic_syms)
16933 {
16934 Elf_Internal_Sym * psym = dynamic_symbols + i;
16935
16936 print_vma (psym->st_value, LONG_HEX);
16937 printf (" %-7s %3s ",
16938 get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)),
16939 get_symbol_index_type (filedata, psym->st_shndx));
16940
16941 if (VALID_DYNAMIC_NAME (psym->st_name))
16942 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
16943 else
16944 printf (_("<corrupt: %14ld>"), psym->st_name);
16945 }
16946 else
16947 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
16948 (unsigned long) i);
16949
16950 printf ("\n");
16951 if (ent == (bfd_vma) -1)
16952 break;
16953 }
16954 printf ("\n");
16955 }
16956
16957 got_print_fail:
16958 if (data)
16959 free (data);
16960 }
16961
16962 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
16963 {
16964 bfd_vma ent, end;
16965 size_t offset, rel_offset;
16966 unsigned long count, i;
16967 unsigned char * data;
16968 int addr_size, sym_width;
16969 Elf_Internal_Rela * rels;
16970
16971 rel_offset = offset_from_vma (filedata, jmprel, pltrelsz);
16972 if (pltrel == DT_RELA)
16973 {
16974 if (!slurp_rela_relocs (filedata, rel_offset, pltrelsz, &rels, &count))
16975 return FALSE;
16976 }
16977 else
16978 {
16979 if (!slurp_rel_relocs (filedata, rel_offset, pltrelsz, &rels, &count))
16980 return FALSE;
16981 }
16982
16983 ent = mips_pltgot;
16984 addr_size = (is_32bit_elf ? 4 : 8);
16985 end = mips_pltgot + (2 + count) * addr_size;
16986
16987 offset = offset_from_vma (filedata, mips_pltgot, end - mips_pltgot);
16988 data = (unsigned char *) get_data (NULL, filedata, offset, end - mips_pltgot,
16989 1, _("Procedure Linkage Table data"));
16990 if (data == NULL)
16991 return FALSE;
16992
16993 printf ("\nPLT GOT:\n\n");
16994 printf (_(" Reserved entries:\n"));
16995 printf (_(" %*s %*s Purpose\n"),
16996 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
16997 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
16998 printf (_(" PLT lazy resolver\n"));
16999 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
17000 printf (_(" Module pointer\n"));
17001 printf ("\n");
17002
17003 printf (_(" Entries:\n"));
17004 printf (" %*s %*s %*s %-7s %3s %s\n",
17005 addr_size * 2, _("Address"),
17006 addr_size * 2, _("Initial"),
17007 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
17008 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
17009 for (i = 0; i < count; i++)
17010 {
17011 unsigned long idx = get_reloc_symindex (rels[i].r_info);
17012
17013 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
17014 printf (" ");
17015
17016 if (idx >= num_dynamic_syms)
17017 printf (_("<corrupt symbol index: %lu>"), idx);
17018 else
17019 {
17020 Elf_Internal_Sym * psym = dynamic_symbols + idx;
17021
17022 print_vma (psym->st_value, LONG_HEX);
17023 printf (" %-7s %3s ",
17024 get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)),
17025 get_symbol_index_type (filedata, psym->st_shndx));
17026 if (VALID_DYNAMIC_NAME (psym->st_name))
17027 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
17028 else
17029 printf (_("<corrupt: %14ld>"), psym->st_name);
17030 }
17031 printf ("\n");
17032 }
17033 printf ("\n");
17034
17035 if (data)
17036 free (data);
17037 free (rels);
17038 }
17039
17040 return res;
17041 }
17042
17043 static bfd_boolean
17044 process_nds32_specific (Filedata * filedata)
17045 {
17046 Elf_Internal_Shdr *sect = NULL;
17047
17048 sect = find_section (filedata, ".nds32_e_flags");
17049 if (sect != NULL)
17050 {
17051 unsigned int *flag;
17052
17053 printf ("\nNDS32 elf flags section:\n");
17054 flag = get_data (NULL, filedata, sect->sh_offset, 1,
17055 sect->sh_size, _("NDS32 elf flags section"));
17056
17057 if (! flag)
17058 return FALSE;
17059
17060 switch ((*flag) & 0x3)
17061 {
17062 case 0:
17063 printf ("(VEC_SIZE):\tNo entry.\n");
17064 break;
17065 case 1:
17066 printf ("(VEC_SIZE):\t4 bytes\n");
17067 break;
17068 case 2:
17069 printf ("(VEC_SIZE):\t16 bytes\n");
17070 break;
17071 case 3:
17072 printf ("(VEC_SIZE):\treserved\n");
17073 break;
17074 }
17075 }
17076
17077 return TRUE;
17078 }
17079
17080 static bfd_boolean
17081 process_gnu_liblist (Filedata * filedata)
17082 {
17083 Elf_Internal_Shdr * section;
17084 Elf_Internal_Shdr * string_sec;
17085 Elf32_External_Lib * elib;
17086 char * strtab;
17087 size_t strtab_size;
17088 size_t cnt;
17089 unsigned long num_liblist;
17090 unsigned i;
17091 bfd_boolean res = TRUE;
17092
17093 if (! do_arch)
17094 return TRUE;
17095
17096 for (i = 0, section = filedata->section_headers;
17097 i < filedata->file_header.e_shnum;
17098 i++, section++)
17099 {
17100 switch (section->sh_type)
17101 {
17102 case SHT_GNU_LIBLIST:
17103 if (section->sh_link >= filedata->file_header.e_shnum)
17104 break;
17105
17106 elib = (Elf32_External_Lib *)
17107 get_data (NULL, filedata, section->sh_offset, 1, section->sh_size,
17108 _("liblist section data"));
17109
17110 if (elib == NULL)
17111 {
17112 res = FALSE;
17113 break;
17114 }
17115
17116 string_sec = filedata->section_headers + section->sh_link;
17117 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1,
17118 string_sec->sh_size,
17119 _("liblist string table"));
17120 if (strtab == NULL
17121 || section->sh_entsize != sizeof (Elf32_External_Lib))
17122 {
17123 free (elib);
17124 free (strtab);
17125 res = FALSE;
17126 break;
17127 }
17128 strtab_size = string_sec->sh_size;
17129
17130 num_liblist = section->sh_size / sizeof (Elf32_External_Lib);
17131 printf (ngettext ("\nLibrary list section '%s' contains %lu entries:\n",
17132 "\nLibrary list section '%s' contains %lu entries:\n",
17133 num_liblist),
17134 printable_section_name (filedata, section),
17135 num_liblist);
17136
17137 puts (_(" Library Time Stamp Checksum Version Flags"));
17138
17139 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
17140 ++cnt)
17141 {
17142 Elf32_Lib liblist;
17143 time_t atime;
17144 char timebuf[128];
17145 struct tm * tmp;
17146
17147 liblist.l_name = BYTE_GET (elib[cnt].l_name);
17148 atime = BYTE_GET (elib[cnt].l_time_stamp);
17149 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
17150 liblist.l_version = BYTE_GET (elib[cnt].l_version);
17151 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
17152
17153 tmp = gmtime (&atime);
17154 snprintf (timebuf, sizeof (timebuf),
17155 "%04u-%02u-%02uT%02u:%02u:%02u",
17156 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
17157 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
17158
17159 printf ("%3lu: ", (unsigned long) cnt);
17160 if (do_wide)
17161 printf ("%-20s", liblist.l_name < strtab_size
17162 ? strtab + liblist.l_name : _("<corrupt>"));
17163 else
17164 printf ("%-20.20s", liblist.l_name < strtab_size
17165 ? strtab + liblist.l_name : _("<corrupt>"));
17166 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
17167 liblist.l_version, liblist.l_flags);
17168 }
17169
17170 free (elib);
17171 free (strtab);
17172 }
17173 }
17174
17175 return res;
17176 }
17177
17178 static const char *
17179 get_note_type (Filedata * filedata, unsigned e_type)
17180 {
17181 static char buff[64];
17182
17183 if (filedata->file_header.e_type == ET_CORE)
17184 switch (e_type)
17185 {
17186 case NT_AUXV:
17187 return _("NT_AUXV (auxiliary vector)");
17188 case NT_PRSTATUS:
17189 return _("NT_PRSTATUS (prstatus structure)");
17190 case NT_FPREGSET:
17191 return _("NT_FPREGSET (floating point registers)");
17192 case NT_PRPSINFO:
17193 return _("NT_PRPSINFO (prpsinfo structure)");
17194 case NT_TASKSTRUCT:
17195 return _("NT_TASKSTRUCT (task structure)");
17196 case NT_PRXFPREG:
17197 return _("NT_PRXFPREG (user_xfpregs structure)");
17198 case NT_PPC_VMX:
17199 return _("NT_PPC_VMX (ppc Altivec registers)");
17200 case NT_PPC_VSX:
17201 return _("NT_PPC_VSX (ppc VSX registers)");
17202 case NT_PPC_TAR:
17203 return _("NT_PPC_TAR (ppc TAR register)");
17204 case NT_PPC_PPR:
17205 return _("NT_PPC_PPR (ppc PPR register)");
17206 case NT_PPC_DSCR:
17207 return _("NT_PPC_DSCR (ppc DSCR register)");
17208 case NT_PPC_EBB:
17209 return _("NT_PPC_EBB (ppc EBB registers)");
17210 case NT_PPC_PMU:
17211 return _("NT_PPC_PMU (ppc PMU registers)");
17212 case NT_PPC_TM_CGPR:
17213 return _("NT_PPC_TM_CGPR (ppc checkpointed GPR registers)");
17214 case NT_PPC_TM_CFPR:
17215 return _("NT_PPC_TM_CFPR (ppc checkpointed floating point registers)");
17216 case NT_PPC_TM_CVMX:
17217 return _("NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)");
17218 case NT_PPC_TM_CVSX:
17219 return _("NT_PPC_TM_CVSX (ppc checkpointed VSX registers)");
17220 case NT_PPC_TM_SPR:
17221 return _("NT_PPC_TM_SPR (ppc TM special purpose registers)");
17222 case NT_PPC_TM_CTAR:
17223 return _("NT_PPC_TM_CTAR (ppc checkpointed TAR register)");
17224 case NT_PPC_TM_CPPR:
17225 return _("NT_PPC_TM_CPPR (ppc checkpointed PPR register)");
17226 case NT_PPC_TM_CDSCR:
17227 return _("NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)");
17228 case NT_386_TLS:
17229 return _("NT_386_TLS (x86 TLS information)");
17230 case NT_386_IOPERM:
17231 return _("NT_386_IOPERM (x86 I/O permissions)");
17232 case NT_X86_XSTATE:
17233 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
17234 case NT_S390_HIGH_GPRS:
17235 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
17236 case NT_S390_TIMER:
17237 return _("NT_S390_TIMER (s390 timer register)");
17238 case NT_S390_TODCMP:
17239 return _("NT_S390_TODCMP (s390 TOD comparator register)");
17240 case NT_S390_TODPREG:
17241 return _("NT_S390_TODPREG (s390 TOD programmable register)");
17242 case NT_S390_CTRS:
17243 return _("NT_S390_CTRS (s390 control registers)");
17244 case NT_S390_PREFIX:
17245 return _("NT_S390_PREFIX (s390 prefix register)");
17246 case NT_S390_LAST_BREAK:
17247 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
17248 case NT_S390_SYSTEM_CALL:
17249 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
17250 case NT_S390_TDB:
17251 return _("NT_S390_TDB (s390 transaction diagnostic block)");
17252 case NT_S390_VXRS_LOW:
17253 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
17254 case NT_S390_VXRS_HIGH:
17255 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
17256 case NT_S390_GS_CB:
17257 return _("NT_S390_GS_CB (s390 guarded-storage registers)");
17258 case NT_S390_GS_BC:
17259 return _("NT_S390_GS_BC (s390 guarded-storage broadcast control)");
17260 case NT_ARM_VFP:
17261 return _("NT_ARM_VFP (arm VFP registers)");
17262 case NT_ARM_TLS:
17263 return _("NT_ARM_TLS (AArch TLS registers)");
17264 case NT_ARM_HW_BREAK:
17265 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
17266 case NT_ARM_HW_WATCH:
17267 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
17268 case NT_PSTATUS:
17269 return _("NT_PSTATUS (pstatus structure)");
17270 case NT_FPREGS:
17271 return _("NT_FPREGS (floating point registers)");
17272 case NT_PSINFO:
17273 return _("NT_PSINFO (psinfo structure)");
17274 case NT_LWPSTATUS:
17275 return _("NT_LWPSTATUS (lwpstatus_t structure)");
17276 case NT_LWPSINFO:
17277 return _("NT_LWPSINFO (lwpsinfo_t structure)");
17278 case NT_WIN32PSTATUS:
17279 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
17280 case NT_SIGINFO:
17281 return _("NT_SIGINFO (siginfo_t data)");
17282 case NT_FILE:
17283 return _("NT_FILE (mapped files)");
17284 default:
17285 break;
17286 }
17287 else
17288 switch (e_type)
17289 {
17290 case NT_VERSION:
17291 return _("NT_VERSION (version)");
17292 case NT_ARCH:
17293 return _("NT_ARCH (architecture)");
17294 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
17295 return _("OPEN");
17296 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
17297 return _("func");
17298 default:
17299 break;
17300 }
17301
17302 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17303 return buff;
17304 }
17305
17306 static bfd_boolean
17307 print_core_note (Elf_Internal_Note *pnote)
17308 {
17309 unsigned int addr_size = is_32bit_elf ? 4 : 8;
17310 bfd_vma count, page_size;
17311 unsigned char *descdata, *filenames, *descend;
17312
17313 if (pnote->type != NT_FILE)
17314 {
17315 if (do_wide)
17316 printf ("\n");
17317 return TRUE;
17318 }
17319
17320 #ifndef BFD64
17321 if (!is_32bit_elf)
17322 {
17323 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
17324 /* Still "successful". */
17325 return TRUE;
17326 }
17327 #endif
17328
17329 if (pnote->descsz < 2 * addr_size)
17330 {
17331 error (_(" Malformed note - too short for header\n"));
17332 return FALSE;
17333 }
17334
17335 descdata = (unsigned char *) pnote->descdata;
17336 descend = descdata + pnote->descsz;
17337
17338 if (descdata[pnote->descsz - 1] != '\0')
17339 {
17340 error (_(" Malformed note - does not end with \\0\n"));
17341 return FALSE;
17342 }
17343
17344 count = byte_get (descdata, addr_size);
17345 descdata += addr_size;
17346
17347 page_size = byte_get (descdata, addr_size);
17348 descdata += addr_size;
17349
17350 if (count > ((bfd_vma) -1 - 2 * addr_size) / (3 * addr_size)
17351 || pnote->descsz < 2 * addr_size + count * 3 * addr_size)
17352 {
17353 error (_(" Malformed note - too short for supplied file count\n"));
17354 return FALSE;
17355 }
17356
17357 printf (_(" Page size: "));
17358 print_vma (page_size, DEC);
17359 printf ("\n");
17360
17361 printf (_(" %*s%*s%*s\n"),
17362 (int) (2 + 2 * addr_size), _("Start"),
17363 (int) (4 + 2 * addr_size), _("End"),
17364 (int) (4 + 2 * addr_size), _("Page Offset"));
17365 filenames = descdata + count * 3 * addr_size;
17366 while (count-- > 0)
17367 {
17368 bfd_vma start, end, file_ofs;
17369
17370 if (filenames == descend)
17371 {
17372 error (_(" Malformed note - filenames end too early\n"));
17373 return FALSE;
17374 }
17375
17376 start = byte_get (descdata, addr_size);
17377 descdata += addr_size;
17378 end = byte_get (descdata, addr_size);
17379 descdata += addr_size;
17380 file_ofs = byte_get (descdata, addr_size);
17381 descdata += addr_size;
17382
17383 printf (" ");
17384 print_vma (start, FULL_HEX);
17385 printf (" ");
17386 print_vma (end, FULL_HEX);
17387 printf (" ");
17388 print_vma (file_ofs, FULL_HEX);
17389 printf ("\n %s\n", filenames);
17390
17391 filenames += 1 + strlen ((char *) filenames);
17392 }
17393
17394 return TRUE;
17395 }
17396
17397 static const char *
17398 get_gnu_elf_note_type (unsigned e_type)
17399 {
17400 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
17401 switch (e_type)
17402 {
17403 case NT_GNU_ABI_TAG:
17404 return _("NT_GNU_ABI_TAG (ABI version tag)");
17405 case NT_GNU_HWCAP:
17406 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
17407 case NT_GNU_BUILD_ID:
17408 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
17409 case NT_GNU_GOLD_VERSION:
17410 return _("NT_GNU_GOLD_VERSION (gold version)");
17411 case NT_GNU_PROPERTY_TYPE_0:
17412 return _("NT_GNU_PROPERTY_TYPE_0");
17413 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
17414 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
17415 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
17416 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
17417 default:
17418 {
17419 static char buff[64];
17420
17421 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17422 return buff;
17423 }
17424 }
17425 }
17426
17427 static void
17428 decode_x86_compat_isa (unsigned int bitmask)
17429 {
17430 while (bitmask)
17431 {
17432 unsigned int bit = bitmask & (- bitmask);
17433
17434 bitmask &= ~ bit;
17435 switch (bit)
17436 {
17437 case GNU_PROPERTY_X86_COMPAT_ISA_1_486:
17438 printf ("i486");
17439 break;
17440 case GNU_PROPERTY_X86_COMPAT_ISA_1_586:
17441 printf ("586");
17442 break;
17443 case GNU_PROPERTY_X86_COMPAT_ISA_1_686:
17444 printf ("686");
17445 break;
17446 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE:
17447 printf ("SSE");
17448 break;
17449 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE2:
17450 printf ("SSE2");
17451 break;
17452 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE3:
17453 printf ("SSE3");
17454 break;
17455 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSSE3:
17456 printf ("SSSE3");
17457 break;
17458 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_1:
17459 printf ("SSE4_1");
17460 break;
17461 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_2:
17462 printf ("SSE4_2");
17463 break;
17464 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX:
17465 printf ("AVX");
17466 break;
17467 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX2:
17468 printf ("AVX2");
17469 break;
17470 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512F:
17471 printf ("AVX512F");
17472 break;
17473 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512CD:
17474 printf ("AVX512CD");
17475 break;
17476 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512ER:
17477 printf ("AVX512ER");
17478 break;
17479 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512PF:
17480 printf ("AVX512PF");
17481 break;
17482 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512VL:
17483 printf ("AVX512VL");
17484 break;
17485 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512DQ:
17486 printf ("AVX512DQ");
17487 break;
17488 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512BW:
17489 printf ("AVX512BW");
17490 break;
17491 default:
17492 printf (_("<unknown: %x>"), bit);
17493 break;
17494 }
17495 if (bitmask)
17496 printf (", ");
17497 }
17498 }
17499
17500 static void
17501 decode_x86_isa (unsigned int bitmask)
17502 {
17503 if (!bitmask)
17504 {
17505 printf (_("<None>"));
17506 return;
17507 }
17508
17509 while (bitmask)
17510 {
17511 unsigned int bit = bitmask & (- bitmask);
17512
17513 bitmask &= ~ bit;
17514 switch (bit)
17515 {
17516 case GNU_PROPERTY_X86_ISA_1_CMOV:
17517 printf ("CMOV");
17518 break;
17519 case GNU_PROPERTY_X86_ISA_1_SSE:
17520 printf ("SSE");
17521 break;
17522 case GNU_PROPERTY_X86_ISA_1_SSE2:
17523 printf ("SSE2");
17524 break;
17525 case GNU_PROPERTY_X86_ISA_1_SSE3:
17526 printf ("SSE3");
17527 break;
17528 case GNU_PROPERTY_X86_ISA_1_SSSE3:
17529 printf ("SSSE3");
17530 break;
17531 case GNU_PROPERTY_X86_ISA_1_SSE4_1:
17532 printf ("SSE4_1");
17533 break;
17534 case GNU_PROPERTY_X86_ISA_1_SSE4_2:
17535 printf ("SSE4_2");
17536 break;
17537 case GNU_PROPERTY_X86_ISA_1_AVX:
17538 printf ("AVX");
17539 break;
17540 case GNU_PROPERTY_X86_ISA_1_AVX2:
17541 printf ("AVX2");
17542 break;
17543 case GNU_PROPERTY_X86_ISA_1_FMA:
17544 printf ("FMA");
17545 break;
17546 case GNU_PROPERTY_X86_ISA_1_AVX512F:
17547 printf ("AVX512F");
17548 break;
17549 case GNU_PROPERTY_X86_ISA_1_AVX512CD:
17550 printf ("AVX512CD");
17551 break;
17552 case GNU_PROPERTY_X86_ISA_1_AVX512ER:
17553 printf ("AVX512ER");
17554 break;
17555 case GNU_PROPERTY_X86_ISA_1_AVX512PF:
17556 printf ("AVX512PF");
17557 break;
17558 case GNU_PROPERTY_X86_ISA_1_AVX512VL:
17559 printf ("AVX512VL");
17560 break;
17561 case GNU_PROPERTY_X86_ISA_1_AVX512DQ:
17562 printf ("AVX512DQ");
17563 break;
17564 case GNU_PROPERTY_X86_ISA_1_AVX512BW:
17565 printf ("AVX512BW");
17566 break;
17567 case GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS:
17568 printf ("AVX512_4FMAPS");
17569 break;
17570 case GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW:
17571 printf ("AVX512_4VNNIW");
17572 break;
17573 case GNU_PROPERTY_X86_ISA_1_AVX512_BITALG:
17574 printf ("AVX512_BITALG");
17575 break;
17576 case GNU_PROPERTY_X86_ISA_1_AVX512_IFMA:
17577 printf ("AVX512_IFMA");
17578 break;
17579 case GNU_PROPERTY_X86_ISA_1_AVX512_VBMI:
17580 printf ("AVX512_VBMI");
17581 break;
17582 case GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2:
17583 printf ("AVX512_VBMI2");
17584 break;
17585 case GNU_PROPERTY_X86_ISA_1_AVX512_VNNI:
17586 printf ("AVX512_VNNI");
17587 break;
17588 case GNU_PROPERTY_X86_ISA_1_AVX512_BF16:
17589 printf ("AVX512_BF16");
17590 break;
17591 default:
17592 printf (_("<unknown: %x>"), bit);
17593 break;
17594 }
17595 if (bitmask)
17596 printf (", ");
17597 }
17598 }
17599
17600 static void
17601 decode_x86_feature_1 (unsigned int bitmask)
17602 {
17603 if (!bitmask)
17604 {
17605 printf (_("<None>"));
17606 return;
17607 }
17608
17609 while (bitmask)
17610 {
17611 unsigned int bit = bitmask & (- bitmask);
17612
17613 bitmask &= ~ bit;
17614 switch (bit)
17615 {
17616 case GNU_PROPERTY_X86_FEATURE_1_IBT:
17617 printf ("IBT");
17618 break;
17619 case GNU_PROPERTY_X86_FEATURE_1_SHSTK:
17620 printf ("SHSTK");
17621 break;
17622 default:
17623 printf (_("<unknown: %x>"), bit);
17624 break;
17625 }
17626 if (bitmask)
17627 printf (", ");
17628 }
17629 }
17630
17631 static void
17632 decode_x86_feature_2 (unsigned int bitmask)
17633 {
17634 if (!bitmask)
17635 {
17636 printf (_("<None>"));
17637 return;
17638 }
17639
17640 while (bitmask)
17641 {
17642 unsigned int bit = bitmask & (- bitmask);
17643
17644 bitmask &= ~ bit;
17645 switch (bit)
17646 {
17647 case GNU_PROPERTY_X86_FEATURE_2_X86:
17648 printf ("x86");
17649 break;
17650 case GNU_PROPERTY_X86_FEATURE_2_X87:
17651 printf ("x87");
17652 break;
17653 case GNU_PROPERTY_X86_FEATURE_2_MMX:
17654 printf ("MMX");
17655 break;
17656 case GNU_PROPERTY_X86_FEATURE_2_XMM:
17657 printf ("XMM");
17658 break;
17659 case GNU_PROPERTY_X86_FEATURE_2_YMM:
17660 printf ("YMM");
17661 break;
17662 case GNU_PROPERTY_X86_FEATURE_2_ZMM:
17663 printf ("ZMM");
17664 break;
17665 case GNU_PROPERTY_X86_FEATURE_2_FXSR:
17666 printf ("FXSR");
17667 break;
17668 case GNU_PROPERTY_X86_FEATURE_2_XSAVE:
17669 printf ("XSAVE");
17670 break;
17671 case GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT:
17672 printf ("XSAVEOPT");
17673 break;
17674 case GNU_PROPERTY_X86_FEATURE_2_XSAVEC:
17675 printf ("XSAVEC");
17676 break;
17677 default:
17678 printf (_("<unknown: %x>"), bit);
17679 break;
17680 }
17681 if (bitmask)
17682 printf (", ");
17683 }
17684 }
17685
17686 static void
17687 decode_aarch64_feature_1_and (unsigned int bitmask)
17688 {
17689 while (bitmask)
17690 {
17691 unsigned int bit = bitmask & (- bitmask);
17692
17693 bitmask &= ~ bit;
17694 switch (bit)
17695 {
17696 case GNU_PROPERTY_AARCH64_FEATURE_1_BTI:
17697 printf ("BTI");
17698 break;
17699
17700 case GNU_PROPERTY_AARCH64_FEATURE_1_PAC:
17701 printf ("PAC");
17702 break;
17703
17704 default:
17705 printf (_("<unknown: %x>"), bit);
17706 break;
17707 }
17708 if (bitmask)
17709 printf (", ");
17710 }
17711 }
17712
17713 static void
17714 print_gnu_property_note (Filedata * filedata, Elf_Internal_Note * pnote)
17715 {
17716 unsigned char * ptr = (unsigned char *) pnote->descdata;
17717 unsigned char * ptr_end = ptr + pnote->descsz;
17718 unsigned int size = is_32bit_elf ? 4 : 8;
17719
17720 printf (_(" Properties: "));
17721
17722 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
17723 {
17724 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
17725 return;
17726 }
17727
17728 while (ptr < ptr_end)
17729 {
17730 unsigned int j;
17731 unsigned int type;
17732 unsigned int datasz;
17733
17734 if ((size_t) (ptr_end - ptr) < 8)
17735 {
17736 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
17737 break;
17738 }
17739
17740 type = byte_get (ptr, 4);
17741 datasz = byte_get (ptr + 4, 4);
17742
17743 ptr += 8;
17744
17745 if (datasz > (size_t) (ptr_end - ptr))
17746 {
17747 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
17748 type, datasz);
17749 break;
17750 }
17751
17752 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
17753 {
17754 if (filedata->file_header.e_machine == EM_X86_64
17755 || filedata->file_header.e_machine == EM_IAMCU
17756 || filedata->file_header.e_machine == EM_386)
17757 {
17758 unsigned int bitmask;
17759
17760 if (datasz == 4)
17761 bitmask = byte_get (ptr, 4);
17762 else
17763 bitmask = 0;
17764
17765 switch (type)
17766 {
17767 case GNU_PROPERTY_X86_ISA_1_USED:
17768 if (datasz != 4)
17769 printf (_("x86 ISA used: <corrupt length: %#x> "),
17770 datasz);
17771 else
17772 {
17773 printf ("x86 ISA used: ");
17774 decode_x86_isa (bitmask);
17775 }
17776 goto next;
17777
17778 case GNU_PROPERTY_X86_ISA_1_NEEDED:
17779 if (datasz != 4)
17780 printf (_("x86 ISA needed: <corrupt length: %#x> "),
17781 datasz);
17782 else
17783 {
17784 printf ("x86 ISA needed: ");
17785 decode_x86_isa (bitmask);
17786 }
17787 goto next;
17788
17789 case GNU_PROPERTY_X86_FEATURE_1_AND:
17790 if (datasz != 4)
17791 printf (_("x86 feature: <corrupt length: %#x> "),
17792 datasz);
17793 else
17794 {
17795 printf ("x86 feature: ");
17796 decode_x86_feature_1 (bitmask);
17797 }
17798 goto next;
17799
17800 case GNU_PROPERTY_X86_FEATURE_2_USED:
17801 if (datasz != 4)
17802 printf (_("x86 feature used: <corrupt length: %#x> "),
17803 datasz);
17804 else
17805 {
17806 printf ("x86 feature used: ");
17807 decode_x86_feature_2 (bitmask);
17808 }
17809 goto next;
17810
17811 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
17812 if (datasz != 4)
17813 printf (_("x86 feature needed: <corrupt length: %#x> "), datasz);
17814 else
17815 {
17816 printf ("x86 feature needed: ");
17817 decode_x86_feature_2 (bitmask);
17818 }
17819 goto next;
17820
17821 case GNU_PROPERTY_X86_COMPAT_ISA_1_USED:
17822 if (datasz != 4)
17823 printf (_("x86 ISA used: <corrupt length: %#x> "),
17824 datasz);
17825 else
17826 {
17827 printf ("x86 ISA used: ");
17828 decode_x86_compat_isa (bitmask);
17829 }
17830 goto next;
17831
17832 case GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED:
17833 if (datasz != 4)
17834 printf (_("x86 ISA needed: <corrupt length: %#x> "),
17835 datasz);
17836 else
17837 {
17838 printf ("x86 ISA needed: ");
17839 decode_x86_compat_isa (bitmask);
17840 }
17841 goto next;
17842
17843 default:
17844 break;
17845 }
17846 }
17847 else if (filedata->file_header.e_machine == EM_AARCH64)
17848 {
17849 if (type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
17850 {
17851 printf ("AArch64 feature: ");
17852 if (datasz != 4)
17853 printf (_("<corrupt length: %#x> "), datasz);
17854 else
17855 decode_aarch64_feature_1_and (byte_get (ptr, 4));
17856 goto next;
17857 }
17858 }
17859 }
17860 else
17861 {
17862 switch (type)
17863 {
17864 case GNU_PROPERTY_STACK_SIZE:
17865 printf (_("stack size: "));
17866 if (datasz != size)
17867 printf (_("<corrupt length: %#x> "), datasz);
17868 else
17869 printf ("%#lx", (unsigned long) byte_get (ptr, size));
17870 goto next;
17871
17872 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
17873 printf ("no copy on protected ");
17874 if (datasz)
17875 printf (_("<corrupt length: %#x> "), datasz);
17876 goto next;
17877
17878 default:
17879 break;
17880 }
17881 }
17882
17883 if (type < GNU_PROPERTY_LOPROC)
17884 printf (_("<unknown type %#x data: "), type);
17885 else if (type < GNU_PROPERTY_LOUSER)
17886 printf (_("<procesor-specific type %#x data: "), type);
17887 else
17888 printf (_("<application-specific type %#x data: "), type);
17889 for (j = 0; j < datasz; ++j)
17890 printf ("%02x ", ptr[j] & 0xff);
17891 printf (">");
17892
17893 next:
17894 ptr += ((datasz + (size - 1)) & ~ (size - 1));
17895 if (ptr == ptr_end)
17896 break;
17897
17898 if (do_wide)
17899 printf (", ");
17900 else
17901 printf ("\n\t");
17902 }
17903
17904 printf ("\n");
17905 }
17906
17907 static bfd_boolean
17908 print_gnu_note (Filedata * filedata, Elf_Internal_Note *pnote)
17909 {
17910 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
17911 switch (pnote->type)
17912 {
17913 case NT_GNU_BUILD_ID:
17914 {
17915 unsigned long i;
17916
17917 printf (_(" Build ID: "));
17918 for (i = 0; i < pnote->descsz; ++i)
17919 printf ("%02x", pnote->descdata[i] & 0xff);
17920 printf ("\n");
17921 }
17922 break;
17923
17924 case NT_GNU_ABI_TAG:
17925 {
17926 unsigned long os, major, minor, subminor;
17927 const char *osname;
17928
17929 /* PR 17531: file: 030-599401-0.004. */
17930 if (pnote->descsz < 16)
17931 {
17932 printf (_(" <corrupt GNU_ABI_TAG>\n"));
17933 break;
17934 }
17935
17936 os = byte_get ((unsigned char *) pnote->descdata, 4);
17937 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
17938 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
17939 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
17940
17941 switch (os)
17942 {
17943 case GNU_ABI_TAG_LINUX:
17944 osname = "Linux";
17945 break;
17946 case GNU_ABI_TAG_HURD:
17947 osname = "Hurd";
17948 break;
17949 case GNU_ABI_TAG_SOLARIS:
17950 osname = "Solaris";
17951 break;
17952 case GNU_ABI_TAG_FREEBSD:
17953 osname = "FreeBSD";
17954 break;
17955 case GNU_ABI_TAG_NETBSD:
17956 osname = "NetBSD";
17957 break;
17958 case GNU_ABI_TAG_SYLLABLE:
17959 osname = "Syllable";
17960 break;
17961 case GNU_ABI_TAG_NACL:
17962 osname = "NaCl";
17963 break;
17964 default:
17965 osname = "Unknown";
17966 break;
17967 }
17968
17969 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
17970 major, minor, subminor);
17971 }
17972 break;
17973
17974 case NT_GNU_GOLD_VERSION:
17975 {
17976 unsigned long i;
17977
17978 printf (_(" Version: "));
17979 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
17980 printf ("%c", pnote->descdata[i]);
17981 printf ("\n");
17982 }
17983 break;
17984
17985 case NT_GNU_HWCAP:
17986 {
17987 unsigned long num_entries, mask;
17988
17989 /* Hardware capabilities information. Word 0 is the number of entries.
17990 Word 1 is a bitmask of enabled entries. The rest of the descriptor
17991 is a series of entries, where each entry is a single byte followed
17992 by a nul terminated string. The byte gives the bit number to test
17993 if enabled in the bitmask. */
17994 printf (_(" Hardware Capabilities: "));
17995 if (pnote->descsz < 8)
17996 {
17997 error (_("<corrupt GNU_HWCAP>\n"));
17998 return FALSE;
17999 }
18000 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
18001 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
18002 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
18003 /* FIXME: Add code to display the entries... */
18004 }
18005 break;
18006
18007 case NT_GNU_PROPERTY_TYPE_0:
18008 print_gnu_property_note (filedata, pnote);
18009 break;
18010
18011 default:
18012 /* Handle unrecognised types. An error message should have already been
18013 created by get_gnu_elf_note_type(), so all that we need to do is to
18014 display the data. */
18015 {
18016 unsigned long i;
18017
18018 printf (_(" Description data: "));
18019 for (i = 0; i < pnote->descsz; ++i)
18020 printf ("%02x ", pnote->descdata[i] & 0xff);
18021 printf ("\n");
18022 }
18023 break;
18024 }
18025
18026 return TRUE;
18027 }
18028
18029 static const char *
18030 get_v850_elf_note_type (enum v850_notes n_type)
18031 {
18032 static char buff[64];
18033
18034 switch (n_type)
18035 {
18036 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
18037 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
18038 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
18039 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
18040 case V850_NOTE_CACHE_INFO: return _("Use of cache");
18041 case V850_NOTE_MMU_INFO: return _("Use of MMU");
18042 default:
18043 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
18044 return buff;
18045 }
18046 }
18047
18048 static bfd_boolean
18049 print_v850_note (Elf_Internal_Note * pnote)
18050 {
18051 unsigned int val;
18052
18053 if (pnote->descsz != 4)
18054 return FALSE;
18055
18056 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
18057
18058 if (val == 0)
18059 {
18060 printf (_("not set\n"));
18061 return TRUE;
18062 }
18063
18064 switch (pnote->type)
18065 {
18066 case V850_NOTE_ALIGNMENT:
18067 switch (val)
18068 {
18069 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
18070 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
18071 }
18072 break;
18073
18074 case V850_NOTE_DATA_SIZE:
18075 switch (val)
18076 {
18077 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
18078 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
18079 }
18080 break;
18081
18082 case V850_NOTE_FPU_INFO:
18083 switch (val)
18084 {
18085 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
18086 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
18087 }
18088 break;
18089
18090 case V850_NOTE_MMU_INFO:
18091 case V850_NOTE_CACHE_INFO:
18092 case V850_NOTE_SIMD_INFO:
18093 if (val == EF_RH850_SIMD)
18094 {
18095 printf (_("yes\n"));
18096 return TRUE;
18097 }
18098 break;
18099
18100 default:
18101 /* An 'unknown note type' message will already have been displayed. */
18102 break;
18103 }
18104
18105 printf (_("unknown value: %x\n"), val);
18106 return FALSE;
18107 }
18108
18109 static bfd_boolean
18110 process_netbsd_elf_note (Elf_Internal_Note * pnote)
18111 {
18112 unsigned int version;
18113
18114 switch (pnote->type)
18115 {
18116 case NT_NETBSD_IDENT:
18117 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
18118 if ((version / 10000) % 100)
18119 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
18120 version, version / 100000000, (version / 1000000) % 100,
18121 (version / 10000) % 100 > 26 ? "Z" : "",
18122 'A' + (version / 10000) % 26);
18123 else
18124 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
18125 version, version / 100000000, (version / 1000000) % 100,
18126 (version / 100) % 100);
18127 return TRUE;
18128
18129 case NT_NETBSD_MARCH:
18130 printf (" NetBSD\t\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
18131 pnote->descdata);
18132 return TRUE;
18133
18134 #ifdef NT_NETBSD_PAX
18135 case NT_NETBSD_PAX:
18136 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
18137 printf (" NetBSD\t\t0x%08lx\tPaX <%s%s%s%s%s%s>\n", pnote->descsz,
18138 ((version & NT_NETBSD_PAX_MPROTECT) ? "+mprotect" : ""),
18139 ((version & NT_NETBSD_PAX_NOMPROTECT) ? "-mprotect" : ""),
18140 ((version & NT_NETBSD_PAX_GUARD) ? "+guard" : ""),
18141 ((version & NT_NETBSD_PAX_NOGUARD) ? "-guard" : ""),
18142 ((version & NT_NETBSD_PAX_ASLR) ? "+ASLR" : ""),
18143 ((version & NT_NETBSD_PAX_NOASLR) ? "-ASLR" : ""));
18144 return TRUE;
18145 #endif
18146
18147 default:
18148 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
18149 pnote->type);
18150 return FALSE;
18151 }
18152 }
18153
18154 static const char *
18155 get_freebsd_elfcore_note_type (Filedata * filedata, unsigned e_type)
18156 {
18157 switch (e_type)
18158 {
18159 case NT_FREEBSD_THRMISC:
18160 return _("NT_THRMISC (thrmisc structure)");
18161 case NT_FREEBSD_PROCSTAT_PROC:
18162 return _("NT_PROCSTAT_PROC (proc data)");
18163 case NT_FREEBSD_PROCSTAT_FILES:
18164 return _("NT_PROCSTAT_FILES (files data)");
18165 case NT_FREEBSD_PROCSTAT_VMMAP:
18166 return _("NT_PROCSTAT_VMMAP (vmmap data)");
18167 case NT_FREEBSD_PROCSTAT_GROUPS:
18168 return _("NT_PROCSTAT_GROUPS (groups data)");
18169 case NT_FREEBSD_PROCSTAT_UMASK:
18170 return _("NT_PROCSTAT_UMASK (umask data)");
18171 case NT_FREEBSD_PROCSTAT_RLIMIT:
18172 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
18173 case NT_FREEBSD_PROCSTAT_OSREL:
18174 return _("NT_PROCSTAT_OSREL (osreldate data)");
18175 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
18176 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
18177 case NT_FREEBSD_PROCSTAT_AUXV:
18178 return _("NT_PROCSTAT_AUXV (auxv data)");
18179 case NT_FREEBSD_PTLWPINFO:
18180 return _("NT_PTLWPINFO (ptrace_lwpinfo structure)");
18181 }
18182 return get_note_type (filedata, e_type);
18183 }
18184
18185 static const char *
18186 get_netbsd_elfcore_note_type (Filedata * filedata, unsigned e_type)
18187 {
18188 static char buff[64];
18189
18190 switch (e_type)
18191 {
18192 case NT_NETBSDCORE_PROCINFO:
18193 /* NetBSD core "procinfo" structure. */
18194 return _("NetBSD procinfo structure");
18195
18196 #ifdef NT_NETBSDCORE_AUXV
18197 case NT_NETBSDCORE_AUXV:
18198 return _("NetBSD ELF auxiliary vector data");
18199 #endif
18200
18201 default:
18202 /* As of Jan 2002 there are no other machine-independent notes
18203 defined for NetBSD core files. If the note type is less
18204 than the start of the machine-dependent note types, we don't
18205 understand it. */
18206
18207 if (e_type < NT_NETBSDCORE_FIRSTMACH)
18208 {
18209 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18210 return buff;
18211 }
18212 break;
18213 }
18214
18215 switch (filedata->file_header.e_machine)
18216 {
18217 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
18218 and PT_GETFPREGS == mach+2. */
18219
18220 case EM_OLD_ALPHA:
18221 case EM_ALPHA:
18222 case EM_SPARC:
18223 case EM_SPARC32PLUS:
18224 case EM_SPARCV9:
18225 switch (e_type)
18226 {
18227 case NT_NETBSDCORE_FIRSTMACH + 0:
18228 return _("PT_GETREGS (reg structure)");
18229 case NT_NETBSDCORE_FIRSTMACH + 2:
18230 return _("PT_GETFPREGS (fpreg structure)");
18231 default:
18232 break;
18233 }
18234 break;
18235
18236 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
18237 There's also old PT___GETREGS40 == mach + 1 for old reg
18238 structure which lacks GBR. */
18239 case EM_SH:
18240 switch (e_type)
18241 {
18242 case NT_NETBSDCORE_FIRSTMACH + 1:
18243 return _("PT___GETREGS40 (old reg structure)");
18244 case NT_NETBSDCORE_FIRSTMACH + 3:
18245 return _("PT_GETREGS (reg structure)");
18246 case NT_NETBSDCORE_FIRSTMACH + 5:
18247 return _("PT_GETFPREGS (fpreg structure)");
18248 default:
18249 break;
18250 }
18251 break;
18252
18253 /* On all other arch's, PT_GETREGS == mach+1 and
18254 PT_GETFPREGS == mach+3. */
18255 default:
18256 switch (e_type)
18257 {
18258 case NT_NETBSDCORE_FIRSTMACH + 1:
18259 return _("PT_GETREGS (reg structure)");
18260 case NT_NETBSDCORE_FIRSTMACH + 3:
18261 return _("PT_GETFPREGS (fpreg structure)");
18262 default:
18263 break;
18264 }
18265 }
18266
18267 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
18268 e_type - NT_NETBSDCORE_FIRSTMACH);
18269 return buff;
18270 }
18271
18272 static const char *
18273 get_stapsdt_note_type (unsigned e_type)
18274 {
18275 static char buff[64];
18276
18277 switch (e_type)
18278 {
18279 case NT_STAPSDT:
18280 return _("NT_STAPSDT (SystemTap probe descriptors)");
18281
18282 default:
18283 break;
18284 }
18285
18286 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18287 return buff;
18288 }
18289
18290 static bfd_boolean
18291 print_stapsdt_note (Elf_Internal_Note *pnote)
18292 {
18293 size_t len, maxlen;
18294 unsigned long addr_size = is_32bit_elf ? 4 : 8;
18295 char *data = pnote->descdata;
18296 char *data_end = pnote->descdata + pnote->descsz;
18297 bfd_vma pc, base_addr, semaphore;
18298 char *provider, *probe, *arg_fmt;
18299
18300 if (pnote->descsz < (addr_size * 3))
18301 goto stapdt_note_too_small;
18302
18303 pc = byte_get ((unsigned char *) data, addr_size);
18304 data += addr_size;
18305
18306 base_addr = byte_get ((unsigned char *) data, addr_size);
18307 data += addr_size;
18308
18309 semaphore = byte_get ((unsigned char *) data, addr_size);
18310 data += addr_size;
18311
18312 if (data >= data_end)
18313 goto stapdt_note_too_small;
18314 maxlen = data_end - data;
18315 len = strnlen (data, maxlen);
18316 if (len < maxlen)
18317 {
18318 provider = data;
18319 data += len + 1;
18320 }
18321 else
18322 goto stapdt_note_too_small;
18323
18324 if (data >= data_end)
18325 goto stapdt_note_too_small;
18326 maxlen = data_end - data;
18327 len = strnlen (data, maxlen);
18328 if (len < maxlen)
18329 {
18330 probe = data;
18331 data += len + 1;
18332 }
18333 else
18334 goto stapdt_note_too_small;
18335
18336 if (data >= data_end)
18337 goto stapdt_note_too_small;
18338 maxlen = data_end - data;
18339 len = strnlen (data, maxlen);
18340 if (len < maxlen)
18341 {
18342 arg_fmt = data;
18343 data += len + 1;
18344 }
18345 else
18346 goto stapdt_note_too_small;
18347
18348 printf (_(" Provider: %s\n"), provider);
18349 printf (_(" Name: %s\n"), probe);
18350 printf (_(" Location: "));
18351 print_vma (pc, FULL_HEX);
18352 printf (_(", Base: "));
18353 print_vma (base_addr, FULL_HEX);
18354 printf (_(", Semaphore: "));
18355 print_vma (semaphore, FULL_HEX);
18356 printf ("\n");
18357 printf (_(" Arguments: %s\n"), arg_fmt);
18358
18359 return data == data_end;
18360
18361 stapdt_note_too_small:
18362 printf (_(" <corrupt - note is too small>\n"));
18363 error (_("corrupt stapdt note - the data size is too small\n"));
18364 return FALSE;
18365 }
18366
18367 static const char *
18368 get_ia64_vms_note_type (unsigned e_type)
18369 {
18370 static char buff[64];
18371
18372 switch (e_type)
18373 {
18374 case NT_VMS_MHD:
18375 return _("NT_VMS_MHD (module header)");
18376 case NT_VMS_LNM:
18377 return _("NT_VMS_LNM (language name)");
18378 case NT_VMS_SRC:
18379 return _("NT_VMS_SRC (source files)");
18380 case NT_VMS_TITLE:
18381 return "NT_VMS_TITLE";
18382 case NT_VMS_EIDC:
18383 return _("NT_VMS_EIDC (consistency check)");
18384 case NT_VMS_FPMODE:
18385 return _("NT_VMS_FPMODE (FP mode)");
18386 case NT_VMS_LINKTIME:
18387 return "NT_VMS_LINKTIME";
18388 case NT_VMS_IMGNAM:
18389 return _("NT_VMS_IMGNAM (image name)");
18390 case NT_VMS_IMGID:
18391 return _("NT_VMS_IMGID (image id)");
18392 case NT_VMS_LINKID:
18393 return _("NT_VMS_LINKID (link id)");
18394 case NT_VMS_IMGBID:
18395 return _("NT_VMS_IMGBID (build id)");
18396 case NT_VMS_GSTNAM:
18397 return _("NT_VMS_GSTNAM (sym table name)");
18398 case NT_VMS_ORIG_DYN:
18399 return "NT_VMS_ORIG_DYN";
18400 case NT_VMS_PATCHTIME:
18401 return "NT_VMS_PATCHTIME";
18402 default:
18403 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18404 return buff;
18405 }
18406 }
18407
18408 static bfd_boolean
18409 print_ia64_vms_note (Elf_Internal_Note * pnote)
18410 {
18411 int maxlen = pnote->descsz;
18412
18413 if (maxlen < 2 || (unsigned long) maxlen != pnote->descsz)
18414 goto desc_size_fail;
18415
18416 switch (pnote->type)
18417 {
18418 case NT_VMS_MHD:
18419 if (maxlen <= 36)
18420 goto desc_size_fail;
18421
18422 int l = (int) strnlen (pnote->descdata + 34, maxlen - 34);
18423
18424 printf (_(" Creation date : %.17s\n"), pnote->descdata);
18425 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
18426 if (l + 34 < maxlen)
18427 {
18428 printf (_(" Module name : %s\n"), pnote->descdata + 34);
18429 if (l + 35 < maxlen)
18430 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
18431 else
18432 printf (_(" Module version : <missing>\n"));
18433 }
18434 else
18435 {
18436 printf (_(" Module name : <missing>\n"));
18437 printf (_(" Module version : <missing>\n"));
18438 }
18439 break;
18440
18441 case NT_VMS_LNM:
18442 printf (_(" Language: %.*s\n"), maxlen, pnote->descdata);
18443 break;
18444
18445 #ifdef BFD64
18446 case NT_VMS_FPMODE:
18447 printf (_(" Floating Point mode: "));
18448 if (maxlen < 8)
18449 goto desc_size_fail;
18450 /* FIXME: Generate an error if descsz > 8 ? */
18451
18452 printf ("0x%016" BFD_VMA_FMT "x\n",
18453 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
18454 break;
18455
18456 case NT_VMS_LINKTIME:
18457 printf (_(" Link time: "));
18458 if (maxlen < 8)
18459 goto desc_size_fail;
18460 /* FIXME: Generate an error if descsz > 8 ? */
18461
18462 print_vms_time
18463 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
18464 printf ("\n");
18465 break;
18466
18467 case NT_VMS_PATCHTIME:
18468 printf (_(" Patch time: "));
18469 if (maxlen < 8)
18470 goto desc_size_fail;
18471 /* FIXME: Generate an error if descsz > 8 ? */
18472
18473 print_vms_time
18474 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
18475 printf ("\n");
18476 break;
18477
18478 case NT_VMS_ORIG_DYN:
18479 if (maxlen < 34)
18480 goto desc_size_fail;
18481
18482 printf (_(" Major id: %u, minor id: %u\n"),
18483 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
18484 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
18485 printf (_(" Last modified : "));
18486 print_vms_time
18487 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
18488 printf (_("\n Link flags : "));
18489 printf ("0x%016" BFD_VMA_FMT "x\n",
18490 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
18491 printf (_(" Header flags: 0x%08x\n"),
18492 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
18493 printf (_(" Image id : %.*s\n"), maxlen - 32, pnote->descdata + 32);
18494 break;
18495 #endif
18496
18497 case NT_VMS_IMGNAM:
18498 printf (_(" Image name: %.*s\n"), maxlen, pnote->descdata);
18499 break;
18500
18501 case NT_VMS_GSTNAM:
18502 printf (_(" Global symbol table name: %.*s\n"), maxlen, pnote->descdata);
18503 break;
18504
18505 case NT_VMS_IMGID:
18506 printf (_(" Image id: %.*s\n"), maxlen, pnote->descdata);
18507 break;
18508
18509 case NT_VMS_LINKID:
18510 printf (_(" Linker id: %.*s\n"), maxlen, pnote->descdata);
18511 break;
18512
18513 default:
18514 return FALSE;
18515 }
18516
18517 return TRUE;
18518
18519 desc_size_fail:
18520 printf (_(" <corrupt - data size is too small>\n"));
18521 error (_("corrupt IA64 note: data size is too small\n"));
18522 return FALSE;
18523 }
18524
18525 /* Find the symbol associated with a build attribute that is attached
18526 to address OFFSET. If PNAME is non-NULL then store the name of
18527 the symbol (if found) in the provided pointer, Returns NULL if a
18528 symbol could not be found. */
18529
18530 static Elf_Internal_Sym *
18531 get_symbol_for_build_attribute (Filedata * filedata,
18532 unsigned long offset,
18533 bfd_boolean is_open_attr,
18534 const char ** pname)
18535 {
18536 static Filedata * saved_filedata = NULL;
18537 static char * strtab;
18538 static unsigned long strtablen;
18539 static Elf_Internal_Sym * symtab;
18540 static unsigned long nsyms;
18541 Elf_Internal_Sym * saved_sym = NULL;
18542 Elf_Internal_Sym * sym;
18543
18544 if (filedata->section_headers != NULL
18545 && (saved_filedata == NULL || filedata != saved_filedata))
18546 {
18547 Elf_Internal_Shdr * symsec;
18548
18549 /* Load the symbol and string sections. */
18550 for (symsec = filedata->section_headers;
18551 symsec < filedata->section_headers + filedata->file_header.e_shnum;
18552 symsec ++)
18553 {
18554 if (symsec->sh_type == SHT_SYMTAB)
18555 {
18556 symtab = GET_ELF_SYMBOLS (filedata, symsec, & nsyms);
18557
18558 if (symsec->sh_link < filedata->file_header.e_shnum)
18559 {
18560 Elf_Internal_Shdr * strtab_sec = filedata->section_headers + symsec->sh_link;
18561
18562 strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset,
18563 1, strtab_sec->sh_size,
18564 _("string table"));
18565 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
18566 }
18567 }
18568 }
18569 saved_filedata = filedata;
18570 }
18571
18572 if (symtab == NULL || strtab == NULL)
18573 return NULL;
18574
18575 /* Find a symbol whose value matches offset. */
18576 for (sym = symtab; sym < symtab + nsyms; sym ++)
18577 if (sym->st_value == offset)
18578 {
18579 if (sym->st_name >= strtablen)
18580 /* Huh ? This should not happen. */
18581 continue;
18582
18583 if (strtab[sym->st_name] == 0)
18584 continue;
18585
18586 /* The AArch64 and ARM architectures define mapping symbols
18587 (eg $d, $x, $t) which we want to ignore. */
18588 if (strtab[sym->st_name] == '$'
18589 && strtab[sym->st_name + 1] != 0
18590 && strtab[sym->st_name + 2] == 0)
18591 continue;
18592
18593 if (is_open_attr)
18594 {
18595 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
18596 and FILE or OBJECT symbols over NOTYPE symbols. We skip
18597 FUNC symbols entirely. */
18598 switch (ELF_ST_TYPE (sym->st_info))
18599 {
18600 case STT_OBJECT:
18601 case STT_FILE:
18602 saved_sym = sym;
18603 if (sym->st_size)
18604 {
18605 /* If the symbol has a size associated
18606 with it then we can stop searching. */
18607 sym = symtab + nsyms;
18608 }
18609 continue;
18610
18611 case STT_FUNC:
18612 /* Ignore function symbols. */
18613 continue;
18614
18615 default:
18616 break;
18617 }
18618
18619 switch (ELF_ST_BIND (sym->st_info))
18620 {
18621 case STB_GLOBAL:
18622 if (saved_sym == NULL
18623 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
18624 saved_sym = sym;
18625 break;
18626
18627 case STB_LOCAL:
18628 if (saved_sym == NULL)
18629 saved_sym = sym;
18630 break;
18631
18632 default:
18633 break;
18634 }
18635 }
18636 else
18637 {
18638 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
18639 continue;
18640
18641 saved_sym = sym;
18642 break;
18643 }
18644 }
18645
18646 if (saved_sym && pname)
18647 * pname = strtab + saved_sym->st_name;
18648
18649 return saved_sym;
18650 }
18651
18652 /* Returns true iff addr1 and addr2 are in the same section. */
18653
18654 static bfd_boolean
18655 same_section (Filedata * filedata, unsigned long addr1, unsigned long addr2)
18656 {
18657 Elf_Internal_Shdr * a1;
18658 Elf_Internal_Shdr * a2;
18659
18660 a1 = find_section_by_address (filedata, addr1);
18661 a2 = find_section_by_address (filedata, addr2);
18662
18663 return a1 == a2 && a1 != NULL;
18664 }
18665
18666 static bfd_boolean
18667 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
18668 Filedata * filedata)
18669 {
18670 static unsigned long global_offset = 0;
18671 static unsigned long global_end = 0;
18672 static unsigned long func_offset = 0;
18673 static unsigned long func_end = 0;
18674
18675 Elf_Internal_Sym * sym;
18676 const char * name;
18677 unsigned long start;
18678 unsigned long end;
18679 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
18680
18681 switch (pnote->descsz)
18682 {
18683 case 0:
18684 /* A zero-length description means that the range of
18685 the previous note of the same type should be used. */
18686 if (is_open_attr)
18687 {
18688 if (global_end > global_offset)
18689 printf (_(" Applies to region from %#lx to %#lx\n"),
18690 global_offset, global_end);
18691 else
18692 printf (_(" Applies to region from %#lx\n"), global_offset);
18693 }
18694 else
18695 {
18696 if (func_end > func_offset)
18697 printf (_(" Applies to region from %#lx to %#lx\n"), func_offset, func_end);
18698 else
18699 printf (_(" Applies to region from %#lx\n"), func_offset);
18700 }
18701 return TRUE;
18702
18703 case 4:
18704 start = byte_get ((unsigned char *) pnote->descdata, 4);
18705 end = 0;
18706 break;
18707
18708 case 8:
18709 if (is_32bit_elf)
18710 {
18711 /* FIXME: We should check that version 3+ notes are being used here... */
18712 start = byte_get ((unsigned char *) pnote->descdata, 4);
18713 end = byte_get ((unsigned char *) pnote->descdata + 4, 4);
18714 }
18715 else
18716 {
18717 start = byte_get ((unsigned char *) pnote->descdata, 8);
18718 end = 0;
18719 }
18720 break;
18721
18722 case 16:
18723 start = byte_get ((unsigned char *) pnote->descdata, 8);
18724 end = byte_get ((unsigned char *) pnote->descdata + 8, 8);
18725 break;
18726
18727 default:
18728 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
18729 printf (_(" <invalid descsz>"));
18730 return FALSE;
18731 }
18732
18733 name = NULL;
18734 sym = get_symbol_for_build_attribute (filedata, start, is_open_attr, & name);
18735 /* As of version 5 of the annobin plugin, filename symbols are biased by 2
18736 in order to avoid them being confused with the start address of the
18737 first function in the file... */
18738 if (sym == NULL && is_open_attr)
18739 sym = get_symbol_for_build_attribute (filedata, start + 2, is_open_attr,
18740 & name);
18741
18742 if (end == 0 && sym != NULL && sym->st_size > 0)
18743 end = start + sym->st_size;
18744
18745 if (is_open_attr)
18746 {
18747 /* FIXME: Need to properly allow for section alignment.
18748 16 is just the alignment used on x86_64. */
18749 if (global_end > 0
18750 && start > BFD_ALIGN (global_end, 16)
18751 /* Build notes are not guaranteed to be organised in order of
18752 increasing address, but we should find the all of the notes
18753 for one section in the same place. */
18754 && same_section (filedata, start, global_end))
18755 warn (_("Gap in build notes detected from %#lx to %#lx\n"),
18756 global_end + 1, start - 1);
18757
18758 printf (_(" Applies to region from %#lx"), start);
18759 global_offset = start;
18760
18761 if (end)
18762 {
18763 printf (_(" to %#lx"), end);
18764 global_end = end;
18765 }
18766 }
18767 else
18768 {
18769 printf (_(" Applies to region from %#lx"), start);
18770 func_offset = start;
18771
18772 if (end)
18773 {
18774 printf (_(" to %#lx"), end);
18775 func_end = end;
18776 }
18777 }
18778
18779 if (sym && name)
18780 printf (_(" (%s)"), name);
18781
18782 printf ("\n");
18783 return TRUE;
18784 }
18785
18786 static bfd_boolean
18787 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
18788 {
18789 static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 };
18790 static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 };
18791 static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 };
18792 char name_type;
18793 char name_attribute;
18794 const char * expected_types;
18795 const char * name = pnote->namedata;
18796 const char * text;
18797 signed int left;
18798
18799 if (name == NULL || pnote->namesz < 2)
18800 {
18801 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
18802 print_symbol (-20, _(" <corrupt name>"));
18803 return FALSE;
18804 }
18805
18806 if (do_wide)
18807 left = 28;
18808 else
18809 left = 20;
18810
18811 /* Version 2 of the spec adds a "GA" prefix to the name field. */
18812 if (name[0] == 'G' && name[1] == 'A')
18813 {
18814 if (pnote->namesz < 4)
18815 {
18816 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
18817 print_symbol (-20, _(" <corrupt name>"));
18818 return FALSE;
18819 }
18820
18821 printf ("GA");
18822 name += 2;
18823 left -= 2;
18824 }
18825
18826 switch ((name_type = * name))
18827 {
18828 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
18829 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
18830 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
18831 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
18832 printf ("%c", * name);
18833 left --;
18834 break;
18835 default:
18836 error (_("unrecognised attribute type in name field: %d\n"), name_type);
18837 print_symbol (-20, _("<unknown name type>"));
18838 return FALSE;
18839 }
18840
18841 ++ name;
18842 text = NULL;
18843
18844 switch ((name_attribute = * name))
18845 {
18846 case GNU_BUILD_ATTRIBUTE_VERSION:
18847 text = _("<version>");
18848 expected_types = string_expected;
18849 ++ name;
18850 break;
18851 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
18852 text = _("<stack prot>");
18853 expected_types = "!+*";
18854 ++ name;
18855 break;
18856 case GNU_BUILD_ATTRIBUTE_RELRO:
18857 text = _("<relro>");
18858 expected_types = bool_expected;
18859 ++ name;
18860 break;
18861 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
18862 text = _("<stack size>");
18863 expected_types = number_expected;
18864 ++ name;
18865 break;
18866 case GNU_BUILD_ATTRIBUTE_TOOL:
18867 text = _("<tool>");
18868 expected_types = string_expected;
18869 ++ name;
18870 break;
18871 case GNU_BUILD_ATTRIBUTE_ABI:
18872 text = _("<ABI>");
18873 expected_types = "$*";
18874 ++ name;
18875 break;
18876 case GNU_BUILD_ATTRIBUTE_PIC:
18877 text = _("<PIC>");
18878 expected_types = number_expected;
18879 ++ name;
18880 break;
18881 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
18882 text = _("<short enum>");
18883 expected_types = bool_expected;
18884 ++ name;
18885 break;
18886 default:
18887 if (ISPRINT (* name))
18888 {
18889 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
18890
18891 if (len > left && ! do_wide)
18892 len = left;
18893 printf ("%.*s:", len, name);
18894 left -= len;
18895 name += len;
18896 }
18897 else
18898 {
18899 static char tmpbuf [128];
18900
18901 error (_("unrecognised byte in name field: %d\n"), * name);
18902 sprintf (tmpbuf, _("<unknown:_%d>"), * name);
18903 text = tmpbuf;
18904 name ++;
18905 }
18906 expected_types = "*$!+";
18907 break;
18908 }
18909
18910 if (text)
18911 left -= printf ("%s", text);
18912
18913 if (strchr (expected_types, name_type) == NULL)
18914 warn (_("attribute does not have an expected type (%c)\n"), name_type);
18915
18916 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
18917 {
18918 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
18919 (unsigned long) pnote->namesz,
18920 (long) (name - pnote->namedata));
18921 return FALSE;
18922 }
18923
18924 if (left < 1 && ! do_wide)
18925 return TRUE;
18926
18927 switch (name_type)
18928 {
18929 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
18930 {
18931 unsigned int bytes;
18932 unsigned long long val = 0;
18933 unsigned int shift = 0;
18934 char * decoded = NULL;
18935
18936 bytes = pnote->namesz - (name - pnote->namedata);
18937 if (bytes > 0)
18938 /* The -1 is because the name field is always 0 terminated, and we
18939 want to be able to ensure that the shift in the while loop below
18940 will not overflow. */
18941 -- bytes;
18942
18943 if (bytes > sizeof (val))
18944 {
18945 error (_("corrupt numeric name field: too many bytes in the value: %x\n"),
18946 bytes);
18947 bytes = sizeof (val);
18948 }
18949 /* We do not bother to warn if bytes == 0 as this can
18950 happen with some early versions of the gcc plugin. */
18951
18952 while (bytes --)
18953 {
18954 unsigned long byte = (* name ++) & 0xff;
18955
18956 val |= byte << shift;
18957 shift += 8;
18958 }
18959
18960 switch (name_attribute)
18961 {
18962 case GNU_BUILD_ATTRIBUTE_PIC:
18963 switch (val)
18964 {
18965 case 0: decoded = "static"; break;
18966 case 1: decoded = "pic"; break;
18967 case 2: decoded = "PIC"; break;
18968 case 3: decoded = "pie"; break;
18969 case 4: decoded = "PIE"; break;
18970 default: break;
18971 }
18972 break;
18973 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
18974 switch (val)
18975 {
18976 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
18977 case 0: decoded = "off"; break;
18978 case 1: decoded = "on"; break;
18979 case 2: decoded = "all"; break;
18980 case 3: decoded = "strong"; break;
18981 case 4: decoded = "explicit"; break;
18982 default: break;
18983 }
18984 break;
18985 default:
18986 break;
18987 }
18988
18989 if (decoded != NULL)
18990 {
18991 print_symbol (-left, decoded);
18992 left = 0;
18993 }
18994 else if (val == 0)
18995 {
18996 printf ("0x0");
18997 left -= 3;
18998 }
18999 else
19000 {
19001 if (do_wide)
19002 left -= printf ("0x%llx", val);
19003 else
19004 left -= printf ("0x%-.*llx", left, val);
19005 }
19006 }
19007 break;
19008 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
19009 left -= print_symbol (- left, name);
19010 break;
19011 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
19012 left -= print_symbol (- left, "true");
19013 break;
19014 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
19015 left -= print_symbol (- left, "false");
19016 break;
19017 }
19018
19019 if (do_wide && left > 0)
19020 printf ("%-*s", left, " ");
19021
19022 return TRUE;
19023 }
19024
19025 /* Note that by the ELF standard, the name field is already null byte
19026 terminated, and namesz includes the terminating null byte.
19027 I.E. the value of namesz for the name "FSF" is 4.
19028
19029 If the value of namesz is zero, there is no name present. */
19030
19031 static bfd_boolean
19032 process_note (Elf_Internal_Note * pnote,
19033 Filedata * filedata)
19034 {
19035 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
19036 const char * nt;
19037
19038 if (pnote->namesz == 0)
19039 /* If there is no note name, then use the default set of
19040 note type strings. */
19041 nt = get_note_type (filedata, pnote->type);
19042
19043 else if (const_strneq (pnote->namedata, "GNU"))
19044 /* GNU-specific object file notes. */
19045 nt = get_gnu_elf_note_type (pnote->type);
19046
19047 else if (const_strneq (pnote->namedata, "FreeBSD"))
19048 /* FreeBSD-specific core file notes. */
19049 nt = get_freebsd_elfcore_note_type (filedata, pnote->type);
19050
19051 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
19052 /* NetBSD-specific core file notes. */
19053 nt = get_netbsd_elfcore_note_type (filedata, pnote->type);
19054
19055 else if (const_strneq (pnote->namedata, "NetBSD"))
19056 /* NetBSD-specific core file notes. */
19057 return process_netbsd_elf_note (pnote);
19058
19059 else if (const_strneq (pnote->namedata, "PaX"))
19060 /* NetBSD-specific core file notes. */
19061 return process_netbsd_elf_note (pnote);
19062
19063 else if (strneq (pnote->namedata, "SPU/", 4))
19064 {
19065 /* SPU-specific core file notes. */
19066 nt = pnote->namedata + 4;
19067 name = "SPU";
19068 }
19069
19070 else if (const_strneq (pnote->namedata, "IPF/VMS"))
19071 /* VMS/ia64-specific file notes. */
19072 nt = get_ia64_vms_note_type (pnote->type);
19073
19074 else if (const_strneq (pnote->namedata, "stapsdt"))
19075 nt = get_stapsdt_note_type (pnote->type);
19076
19077 else
19078 /* Don't recognize this note name; just use the default set of
19079 note type strings. */
19080 nt = get_note_type (filedata, pnote->type);
19081
19082 printf (" ");
19083
19084 if (((const_strneq (pnote->namedata, "GA")
19085 && strchr ("*$!+", pnote->namedata[2]) != NULL)
19086 || strchr ("*$!+", pnote->namedata[0]) != NULL)
19087 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
19088 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
19089 print_gnu_build_attribute_name (pnote);
19090 else
19091 print_symbol (-20, name);
19092
19093 if (do_wide)
19094 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
19095 else
19096 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
19097
19098 if (const_strneq (pnote->namedata, "IPF/VMS"))
19099 return print_ia64_vms_note (pnote);
19100 else if (const_strneq (pnote->namedata, "GNU"))
19101 return print_gnu_note (filedata, pnote);
19102 else if (const_strneq (pnote->namedata, "stapsdt"))
19103 return print_stapsdt_note (pnote);
19104 else if (const_strneq (pnote->namedata, "CORE"))
19105 return print_core_note (pnote);
19106 else if (((const_strneq (pnote->namedata, "GA")
19107 && strchr ("*$!+", pnote->namedata[2]) != NULL)
19108 || strchr ("*$!+", pnote->namedata[0]) != NULL)
19109 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
19110 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
19111 return print_gnu_build_attribute_description (pnote, filedata);
19112
19113 if (pnote->descsz)
19114 {
19115 unsigned long i;
19116
19117 printf (_(" description data: "));
19118 for (i = 0; i < pnote->descsz; i++)
19119 printf ("%02x ", pnote->descdata[i]);
19120 if (!do_wide)
19121 printf ("\n");
19122 }
19123
19124 if (do_wide)
19125 printf ("\n");
19126
19127 return TRUE;
19128 }
19129
19130 static bfd_boolean
19131 process_notes_at (Filedata * filedata,
19132 Elf_Internal_Shdr * section,
19133 bfd_vma offset,
19134 bfd_vma length,
19135 bfd_vma align)
19136 {
19137 Elf_External_Note * pnotes;
19138 Elf_External_Note * external;
19139 char * end;
19140 bfd_boolean res = TRUE;
19141
19142 if (length <= 0)
19143 return FALSE;
19144
19145 if (section)
19146 {
19147 pnotes = (Elf_External_Note *) get_section_contents (section, filedata);
19148 if (pnotes)
19149 {
19150 if (! apply_relocations (filedata, section, (unsigned char *) pnotes, length, NULL, NULL))
19151 return FALSE;
19152 }
19153 }
19154 else
19155 pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length,
19156 _("notes"));
19157
19158 if (pnotes == NULL)
19159 return FALSE;
19160
19161 external = pnotes;
19162
19163 if (section)
19164 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (filedata, section));
19165 else
19166 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
19167 (unsigned long) offset, (unsigned long) length);
19168
19169 /* NB: Some note sections may have alignment value of 0 or 1. gABI
19170 specifies that notes should be aligned to 4 bytes in 32-bit
19171 objects and to 8 bytes in 64-bit objects. As a Linux extension,
19172 we also support 4 byte alignment in 64-bit objects. If section
19173 alignment is less than 4, we treate alignment as 4 bytes. */
19174 if (align < 4)
19175 align = 4;
19176 else if (align != 4 && align != 8)
19177 {
19178 warn (_("Corrupt note: alignment %ld, expecting 4 or 8\n"),
19179 (long) align);
19180 return FALSE;
19181 }
19182
19183 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
19184
19185 end = (char *) pnotes + length;
19186 while ((char *) external < end)
19187 {
19188 Elf_Internal_Note inote;
19189 size_t min_notesz;
19190 char * next;
19191 char * temp = NULL;
19192 size_t data_remaining = end - (char *) external;
19193
19194 if (!is_ia64_vms (filedata))
19195 {
19196 /* PR binutils/15191
19197 Make sure that there is enough data to read. */
19198 min_notesz = offsetof (Elf_External_Note, name);
19199 if (data_remaining < min_notesz)
19200 {
19201 warn (ngettext ("Corrupt note: only %ld byte remains, "
19202 "not enough for a full note\n",
19203 "Corrupt note: only %ld bytes remain, "
19204 "not enough for a full note\n",
19205 data_remaining),
19206 (long) data_remaining);
19207 break;
19208 }
19209 data_remaining -= min_notesz;
19210
19211 inote.type = BYTE_GET (external->type);
19212 inote.namesz = BYTE_GET (external->namesz);
19213 inote.namedata = external->name;
19214 inote.descsz = BYTE_GET (external->descsz);
19215 inote.descdata = ((char *) external
19216 + ELF_NOTE_DESC_OFFSET (inote.namesz, align));
19217 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19218 next = ((char *) external
19219 + ELF_NOTE_NEXT_OFFSET (inote.namesz, inote.descsz, align));
19220 }
19221 else
19222 {
19223 Elf64_External_VMS_Note *vms_external;
19224
19225 /* PR binutils/15191
19226 Make sure that there is enough data to read. */
19227 min_notesz = offsetof (Elf64_External_VMS_Note, name);
19228 if (data_remaining < min_notesz)
19229 {
19230 warn (ngettext ("Corrupt note: only %ld byte remains, "
19231 "not enough for a full note\n",
19232 "Corrupt note: only %ld bytes remain, "
19233 "not enough for a full note\n",
19234 data_remaining),
19235 (long) data_remaining);
19236 break;
19237 }
19238 data_remaining -= min_notesz;
19239
19240 vms_external = (Elf64_External_VMS_Note *) external;
19241 inote.type = BYTE_GET (vms_external->type);
19242 inote.namesz = BYTE_GET (vms_external->namesz);
19243 inote.namedata = vms_external->name;
19244 inote.descsz = BYTE_GET (vms_external->descsz);
19245 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
19246 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19247 next = inote.descdata + align_power (inote.descsz, 3);
19248 }
19249
19250 /* PR 17531: file: 3443835e. */
19251 /* PR 17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
19252 if ((size_t) (inote.descdata - inote.namedata) < inote.namesz
19253 || (size_t) (inote.descdata - inote.namedata) > data_remaining
19254 || (size_t) (next - inote.descdata) < inote.descsz
19255 || ((size_t) (next - inote.descdata)
19256 > data_remaining - (size_t) (inote.descdata - inote.namedata)))
19257 {
19258 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
19259 (unsigned long) ((char *) external - (char *) pnotes));
19260 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx, alignment: %u\n"),
19261 inote.type, inote.namesz, inote.descsz, (int) align);
19262 break;
19263 }
19264
19265 external = (Elf_External_Note *) next;
19266
19267 /* Verify that name is null terminated. It appears that at least
19268 one version of Linux (RedHat 6.0) generates corefiles that don't
19269 comply with the ELF spec by failing to include the null byte in
19270 namesz. */
19271 if (inote.namesz > 0 && inote.namedata[inote.namesz - 1] != '\0')
19272 {
19273 if ((size_t) (inote.descdata - inote.namedata) == inote.namesz)
19274 {
19275 temp = (char *) malloc (inote.namesz + 1);
19276 if (temp == NULL)
19277 {
19278 error (_("Out of memory allocating space for inote name\n"));
19279 res = FALSE;
19280 break;
19281 }
19282
19283 memcpy (temp, inote.namedata, inote.namesz);
19284 inote.namedata = temp;
19285 }
19286 inote.namedata[inote.namesz] = 0;
19287 }
19288
19289 if (! process_note (& inote, filedata))
19290 res = FALSE;
19291
19292 if (temp != NULL)
19293 {
19294 free (temp);
19295 temp = NULL;
19296 }
19297 }
19298
19299 free (pnotes);
19300
19301 return res;
19302 }
19303
19304 static bfd_boolean
19305 process_corefile_note_segments (Filedata * filedata)
19306 {
19307 Elf_Internal_Phdr * segment;
19308 unsigned int i;
19309 bfd_boolean res = TRUE;
19310
19311 if (! get_program_headers (filedata))
19312 return TRUE;
19313
19314 for (i = 0, segment = filedata->program_headers;
19315 i < filedata->file_header.e_phnum;
19316 i++, segment++)
19317 {
19318 if (segment->p_type == PT_NOTE)
19319 if (! process_notes_at (filedata, NULL,
19320 (bfd_vma) segment->p_offset,
19321 (bfd_vma) segment->p_filesz,
19322 (bfd_vma) segment->p_align))
19323 res = FALSE;
19324 }
19325
19326 return res;
19327 }
19328
19329 static bfd_boolean
19330 process_v850_notes (Filedata * filedata, bfd_vma offset, bfd_vma length)
19331 {
19332 Elf_External_Note * pnotes;
19333 Elf_External_Note * external;
19334 char * end;
19335 bfd_boolean res = TRUE;
19336
19337 if (length <= 0)
19338 return FALSE;
19339
19340 pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length,
19341 _("v850 notes"));
19342 if (pnotes == NULL)
19343 return FALSE;
19344
19345 external = pnotes;
19346 end = (char*) pnotes + length;
19347
19348 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
19349 (unsigned long) offset, (unsigned long) length);
19350
19351 while ((char *) external + sizeof (Elf_External_Note) < end)
19352 {
19353 Elf_External_Note * next;
19354 Elf_Internal_Note inote;
19355
19356 inote.type = BYTE_GET (external->type);
19357 inote.namesz = BYTE_GET (external->namesz);
19358 inote.namedata = external->name;
19359 inote.descsz = BYTE_GET (external->descsz);
19360 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
19361 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19362
19363 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
19364 {
19365 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
19366 inote.descdata = inote.namedata;
19367 inote.namesz = 0;
19368 }
19369
19370 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
19371
19372 if ( ((char *) next > end)
19373 || ((char *) next < (char *) pnotes))
19374 {
19375 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
19376 (unsigned long) ((char *) external - (char *) pnotes));
19377 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
19378 inote.type, inote.namesz, inote.descsz);
19379 break;
19380 }
19381
19382 external = next;
19383
19384 /* Prevent out-of-bounds indexing. */
19385 if ( inote.namedata + inote.namesz > end
19386 || inote.namedata + inote.namesz < inote.namedata)
19387 {
19388 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
19389 (unsigned long) ((char *) external - (char *) pnotes));
19390 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
19391 inote.type, inote.namesz, inote.descsz);
19392 break;
19393 }
19394
19395 printf (" %s: ", get_v850_elf_note_type (inote.type));
19396
19397 if (! print_v850_note (& inote))
19398 {
19399 res = FALSE;
19400 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
19401 inote.namesz, inote.descsz);
19402 }
19403 }
19404
19405 free (pnotes);
19406
19407 return res;
19408 }
19409
19410 static bfd_boolean
19411 process_note_sections (Filedata * filedata)
19412 {
19413 Elf_Internal_Shdr * section;
19414 unsigned long i;
19415 unsigned int n = 0;
19416 bfd_boolean res = TRUE;
19417
19418 for (i = 0, section = filedata->section_headers;
19419 i < filedata->file_header.e_shnum && section != NULL;
19420 i++, section++)
19421 {
19422 if (section->sh_type == SHT_NOTE)
19423 {
19424 if (! process_notes_at (filedata, section,
19425 (bfd_vma) section->sh_offset,
19426 (bfd_vma) section->sh_size,
19427 (bfd_vma) section->sh_addralign))
19428 res = FALSE;
19429 n++;
19430 }
19431
19432 if (( filedata->file_header.e_machine == EM_V800
19433 || filedata->file_header.e_machine == EM_V850
19434 || filedata->file_header.e_machine == EM_CYGNUS_V850)
19435 && section->sh_type == SHT_RENESAS_INFO)
19436 {
19437 if (! process_v850_notes (filedata,
19438 (bfd_vma) section->sh_offset,
19439 (bfd_vma) section->sh_size))
19440 res = FALSE;
19441 n++;
19442 }
19443 }
19444
19445 if (n == 0)
19446 /* Try processing NOTE segments instead. */
19447 return process_corefile_note_segments (filedata);
19448
19449 return res;
19450 }
19451
19452 static bfd_boolean
19453 process_notes (Filedata * filedata)
19454 {
19455 /* If we have not been asked to display the notes then do nothing. */
19456 if (! do_notes)
19457 return TRUE;
19458
19459 if (filedata->file_header.e_type != ET_CORE)
19460 return process_note_sections (filedata);
19461
19462 /* No program headers means no NOTE segment. */
19463 if (filedata->file_header.e_phnum > 0)
19464 return process_corefile_note_segments (filedata);
19465
19466 printf (_("No note segments present in the core file.\n"));
19467 return TRUE;
19468 }
19469
19470 static unsigned char *
19471 display_public_gnu_attributes (unsigned char * start,
19472 const unsigned char * const end)
19473 {
19474 printf (_(" Unknown GNU attribute: %s\n"), start);
19475
19476 start += strnlen ((char *) start, end - start);
19477 display_raw_attribute (start, end);
19478
19479 return (unsigned char *) end;
19480 }
19481
19482 static unsigned char *
19483 display_generic_attribute (unsigned char * start,
19484 unsigned int tag,
19485 const unsigned char * const end)
19486 {
19487 if (tag == 0)
19488 return (unsigned char *) end;
19489
19490 return display_tag_value (tag, start, end);
19491 }
19492
19493 static bfd_boolean
19494 process_arch_specific (Filedata * filedata)
19495 {
19496 if (! do_arch)
19497 return TRUE;
19498
19499 switch (filedata->file_header.e_machine)
19500 {
19501 case EM_ARC:
19502 case EM_ARC_COMPACT:
19503 case EM_ARC_COMPACT2:
19504 return process_attributes (filedata, "ARC", SHT_ARC_ATTRIBUTES,
19505 display_arc_attribute,
19506 display_generic_attribute);
19507 case EM_ARM:
19508 return process_attributes (filedata, "aeabi", SHT_ARM_ATTRIBUTES,
19509 display_arm_attribute,
19510 display_generic_attribute);
19511
19512 case EM_MIPS:
19513 case EM_MIPS_RS3_LE:
19514 return process_mips_specific (filedata);
19515
19516 case EM_MSP430:
19517 return process_attributes (filedata, "mspabi", SHT_MSP430_ATTRIBUTES,
19518 display_msp430x_attribute,
19519 display_generic_attribute);
19520
19521 case EM_RISCV:
19522 return process_attributes (filedata, "riscv", SHT_RISCV_ATTRIBUTES,
19523 display_riscv_attribute,
19524 display_generic_attribute);
19525
19526 case EM_NDS32:
19527 return process_nds32_specific (filedata);
19528
19529 case EM_PPC:
19530 case EM_PPC64:
19531 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19532 display_power_gnu_attribute);
19533
19534 case EM_S390:
19535 case EM_S390_OLD:
19536 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19537 display_s390_gnu_attribute);
19538
19539 case EM_SPARC:
19540 case EM_SPARC32PLUS:
19541 case EM_SPARCV9:
19542 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19543 display_sparc_gnu_attribute);
19544
19545 case EM_TI_C6000:
19546 return process_attributes (filedata, "c6xabi", SHT_C6000_ATTRIBUTES,
19547 display_tic6x_attribute,
19548 display_generic_attribute);
19549
19550 default:
19551 return process_attributes (filedata, "gnu", SHT_GNU_ATTRIBUTES,
19552 display_public_gnu_attributes,
19553 display_generic_attribute);
19554 }
19555 }
19556
19557 static bfd_boolean
19558 get_file_header (Filedata * filedata)
19559 {
19560 /* Read in the identity array. */
19561 if (fread (filedata->file_header.e_ident, EI_NIDENT, 1, filedata->handle) != 1)
19562 return FALSE;
19563
19564 /* Determine how to read the rest of the header. */
19565 switch (filedata->file_header.e_ident[EI_DATA])
19566 {
19567 default:
19568 case ELFDATANONE:
19569 case ELFDATA2LSB:
19570 byte_get = byte_get_little_endian;
19571 byte_put = byte_put_little_endian;
19572 break;
19573 case ELFDATA2MSB:
19574 byte_get = byte_get_big_endian;
19575 byte_put = byte_put_big_endian;
19576 break;
19577 }
19578
19579 /* For now we only support 32 bit and 64 bit ELF files. */
19580 is_32bit_elf = (filedata->file_header.e_ident[EI_CLASS] != ELFCLASS64);
19581
19582 /* Read in the rest of the header. */
19583 if (is_32bit_elf)
19584 {
19585 Elf32_External_Ehdr ehdr32;
19586
19587 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, filedata->handle) != 1)
19588 return FALSE;
19589
19590 filedata->file_header.e_type = BYTE_GET (ehdr32.e_type);
19591 filedata->file_header.e_machine = BYTE_GET (ehdr32.e_machine);
19592 filedata->file_header.e_version = BYTE_GET (ehdr32.e_version);
19593 filedata->file_header.e_entry = BYTE_GET (ehdr32.e_entry);
19594 filedata->file_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
19595 filedata->file_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
19596 filedata->file_header.e_flags = BYTE_GET (ehdr32.e_flags);
19597 filedata->file_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
19598 filedata->file_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
19599 filedata->file_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
19600 filedata->file_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
19601 filedata->file_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
19602 filedata->file_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
19603 }
19604 else
19605 {
19606 Elf64_External_Ehdr ehdr64;
19607
19608 /* If we have been compiled with sizeof (bfd_vma) == 4, then
19609 we will not be able to cope with the 64bit data found in
19610 64 ELF files. Detect this now and abort before we start
19611 overwriting things. */
19612 if (sizeof (bfd_vma) < 8)
19613 {
19614 error (_("This instance of readelf has been built without support for a\n\
19615 64 bit data type and so it cannot read 64 bit ELF files.\n"));
19616 return FALSE;
19617 }
19618
19619 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, filedata->handle) != 1)
19620 return FALSE;
19621
19622 filedata->file_header.e_type = BYTE_GET (ehdr64.e_type);
19623 filedata->file_header.e_machine = BYTE_GET (ehdr64.e_machine);
19624 filedata->file_header.e_version = BYTE_GET (ehdr64.e_version);
19625 filedata->file_header.e_entry = BYTE_GET (ehdr64.e_entry);
19626 filedata->file_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
19627 filedata->file_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
19628 filedata->file_header.e_flags = BYTE_GET (ehdr64.e_flags);
19629 filedata->file_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
19630 filedata->file_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
19631 filedata->file_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
19632 filedata->file_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
19633 filedata->file_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
19634 filedata->file_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
19635 }
19636
19637 if (filedata->file_header.e_shoff)
19638 {
19639 /* There may be some extensions in the first section header. Don't
19640 bomb if we can't read it. */
19641 if (is_32bit_elf)
19642 get_32bit_section_headers (filedata, TRUE);
19643 else
19644 get_64bit_section_headers (filedata, TRUE);
19645 }
19646
19647 return TRUE;
19648 }
19649
19650 static void
19651 close_file (Filedata * filedata)
19652 {
19653 if (filedata)
19654 {
19655 if (filedata->handle)
19656 fclose (filedata->handle);
19657 free (filedata);
19658 }
19659 }
19660
19661 void
19662 close_debug_file (void * data)
19663 {
19664 close_file ((Filedata *) data);
19665 }
19666
19667 static Filedata *
19668 open_file (const char * pathname)
19669 {
19670 struct stat statbuf;
19671 Filedata * filedata = NULL;
19672
19673 if (stat (pathname, & statbuf) < 0
19674 || ! S_ISREG (statbuf.st_mode))
19675 goto fail;
19676
19677 filedata = calloc (1, sizeof * filedata);
19678 if (filedata == NULL)
19679 goto fail;
19680
19681 filedata->handle = fopen (pathname, "rb");
19682 if (filedata->handle == NULL)
19683 goto fail;
19684
19685 filedata->file_size = (bfd_size_type) statbuf.st_size;
19686 filedata->file_name = pathname;
19687
19688 if (! get_file_header (filedata))
19689 goto fail;
19690
19691 if (filedata->file_header.e_shoff)
19692 {
19693 bfd_boolean res;
19694
19695 /* Read the section headers again, this time for real. */
19696 if (is_32bit_elf)
19697 res = get_32bit_section_headers (filedata, FALSE);
19698 else
19699 res = get_64bit_section_headers (filedata, FALSE);
19700
19701 if (!res)
19702 goto fail;
19703 }
19704
19705 return filedata;
19706
19707 fail:
19708 if (filedata)
19709 {
19710 if (filedata->handle)
19711 fclose (filedata->handle);
19712 free (filedata);
19713 }
19714 return NULL;
19715 }
19716
19717 void *
19718 open_debug_file (const char * pathname)
19719 {
19720 return open_file (pathname);
19721 }
19722
19723 /* Process one ELF object file according to the command line options.
19724 This file may actually be stored in an archive. The file is
19725 positioned at the start of the ELF object. Returns TRUE if no
19726 problems were encountered, FALSE otherwise. */
19727
19728 static bfd_boolean
19729 process_object (Filedata * filedata)
19730 {
19731 bfd_boolean have_separate_files;
19732 unsigned int i;
19733 bfd_boolean res = TRUE;
19734
19735 if (! get_file_header (filedata))
19736 {
19737 error (_("%s: Failed to read file header\n"), filedata->file_name);
19738 return FALSE;
19739 }
19740
19741 /* Initialise per file variables. */
19742 for (i = ARRAY_SIZE (version_info); i--;)
19743 version_info[i] = 0;
19744
19745 for (i = ARRAY_SIZE (dynamic_info); i--;)
19746 dynamic_info[i] = 0;
19747 dynamic_info_DT_GNU_HASH = 0;
19748
19749 /* Process the file. */
19750 if (show_name)
19751 printf (_("\nFile: %s\n"), filedata->file_name);
19752
19753 /* Initialise the dump_sects array from the cmdline_dump_sects array.
19754 Note we do this even if cmdline_dump_sects is empty because we
19755 must make sure that the dump_sets array is zeroed out before each
19756 object file is processed. */
19757 if (filedata->num_dump_sects > cmdline.num_dump_sects)
19758 memset (filedata->dump_sects, 0, filedata->num_dump_sects * sizeof (* filedata->dump_sects));
19759
19760 if (cmdline.num_dump_sects > 0)
19761 {
19762 if (filedata->num_dump_sects == 0)
19763 /* A sneaky way of allocating the dump_sects array. */
19764 request_dump_bynumber (filedata, cmdline.num_dump_sects, 0);
19765
19766 assert (filedata->num_dump_sects >= cmdline.num_dump_sects);
19767 memcpy (filedata->dump_sects, cmdline.dump_sects,
19768 cmdline.num_dump_sects * sizeof (* filedata->dump_sects));
19769 }
19770
19771 if (! process_file_header (filedata))
19772 return FALSE;
19773
19774 if (! process_section_headers (filedata))
19775 {
19776 /* Without loaded section headers we cannot process lots of things. */
19777 do_unwind = do_version = do_dump = do_arch = FALSE;
19778
19779 if (! do_using_dynamic)
19780 do_syms = do_dyn_syms = do_reloc = FALSE;
19781 }
19782
19783 if (! process_section_groups (filedata))
19784 /* Without loaded section groups we cannot process unwind. */
19785 do_unwind = FALSE;
19786
19787 if (process_program_headers (filedata))
19788 process_dynamic_section (filedata);
19789 else
19790 res = FALSE;
19791
19792 if (! process_relocs (filedata))
19793 res = FALSE;
19794
19795 if (! process_unwind (filedata))
19796 res = FALSE;
19797
19798 if (! process_symbol_table (filedata))
19799 res = FALSE;
19800
19801 if (! process_syminfo (filedata))
19802 res = FALSE;
19803
19804 if (! process_version_sections (filedata))
19805 res = FALSE;
19806
19807 if (filedata->file_header.e_shstrndx != SHN_UNDEF)
19808 have_separate_files = load_separate_debug_files (filedata, filedata->file_name);
19809 else
19810 have_separate_files = FALSE;
19811
19812 if (! process_section_contents (filedata))
19813 res = FALSE;
19814
19815 if (have_separate_files)
19816 {
19817 separate_info * d;
19818
19819 for (d = first_separate_info; d != NULL; d = d->next)
19820 {
19821 if (! process_section_headers (d->handle))
19822 res = FALSE;
19823 else if (! process_section_contents (d->handle))
19824 res = FALSE;
19825 }
19826
19827 /* The file handles are closed by the call to free_debug_memory() below. */
19828 }
19829
19830 if (! process_notes (filedata))
19831 res = FALSE;
19832
19833 if (! process_gnu_liblist (filedata))
19834 res = FALSE;
19835
19836 if (! process_arch_specific (filedata))
19837 res = FALSE;
19838
19839 free (filedata->program_headers);
19840 filedata->program_headers = NULL;
19841
19842 free (filedata->section_headers);
19843 filedata->section_headers = NULL;
19844
19845 free (filedata->string_table);
19846 filedata->string_table = NULL;
19847 filedata->string_table_length = 0;
19848
19849 if (dynamic_strings)
19850 {
19851 free (dynamic_strings);
19852 dynamic_strings = NULL;
19853 dynamic_strings_length = 0;
19854 }
19855
19856 if (dynamic_symbols)
19857 {
19858 free (dynamic_symbols);
19859 dynamic_symbols = NULL;
19860 num_dynamic_syms = 0;
19861 }
19862
19863 if (dynamic_syminfo)
19864 {
19865 free (dynamic_syminfo);
19866 dynamic_syminfo = NULL;
19867 }
19868
19869 if (dynamic_section)
19870 {
19871 free (dynamic_section);
19872 dynamic_section = NULL;
19873 }
19874
19875 if (section_headers_groups)
19876 {
19877 free (section_headers_groups);
19878 section_headers_groups = NULL;
19879 }
19880
19881 if (section_groups)
19882 {
19883 struct group_list * g;
19884 struct group_list * next;
19885
19886 for (i = 0; i < group_count; i++)
19887 {
19888 for (g = section_groups [i].root; g != NULL; g = next)
19889 {
19890 next = g->next;
19891 free (g);
19892 }
19893 }
19894
19895 free (section_groups);
19896 section_groups = NULL;
19897 }
19898
19899 free_debug_memory ();
19900
19901 return res;
19902 }
19903
19904 /* Process an ELF archive.
19905 On entry the file is positioned just after the ARMAG string.
19906 Returns TRUE upon success, FALSE otherwise. */
19907
19908 static bfd_boolean
19909 process_archive (Filedata * filedata, bfd_boolean is_thin_archive)
19910 {
19911 struct archive_info arch;
19912 struct archive_info nested_arch;
19913 size_t got;
19914 bfd_boolean ret = TRUE;
19915
19916 show_name = TRUE;
19917
19918 /* The ARCH structure is used to hold information about this archive. */
19919 arch.file_name = NULL;
19920 arch.file = NULL;
19921 arch.index_array = NULL;
19922 arch.sym_table = NULL;
19923 arch.longnames = NULL;
19924
19925 /* The NESTED_ARCH structure is used as a single-item cache of information
19926 about a nested archive (when members of a thin archive reside within
19927 another regular archive file). */
19928 nested_arch.file_name = NULL;
19929 nested_arch.file = NULL;
19930 nested_arch.index_array = NULL;
19931 nested_arch.sym_table = NULL;
19932 nested_arch.longnames = NULL;
19933
19934 if (setup_archive (&arch, filedata->file_name, filedata->handle,
19935 is_thin_archive, do_archive_index) != 0)
19936 {
19937 ret = FALSE;
19938 goto out;
19939 }
19940
19941 if (do_archive_index)
19942 {
19943 if (arch.sym_table == NULL)
19944 error (_("%s: unable to dump the index as none was found\n"), filedata->file_name);
19945 else
19946 {
19947 unsigned long i, l;
19948 unsigned long current_pos;
19949
19950 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
19951 filedata->file_name, (unsigned long) arch.index_num, arch.sym_size);
19952
19953 current_pos = ftell (filedata->handle);
19954
19955 for (i = l = 0; i < arch.index_num; i++)
19956 {
19957 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
19958 {
19959 char * member_name;
19960
19961 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
19962
19963 if (member_name != NULL)
19964 {
19965 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
19966
19967 if (qualified_name != NULL)
19968 {
19969 printf (_("Contents of binary %s at offset "), qualified_name);
19970 (void) print_vma (arch.index_array[i], PREFIX_HEX);
19971 putchar ('\n');
19972 free (qualified_name);
19973 }
19974 }
19975 }
19976
19977 if (l >= arch.sym_size)
19978 {
19979 error (_("%s: end of the symbol table reached before the end of the index\n"),
19980 filedata->file_name);
19981 ret = FALSE;
19982 break;
19983 }
19984 /* PR 17531: file: 0b6630b2. */
19985 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
19986 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
19987 }
19988
19989 if (arch.uses_64bit_indices)
19990 l = (l + 7) & ~ 7;
19991 else
19992 l += l & 1;
19993
19994 if (l < arch.sym_size)
19995 {
19996 error (ngettext ("%s: %ld byte remains in the symbol table, "
19997 "but without corresponding entries in "
19998 "the index table\n",
19999 "%s: %ld bytes remain in the symbol table, "
20000 "but without corresponding entries in "
20001 "the index table\n",
20002 arch.sym_size - l),
20003 filedata->file_name, arch.sym_size - l);
20004 ret = FALSE;
20005 }
20006
20007 if (fseek (filedata->handle, current_pos, SEEK_SET) != 0)
20008 {
20009 error (_("%s: failed to seek back to start of object files in the archive\n"),
20010 filedata->file_name);
20011 ret = FALSE;
20012 goto out;
20013 }
20014 }
20015
20016 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
20017 && !do_segments && !do_header && !do_dump && !do_version
20018 && !do_histogram && !do_debugging && !do_arch && !do_notes
20019 && !do_section_groups && !do_dyn_syms)
20020 {
20021 ret = TRUE; /* Archive index only. */
20022 goto out;
20023 }
20024 }
20025
20026 while (1)
20027 {
20028 char * name;
20029 size_t namelen;
20030 char * qualified_name;
20031
20032 /* Read the next archive header. */
20033 if (fseek (filedata->handle, arch.next_arhdr_offset, SEEK_SET) != 0)
20034 {
20035 error (_("%s: failed to seek to next archive header\n"), arch.file_name);
20036 return FALSE;
20037 }
20038 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, filedata->handle);
20039 if (got != sizeof arch.arhdr)
20040 {
20041 if (got == 0)
20042 break;
20043 /* PR 24049 - we cannot use filedata->file_name as this will
20044 have already been freed. */
20045 error (_("%s: failed to read archive header\n"), arch.file_name);
20046
20047 ret = FALSE;
20048 break;
20049 }
20050 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
20051 {
20052 error (_("%s: did not find a valid archive header\n"), arch.file_name);
20053 ret = FALSE;
20054 break;
20055 }
20056
20057 arch.next_arhdr_offset += sizeof arch.arhdr;
20058
20059 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
20060 if (archive_file_size & 01)
20061 ++archive_file_size;
20062
20063 name = get_archive_member_name (&arch, &nested_arch);
20064 if (name == NULL)
20065 {
20066 error (_("%s: bad archive file name\n"), arch.file_name);
20067 ret = FALSE;
20068 break;
20069 }
20070 namelen = strlen (name);
20071
20072 qualified_name = make_qualified_name (&arch, &nested_arch, name);
20073 if (qualified_name == NULL)
20074 {
20075 error (_("%s: bad archive file name\n"), arch.file_name);
20076 ret = FALSE;
20077 break;
20078 }
20079
20080 if (is_thin_archive && arch.nested_member_origin == 0)
20081 {
20082 /* This is a proxy for an external member of a thin archive. */
20083 Filedata * member_filedata;
20084 char * member_file_name = adjust_relative_path
20085 (filedata->file_name, name, namelen);
20086
20087 if (member_file_name == NULL)
20088 {
20089 ret = FALSE;
20090 break;
20091 }
20092
20093 member_filedata = open_file (member_file_name);
20094 if (member_filedata == NULL)
20095 {
20096 error (_("Input file '%s' is not readable.\n"), member_file_name);
20097 free (member_file_name);
20098 ret = FALSE;
20099 break;
20100 }
20101
20102 archive_file_offset = arch.nested_member_origin;
20103 member_filedata->file_name = qualified_name;
20104
20105 if (! process_object (member_filedata))
20106 ret = FALSE;
20107
20108 close_file (member_filedata);
20109 free (member_file_name);
20110 }
20111 else if (is_thin_archive)
20112 {
20113 Filedata thin_filedata;
20114
20115 memset (&thin_filedata, 0, sizeof (thin_filedata));
20116
20117 /* PR 15140: Allow for corrupt thin archives. */
20118 if (nested_arch.file == NULL)
20119 {
20120 error (_("%s: contains corrupt thin archive: %s\n"),
20121 qualified_name, name);
20122 ret = FALSE;
20123 break;
20124 }
20125
20126 /* This is a proxy for a member of a nested archive. */
20127 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
20128
20129 /* The nested archive file will have been opened and setup by
20130 get_archive_member_name. */
20131 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
20132 {
20133 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
20134 ret = FALSE;
20135 break;
20136 }
20137
20138 thin_filedata.handle = nested_arch.file;
20139 thin_filedata.file_name = qualified_name;
20140
20141 if (! process_object (& thin_filedata))
20142 ret = FALSE;
20143 }
20144 else
20145 {
20146 archive_file_offset = arch.next_arhdr_offset;
20147 arch.next_arhdr_offset += archive_file_size;
20148
20149 filedata->file_name = qualified_name;
20150 if (! process_object (filedata))
20151 ret = FALSE;
20152 }
20153
20154 if (filedata->dump_sects != NULL)
20155 {
20156 free (filedata->dump_sects);
20157 filedata->dump_sects = NULL;
20158 filedata->num_dump_sects = 0;
20159 }
20160
20161 free (qualified_name);
20162 }
20163
20164 out:
20165 if (nested_arch.file != NULL)
20166 fclose (nested_arch.file);
20167 release_archive (&nested_arch);
20168 release_archive (&arch);
20169
20170 return ret;
20171 }
20172
20173 static bfd_boolean
20174 process_file (char * file_name)
20175 {
20176 Filedata * filedata = NULL;
20177 struct stat statbuf;
20178 char armag[SARMAG];
20179 bfd_boolean ret = TRUE;
20180
20181 if (stat (file_name, &statbuf) < 0)
20182 {
20183 if (errno == ENOENT)
20184 error (_("'%s': No such file\n"), file_name);
20185 else
20186 error (_("Could not locate '%s'. System error message: %s\n"),
20187 file_name, strerror (errno));
20188 return FALSE;
20189 }
20190
20191 if (! S_ISREG (statbuf.st_mode))
20192 {
20193 error (_("'%s' is not an ordinary file\n"), file_name);
20194 return FALSE;
20195 }
20196
20197 filedata = calloc (1, sizeof * filedata);
20198 if (filedata == NULL)
20199 {
20200 error (_("Out of memory allocating file data structure\n"));
20201 return FALSE;
20202 }
20203
20204 filedata->file_name = file_name;
20205 filedata->handle = fopen (file_name, "rb");
20206 if (filedata->handle == NULL)
20207 {
20208 error (_("Input file '%s' is not readable.\n"), file_name);
20209 free (filedata);
20210 return FALSE;
20211 }
20212
20213 if (fread (armag, SARMAG, 1, filedata->handle) != 1)
20214 {
20215 error (_("%s: Failed to read file's magic number\n"), file_name);
20216 fclose (filedata->handle);
20217 free (filedata);
20218 return FALSE;
20219 }
20220
20221 filedata->file_size = (bfd_size_type) statbuf.st_size;
20222
20223 if (memcmp (armag, ARMAG, SARMAG) == 0)
20224 {
20225 if (! process_archive (filedata, FALSE))
20226 ret = FALSE;
20227 }
20228 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
20229 {
20230 if ( ! process_archive (filedata, TRUE))
20231 ret = FALSE;
20232 }
20233 else
20234 {
20235 if (do_archive_index)
20236 error (_("File %s is not an archive so its index cannot be displayed.\n"),
20237 file_name);
20238
20239 rewind (filedata->handle);
20240 archive_file_size = archive_file_offset = 0;
20241
20242 if (! process_object (filedata))
20243 ret = FALSE;
20244 }
20245
20246 fclose (filedata->handle);
20247 free (filedata);
20248
20249 return ret;
20250 }
20251
20252 #ifdef SUPPORT_DISASSEMBLY
20253 /* Needed by the i386 disassembler. For extra credit, someone could
20254 fix this so that we insert symbolic addresses here, esp for GOT/PLT
20255 symbols. */
20256
20257 void
20258 print_address (unsigned int addr, FILE * outfile)
20259 {
20260 fprintf (outfile,"0x%8.8x", addr);
20261 }
20262
20263 /* Needed by the i386 disassembler. */
20264
20265 void
20266 db_task_printsym (unsigned int addr)
20267 {
20268 print_address (addr, stderr);
20269 }
20270 #endif
20271
20272 int
20273 main (int argc, char ** argv)
20274 {
20275 int err;
20276
20277 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
20278 setlocale (LC_MESSAGES, "");
20279 #endif
20280 #if defined (HAVE_SETLOCALE)
20281 setlocale (LC_CTYPE, "");
20282 #endif
20283 bindtextdomain (PACKAGE, LOCALEDIR);
20284 textdomain (PACKAGE);
20285
20286 expandargv (&argc, &argv);
20287
20288 cmdline.file_name = "<cmdline>";
20289 parse_args (& cmdline, argc, argv);
20290
20291 if (optind < (argc - 1))
20292 show_name = TRUE;
20293 else if (optind >= argc)
20294 {
20295 warn (_("Nothing to do.\n"));
20296 usage (stderr);
20297 }
20298
20299 err = FALSE;
20300 while (optind < argc)
20301 if (! process_file (argv[optind++]))
20302 err = TRUE;
20303
20304 if (cmdline.dump_sects != NULL)
20305 free (cmdline.dump_sects);
20306
20307 free (dump_ctf_symtab_name);
20308 free (dump_ctf_strtab_name);
20309 free (dump_ctf_parent_name);
20310
20311 return err ? EXIT_FAILURE : EXIT_SUCCESS;
20312 }
This page took 0.49715 seconds and 4 git commands to generate.