Support ELF SHF_GNU_MBIND and PT_GNU_MBIND_XXX
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/wasm32.h"
155 #include "elf/x86-64.h"
156 #include "elf/xc16x.h"
157 #include "elf/xgate.h"
158 #include "elf/xstormy16.h"
159 #include "elf/xtensa.h"
160
161 #include "getopt.h"
162 #include "libiberty.h"
163 #include "safe-ctype.h"
164 #include "filenames.h"
165
166 #ifndef offsetof
167 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
168 #endif
169
170 typedef struct elf_section_list
171 {
172 Elf_Internal_Shdr * hdr;
173 struct elf_section_list * next;
174 } elf_section_list;
175
176 char * program_name = "readelf";
177 static unsigned long archive_file_offset;
178 static unsigned long archive_file_size;
179 static bfd_size_type current_file_size;
180 static unsigned long dynamic_addr;
181 static bfd_size_type dynamic_size;
182 static size_t dynamic_nent;
183 static char * dynamic_strings;
184 static unsigned long dynamic_strings_length;
185 static char * string_table;
186 static unsigned long string_table_length;
187 static unsigned long num_dynamic_syms;
188 static Elf_Internal_Sym * dynamic_symbols;
189 static Elf_Internal_Syminfo * dynamic_syminfo;
190 static unsigned long dynamic_syminfo_offset;
191 static unsigned int dynamic_syminfo_nent;
192 static char program_interpreter[PATH_MAX];
193 static bfd_vma dynamic_info[DT_ENCODING];
194 static bfd_vma dynamic_info_DT_GNU_HASH;
195 static bfd_vma version_info[16];
196 static Elf_Internal_Ehdr elf_header;
197 static Elf_Internal_Shdr * section_headers;
198 static Elf_Internal_Phdr * program_headers;
199 static Elf_Internal_Dyn * dynamic_section;
200 static elf_section_list * symtab_shndx_list;
201 static bfd_boolean show_name = FALSE;
202 static bfd_boolean do_dynamic = FALSE;
203 static bfd_boolean do_syms = FALSE;
204 static bfd_boolean do_dyn_syms = FALSE;
205 static bfd_boolean do_reloc = FALSE;
206 static bfd_boolean do_sections = FALSE;
207 static bfd_boolean do_section_groups = FALSE;
208 static bfd_boolean do_section_details = FALSE;
209 static bfd_boolean do_segments = FALSE;
210 static bfd_boolean do_unwind = FALSE;
211 static bfd_boolean do_using_dynamic = FALSE;
212 static bfd_boolean do_header = FALSE;
213 static bfd_boolean do_dump = FALSE;
214 static bfd_boolean do_version = FALSE;
215 static bfd_boolean do_histogram = FALSE;
216 static bfd_boolean do_debugging = FALSE;
217 static bfd_boolean do_arch = FALSE;
218 static bfd_boolean do_notes = FALSE;
219 static bfd_boolean do_archive_index = FALSE;
220 static bfd_boolean is_32bit_elf = FALSE;
221 static bfd_boolean decompress_dumps = FALSE;
222
223 struct group_list
224 {
225 struct group_list * next;
226 unsigned int section_index;
227 };
228
229 struct group
230 {
231 struct group_list * root;
232 unsigned int group_index;
233 };
234
235 static size_t group_count;
236 static struct group * section_groups;
237 static struct group ** section_headers_groups;
238
239
240 /* Flag bits indicating particular types of dump. */
241 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
242 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
243 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
244 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
245 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
246
247 typedef unsigned char dump_type;
248
249 /* A linked list of the section names for which dumps were requested. */
250 struct dump_list_entry
251 {
252 char * name;
253 dump_type type;
254 struct dump_list_entry * next;
255 };
256 static struct dump_list_entry * dump_sects_byname;
257
258 /* A dynamic array of flags indicating for which sections a dump
259 has been requested via command line switches. */
260 static dump_type * cmdline_dump_sects = NULL;
261 static unsigned int num_cmdline_dump_sects = 0;
262
263 /* A dynamic array of flags indicating for which sections a dump of
264 some kind has been requested. It is reset on a per-object file
265 basis and then initialised from the cmdline_dump_sects array,
266 the results of interpreting the -w switch, and the
267 dump_sects_byname list. */
268 static dump_type * dump_sects = NULL;
269 static unsigned int num_dump_sects = 0;
270
271
272 /* How to print a vma value. */
273 typedef enum print_mode
274 {
275 HEX,
276 DEC,
277 DEC_5,
278 UNSIGNED,
279 PREFIX_HEX,
280 FULL_HEX,
281 LONG_HEX
282 }
283 print_mode;
284
285 /* Versioned symbol info. */
286 enum versioned_symbol_info
287 {
288 symbol_undefined,
289 symbol_hidden,
290 symbol_public
291 };
292
293 static const char * get_symbol_version_string
294 (FILE *, bfd_boolean, const char *, unsigned long, unsigned,
295 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
325 the offset of the current archive member, if we are examining an archive.
326 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
327 using malloc and fill that. In either case return the pointer to the start of
328 the retrieved data or NULL if something went wrong. If something does go wrong
329 and REASON is not NULL then emit an error message using REASON as part of the
330 context. */
331
332 static void *
333 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
334 bfd_size_type nmemb, const char * reason)
335 {
336 void * mvar;
337 bfd_size_type amt = size * nmemb;
338
339 if (size == 0 || nmemb == 0)
340 return NULL;
341
342 /* If the size_t type is smaller than the bfd_size_type, eg because
343 you are building a 32-bit tool on a 64-bit host, then make sure
344 that when the sizes are cast to (size_t) no information is lost. */
345 if (sizeof (size_t) < sizeof (bfd_size_type)
346 && ( (bfd_size_type) ((size_t) size) != size
347 || (bfd_size_type) ((size_t) nmemb) != nmemb))
348 {
349 if (reason)
350 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
351 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
352 nmemb, size, reason);
353 return NULL;
354 }
355
356 /* Check for size overflow. */
357 if (amt < nmemb)
358 {
359 if (reason)
360 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
361 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
362 nmemb, size, reason);
363 return NULL;
364 }
365
366 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
367 attempting to allocate memory when the read is bound to fail. */
368 if (amt > current_file_size
369 || offset + archive_file_offset + amt > current_file_size)
370 {
371 if (reason)
372 error (_("Reading 0x%" BFD_VMA_FMT "x"
373 " bytes extends past end of file for %s\n"),
374 amt, reason);
375 return NULL;
376 }
377
378 if (fseek (file, archive_file_offset + offset, SEEK_SET))
379 {
380 if (reason)
381 error (_("Unable to seek to 0x%lx for %s\n"),
382 archive_file_offset + offset, reason);
383 return NULL;
384 }
385
386 mvar = var;
387 if (mvar == NULL)
388 {
389 /* Check for overflow. */
390 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
391 /* + 1 so that we can '\0' terminate invalid string table sections. */
392 mvar = malloc ((size_t) amt + 1);
393
394 if (mvar == NULL)
395 {
396 if (reason)
397 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
398 " bytes for %s\n"),
399 amt, reason);
400 return NULL;
401 }
402
403 ((char *) mvar)[amt] = '\0';
404 }
405
406 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
407 {
408 if (reason)
409 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
410 amt, reason);
411 if (mvar != var)
412 free (mvar);
413 return NULL;
414 }
415
416 return mvar;
417 }
418
419 /* Print a VMA value in the MODE specified.
420 Returns the number of characters displayed. */
421
422 static unsigned int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 unsigned int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432 case LONG_HEX:
433 #ifdef BFD64
434 if (is_32bit_elf)
435 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
436 #endif
437 printf_vma (vma);
438 return nc + 16;
439
440 case DEC_5:
441 if (vma <= 99999)
442 return printf ("%5" BFD_VMA_FMT "d", vma);
443 /* Fall through. */
444 case PREFIX_HEX:
445 nc = printf ("0x");
446 /* Fall through. */
447 case HEX:
448 return nc + printf ("%" BFD_VMA_FMT "x", vma);
449
450 case DEC:
451 return printf ("%" BFD_VMA_FMT "d", vma);
452
453 case UNSIGNED:
454 return printf ("%" BFD_VMA_FMT "u", vma);
455
456 default:
457 /* FIXME: Report unrecognised mode ? */
458 return 0;
459 }
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (signed int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 signed int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 unsigned int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 {
680 /* See PR 21156 for a reproducer. */
681 if (i >= elf_header.e_shnum)
682 continue; /* FIXME: Should we issue an error message ? */
683
684 if (streq (SECTION_NAME (section_headers + i), name))
685 return section_headers + i;
686 }
687 }
688
689 return find_section (name);
690 }
691
692 /* Read an unsigned LEB128 encoded value from DATA.
693 Set *LENGTH_RETURN to the number of bytes read. */
694
695 static inline unsigned long
696 read_uleb128 (unsigned char * data,
697 unsigned int * length_return,
698 const unsigned char * const end)
699 {
700 return read_leb128 (data, length_return, FALSE, end);
701 }
702
703 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
704 This OS has so many departures from the ELF standard that we test it at
705 many places. */
706
707 static inline bfd_boolean
708 is_ia64_vms (void)
709 {
710 return elf_header.e_machine == EM_IA_64
711 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
712 }
713
714 /* Guess the relocation size commonly used by the specific machines. */
715
716 static bfd_boolean
717 guess_is_rela (unsigned int e_machine)
718 {
719 switch (e_machine)
720 {
721 /* Targets that use REL relocations. */
722 case EM_386:
723 case EM_IAMCU:
724 case EM_960:
725 case EM_ARM:
726 case EM_D10V:
727 case EM_CYGNUS_D10V:
728 case EM_DLX:
729 case EM_MIPS:
730 case EM_MIPS_RS3_LE:
731 case EM_CYGNUS_M32R:
732 case EM_SCORE:
733 case EM_XGATE:
734 return FALSE;
735
736 /* Targets that use RELA relocations. */
737 case EM_68K:
738 case EM_860:
739 case EM_AARCH64:
740 case EM_ADAPTEVA_EPIPHANY:
741 case EM_ALPHA:
742 case EM_ALTERA_NIOS2:
743 case EM_ARC:
744 case EM_ARC_COMPACT:
745 case EM_ARC_COMPACT2:
746 case EM_AVR:
747 case EM_AVR_OLD:
748 case EM_BLACKFIN:
749 case EM_CR16:
750 case EM_CRIS:
751 case EM_CRX:
752 case EM_D30V:
753 case EM_CYGNUS_D30V:
754 case EM_FR30:
755 case EM_FT32:
756 case EM_CYGNUS_FR30:
757 case EM_CYGNUS_FRV:
758 case EM_H8S:
759 case EM_H8_300:
760 case EM_H8_300H:
761 case EM_IA_64:
762 case EM_IP2K:
763 case EM_IP2K_OLD:
764 case EM_IQ2000:
765 case EM_LATTICEMICO32:
766 case EM_M32C_OLD:
767 case EM_M32C:
768 case EM_M32R:
769 case EM_MCORE:
770 case EM_CYGNUS_MEP:
771 case EM_METAG:
772 case EM_MMIX:
773 case EM_MN10200:
774 case EM_CYGNUS_MN10200:
775 case EM_MN10300:
776 case EM_CYGNUS_MN10300:
777 case EM_MOXIE:
778 case EM_MSP430:
779 case EM_MSP430_OLD:
780 case EM_MT:
781 case EM_NDS32:
782 case EM_NIOS32:
783 case EM_OR1K:
784 case EM_PPC64:
785 case EM_PPC:
786 case EM_TI_PRU:
787 case EM_RISCV:
788 case EM_RL78:
789 case EM_RX:
790 case EM_S390:
791 case EM_S390_OLD:
792 case EM_SH:
793 case EM_SPARC:
794 case EM_SPARC32PLUS:
795 case EM_SPARCV9:
796 case EM_SPU:
797 case EM_TI_C6000:
798 case EM_TILEGX:
799 case EM_TILEPRO:
800 case EM_V800:
801 case EM_V850:
802 case EM_CYGNUS_V850:
803 case EM_VAX:
804 case EM_VISIUM:
805 case EM_X86_64:
806 case EM_L1OM:
807 case EM_K1OM:
808 case EM_XSTORMY16:
809 case EM_XTENSA:
810 case EM_XTENSA_OLD:
811 case EM_MICROBLAZE:
812 case EM_MICROBLAZE_OLD:
813 case EM_WEBASSEMBLY:
814 return TRUE;
815
816 case EM_68HC05:
817 case EM_68HC08:
818 case EM_68HC11:
819 case EM_68HC16:
820 case EM_FX66:
821 case EM_ME16:
822 case EM_MMA:
823 case EM_NCPU:
824 case EM_NDR1:
825 case EM_PCP:
826 case EM_ST100:
827 case EM_ST19:
828 case EM_ST7:
829 case EM_ST9PLUS:
830 case EM_STARCORE:
831 case EM_SVX:
832 case EM_TINYJ:
833 default:
834 warn (_("Don't know about relocations on this machine architecture\n"));
835 return FALSE;
836 }
837 }
838
839 /* Load RELA type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
840 Returns TRUE upon success, FALSE otherwise. If successful then a
841 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
842 and the number of relocs loaded is placed in *NRELASP. It is the caller's
843 responsibility to free the allocated buffer. */
844
845 static bfd_boolean
846 slurp_rela_relocs (FILE * file,
847 unsigned long rel_offset,
848 unsigned long rel_size,
849 Elf_Internal_Rela ** relasp,
850 unsigned long * nrelasp)
851 {
852 Elf_Internal_Rela * relas;
853 size_t nrelas;
854 unsigned int i;
855
856 if (is_32bit_elf)
857 {
858 Elf32_External_Rela * erelas;
859
860 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
861 rel_size, _("32-bit relocation data"));
862 if (!erelas)
863 return FALSE;
864
865 nrelas = rel_size / sizeof (Elf32_External_Rela);
866
867 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
868 sizeof (Elf_Internal_Rela));
869
870 if (relas == NULL)
871 {
872 free (erelas);
873 error (_("out of memory parsing relocs\n"));
874 return FALSE;
875 }
876
877 for (i = 0; i < nrelas; i++)
878 {
879 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
880 relas[i].r_info = BYTE_GET (erelas[i].r_info);
881 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
882 }
883
884 free (erelas);
885 }
886 else
887 {
888 Elf64_External_Rela * erelas;
889
890 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
891 rel_size, _("64-bit relocation data"));
892 if (!erelas)
893 return FALSE;
894
895 nrelas = rel_size / sizeof (Elf64_External_Rela);
896
897 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
898 sizeof (Elf_Internal_Rela));
899
900 if (relas == NULL)
901 {
902 free (erelas);
903 error (_("out of memory parsing relocs\n"));
904 return FALSE;
905 }
906
907 for (i = 0; i < nrelas; i++)
908 {
909 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
910 relas[i].r_info = BYTE_GET (erelas[i].r_info);
911 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
912
913 /* The #ifdef BFD64 below is to prevent a compile time
914 warning. We know that if we do not have a 64 bit data
915 type that we will never execute this code anyway. */
916 #ifdef BFD64
917 if (elf_header.e_machine == EM_MIPS
918 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
919 {
920 /* In little-endian objects, r_info isn't really a
921 64-bit little-endian value: it has a 32-bit
922 little-endian symbol index followed by four
923 individual byte fields. Reorder INFO
924 accordingly. */
925 bfd_vma inf = relas[i].r_info;
926 inf = (((inf & 0xffffffff) << 32)
927 | ((inf >> 56) & 0xff)
928 | ((inf >> 40) & 0xff00)
929 | ((inf >> 24) & 0xff0000)
930 | ((inf >> 8) & 0xff000000));
931 relas[i].r_info = inf;
932 }
933 #endif /* BFD64 */
934 }
935
936 free (erelas);
937 }
938
939 *relasp = relas;
940 *nrelasp = nrelas;
941 return TRUE;
942 }
943
944 /* Load REL type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
945 Returns TRUE upon success, FALSE otherwise. If successful then a
946 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
947 and the number of relocs loaded is placed in *NRELSP. It is the caller's
948 responsibility to free the allocated buffer. */
949
950 static bfd_boolean
951 slurp_rel_relocs (FILE * file,
952 unsigned long rel_offset,
953 unsigned long rel_size,
954 Elf_Internal_Rela ** relsp,
955 unsigned long * nrelsp)
956 {
957 Elf_Internal_Rela * rels;
958 size_t nrels;
959 unsigned int i;
960
961 if (is_32bit_elf)
962 {
963 Elf32_External_Rel * erels;
964
965 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
966 rel_size, _("32-bit relocation data"));
967 if (!erels)
968 return FALSE;
969
970 nrels = rel_size / sizeof (Elf32_External_Rel);
971
972 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
973
974 if (rels == NULL)
975 {
976 free (erels);
977 error (_("out of memory parsing relocs\n"));
978 return FALSE;
979 }
980
981 for (i = 0; i < nrels; i++)
982 {
983 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
984 rels[i].r_info = BYTE_GET (erels[i].r_info);
985 rels[i].r_addend = 0;
986 }
987
988 free (erels);
989 }
990 else
991 {
992 Elf64_External_Rel * erels;
993
994 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
995 rel_size, _("64-bit relocation data"));
996 if (!erels)
997 return FALSE;
998
999 nrels = rel_size / sizeof (Elf64_External_Rel);
1000
1001 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1002
1003 if (rels == NULL)
1004 {
1005 free (erels);
1006 error (_("out of memory parsing relocs\n"));
1007 return FALSE;
1008 }
1009
1010 for (i = 0; i < nrels; i++)
1011 {
1012 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1013 rels[i].r_info = BYTE_GET (erels[i].r_info);
1014 rels[i].r_addend = 0;
1015
1016 /* The #ifdef BFD64 below is to prevent a compile time
1017 warning. We know that if we do not have a 64 bit data
1018 type that we will never execute this code anyway. */
1019 #ifdef BFD64
1020 if (elf_header.e_machine == EM_MIPS
1021 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1022 {
1023 /* In little-endian objects, r_info isn't really a
1024 64-bit little-endian value: it has a 32-bit
1025 little-endian symbol index followed by four
1026 individual byte fields. Reorder INFO
1027 accordingly. */
1028 bfd_vma inf = rels[i].r_info;
1029 inf = (((inf & 0xffffffff) << 32)
1030 | ((inf >> 56) & 0xff)
1031 | ((inf >> 40) & 0xff00)
1032 | ((inf >> 24) & 0xff0000)
1033 | ((inf >> 8) & 0xff000000));
1034 rels[i].r_info = inf;
1035 }
1036 #endif /* BFD64 */
1037 }
1038
1039 free (erels);
1040 }
1041
1042 *relsp = rels;
1043 *nrelsp = nrels;
1044 return TRUE;
1045 }
1046
1047 /* Returns the reloc type extracted from the reloc info field. */
1048
1049 static unsigned int
1050 get_reloc_type (bfd_vma reloc_info)
1051 {
1052 if (is_32bit_elf)
1053 return ELF32_R_TYPE (reloc_info);
1054
1055 switch (elf_header.e_machine)
1056 {
1057 case EM_MIPS:
1058 /* Note: We assume that reloc_info has already been adjusted for us. */
1059 return ELF64_MIPS_R_TYPE (reloc_info);
1060
1061 case EM_SPARCV9:
1062 return ELF64_R_TYPE_ID (reloc_info);
1063
1064 default:
1065 return ELF64_R_TYPE (reloc_info);
1066 }
1067 }
1068
1069 /* Return the symbol index extracted from the reloc info field. */
1070
1071 static bfd_vma
1072 get_reloc_symindex (bfd_vma reloc_info)
1073 {
1074 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1075 }
1076
1077 static inline bfd_boolean
1078 uses_msp430x_relocs (void)
1079 {
1080 return
1081 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1082 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1083 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1084 /* TI compiler uses ELFOSABI_NONE. */
1085 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1086 }
1087
1088 /* Display the contents of the relocation data found at the specified
1089 offset. */
1090
1091 static bfd_boolean
1092 dump_relocations (FILE * file,
1093 unsigned long rel_offset,
1094 unsigned long rel_size,
1095 Elf_Internal_Sym * symtab,
1096 unsigned long nsyms,
1097 char * strtab,
1098 unsigned long strtablen,
1099 int is_rela,
1100 bfd_boolean is_dynsym)
1101 {
1102 unsigned long i;
1103 Elf_Internal_Rela * rels;
1104 bfd_boolean res = TRUE;
1105
1106 if (is_rela == UNKNOWN)
1107 is_rela = guess_is_rela (elf_header.e_machine);
1108
1109 if (is_rela)
1110 {
1111 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1112 return FALSE;
1113 }
1114 else
1115 {
1116 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1117 return FALSE;
1118 }
1119
1120 if (is_32bit_elf)
1121 {
1122 if (is_rela)
1123 {
1124 if (do_wide)
1125 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1126 else
1127 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1128 }
1129 else
1130 {
1131 if (do_wide)
1132 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1133 else
1134 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1135 }
1136 }
1137 else
1138 {
1139 if (is_rela)
1140 {
1141 if (do_wide)
1142 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1143 else
1144 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1145 }
1146 else
1147 {
1148 if (do_wide)
1149 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1150 else
1151 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1152 }
1153 }
1154
1155 for (i = 0; i < rel_size; i++)
1156 {
1157 const char * rtype;
1158 bfd_vma offset;
1159 bfd_vma inf;
1160 bfd_vma symtab_index;
1161 bfd_vma type;
1162
1163 offset = rels[i].r_offset;
1164 inf = rels[i].r_info;
1165
1166 type = get_reloc_type (inf);
1167 symtab_index = get_reloc_symindex (inf);
1168
1169 if (is_32bit_elf)
1170 {
1171 printf ("%8.8lx %8.8lx ",
1172 (unsigned long) offset & 0xffffffff,
1173 (unsigned long) inf & 0xffffffff);
1174 }
1175 else
1176 {
1177 #if BFD_HOST_64BIT_LONG
1178 printf (do_wide
1179 ? "%16.16lx %16.16lx "
1180 : "%12.12lx %12.12lx ",
1181 offset, inf);
1182 #elif BFD_HOST_64BIT_LONG_LONG
1183 #ifndef __MSVCRT__
1184 printf (do_wide
1185 ? "%16.16llx %16.16llx "
1186 : "%12.12llx %12.12llx ",
1187 offset, inf);
1188 #else
1189 printf (do_wide
1190 ? "%16.16I64x %16.16I64x "
1191 : "%12.12I64x %12.12I64x ",
1192 offset, inf);
1193 #endif
1194 #else
1195 printf (do_wide
1196 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1197 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1198 _bfd_int64_high (offset),
1199 _bfd_int64_low (offset),
1200 _bfd_int64_high (inf),
1201 _bfd_int64_low (inf));
1202 #endif
1203 }
1204
1205 switch (elf_header.e_machine)
1206 {
1207 default:
1208 rtype = NULL;
1209 break;
1210
1211 case EM_AARCH64:
1212 rtype = elf_aarch64_reloc_type (type);
1213 break;
1214
1215 case EM_M32R:
1216 case EM_CYGNUS_M32R:
1217 rtype = elf_m32r_reloc_type (type);
1218 break;
1219
1220 case EM_386:
1221 case EM_IAMCU:
1222 rtype = elf_i386_reloc_type (type);
1223 break;
1224
1225 case EM_68HC11:
1226 case EM_68HC12:
1227 rtype = elf_m68hc11_reloc_type (type);
1228 break;
1229
1230 case EM_68K:
1231 rtype = elf_m68k_reloc_type (type);
1232 break;
1233
1234 case EM_960:
1235 rtype = elf_i960_reloc_type (type);
1236 break;
1237
1238 case EM_AVR:
1239 case EM_AVR_OLD:
1240 rtype = elf_avr_reloc_type (type);
1241 break;
1242
1243 case EM_OLD_SPARCV9:
1244 case EM_SPARC32PLUS:
1245 case EM_SPARCV9:
1246 case EM_SPARC:
1247 rtype = elf_sparc_reloc_type (type);
1248 break;
1249
1250 case EM_SPU:
1251 rtype = elf_spu_reloc_type (type);
1252 break;
1253
1254 case EM_V800:
1255 rtype = v800_reloc_type (type);
1256 break;
1257 case EM_V850:
1258 case EM_CYGNUS_V850:
1259 rtype = v850_reloc_type (type);
1260 break;
1261
1262 case EM_D10V:
1263 case EM_CYGNUS_D10V:
1264 rtype = elf_d10v_reloc_type (type);
1265 break;
1266
1267 case EM_D30V:
1268 case EM_CYGNUS_D30V:
1269 rtype = elf_d30v_reloc_type (type);
1270 break;
1271
1272 case EM_DLX:
1273 rtype = elf_dlx_reloc_type (type);
1274 break;
1275
1276 case EM_SH:
1277 rtype = elf_sh_reloc_type (type);
1278 break;
1279
1280 case EM_MN10300:
1281 case EM_CYGNUS_MN10300:
1282 rtype = elf_mn10300_reloc_type (type);
1283 break;
1284
1285 case EM_MN10200:
1286 case EM_CYGNUS_MN10200:
1287 rtype = elf_mn10200_reloc_type (type);
1288 break;
1289
1290 case EM_FR30:
1291 case EM_CYGNUS_FR30:
1292 rtype = elf_fr30_reloc_type (type);
1293 break;
1294
1295 case EM_CYGNUS_FRV:
1296 rtype = elf_frv_reloc_type (type);
1297 break;
1298
1299 case EM_FT32:
1300 rtype = elf_ft32_reloc_type (type);
1301 break;
1302
1303 case EM_MCORE:
1304 rtype = elf_mcore_reloc_type (type);
1305 break;
1306
1307 case EM_MMIX:
1308 rtype = elf_mmix_reloc_type (type);
1309 break;
1310
1311 case EM_MOXIE:
1312 rtype = elf_moxie_reloc_type (type);
1313 break;
1314
1315 case EM_MSP430:
1316 if (uses_msp430x_relocs ())
1317 {
1318 rtype = elf_msp430x_reloc_type (type);
1319 break;
1320 }
1321 /* Fall through. */
1322 case EM_MSP430_OLD:
1323 rtype = elf_msp430_reloc_type (type);
1324 break;
1325
1326 case EM_NDS32:
1327 rtype = elf_nds32_reloc_type (type);
1328 break;
1329
1330 case EM_PPC:
1331 rtype = elf_ppc_reloc_type (type);
1332 break;
1333
1334 case EM_PPC64:
1335 rtype = elf_ppc64_reloc_type (type);
1336 break;
1337
1338 case EM_MIPS:
1339 case EM_MIPS_RS3_LE:
1340 rtype = elf_mips_reloc_type (type);
1341 break;
1342
1343 case EM_RISCV:
1344 rtype = elf_riscv_reloc_type (type);
1345 break;
1346
1347 case EM_ALPHA:
1348 rtype = elf_alpha_reloc_type (type);
1349 break;
1350
1351 case EM_ARM:
1352 rtype = elf_arm_reloc_type (type);
1353 break;
1354
1355 case EM_ARC:
1356 case EM_ARC_COMPACT:
1357 case EM_ARC_COMPACT2:
1358 rtype = elf_arc_reloc_type (type);
1359 break;
1360
1361 case EM_PARISC:
1362 rtype = elf_hppa_reloc_type (type);
1363 break;
1364
1365 case EM_H8_300:
1366 case EM_H8_300H:
1367 case EM_H8S:
1368 rtype = elf_h8_reloc_type (type);
1369 break;
1370
1371 case EM_OR1K:
1372 rtype = elf_or1k_reloc_type (type);
1373 break;
1374
1375 case EM_PJ:
1376 case EM_PJ_OLD:
1377 rtype = elf_pj_reloc_type (type);
1378 break;
1379 case EM_IA_64:
1380 rtype = elf_ia64_reloc_type (type);
1381 break;
1382
1383 case EM_CRIS:
1384 rtype = elf_cris_reloc_type (type);
1385 break;
1386
1387 case EM_860:
1388 rtype = elf_i860_reloc_type (type);
1389 break;
1390
1391 case EM_X86_64:
1392 case EM_L1OM:
1393 case EM_K1OM:
1394 rtype = elf_x86_64_reloc_type (type);
1395 break;
1396
1397 case EM_S370:
1398 rtype = i370_reloc_type (type);
1399 break;
1400
1401 case EM_S390_OLD:
1402 case EM_S390:
1403 rtype = elf_s390_reloc_type (type);
1404 break;
1405
1406 case EM_SCORE:
1407 rtype = elf_score_reloc_type (type);
1408 break;
1409
1410 case EM_XSTORMY16:
1411 rtype = elf_xstormy16_reloc_type (type);
1412 break;
1413
1414 case EM_CRX:
1415 rtype = elf_crx_reloc_type (type);
1416 break;
1417
1418 case EM_VAX:
1419 rtype = elf_vax_reloc_type (type);
1420 break;
1421
1422 case EM_VISIUM:
1423 rtype = elf_visium_reloc_type (type);
1424 break;
1425
1426 case EM_ADAPTEVA_EPIPHANY:
1427 rtype = elf_epiphany_reloc_type (type);
1428 break;
1429
1430 case EM_IP2K:
1431 case EM_IP2K_OLD:
1432 rtype = elf_ip2k_reloc_type (type);
1433 break;
1434
1435 case EM_IQ2000:
1436 rtype = elf_iq2000_reloc_type (type);
1437 break;
1438
1439 case EM_XTENSA_OLD:
1440 case EM_XTENSA:
1441 rtype = elf_xtensa_reloc_type (type);
1442 break;
1443
1444 case EM_LATTICEMICO32:
1445 rtype = elf_lm32_reloc_type (type);
1446 break;
1447
1448 case EM_M32C_OLD:
1449 case EM_M32C:
1450 rtype = elf_m32c_reloc_type (type);
1451 break;
1452
1453 case EM_MT:
1454 rtype = elf_mt_reloc_type (type);
1455 break;
1456
1457 case EM_BLACKFIN:
1458 rtype = elf_bfin_reloc_type (type);
1459 break;
1460
1461 case EM_CYGNUS_MEP:
1462 rtype = elf_mep_reloc_type (type);
1463 break;
1464
1465 case EM_CR16:
1466 rtype = elf_cr16_reloc_type (type);
1467 break;
1468
1469 case EM_MICROBLAZE:
1470 case EM_MICROBLAZE_OLD:
1471 rtype = elf_microblaze_reloc_type (type);
1472 break;
1473
1474 case EM_RL78:
1475 rtype = elf_rl78_reloc_type (type);
1476 break;
1477
1478 case EM_RX:
1479 rtype = elf_rx_reloc_type (type);
1480 break;
1481
1482 case EM_METAG:
1483 rtype = elf_metag_reloc_type (type);
1484 break;
1485
1486 case EM_XC16X:
1487 case EM_C166:
1488 rtype = elf_xc16x_reloc_type (type);
1489 break;
1490
1491 case EM_TI_C6000:
1492 rtype = elf_tic6x_reloc_type (type);
1493 break;
1494
1495 case EM_TILEGX:
1496 rtype = elf_tilegx_reloc_type (type);
1497 break;
1498
1499 case EM_TILEPRO:
1500 rtype = elf_tilepro_reloc_type (type);
1501 break;
1502
1503 case EM_WEBASSEMBLY:
1504 rtype = elf_wasm32_reloc_type (type);
1505 break;
1506
1507 case EM_XGATE:
1508 rtype = elf_xgate_reloc_type (type);
1509 break;
1510
1511 case EM_ALTERA_NIOS2:
1512 rtype = elf_nios2_reloc_type (type);
1513 break;
1514
1515 case EM_TI_PRU:
1516 rtype = elf_pru_reloc_type (type);
1517 break;
1518 }
1519
1520 if (rtype == NULL)
1521 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1522 else
1523 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1524
1525 if (elf_header.e_machine == EM_ALPHA
1526 && rtype != NULL
1527 && streq (rtype, "R_ALPHA_LITUSE")
1528 && is_rela)
1529 {
1530 switch (rels[i].r_addend)
1531 {
1532 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1533 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1534 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1535 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1536 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1537 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1538 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1539 default: rtype = NULL;
1540 }
1541
1542 if (rtype)
1543 printf (" (%s)", rtype);
1544 else
1545 {
1546 putchar (' ');
1547 printf (_("<unknown addend: %lx>"),
1548 (unsigned long) rels[i].r_addend);
1549 res = FALSE;
1550 }
1551 }
1552 else if (symtab_index)
1553 {
1554 if (symtab == NULL || symtab_index >= nsyms)
1555 {
1556 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1557 res = FALSE;
1558 }
1559 else
1560 {
1561 Elf_Internal_Sym * psym;
1562 const char * version_string;
1563 enum versioned_symbol_info sym_info;
1564 unsigned short vna_other;
1565
1566 psym = symtab + symtab_index;
1567
1568 version_string
1569 = get_symbol_version_string (file, is_dynsym,
1570 strtab, strtablen,
1571 symtab_index,
1572 psym,
1573 &sym_info,
1574 &vna_other);
1575
1576 printf (" ");
1577
1578 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1579 {
1580 const char * name;
1581 unsigned int len;
1582 unsigned int width = is_32bit_elf ? 8 : 14;
1583
1584 /* Relocations against GNU_IFUNC symbols do not use the value
1585 of the symbol as the address to relocate against. Instead
1586 they invoke the function named by the symbol and use its
1587 result as the address for relocation.
1588
1589 To indicate this to the user, do not display the value of
1590 the symbol in the "Symbols's Value" field. Instead show
1591 its name followed by () as a hint that the symbol is
1592 invoked. */
1593
1594 if (strtab == NULL
1595 || psym->st_name == 0
1596 || psym->st_name >= strtablen)
1597 name = "??";
1598 else
1599 name = strtab + psym->st_name;
1600
1601 len = print_symbol (width, name);
1602 if (version_string)
1603 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1604 version_string);
1605 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1606 }
1607 else
1608 {
1609 print_vma (psym->st_value, LONG_HEX);
1610
1611 printf (is_32bit_elf ? " " : " ");
1612 }
1613
1614 if (psym->st_name == 0)
1615 {
1616 const char * sec_name = "<null>";
1617 char name_buf[40];
1618
1619 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1620 {
1621 if (psym->st_shndx < elf_header.e_shnum)
1622 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1623 else if (psym->st_shndx == SHN_ABS)
1624 sec_name = "ABS";
1625 else if (psym->st_shndx == SHN_COMMON)
1626 sec_name = "COMMON";
1627 else if ((elf_header.e_machine == EM_MIPS
1628 && psym->st_shndx == SHN_MIPS_SCOMMON)
1629 || (elf_header.e_machine == EM_TI_C6000
1630 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1631 sec_name = "SCOMMON";
1632 else if (elf_header.e_machine == EM_MIPS
1633 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1634 sec_name = "SUNDEF";
1635 else if ((elf_header.e_machine == EM_X86_64
1636 || elf_header.e_machine == EM_L1OM
1637 || elf_header.e_machine == EM_K1OM)
1638 && psym->st_shndx == SHN_X86_64_LCOMMON)
1639 sec_name = "LARGE_COMMON";
1640 else if (elf_header.e_machine == EM_IA_64
1641 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1642 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1643 sec_name = "ANSI_COM";
1644 else if (is_ia64_vms ()
1645 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1646 sec_name = "VMS_SYMVEC";
1647 else
1648 {
1649 sprintf (name_buf, "<section 0x%x>",
1650 (unsigned int) psym->st_shndx);
1651 sec_name = name_buf;
1652 }
1653 }
1654 print_symbol (22, sec_name);
1655 }
1656 else if (strtab == NULL)
1657 printf (_("<string table index: %3ld>"), psym->st_name);
1658 else if (psym->st_name >= strtablen)
1659 {
1660 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1661 res = FALSE;
1662 }
1663 else
1664 {
1665 print_symbol (22, strtab + psym->st_name);
1666 if (version_string)
1667 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1668 version_string);
1669 }
1670
1671 if (is_rela)
1672 {
1673 bfd_vma off = rels[i].r_addend;
1674
1675 if ((bfd_signed_vma) off < 0)
1676 printf (" - %" BFD_VMA_FMT "x", - off);
1677 else
1678 printf (" + %" BFD_VMA_FMT "x", off);
1679 }
1680 }
1681 }
1682 else if (is_rela)
1683 {
1684 bfd_vma off = rels[i].r_addend;
1685
1686 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1687 if ((bfd_signed_vma) off < 0)
1688 printf ("-%" BFD_VMA_FMT "x", - off);
1689 else
1690 printf ("%" BFD_VMA_FMT "x", off);
1691 }
1692
1693 if (elf_header.e_machine == EM_SPARCV9
1694 && rtype != NULL
1695 && streq (rtype, "R_SPARC_OLO10"))
1696 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1697
1698 putchar ('\n');
1699
1700 #ifdef BFD64
1701 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1702 {
1703 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1704 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1705 const char * rtype2 = elf_mips_reloc_type (type2);
1706 const char * rtype3 = elf_mips_reloc_type (type3);
1707
1708 printf (" Type2: ");
1709
1710 if (rtype2 == NULL)
1711 printf (_("unrecognized: %-7lx"),
1712 (unsigned long) type2 & 0xffffffff);
1713 else
1714 printf ("%-17.17s", rtype2);
1715
1716 printf ("\n Type3: ");
1717
1718 if (rtype3 == NULL)
1719 printf (_("unrecognized: %-7lx"),
1720 (unsigned long) type3 & 0xffffffff);
1721 else
1722 printf ("%-17.17s", rtype3);
1723
1724 putchar ('\n');
1725 }
1726 #endif /* BFD64 */
1727 }
1728
1729 free (rels);
1730
1731 return res;
1732 }
1733
1734 static const char *
1735 get_mips_dynamic_type (unsigned long type)
1736 {
1737 switch (type)
1738 {
1739 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1740 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1741 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1742 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1743 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1744 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1745 case DT_MIPS_MSYM: return "MIPS_MSYM";
1746 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1747 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1748 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1749 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1750 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1751 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1752 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1753 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1754 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1755 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1756 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1757 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1758 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1759 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1760 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1761 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1762 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1763 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1764 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1765 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1766 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1767 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1768 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1769 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1770 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1771 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1772 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1773 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1774 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1775 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1776 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1777 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1778 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1779 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1780 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1781 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1782 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1783 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1784 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1785 default:
1786 return NULL;
1787 }
1788 }
1789
1790 static const char *
1791 get_sparc64_dynamic_type (unsigned long type)
1792 {
1793 switch (type)
1794 {
1795 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1796 default:
1797 return NULL;
1798 }
1799 }
1800
1801 static const char *
1802 get_ppc_dynamic_type (unsigned long type)
1803 {
1804 switch (type)
1805 {
1806 case DT_PPC_GOT: return "PPC_GOT";
1807 case DT_PPC_OPT: return "PPC_OPT";
1808 default:
1809 return NULL;
1810 }
1811 }
1812
1813 static const char *
1814 get_ppc64_dynamic_type (unsigned long type)
1815 {
1816 switch (type)
1817 {
1818 case DT_PPC64_GLINK: return "PPC64_GLINK";
1819 case DT_PPC64_OPD: return "PPC64_OPD";
1820 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1821 case DT_PPC64_OPT: return "PPC64_OPT";
1822 default:
1823 return NULL;
1824 }
1825 }
1826
1827 static const char *
1828 get_parisc_dynamic_type (unsigned long type)
1829 {
1830 switch (type)
1831 {
1832 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1833 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1834 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1835 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1836 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1837 case DT_HP_PREINIT: return "HP_PREINIT";
1838 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1839 case DT_HP_NEEDED: return "HP_NEEDED";
1840 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1841 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1842 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1843 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1844 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1845 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1846 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1847 case DT_HP_FILTERED: return "HP_FILTERED";
1848 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1849 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1850 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1851 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1852 case DT_PLT: return "PLT";
1853 case DT_PLT_SIZE: return "PLT_SIZE";
1854 case DT_DLT: return "DLT";
1855 case DT_DLT_SIZE: return "DLT_SIZE";
1856 default:
1857 return NULL;
1858 }
1859 }
1860
1861 static const char *
1862 get_ia64_dynamic_type (unsigned long type)
1863 {
1864 switch (type)
1865 {
1866 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1867 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1868 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1869 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1870 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1871 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1872 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1873 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1874 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1875 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1876 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1877 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1878 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1879 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1880 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1881 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1882 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1883 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1884 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1885 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1886 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1887 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1888 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1889 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1890 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1891 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1892 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1893 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1894 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1895 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1896 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1897 default:
1898 return NULL;
1899 }
1900 }
1901
1902 static const char *
1903 get_solaris_section_type (unsigned long type)
1904 {
1905 switch (type)
1906 {
1907 case 0x6fffffee: return "SUNW_ancillary";
1908 case 0x6fffffef: return "SUNW_capchain";
1909 case 0x6ffffff0: return "SUNW_capinfo";
1910 case 0x6ffffff1: return "SUNW_symsort";
1911 case 0x6ffffff2: return "SUNW_tlssort";
1912 case 0x6ffffff3: return "SUNW_LDYNSYM";
1913 case 0x6ffffff4: return "SUNW_dof";
1914 case 0x6ffffff5: return "SUNW_cap";
1915 case 0x6ffffff6: return "SUNW_SIGNATURE";
1916 case 0x6ffffff7: return "SUNW_ANNOTATE";
1917 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1918 case 0x6ffffff9: return "SUNW_DEBUG";
1919 case 0x6ffffffa: return "SUNW_move";
1920 case 0x6ffffffb: return "SUNW_COMDAT";
1921 case 0x6ffffffc: return "SUNW_syminfo";
1922 case 0x6ffffffd: return "SUNW_verdef";
1923 case 0x6ffffffe: return "SUNW_verneed";
1924 case 0x6fffffff: return "SUNW_versym";
1925 case 0x70000000: return "SPARC_GOTDATA";
1926 default: return NULL;
1927 }
1928 }
1929
1930 static const char *
1931 get_alpha_dynamic_type (unsigned long type)
1932 {
1933 switch (type)
1934 {
1935 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1936 default: return NULL;
1937 }
1938 }
1939
1940 static const char *
1941 get_score_dynamic_type (unsigned long type)
1942 {
1943 switch (type)
1944 {
1945 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1946 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1947 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1948 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1949 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1950 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1951 default: return NULL;
1952 }
1953 }
1954
1955 static const char *
1956 get_tic6x_dynamic_type (unsigned long type)
1957 {
1958 switch (type)
1959 {
1960 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1961 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1962 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1963 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1964 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1965 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1966 default: return NULL;
1967 }
1968 }
1969
1970 static const char *
1971 get_nios2_dynamic_type (unsigned long type)
1972 {
1973 switch (type)
1974 {
1975 case DT_NIOS2_GP: return "NIOS2_GP";
1976 default: return NULL;
1977 }
1978 }
1979
1980 static const char *
1981 get_solaris_dynamic_type (unsigned long type)
1982 {
1983 switch (type)
1984 {
1985 case 0x6000000d: return "SUNW_AUXILIARY";
1986 case 0x6000000e: return "SUNW_RTLDINF";
1987 case 0x6000000f: return "SUNW_FILTER";
1988 case 0x60000010: return "SUNW_CAP";
1989 case 0x60000011: return "SUNW_SYMTAB";
1990 case 0x60000012: return "SUNW_SYMSZ";
1991 case 0x60000013: return "SUNW_SORTENT";
1992 case 0x60000014: return "SUNW_SYMSORT";
1993 case 0x60000015: return "SUNW_SYMSORTSZ";
1994 case 0x60000016: return "SUNW_TLSSORT";
1995 case 0x60000017: return "SUNW_TLSSORTSZ";
1996 case 0x60000018: return "SUNW_CAPINFO";
1997 case 0x60000019: return "SUNW_STRPAD";
1998 case 0x6000001a: return "SUNW_CAPCHAIN";
1999 case 0x6000001b: return "SUNW_LDMACH";
2000 case 0x6000001d: return "SUNW_CAPCHAINENT";
2001 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2002 case 0x60000021: return "SUNW_PARENT";
2003 case 0x60000023: return "SUNW_ASLR";
2004 case 0x60000025: return "SUNW_RELAX";
2005 case 0x60000029: return "SUNW_NXHEAP";
2006 case 0x6000002b: return "SUNW_NXSTACK";
2007
2008 case 0x70000001: return "SPARC_REGISTER";
2009 case 0x7ffffffd: return "AUXILIARY";
2010 case 0x7ffffffe: return "USED";
2011 case 0x7fffffff: return "FILTER";
2012
2013 default: return NULL;
2014 }
2015 }
2016
2017 static const char *
2018 get_dynamic_type (unsigned long type)
2019 {
2020 static char buff[64];
2021
2022 switch (type)
2023 {
2024 case DT_NULL: return "NULL";
2025 case DT_NEEDED: return "NEEDED";
2026 case DT_PLTRELSZ: return "PLTRELSZ";
2027 case DT_PLTGOT: return "PLTGOT";
2028 case DT_HASH: return "HASH";
2029 case DT_STRTAB: return "STRTAB";
2030 case DT_SYMTAB: return "SYMTAB";
2031 case DT_RELA: return "RELA";
2032 case DT_RELASZ: return "RELASZ";
2033 case DT_RELAENT: return "RELAENT";
2034 case DT_STRSZ: return "STRSZ";
2035 case DT_SYMENT: return "SYMENT";
2036 case DT_INIT: return "INIT";
2037 case DT_FINI: return "FINI";
2038 case DT_SONAME: return "SONAME";
2039 case DT_RPATH: return "RPATH";
2040 case DT_SYMBOLIC: return "SYMBOLIC";
2041 case DT_REL: return "REL";
2042 case DT_RELSZ: return "RELSZ";
2043 case DT_RELENT: return "RELENT";
2044 case DT_PLTREL: return "PLTREL";
2045 case DT_DEBUG: return "DEBUG";
2046 case DT_TEXTREL: return "TEXTREL";
2047 case DT_JMPREL: return "JMPREL";
2048 case DT_BIND_NOW: return "BIND_NOW";
2049 case DT_INIT_ARRAY: return "INIT_ARRAY";
2050 case DT_FINI_ARRAY: return "FINI_ARRAY";
2051 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2052 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2053 case DT_RUNPATH: return "RUNPATH";
2054 case DT_FLAGS: return "FLAGS";
2055
2056 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2057 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2058 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2059
2060 case DT_CHECKSUM: return "CHECKSUM";
2061 case DT_PLTPADSZ: return "PLTPADSZ";
2062 case DT_MOVEENT: return "MOVEENT";
2063 case DT_MOVESZ: return "MOVESZ";
2064 case DT_FEATURE: return "FEATURE";
2065 case DT_POSFLAG_1: return "POSFLAG_1";
2066 case DT_SYMINSZ: return "SYMINSZ";
2067 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2068
2069 case DT_ADDRRNGLO: return "ADDRRNGLO";
2070 case DT_CONFIG: return "CONFIG";
2071 case DT_DEPAUDIT: return "DEPAUDIT";
2072 case DT_AUDIT: return "AUDIT";
2073 case DT_PLTPAD: return "PLTPAD";
2074 case DT_MOVETAB: return "MOVETAB";
2075 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2076
2077 case DT_VERSYM: return "VERSYM";
2078
2079 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2080 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2081 case DT_RELACOUNT: return "RELACOUNT";
2082 case DT_RELCOUNT: return "RELCOUNT";
2083 case DT_FLAGS_1: return "FLAGS_1";
2084 case DT_VERDEF: return "VERDEF";
2085 case DT_VERDEFNUM: return "VERDEFNUM";
2086 case DT_VERNEED: return "VERNEED";
2087 case DT_VERNEEDNUM: return "VERNEEDNUM";
2088
2089 case DT_AUXILIARY: return "AUXILIARY";
2090 case DT_USED: return "USED";
2091 case DT_FILTER: return "FILTER";
2092
2093 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2094 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2095 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2096 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2097 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2098 case DT_GNU_HASH: return "GNU_HASH";
2099
2100 default:
2101 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2102 {
2103 const char * result;
2104
2105 switch (elf_header.e_machine)
2106 {
2107 case EM_MIPS:
2108 case EM_MIPS_RS3_LE:
2109 result = get_mips_dynamic_type (type);
2110 break;
2111 case EM_SPARCV9:
2112 result = get_sparc64_dynamic_type (type);
2113 break;
2114 case EM_PPC:
2115 result = get_ppc_dynamic_type (type);
2116 break;
2117 case EM_PPC64:
2118 result = get_ppc64_dynamic_type (type);
2119 break;
2120 case EM_IA_64:
2121 result = get_ia64_dynamic_type (type);
2122 break;
2123 case EM_ALPHA:
2124 result = get_alpha_dynamic_type (type);
2125 break;
2126 case EM_SCORE:
2127 result = get_score_dynamic_type (type);
2128 break;
2129 case EM_TI_C6000:
2130 result = get_tic6x_dynamic_type (type);
2131 break;
2132 case EM_ALTERA_NIOS2:
2133 result = get_nios2_dynamic_type (type);
2134 break;
2135 default:
2136 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2137 result = get_solaris_dynamic_type (type);
2138 else
2139 result = NULL;
2140 break;
2141 }
2142
2143 if (result != NULL)
2144 return result;
2145
2146 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2147 }
2148 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2149 || (elf_header.e_machine == EM_PARISC
2150 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2151 {
2152 const char * result;
2153
2154 switch (elf_header.e_machine)
2155 {
2156 case EM_PARISC:
2157 result = get_parisc_dynamic_type (type);
2158 break;
2159 case EM_IA_64:
2160 result = get_ia64_dynamic_type (type);
2161 break;
2162 default:
2163 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2164 result = get_solaris_dynamic_type (type);
2165 else
2166 result = NULL;
2167 break;
2168 }
2169
2170 if (result != NULL)
2171 return result;
2172
2173 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2174 type);
2175 }
2176 else
2177 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2178
2179 return buff;
2180 }
2181 }
2182
2183 static char *
2184 get_file_type (unsigned e_type)
2185 {
2186 static char buff[32];
2187
2188 switch (e_type)
2189 {
2190 case ET_NONE: return _("NONE (None)");
2191 case ET_REL: return _("REL (Relocatable file)");
2192 case ET_EXEC: return _("EXEC (Executable file)");
2193 case ET_DYN: return _("DYN (Shared object file)");
2194 case ET_CORE: return _("CORE (Core file)");
2195
2196 default:
2197 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2198 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2199 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2200 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2201 else
2202 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2203 return buff;
2204 }
2205 }
2206
2207 static char *
2208 get_machine_name (unsigned e_machine)
2209 {
2210 static char buff[64]; /* XXX */
2211
2212 switch (e_machine)
2213 {
2214 /* Please keep this switch table sorted by increasing EM_ value. */
2215 /* 0 */
2216 case EM_NONE: return _("None");
2217 case EM_M32: return "WE32100";
2218 case EM_SPARC: return "Sparc";
2219 case EM_386: return "Intel 80386";
2220 case EM_68K: return "MC68000";
2221 case EM_88K: return "MC88000";
2222 case EM_IAMCU: return "Intel MCU";
2223 case EM_860: return "Intel 80860";
2224 case EM_MIPS: return "MIPS R3000";
2225 case EM_S370: return "IBM System/370";
2226 /* 10 */
2227 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2228 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2229 case EM_PARISC: return "HPPA";
2230 case EM_VPP550: return "Fujitsu VPP500";
2231 case EM_SPARC32PLUS: return "Sparc v8+" ;
2232 case EM_960: return "Intel 90860";
2233 case EM_PPC: return "PowerPC";
2234 /* 20 */
2235 case EM_PPC64: return "PowerPC64";
2236 case EM_S390_OLD:
2237 case EM_S390: return "IBM S/390";
2238 case EM_SPU: return "SPU";
2239 /* 30 */
2240 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2241 case EM_FR20: return "Fujitsu FR20";
2242 case EM_RH32: return "TRW RH32";
2243 case EM_MCORE: return "MCORE";
2244 /* 40 */
2245 case EM_ARM: return "ARM";
2246 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2247 case EM_SH: return "Renesas / SuperH SH";
2248 case EM_SPARCV9: return "Sparc v9";
2249 case EM_TRICORE: return "Siemens Tricore";
2250 case EM_ARC: return "ARC";
2251 case EM_H8_300: return "Renesas H8/300";
2252 case EM_H8_300H: return "Renesas H8/300H";
2253 case EM_H8S: return "Renesas H8S";
2254 case EM_H8_500: return "Renesas H8/500";
2255 /* 50 */
2256 case EM_IA_64: return "Intel IA-64";
2257 case EM_MIPS_X: return "Stanford MIPS-X";
2258 case EM_COLDFIRE: return "Motorola Coldfire";
2259 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2260 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2261 case EM_PCP: return "Siemens PCP";
2262 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2263 case EM_NDR1: return "Denso NDR1 microprocesspr";
2264 case EM_STARCORE: return "Motorola Star*Core processor";
2265 case EM_ME16: return "Toyota ME16 processor";
2266 /* 60 */
2267 case EM_ST100: return "STMicroelectronics ST100 processor";
2268 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2269 case EM_X86_64: return "Advanced Micro Devices X86-64";
2270 case EM_PDSP: return "Sony DSP processor";
2271 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2272 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2273 case EM_FX66: return "Siemens FX66 microcontroller";
2274 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2275 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2276 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2277 /* 70 */
2278 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2279 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2280 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2281 case EM_SVX: return "Silicon Graphics SVx";
2282 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2283 case EM_VAX: return "Digital VAX";
2284 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2285 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2286 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2287 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2288 /* 80 */
2289 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2290 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2291 case EM_PRISM: return "Vitesse Prism";
2292 case EM_AVR_OLD:
2293 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2294 case EM_CYGNUS_FR30:
2295 case EM_FR30: return "Fujitsu FR30";
2296 case EM_CYGNUS_D10V:
2297 case EM_D10V: return "d10v";
2298 case EM_CYGNUS_D30V:
2299 case EM_D30V: return "d30v";
2300 case EM_CYGNUS_V850:
2301 case EM_V850: return "Renesas V850";
2302 case EM_CYGNUS_M32R:
2303 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2304 case EM_CYGNUS_MN10300:
2305 case EM_MN10300: return "mn10300";
2306 /* 90 */
2307 case EM_CYGNUS_MN10200:
2308 case EM_MN10200: return "mn10200";
2309 case EM_PJ: return "picoJava";
2310 case EM_OR1K: return "OpenRISC 1000";
2311 case EM_ARC_COMPACT: return "ARCompact";
2312 case EM_XTENSA_OLD:
2313 case EM_XTENSA: return "Tensilica Xtensa Processor";
2314 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2315 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2316 case EM_NS32K: return "National Semiconductor 32000 series";
2317 case EM_TPC: return "Tenor Network TPC processor";
2318 case EM_SNP1K: return "Trebia SNP 1000 processor";
2319 /* 100 */
2320 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2321 case EM_IP2K_OLD:
2322 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2323 case EM_MAX: return "MAX Processor";
2324 case EM_CR: return "National Semiconductor CompactRISC";
2325 case EM_F2MC16: return "Fujitsu F2MC16";
2326 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2327 case EM_BLACKFIN: return "Analog Devices Blackfin";
2328 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2329 case EM_SEP: return "Sharp embedded microprocessor";
2330 case EM_ARCA: return "Arca RISC microprocessor";
2331 /* 110 */
2332 case EM_UNICORE: return "Unicore";
2333 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2334 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2335 case EM_ALTERA_NIOS2: return "Altera Nios II";
2336 case EM_CRX: return "National Semiconductor CRX microprocessor";
2337 case EM_XGATE: return "Motorola XGATE embedded processor";
2338 case EM_C166:
2339 case EM_XC16X: return "Infineon Technologies xc16x";
2340 case EM_M16C: return "Renesas M16C series microprocessors";
2341 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2342 case EM_CE: return "Freescale Communication Engine RISC core";
2343 /* 120 */
2344 case EM_M32C: return "Renesas M32c";
2345 /* 130 */
2346 case EM_TSK3000: return "Altium TSK3000 core";
2347 case EM_RS08: return "Freescale RS08 embedded processor";
2348 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2349 case EM_SCORE: return "SUNPLUS S+Core";
2350 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2351 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2352 case EM_LATTICEMICO32: return "Lattice Mico32";
2353 case EM_SE_C17: return "Seiko Epson C17 family";
2354 /* 140 */
2355 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2356 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2357 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2358 case EM_TI_PRU: return "TI PRU I/O processor";
2359 /* 160 */
2360 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2361 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2362 case EM_R32C: return "Renesas R32C series microprocessors";
2363 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2364 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2365 case EM_8051: return "Intel 8051 and variants";
2366 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2367 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2368 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2369 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2370 /* 170 */
2371 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2372 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2373 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2374 case EM_RX: return "Renesas RX";
2375 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2376 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2377 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2378 case EM_CR16:
2379 case EM_MICROBLAZE:
2380 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2381 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2382 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2383 /* 180 */
2384 case EM_L1OM: return "Intel L1OM";
2385 case EM_K1OM: return "Intel K1OM";
2386 case EM_INTEL182: return "Intel (reserved)";
2387 case EM_AARCH64: return "AArch64";
2388 case EM_ARM184: return "ARM (reserved)";
2389 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2390 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2391 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2392 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2393 /* 190 */
2394 case EM_CUDA: return "NVIDIA CUDA architecture";
2395 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2396 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2397 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2398 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2399 case EM_ARC_COMPACT2: return "ARCv2";
2400 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2401 case EM_RL78: return "Renesas RL78";
2402 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2403 case EM_78K0R: return "Renesas 78K0R";
2404 /* 200 */
2405 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2406 case EM_BA1: return "Beyond BA1 CPU architecture";
2407 case EM_BA2: return "Beyond BA2 CPU architecture";
2408 case EM_XCORE: return "XMOS xCORE processor family";
2409 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2410 /* 210 */
2411 case EM_KM32: return "KM211 KM32 32-bit processor";
2412 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2413 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2414 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2415 case EM_KVARC: return "KM211 KVARC processor";
2416 case EM_CDP: return "Paneve CDP architecture family";
2417 case EM_COGE: return "Cognitive Smart Memory Processor";
2418 case EM_COOL: return "Bluechip Systems CoolEngine";
2419 case EM_NORC: return "Nanoradio Optimized RISC";
2420 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2421 /* 220 */
2422 case EM_Z80: return "Zilog Z80";
2423 case EM_VISIUM: return "CDS VISIUMcore processor";
2424 case EM_FT32: return "FTDI Chip FT32";
2425 case EM_MOXIE: return "Moxie";
2426 case EM_AMDGPU: return "AMD GPU";
2427 case EM_RISCV: return "RISC-V";
2428 case EM_LANAI: return "Lanai 32-bit processor";
2429 case EM_BPF: return "Linux BPF";
2430
2431 /* Large numbers... */
2432 case EM_MT: return "Morpho Techologies MT processor";
2433 case EM_ALPHA: return "Alpha";
2434 case EM_WEBASSEMBLY: return "Web Assembly";
2435 case EM_DLX: return "OpenDLX";
2436 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2437 case EM_IQ2000: return "Vitesse IQ2000";
2438 case EM_M32C_OLD:
2439 case EM_NIOS32: return "Altera Nios";
2440 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2441 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2442 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2443
2444 default:
2445 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2446 return buff;
2447 }
2448 }
2449
2450 static void
2451 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2452 {
2453 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2454 other compilers don't a specific architecture type in the e_flags, and
2455 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2456 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2457 architectures.
2458
2459 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2460 but also sets a specific architecture type in the e_flags field.
2461
2462 However, when decoding the flags we don't worry if we see an
2463 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2464 ARCEM architecture type. */
2465
2466 switch (e_flags & EF_ARC_MACH_MSK)
2467 {
2468 /* We only expect these to occur for EM_ARC_COMPACT2. */
2469 case EF_ARC_CPU_ARCV2EM:
2470 strcat (buf, ", ARC EM");
2471 break;
2472 case EF_ARC_CPU_ARCV2HS:
2473 strcat (buf, ", ARC HS");
2474 break;
2475
2476 /* We only expect these to occur for EM_ARC_COMPACT. */
2477 case E_ARC_MACH_ARC600:
2478 strcat (buf, ", ARC600");
2479 break;
2480 case E_ARC_MACH_ARC601:
2481 strcat (buf, ", ARC601");
2482 break;
2483 case E_ARC_MACH_ARC700:
2484 strcat (buf, ", ARC700");
2485 break;
2486
2487 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2488 new ELF with new architecture being read by an old version of
2489 readelf, or (c) An ELF built with non-GNU compiler that does not
2490 set the architecture in the e_flags. */
2491 default:
2492 if (e_machine == EM_ARC_COMPACT)
2493 strcat (buf, ", Unknown ARCompact");
2494 else
2495 strcat (buf, ", Unknown ARC");
2496 break;
2497 }
2498
2499 switch (e_flags & EF_ARC_OSABI_MSK)
2500 {
2501 case E_ARC_OSABI_ORIG:
2502 strcat (buf, ", (ABI:legacy)");
2503 break;
2504 case E_ARC_OSABI_V2:
2505 strcat (buf, ", (ABI:v2)");
2506 break;
2507 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2508 case E_ARC_OSABI_V3:
2509 strcat (buf, ", v3 no-legacy-syscalls ABI");
2510 break;
2511 default:
2512 strcat (buf, ", unrecognised ARC OSABI flag");
2513 break;
2514 }
2515 }
2516
2517 static void
2518 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2519 {
2520 unsigned eabi;
2521 bfd_boolean unknown = FALSE;
2522
2523 eabi = EF_ARM_EABI_VERSION (e_flags);
2524 e_flags &= ~ EF_ARM_EABIMASK;
2525
2526 /* Handle "generic" ARM flags. */
2527 if (e_flags & EF_ARM_RELEXEC)
2528 {
2529 strcat (buf, ", relocatable executable");
2530 e_flags &= ~ EF_ARM_RELEXEC;
2531 }
2532
2533 /* Now handle EABI specific flags. */
2534 switch (eabi)
2535 {
2536 default:
2537 strcat (buf, ", <unrecognized EABI>");
2538 if (e_flags)
2539 unknown = TRUE;
2540 break;
2541
2542 case EF_ARM_EABI_VER1:
2543 strcat (buf, ", Version1 EABI");
2544 while (e_flags)
2545 {
2546 unsigned flag;
2547
2548 /* Process flags one bit at a time. */
2549 flag = e_flags & - e_flags;
2550 e_flags &= ~ flag;
2551
2552 switch (flag)
2553 {
2554 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2555 strcat (buf, ", sorted symbol tables");
2556 break;
2557
2558 default:
2559 unknown = TRUE;
2560 break;
2561 }
2562 }
2563 break;
2564
2565 case EF_ARM_EABI_VER2:
2566 strcat (buf, ", Version2 EABI");
2567 while (e_flags)
2568 {
2569 unsigned flag;
2570
2571 /* Process flags one bit at a time. */
2572 flag = e_flags & - e_flags;
2573 e_flags &= ~ flag;
2574
2575 switch (flag)
2576 {
2577 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2578 strcat (buf, ", sorted symbol tables");
2579 break;
2580
2581 case EF_ARM_DYNSYMSUSESEGIDX:
2582 strcat (buf, ", dynamic symbols use segment index");
2583 break;
2584
2585 case EF_ARM_MAPSYMSFIRST:
2586 strcat (buf, ", mapping symbols precede others");
2587 break;
2588
2589 default:
2590 unknown = TRUE;
2591 break;
2592 }
2593 }
2594 break;
2595
2596 case EF_ARM_EABI_VER3:
2597 strcat (buf, ", Version3 EABI");
2598 break;
2599
2600 case EF_ARM_EABI_VER4:
2601 strcat (buf, ", Version4 EABI");
2602 while (e_flags)
2603 {
2604 unsigned flag;
2605
2606 /* Process flags one bit at a time. */
2607 flag = e_flags & - e_flags;
2608 e_flags &= ~ flag;
2609
2610 switch (flag)
2611 {
2612 case EF_ARM_BE8:
2613 strcat (buf, ", BE8");
2614 break;
2615
2616 case EF_ARM_LE8:
2617 strcat (buf, ", LE8");
2618 break;
2619
2620 default:
2621 unknown = TRUE;
2622 break;
2623 }
2624 }
2625 break;
2626
2627 case EF_ARM_EABI_VER5:
2628 strcat (buf, ", Version5 EABI");
2629 while (e_flags)
2630 {
2631 unsigned flag;
2632
2633 /* Process flags one bit at a time. */
2634 flag = e_flags & - e_flags;
2635 e_flags &= ~ flag;
2636
2637 switch (flag)
2638 {
2639 case EF_ARM_BE8:
2640 strcat (buf, ", BE8");
2641 break;
2642
2643 case EF_ARM_LE8:
2644 strcat (buf, ", LE8");
2645 break;
2646
2647 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2648 strcat (buf, ", soft-float ABI");
2649 break;
2650
2651 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2652 strcat (buf, ", hard-float ABI");
2653 break;
2654
2655 default:
2656 unknown = TRUE;
2657 break;
2658 }
2659 }
2660 break;
2661
2662 case EF_ARM_EABI_UNKNOWN:
2663 strcat (buf, ", GNU EABI");
2664 while (e_flags)
2665 {
2666 unsigned flag;
2667
2668 /* Process flags one bit at a time. */
2669 flag = e_flags & - e_flags;
2670 e_flags &= ~ flag;
2671
2672 switch (flag)
2673 {
2674 case EF_ARM_INTERWORK:
2675 strcat (buf, ", interworking enabled");
2676 break;
2677
2678 case EF_ARM_APCS_26:
2679 strcat (buf, ", uses APCS/26");
2680 break;
2681
2682 case EF_ARM_APCS_FLOAT:
2683 strcat (buf, ", uses APCS/float");
2684 break;
2685
2686 case EF_ARM_PIC:
2687 strcat (buf, ", position independent");
2688 break;
2689
2690 case EF_ARM_ALIGN8:
2691 strcat (buf, ", 8 bit structure alignment");
2692 break;
2693
2694 case EF_ARM_NEW_ABI:
2695 strcat (buf, ", uses new ABI");
2696 break;
2697
2698 case EF_ARM_OLD_ABI:
2699 strcat (buf, ", uses old ABI");
2700 break;
2701
2702 case EF_ARM_SOFT_FLOAT:
2703 strcat (buf, ", software FP");
2704 break;
2705
2706 case EF_ARM_VFP_FLOAT:
2707 strcat (buf, ", VFP");
2708 break;
2709
2710 case EF_ARM_MAVERICK_FLOAT:
2711 strcat (buf, ", Maverick FP");
2712 break;
2713
2714 default:
2715 unknown = TRUE;
2716 break;
2717 }
2718 }
2719 }
2720
2721 if (unknown)
2722 strcat (buf,_(", <unknown>"));
2723 }
2724
2725 static void
2726 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2727 {
2728 --size; /* Leave space for null terminator. */
2729
2730 switch (e_flags & EF_AVR_MACH)
2731 {
2732 case E_AVR_MACH_AVR1:
2733 strncat (buf, ", avr:1", size);
2734 break;
2735 case E_AVR_MACH_AVR2:
2736 strncat (buf, ", avr:2", size);
2737 break;
2738 case E_AVR_MACH_AVR25:
2739 strncat (buf, ", avr:25", size);
2740 break;
2741 case E_AVR_MACH_AVR3:
2742 strncat (buf, ", avr:3", size);
2743 break;
2744 case E_AVR_MACH_AVR31:
2745 strncat (buf, ", avr:31", size);
2746 break;
2747 case E_AVR_MACH_AVR35:
2748 strncat (buf, ", avr:35", size);
2749 break;
2750 case E_AVR_MACH_AVR4:
2751 strncat (buf, ", avr:4", size);
2752 break;
2753 case E_AVR_MACH_AVR5:
2754 strncat (buf, ", avr:5", size);
2755 break;
2756 case E_AVR_MACH_AVR51:
2757 strncat (buf, ", avr:51", size);
2758 break;
2759 case E_AVR_MACH_AVR6:
2760 strncat (buf, ", avr:6", size);
2761 break;
2762 case E_AVR_MACH_AVRTINY:
2763 strncat (buf, ", avr:100", size);
2764 break;
2765 case E_AVR_MACH_XMEGA1:
2766 strncat (buf, ", avr:101", size);
2767 break;
2768 case E_AVR_MACH_XMEGA2:
2769 strncat (buf, ", avr:102", size);
2770 break;
2771 case E_AVR_MACH_XMEGA3:
2772 strncat (buf, ", avr:103", size);
2773 break;
2774 case E_AVR_MACH_XMEGA4:
2775 strncat (buf, ", avr:104", size);
2776 break;
2777 case E_AVR_MACH_XMEGA5:
2778 strncat (buf, ", avr:105", size);
2779 break;
2780 case E_AVR_MACH_XMEGA6:
2781 strncat (buf, ", avr:106", size);
2782 break;
2783 case E_AVR_MACH_XMEGA7:
2784 strncat (buf, ", avr:107", size);
2785 break;
2786 default:
2787 strncat (buf, ", avr:<unknown>", size);
2788 break;
2789 }
2790
2791 size -= strlen (buf);
2792 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2793 strncat (buf, ", link-relax", size);
2794 }
2795
2796 static void
2797 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2798 {
2799 unsigned abi;
2800 unsigned arch;
2801 unsigned config;
2802 unsigned version;
2803 bfd_boolean has_fpu = FALSE;
2804 unsigned int r = 0;
2805
2806 static const char *ABI_STRINGS[] =
2807 {
2808 "ABI v0", /* use r5 as return register; only used in N1213HC */
2809 "ABI v1", /* use r0 as return register */
2810 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2811 "ABI v2fp", /* for FPU */
2812 "AABI",
2813 "ABI2 FP+"
2814 };
2815 static const char *VER_STRINGS[] =
2816 {
2817 "Andes ELF V1.3 or older",
2818 "Andes ELF V1.3.1",
2819 "Andes ELF V1.4"
2820 };
2821 static const char *ARCH_STRINGS[] =
2822 {
2823 "",
2824 "Andes Star v1.0",
2825 "Andes Star v2.0",
2826 "Andes Star v3.0",
2827 "Andes Star v3.0m"
2828 };
2829
2830 abi = EF_NDS_ABI & e_flags;
2831 arch = EF_NDS_ARCH & e_flags;
2832 config = EF_NDS_INST & e_flags;
2833 version = EF_NDS32_ELF_VERSION & e_flags;
2834
2835 memset (buf, 0, size);
2836
2837 switch (abi)
2838 {
2839 case E_NDS_ABI_V0:
2840 case E_NDS_ABI_V1:
2841 case E_NDS_ABI_V2:
2842 case E_NDS_ABI_V2FP:
2843 case E_NDS_ABI_AABI:
2844 case E_NDS_ABI_V2FP_PLUS:
2845 /* In case there are holes in the array. */
2846 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2847 break;
2848
2849 default:
2850 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2851 break;
2852 }
2853
2854 switch (version)
2855 {
2856 case E_NDS32_ELF_VER_1_2:
2857 case E_NDS32_ELF_VER_1_3:
2858 case E_NDS32_ELF_VER_1_4:
2859 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2860 break;
2861
2862 default:
2863 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2864 break;
2865 }
2866
2867 if (E_NDS_ABI_V0 == abi)
2868 {
2869 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2870 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2871 if (arch == E_NDS_ARCH_STAR_V1_0)
2872 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2873 return;
2874 }
2875
2876 switch (arch)
2877 {
2878 case E_NDS_ARCH_STAR_V1_0:
2879 case E_NDS_ARCH_STAR_V2_0:
2880 case E_NDS_ARCH_STAR_V3_0:
2881 case E_NDS_ARCH_STAR_V3_M:
2882 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2883 break;
2884
2885 default:
2886 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2887 /* ARCH version determines how the e_flags are interpreted.
2888 If it is unknown, we cannot proceed. */
2889 return;
2890 }
2891
2892 /* Newer ABI; Now handle architecture specific flags. */
2893 if (arch == E_NDS_ARCH_STAR_V1_0)
2894 {
2895 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2896 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2897
2898 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2899 r += snprintf (buf + r, size -r, ", MAC");
2900
2901 if (config & E_NDS32_HAS_DIV_INST)
2902 r += snprintf (buf + r, size -r, ", DIV");
2903
2904 if (config & E_NDS32_HAS_16BIT_INST)
2905 r += snprintf (buf + r, size -r, ", 16b");
2906 }
2907 else
2908 {
2909 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2910 {
2911 if (version <= E_NDS32_ELF_VER_1_3)
2912 r += snprintf (buf + r, size -r, ", [B8]");
2913 else
2914 r += snprintf (buf + r, size -r, ", EX9");
2915 }
2916
2917 if (config & E_NDS32_HAS_MAC_DX_INST)
2918 r += snprintf (buf + r, size -r, ", MAC_DX");
2919
2920 if (config & E_NDS32_HAS_DIV_DX_INST)
2921 r += snprintf (buf + r, size -r, ", DIV_DX");
2922
2923 if (config & E_NDS32_HAS_16BIT_INST)
2924 {
2925 if (version <= E_NDS32_ELF_VER_1_3)
2926 r += snprintf (buf + r, size -r, ", 16b");
2927 else
2928 r += snprintf (buf + r, size -r, ", IFC");
2929 }
2930 }
2931
2932 if (config & E_NDS32_HAS_EXT_INST)
2933 r += snprintf (buf + r, size -r, ", PERF1");
2934
2935 if (config & E_NDS32_HAS_EXT2_INST)
2936 r += snprintf (buf + r, size -r, ", PERF2");
2937
2938 if (config & E_NDS32_HAS_FPU_INST)
2939 {
2940 has_fpu = TRUE;
2941 r += snprintf (buf + r, size -r, ", FPU_SP");
2942 }
2943
2944 if (config & E_NDS32_HAS_FPU_DP_INST)
2945 {
2946 has_fpu = TRUE;
2947 r += snprintf (buf + r, size -r, ", FPU_DP");
2948 }
2949
2950 if (config & E_NDS32_HAS_FPU_MAC_INST)
2951 {
2952 has_fpu = TRUE;
2953 r += snprintf (buf + r, size -r, ", FPU_MAC");
2954 }
2955
2956 if (has_fpu)
2957 {
2958 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2959 {
2960 case E_NDS32_FPU_REG_8SP_4DP:
2961 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2962 break;
2963 case E_NDS32_FPU_REG_16SP_8DP:
2964 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2965 break;
2966 case E_NDS32_FPU_REG_32SP_16DP:
2967 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2968 break;
2969 case E_NDS32_FPU_REG_32SP_32DP:
2970 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2971 break;
2972 }
2973 }
2974
2975 if (config & E_NDS32_HAS_AUDIO_INST)
2976 r += snprintf (buf + r, size -r, ", AUDIO");
2977
2978 if (config & E_NDS32_HAS_STRING_INST)
2979 r += snprintf (buf + r, size -r, ", STR");
2980
2981 if (config & E_NDS32_HAS_REDUCED_REGS)
2982 r += snprintf (buf + r, size -r, ", 16REG");
2983
2984 if (config & E_NDS32_HAS_VIDEO_INST)
2985 {
2986 if (version <= E_NDS32_ELF_VER_1_3)
2987 r += snprintf (buf + r, size -r, ", VIDEO");
2988 else
2989 r += snprintf (buf + r, size -r, ", SATURATION");
2990 }
2991
2992 if (config & E_NDS32_HAS_ENCRIPT_INST)
2993 r += snprintf (buf + r, size -r, ", ENCRP");
2994
2995 if (config & E_NDS32_HAS_L2C_INST)
2996 r += snprintf (buf + r, size -r, ", L2C");
2997 }
2998
2999 static char *
3000 get_machine_flags (unsigned e_flags, unsigned e_machine)
3001 {
3002 static char buf[1024];
3003
3004 buf[0] = '\0';
3005
3006 if (e_flags)
3007 {
3008 switch (e_machine)
3009 {
3010 default:
3011 break;
3012
3013 case EM_ARC_COMPACT2:
3014 case EM_ARC_COMPACT:
3015 decode_ARC_machine_flags (e_flags, e_machine, buf);
3016 break;
3017
3018 case EM_ARM:
3019 decode_ARM_machine_flags (e_flags, buf);
3020 break;
3021
3022 case EM_AVR:
3023 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3024 break;
3025
3026 case EM_BLACKFIN:
3027 if (e_flags & EF_BFIN_PIC)
3028 strcat (buf, ", PIC");
3029
3030 if (e_flags & EF_BFIN_FDPIC)
3031 strcat (buf, ", FDPIC");
3032
3033 if (e_flags & EF_BFIN_CODE_IN_L1)
3034 strcat (buf, ", code in L1");
3035
3036 if (e_flags & EF_BFIN_DATA_IN_L1)
3037 strcat (buf, ", data in L1");
3038
3039 break;
3040
3041 case EM_CYGNUS_FRV:
3042 switch (e_flags & EF_FRV_CPU_MASK)
3043 {
3044 case EF_FRV_CPU_GENERIC:
3045 break;
3046
3047 default:
3048 strcat (buf, ", fr???");
3049 break;
3050
3051 case EF_FRV_CPU_FR300:
3052 strcat (buf, ", fr300");
3053 break;
3054
3055 case EF_FRV_CPU_FR400:
3056 strcat (buf, ", fr400");
3057 break;
3058 case EF_FRV_CPU_FR405:
3059 strcat (buf, ", fr405");
3060 break;
3061
3062 case EF_FRV_CPU_FR450:
3063 strcat (buf, ", fr450");
3064 break;
3065
3066 case EF_FRV_CPU_FR500:
3067 strcat (buf, ", fr500");
3068 break;
3069 case EF_FRV_CPU_FR550:
3070 strcat (buf, ", fr550");
3071 break;
3072
3073 case EF_FRV_CPU_SIMPLE:
3074 strcat (buf, ", simple");
3075 break;
3076 case EF_FRV_CPU_TOMCAT:
3077 strcat (buf, ", tomcat");
3078 break;
3079 }
3080 break;
3081
3082 case EM_68K:
3083 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3084 strcat (buf, ", m68000");
3085 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3086 strcat (buf, ", cpu32");
3087 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3088 strcat (buf, ", fido_a");
3089 else
3090 {
3091 char const * isa = _("unknown");
3092 char const * mac = _("unknown mac");
3093 char const * additional = NULL;
3094
3095 switch (e_flags & EF_M68K_CF_ISA_MASK)
3096 {
3097 case EF_M68K_CF_ISA_A_NODIV:
3098 isa = "A";
3099 additional = ", nodiv";
3100 break;
3101 case EF_M68K_CF_ISA_A:
3102 isa = "A";
3103 break;
3104 case EF_M68K_CF_ISA_A_PLUS:
3105 isa = "A+";
3106 break;
3107 case EF_M68K_CF_ISA_B_NOUSP:
3108 isa = "B";
3109 additional = ", nousp";
3110 break;
3111 case EF_M68K_CF_ISA_B:
3112 isa = "B";
3113 break;
3114 case EF_M68K_CF_ISA_C:
3115 isa = "C";
3116 break;
3117 case EF_M68K_CF_ISA_C_NODIV:
3118 isa = "C";
3119 additional = ", nodiv";
3120 break;
3121 }
3122 strcat (buf, ", cf, isa ");
3123 strcat (buf, isa);
3124 if (additional)
3125 strcat (buf, additional);
3126 if (e_flags & EF_M68K_CF_FLOAT)
3127 strcat (buf, ", float");
3128 switch (e_flags & EF_M68K_CF_MAC_MASK)
3129 {
3130 case 0:
3131 mac = NULL;
3132 break;
3133 case EF_M68K_CF_MAC:
3134 mac = "mac";
3135 break;
3136 case EF_M68K_CF_EMAC:
3137 mac = "emac";
3138 break;
3139 case EF_M68K_CF_EMAC_B:
3140 mac = "emac_b";
3141 break;
3142 }
3143 if (mac)
3144 {
3145 strcat (buf, ", ");
3146 strcat (buf, mac);
3147 }
3148 }
3149 break;
3150
3151 case EM_CYGNUS_MEP:
3152 switch (e_flags & EF_MEP_CPU_MASK)
3153 {
3154 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3155 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3156 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3157 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3158 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3159 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3160 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3161 }
3162
3163 switch (e_flags & EF_MEP_COP_MASK)
3164 {
3165 case EF_MEP_COP_NONE: break;
3166 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3167 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3168 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3169 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3170 default: strcat (buf, _("<unknown MeP copro type>")); break;
3171 }
3172
3173 if (e_flags & EF_MEP_LIBRARY)
3174 strcat (buf, ", Built for Library");
3175
3176 if (e_flags & EF_MEP_INDEX_MASK)
3177 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3178 e_flags & EF_MEP_INDEX_MASK);
3179
3180 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3181 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3182 e_flags & ~ EF_MEP_ALL_FLAGS);
3183 break;
3184
3185 case EM_PPC:
3186 if (e_flags & EF_PPC_EMB)
3187 strcat (buf, ", emb");
3188
3189 if (e_flags & EF_PPC_RELOCATABLE)
3190 strcat (buf, _(", relocatable"));
3191
3192 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3193 strcat (buf, _(", relocatable-lib"));
3194 break;
3195
3196 case EM_PPC64:
3197 if (e_flags & EF_PPC64_ABI)
3198 {
3199 char abi[] = ", abiv0";
3200
3201 abi[6] += e_flags & EF_PPC64_ABI;
3202 strcat (buf, abi);
3203 }
3204 break;
3205
3206 case EM_V800:
3207 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3208 strcat (buf, ", RH850 ABI");
3209
3210 if (e_flags & EF_V800_850E3)
3211 strcat (buf, ", V3 architecture");
3212
3213 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3214 strcat (buf, ", FPU not used");
3215
3216 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3217 strcat (buf, ", regmode: COMMON");
3218
3219 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3220 strcat (buf, ", r4 not used");
3221
3222 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3223 strcat (buf, ", r30 not used");
3224
3225 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3226 strcat (buf, ", r5 not used");
3227
3228 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3229 strcat (buf, ", r2 not used");
3230
3231 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3232 {
3233 switch (e_flags & - e_flags)
3234 {
3235 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3236 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3237 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3238 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3239 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3240 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3241 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3242 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3243 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3244 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3245 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3246 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3247 default: break;
3248 }
3249 }
3250 break;
3251
3252 case EM_V850:
3253 case EM_CYGNUS_V850:
3254 switch (e_flags & EF_V850_ARCH)
3255 {
3256 case E_V850E3V5_ARCH:
3257 strcat (buf, ", v850e3v5");
3258 break;
3259 case E_V850E2V3_ARCH:
3260 strcat (buf, ", v850e2v3");
3261 break;
3262 case E_V850E2_ARCH:
3263 strcat (buf, ", v850e2");
3264 break;
3265 case E_V850E1_ARCH:
3266 strcat (buf, ", v850e1");
3267 break;
3268 case E_V850E_ARCH:
3269 strcat (buf, ", v850e");
3270 break;
3271 case E_V850_ARCH:
3272 strcat (buf, ", v850");
3273 break;
3274 default:
3275 strcat (buf, _(", unknown v850 architecture variant"));
3276 break;
3277 }
3278 break;
3279
3280 case EM_M32R:
3281 case EM_CYGNUS_M32R:
3282 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3283 strcat (buf, ", m32r");
3284 break;
3285
3286 case EM_MIPS:
3287 case EM_MIPS_RS3_LE:
3288 if (e_flags & EF_MIPS_NOREORDER)
3289 strcat (buf, ", noreorder");
3290
3291 if (e_flags & EF_MIPS_PIC)
3292 strcat (buf, ", pic");
3293
3294 if (e_flags & EF_MIPS_CPIC)
3295 strcat (buf, ", cpic");
3296
3297 if (e_flags & EF_MIPS_UCODE)
3298 strcat (buf, ", ugen_reserved");
3299
3300 if (e_flags & EF_MIPS_ABI2)
3301 strcat (buf, ", abi2");
3302
3303 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3304 strcat (buf, ", odk first");
3305
3306 if (e_flags & EF_MIPS_32BITMODE)
3307 strcat (buf, ", 32bitmode");
3308
3309 if (e_flags & EF_MIPS_NAN2008)
3310 strcat (buf, ", nan2008");
3311
3312 if (e_flags & EF_MIPS_FP64)
3313 strcat (buf, ", fp64");
3314
3315 switch ((e_flags & EF_MIPS_MACH))
3316 {
3317 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3318 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3319 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3320 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3321 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3322 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3323 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3324 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3325 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3326 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3327 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3328 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3329 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3330 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3331 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3332 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3333 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3334 case 0:
3335 /* We simply ignore the field in this case to avoid confusion:
3336 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3337 extension. */
3338 break;
3339 default: strcat (buf, _(", unknown CPU")); break;
3340 }
3341
3342 switch ((e_flags & EF_MIPS_ABI))
3343 {
3344 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3345 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3346 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3347 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3348 case 0:
3349 /* We simply ignore the field in this case to avoid confusion:
3350 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3351 This means it is likely to be an o32 file, but not for
3352 sure. */
3353 break;
3354 default: strcat (buf, _(", unknown ABI")); break;
3355 }
3356
3357 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3358 strcat (buf, ", mdmx");
3359
3360 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3361 strcat (buf, ", mips16");
3362
3363 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3364 strcat (buf, ", micromips");
3365
3366 switch ((e_flags & EF_MIPS_ARCH))
3367 {
3368 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3369 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3370 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3371 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3372 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3373 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3374 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3375 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3376 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3377 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3378 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3379 default: strcat (buf, _(", unknown ISA")); break;
3380 }
3381 break;
3382
3383 case EM_NDS32:
3384 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3385 break;
3386
3387 case EM_RISCV:
3388 if (e_flags & EF_RISCV_RVC)
3389 strcat (buf, ", RVC");
3390
3391 switch (e_flags & EF_RISCV_FLOAT_ABI)
3392 {
3393 case EF_RISCV_FLOAT_ABI_SOFT:
3394 strcat (buf, ", soft-float ABI");
3395 break;
3396
3397 case EF_RISCV_FLOAT_ABI_SINGLE:
3398 strcat (buf, ", single-float ABI");
3399 break;
3400
3401 case EF_RISCV_FLOAT_ABI_DOUBLE:
3402 strcat (buf, ", double-float ABI");
3403 break;
3404
3405 case EF_RISCV_FLOAT_ABI_QUAD:
3406 strcat (buf, ", quad-float ABI");
3407 break;
3408 }
3409 break;
3410
3411 case EM_SH:
3412 switch ((e_flags & EF_SH_MACH_MASK))
3413 {
3414 case EF_SH1: strcat (buf, ", sh1"); break;
3415 case EF_SH2: strcat (buf, ", sh2"); break;
3416 case EF_SH3: strcat (buf, ", sh3"); break;
3417 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3418 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3419 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3420 case EF_SH3E: strcat (buf, ", sh3e"); break;
3421 case EF_SH4: strcat (buf, ", sh4"); break;
3422 case EF_SH5: strcat (buf, ", sh5"); break;
3423 case EF_SH2E: strcat (buf, ", sh2e"); break;
3424 case EF_SH4A: strcat (buf, ", sh4a"); break;
3425 case EF_SH2A: strcat (buf, ", sh2a"); break;
3426 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3427 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3428 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3429 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3430 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3431 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3432 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3433 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3434 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3435 default: strcat (buf, _(", unknown ISA")); break;
3436 }
3437
3438 if (e_flags & EF_SH_PIC)
3439 strcat (buf, ", pic");
3440
3441 if (e_flags & EF_SH_FDPIC)
3442 strcat (buf, ", fdpic");
3443 break;
3444
3445 case EM_OR1K:
3446 if (e_flags & EF_OR1K_NODELAY)
3447 strcat (buf, ", no delay");
3448 break;
3449
3450 case EM_SPARCV9:
3451 if (e_flags & EF_SPARC_32PLUS)
3452 strcat (buf, ", v8+");
3453
3454 if (e_flags & EF_SPARC_SUN_US1)
3455 strcat (buf, ", ultrasparcI");
3456
3457 if (e_flags & EF_SPARC_SUN_US3)
3458 strcat (buf, ", ultrasparcIII");
3459
3460 if (e_flags & EF_SPARC_HAL_R1)
3461 strcat (buf, ", halr1");
3462
3463 if (e_flags & EF_SPARC_LEDATA)
3464 strcat (buf, ", ledata");
3465
3466 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3467 strcat (buf, ", tso");
3468
3469 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3470 strcat (buf, ", pso");
3471
3472 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3473 strcat (buf, ", rmo");
3474 break;
3475
3476 case EM_PARISC:
3477 switch (e_flags & EF_PARISC_ARCH)
3478 {
3479 case EFA_PARISC_1_0:
3480 strcpy (buf, ", PA-RISC 1.0");
3481 break;
3482 case EFA_PARISC_1_1:
3483 strcpy (buf, ", PA-RISC 1.1");
3484 break;
3485 case EFA_PARISC_2_0:
3486 strcpy (buf, ", PA-RISC 2.0");
3487 break;
3488 default:
3489 break;
3490 }
3491 if (e_flags & EF_PARISC_TRAPNIL)
3492 strcat (buf, ", trapnil");
3493 if (e_flags & EF_PARISC_EXT)
3494 strcat (buf, ", ext");
3495 if (e_flags & EF_PARISC_LSB)
3496 strcat (buf, ", lsb");
3497 if (e_flags & EF_PARISC_WIDE)
3498 strcat (buf, ", wide");
3499 if (e_flags & EF_PARISC_NO_KABP)
3500 strcat (buf, ", no kabp");
3501 if (e_flags & EF_PARISC_LAZYSWAP)
3502 strcat (buf, ", lazyswap");
3503 break;
3504
3505 case EM_PJ:
3506 case EM_PJ_OLD:
3507 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3508 strcat (buf, ", new calling convention");
3509
3510 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3511 strcat (buf, ", gnu calling convention");
3512 break;
3513
3514 case EM_IA_64:
3515 if ((e_flags & EF_IA_64_ABI64))
3516 strcat (buf, ", 64-bit");
3517 else
3518 strcat (buf, ", 32-bit");
3519 if ((e_flags & EF_IA_64_REDUCEDFP))
3520 strcat (buf, ", reduced fp model");
3521 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3522 strcat (buf, ", no function descriptors, constant gp");
3523 else if ((e_flags & EF_IA_64_CONS_GP))
3524 strcat (buf, ", constant gp");
3525 if ((e_flags & EF_IA_64_ABSOLUTE))
3526 strcat (buf, ", absolute");
3527 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3528 {
3529 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3530 strcat (buf, ", vms_linkages");
3531 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3532 {
3533 case EF_IA_64_VMS_COMCOD_SUCCESS:
3534 break;
3535 case EF_IA_64_VMS_COMCOD_WARNING:
3536 strcat (buf, ", warning");
3537 break;
3538 case EF_IA_64_VMS_COMCOD_ERROR:
3539 strcat (buf, ", error");
3540 break;
3541 case EF_IA_64_VMS_COMCOD_ABORT:
3542 strcat (buf, ", abort");
3543 break;
3544 default:
3545 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3546 e_flags & EF_IA_64_VMS_COMCOD);
3547 strcat (buf, ", <unknown>");
3548 }
3549 }
3550 break;
3551
3552 case EM_VAX:
3553 if ((e_flags & EF_VAX_NONPIC))
3554 strcat (buf, ", non-PIC");
3555 if ((e_flags & EF_VAX_DFLOAT))
3556 strcat (buf, ", D-Float");
3557 if ((e_flags & EF_VAX_GFLOAT))
3558 strcat (buf, ", G-Float");
3559 break;
3560
3561 case EM_VISIUM:
3562 if (e_flags & EF_VISIUM_ARCH_MCM)
3563 strcat (buf, ", mcm");
3564 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3565 strcat (buf, ", mcm24");
3566 if (e_flags & EF_VISIUM_ARCH_GR6)
3567 strcat (buf, ", gr6");
3568 break;
3569
3570 case EM_RL78:
3571 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3572 {
3573 case E_FLAG_RL78_ANY_CPU: break;
3574 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3575 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3576 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3577 }
3578 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3579 strcat (buf, ", 64-bit doubles");
3580 break;
3581
3582 case EM_RX:
3583 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3584 strcat (buf, ", 64-bit doubles");
3585 if (e_flags & E_FLAG_RX_DSP)
3586 strcat (buf, ", dsp");
3587 if (e_flags & E_FLAG_RX_PID)
3588 strcat (buf, ", pid");
3589 if (e_flags & E_FLAG_RX_ABI)
3590 strcat (buf, ", RX ABI");
3591 if (e_flags & E_FLAG_RX_SINSNS_SET)
3592 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3593 ? ", uses String instructions" : ", bans String instructions");
3594 if (e_flags & E_FLAG_RX_V2)
3595 strcat (buf, ", V2");
3596 break;
3597
3598 case EM_S390:
3599 if (e_flags & EF_S390_HIGH_GPRS)
3600 strcat (buf, ", highgprs");
3601 break;
3602
3603 case EM_TI_C6000:
3604 if ((e_flags & EF_C6000_REL))
3605 strcat (buf, ", relocatable module");
3606 break;
3607
3608 case EM_MSP430:
3609 strcat (buf, _(": architecture variant: "));
3610 switch (e_flags & EF_MSP430_MACH)
3611 {
3612 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3613 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3614 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3615 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3616 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3617 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3618 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3619 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3620 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3621 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3622 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3623 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3624 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3625 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3626 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3627 default:
3628 strcat (buf, _(": unknown")); break;
3629 }
3630
3631 if (e_flags & ~ EF_MSP430_MACH)
3632 strcat (buf, _(": unknown extra flag bits also present"));
3633 }
3634 }
3635
3636 return buf;
3637 }
3638
3639 static const char *
3640 get_osabi_name (unsigned int osabi)
3641 {
3642 static char buff[32];
3643
3644 switch (osabi)
3645 {
3646 case ELFOSABI_NONE: return "UNIX - System V";
3647 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3648 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3649 case ELFOSABI_GNU: return "UNIX - GNU";
3650 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3651 case ELFOSABI_AIX: return "UNIX - AIX";
3652 case ELFOSABI_IRIX: return "UNIX - IRIX";
3653 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3654 case ELFOSABI_TRU64: return "UNIX - TRU64";
3655 case ELFOSABI_MODESTO: return "Novell - Modesto";
3656 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3657 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3658 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3659 case ELFOSABI_AROS: return "AROS";
3660 case ELFOSABI_FENIXOS: return "FenixOS";
3661 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3662 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3663 default:
3664 if (osabi >= 64)
3665 switch (elf_header.e_machine)
3666 {
3667 case EM_ARM:
3668 switch (osabi)
3669 {
3670 case ELFOSABI_ARM: return "ARM";
3671 default:
3672 break;
3673 }
3674 break;
3675
3676 case EM_MSP430:
3677 case EM_MSP430_OLD:
3678 case EM_VISIUM:
3679 switch (osabi)
3680 {
3681 case ELFOSABI_STANDALONE: return _("Standalone App");
3682 default:
3683 break;
3684 }
3685 break;
3686
3687 case EM_TI_C6000:
3688 switch (osabi)
3689 {
3690 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3691 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3692 default:
3693 break;
3694 }
3695 break;
3696
3697 default:
3698 break;
3699 }
3700 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3701 return buff;
3702 }
3703 }
3704
3705 static const char *
3706 get_aarch64_segment_type (unsigned long type)
3707 {
3708 switch (type)
3709 {
3710 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3711 default: return NULL;
3712 }
3713 }
3714
3715 static const char *
3716 get_arm_segment_type (unsigned long type)
3717 {
3718 switch (type)
3719 {
3720 case PT_ARM_EXIDX: return "EXIDX";
3721 default: return NULL;
3722 }
3723 }
3724
3725 static const char *
3726 get_mips_segment_type (unsigned long type)
3727 {
3728 switch (type)
3729 {
3730 case PT_MIPS_REGINFO: return "REGINFO";
3731 case PT_MIPS_RTPROC: return "RTPROC";
3732 case PT_MIPS_OPTIONS: return "OPTIONS";
3733 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3734 default: return NULL;
3735 }
3736 }
3737
3738 static const char *
3739 get_parisc_segment_type (unsigned long type)
3740 {
3741 switch (type)
3742 {
3743 case PT_HP_TLS: return "HP_TLS";
3744 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3745 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3746 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3747 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3748 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3749 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3750 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3751 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3752 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3753 case PT_HP_PARALLEL: return "HP_PARALLEL";
3754 case PT_HP_FASTBIND: return "HP_FASTBIND";
3755 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3756 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3757 case PT_HP_STACK: return "HP_STACK";
3758 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3759 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3760 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3761 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3762 default: return NULL;
3763 }
3764 }
3765
3766 static const char *
3767 get_ia64_segment_type (unsigned long type)
3768 {
3769 switch (type)
3770 {
3771 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3772 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3773 case PT_HP_TLS: return "HP_TLS";
3774 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3775 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3776 case PT_IA_64_HP_STACK: return "HP_STACK";
3777 default: return NULL;
3778 }
3779 }
3780
3781 static const char *
3782 get_tic6x_segment_type (unsigned long type)
3783 {
3784 switch (type)
3785 {
3786 case PT_C6000_PHATTR: return "C6000_PHATTR";
3787 default: return NULL;
3788 }
3789 }
3790
3791 static const char *
3792 get_solaris_segment_type (unsigned long type)
3793 {
3794 switch (type)
3795 {
3796 case 0x6464e550: return "PT_SUNW_UNWIND";
3797 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3798 case 0x6ffffff7: return "PT_LOSUNW";
3799 case 0x6ffffffa: return "PT_SUNWBSS";
3800 case 0x6ffffffb: return "PT_SUNWSTACK";
3801 case 0x6ffffffc: return "PT_SUNWDTRACE";
3802 case 0x6ffffffd: return "PT_SUNWCAP";
3803 case 0x6fffffff: return "PT_HISUNW";
3804 default: return NULL;
3805 }
3806 }
3807
3808 static const char *
3809 get_segment_type (unsigned long p_type)
3810 {
3811 static char buff[32];
3812
3813 switch (p_type)
3814 {
3815 case PT_NULL: return "NULL";
3816 case PT_LOAD: return "LOAD";
3817 case PT_DYNAMIC: return "DYNAMIC";
3818 case PT_INTERP: return "INTERP";
3819 case PT_NOTE: return "NOTE";
3820 case PT_SHLIB: return "SHLIB";
3821 case PT_PHDR: return "PHDR";
3822 case PT_TLS: return "TLS";
3823 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3824 case PT_GNU_STACK: return "GNU_STACK";
3825 case PT_GNU_RELRO: return "GNU_RELRO";
3826
3827 default:
3828 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
3829 {
3830 sprintf (buff, "GNU_MBIND+%#lx",
3831 p_type - PT_GNU_MBIND_LO);
3832 }
3833 else if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3834 {
3835 const char * result;
3836
3837 switch (elf_header.e_machine)
3838 {
3839 case EM_AARCH64:
3840 result = get_aarch64_segment_type (p_type);
3841 break;
3842 case EM_ARM:
3843 result = get_arm_segment_type (p_type);
3844 break;
3845 case EM_MIPS:
3846 case EM_MIPS_RS3_LE:
3847 result = get_mips_segment_type (p_type);
3848 break;
3849 case EM_PARISC:
3850 result = get_parisc_segment_type (p_type);
3851 break;
3852 case EM_IA_64:
3853 result = get_ia64_segment_type (p_type);
3854 break;
3855 case EM_TI_C6000:
3856 result = get_tic6x_segment_type (p_type);
3857 break;
3858 default:
3859 result = NULL;
3860 break;
3861 }
3862
3863 if (result != NULL)
3864 return result;
3865
3866 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3867 }
3868 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3869 {
3870 const char * result;
3871
3872 switch (elf_header.e_machine)
3873 {
3874 case EM_PARISC:
3875 result = get_parisc_segment_type (p_type);
3876 break;
3877 case EM_IA_64:
3878 result = get_ia64_segment_type (p_type);
3879 break;
3880 default:
3881 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3882 result = get_solaris_segment_type (p_type);
3883 else
3884 result = NULL;
3885 break;
3886 }
3887
3888 if (result != NULL)
3889 return result;
3890
3891 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3892 }
3893 else
3894 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3895
3896 return buff;
3897 }
3898 }
3899
3900 static const char *
3901 get_mips_section_type_name (unsigned int sh_type)
3902 {
3903 switch (sh_type)
3904 {
3905 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3906 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3907 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3908 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3909 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3910 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3911 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3912 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3913 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3914 case SHT_MIPS_RELD: return "MIPS_RELD";
3915 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3916 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3917 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3918 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3919 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3920 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3921 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3922 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3923 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3924 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3925 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3926 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3927 case SHT_MIPS_LINE: return "MIPS_LINE";
3928 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3929 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3930 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3931 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3932 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3933 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3934 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3935 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3936 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3937 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3938 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3939 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3940 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3941 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3942 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3943 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3944 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3945 default:
3946 break;
3947 }
3948 return NULL;
3949 }
3950
3951 static const char *
3952 get_parisc_section_type_name (unsigned int sh_type)
3953 {
3954 switch (sh_type)
3955 {
3956 case SHT_PARISC_EXT: return "PARISC_EXT";
3957 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3958 case SHT_PARISC_DOC: return "PARISC_DOC";
3959 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3960 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3961 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3962 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3963 default: return NULL;
3964 }
3965 }
3966
3967 static const char *
3968 get_ia64_section_type_name (unsigned int sh_type)
3969 {
3970 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3971 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3972 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3973
3974 switch (sh_type)
3975 {
3976 case SHT_IA_64_EXT: return "IA_64_EXT";
3977 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3978 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3979 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3980 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3981 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3982 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3983 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3984 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3985 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3986 default:
3987 break;
3988 }
3989 return NULL;
3990 }
3991
3992 static const char *
3993 get_x86_64_section_type_name (unsigned int sh_type)
3994 {
3995 switch (sh_type)
3996 {
3997 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3998 default: return NULL;
3999 }
4000 }
4001
4002 static const char *
4003 get_aarch64_section_type_name (unsigned int sh_type)
4004 {
4005 switch (sh_type)
4006 {
4007 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4008 default: return NULL;
4009 }
4010 }
4011
4012 static const char *
4013 get_arm_section_type_name (unsigned int sh_type)
4014 {
4015 switch (sh_type)
4016 {
4017 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4018 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4019 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4020 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4021 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4022 default: return NULL;
4023 }
4024 }
4025
4026 static const char *
4027 get_tic6x_section_type_name (unsigned int sh_type)
4028 {
4029 switch (sh_type)
4030 {
4031 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4032 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4033 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4034 case SHT_TI_ICODE: return "TI_ICODE";
4035 case SHT_TI_XREF: return "TI_XREF";
4036 case SHT_TI_HANDLER: return "TI_HANDLER";
4037 case SHT_TI_INITINFO: return "TI_INITINFO";
4038 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4039 default: return NULL;
4040 }
4041 }
4042
4043 static const char *
4044 get_msp430x_section_type_name (unsigned int sh_type)
4045 {
4046 switch (sh_type)
4047 {
4048 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4049 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4050 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4051 default: return NULL;
4052 }
4053 }
4054
4055 static const char *
4056 get_v850_section_type_name (unsigned int sh_type)
4057 {
4058 switch (sh_type)
4059 {
4060 case SHT_V850_SCOMMON: return "V850 Small Common";
4061 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4062 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4063 case SHT_RENESAS_IOP: return "RENESAS IOP";
4064 case SHT_RENESAS_INFO: return "RENESAS INFO";
4065 default: return NULL;
4066 }
4067 }
4068
4069 static const char *
4070 get_section_type_name (unsigned int sh_type)
4071 {
4072 static char buff[32];
4073 const char * result;
4074
4075 switch (sh_type)
4076 {
4077 case SHT_NULL: return "NULL";
4078 case SHT_PROGBITS: return "PROGBITS";
4079 case SHT_SYMTAB: return "SYMTAB";
4080 case SHT_STRTAB: return "STRTAB";
4081 case SHT_RELA: return "RELA";
4082 case SHT_HASH: return "HASH";
4083 case SHT_DYNAMIC: return "DYNAMIC";
4084 case SHT_NOTE: return "NOTE";
4085 case SHT_NOBITS: return "NOBITS";
4086 case SHT_REL: return "REL";
4087 case SHT_SHLIB: return "SHLIB";
4088 case SHT_DYNSYM: return "DYNSYM";
4089 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4090 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4091 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4092 case SHT_GNU_HASH: return "GNU_HASH";
4093 case SHT_GROUP: return "GROUP";
4094 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4095 case SHT_GNU_verdef: return "VERDEF";
4096 case SHT_GNU_verneed: return "VERNEED";
4097 case SHT_GNU_versym: return "VERSYM";
4098 case 0x6ffffff0: return "VERSYM";
4099 case 0x6ffffffc: return "VERDEF";
4100 case 0x7ffffffd: return "AUXILIARY";
4101 case 0x7fffffff: return "FILTER";
4102 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4103
4104 default:
4105 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4106 {
4107 switch (elf_header.e_machine)
4108 {
4109 case EM_MIPS:
4110 case EM_MIPS_RS3_LE:
4111 result = get_mips_section_type_name (sh_type);
4112 break;
4113 case EM_PARISC:
4114 result = get_parisc_section_type_name (sh_type);
4115 break;
4116 case EM_IA_64:
4117 result = get_ia64_section_type_name (sh_type);
4118 break;
4119 case EM_X86_64:
4120 case EM_L1OM:
4121 case EM_K1OM:
4122 result = get_x86_64_section_type_name (sh_type);
4123 break;
4124 case EM_AARCH64:
4125 result = get_aarch64_section_type_name (sh_type);
4126 break;
4127 case EM_ARM:
4128 result = get_arm_section_type_name (sh_type);
4129 break;
4130 case EM_TI_C6000:
4131 result = get_tic6x_section_type_name (sh_type);
4132 break;
4133 case EM_MSP430:
4134 result = get_msp430x_section_type_name (sh_type);
4135 break;
4136 case EM_V800:
4137 case EM_V850:
4138 case EM_CYGNUS_V850:
4139 result = get_v850_section_type_name (sh_type);
4140 break;
4141 default:
4142 result = NULL;
4143 break;
4144 }
4145
4146 if (result != NULL)
4147 return result;
4148
4149 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4150 }
4151 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4152 {
4153 switch (elf_header.e_machine)
4154 {
4155 case EM_IA_64:
4156 result = get_ia64_section_type_name (sh_type);
4157 break;
4158 default:
4159 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4160 result = get_solaris_section_type (sh_type);
4161 else
4162 {
4163 switch (sh_type)
4164 {
4165 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4166 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4167 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4168 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4169 default:
4170 result = NULL;
4171 break;
4172 }
4173 }
4174 break;
4175 }
4176
4177 if (result != NULL)
4178 return result;
4179
4180 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4181 }
4182 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4183 {
4184 switch (elf_header.e_machine)
4185 {
4186 case EM_V800:
4187 case EM_V850:
4188 case EM_CYGNUS_V850:
4189 result = get_v850_section_type_name (sh_type);
4190 break;
4191 default:
4192 result = NULL;
4193 break;
4194 }
4195
4196 if (result != NULL)
4197 return result;
4198
4199 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4200 }
4201 else
4202 /* This message is probably going to be displayed in a 15
4203 character wide field, so put the hex value first. */
4204 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4205
4206 return buff;
4207 }
4208 }
4209
4210 #define OPTION_DEBUG_DUMP 512
4211 #define OPTION_DYN_SYMS 513
4212 #define OPTION_DWARF_DEPTH 514
4213 #define OPTION_DWARF_START 515
4214 #define OPTION_DWARF_CHECK 516
4215
4216 static struct option options[] =
4217 {
4218 {"all", no_argument, 0, 'a'},
4219 {"file-header", no_argument, 0, 'h'},
4220 {"program-headers", no_argument, 0, 'l'},
4221 {"headers", no_argument, 0, 'e'},
4222 {"histogram", no_argument, 0, 'I'},
4223 {"segments", no_argument, 0, 'l'},
4224 {"sections", no_argument, 0, 'S'},
4225 {"section-headers", no_argument, 0, 'S'},
4226 {"section-groups", no_argument, 0, 'g'},
4227 {"section-details", no_argument, 0, 't'},
4228 {"full-section-name",no_argument, 0, 'N'},
4229 {"symbols", no_argument, 0, 's'},
4230 {"syms", no_argument, 0, 's'},
4231 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4232 {"relocs", no_argument, 0, 'r'},
4233 {"notes", no_argument, 0, 'n'},
4234 {"dynamic", no_argument, 0, 'd'},
4235 {"arch-specific", no_argument, 0, 'A'},
4236 {"version-info", no_argument, 0, 'V'},
4237 {"use-dynamic", no_argument, 0, 'D'},
4238 {"unwind", no_argument, 0, 'u'},
4239 {"archive-index", no_argument, 0, 'c'},
4240 {"hex-dump", required_argument, 0, 'x'},
4241 {"relocated-dump", required_argument, 0, 'R'},
4242 {"string-dump", required_argument, 0, 'p'},
4243 {"decompress", no_argument, 0, 'z'},
4244 #ifdef SUPPORT_DISASSEMBLY
4245 {"instruction-dump", required_argument, 0, 'i'},
4246 #endif
4247 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4248
4249 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4250 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4251 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4252
4253 {"version", no_argument, 0, 'v'},
4254 {"wide", no_argument, 0, 'W'},
4255 {"help", no_argument, 0, 'H'},
4256 {0, no_argument, 0, 0}
4257 };
4258
4259 static void
4260 usage (FILE * stream)
4261 {
4262 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4263 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4264 fprintf (stream, _(" Options are:\n\
4265 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4266 -h --file-header Display the ELF file header\n\
4267 -l --program-headers Display the program headers\n\
4268 --segments An alias for --program-headers\n\
4269 -S --section-headers Display the sections' header\n\
4270 --sections An alias for --section-headers\n\
4271 -g --section-groups Display the section groups\n\
4272 -t --section-details Display the section details\n\
4273 -e --headers Equivalent to: -h -l -S\n\
4274 -s --syms Display the symbol table\n\
4275 --symbols An alias for --syms\n\
4276 --dyn-syms Display the dynamic symbol table\n\
4277 -n --notes Display the core notes (if present)\n\
4278 -r --relocs Display the relocations (if present)\n\
4279 -u --unwind Display the unwind info (if present)\n\
4280 -d --dynamic Display the dynamic section (if present)\n\
4281 -V --version-info Display the version sections (if present)\n\
4282 -A --arch-specific Display architecture specific information (if any)\n\
4283 -c --archive-index Display the symbol/file index in an archive\n\
4284 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4285 -x --hex-dump=<number|name>\n\
4286 Dump the contents of section <number|name> as bytes\n\
4287 -p --string-dump=<number|name>\n\
4288 Dump the contents of section <number|name> as strings\n\
4289 -R --relocated-dump=<number|name>\n\
4290 Dump the contents of section <number|name> as relocated bytes\n\
4291 -z --decompress Decompress section before dumping it\n\
4292 -w[lLiaprmfFsoRt] or\n\
4293 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4294 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4295 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4296 =addr,=cu_index]\n\
4297 Display the contents of DWARF2 debug sections\n"));
4298 fprintf (stream, _("\
4299 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4300 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4301 or deeper\n"));
4302 #ifdef SUPPORT_DISASSEMBLY
4303 fprintf (stream, _("\
4304 -i --instruction-dump=<number|name>\n\
4305 Disassemble the contents of section <number|name>\n"));
4306 #endif
4307 fprintf (stream, _("\
4308 -I --histogram Display histogram of bucket list lengths\n\
4309 -W --wide Allow output width to exceed 80 characters\n\
4310 @<file> Read options from <file>\n\
4311 -H --help Display this information\n\
4312 -v --version Display the version number of readelf\n"));
4313
4314 if (REPORT_BUGS_TO[0] && stream == stdout)
4315 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4316
4317 exit (stream == stdout ? 0 : 1);
4318 }
4319
4320 /* Record the fact that the user wants the contents of section number
4321 SECTION to be displayed using the method(s) encoded as flags bits
4322 in TYPE. Note, TYPE can be zero if we are creating the array for
4323 the first time. */
4324
4325 static void
4326 request_dump_bynumber (unsigned int section, dump_type type)
4327 {
4328 if (section >= num_dump_sects)
4329 {
4330 dump_type * new_dump_sects;
4331
4332 new_dump_sects = (dump_type *) calloc (section + 1,
4333 sizeof (* dump_sects));
4334
4335 if (new_dump_sects == NULL)
4336 error (_("Out of memory allocating dump request table.\n"));
4337 else
4338 {
4339 if (dump_sects)
4340 {
4341 /* Copy current flag settings. */
4342 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4343
4344 free (dump_sects);
4345 }
4346
4347 dump_sects = new_dump_sects;
4348 num_dump_sects = section + 1;
4349 }
4350 }
4351
4352 if (dump_sects)
4353 dump_sects[section] |= type;
4354
4355 return;
4356 }
4357
4358 /* Request a dump by section name. */
4359
4360 static void
4361 request_dump_byname (const char * section, dump_type type)
4362 {
4363 struct dump_list_entry * new_request;
4364
4365 new_request = (struct dump_list_entry *)
4366 malloc (sizeof (struct dump_list_entry));
4367 if (!new_request)
4368 error (_("Out of memory allocating dump request table.\n"));
4369
4370 new_request->name = strdup (section);
4371 if (!new_request->name)
4372 error (_("Out of memory allocating dump request table.\n"));
4373
4374 new_request->type = type;
4375
4376 new_request->next = dump_sects_byname;
4377 dump_sects_byname = new_request;
4378 }
4379
4380 static inline void
4381 request_dump (dump_type type)
4382 {
4383 int section;
4384 char * cp;
4385
4386 do_dump++;
4387 section = strtoul (optarg, & cp, 0);
4388
4389 if (! *cp && section >= 0)
4390 request_dump_bynumber (section, type);
4391 else
4392 request_dump_byname (optarg, type);
4393 }
4394
4395
4396 static void
4397 parse_args (int argc, char ** argv)
4398 {
4399 int c;
4400
4401 if (argc < 2)
4402 usage (stderr);
4403
4404 while ((c = getopt_long
4405 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4406 {
4407 switch (c)
4408 {
4409 case 0:
4410 /* Long options. */
4411 break;
4412 case 'H':
4413 usage (stdout);
4414 break;
4415
4416 case 'a':
4417 do_syms = TRUE;
4418 do_reloc = TRUE;
4419 do_unwind = TRUE;
4420 do_dynamic = TRUE;
4421 do_header = TRUE;
4422 do_sections = TRUE;
4423 do_section_groups = TRUE;
4424 do_segments = TRUE;
4425 do_version = TRUE;
4426 do_histogram = TRUE;
4427 do_arch = TRUE;
4428 do_notes = TRUE;
4429 break;
4430 case 'g':
4431 do_section_groups = TRUE;
4432 break;
4433 case 't':
4434 case 'N':
4435 do_sections = TRUE;
4436 do_section_details = TRUE;
4437 break;
4438 case 'e':
4439 do_header = TRUE;
4440 do_sections = TRUE;
4441 do_segments = TRUE;
4442 break;
4443 case 'A':
4444 do_arch = TRUE;
4445 break;
4446 case 'D':
4447 do_using_dynamic = TRUE;
4448 break;
4449 case 'r':
4450 do_reloc = TRUE;
4451 break;
4452 case 'u':
4453 do_unwind = TRUE;
4454 break;
4455 case 'h':
4456 do_header = TRUE;
4457 break;
4458 case 'l':
4459 do_segments = TRUE;
4460 break;
4461 case 's':
4462 do_syms = TRUE;
4463 break;
4464 case 'S':
4465 do_sections = TRUE;
4466 break;
4467 case 'd':
4468 do_dynamic = TRUE;
4469 break;
4470 case 'I':
4471 do_histogram = TRUE;
4472 break;
4473 case 'n':
4474 do_notes = TRUE;
4475 break;
4476 case 'c':
4477 do_archive_index = TRUE;
4478 break;
4479 case 'x':
4480 request_dump (HEX_DUMP);
4481 break;
4482 case 'p':
4483 request_dump (STRING_DUMP);
4484 break;
4485 case 'R':
4486 request_dump (RELOC_DUMP);
4487 break;
4488 case 'z':
4489 decompress_dumps = TRUE;
4490 break;
4491 case 'w':
4492 do_dump = TRUE;
4493 if (optarg == 0)
4494 {
4495 do_debugging = TRUE;
4496 dwarf_select_sections_all ();
4497 }
4498 else
4499 {
4500 do_debugging = FALSE;
4501 dwarf_select_sections_by_letters (optarg);
4502 }
4503 break;
4504 case OPTION_DEBUG_DUMP:
4505 do_dump = TRUE;
4506 if (optarg == 0)
4507 do_debugging = TRUE;
4508 else
4509 {
4510 do_debugging = FALSE;
4511 dwarf_select_sections_by_names (optarg);
4512 }
4513 break;
4514 case OPTION_DWARF_DEPTH:
4515 {
4516 char *cp;
4517
4518 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4519 }
4520 break;
4521 case OPTION_DWARF_START:
4522 {
4523 char *cp;
4524
4525 dwarf_start_die = strtoul (optarg, & cp, 0);
4526 }
4527 break;
4528 case OPTION_DWARF_CHECK:
4529 dwarf_check = TRUE;
4530 break;
4531 case OPTION_DYN_SYMS:
4532 do_dyn_syms = TRUE;
4533 break;
4534 #ifdef SUPPORT_DISASSEMBLY
4535 case 'i':
4536 request_dump (DISASS_DUMP);
4537 break;
4538 #endif
4539 case 'v':
4540 print_version (program_name);
4541 break;
4542 case 'V':
4543 do_version = TRUE;
4544 break;
4545 case 'W':
4546 do_wide = TRUE;
4547 break;
4548 default:
4549 /* xgettext:c-format */
4550 error (_("Invalid option '-%c'\n"), c);
4551 /* Fall through. */
4552 case '?':
4553 usage (stderr);
4554 }
4555 }
4556
4557 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4558 && !do_segments && !do_header && !do_dump && !do_version
4559 && !do_histogram && !do_debugging && !do_arch && !do_notes
4560 && !do_section_groups && !do_archive_index
4561 && !do_dyn_syms)
4562 usage (stderr);
4563 }
4564
4565 static const char *
4566 get_elf_class (unsigned int elf_class)
4567 {
4568 static char buff[32];
4569
4570 switch (elf_class)
4571 {
4572 case ELFCLASSNONE: return _("none");
4573 case ELFCLASS32: return "ELF32";
4574 case ELFCLASS64: return "ELF64";
4575 default:
4576 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4577 return buff;
4578 }
4579 }
4580
4581 static const char *
4582 get_data_encoding (unsigned int encoding)
4583 {
4584 static char buff[32];
4585
4586 switch (encoding)
4587 {
4588 case ELFDATANONE: return _("none");
4589 case ELFDATA2LSB: return _("2's complement, little endian");
4590 case ELFDATA2MSB: return _("2's complement, big endian");
4591 default:
4592 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4593 return buff;
4594 }
4595 }
4596
4597 /* Decode the data held in 'elf_header'. */
4598
4599 static bfd_boolean
4600 process_file_header (void)
4601 {
4602 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4603 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4604 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4605 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4606 {
4607 error
4608 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4609 return FALSE;
4610 }
4611
4612 init_dwarf_regnames (elf_header.e_machine);
4613
4614 if (do_header)
4615 {
4616 unsigned i;
4617
4618 printf (_("ELF Header:\n"));
4619 printf (_(" Magic: "));
4620 for (i = 0; i < EI_NIDENT; i++)
4621 printf ("%2.2x ", elf_header.e_ident[i]);
4622 printf ("\n");
4623 printf (_(" Class: %s\n"),
4624 get_elf_class (elf_header.e_ident[EI_CLASS]));
4625 printf (_(" Data: %s\n"),
4626 get_data_encoding (elf_header.e_ident[EI_DATA]));
4627 printf (_(" Version: %d %s\n"),
4628 elf_header.e_ident[EI_VERSION],
4629 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4630 ? "(current)"
4631 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4632 ? _("<unknown: %lx>")
4633 : "")));
4634 printf (_(" OS/ABI: %s\n"),
4635 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4636 printf (_(" ABI Version: %d\n"),
4637 elf_header.e_ident[EI_ABIVERSION]);
4638 printf (_(" Type: %s\n"),
4639 get_file_type (elf_header.e_type));
4640 printf (_(" Machine: %s\n"),
4641 get_machine_name (elf_header.e_machine));
4642 printf (_(" Version: 0x%lx\n"),
4643 (unsigned long) elf_header.e_version);
4644
4645 printf (_(" Entry point address: "));
4646 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4647 printf (_("\n Start of program headers: "));
4648 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4649 printf (_(" (bytes into file)\n Start of section headers: "));
4650 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4651 printf (_(" (bytes into file)\n"));
4652
4653 printf (_(" Flags: 0x%lx%s\n"),
4654 (unsigned long) elf_header.e_flags,
4655 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4656 printf (_(" Size of this header: %ld (bytes)\n"),
4657 (long) elf_header.e_ehsize);
4658 printf (_(" Size of program headers: %ld (bytes)\n"),
4659 (long) elf_header.e_phentsize);
4660 printf (_(" Number of program headers: %ld"),
4661 (long) elf_header.e_phnum);
4662 if (section_headers != NULL
4663 && elf_header.e_phnum == PN_XNUM
4664 && section_headers[0].sh_info != 0)
4665 printf (" (%ld)", (long) section_headers[0].sh_info);
4666 putc ('\n', stdout);
4667 printf (_(" Size of section headers: %ld (bytes)\n"),
4668 (long) elf_header.e_shentsize);
4669 printf (_(" Number of section headers: %ld"),
4670 (long) elf_header.e_shnum);
4671 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4672 printf (" (%ld)", (long) section_headers[0].sh_size);
4673 putc ('\n', stdout);
4674 printf (_(" Section header string table index: %ld"),
4675 (long) elf_header.e_shstrndx);
4676 if (section_headers != NULL
4677 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4678 printf (" (%u)", section_headers[0].sh_link);
4679 else if (elf_header.e_shstrndx != SHN_UNDEF
4680 && elf_header.e_shstrndx >= elf_header.e_shnum)
4681 printf (_(" <corrupt: out of range>"));
4682 putc ('\n', stdout);
4683 }
4684
4685 if (section_headers != NULL)
4686 {
4687 if (elf_header.e_phnum == PN_XNUM
4688 && section_headers[0].sh_info != 0)
4689 elf_header.e_phnum = section_headers[0].sh_info;
4690 if (elf_header.e_shnum == SHN_UNDEF)
4691 elf_header.e_shnum = section_headers[0].sh_size;
4692 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4693 elf_header.e_shstrndx = section_headers[0].sh_link;
4694 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4695 elf_header.e_shstrndx = SHN_UNDEF;
4696 free (section_headers);
4697 section_headers = NULL;
4698 }
4699
4700 return TRUE;
4701 }
4702
4703 static bfd_boolean
4704 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4705 {
4706 Elf32_External_Phdr * phdrs;
4707 Elf32_External_Phdr * external;
4708 Elf_Internal_Phdr * internal;
4709 unsigned int i;
4710 unsigned int size = elf_header.e_phentsize;
4711 unsigned int num = elf_header.e_phnum;
4712
4713 /* PR binutils/17531: Cope with unexpected section header sizes. */
4714 if (size == 0 || num == 0)
4715 return FALSE;
4716 if (size < sizeof * phdrs)
4717 {
4718 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4719 return FALSE;
4720 }
4721 if (size > sizeof * phdrs)
4722 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4723
4724 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4725 size, num, _("program headers"));
4726 if (phdrs == NULL)
4727 return FALSE;
4728
4729 for (i = 0, internal = pheaders, external = phdrs;
4730 i < elf_header.e_phnum;
4731 i++, internal++, external++)
4732 {
4733 internal->p_type = BYTE_GET (external->p_type);
4734 internal->p_offset = BYTE_GET (external->p_offset);
4735 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4736 internal->p_paddr = BYTE_GET (external->p_paddr);
4737 internal->p_filesz = BYTE_GET (external->p_filesz);
4738 internal->p_memsz = BYTE_GET (external->p_memsz);
4739 internal->p_flags = BYTE_GET (external->p_flags);
4740 internal->p_align = BYTE_GET (external->p_align);
4741 }
4742
4743 free (phdrs);
4744 return TRUE;
4745 }
4746
4747 static bfd_boolean
4748 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4749 {
4750 Elf64_External_Phdr * phdrs;
4751 Elf64_External_Phdr * external;
4752 Elf_Internal_Phdr * internal;
4753 unsigned int i;
4754 unsigned int size = elf_header.e_phentsize;
4755 unsigned int num = elf_header.e_phnum;
4756
4757 /* PR binutils/17531: Cope with unexpected section header sizes. */
4758 if (size == 0 || num == 0)
4759 return FALSE;
4760 if (size < sizeof * phdrs)
4761 {
4762 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4763 return FALSE;
4764 }
4765 if (size > sizeof * phdrs)
4766 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4767
4768 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4769 size, num, _("program headers"));
4770 if (!phdrs)
4771 return FALSE;
4772
4773 for (i = 0, internal = pheaders, external = phdrs;
4774 i < elf_header.e_phnum;
4775 i++, internal++, external++)
4776 {
4777 internal->p_type = BYTE_GET (external->p_type);
4778 internal->p_flags = BYTE_GET (external->p_flags);
4779 internal->p_offset = BYTE_GET (external->p_offset);
4780 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4781 internal->p_paddr = BYTE_GET (external->p_paddr);
4782 internal->p_filesz = BYTE_GET (external->p_filesz);
4783 internal->p_memsz = BYTE_GET (external->p_memsz);
4784 internal->p_align = BYTE_GET (external->p_align);
4785 }
4786
4787 free (phdrs);
4788 return TRUE;
4789 }
4790
4791 /* Returns TRUE if the program headers were read into `program_headers'. */
4792
4793 static bfd_boolean
4794 get_program_headers (FILE * file)
4795 {
4796 Elf_Internal_Phdr * phdrs;
4797
4798 /* Check cache of prior read. */
4799 if (program_headers != NULL)
4800 return TRUE;
4801
4802 /* Be kind to memory checkers by looking for
4803 e_phnum values which we know must be invalid. */
4804 if (elf_header.e_phnum
4805 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
4806 >= current_file_size)
4807 {
4808 error (_("Too many program headers - %#x - the file is not that big\n"),
4809 elf_header.e_phnum);
4810 return FALSE;
4811 }
4812
4813 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4814 sizeof (Elf_Internal_Phdr));
4815 if (phdrs == NULL)
4816 {
4817 error (_("Out of memory reading %u program headers\n"),
4818 elf_header.e_phnum);
4819 return FALSE;
4820 }
4821
4822 if (is_32bit_elf
4823 ? get_32bit_program_headers (file, phdrs)
4824 : get_64bit_program_headers (file, phdrs))
4825 {
4826 program_headers = phdrs;
4827 return TRUE;
4828 }
4829
4830 free (phdrs);
4831 return FALSE;
4832 }
4833
4834 /* Returns TRUE if the program headers were loaded. */
4835
4836 static bfd_boolean
4837 process_program_headers (FILE * file)
4838 {
4839 Elf_Internal_Phdr * segment;
4840 unsigned int i;
4841 Elf_Internal_Phdr * previous_load = NULL;
4842
4843 if (elf_header.e_phnum == 0)
4844 {
4845 /* PR binutils/12467. */
4846 if (elf_header.e_phoff != 0)
4847 {
4848 warn (_("possibly corrupt ELF header - it has a non-zero program"
4849 " header offset, but no program headers\n"));
4850 return FALSE;
4851 }
4852 else if (do_segments)
4853 printf (_("\nThere are no program headers in this file.\n"));
4854 return TRUE;
4855 }
4856
4857 if (do_segments && !do_header)
4858 {
4859 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4860 printf (_("Entry point "));
4861 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4862 printf (_("\nThere are %d program headers, starting at offset "),
4863 elf_header.e_phnum);
4864 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4865 printf ("\n");
4866 }
4867
4868 if (! get_program_headers (file))
4869 return TRUE;
4870
4871 if (do_segments)
4872 {
4873 if (elf_header.e_phnum > 1)
4874 printf (_("\nProgram Headers:\n"));
4875 else
4876 printf (_("\nProgram Headers:\n"));
4877
4878 if (is_32bit_elf)
4879 printf
4880 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4881 else if (do_wide)
4882 printf
4883 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4884 else
4885 {
4886 printf
4887 (_(" Type Offset VirtAddr PhysAddr\n"));
4888 printf
4889 (_(" FileSiz MemSiz Flags Align\n"));
4890 }
4891 }
4892
4893 dynamic_addr = 0;
4894 dynamic_size = 0;
4895
4896 for (i = 0, segment = program_headers;
4897 i < elf_header.e_phnum;
4898 i++, segment++)
4899 {
4900 if (do_segments)
4901 {
4902 printf (" %-14.14s ", get_segment_type (segment->p_type));
4903
4904 if (is_32bit_elf)
4905 {
4906 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4907 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4908 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4909 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4910 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4911 printf ("%c%c%c ",
4912 (segment->p_flags & PF_R ? 'R' : ' '),
4913 (segment->p_flags & PF_W ? 'W' : ' '),
4914 (segment->p_flags & PF_X ? 'E' : ' '));
4915 printf ("%#lx", (unsigned long) segment->p_align);
4916 }
4917 else if (do_wide)
4918 {
4919 if ((unsigned long) segment->p_offset == segment->p_offset)
4920 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4921 else
4922 {
4923 print_vma (segment->p_offset, FULL_HEX);
4924 putchar (' ');
4925 }
4926
4927 print_vma (segment->p_vaddr, FULL_HEX);
4928 putchar (' ');
4929 print_vma (segment->p_paddr, FULL_HEX);
4930 putchar (' ');
4931
4932 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4933 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4934 else
4935 {
4936 print_vma (segment->p_filesz, FULL_HEX);
4937 putchar (' ');
4938 }
4939
4940 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4941 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4942 else
4943 {
4944 print_vma (segment->p_memsz, FULL_HEX);
4945 }
4946
4947 printf (" %c%c%c ",
4948 (segment->p_flags & PF_R ? 'R' : ' '),
4949 (segment->p_flags & PF_W ? 'W' : ' '),
4950 (segment->p_flags & PF_X ? 'E' : ' '));
4951
4952 if ((unsigned long) segment->p_align == segment->p_align)
4953 printf ("%#lx", (unsigned long) segment->p_align);
4954 else
4955 {
4956 print_vma (segment->p_align, PREFIX_HEX);
4957 }
4958 }
4959 else
4960 {
4961 print_vma (segment->p_offset, FULL_HEX);
4962 putchar (' ');
4963 print_vma (segment->p_vaddr, FULL_HEX);
4964 putchar (' ');
4965 print_vma (segment->p_paddr, FULL_HEX);
4966 printf ("\n ");
4967 print_vma (segment->p_filesz, FULL_HEX);
4968 putchar (' ');
4969 print_vma (segment->p_memsz, FULL_HEX);
4970 printf (" %c%c%c ",
4971 (segment->p_flags & PF_R ? 'R' : ' '),
4972 (segment->p_flags & PF_W ? 'W' : ' '),
4973 (segment->p_flags & PF_X ? 'E' : ' '));
4974 print_vma (segment->p_align, PREFIX_HEX);
4975 }
4976
4977 putc ('\n', stdout);
4978 }
4979
4980 switch (segment->p_type)
4981 {
4982 case PT_LOAD:
4983 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4984 required by the ELF standard, several programs, including the Linux
4985 kernel, make use of non-ordered segments. */
4986 if (previous_load
4987 && previous_load->p_vaddr > segment->p_vaddr)
4988 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4989 #endif
4990 if (segment->p_memsz < segment->p_filesz)
4991 error (_("the segment's file size is larger than its memory size\n"));
4992 previous_load = segment;
4993 break;
4994
4995 case PT_PHDR:
4996 /* PR 20815 - Verify that the program header is loaded into memory. */
4997 if (i > 0 && previous_load != NULL)
4998 error (_("the PHDR segment must occur before any LOAD segment\n"));
4999 if (elf_header.e_machine != EM_PARISC)
5000 {
5001 unsigned int j;
5002
5003 for (j = 1; j < elf_header.e_phnum; j++)
5004 if (program_headers[j].p_vaddr <= segment->p_vaddr
5005 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
5006 >= (segment->p_vaddr + segment->p_filesz))
5007 break;
5008 if (j == elf_header.e_phnum)
5009 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5010 }
5011 break;
5012
5013 case PT_DYNAMIC:
5014 if (dynamic_addr)
5015 error (_("more than one dynamic segment\n"));
5016
5017 /* By default, assume that the .dynamic section is the first
5018 section in the DYNAMIC segment. */
5019 dynamic_addr = segment->p_offset;
5020 dynamic_size = segment->p_filesz;
5021
5022 /* Try to locate the .dynamic section. If there is
5023 a section header table, we can easily locate it. */
5024 if (section_headers != NULL)
5025 {
5026 Elf_Internal_Shdr * sec;
5027
5028 sec = find_section (".dynamic");
5029 if (sec == NULL || sec->sh_size == 0)
5030 {
5031 /* A corresponding .dynamic section is expected, but on
5032 IA-64/OpenVMS it is OK for it to be missing. */
5033 if (!is_ia64_vms ())
5034 error (_("no .dynamic section in the dynamic segment\n"));
5035 break;
5036 }
5037
5038 if (sec->sh_type == SHT_NOBITS)
5039 {
5040 dynamic_size = 0;
5041 break;
5042 }
5043
5044 dynamic_addr = sec->sh_offset;
5045 dynamic_size = sec->sh_size;
5046
5047 if (dynamic_addr < segment->p_offset
5048 || dynamic_addr > segment->p_offset + segment->p_filesz)
5049 warn (_("the .dynamic section is not contained"
5050 " within the dynamic segment\n"));
5051 else if (dynamic_addr > segment->p_offset)
5052 warn (_("the .dynamic section is not the first section"
5053 " in the dynamic segment.\n"));
5054 }
5055
5056 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5057 segment. Check this after matching against the section headers
5058 so we don't warn on debuginfo file (which have NOBITS .dynamic
5059 sections). */
5060 if (dynamic_addr + dynamic_size >= current_file_size)
5061 {
5062 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5063 dynamic_addr = dynamic_size = 0;
5064 }
5065 break;
5066
5067 case PT_INTERP:
5068 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5069 SEEK_SET))
5070 error (_("Unable to find program interpreter name\n"));
5071 else
5072 {
5073 char fmt [32];
5074 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5075
5076 if (ret >= (int) sizeof (fmt) || ret < 0)
5077 error (_("Internal error: failed to create format string to display program interpreter\n"));
5078
5079 program_interpreter[0] = 0;
5080 if (fscanf (file, fmt, program_interpreter) <= 0)
5081 error (_("Unable to read program interpreter name\n"));
5082
5083 if (do_segments)
5084 printf (_(" [Requesting program interpreter: %s]\n"),
5085 program_interpreter);
5086 }
5087 break;
5088 }
5089 }
5090
5091 if (do_segments && section_headers != NULL && string_table != NULL)
5092 {
5093 printf (_("\n Section to Segment mapping:\n"));
5094 printf (_(" Segment Sections...\n"));
5095
5096 for (i = 0; i < elf_header.e_phnum; i++)
5097 {
5098 unsigned int j;
5099 Elf_Internal_Shdr * section;
5100
5101 segment = program_headers + i;
5102 section = section_headers + 1;
5103
5104 printf (" %2.2d ", i);
5105
5106 for (j = 1; j < elf_header.e_shnum; j++, section++)
5107 {
5108 if (!ELF_TBSS_SPECIAL (section, segment)
5109 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5110 printf ("%s ", printable_section_name (section));
5111 }
5112
5113 putc ('\n',stdout);
5114 }
5115 }
5116
5117 return TRUE;
5118 }
5119
5120
5121 /* Find the file offset corresponding to VMA by using the program headers. */
5122
5123 static long
5124 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5125 {
5126 Elf_Internal_Phdr * seg;
5127
5128 if (! get_program_headers (file))
5129 {
5130 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5131 return (long) vma;
5132 }
5133
5134 for (seg = program_headers;
5135 seg < program_headers + elf_header.e_phnum;
5136 ++seg)
5137 {
5138 if (seg->p_type != PT_LOAD)
5139 continue;
5140
5141 if (vma >= (seg->p_vaddr & -seg->p_align)
5142 && vma + size <= seg->p_vaddr + seg->p_filesz)
5143 return vma - seg->p_vaddr + seg->p_offset;
5144 }
5145
5146 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5147 (unsigned long) vma);
5148 return (long) vma;
5149 }
5150
5151
5152 /* Allocate memory and load the sections headers into the global pointer
5153 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5154 generate any error messages if the load fails. */
5155
5156 static bfd_boolean
5157 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5158 {
5159 Elf32_External_Shdr * shdrs;
5160 Elf_Internal_Shdr * internal;
5161 unsigned int i;
5162 unsigned int size = elf_header.e_shentsize;
5163 unsigned int num = probe ? 1 : elf_header.e_shnum;
5164
5165 /* PR binutils/17531: Cope with unexpected section header sizes. */
5166 if (size == 0 || num == 0)
5167 return FALSE;
5168 if (size < sizeof * shdrs)
5169 {
5170 if (! probe)
5171 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5172 return FALSE;
5173 }
5174 if (!probe && size > sizeof * shdrs)
5175 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5176
5177 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5178 size, num,
5179 probe ? NULL : _("section headers"));
5180 if (shdrs == NULL)
5181 return FALSE;
5182
5183 if (section_headers != NULL)
5184 free (section_headers);
5185 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5186 sizeof (Elf_Internal_Shdr));
5187 if (section_headers == NULL)
5188 {
5189 if (!probe)
5190 error (_("Out of memory reading %u section headers\n"), num);
5191 return FALSE;
5192 }
5193
5194 for (i = 0, internal = section_headers;
5195 i < num;
5196 i++, internal++)
5197 {
5198 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5199 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5200 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5201 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5202 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5203 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5204 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5205 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5206 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5207 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5208 if (!probe && internal->sh_link > num)
5209 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5210 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5211 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5212 }
5213
5214 free (shdrs);
5215 return TRUE;
5216 }
5217
5218 static bfd_boolean
5219 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5220 {
5221 Elf64_External_Shdr * shdrs;
5222 Elf_Internal_Shdr * internal;
5223 unsigned int i;
5224 unsigned int size = elf_header.e_shentsize;
5225 unsigned int num = probe ? 1 : elf_header.e_shnum;
5226
5227 /* PR binutils/17531: Cope with unexpected section header sizes. */
5228 if (size == 0 || num == 0)
5229 return FALSE;
5230 if (size < sizeof * shdrs)
5231 {
5232 if (! probe)
5233 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5234 return FALSE;
5235 }
5236 if (! probe && size > sizeof * shdrs)
5237 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5238
5239 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5240 size, num,
5241 probe ? NULL : _("section headers"));
5242 if (shdrs == NULL)
5243 return FALSE;
5244
5245 if (section_headers != NULL)
5246 free (section_headers);
5247 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5248 sizeof (Elf_Internal_Shdr));
5249 if (section_headers == NULL)
5250 {
5251 if (! probe)
5252 error (_("Out of memory reading %u section headers\n"), num);
5253 return FALSE;
5254 }
5255
5256 for (i = 0, internal = section_headers;
5257 i < num;
5258 i++, internal++)
5259 {
5260 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5261 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5262 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5263 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5264 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5265 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5266 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5267 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5268 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5269 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5270 if (!probe && internal->sh_link > num)
5271 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5272 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5273 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5274 }
5275
5276 free (shdrs);
5277 return TRUE;
5278 }
5279
5280 static Elf_Internal_Sym *
5281 get_32bit_elf_symbols (FILE * file,
5282 Elf_Internal_Shdr * section,
5283 unsigned long * num_syms_return)
5284 {
5285 unsigned long number = 0;
5286 Elf32_External_Sym * esyms = NULL;
5287 Elf_External_Sym_Shndx * shndx = NULL;
5288 Elf_Internal_Sym * isyms = NULL;
5289 Elf_Internal_Sym * psym;
5290 unsigned int j;
5291
5292 if (section->sh_size == 0)
5293 {
5294 if (num_syms_return != NULL)
5295 * num_syms_return = 0;
5296 return NULL;
5297 }
5298
5299 /* Run some sanity checks first. */
5300 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5301 {
5302 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5303 printable_section_name (section), (unsigned long) section->sh_entsize);
5304 goto exit_point;
5305 }
5306
5307 if (section->sh_size > current_file_size)
5308 {
5309 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5310 printable_section_name (section), (unsigned long) section->sh_size);
5311 goto exit_point;
5312 }
5313
5314 number = section->sh_size / section->sh_entsize;
5315
5316 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5317 {
5318 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5319 (unsigned long) section->sh_size,
5320 printable_section_name (section),
5321 (unsigned long) section->sh_entsize);
5322 goto exit_point;
5323 }
5324
5325 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5326 section->sh_size, _("symbols"));
5327 if (esyms == NULL)
5328 goto exit_point;
5329
5330 {
5331 elf_section_list * entry;
5332
5333 shndx = NULL;
5334 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5335 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5336 {
5337 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5338 entry->hdr->sh_offset,
5339 1, entry->hdr->sh_size,
5340 _("symbol table section indicies"));
5341 if (shndx == NULL)
5342 goto exit_point;
5343 /* PR17531: file: heap-buffer-overflow */
5344 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5345 {
5346 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5347 printable_section_name (entry->hdr),
5348 (unsigned long) entry->hdr->sh_size,
5349 (unsigned long) section->sh_size);
5350 goto exit_point;
5351 }
5352 }
5353 }
5354
5355 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5356
5357 if (isyms == NULL)
5358 {
5359 error (_("Out of memory reading %lu symbols\n"),
5360 (unsigned long) number);
5361 goto exit_point;
5362 }
5363
5364 for (j = 0, psym = isyms; j < number; j++, psym++)
5365 {
5366 psym->st_name = BYTE_GET (esyms[j].st_name);
5367 psym->st_value = BYTE_GET (esyms[j].st_value);
5368 psym->st_size = BYTE_GET (esyms[j].st_size);
5369 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5370 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5371 psym->st_shndx
5372 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5373 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5374 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5375 psym->st_info = BYTE_GET (esyms[j].st_info);
5376 psym->st_other = BYTE_GET (esyms[j].st_other);
5377 }
5378
5379 exit_point:
5380 if (shndx != NULL)
5381 free (shndx);
5382 if (esyms != NULL)
5383 free (esyms);
5384
5385 if (num_syms_return != NULL)
5386 * num_syms_return = isyms == NULL ? 0 : number;
5387
5388 return isyms;
5389 }
5390
5391 static Elf_Internal_Sym *
5392 get_64bit_elf_symbols (FILE * file,
5393 Elf_Internal_Shdr * section,
5394 unsigned long * num_syms_return)
5395 {
5396 unsigned long number = 0;
5397 Elf64_External_Sym * esyms = NULL;
5398 Elf_External_Sym_Shndx * shndx = NULL;
5399 Elf_Internal_Sym * isyms = NULL;
5400 Elf_Internal_Sym * psym;
5401 unsigned int j;
5402
5403 if (section->sh_size == 0)
5404 {
5405 if (num_syms_return != NULL)
5406 * num_syms_return = 0;
5407 return NULL;
5408 }
5409
5410 /* Run some sanity checks first. */
5411 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5412 {
5413 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5414 printable_section_name (section),
5415 (unsigned long) section->sh_entsize);
5416 goto exit_point;
5417 }
5418
5419 if (section->sh_size > current_file_size)
5420 {
5421 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5422 printable_section_name (section),
5423 (unsigned long) section->sh_size);
5424 goto exit_point;
5425 }
5426
5427 number = section->sh_size / section->sh_entsize;
5428
5429 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5430 {
5431 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5432 (unsigned long) section->sh_size,
5433 printable_section_name (section),
5434 (unsigned long) section->sh_entsize);
5435 goto exit_point;
5436 }
5437
5438 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5439 section->sh_size, _("symbols"));
5440 if (!esyms)
5441 goto exit_point;
5442
5443 {
5444 elf_section_list * entry;
5445
5446 shndx = NULL;
5447 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5448 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5449 {
5450 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5451 entry->hdr->sh_offset,
5452 1, entry->hdr->sh_size,
5453 _("symbol table section indicies"));
5454 if (shndx == NULL)
5455 goto exit_point;
5456 /* PR17531: file: heap-buffer-overflow */
5457 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5458 {
5459 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5460 printable_section_name (entry->hdr),
5461 (unsigned long) entry->hdr->sh_size,
5462 (unsigned long) section->sh_size);
5463 goto exit_point;
5464 }
5465 }
5466 }
5467
5468 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5469
5470 if (isyms == NULL)
5471 {
5472 error (_("Out of memory reading %lu symbols\n"),
5473 (unsigned long) number);
5474 goto exit_point;
5475 }
5476
5477 for (j = 0, psym = isyms; j < number; j++, psym++)
5478 {
5479 psym->st_name = BYTE_GET (esyms[j].st_name);
5480 psym->st_info = BYTE_GET (esyms[j].st_info);
5481 psym->st_other = BYTE_GET (esyms[j].st_other);
5482 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5483
5484 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5485 psym->st_shndx
5486 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5487 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5488 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5489
5490 psym->st_value = BYTE_GET (esyms[j].st_value);
5491 psym->st_size = BYTE_GET (esyms[j].st_size);
5492 }
5493
5494 exit_point:
5495 if (shndx != NULL)
5496 free (shndx);
5497 if (esyms != NULL)
5498 free (esyms);
5499
5500 if (num_syms_return != NULL)
5501 * num_syms_return = isyms == NULL ? 0 : number;
5502
5503 return isyms;
5504 }
5505
5506 static const char *
5507 get_elf_section_flags (bfd_vma sh_flags)
5508 {
5509 static char buff[1024];
5510 char * p = buff;
5511 unsigned int field_size = is_32bit_elf ? 8 : 16;
5512 signed int sindex;
5513 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5514 bfd_vma os_flags = 0;
5515 bfd_vma proc_flags = 0;
5516 bfd_vma unknown_flags = 0;
5517 static const struct
5518 {
5519 const char * str;
5520 unsigned int len;
5521 }
5522 flags [] =
5523 {
5524 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5525 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5526 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5527 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5528 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5529 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5530 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5531 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5532 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5533 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5534 /* IA-64 specific. */
5535 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5536 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5537 /* IA-64 OpenVMS specific. */
5538 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5539 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5540 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5541 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5542 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5543 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5544 /* Generic. */
5545 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5546 /* SPARC specific. */
5547 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5548 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5549 /* ARM specific. */
5550 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5551 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5552 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5553 /* GNU specific. */
5554 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5555 };
5556
5557 if (do_section_details)
5558 {
5559 sprintf (buff, "[%*.*lx]: ",
5560 field_size, field_size, (unsigned long) sh_flags);
5561 p += field_size + 4;
5562 }
5563
5564 while (sh_flags)
5565 {
5566 bfd_vma flag;
5567
5568 flag = sh_flags & - sh_flags;
5569 sh_flags &= ~ flag;
5570
5571 if (do_section_details)
5572 {
5573 switch (flag)
5574 {
5575 case SHF_WRITE: sindex = 0; break;
5576 case SHF_ALLOC: sindex = 1; break;
5577 case SHF_EXECINSTR: sindex = 2; break;
5578 case SHF_MERGE: sindex = 3; break;
5579 case SHF_STRINGS: sindex = 4; break;
5580 case SHF_INFO_LINK: sindex = 5; break;
5581 case SHF_LINK_ORDER: sindex = 6; break;
5582 case SHF_OS_NONCONFORMING: sindex = 7; break;
5583 case SHF_GROUP: sindex = 8; break;
5584 case SHF_TLS: sindex = 9; break;
5585 case SHF_EXCLUDE: sindex = 18; break;
5586 case SHF_COMPRESSED: sindex = 20; break;
5587 case SHF_GNU_MBIND: sindex = 24; break;
5588
5589 default:
5590 sindex = -1;
5591 switch (elf_header.e_machine)
5592 {
5593 case EM_IA_64:
5594 if (flag == SHF_IA_64_SHORT)
5595 sindex = 10;
5596 else if (flag == SHF_IA_64_NORECOV)
5597 sindex = 11;
5598 #ifdef BFD64
5599 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5600 switch (flag)
5601 {
5602 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5603 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5604 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5605 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5606 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5607 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5608 default: break;
5609 }
5610 #endif
5611 break;
5612
5613 case EM_386:
5614 case EM_IAMCU:
5615 case EM_X86_64:
5616 case EM_L1OM:
5617 case EM_K1OM:
5618 case EM_OLD_SPARCV9:
5619 case EM_SPARC32PLUS:
5620 case EM_SPARCV9:
5621 case EM_SPARC:
5622 if (flag == SHF_ORDERED)
5623 sindex = 19;
5624 break;
5625
5626 case EM_ARM:
5627 switch (flag)
5628 {
5629 case SHF_ENTRYSECT: sindex = 21; break;
5630 case SHF_ARM_PURECODE: sindex = 22; break;
5631 case SHF_COMDEF: sindex = 23; break;
5632 default: break;
5633 }
5634 break;
5635
5636 default:
5637 break;
5638 }
5639 }
5640
5641 if (sindex != -1)
5642 {
5643 if (p != buff + field_size + 4)
5644 {
5645 if (size < (10 + 2))
5646 {
5647 warn (_("Internal error: not enough buffer room for section flag info"));
5648 return _("<unknown>");
5649 }
5650 size -= 2;
5651 *p++ = ',';
5652 *p++ = ' ';
5653 }
5654
5655 size -= flags [sindex].len;
5656 p = stpcpy (p, flags [sindex].str);
5657 }
5658 else if (flag & SHF_MASKOS)
5659 os_flags |= flag;
5660 else if (flag & SHF_MASKPROC)
5661 proc_flags |= flag;
5662 else
5663 unknown_flags |= flag;
5664 }
5665 else
5666 {
5667 switch (flag)
5668 {
5669 case SHF_WRITE: *p = 'W'; break;
5670 case SHF_ALLOC: *p = 'A'; break;
5671 case SHF_EXECINSTR: *p = 'X'; break;
5672 case SHF_MERGE: *p = 'M'; break;
5673 case SHF_STRINGS: *p = 'S'; break;
5674 case SHF_INFO_LINK: *p = 'I'; break;
5675 case SHF_LINK_ORDER: *p = 'L'; break;
5676 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5677 case SHF_GROUP: *p = 'G'; break;
5678 case SHF_TLS: *p = 'T'; break;
5679 case SHF_EXCLUDE: *p = 'E'; break;
5680 case SHF_COMPRESSED: *p = 'C'; break;
5681 case SHF_GNU_MBIND: *p = 'D'; break;
5682
5683 default:
5684 if ((elf_header.e_machine == EM_X86_64
5685 || elf_header.e_machine == EM_L1OM
5686 || elf_header.e_machine == EM_K1OM)
5687 && flag == SHF_X86_64_LARGE)
5688 *p = 'l';
5689 else if (elf_header.e_machine == EM_ARM
5690 && flag == SHF_ARM_PURECODE)
5691 *p = 'y';
5692 else if (flag & SHF_MASKOS)
5693 {
5694 *p = 'o';
5695 sh_flags &= ~ SHF_MASKOS;
5696 }
5697 else if (flag & SHF_MASKPROC)
5698 {
5699 *p = 'p';
5700 sh_flags &= ~ SHF_MASKPROC;
5701 }
5702 else
5703 *p = 'x';
5704 break;
5705 }
5706 p++;
5707 }
5708 }
5709
5710 if (do_section_details)
5711 {
5712 if (os_flags)
5713 {
5714 size -= 5 + field_size;
5715 if (p != buff + field_size + 4)
5716 {
5717 if (size < (2 + 1))
5718 {
5719 warn (_("Internal error: not enough buffer room for section flag info"));
5720 return _("<unknown>");
5721 }
5722 size -= 2;
5723 *p++ = ',';
5724 *p++ = ' ';
5725 }
5726 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5727 (unsigned long) os_flags);
5728 p += 5 + field_size;
5729 }
5730 if (proc_flags)
5731 {
5732 size -= 7 + field_size;
5733 if (p != buff + field_size + 4)
5734 {
5735 if (size < (2 + 1))
5736 {
5737 warn (_("Internal error: not enough buffer room for section flag info"));
5738 return _("<unknown>");
5739 }
5740 size -= 2;
5741 *p++ = ',';
5742 *p++ = ' ';
5743 }
5744 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5745 (unsigned long) proc_flags);
5746 p += 7 + field_size;
5747 }
5748 if (unknown_flags)
5749 {
5750 size -= 10 + field_size;
5751 if (p != buff + field_size + 4)
5752 {
5753 if (size < (2 + 1))
5754 {
5755 warn (_("Internal error: not enough buffer room for section flag info"));
5756 return _("<unknown>");
5757 }
5758 size -= 2;
5759 *p++ = ',';
5760 *p++ = ' ';
5761 }
5762 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5763 (unsigned long) unknown_flags);
5764 p += 10 + field_size;
5765 }
5766 }
5767
5768 *p = '\0';
5769 return buff;
5770 }
5771
5772 static unsigned int
5773 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5774 {
5775 if (is_32bit_elf)
5776 {
5777 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5778
5779 if (size < sizeof (* echdr))
5780 {
5781 error (_("Compressed section is too small even for a compression header\n"));
5782 return 0;
5783 }
5784
5785 chdr->ch_type = BYTE_GET (echdr->ch_type);
5786 chdr->ch_size = BYTE_GET (echdr->ch_size);
5787 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5788 return sizeof (*echdr);
5789 }
5790 else
5791 {
5792 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5793
5794 if (size < sizeof (* echdr))
5795 {
5796 error (_("Compressed section is too small even for a compression header\n"));
5797 return 0;
5798 }
5799
5800 chdr->ch_type = BYTE_GET (echdr->ch_type);
5801 chdr->ch_size = BYTE_GET (echdr->ch_size);
5802 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5803 return sizeof (*echdr);
5804 }
5805 }
5806
5807 static bfd_boolean
5808 process_section_headers (FILE * file)
5809 {
5810 Elf_Internal_Shdr * section;
5811 unsigned int i;
5812
5813 section_headers = NULL;
5814
5815 if (elf_header.e_shnum == 0)
5816 {
5817 /* PR binutils/12467. */
5818 if (elf_header.e_shoff != 0)
5819 {
5820 warn (_("possibly corrupt ELF file header - it has a non-zero"
5821 " section header offset, but no section headers\n"));
5822 return FALSE;
5823 }
5824 else if (do_sections)
5825 printf (_("\nThere are no sections in this file.\n"));
5826
5827 return TRUE;
5828 }
5829
5830 if (do_sections && !do_header)
5831 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5832 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5833
5834 if (is_32bit_elf)
5835 {
5836 if (! get_32bit_section_headers (file, FALSE))
5837 return FALSE;
5838 }
5839 else
5840 {
5841 if (! get_64bit_section_headers (file, FALSE))
5842 return FALSE;
5843 }
5844
5845 /* Read in the string table, so that we have names to display. */
5846 if (elf_header.e_shstrndx != SHN_UNDEF
5847 && elf_header.e_shstrndx < elf_header.e_shnum)
5848 {
5849 section = section_headers + elf_header.e_shstrndx;
5850
5851 if (section->sh_size != 0)
5852 {
5853 string_table = (char *) get_data (NULL, file, section->sh_offset,
5854 1, section->sh_size,
5855 _("string table"));
5856
5857 string_table_length = string_table != NULL ? section->sh_size : 0;
5858 }
5859 }
5860
5861 /* Scan the sections for the dynamic symbol table
5862 and dynamic string table and debug sections. */
5863 dynamic_symbols = NULL;
5864 dynamic_strings = NULL;
5865 dynamic_syminfo = NULL;
5866 symtab_shndx_list = NULL;
5867
5868 eh_addr_size = is_32bit_elf ? 4 : 8;
5869 switch (elf_header.e_machine)
5870 {
5871 case EM_MIPS:
5872 case EM_MIPS_RS3_LE:
5873 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5874 FDE addresses. However, the ABI also has a semi-official ILP32
5875 variant for which the normal FDE address size rules apply.
5876
5877 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5878 section, where XX is the size of longs in bits. Unfortunately,
5879 earlier compilers provided no way of distinguishing ILP32 objects
5880 from LP64 objects, so if there's any doubt, we should assume that
5881 the official LP64 form is being used. */
5882 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5883 && find_section (".gcc_compiled_long32") == NULL)
5884 eh_addr_size = 8;
5885 break;
5886
5887 case EM_H8_300:
5888 case EM_H8_300H:
5889 switch (elf_header.e_flags & EF_H8_MACH)
5890 {
5891 case E_H8_MACH_H8300:
5892 case E_H8_MACH_H8300HN:
5893 case E_H8_MACH_H8300SN:
5894 case E_H8_MACH_H8300SXN:
5895 eh_addr_size = 2;
5896 break;
5897 case E_H8_MACH_H8300H:
5898 case E_H8_MACH_H8300S:
5899 case E_H8_MACH_H8300SX:
5900 eh_addr_size = 4;
5901 break;
5902 }
5903 break;
5904
5905 case EM_M32C_OLD:
5906 case EM_M32C:
5907 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5908 {
5909 case EF_M32C_CPU_M16C:
5910 eh_addr_size = 2;
5911 break;
5912 }
5913 break;
5914 }
5915
5916 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5917 do \
5918 { \
5919 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5920 if (section->sh_entsize != expected_entsize) \
5921 { \
5922 char buf[40]; \
5923 sprintf_vma (buf, section->sh_entsize); \
5924 /* Note: coded this way so that there is a single string for \
5925 translation. */ \
5926 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5927 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5928 (unsigned) expected_entsize); \
5929 section->sh_entsize = expected_entsize; \
5930 } \
5931 } \
5932 while (0)
5933
5934 #define CHECK_ENTSIZE(section, i, type) \
5935 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5936 sizeof (Elf64_External_##type))
5937
5938 for (i = 0, section = section_headers;
5939 i < elf_header.e_shnum;
5940 i++, section++)
5941 {
5942 char * name = SECTION_NAME (section);
5943
5944 if (section->sh_type == SHT_DYNSYM)
5945 {
5946 if (dynamic_symbols != NULL)
5947 {
5948 error (_("File contains multiple dynamic symbol tables\n"));
5949 continue;
5950 }
5951
5952 CHECK_ENTSIZE (section, i, Sym);
5953 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5954 }
5955 else if (section->sh_type == SHT_STRTAB
5956 && streq (name, ".dynstr"))
5957 {
5958 if (dynamic_strings != NULL)
5959 {
5960 error (_("File contains multiple dynamic string tables\n"));
5961 continue;
5962 }
5963
5964 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5965 1, section->sh_size,
5966 _("dynamic strings"));
5967 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5968 }
5969 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5970 {
5971 elf_section_list * entry = xmalloc (sizeof * entry);
5972 entry->hdr = section;
5973 entry->next = symtab_shndx_list;
5974 symtab_shndx_list = entry;
5975 }
5976 else if (section->sh_type == SHT_SYMTAB)
5977 CHECK_ENTSIZE (section, i, Sym);
5978 else if (section->sh_type == SHT_GROUP)
5979 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5980 else if (section->sh_type == SHT_REL)
5981 CHECK_ENTSIZE (section, i, Rel);
5982 else if (section->sh_type == SHT_RELA)
5983 CHECK_ENTSIZE (section, i, Rela);
5984 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5985 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5986 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5987 || do_debug_str || do_debug_loc || do_debug_ranges
5988 || do_debug_addr || do_debug_cu_index)
5989 && (const_strneq (name, ".debug_")
5990 || const_strneq (name, ".zdebug_")))
5991 {
5992 if (name[1] == 'z')
5993 name += sizeof (".zdebug_") - 1;
5994 else
5995 name += sizeof (".debug_") - 1;
5996
5997 if (do_debugging
5998 || (do_debug_info && const_strneq (name, "info"))
5999 || (do_debug_info && const_strneq (name, "types"))
6000 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6001 || (do_debug_lines && strcmp (name, "line") == 0)
6002 || (do_debug_lines && const_strneq (name, "line."))
6003 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6004 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6005 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6006 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6007 || (do_debug_aranges && const_strneq (name, "aranges"))
6008 || (do_debug_ranges && const_strneq (name, "ranges"))
6009 || (do_debug_ranges && const_strneq (name, "rnglists"))
6010 || (do_debug_frames && const_strneq (name, "frame"))
6011 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6012 || (do_debug_macinfo && const_strneq (name, "macro"))
6013 || (do_debug_str && const_strneq (name, "str"))
6014 || (do_debug_loc && const_strneq (name, "loc"))
6015 || (do_debug_loc && const_strneq (name, "loclists"))
6016 || (do_debug_addr && const_strneq (name, "addr"))
6017 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6018 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6019 )
6020 request_dump_bynumber (i, DEBUG_DUMP);
6021 }
6022 /* Linkonce section to be combined with .debug_info at link time. */
6023 else if ((do_debugging || do_debug_info)
6024 && const_strneq (name, ".gnu.linkonce.wi."))
6025 request_dump_bynumber (i, DEBUG_DUMP);
6026 else if (do_debug_frames && streq (name, ".eh_frame"))
6027 request_dump_bynumber (i, DEBUG_DUMP);
6028 else if (do_gdb_index && streq (name, ".gdb_index"))
6029 request_dump_bynumber (i, DEBUG_DUMP);
6030 /* Trace sections for Itanium VMS. */
6031 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6032 || do_trace_aranges)
6033 && const_strneq (name, ".trace_"))
6034 {
6035 name += sizeof (".trace_") - 1;
6036
6037 if (do_debugging
6038 || (do_trace_info && streq (name, "info"))
6039 || (do_trace_abbrevs && streq (name, "abbrev"))
6040 || (do_trace_aranges && streq (name, "aranges"))
6041 )
6042 request_dump_bynumber (i, DEBUG_DUMP);
6043 }
6044 }
6045
6046 if (! do_sections)
6047 return TRUE;
6048
6049 if (elf_header.e_shnum > 1)
6050 printf (_("\nSection Headers:\n"));
6051 else
6052 printf (_("\nSection Header:\n"));
6053
6054 if (is_32bit_elf)
6055 {
6056 if (do_section_details)
6057 {
6058 printf (_(" [Nr] Name\n"));
6059 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6060 }
6061 else
6062 printf
6063 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6064 }
6065 else if (do_wide)
6066 {
6067 if (do_section_details)
6068 {
6069 printf (_(" [Nr] Name\n"));
6070 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6071 }
6072 else
6073 printf
6074 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6075 }
6076 else
6077 {
6078 if (do_section_details)
6079 {
6080 printf (_(" [Nr] Name\n"));
6081 printf (_(" Type Address Offset Link\n"));
6082 printf (_(" Size EntSize Info Align\n"));
6083 }
6084 else
6085 {
6086 printf (_(" [Nr] Name Type Address Offset\n"));
6087 printf (_(" Size EntSize Flags Link Info Align\n"));
6088 }
6089 }
6090
6091 if (do_section_details)
6092 printf (_(" Flags\n"));
6093
6094 for (i = 0, section = section_headers;
6095 i < elf_header.e_shnum;
6096 i++, section++)
6097 {
6098 /* Run some sanity checks on the section header. */
6099
6100 /* Check the sh_link field. */
6101 switch (section->sh_type)
6102 {
6103 case SHT_SYMTAB_SHNDX:
6104 case SHT_GROUP:
6105 case SHT_HASH:
6106 case SHT_GNU_HASH:
6107 case SHT_GNU_versym:
6108 case SHT_REL:
6109 case SHT_RELA:
6110 if (section->sh_link < 1
6111 || section->sh_link >= elf_header.e_shnum
6112 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6113 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6114 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6115 i, section->sh_link);
6116 break;
6117
6118 case SHT_DYNAMIC:
6119 case SHT_SYMTAB:
6120 case SHT_DYNSYM:
6121 case SHT_GNU_verneed:
6122 case SHT_GNU_verdef:
6123 case SHT_GNU_LIBLIST:
6124 if (section->sh_link < 1
6125 || section->sh_link >= elf_header.e_shnum
6126 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6127 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6128 i, section->sh_link);
6129 break;
6130
6131 case SHT_INIT_ARRAY:
6132 case SHT_FINI_ARRAY:
6133 case SHT_PREINIT_ARRAY:
6134 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6135 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6136 i, section->sh_link);
6137 break;
6138
6139 default:
6140 /* FIXME: Add support for target specific section types. */
6141 #if 0 /* Currently we do not check other section types as there are too
6142 many special cases. Stab sections for example have a type
6143 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6144 section. */
6145 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6146 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6147 i, section->sh_link);
6148 #endif
6149 break;
6150 }
6151
6152 /* Check the sh_info field. */
6153 switch (section->sh_type)
6154 {
6155 case SHT_REL:
6156 case SHT_RELA:
6157 if (section->sh_info < 1
6158 || section->sh_info >= elf_header.e_shnum
6159 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6160 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6161 && section_headers[section->sh_info].sh_type != SHT_NOTE
6162 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6163 /* FIXME: Are other section types valid ? */
6164 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6165 {
6166 if (section->sh_info == 0
6167 && (streq (SECTION_NAME (section), ".rel.dyn")
6168 || streq (SECTION_NAME (section), ".rela.dyn")))
6169 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6170 of zero. The relocations in these sections may apply
6171 to many different sections. */
6172 ;
6173 else
6174 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6175 i, section->sh_info);
6176 }
6177 break;
6178
6179 case SHT_DYNAMIC:
6180 case SHT_HASH:
6181 case SHT_SYMTAB_SHNDX:
6182 case SHT_INIT_ARRAY:
6183 case SHT_FINI_ARRAY:
6184 case SHT_PREINIT_ARRAY:
6185 if (section->sh_info != 0)
6186 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6187 i, section->sh_info);
6188 break;
6189
6190 case SHT_GROUP:
6191 case SHT_SYMTAB:
6192 case SHT_DYNSYM:
6193 /* A symbol index - we assume that it is valid. */
6194 break;
6195
6196 default:
6197 /* FIXME: Add support for target specific section types. */
6198 if (section->sh_type == SHT_NOBITS)
6199 /* NOBITS section headers with non-zero sh_info fields can be
6200 created when a binary is stripped of everything but its debug
6201 information. The stripped sections have their headers
6202 preserved but their types set to SHT_NOBITS. So do not check
6203 this type of section. */
6204 ;
6205 else if (section->sh_flags & SHF_INFO_LINK)
6206 {
6207 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6208 warn (_("[%2u]: Expected link to another section in info field"), i);
6209 }
6210 else if (section->sh_type < SHT_LOOS
6211 && (section->sh_flags & SHF_GNU_MBIND) == 0
6212 && section->sh_info != 0)
6213 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6214 i, section->sh_info);
6215 break;
6216 }
6217
6218 printf (" [%2u] ", i);
6219 if (do_section_details)
6220 printf ("%s\n ", printable_section_name (section));
6221 else
6222 print_symbol (-17, SECTION_NAME (section));
6223
6224 printf (do_wide ? " %-15s " : " %-15.15s ",
6225 get_section_type_name (section->sh_type));
6226
6227 if (is_32bit_elf)
6228 {
6229 const char * link_too_big = NULL;
6230
6231 print_vma (section->sh_addr, LONG_HEX);
6232
6233 printf ( " %6.6lx %6.6lx %2.2lx",
6234 (unsigned long) section->sh_offset,
6235 (unsigned long) section->sh_size,
6236 (unsigned long) section->sh_entsize);
6237
6238 if (do_section_details)
6239 fputs (" ", stdout);
6240 else
6241 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6242
6243 if (section->sh_link >= elf_header.e_shnum)
6244 {
6245 link_too_big = "";
6246 /* The sh_link value is out of range. Normally this indicates
6247 an error but it can have special values in Solaris binaries. */
6248 switch (elf_header.e_machine)
6249 {
6250 case EM_386:
6251 case EM_IAMCU:
6252 case EM_X86_64:
6253 case EM_L1OM:
6254 case EM_K1OM:
6255 case EM_OLD_SPARCV9:
6256 case EM_SPARC32PLUS:
6257 case EM_SPARCV9:
6258 case EM_SPARC:
6259 if (section->sh_link == (SHN_BEFORE & 0xffff))
6260 link_too_big = "BEFORE";
6261 else if (section->sh_link == (SHN_AFTER & 0xffff))
6262 link_too_big = "AFTER";
6263 break;
6264 default:
6265 break;
6266 }
6267 }
6268
6269 if (do_section_details)
6270 {
6271 if (link_too_big != NULL && * link_too_big)
6272 printf ("<%s> ", link_too_big);
6273 else
6274 printf ("%2u ", section->sh_link);
6275 printf ("%3u %2lu\n", section->sh_info,
6276 (unsigned long) section->sh_addralign);
6277 }
6278 else
6279 printf ("%2u %3u %2lu\n",
6280 section->sh_link,
6281 section->sh_info,
6282 (unsigned long) section->sh_addralign);
6283
6284 if (link_too_big && ! * link_too_big)
6285 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6286 i, section->sh_link);
6287 }
6288 else if (do_wide)
6289 {
6290 print_vma (section->sh_addr, LONG_HEX);
6291
6292 if ((long) section->sh_offset == section->sh_offset)
6293 printf (" %6.6lx", (unsigned long) section->sh_offset);
6294 else
6295 {
6296 putchar (' ');
6297 print_vma (section->sh_offset, LONG_HEX);
6298 }
6299
6300 if ((unsigned long) section->sh_size == section->sh_size)
6301 printf (" %6.6lx", (unsigned long) section->sh_size);
6302 else
6303 {
6304 putchar (' ');
6305 print_vma (section->sh_size, LONG_HEX);
6306 }
6307
6308 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6309 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6310 else
6311 {
6312 putchar (' ');
6313 print_vma (section->sh_entsize, LONG_HEX);
6314 }
6315
6316 if (do_section_details)
6317 fputs (" ", stdout);
6318 else
6319 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6320
6321 printf ("%2u %3u ", section->sh_link, section->sh_info);
6322
6323 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6324 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6325 else
6326 {
6327 print_vma (section->sh_addralign, DEC);
6328 putchar ('\n');
6329 }
6330 }
6331 else if (do_section_details)
6332 {
6333 printf (" %-15.15s ",
6334 get_section_type_name (section->sh_type));
6335 print_vma (section->sh_addr, LONG_HEX);
6336 if ((long) section->sh_offset == section->sh_offset)
6337 printf (" %16.16lx", (unsigned long) section->sh_offset);
6338 else
6339 {
6340 printf (" ");
6341 print_vma (section->sh_offset, LONG_HEX);
6342 }
6343 printf (" %u\n ", section->sh_link);
6344 print_vma (section->sh_size, LONG_HEX);
6345 putchar (' ');
6346 print_vma (section->sh_entsize, LONG_HEX);
6347
6348 printf (" %-16u %lu\n",
6349 section->sh_info,
6350 (unsigned long) section->sh_addralign);
6351 }
6352 else
6353 {
6354 putchar (' ');
6355 print_vma (section->sh_addr, LONG_HEX);
6356 if ((long) section->sh_offset == section->sh_offset)
6357 printf (" %8.8lx", (unsigned long) section->sh_offset);
6358 else
6359 {
6360 printf (" ");
6361 print_vma (section->sh_offset, LONG_HEX);
6362 }
6363 printf ("\n ");
6364 print_vma (section->sh_size, LONG_HEX);
6365 printf (" ");
6366 print_vma (section->sh_entsize, LONG_HEX);
6367
6368 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6369
6370 printf (" %2u %3u %lu\n",
6371 section->sh_link,
6372 section->sh_info,
6373 (unsigned long) section->sh_addralign);
6374 }
6375
6376 if (do_section_details)
6377 {
6378 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6379 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6380 {
6381 /* Minimum section size is 12 bytes for 32-bit compression
6382 header + 12 bytes for compressed data header. */
6383 unsigned char buf[24];
6384
6385 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6386 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6387 sizeof (buf), _("compression header")))
6388 {
6389 Elf_Internal_Chdr chdr;
6390
6391 (void) get_compression_header (&chdr, buf, sizeof (buf));
6392
6393 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6394 printf (" ZLIB, ");
6395 else
6396 printf (_(" [<unknown>: 0x%x], "),
6397 chdr.ch_type);
6398 print_vma (chdr.ch_size, LONG_HEX);
6399 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6400 }
6401 }
6402 }
6403 }
6404
6405 if (!do_section_details)
6406 {
6407 /* The ordering of the letters shown here matches the ordering of the
6408 corresponding SHF_xxx values, and hence the order in which these
6409 letters will be displayed to the user. */
6410 printf (_("Key to Flags:\n\
6411 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6412 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6413 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6414 if (elf_header.e_machine == EM_X86_64
6415 || elf_header.e_machine == EM_L1OM
6416 || elf_header.e_machine == EM_K1OM)
6417 printf (_("l (large), "));
6418 else if (elf_header.e_machine == EM_ARM)
6419 printf (_("y (purecode), "));
6420 printf ("p (processor specific)\n");
6421 }
6422
6423 return TRUE;
6424 }
6425
6426 static const char *
6427 get_group_flags (unsigned int flags)
6428 {
6429 static char buff[128];
6430
6431 if (flags == 0)
6432 return "";
6433 else if (flags == GRP_COMDAT)
6434 return "COMDAT ";
6435
6436 snprintf (buff, 14, _("[0x%x: "), flags);
6437
6438 flags &= ~ GRP_COMDAT;
6439 if (flags & GRP_MASKOS)
6440 {
6441 strcat (buff, "<OS specific>");
6442 flags &= ~ GRP_MASKOS;
6443 }
6444
6445 if (flags & GRP_MASKPROC)
6446 {
6447 strcat (buff, "<PROC specific>");
6448 flags &= ~ GRP_MASKPROC;
6449 }
6450
6451 if (flags)
6452 strcat (buff, "<unknown>");
6453
6454 strcat (buff, "]");
6455 return buff;
6456 }
6457
6458 static bfd_boolean
6459 process_section_groups (FILE * file)
6460 {
6461 Elf_Internal_Shdr * section;
6462 unsigned int i;
6463 struct group * group;
6464 Elf_Internal_Shdr * symtab_sec;
6465 Elf_Internal_Shdr * strtab_sec;
6466 Elf_Internal_Sym * symtab;
6467 unsigned long num_syms;
6468 char * strtab;
6469 size_t strtab_size;
6470
6471 /* Don't process section groups unless needed. */
6472 if (!do_unwind && !do_section_groups)
6473 return TRUE;
6474
6475 if (elf_header.e_shnum == 0)
6476 {
6477 if (do_section_groups)
6478 printf (_("\nThere are no sections to group in this file.\n"));
6479
6480 return TRUE;
6481 }
6482
6483 if (section_headers == NULL)
6484 {
6485 error (_("Section headers are not available!\n"));
6486 /* PR 13622: This can happen with a corrupt ELF header. */
6487 return FALSE;
6488 }
6489
6490 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6491 sizeof (struct group *));
6492
6493 if (section_headers_groups == NULL)
6494 {
6495 error (_("Out of memory reading %u section group headers\n"),
6496 elf_header.e_shnum);
6497 return FALSE;
6498 }
6499
6500 /* Scan the sections for the group section. */
6501 group_count = 0;
6502 for (i = 0, section = section_headers;
6503 i < elf_header.e_shnum;
6504 i++, section++)
6505 if (section->sh_type == SHT_GROUP)
6506 group_count++;
6507
6508 if (group_count == 0)
6509 {
6510 if (do_section_groups)
6511 printf (_("\nThere are no section groups in this file.\n"));
6512
6513 return TRUE;
6514 }
6515
6516 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6517
6518 if (section_groups == NULL)
6519 {
6520 error (_("Out of memory reading %lu groups\n"),
6521 (unsigned long) group_count);
6522 return FALSE;
6523 }
6524
6525 symtab_sec = NULL;
6526 strtab_sec = NULL;
6527 symtab = NULL;
6528 num_syms = 0;
6529 strtab = NULL;
6530 strtab_size = 0;
6531 for (i = 0, section = section_headers, group = section_groups;
6532 i < elf_header.e_shnum;
6533 i++, section++)
6534 {
6535 if (section->sh_type == SHT_GROUP)
6536 {
6537 const char * name = printable_section_name (section);
6538 const char * group_name;
6539 unsigned char * start;
6540 unsigned char * indices;
6541 unsigned int entry, j, size;
6542 Elf_Internal_Shdr * sec;
6543 Elf_Internal_Sym * sym;
6544
6545 /* Get the symbol table. */
6546 if (section->sh_link >= elf_header.e_shnum
6547 || ((sec = section_headers + section->sh_link)->sh_type
6548 != SHT_SYMTAB))
6549 {
6550 error (_("Bad sh_link in group section `%s'\n"), name);
6551 continue;
6552 }
6553
6554 if (symtab_sec != sec)
6555 {
6556 symtab_sec = sec;
6557 if (symtab)
6558 free (symtab);
6559 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6560 }
6561
6562 if (symtab == NULL)
6563 {
6564 error (_("Corrupt header in group section `%s'\n"), name);
6565 continue;
6566 }
6567
6568 if (section->sh_info >= num_syms)
6569 {
6570 error (_("Bad sh_info in group section `%s'\n"), name);
6571 continue;
6572 }
6573
6574 sym = symtab + section->sh_info;
6575
6576 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6577 {
6578 if (sym->st_shndx == 0
6579 || sym->st_shndx >= elf_header.e_shnum)
6580 {
6581 error (_("Bad sh_info in group section `%s'\n"), name);
6582 continue;
6583 }
6584
6585 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6586 strtab_sec = NULL;
6587 if (strtab)
6588 free (strtab);
6589 strtab = NULL;
6590 strtab_size = 0;
6591 }
6592 else
6593 {
6594 /* Get the string table. */
6595 if (symtab_sec->sh_link >= elf_header.e_shnum)
6596 {
6597 strtab_sec = NULL;
6598 if (strtab)
6599 free (strtab);
6600 strtab = NULL;
6601 strtab_size = 0;
6602 }
6603 else if (strtab_sec
6604 != (sec = section_headers + symtab_sec->sh_link))
6605 {
6606 strtab_sec = sec;
6607 if (strtab)
6608 free (strtab);
6609
6610 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6611 1, strtab_sec->sh_size,
6612 _("string table"));
6613 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6614 }
6615 group_name = sym->st_name < strtab_size
6616 ? strtab + sym->st_name : _("<corrupt>");
6617 }
6618
6619 /* PR 17531: file: loop. */
6620 if (section->sh_entsize > section->sh_size)
6621 {
6622 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6623 printable_section_name (section),
6624 (unsigned long) section->sh_entsize,
6625 (unsigned long) section->sh_size);
6626 break;
6627 }
6628
6629 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6630 1, section->sh_size,
6631 _("section data"));
6632 if (start == NULL)
6633 continue;
6634
6635 indices = start;
6636 size = (section->sh_size / section->sh_entsize) - 1;
6637 entry = byte_get (indices, 4);
6638 indices += 4;
6639
6640 if (do_section_groups)
6641 {
6642 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6643 get_group_flags (entry), i, name, group_name, size);
6644
6645 printf (_(" [Index] Name\n"));
6646 }
6647
6648 group->group_index = i;
6649
6650 for (j = 0; j < size; j++)
6651 {
6652 struct group_list * g;
6653
6654 entry = byte_get (indices, 4);
6655 indices += 4;
6656
6657 if (entry >= elf_header.e_shnum)
6658 {
6659 static unsigned num_group_errors = 0;
6660
6661 if (num_group_errors ++ < 10)
6662 {
6663 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6664 entry, i, elf_header.e_shnum - 1);
6665 if (num_group_errors == 10)
6666 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6667 }
6668 continue;
6669 }
6670
6671 if (section_headers_groups [entry] != NULL)
6672 {
6673 if (entry)
6674 {
6675 static unsigned num_errs = 0;
6676
6677 if (num_errs ++ < 10)
6678 {
6679 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6680 entry, i,
6681 section_headers_groups [entry]->group_index);
6682 if (num_errs == 10)
6683 warn (_("Further error messages about already contained group sections suppressed\n"));
6684 }
6685 continue;
6686 }
6687 else
6688 {
6689 /* Intel C/C++ compiler may put section 0 in a
6690 section group. We just warn it the first time
6691 and ignore it afterwards. */
6692 static bfd_boolean warned = FALSE;
6693 if (!warned)
6694 {
6695 error (_("section 0 in group section [%5u]\n"),
6696 section_headers_groups [entry]->group_index);
6697 warned = TRUE;
6698 }
6699 }
6700 }
6701
6702 section_headers_groups [entry] = group;
6703
6704 if (do_section_groups)
6705 {
6706 sec = section_headers + entry;
6707 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6708 }
6709
6710 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6711 g->section_index = entry;
6712 g->next = group->root;
6713 group->root = g;
6714 }
6715
6716 if (start)
6717 free (start);
6718
6719 group++;
6720 }
6721 }
6722
6723 if (symtab)
6724 free (symtab);
6725 if (strtab)
6726 free (strtab);
6727 return TRUE;
6728 }
6729
6730 /* Data used to display dynamic fixups. */
6731
6732 struct ia64_vms_dynfixup
6733 {
6734 bfd_vma needed_ident; /* Library ident number. */
6735 bfd_vma needed; /* Index in the dstrtab of the library name. */
6736 bfd_vma fixup_needed; /* Index of the library. */
6737 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6738 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6739 };
6740
6741 /* Data used to display dynamic relocations. */
6742
6743 struct ia64_vms_dynimgrela
6744 {
6745 bfd_vma img_rela_cnt; /* Number of relocations. */
6746 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6747 };
6748
6749 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6750 library). */
6751
6752 static bfd_boolean
6753 dump_ia64_vms_dynamic_fixups (FILE * file,
6754 struct ia64_vms_dynfixup * fixup,
6755 const char * strtab,
6756 unsigned int strtab_sz)
6757 {
6758 Elf64_External_VMS_IMAGE_FIXUP * imfs;
6759 long i;
6760 const char * lib_name;
6761
6762 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6763 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6764 _("dynamic section image fixups"));
6765 if (!imfs)
6766 return FALSE;
6767
6768 if (fixup->needed < strtab_sz)
6769 lib_name = strtab + fixup->needed;
6770 else
6771 {
6772 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
6773 (unsigned long) fixup->needed);
6774 lib_name = "???";
6775 }
6776 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6777 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6778 printf
6779 (_("Seg Offset Type SymVec DataType\n"));
6780
6781 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6782 {
6783 unsigned int type;
6784 const char *rtype;
6785
6786 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6787 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6788 type = BYTE_GET (imfs [i].type);
6789 rtype = elf_ia64_reloc_type (type);
6790 if (rtype == NULL)
6791 printf (" 0x%08x ", type);
6792 else
6793 printf (" %-32s ", rtype);
6794 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6795 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6796 }
6797
6798 free (imfs);
6799 return TRUE;
6800 }
6801
6802 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6803
6804 static bfd_boolean
6805 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6806 {
6807 Elf64_External_VMS_IMAGE_RELA *imrs;
6808 long i;
6809
6810 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6811 1, imgrela->img_rela_cnt * sizeof (*imrs),
6812 _("dynamic section image relocations"));
6813 if (!imrs)
6814 return FALSE;
6815
6816 printf (_("\nImage relocs\n"));
6817 printf
6818 (_("Seg Offset Type Addend Seg Sym Off\n"));
6819
6820 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6821 {
6822 unsigned int type;
6823 const char *rtype;
6824
6825 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6826 printf ("%08" BFD_VMA_FMT "x ",
6827 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6828 type = BYTE_GET (imrs [i].type);
6829 rtype = elf_ia64_reloc_type (type);
6830 if (rtype == NULL)
6831 printf ("0x%08x ", type);
6832 else
6833 printf ("%-31s ", rtype);
6834 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6835 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6836 printf ("%08" BFD_VMA_FMT "x\n",
6837 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6838 }
6839
6840 free (imrs);
6841 return TRUE;
6842 }
6843
6844 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6845
6846 static bfd_boolean
6847 process_ia64_vms_dynamic_relocs (FILE *file)
6848 {
6849 struct ia64_vms_dynfixup fixup;
6850 struct ia64_vms_dynimgrela imgrela;
6851 Elf_Internal_Dyn *entry;
6852 bfd_vma strtab_off = 0;
6853 bfd_vma strtab_sz = 0;
6854 char *strtab = NULL;
6855 bfd_boolean res = TRUE;
6856
6857 memset (&fixup, 0, sizeof (fixup));
6858 memset (&imgrela, 0, sizeof (imgrela));
6859
6860 /* Note: the order of the entries is specified by the OpenVMS specs. */
6861 for (entry = dynamic_section;
6862 entry < dynamic_section + dynamic_nent;
6863 entry++)
6864 {
6865 switch (entry->d_tag)
6866 {
6867 case DT_IA_64_VMS_STRTAB_OFFSET:
6868 strtab_off = entry->d_un.d_val;
6869 break;
6870 case DT_STRSZ:
6871 strtab_sz = entry->d_un.d_val;
6872 if (strtab == NULL)
6873 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6874 1, strtab_sz, _("dynamic string section"));
6875 break;
6876
6877 case DT_IA_64_VMS_NEEDED_IDENT:
6878 fixup.needed_ident = entry->d_un.d_val;
6879 break;
6880 case DT_NEEDED:
6881 fixup.needed = entry->d_un.d_val;
6882 break;
6883 case DT_IA_64_VMS_FIXUP_NEEDED:
6884 fixup.fixup_needed = entry->d_un.d_val;
6885 break;
6886 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6887 fixup.fixup_rela_cnt = entry->d_un.d_val;
6888 break;
6889 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6890 fixup.fixup_rela_off = entry->d_un.d_val;
6891 if (! dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz))
6892 res = FALSE;
6893 break;
6894 case DT_IA_64_VMS_IMG_RELA_CNT:
6895 imgrela.img_rela_cnt = entry->d_un.d_val;
6896 break;
6897 case DT_IA_64_VMS_IMG_RELA_OFF:
6898 imgrela.img_rela_off = entry->d_un.d_val;
6899 if (! dump_ia64_vms_dynamic_relocs (file, &imgrela))
6900 res = FALSE;
6901 break;
6902
6903 default:
6904 break;
6905 }
6906 }
6907
6908 if (strtab != NULL)
6909 free (strtab);
6910
6911 return res;
6912 }
6913
6914 static struct
6915 {
6916 const char * name;
6917 int reloc;
6918 int size;
6919 int rela;
6920 }
6921 dynamic_relocations [] =
6922 {
6923 { "REL", DT_REL, DT_RELSZ, FALSE },
6924 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6925 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6926 };
6927
6928 /* Process the reloc section. */
6929
6930 static bfd_boolean
6931 process_relocs (FILE * file)
6932 {
6933 unsigned long rel_size;
6934 unsigned long rel_offset;
6935
6936 if (!do_reloc)
6937 return TRUE;
6938
6939 if (do_using_dynamic)
6940 {
6941 int is_rela;
6942 const char * name;
6943 bfd_boolean has_dynamic_reloc;
6944 unsigned int i;
6945
6946 has_dynamic_reloc = FALSE;
6947
6948 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6949 {
6950 is_rela = dynamic_relocations [i].rela;
6951 name = dynamic_relocations [i].name;
6952 rel_size = dynamic_info [dynamic_relocations [i].size];
6953 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6954
6955 if (rel_size)
6956 has_dynamic_reloc = TRUE;
6957
6958 if (is_rela == UNKNOWN)
6959 {
6960 if (dynamic_relocations [i].reloc == DT_JMPREL)
6961 switch (dynamic_info[DT_PLTREL])
6962 {
6963 case DT_REL:
6964 is_rela = FALSE;
6965 break;
6966 case DT_RELA:
6967 is_rela = TRUE;
6968 break;
6969 }
6970 }
6971
6972 if (rel_size)
6973 {
6974 printf
6975 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6976 name, rel_offset, rel_size);
6977
6978 dump_relocations (file,
6979 offset_from_vma (file, rel_offset, rel_size),
6980 rel_size,
6981 dynamic_symbols, num_dynamic_syms,
6982 dynamic_strings, dynamic_strings_length,
6983 is_rela, TRUE /* is_dynamic */);
6984 }
6985 }
6986
6987 if (is_ia64_vms ())
6988 if (process_ia64_vms_dynamic_relocs (file))
6989 has_dynamic_reloc = TRUE;
6990
6991 if (! has_dynamic_reloc)
6992 printf (_("\nThere are no dynamic relocations in this file.\n"));
6993 }
6994 else
6995 {
6996 Elf_Internal_Shdr * section;
6997 unsigned long i;
6998 bfd_boolean found = FALSE;
6999
7000 for (i = 0, section = section_headers;
7001 i < elf_header.e_shnum;
7002 i++, section++)
7003 {
7004 if ( section->sh_type != SHT_RELA
7005 && section->sh_type != SHT_REL)
7006 continue;
7007
7008 rel_offset = section->sh_offset;
7009 rel_size = section->sh_size;
7010
7011 if (rel_size)
7012 {
7013 Elf_Internal_Shdr * strsec;
7014 int is_rela;
7015
7016 printf (_("\nRelocation section "));
7017
7018 if (string_table == NULL)
7019 printf ("%d", section->sh_name);
7020 else
7021 printf ("'%s'", printable_section_name (section));
7022
7023 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7024 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
7025
7026 is_rela = section->sh_type == SHT_RELA;
7027
7028 if (section->sh_link != 0
7029 && section->sh_link < elf_header.e_shnum)
7030 {
7031 Elf_Internal_Shdr * symsec;
7032 Elf_Internal_Sym * symtab;
7033 unsigned long nsyms;
7034 unsigned long strtablen = 0;
7035 char * strtab = NULL;
7036
7037 symsec = section_headers + section->sh_link;
7038 if (symsec->sh_type != SHT_SYMTAB
7039 && symsec->sh_type != SHT_DYNSYM)
7040 continue;
7041
7042 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
7043
7044 if (symtab == NULL)
7045 continue;
7046
7047 if (symsec->sh_link != 0
7048 && symsec->sh_link < elf_header.e_shnum)
7049 {
7050 strsec = section_headers + symsec->sh_link;
7051
7052 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7053 1, strsec->sh_size,
7054 _("string table"));
7055 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7056 }
7057
7058 dump_relocations (file, rel_offset, rel_size,
7059 symtab, nsyms, strtab, strtablen,
7060 is_rela,
7061 symsec->sh_type == SHT_DYNSYM);
7062 if (strtab)
7063 free (strtab);
7064 free (symtab);
7065 }
7066 else
7067 dump_relocations (file, rel_offset, rel_size,
7068 NULL, 0, NULL, 0, is_rela,
7069 FALSE /* is_dynamic */);
7070
7071 found = TRUE;
7072 }
7073 }
7074
7075 if (! found)
7076 printf (_("\nThere are no relocations in this file.\n"));
7077 }
7078
7079 return TRUE;
7080 }
7081
7082 /* An absolute address consists of a section and an offset. If the
7083 section is NULL, the offset itself is the address, otherwise, the
7084 address equals to LOAD_ADDRESS(section) + offset. */
7085
7086 struct absaddr
7087 {
7088 unsigned short section;
7089 bfd_vma offset;
7090 };
7091
7092 #define ABSADDR(a) \
7093 ((a).section \
7094 ? section_headers [(a).section].sh_addr + (a).offset \
7095 : (a).offset)
7096
7097 /* Find the nearest symbol at or below ADDR. Returns the symbol
7098 name, if found, and the offset from the symbol to ADDR. */
7099
7100 static void
7101 find_symbol_for_address (Elf_Internal_Sym * symtab,
7102 unsigned long nsyms,
7103 const char * strtab,
7104 unsigned long strtab_size,
7105 struct absaddr addr,
7106 const char ** symname,
7107 bfd_vma * offset)
7108 {
7109 bfd_vma dist = 0x100000;
7110 Elf_Internal_Sym * sym;
7111 Elf_Internal_Sym * beg;
7112 Elf_Internal_Sym * end;
7113 Elf_Internal_Sym * best = NULL;
7114
7115 REMOVE_ARCH_BITS (addr.offset);
7116 beg = symtab;
7117 end = symtab + nsyms;
7118
7119 while (beg < end)
7120 {
7121 bfd_vma value;
7122
7123 sym = beg + (end - beg) / 2;
7124
7125 value = sym->st_value;
7126 REMOVE_ARCH_BITS (value);
7127
7128 if (sym->st_name != 0
7129 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7130 && addr.offset >= value
7131 && addr.offset - value < dist)
7132 {
7133 best = sym;
7134 dist = addr.offset - value;
7135 if (!dist)
7136 break;
7137 }
7138
7139 if (addr.offset < value)
7140 end = sym;
7141 else
7142 beg = sym + 1;
7143 }
7144
7145 if (best)
7146 {
7147 *symname = (best->st_name >= strtab_size
7148 ? _("<corrupt>") : strtab + best->st_name);
7149 *offset = dist;
7150 return;
7151 }
7152
7153 *symname = NULL;
7154 *offset = addr.offset;
7155 }
7156
7157 static /* signed */ int
7158 symcmp (const void *p, const void *q)
7159 {
7160 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7161 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7162
7163 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7164 }
7165
7166 /* Process the unwind section. */
7167
7168 #include "unwind-ia64.h"
7169
7170 struct ia64_unw_table_entry
7171 {
7172 struct absaddr start;
7173 struct absaddr end;
7174 struct absaddr info;
7175 };
7176
7177 struct ia64_unw_aux_info
7178 {
7179 struct ia64_unw_table_entry * table; /* Unwind table. */
7180 unsigned long table_len; /* Length of unwind table. */
7181 unsigned char * info; /* Unwind info. */
7182 unsigned long info_size; /* Size of unwind info. */
7183 bfd_vma info_addr; /* Starting address of unwind info. */
7184 bfd_vma seg_base; /* Starting address of segment. */
7185 Elf_Internal_Sym * symtab; /* The symbol table. */
7186 unsigned long nsyms; /* Number of symbols. */
7187 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7188 unsigned long nfuns; /* Number of entries in funtab. */
7189 char * strtab; /* The string table. */
7190 unsigned long strtab_size; /* Size of string table. */
7191 };
7192
7193 static bfd_boolean
7194 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7195 {
7196 struct ia64_unw_table_entry * tp;
7197 unsigned long j, nfuns;
7198 int in_body;
7199 bfd_boolean res = TRUE;
7200
7201 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7202 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7203 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7204 aux->funtab[nfuns++] = aux->symtab[j];
7205 aux->nfuns = nfuns;
7206 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7207
7208 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7209 {
7210 bfd_vma stamp;
7211 bfd_vma offset;
7212 const unsigned char * dp;
7213 const unsigned char * head;
7214 const unsigned char * end;
7215 const char * procname;
7216
7217 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7218 aux->strtab_size, tp->start, &procname, &offset);
7219
7220 fputs ("\n<", stdout);
7221
7222 if (procname)
7223 {
7224 fputs (procname, stdout);
7225
7226 if (offset)
7227 printf ("+%lx", (unsigned long) offset);
7228 }
7229
7230 fputs (">: [", stdout);
7231 print_vma (tp->start.offset, PREFIX_HEX);
7232 fputc ('-', stdout);
7233 print_vma (tp->end.offset, PREFIX_HEX);
7234 printf ("], info at +0x%lx\n",
7235 (unsigned long) (tp->info.offset - aux->seg_base));
7236
7237 /* PR 17531: file: 86232b32. */
7238 if (aux->info == NULL)
7239 continue;
7240
7241 /* PR 17531: file: 0997b4d1. */
7242 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7243 {
7244 warn (_("Invalid offset %lx in table entry %ld\n"),
7245 (long) tp->info.offset, (long) (tp - aux->table));
7246 res = FALSE;
7247 continue;
7248 }
7249
7250 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7251 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7252
7253 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7254 (unsigned) UNW_VER (stamp),
7255 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7256 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7257 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7258 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7259
7260 if (UNW_VER (stamp) != 1)
7261 {
7262 printf (_("\tUnknown version.\n"));
7263 continue;
7264 }
7265
7266 in_body = 0;
7267 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7268 /* PR 17531: file: 16ceda89. */
7269 if (end > aux->info + aux->info_size)
7270 end = aux->info + aux->info_size;
7271 for (dp = head + 8; dp < end;)
7272 dp = unw_decode (dp, in_body, & in_body, end);
7273 }
7274
7275 free (aux->funtab);
7276
7277 return res;
7278 }
7279
7280 static bfd_boolean
7281 slurp_ia64_unwind_table (FILE * file,
7282 struct ia64_unw_aux_info * aux,
7283 Elf_Internal_Shdr * sec)
7284 {
7285 unsigned long size, nrelas, i;
7286 Elf_Internal_Phdr * seg;
7287 struct ia64_unw_table_entry * tep;
7288 Elf_Internal_Shdr * relsec;
7289 Elf_Internal_Rela * rela;
7290 Elf_Internal_Rela * rp;
7291 unsigned char * table;
7292 unsigned char * tp;
7293 Elf_Internal_Sym * sym;
7294 const char * relname;
7295
7296 aux->table_len = 0;
7297
7298 /* First, find the starting address of the segment that includes
7299 this section: */
7300
7301 if (elf_header.e_phnum)
7302 {
7303 if (! get_program_headers (file))
7304 return FALSE;
7305
7306 for (seg = program_headers;
7307 seg < program_headers + elf_header.e_phnum;
7308 ++seg)
7309 {
7310 if (seg->p_type != PT_LOAD)
7311 continue;
7312
7313 if (sec->sh_addr >= seg->p_vaddr
7314 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7315 {
7316 aux->seg_base = seg->p_vaddr;
7317 break;
7318 }
7319 }
7320 }
7321
7322 /* Second, build the unwind table from the contents of the unwind section: */
7323 size = sec->sh_size;
7324 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7325 _("unwind table"));
7326 if (!table)
7327 return FALSE;
7328
7329 aux->table_len = size / (3 * eh_addr_size);
7330 aux->table = (struct ia64_unw_table_entry *)
7331 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7332 tep = aux->table;
7333
7334 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7335 {
7336 tep->start.section = SHN_UNDEF;
7337 tep->end.section = SHN_UNDEF;
7338 tep->info.section = SHN_UNDEF;
7339 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7340 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7341 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7342 tep->start.offset += aux->seg_base;
7343 tep->end.offset += aux->seg_base;
7344 tep->info.offset += aux->seg_base;
7345 }
7346 free (table);
7347
7348 /* Third, apply any relocations to the unwind table: */
7349 for (relsec = section_headers;
7350 relsec < section_headers + elf_header.e_shnum;
7351 ++relsec)
7352 {
7353 if (relsec->sh_type != SHT_RELA
7354 || relsec->sh_info >= elf_header.e_shnum
7355 || section_headers + relsec->sh_info != sec)
7356 continue;
7357
7358 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7359 & rela, & nrelas))
7360 {
7361 free (aux->table);
7362 aux->table = NULL;
7363 aux->table_len = 0;
7364 return FALSE;
7365 }
7366
7367 for (rp = rela; rp < rela + nrelas; ++rp)
7368 {
7369 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7370 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7371
7372 /* PR 17531: file: 9fa67536. */
7373 if (relname == NULL)
7374 {
7375 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7376 continue;
7377 }
7378
7379 if (! const_strneq (relname, "R_IA64_SEGREL"))
7380 {
7381 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7382 continue;
7383 }
7384
7385 i = rp->r_offset / (3 * eh_addr_size);
7386
7387 /* PR 17531: file: 5bc8d9bf. */
7388 if (i >= aux->table_len)
7389 {
7390 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7391 continue;
7392 }
7393
7394 switch (rp->r_offset / eh_addr_size % 3)
7395 {
7396 case 0:
7397 aux->table[i].start.section = sym->st_shndx;
7398 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7399 break;
7400 case 1:
7401 aux->table[i].end.section = sym->st_shndx;
7402 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7403 break;
7404 case 2:
7405 aux->table[i].info.section = sym->st_shndx;
7406 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7407 break;
7408 default:
7409 break;
7410 }
7411 }
7412
7413 free (rela);
7414 }
7415
7416 return TRUE;
7417 }
7418
7419 static bfd_boolean
7420 ia64_process_unwind (FILE * file)
7421 {
7422 Elf_Internal_Shdr * sec;
7423 Elf_Internal_Shdr * unwsec = NULL;
7424 Elf_Internal_Shdr * strsec;
7425 unsigned long i, unwcount = 0, unwstart = 0;
7426 struct ia64_unw_aux_info aux;
7427 bfd_boolean res = TRUE;
7428
7429 memset (& aux, 0, sizeof (aux));
7430
7431 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7432 {
7433 if (sec->sh_type == SHT_SYMTAB
7434 && sec->sh_link < elf_header.e_shnum)
7435 {
7436 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7437
7438 strsec = section_headers + sec->sh_link;
7439 if (aux.strtab != NULL)
7440 {
7441 error (_("Multiple auxillary string tables encountered\n"));
7442 free (aux.strtab);
7443 res = FALSE;
7444 }
7445 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7446 1, strsec->sh_size,
7447 _("string table"));
7448 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7449 }
7450 else if (sec->sh_type == SHT_IA_64_UNWIND)
7451 unwcount++;
7452 }
7453
7454 if (!unwcount)
7455 printf (_("\nThere are no unwind sections in this file.\n"));
7456
7457 while (unwcount-- > 0)
7458 {
7459 char * suffix;
7460 size_t len, len2;
7461
7462 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7463 i < elf_header.e_shnum; ++i, ++sec)
7464 if (sec->sh_type == SHT_IA_64_UNWIND)
7465 {
7466 unwsec = sec;
7467 break;
7468 }
7469 /* We have already counted the number of SHT_IA64_UNWIND
7470 sections so the loop above should never fail. */
7471 assert (unwsec != NULL);
7472
7473 unwstart = i + 1;
7474 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7475
7476 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7477 {
7478 /* We need to find which section group it is in. */
7479 struct group_list * g;
7480
7481 if (section_headers_groups == NULL
7482 || section_headers_groups [i] == NULL)
7483 i = elf_header.e_shnum;
7484 else
7485 {
7486 g = section_headers_groups [i]->root;
7487
7488 for (; g != NULL; g = g->next)
7489 {
7490 sec = section_headers + g->section_index;
7491
7492 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7493 break;
7494 }
7495
7496 if (g == NULL)
7497 i = elf_header.e_shnum;
7498 }
7499 }
7500 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7501 {
7502 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7503 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7504 suffix = SECTION_NAME (unwsec) + len;
7505 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7506 ++i, ++sec)
7507 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7508 && streq (SECTION_NAME (sec) + len2, suffix))
7509 break;
7510 }
7511 else
7512 {
7513 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7514 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7515 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7516 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7517 suffix = "";
7518 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7519 suffix = SECTION_NAME (unwsec) + len;
7520 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7521 ++i, ++sec)
7522 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7523 && streq (SECTION_NAME (sec) + len2, suffix))
7524 break;
7525 }
7526
7527 if (i == elf_header.e_shnum)
7528 {
7529 printf (_("\nCould not find unwind info section for "));
7530
7531 if (string_table == NULL)
7532 printf ("%d", unwsec->sh_name);
7533 else
7534 printf ("'%s'", printable_section_name (unwsec));
7535 }
7536 else
7537 {
7538 aux.info_addr = sec->sh_addr;
7539 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7540 sec->sh_size,
7541 _("unwind info"));
7542 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7543
7544 printf (_("\nUnwind section "));
7545
7546 if (string_table == NULL)
7547 printf ("%d", unwsec->sh_name);
7548 else
7549 printf ("'%s'", printable_section_name (unwsec));
7550
7551 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7552 (unsigned long) unwsec->sh_offset,
7553 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7554
7555 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7556 && aux.table_len > 0)
7557 dump_ia64_unwind (& aux);
7558
7559 if (aux.table)
7560 free ((char *) aux.table);
7561 if (aux.info)
7562 free ((char *) aux.info);
7563 aux.table = NULL;
7564 aux.info = NULL;
7565 }
7566 }
7567
7568 if (aux.symtab)
7569 free (aux.symtab);
7570 if (aux.strtab)
7571 free ((char *) aux.strtab);
7572
7573 return res;
7574 }
7575
7576 struct hppa_unw_table_entry
7577 {
7578 struct absaddr start;
7579 struct absaddr end;
7580 unsigned int Cannot_unwind:1; /* 0 */
7581 unsigned int Millicode:1; /* 1 */
7582 unsigned int Millicode_save_sr0:1; /* 2 */
7583 unsigned int Region_description:2; /* 3..4 */
7584 unsigned int reserved1:1; /* 5 */
7585 unsigned int Entry_SR:1; /* 6 */
7586 unsigned int Entry_FR:4; /* Number saved 7..10 */
7587 unsigned int Entry_GR:5; /* Number saved 11..15 */
7588 unsigned int Args_stored:1; /* 16 */
7589 unsigned int Variable_Frame:1; /* 17 */
7590 unsigned int Separate_Package_Body:1; /* 18 */
7591 unsigned int Frame_Extension_Millicode:1; /* 19 */
7592 unsigned int Stack_Overflow_Check:1; /* 20 */
7593 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7594 unsigned int Ada_Region:1; /* 22 */
7595 unsigned int cxx_info:1; /* 23 */
7596 unsigned int cxx_try_catch:1; /* 24 */
7597 unsigned int sched_entry_seq:1; /* 25 */
7598 unsigned int reserved2:1; /* 26 */
7599 unsigned int Save_SP:1; /* 27 */
7600 unsigned int Save_RP:1; /* 28 */
7601 unsigned int Save_MRP_in_frame:1; /* 29 */
7602 unsigned int extn_ptr_defined:1; /* 30 */
7603 unsigned int Cleanup_defined:1; /* 31 */
7604
7605 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7606 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7607 unsigned int Large_frame:1; /* 2 */
7608 unsigned int Pseudo_SP_Set:1; /* 3 */
7609 unsigned int reserved4:1; /* 4 */
7610 unsigned int Total_frame_size:27; /* 5..31 */
7611 };
7612
7613 struct hppa_unw_aux_info
7614 {
7615 struct hppa_unw_table_entry * table; /* Unwind table. */
7616 unsigned long table_len; /* Length of unwind table. */
7617 bfd_vma seg_base; /* Starting address of segment. */
7618 Elf_Internal_Sym * symtab; /* The symbol table. */
7619 unsigned long nsyms; /* Number of symbols. */
7620 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7621 unsigned long nfuns; /* Number of entries in funtab. */
7622 char * strtab; /* The string table. */
7623 unsigned long strtab_size; /* Size of string table. */
7624 };
7625
7626 static bfd_boolean
7627 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7628 {
7629 struct hppa_unw_table_entry * tp;
7630 unsigned long j, nfuns;
7631 bfd_boolean res = TRUE;
7632
7633 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7634 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7635 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7636 aux->funtab[nfuns++] = aux->symtab[j];
7637 aux->nfuns = nfuns;
7638 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7639
7640 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7641 {
7642 bfd_vma offset;
7643 const char * procname;
7644
7645 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7646 aux->strtab_size, tp->start, &procname,
7647 &offset);
7648
7649 fputs ("\n<", stdout);
7650
7651 if (procname)
7652 {
7653 fputs (procname, stdout);
7654
7655 if (offset)
7656 printf ("+%lx", (unsigned long) offset);
7657 }
7658
7659 fputs (">: [", stdout);
7660 print_vma (tp->start.offset, PREFIX_HEX);
7661 fputc ('-', stdout);
7662 print_vma (tp->end.offset, PREFIX_HEX);
7663 printf ("]\n\t");
7664
7665 #define PF(_m) if (tp->_m) printf (#_m " ");
7666 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7667 PF(Cannot_unwind);
7668 PF(Millicode);
7669 PF(Millicode_save_sr0);
7670 /* PV(Region_description); */
7671 PF(Entry_SR);
7672 PV(Entry_FR);
7673 PV(Entry_GR);
7674 PF(Args_stored);
7675 PF(Variable_Frame);
7676 PF(Separate_Package_Body);
7677 PF(Frame_Extension_Millicode);
7678 PF(Stack_Overflow_Check);
7679 PF(Two_Instruction_SP_Increment);
7680 PF(Ada_Region);
7681 PF(cxx_info);
7682 PF(cxx_try_catch);
7683 PF(sched_entry_seq);
7684 PF(Save_SP);
7685 PF(Save_RP);
7686 PF(Save_MRP_in_frame);
7687 PF(extn_ptr_defined);
7688 PF(Cleanup_defined);
7689 PF(MPE_XL_interrupt_marker);
7690 PF(HP_UX_interrupt_marker);
7691 PF(Large_frame);
7692 PF(Pseudo_SP_Set);
7693 PV(Total_frame_size);
7694 #undef PF
7695 #undef PV
7696 }
7697
7698 printf ("\n");
7699
7700 free (aux->funtab);
7701
7702 return res;
7703 }
7704
7705 static bfd_boolean
7706 slurp_hppa_unwind_table (FILE * file,
7707 struct hppa_unw_aux_info * aux,
7708 Elf_Internal_Shdr * sec)
7709 {
7710 unsigned long size, unw_ent_size, nentries, nrelas, i;
7711 Elf_Internal_Phdr * seg;
7712 struct hppa_unw_table_entry * tep;
7713 Elf_Internal_Shdr * relsec;
7714 Elf_Internal_Rela * rela;
7715 Elf_Internal_Rela * rp;
7716 unsigned char * table;
7717 unsigned char * tp;
7718 Elf_Internal_Sym * sym;
7719 const char * relname;
7720
7721 /* First, find the starting address of the segment that includes
7722 this section. */
7723 if (elf_header.e_phnum)
7724 {
7725 if (! get_program_headers (file))
7726 return FALSE;
7727
7728 for (seg = program_headers;
7729 seg < program_headers + elf_header.e_phnum;
7730 ++seg)
7731 {
7732 if (seg->p_type != PT_LOAD)
7733 continue;
7734
7735 if (sec->sh_addr >= seg->p_vaddr
7736 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7737 {
7738 aux->seg_base = seg->p_vaddr;
7739 break;
7740 }
7741 }
7742 }
7743
7744 /* Second, build the unwind table from the contents of the unwind
7745 section. */
7746 size = sec->sh_size;
7747 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7748 _("unwind table"));
7749 if (!table)
7750 return FALSE;
7751
7752 unw_ent_size = 16;
7753 nentries = size / unw_ent_size;
7754 size = unw_ent_size * nentries;
7755
7756 tep = aux->table = (struct hppa_unw_table_entry *)
7757 xcmalloc (nentries, sizeof (aux->table[0]));
7758
7759 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7760 {
7761 unsigned int tmp1, tmp2;
7762
7763 tep->start.section = SHN_UNDEF;
7764 tep->end.section = SHN_UNDEF;
7765
7766 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7767 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7768 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7769 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7770
7771 tep->start.offset += aux->seg_base;
7772 tep->end.offset += aux->seg_base;
7773
7774 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7775 tep->Millicode = (tmp1 >> 30) & 0x1;
7776 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7777 tep->Region_description = (tmp1 >> 27) & 0x3;
7778 tep->reserved1 = (tmp1 >> 26) & 0x1;
7779 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7780 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7781 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7782 tep->Args_stored = (tmp1 >> 15) & 0x1;
7783 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7784 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7785 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7786 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7787 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7788 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7789 tep->cxx_info = (tmp1 >> 8) & 0x1;
7790 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7791 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7792 tep->reserved2 = (tmp1 >> 5) & 0x1;
7793 tep->Save_SP = (tmp1 >> 4) & 0x1;
7794 tep->Save_RP = (tmp1 >> 3) & 0x1;
7795 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7796 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7797 tep->Cleanup_defined = tmp1 & 0x1;
7798
7799 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7800 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7801 tep->Large_frame = (tmp2 >> 29) & 0x1;
7802 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7803 tep->reserved4 = (tmp2 >> 27) & 0x1;
7804 tep->Total_frame_size = tmp2 & 0x7ffffff;
7805 }
7806 free (table);
7807
7808 /* Third, apply any relocations to the unwind table. */
7809 for (relsec = section_headers;
7810 relsec < section_headers + elf_header.e_shnum;
7811 ++relsec)
7812 {
7813 if (relsec->sh_type != SHT_RELA
7814 || relsec->sh_info >= elf_header.e_shnum
7815 || section_headers + relsec->sh_info != sec)
7816 continue;
7817
7818 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7819 & rela, & nrelas))
7820 return FALSE;
7821
7822 for (rp = rela; rp < rela + nrelas; ++rp)
7823 {
7824 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7825 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7826
7827 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7828 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7829 {
7830 warn (_("Skipping unexpected relocation type %s\n"), relname);
7831 continue;
7832 }
7833
7834 i = rp->r_offset / unw_ent_size;
7835
7836 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7837 {
7838 case 0:
7839 aux->table[i].start.section = sym->st_shndx;
7840 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7841 break;
7842 case 1:
7843 aux->table[i].end.section = sym->st_shndx;
7844 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7845 break;
7846 default:
7847 break;
7848 }
7849 }
7850
7851 free (rela);
7852 }
7853
7854 aux->table_len = nentries;
7855
7856 return TRUE;
7857 }
7858
7859 static bfd_boolean
7860 hppa_process_unwind (FILE * file)
7861 {
7862 struct hppa_unw_aux_info aux;
7863 Elf_Internal_Shdr * unwsec = NULL;
7864 Elf_Internal_Shdr * strsec;
7865 Elf_Internal_Shdr * sec;
7866 unsigned long i;
7867 bfd_boolean res = TRUE;
7868
7869 if (string_table == NULL)
7870 return FALSE;
7871
7872 memset (& aux, 0, sizeof (aux));
7873
7874 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7875 {
7876 if (sec->sh_type == SHT_SYMTAB
7877 && sec->sh_link < elf_header.e_shnum)
7878 {
7879 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7880
7881 strsec = section_headers + sec->sh_link;
7882 if (aux.strtab != NULL)
7883 {
7884 error (_("Multiple auxillary string tables encountered\n"));
7885 free (aux.strtab);
7886 res = FALSE;
7887 }
7888 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7889 1, strsec->sh_size,
7890 _("string table"));
7891 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7892 }
7893 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7894 unwsec = sec;
7895 }
7896
7897 if (!unwsec)
7898 printf (_("\nThere are no unwind sections in this file.\n"));
7899
7900 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7901 {
7902 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7903 {
7904 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7905 printable_section_name (sec),
7906 (unsigned long) sec->sh_offset,
7907 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7908
7909 if (! slurp_hppa_unwind_table (file, &aux, sec))
7910 res = FALSE;
7911
7912 if (aux.table_len > 0)
7913 {
7914 if (! dump_hppa_unwind (&aux))
7915 res = FALSE;
7916 }
7917
7918 if (aux.table)
7919 free ((char *) aux.table);
7920 aux.table = NULL;
7921 }
7922 }
7923
7924 if (aux.symtab)
7925 free (aux.symtab);
7926 if (aux.strtab)
7927 free ((char *) aux.strtab);
7928
7929 return res;
7930 }
7931
7932 struct arm_section
7933 {
7934 unsigned char * data; /* The unwind data. */
7935 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7936 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7937 unsigned long nrelas; /* The number of relocations. */
7938 unsigned int rel_type; /* REL or RELA ? */
7939 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7940 };
7941
7942 struct arm_unw_aux_info
7943 {
7944 FILE * file; /* The file containing the unwind sections. */
7945 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7946 unsigned long nsyms; /* Number of symbols. */
7947 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7948 unsigned long nfuns; /* Number of these symbols. */
7949 char * strtab; /* The file's string table. */
7950 unsigned long strtab_size; /* Size of string table. */
7951 };
7952
7953 static const char *
7954 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7955 bfd_vma fn, struct absaddr addr)
7956 {
7957 const char *procname;
7958 bfd_vma sym_offset;
7959
7960 if (addr.section == SHN_UNDEF)
7961 addr.offset = fn;
7962
7963 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7964 aux->strtab_size, addr, &procname,
7965 &sym_offset);
7966
7967 print_vma (fn, PREFIX_HEX);
7968
7969 if (procname)
7970 {
7971 fputs (" <", stdout);
7972 fputs (procname, stdout);
7973
7974 if (sym_offset)
7975 printf ("+0x%lx", (unsigned long) sym_offset);
7976 fputc ('>', stdout);
7977 }
7978
7979 return procname;
7980 }
7981
7982 static void
7983 arm_free_section (struct arm_section *arm_sec)
7984 {
7985 if (arm_sec->data != NULL)
7986 free (arm_sec->data);
7987
7988 if (arm_sec->rela != NULL)
7989 free (arm_sec->rela);
7990 }
7991
7992 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7993 cached section and install SEC instead.
7994 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7995 and return its valued in * WORDP, relocating if necessary.
7996 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7997 relocation's offset in ADDR.
7998 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7999 into the string table of the symbol associated with the reloc. If no
8000 reloc was applied store -1 there.
8001 5) Return TRUE upon success, FALSE otherwise. */
8002
8003 static bfd_boolean
8004 get_unwind_section_word (struct arm_unw_aux_info * aux,
8005 struct arm_section * arm_sec,
8006 Elf_Internal_Shdr * sec,
8007 bfd_vma word_offset,
8008 unsigned int * wordp,
8009 struct absaddr * addr,
8010 bfd_vma * sym_name)
8011 {
8012 Elf_Internal_Rela *rp;
8013 Elf_Internal_Sym *sym;
8014 const char * relname;
8015 unsigned int word;
8016 bfd_boolean wrapped;
8017
8018 if (sec == NULL || arm_sec == NULL)
8019 return FALSE;
8020
8021 addr->section = SHN_UNDEF;
8022 addr->offset = 0;
8023
8024 if (sym_name != NULL)
8025 *sym_name = (bfd_vma) -1;
8026
8027 /* If necessary, update the section cache. */
8028 if (sec != arm_sec->sec)
8029 {
8030 Elf_Internal_Shdr *relsec;
8031
8032 arm_free_section (arm_sec);
8033
8034 arm_sec->sec = sec;
8035 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
8036 sec->sh_size, _("unwind data"));
8037 arm_sec->rela = NULL;
8038 arm_sec->nrelas = 0;
8039
8040 for (relsec = section_headers;
8041 relsec < section_headers + elf_header.e_shnum;
8042 ++relsec)
8043 {
8044 if (relsec->sh_info >= elf_header.e_shnum
8045 || section_headers + relsec->sh_info != sec
8046 /* PR 15745: Check the section type as well. */
8047 || (relsec->sh_type != SHT_REL
8048 && relsec->sh_type != SHT_RELA))
8049 continue;
8050
8051 arm_sec->rel_type = relsec->sh_type;
8052 if (relsec->sh_type == SHT_REL)
8053 {
8054 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
8055 relsec->sh_size,
8056 & arm_sec->rela, & arm_sec->nrelas))
8057 return FALSE;
8058 }
8059 else /* relsec->sh_type == SHT_RELA */
8060 {
8061 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
8062 relsec->sh_size,
8063 & arm_sec->rela, & arm_sec->nrelas))
8064 return FALSE;
8065 }
8066 break;
8067 }
8068
8069 arm_sec->next_rela = arm_sec->rela;
8070 }
8071
8072 /* If there is no unwind data we can do nothing. */
8073 if (arm_sec->data == NULL)
8074 return FALSE;
8075
8076 /* If the offset is invalid then fail. */
8077 if (/* PR 21343 *//* PR 18879 */
8078 sec->sh_size < 4
8079 || word_offset > (sec->sh_size - 4)
8080 || ((bfd_signed_vma) word_offset) < 0)
8081 return FALSE;
8082
8083 /* Get the word at the required offset. */
8084 word = byte_get (arm_sec->data + word_offset, 4);
8085
8086 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8087 if (arm_sec->rela == NULL)
8088 {
8089 * wordp = word;
8090 return TRUE;
8091 }
8092
8093 /* Look through the relocs to find the one that applies to the provided offset. */
8094 wrapped = FALSE;
8095 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8096 {
8097 bfd_vma prelval, offset;
8098
8099 if (rp->r_offset > word_offset && !wrapped)
8100 {
8101 rp = arm_sec->rela;
8102 wrapped = TRUE;
8103 }
8104 if (rp->r_offset > word_offset)
8105 break;
8106
8107 if (rp->r_offset & 3)
8108 {
8109 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8110 (unsigned long) rp->r_offset);
8111 continue;
8112 }
8113
8114 if (rp->r_offset < word_offset)
8115 continue;
8116
8117 /* PR 17531: file: 027-161405-0.004 */
8118 if (aux->symtab == NULL)
8119 continue;
8120
8121 if (arm_sec->rel_type == SHT_REL)
8122 {
8123 offset = word & 0x7fffffff;
8124 if (offset & 0x40000000)
8125 offset |= ~ (bfd_vma) 0x7fffffff;
8126 }
8127 else if (arm_sec->rel_type == SHT_RELA)
8128 offset = rp->r_addend;
8129 else
8130 {
8131 error (_("Unknown section relocation type %d encountered\n"),
8132 arm_sec->rel_type);
8133 break;
8134 }
8135
8136 /* PR 17531 file: 027-1241568-0.004. */
8137 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8138 {
8139 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8140 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8141 break;
8142 }
8143
8144 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8145 offset += sym->st_value;
8146 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8147
8148 /* Check that we are processing the expected reloc type. */
8149 if (elf_header.e_machine == EM_ARM)
8150 {
8151 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8152 if (relname == NULL)
8153 {
8154 warn (_("Skipping unknown ARM relocation type: %d\n"),
8155 (int) ELF32_R_TYPE (rp->r_info));
8156 continue;
8157 }
8158
8159 if (streq (relname, "R_ARM_NONE"))
8160 continue;
8161
8162 if (! streq (relname, "R_ARM_PREL31"))
8163 {
8164 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8165 continue;
8166 }
8167 }
8168 else if (elf_header.e_machine == EM_TI_C6000)
8169 {
8170 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8171 if (relname == NULL)
8172 {
8173 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8174 (int) ELF32_R_TYPE (rp->r_info));
8175 continue;
8176 }
8177
8178 if (streq (relname, "R_C6000_NONE"))
8179 continue;
8180
8181 if (! streq (relname, "R_C6000_PREL31"))
8182 {
8183 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8184 continue;
8185 }
8186
8187 prelval >>= 1;
8188 }
8189 else
8190 {
8191 /* This function currently only supports ARM and TI unwinders. */
8192 warn (_("Only TI and ARM unwinders are currently supported\n"));
8193 break;
8194 }
8195
8196 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8197 addr->section = sym->st_shndx;
8198 addr->offset = offset;
8199
8200 if (sym_name)
8201 * sym_name = sym->st_name;
8202 break;
8203 }
8204
8205 *wordp = word;
8206 arm_sec->next_rela = rp;
8207
8208 return TRUE;
8209 }
8210
8211 static const char *tic6x_unwind_regnames[16] =
8212 {
8213 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8214 "A14", "A13", "A12", "A11", "A10",
8215 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8216 };
8217
8218 static void
8219 decode_tic6x_unwind_regmask (unsigned int mask)
8220 {
8221 int i;
8222
8223 for (i = 12; mask; mask >>= 1, i--)
8224 {
8225 if (mask & 1)
8226 {
8227 fputs (tic6x_unwind_regnames[i], stdout);
8228 if (mask > 1)
8229 fputs (", ", stdout);
8230 }
8231 }
8232 }
8233
8234 #define ADVANCE \
8235 if (remaining == 0 && more_words) \
8236 { \
8237 data_offset += 4; \
8238 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8239 data_offset, & word, & addr, NULL)) \
8240 return FALSE; \
8241 remaining = 4; \
8242 more_words--; \
8243 } \
8244
8245 #define GET_OP(OP) \
8246 ADVANCE; \
8247 if (remaining) \
8248 { \
8249 remaining--; \
8250 (OP) = word >> 24; \
8251 word <<= 8; \
8252 } \
8253 else \
8254 { \
8255 printf (_("[Truncated opcode]\n")); \
8256 return FALSE; \
8257 } \
8258 printf ("0x%02x ", OP)
8259
8260 static bfd_boolean
8261 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8262 unsigned int word,
8263 unsigned int remaining,
8264 unsigned int more_words,
8265 bfd_vma data_offset,
8266 Elf_Internal_Shdr * data_sec,
8267 struct arm_section * data_arm_sec)
8268 {
8269 struct absaddr addr;
8270 bfd_boolean res = TRUE;
8271
8272 /* Decode the unwinding instructions. */
8273 while (1)
8274 {
8275 unsigned int op, op2;
8276
8277 ADVANCE;
8278 if (remaining == 0)
8279 break;
8280 remaining--;
8281 op = word >> 24;
8282 word <<= 8;
8283
8284 printf (" 0x%02x ", op);
8285
8286 if ((op & 0xc0) == 0x00)
8287 {
8288 int offset = ((op & 0x3f) << 2) + 4;
8289
8290 printf (" vsp = vsp + %d", offset);
8291 }
8292 else if ((op & 0xc0) == 0x40)
8293 {
8294 int offset = ((op & 0x3f) << 2) + 4;
8295
8296 printf (" vsp = vsp - %d", offset);
8297 }
8298 else if ((op & 0xf0) == 0x80)
8299 {
8300 GET_OP (op2);
8301 if (op == 0x80 && op2 == 0)
8302 printf (_("Refuse to unwind"));
8303 else
8304 {
8305 unsigned int mask = ((op & 0x0f) << 8) | op2;
8306 bfd_boolean first = TRUE;
8307 int i;
8308
8309 printf ("pop {");
8310 for (i = 0; i < 12; i++)
8311 if (mask & (1 << i))
8312 {
8313 if (first)
8314 first = FALSE;
8315 else
8316 printf (", ");
8317 printf ("r%d", 4 + i);
8318 }
8319 printf ("}");
8320 }
8321 }
8322 else if ((op & 0xf0) == 0x90)
8323 {
8324 if (op == 0x9d || op == 0x9f)
8325 printf (_(" [Reserved]"));
8326 else
8327 printf (" vsp = r%d", op & 0x0f);
8328 }
8329 else if ((op & 0xf0) == 0xa0)
8330 {
8331 int end = 4 + (op & 0x07);
8332 bfd_boolean first = TRUE;
8333 int i;
8334
8335 printf (" pop {");
8336 for (i = 4; i <= end; i++)
8337 {
8338 if (first)
8339 first = FALSE;
8340 else
8341 printf (", ");
8342 printf ("r%d", i);
8343 }
8344 if (op & 0x08)
8345 {
8346 if (!first)
8347 printf (", ");
8348 printf ("r14");
8349 }
8350 printf ("}");
8351 }
8352 else if (op == 0xb0)
8353 printf (_(" finish"));
8354 else if (op == 0xb1)
8355 {
8356 GET_OP (op2);
8357 if (op2 == 0 || (op2 & 0xf0) != 0)
8358 printf (_("[Spare]"));
8359 else
8360 {
8361 unsigned int mask = op2 & 0x0f;
8362 bfd_boolean first = TRUE;
8363 int i;
8364
8365 printf ("pop {");
8366 for (i = 0; i < 12; i++)
8367 if (mask & (1 << i))
8368 {
8369 if (first)
8370 first = FALSE;
8371 else
8372 printf (", ");
8373 printf ("r%d", i);
8374 }
8375 printf ("}");
8376 }
8377 }
8378 else if (op == 0xb2)
8379 {
8380 unsigned char buf[9];
8381 unsigned int i, len;
8382 unsigned long offset;
8383
8384 for (i = 0; i < sizeof (buf); i++)
8385 {
8386 GET_OP (buf[i]);
8387 if ((buf[i] & 0x80) == 0)
8388 break;
8389 }
8390 if (i == sizeof (buf))
8391 {
8392 error (_("corrupt change to vsp"));
8393 res = FALSE;
8394 }
8395 else
8396 {
8397 offset = read_uleb128 (buf, &len, buf + i + 1);
8398 assert (len == i + 1);
8399 offset = offset * 4 + 0x204;
8400 printf ("vsp = vsp + %ld", offset);
8401 }
8402 }
8403 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8404 {
8405 unsigned int first, last;
8406
8407 GET_OP (op2);
8408 first = op2 >> 4;
8409 last = op2 & 0x0f;
8410 if (op == 0xc8)
8411 first = first + 16;
8412 printf ("pop {D%d", first);
8413 if (last)
8414 printf ("-D%d", first + last);
8415 printf ("}");
8416 }
8417 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8418 {
8419 unsigned int count = op & 0x07;
8420
8421 printf ("pop {D8");
8422 if (count)
8423 printf ("-D%d", 8 + count);
8424 printf ("}");
8425 }
8426 else if (op >= 0xc0 && op <= 0xc5)
8427 {
8428 unsigned int count = op & 0x07;
8429
8430 printf (" pop {wR10");
8431 if (count)
8432 printf ("-wR%d", 10 + count);
8433 printf ("}");
8434 }
8435 else if (op == 0xc6)
8436 {
8437 unsigned int first, last;
8438
8439 GET_OP (op2);
8440 first = op2 >> 4;
8441 last = op2 & 0x0f;
8442 printf ("pop {wR%d", first);
8443 if (last)
8444 printf ("-wR%d", first + last);
8445 printf ("}");
8446 }
8447 else if (op == 0xc7)
8448 {
8449 GET_OP (op2);
8450 if (op2 == 0 || (op2 & 0xf0) != 0)
8451 printf (_("[Spare]"));
8452 else
8453 {
8454 unsigned int mask = op2 & 0x0f;
8455 bfd_boolean first = TRUE;
8456 int i;
8457
8458 printf ("pop {");
8459 for (i = 0; i < 4; i++)
8460 if (mask & (1 << i))
8461 {
8462 if (first)
8463 first = FALSE;
8464 else
8465 printf (", ");
8466 printf ("wCGR%d", i);
8467 }
8468 printf ("}");
8469 }
8470 }
8471 else
8472 {
8473 printf (_(" [unsupported opcode]"));
8474 res = FALSE;
8475 }
8476
8477 printf ("\n");
8478 }
8479
8480 return res;
8481 }
8482
8483 static bfd_boolean
8484 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8485 unsigned int word,
8486 unsigned int remaining,
8487 unsigned int more_words,
8488 bfd_vma data_offset,
8489 Elf_Internal_Shdr * data_sec,
8490 struct arm_section * data_arm_sec)
8491 {
8492 struct absaddr addr;
8493
8494 /* Decode the unwinding instructions. */
8495 while (1)
8496 {
8497 unsigned int op, op2;
8498
8499 ADVANCE;
8500 if (remaining == 0)
8501 break;
8502 remaining--;
8503 op = word >> 24;
8504 word <<= 8;
8505
8506 printf (" 0x%02x ", op);
8507
8508 if ((op & 0xc0) == 0x00)
8509 {
8510 int offset = ((op & 0x3f) << 3) + 8;
8511 printf (" sp = sp + %d", offset);
8512 }
8513 else if ((op & 0xc0) == 0x80)
8514 {
8515 GET_OP (op2);
8516 if (op == 0x80 && op2 == 0)
8517 printf (_("Refuse to unwind"));
8518 else
8519 {
8520 unsigned int mask = ((op & 0x1f) << 8) | op2;
8521 if (op & 0x20)
8522 printf ("pop compact {");
8523 else
8524 printf ("pop {");
8525
8526 decode_tic6x_unwind_regmask (mask);
8527 printf("}");
8528 }
8529 }
8530 else if ((op & 0xf0) == 0xc0)
8531 {
8532 unsigned int reg;
8533 unsigned int nregs;
8534 unsigned int i;
8535 const char *name;
8536 struct
8537 {
8538 unsigned int offset;
8539 unsigned int reg;
8540 } regpos[16];
8541
8542 /* Scan entire instruction first so that GET_OP output is not
8543 interleaved with disassembly. */
8544 nregs = 0;
8545 for (i = 0; nregs < (op & 0xf); i++)
8546 {
8547 GET_OP (op2);
8548 reg = op2 >> 4;
8549 if (reg != 0xf)
8550 {
8551 regpos[nregs].offset = i * 2;
8552 regpos[nregs].reg = reg;
8553 nregs++;
8554 }
8555
8556 reg = op2 & 0xf;
8557 if (reg != 0xf)
8558 {
8559 regpos[nregs].offset = i * 2 + 1;
8560 regpos[nregs].reg = reg;
8561 nregs++;
8562 }
8563 }
8564
8565 printf (_("pop frame {"));
8566 reg = nregs - 1;
8567 for (i = i * 2; i > 0; i--)
8568 {
8569 if (regpos[reg].offset == i - 1)
8570 {
8571 name = tic6x_unwind_regnames[regpos[reg].reg];
8572 if (reg > 0)
8573 reg--;
8574 }
8575 else
8576 name = _("[pad]");
8577
8578 fputs (name, stdout);
8579 if (i > 1)
8580 printf (", ");
8581 }
8582
8583 printf ("}");
8584 }
8585 else if (op == 0xd0)
8586 printf (" MOV FP, SP");
8587 else if (op == 0xd1)
8588 printf (" __c6xabi_pop_rts");
8589 else if (op == 0xd2)
8590 {
8591 unsigned char buf[9];
8592 unsigned int i, len;
8593 unsigned long offset;
8594
8595 for (i = 0; i < sizeof (buf); i++)
8596 {
8597 GET_OP (buf[i]);
8598 if ((buf[i] & 0x80) == 0)
8599 break;
8600 }
8601 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8602 if (i == sizeof (buf))
8603 {
8604 warn (_("Corrupt stack pointer adjustment detected\n"));
8605 return FALSE;
8606 }
8607
8608 offset = read_uleb128 (buf, &len, buf + i + 1);
8609 assert (len == i + 1);
8610 offset = offset * 8 + 0x408;
8611 printf (_("sp = sp + %ld"), offset);
8612 }
8613 else if ((op & 0xf0) == 0xe0)
8614 {
8615 if ((op & 0x0f) == 7)
8616 printf (" RETURN");
8617 else
8618 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8619 }
8620 else
8621 {
8622 printf (_(" [unsupported opcode]"));
8623 }
8624 putchar ('\n');
8625 }
8626
8627 return TRUE;
8628 }
8629
8630 static bfd_vma
8631 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8632 {
8633 bfd_vma offset;
8634
8635 offset = word & 0x7fffffff;
8636 if (offset & 0x40000000)
8637 offset |= ~ (bfd_vma) 0x7fffffff;
8638
8639 if (elf_header.e_machine == EM_TI_C6000)
8640 offset <<= 1;
8641
8642 return offset + where;
8643 }
8644
8645 static bfd_boolean
8646 decode_arm_unwind (struct arm_unw_aux_info * aux,
8647 unsigned int word,
8648 unsigned int remaining,
8649 bfd_vma data_offset,
8650 Elf_Internal_Shdr * data_sec,
8651 struct arm_section * data_arm_sec)
8652 {
8653 int per_index;
8654 unsigned int more_words = 0;
8655 struct absaddr addr;
8656 bfd_vma sym_name = (bfd_vma) -1;
8657 bfd_boolean res = FALSE;
8658
8659 if (remaining == 0)
8660 {
8661 /* Fetch the first word.
8662 Note - when decoding an object file the address extracted
8663 here will always be 0. So we also pass in the sym_name
8664 parameter so that we can find the symbol associated with
8665 the personality routine. */
8666 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8667 & word, & addr, & sym_name))
8668 return FALSE;
8669
8670 remaining = 4;
8671 }
8672
8673 if ((word & 0x80000000) == 0)
8674 {
8675 /* Expand prel31 for personality routine. */
8676 bfd_vma fn;
8677 const char *procname;
8678
8679 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8680 printf (_(" Personality routine: "));
8681 if (fn == 0
8682 && addr.section == SHN_UNDEF && addr.offset == 0
8683 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8684 {
8685 procname = aux->strtab + sym_name;
8686 print_vma (fn, PREFIX_HEX);
8687 if (procname)
8688 {
8689 fputs (" <", stdout);
8690 fputs (procname, stdout);
8691 fputc ('>', stdout);
8692 }
8693 }
8694 else
8695 procname = arm_print_vma_and_name (aux, fn, addr);
8696 fputc ('\n', stdout);
8697
8698 /* The GCC personality routines use the standard compact
8699 encoding, starting with one byte giving the number of
8700 words. */
8701 if (procname != NULL
8702 && (const_strneq (procname, "__gcc_personality_v0")
8703 || const_strneq (procname, "__gxx_personality_v0")
8704 || const_strneq (procname, "__gcj_personality_v0")
8705 || const_strneq (procname, "__gnu_objc_personality_v0")))
8706 {
8707 remaining = 0;
8708 more_words = 1;
8709 ADVANCE;
8710 if (!remaining)
8711 {
8712 printf (_(" [Truncated data]\n"));
8713 return FALSE;
8714 }
8715 more_words = word >> 24;
8716 word <<= 8;
8717 remaining--;
8718 per_index = -1;
8719 }
8720 else
8721 return TRUE;
8722 }
8723 else
8724 {
8725 /* ARM EHABI Section 6.3:
8726
8727 An exception-handling table entry for the compact model looks like:
8728
8729 31 30-28 27-24 23-0
8730 -- ----- ----- ----
8731 1 0 index Data for personalityRoutine[index] */
8732
8733 if (elf_header.e_machine == EM_ARM
8734 && (word & 0x70000000))
8735 {
8736 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8737 res = FALSE;
8738 }
8739
8740 per_index = (word >> 24) & 0x7f;
8741 printf (_(" Compact model index: %d\n"), per_index);
8742 if (per_index == 0)
8743 {
8744 more_words = 0;
8745 word <<= 8;
8746 remaining--;
8747 }
8748 else if (per_index < 3)
8749 {
8750 more_words = (word >> 16) & 0xff;
8751 word <<= 16;
8752 remaining -= 2;
8753 }
8754 }
8755
8756 switch (elf_header.e_machine)
8757 {
8758 case EM_ARM:
8759 if (per_index < 3)
8760 {
8761 if (! decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8762 data_offset, data_sec, data_arm_sec))
8763 res = FALSE;
8764 }
8765 else
8766 {
8767 warn (_("Unknown ARM compact model index encountered\n"));
8768 printf (_(" [reserved]\n"));
8769 res = FALSE;
8770 }
8771 break;
8772
8773 case EM_TI_C6000:
8774 if (per_index < 3)
8775 {
8776 if (! decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8777 data_offset, data_sec, data_arm_sec))
8778 res = FALSE;
8779 }
8780 else if (per_index < 5)
8781 {
8782 if (((word >> 17) & 0x7f) == 0x7f)
8783 printf (_(" Restore stack from frame pointer\n"));
8784 else
8785 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8786 printf (_(" Registers restored: "));
8787 if (per_index == 4)
8788 printf (" (compact) ");
8789 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8790 putchar ('\n');
8791 printf (_(" Return register: %s\n"),
8792 tic6x_unwind_regnames[word & 0xf]);
8793 }
8794 else
8795 printf (_(" [reserved (%d)]\n"), per_index);
8796 break;
8797
8798 default:
8799 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8800 elf_header.e_machine);
8801 res = FALSE;
8802 }
8803
8804 /* Decode the descriptors. Not implemented. */
8805
8806 return res;
8807 }
8808
8809 static bfd_boolean
8810 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8811 {
8812 struct arm_section exidx_arm_sec, extab_arm_sec;
8813 unsigned int i, exidx_len;
8814 unsigned long j, nfuns;
8815 bfd_boolean res = TRUE;
8816
8817 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8818 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8819 exidx_len = exidx_sec->sh_size / 8;
8820
8821 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8822 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8823 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8824 aux->funtab[nfuns++] = aux->symtab[j];
8825 aux->nfuns = nfuns;
8826 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8827
8828 for (i = 0; i < exidx_len; i++)
8829 {
8830 unsigned int exidx_fn, exidx_entry;
8831 struct absaddr fn_addr, entry_addr;
8832 bfd_vma fn;
8833
8834 fputc ('\n', stdout);
8835
8836 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8837 8 * i, & exidx_fn, & fn_addr, NULL)
8838 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8839 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8840 {
8841 free (aux->funtab);
8842 arm_free_section (& exidx_arm_sec);
8843 arm_free_section (& extab_arm_sec);
8844 return FALSE;
8845 }
8846
8847 /* ARM EHABI, Section 5:
8848 An index table entry consists of 2 words.
8849 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8850 if (exidx_fn & 0x80000000)
8851 {
8852 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8853 res = FALSE;
8854 }
8855
8856 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8857
8858 arm_print_vma_and_name (aux, fn, fn_addr);
8859 fputs (": ", stdout);
8860
8861 if (exidx_entry == 1)
8862 {
8863 print_vma (exidx_entry, PREFIX_HEX);
8864 fputs (" [cantunwind]\n", stdout);
8865 }
8866 else if (exidx_entry & 0x80000000)
8867 {
8868 print_vma (exidx_entry, PREFIX_HEX);
8869 fputc ('\n', stdout);
8870 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8871 }
8872 else
8873 {
8874 bfd_vma table, table_offset = 0;
8875 Elf_Internal_Shdr *table_sec;
8876
8877 fputs ("@", stdout);
8878 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8879 print_vma (table, PREFIX_HEX);
8880 printf ("\n");
8881
8882 /* Locate the matching .ARM.extab. */
8883 if (entry_addr.section != SHN_UNDEF
8884 && entry_addr.section < elf_header.e_shnum)
8885 {
8886 table_sec = section_headers + entry_addr.section;
8887 table_offset = entry_addr.offset;
8888 /* PR 18879 */
8889 if (table_offset > table_sec->sh_size
8890 || ((bfd_signed_vma) table_offset) < 0)
8891 {
8892 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8893 (unsigned long) table_offset,
8894 printable_section_name (table_sec));
8895 res = FALSE;
8896 continue;
8897 }
8898 }
8899 else
8900 {
8901 table_sec = find_section_by_address (table);
8902 if (table_sec != NULL)
8903 table_offset = table - table_sec->sh_addr;
8904 }
8905
8906 if (table_sec == NULL)
8907 {
8908 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8909 (unsigned long) table);
8910 res = FALSE;
8911 continue;
8912 }
8913
8914 if (! decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8915 &extab_arm_sec))
8916 res = FALSE;
8917 }
8918 }
8919
8920 printf ("\n");
8921
8922 free (aux->funtab);
8923 arm_free_section (&exidx_arm_sec);
8924 arm_free_section (&extab_arm_sec);
8925
8926 return res;
8927 }
8928
8929 /* Used for both ARM and C6X unwinding tables. */
8930
8931 static bfd_boolean
8932 arm_process_unwind (FILE *file)
8933 {
8934 struct arm_unw_aux_info aux;
8935 Elf_Internal_Shdr *unwsec = NULL;
8936 Elf_Internal_Shdr *strsec;
8937 Elf_Internal_Shdr *sec;
8938 unsigned long i;
8939 unsigned int sec_type;
8940 bfd_boolean res = TRUE;
8941
8942 switch (elf_header.e_machine)
8943 {
8944 case EM_ARM:
8945 sec_type = SHT_ARM_EXIDX;
8946 break;
8947
8948 case EM_TI_C6000:
8949 sec_type = SHT_C6000_UNWIND;
8950 break;
8951
8952 default:
8953 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8954 elf_header.e_machine);
8955 return FALSE;
8956 }
8957
8958 if (string_table == NULL)
8959 return FALSE;
8960
8961 memset (& aux, 0, sizeof (aux));
8962 aux.file = file;
8963
8964 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8965 {
8966 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8967 {
8968 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8969
8970 strsec = section_headers + sec->sh_link;
8971
8972 /* PR binutils/17531 file: 011-12666-0.004. */
8973 if (aux.strtab != NULL)
8974 {
8975 error (_("Multiple string tables found in file.\n"));
8976 free (aux.strtab);
8977 res = FALSE;
8978 }
8979 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8980 1, strsec->sh_size, _("string table"));
8981 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8982 }
8983 else if (sec->sh_type == sec_type)
8984 unwsec = sec;
8985 }
8986
8987 if (unwsec == NULL)
8988 printf (_("\nThere are no unwind sections in this file.\n"));
8989 else
8990 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8991 {
8992 if (sec->sh_type == sec_type)
8993 {
8994 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8995 printable_section_name (sec),
8996 (unsigned long) sec->sh_offset,
8997 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8998
8999 if (! dump_arm_unwind (&aux, sec))
9000 res = FALSE;
9001 }
9002 }
9003
9004 if (aux.symtab)
9005 free (aux.symtab);
9006 if (aux.strtab)
9007 free ((char *) aux.strtab);
9008
9009 return res;
9010 }
9011
9012 static bfd_boolean
9013 process_unwind (FILE * file)
9014 {
9015 struct unwind_handler
9016 {
9017 unsigned int machtype;
9018 bfd_boolean (* handler)(FILE *);
9019 } handlers[] =
9020 {
9021 { EM_ARM, arm_process_unwind },
9022 { EM_IA_64, ia64_process_unwind },
9023 { EM_PARISC, hppa_process_unwind },
9024 { EM_TI_C6000, arm_process_unwind },
9025 { 0, NULL }
9026 };
9027 int i;
9028
9029 if (!do_unwind)
9030 return TRUE;
9031
9032 for (i = 0; handlers[i].handler != NULL; i++)
9033 if (elf_header.e_machine == handlers[i].machtype)
9034 return handlers[i].handler (file);
9035
9036 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9037 get_machine_name (elf_header.e_machine));
9038 return TRUE;
9039 }
9040
9041 static void
9042 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9043 {
9044 switch (entry->d_tag)
9045 {
9046 case DT_MIPS_FLAGS:
9047 if (entry->d_un.d_val == 0)
9048 printf (_("NONE"));
9049 else
9050 {
9051 static const char * opts[] =
9052 {
9053 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9054 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9055 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9056 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9057 "RLD_ORDER_SAFE"
9058 };
9059 unsigned int cnt;
9060 bfd_boolean first = TRUE;
9061
9062 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9063 if (entry->d_un.d_val & (1 << cnt))
9064 {
9065 printf ("%s%s", first ? "" : " ", opts[cnt]);
9066 first = FALSE;
9067 }
9068 }
9069 break;
9070
9071 case DT_MIPS_IVERSION:
9072 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9073 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9074 else
9075 {
9076 char buf[40];
9077 sprintf_vma (buf, entry->d_un.d_ptr);
9078 /* Note: coded this way so that there is a single string for translation. */
9079 printf (_("<corrupt: %s>"), buf);
9080 }
9081 break;
9082
9083 case DT_MIPS_TIME_STAMP:
9084 {
9085 char timebuf[128];
9086 struct tm * tmp;
9087 time_t atime = entry->d_un.d_val;
9088
9089 tmp = gmtime (&atime);
9090 /* PR 17531: file: 6accc532. */
9091 if (tmp == NULL)
9092 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9093 else
9094 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9095 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9096 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9097 printf (_("Time Stamp: %s"), timebuf);
9098 }
9099 break;
9100
9101 case DT_MIPS_RLD_VERSION:
9102 case DT_MIPS_LOCAL_GOTNO:
9103 case DT_MIPS_CONFLICTNO:
9104 case DT_MIPS_LIBLISTNO:
9105 case DT_MIPS_SYMTABNO:
9106 case DT_MIPS_UNREFEXTNO:
9107 case DT_MIPS_HIPAGENO:
9108 case DT_MIPS_DELTA_CLASS_NO:
9109 case DT_MIPS_DELTA_INSTANCE_NO:
9110 case DT_MIPS_DELTA_RELOC_NO:
9111 case DT_MIPS_DELTA_SYM_NO:
9112 case DT_MIPS_DELTA_CLASSSYM_NO:
9113 case DT_MIPS_COMPACT_SIZE:
9114 print_vma (entry->d_un.d_val, DEC);
9115 break;
9116
9117 default:
9118 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9119 }
9120 putchar ('\n');
9121 }
9122
9123 static void
9124 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9125 {
9126 switch (entry->d_tag)
9127 {
9128 case DT_HP_DLD_FLAGS:
9129 {
9130 static struct
9131 {
9132 long int bit;
9133 const char * str;
9134 }
9135 flags[] =
9136 {
9137 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9138 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9139 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9140 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9141 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9142 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9143 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9144 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9145 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9146 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9147 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9148 { DT_HP_GST, "HP_GST" },
9149 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9150 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9151 { DT_HP_NODELETE, "HP_NODELETE" },
9152 { DT_HP_GROUP, "HP_GROUP" },
9153 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9154 };
9155 bfd_boolean first = TRUE;
9156 size_t cnt;
9157 bfd_vma val = entry->d_un.d_val;
9158
9159 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9160 if (val & flags[cnt].bit)
9161 {
9162 if (! first)
9163 putchar (' ');
9164 fputs (flags[cnt].str, stdout);
9165 first = FALSE;
9166 val ^= flags[cnt].bit;
9167 }
9168
9169 if (val != 0 || first)
9170 {
9171 if (! first)
9172 putchar (' ');
9173 print_vma (val, HEX);
9174 }
9175 }
9176 break;
9177
9178 default:
9179 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9180 break;
9181 }
9182 putchar ('\n');
9183 }
9184
9185 #ifdef BFD64
9186
9187 /* VMS vs Unix time offset and factor. */
9188
9189 #define VMS_EPOCH_OFFSET 35067168000000000LL
9190 #define VMS_GRANULARITY_FACTOR 10000000
9191
9192 /* Display a VMS time in a human readable format. */
9193
9194 static void
9195 print_vms_time (bfd_int64_t vmstime)
9196 {
9197 struct tm *tm;
9198 time_t unxtime;
9199
9200 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9201 tm = gmtime (&unxtime);
9202 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9203 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9204 tm->tm_hour, tm->tm_min, tm->tm_sec);
9205 }
9206 #endif /* BFD64 */
9207
9208 static void
9209 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9210 {
9211 switch (entry->d_tag)
9212 {
9213 case DT_IA_64_PLT_RESERVE:
9214 /* First 3 slots reserved. */
9215 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9216 printf (" -- ");
9217 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9218 break;
9219
9220 case DT_IA_64_VMS_LINKTIME:
9221 #ifdef BFD64
9222 print_vms_time (entry->d_un.d_val);
9223 #endif
9224 break;
9225
9226 case DT_IA_64_VMS_LNKFLAGS:
9227 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9228 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9229 printf (" CALL_DEBUG");
9230 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9231 printf (" NOP0BUFS");
9232 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9233 printf (" P0IMAGE");
9234 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9235 printf (" MKTHREADS");
9236 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9237 printf (" UPCALLS");
9238 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9239 printf (" IMGSTA");
9240 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9241 printf (" INITIALIZE");
9242 if (entry->d_un.d_val & VMS_LF_MAIN)
9243 printf (" MAIN");
9244 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9245 printf (" EXE_INIT");
9246 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9247 printf (" TBK_IN_IMG");
9248 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9249 printf (" DBG_IN_IMG");
9250 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9251 printf (" TBK_IN_DSF");
9252 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9253 printf (" DBG_IN_DSF");
9254 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9255 printf (" SIGNATURES");
9256 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9257 printf (" REL_SEG_OFF");
9258 break;
9259
9260 default:
9261 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9262 break;
9263 }
9264 putchar ('\n');
9265 }
9266
9267 static bfd_boolean
9268 get_32bit_dynamic_section (FILE * file)
9269 {
9270 Elf32_External_Dyn * edyn;
9271 Elf32_External_Dyn * ext;
9272 Elf_Internal_Dyn * entry;
9273
9274 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9275 dynamic_size, _("dynamic section"));
9276 if (!edyn)
9277 return FALSE;
9278
9279 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9280 might not have the luxury of section headers. Look for the DT_NULL
9281 terminator to determine the number of entries. */
9282 for (ext = edyn, dynamic_nent = 0;
9283 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9284 ext++)
9285 {
9286 dynamic_nent++;
9287 if (BYTE_GET (ext->d_tag) == DT_NULL)
9288 break;
9289 }
9290
9291 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9292 sizeof (* entry));
9293 if (dynamic_section == NULL)
9294 {
9295 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9296 (unsigned long) dynamic_nent);
9297 free (edyn);
9298 return FALSE;
9299 }
9300
9301 for (ext = edyn, entry = dynamic_section;
9302 entry < dynamic_section + dynamic_nent;
9303 ext++, entry++)
9304 {
9305 entry->d_tag = BYTE_GET (ext->d_tag);
9306 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9307 }
9308
9309 free (edyn);
9310
9311 return TRUE;
9312 }
9313
9314 static bfd_boolean
9315 get_64bit_dynamic_section (FILE * file)
9316 {
9317 Elf64_External_Dyn * edyn;
9318 Elf64_External_Dyn * ext;
9319 Elf_Internal_Dyn * entry;
9320
9321 /* Read in the data. */
9322 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9323 dynamic_size, _("dynamic section"));
9324 if (!edyn)
9325 return FALSE;
9326
9327 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9328 might not have the luxury of section headers. Look for the DT_NULL
9329 terminator to determine the number of entries. */
9330 for (ext = edyn, dynamic_nent = 0;
9331 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9332 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9333 ext++)
9334 {
9335 dynamic_nent++;
9336 if (BYTE_GET (ext->d_tag) == DT_NULL)
9337 break;
9338 }
9339
9340 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9341 sizeof (* entry));
9342 if (dynamic_section == NULL)
9343 {
9344 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9345 (unsigned long) dynamic_nent);
9346 free (edyn);
9347 return FALSE;
9348 }
9349
9350 /* Convert from external to internal formats. */
9351 for (ext = edyn, entry = dynamic_section;
9352 entry < dynamic_section + dynamic_nent;
9353 ext++, entry++)
9354 {
9355 entry->d_tag = BYTE_GET (ext->d_tag);
9356 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9357 }
9358
9359 free (edyn);
9360
9361 return TRUE;
9362 }
9363
9364 static void
9365 print_dynamic_flags (bfd_vma flags)
9366 {
9367 bfd_boolean first = TRUE;
9368
9369 while (flags)
9370 {
9371 bfd_vma flag;
9372
9373 flag = flags & - flags;
9374 flags &= ~ flag;
9375
9376 if (first)
9377 first = FALSE;
9378 else
9379 putc (' ', stdout);
9380
9381 switch (flag)
9382 {
9383 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9384 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9385 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9386 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9387 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9388 default: fputs (_("unknown"), stdout); break;
9389 }
9390 }
9391 puts ("");
9392 }
9393
9394 /* Parse and display the contents of the dynamic section. */
9395
9396 static bfd_boolean
9397 process_dynamic_section (FILE * file)
9398 {
9399 Elf_Internal_Dyn * entry;
9400
9401 if (dynamic_size == 0)
9402 {
9403 if (do_dynamic)
9404 printf (_("\nThere is no dynamic section in this file.\n"));
9405
9406 return TRUE;
9407 }
9408
9409 if (is_32bit_elf)
9410 {
9411 if (! get_32bit_dynamic_section (file))
9412 return FALSE;
9413 }
9414 else
9415 {
9416 if (! get_64bit_dynamic_section (file))
9417 return FALSE;
9418 }
9419
9420 /* Find the appropriate symbol table. */
9421 if (dynamic_symbols == NULL)
9422 {
9423 for (entry = dynamic_section;
9424 entry < dynamic_section + dynamic_nent;
9425 ++entry)
9426 {
9427 Elf_Internal_Shdr section;
9428
9429 if (entry->d_tag != DT_SYMTAB)
9430 continue;
9431
9432 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9433
9434 /* Since we do not know how big the symbol table is,
9435 we default to reading in the entire file (!) and
9436 processing that. This is overkill, I know, but it
9437 should work. */
9438 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9439
9440 if (archive_file_offset != 0)
9441 section.sh_size = archive_file_size - section.sh_offset;
9442 else
9443 {
9444 if (fseek (file, 0, SEEK_END))
9445 error (_("Unable to seek to end of file!\n"));
9446
9447 section.sh_size = ftell (file) - section.sh_offset;
9448 }
9449
9450 if (is_32bit_elf)
9451 section.sh_entsize = sizeof (Elf32_External_Sym);
9452 else
9453 section.sh_entsize = sizeof (Elf64_External_Sym);
9454 section.sh_name = string_table_length;
9455
9456 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9457 if (num_dynamic_syms < 1)
9458 {
9459 error (_("Unable to determine the number of symbols to load\n"));
9460 continue;
9461 }
9462 }
9463 }
9464
9465 /* Similarly find a string table. */
9466 if (dynamic_strings == NULL)
9467 {
9468 for (entry = dynamic_section;
9469 entry < dynamic_section + dynamic_nent;
9470 ++entry)
9471 {
9472 unsigned long offset;
9473 long str_tab_len;
9474
9475 if (entry->d_tag != DT_STRTAB)
9476 continue;
9477
9478 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9479
9480 /* Since we do not know how big the string table is,
9481 we default to reading in the entire file (!) and
9482 processing that. This is overkill, I know, but it
9483 should work. */
9484
9485 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9486
9487 if (archive_file_offset != 0)
9488 str_tab_len = archive_file_size - offset;
9489 else
9490 {
9491 if (fseek (file, 0, SEEK_END))
9492 error (_("Unable to seek to end of file\n"));
9493 str_tab_len = ftell (file) - offset;
9494 }
9495
9496 if (str_tab_len < 1)
9497 {
9498 error
9499 (_("Unable to determine the length of the dynamic string table\n"));
9500 continue;
9501 }
9502
9503 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9504 str_tab_len,
9505 _("dynamic string table"));
9506 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9507 break;
9508 }
9509 }
9510
9511 /* And find the syminfo section if available. */
9512 if (dynamic_syminfo == NULL)
9513 {
9514 unsigned long syminsz = 0;
9515
9516 for (entry = dynamic_section;
9517 entry < dynamic_section + dynamic_nent;
9518 ++entry)
9519 {
9520 if (entry->d_tag == DT_SYMINENT)
9521 {
9522 /* Note: these braces are necessary to avoid a syntax
9523 error from the SunOS4 C compiler. */
9524 /* PR binutils/17531: A corrupt file can trigger this test.
9525 So do not use an assert, instead generate an error message. */
9526 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9527 error (_("Bad value (%d) for SYMINENT entry\n"),
9528 (int) entry->d_un.d_val);
9529 }
9530 else if (entry->d_tag == DT_SYMINSZ)
9531 syminsz = entry->d_un.d_val;
9532 else if (entry->d_tag == DT_SYMINFO)
9533 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9534 syminsz);
9535 }
9536
9537 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9538 {
9539 Elf_External_Syminfo * extsyminfo;
9540 Elf_External_Syminfo * extsym;
9541 Elf_Internal_Syminfo * syminfo;
9542
9543 /* There is a syminfo section. Read the data. */
9544 extsyminfo = (Elf_External_Syminfo *)
9545 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9546 _("symbol information"));
9547 if (!extsyminfo)
9548 return FALSE;
9549
9550 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9551 if (dynamic_syminfo == NULL)
9552 {
9553 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9554 (unsigned long) syminsz);
9555 return FALSE;
9556 }
9557
9558 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9559 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9560 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9561 ++syminfo, ++extsym)
9562 {
9563 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9564 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9565 }
9566
9567 free (extsyminfo);
9568 }
9569 }
9570
9571 if (do_dynamic && dynamic_addr)
9572 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9573 dynamic_addr, (unsigned long) dynamic_nent);
9574 if (do_dynamic)
9575 printf (_(" Tag Type Name/Value\n"));
9576
9577 for (entry = dynamic_section;
9578 entry < dynamic_section + dynamic_nent;
9579 entry++)
9580 {
9581 if (do_dynamic)
9582 {
9583 const char * dtype;
9584
9585 putchar (' ');
9586 print_vma (entry->d_tag, FULL_HEX);
9587 dtype = get_dynamic_type (entry->d_tag);
9588 printf (" (%s)%*s", dtype,
9589 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
9590 }
9591
9592 switch (entry->d_tag)
9593 {
9594 case DT_FLAGS:
9595 if (do_dynamic)
9596 print_dynamic_flags (entry->d_un.d_val);
9597 break;
9598
9599 case DT_AUXILIARY:
9600 case DT_FILTER:
9601 case DT_CONFIG:
9602 case DT_DEPAUDIT:
9603 case DT_AUDIT:
9604 if (do_dynamic)
9605 {
9606 switch (entry->d_tag)
9607 {
9608 case DT_AUXILIARY:
9609 printf (_("Auxiliary library"));
9610 break;
9611
9612 case DT_FILTER:
9613 printf (_("Filter library"));
9614 break;
9615
9616 case DT_CONFIG:
9617 printf (_("Configuration file"));
9618 break;
9619
9620 case DT_DEPAUDIT:
9621 printf (_("Dependency audit library"));
9622 break;
9623
9624 case DT_AUDIT:
9625 printf (_("Audit library"));
9626 break;
9627 }
9628
9629 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9630 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9631 else
9632 {
9633 printf (": ");
9634 print_vma (entry->d_un.d_val, PREFIX_HEX);
9635 putchar ('\n');
9636 }
9637 }
9638 break;
9639
9640 case DT_FEATURE:
9641 if (do_dynamic)
9642 {
9643 printf (_("Flags:"));
9644
9645 if (entry->d_un.d_val == 0)
9646 printf (_(" None\n"));
9647 else
9648 {
9649 unsigned long int val = entry->d_un.d_val;
9650
9651 if (val & DTF_1_PARINIT)
9652 {
9653 printf (" PARINIT");
9654 val ^= DTF_1_PARINIT;
9655 }
9656 if (val & DTF_1_CONFEXP)
9657 {
9658 printf (" CONFEXP");
9659 val ^= DTF_1_CONFEXP;
9660 }
9661 if (val != 0)
9662 printf (" %lx", val);
9663 puts ("");
9664 }
9665 }
9666 break;
9667
9668 case DT_POSFLAG_1:
9669 if (do_dynamic)
9670 {
9671 printf (_("Flags:"));
9672
9673 if (entry->d_un.d_val == 0)
9674 printf (_(" None\n"));
9675 else
9676 {
9677 unsigned long int val = entry->d_un.d_val;
9678
9679 if (val & DF_P1_LAZYLOAD)
9680 {
9681 printf (" LAZYLOAD");
9682 val ^= DF_P1_LAZYLOAD;
9683 }
9684 if (val & DF_P1_GROUPPERM)
9685 {
9686 printf (" GROUPPERM");
9687 val ^= DF_P1_GROUPPERM;
9688 }
9689 if (val != 0)
9690 printf (" %lx", val);
9691 puts ("");
9692 }
9693 }
9694 break;
9695
9696 case DT_FLAGS_1:
9697 if (do_dynamic)
9698 {
9699 printf (_("Flags:"));
9700 if (entry->d_un.d_val == 0)
9701 printf (_(" None\n"));
9702 else
9703 {
9704 unsigned long int val = entry->d_un.d_val;
9705
9706 if (val & DF_1_NOW)
9707 {
9708 printf (" NOW");
9709 val ^= DF_1_NOW;
9710 }
9711 if (val & DF_1_GLOBAL)
9712 {
9713 printf (" GLOBAL");
9714 val ^= DF_1_GLOBAL;
9715 }
9716 if (val & DF_1_GROUP)
9717 {
9718 printf (" GROUP");
9719 val ^= DF_1_GROUP;
9720 }
9721 if (val & DF_1_NODELETE)
9722 {
9723 printf (" NODELETE");
9724 val ^= DF_1_NODELETE;
9725 }
9726 if (val & DF_1_LOADFLTR)
9727 {
9728 printf (" LOADFLTR");
9729 val ^= DF_1_LOADFLTR;
9730 }
9731 if (val & DF_1_INITFIRST)
9732 {
9733 printf (" INITFIRST");
9734 val ^= DF_1_INITFIRST;
9735 }
9736 if (val & DF_1_NOOPEN)
9737 {
9738 printf (" NOOPEN");
9739 val ^= DF_1_NOOPEN;
9740 }
9741 if (val & DF_1_ORIGIN)
9742 {
9743 printf (" ORIGIN");
9744 val ^= DF_1_ORIGIN;
9745 }
9746 if (val & DF_1_DIRECT)
9747 {
9748 printf (" DIRECT");
9749 val ^= DF_1_DIRECT;
9750 }
9751 if (val & DF_1_TRANS)
9752 {
9753 printf (" TRANS");
9754 val ^= DF_1_TRANS;
9755 }
9756 if (val & DF_1_INTERPOSE)
9757 {
9758 printf (" INTERPOSE");
9759 val ^= DF_1_INTERPOSE;
9760 }
9761 if (val & DF_1_NODEFLIB)
9762 {
9763 printf (" NODEFLIB");
9764 val ^= DF_1_NODEFLIB;
9765 }
9766 if (val & DF_1_NODUMP)
9767 {
9768 printf (" NODUMP");
9769 val ^= DF_1_NODUMP;
9770 }
9771 if (val & DF_1_CONFALT)
9772 {
9773 printf (" CONFALT");
9774 val ^= DF_1_CONFALT;
9775 }
9776 if (val & DF_1_ENDFILTEE)
9777 {
9778 printf (" ENDFILTEE");
9779 val ^= DF_1_ENDFILTEE;
9780 }
9781 if (val & DF_1_DISPRELDNE)
9782 {
9783 printf (" DISPRELDNE");
9784 val ^= DF_1_DISPRELDNE;
9785 }
9786 if (val & DF_1_DISPRELPND)
9787 {
9788 printf (" DISPRELPND");
9789 val ^= DF_1_DISPRELPND;
9790 }
9791 if (val & DF_1_NODIRECT)
9792 {
9793 printf (" NODIRECT");
9794 val ^= DF_1_NODIRECT;
9795 }
9796 if (val & DF_1_IGNMULDEF)
9797 {
9798 printf (" IGNMULDEF");
9799 val ^= DF_1_IGNMULDEF;
9800 }
9801 if (val & DF_1_NOKSYMS)
9802 {
9803 printf (" NOKSYMS");
9804 val ^= DF_1_NOKSYMS;
9805 }
9806 if (val & DF_1_NOHDR)
9807 {
9808 printf (" NOHDR");
9809 val ^= DF_1_NOHDR;
9810 }
9811 if (val & DF_1_EDITED)
9812 {
9813 printf (" EDITED");
9814 val ^= DF_1_EDITED;
9815 }
9816 if (val & DF_1_NORELOC)
9817 {
9818 printf (" NORELOC");
9819 val ^= DF_1_NORELOC;
9820 }
9821 if (val & DF_1_SYMINTPOSE)
9822 {
9823 printf (" SYMINTPOSE");
9824 val ^= DF_1_SYMINTPOSE;
9825 }
9826 if (val & DF_1_GLOBAUDIT)
9827 {
9828 printf (" GLOBAUDIT");
9829 val ^= DF_1_GLOBAUDIT;
9830 }
9831 if (val & DF_1_SINGLETON)
9832 {
9833 printf (" SINGLETON");
9834 val ^= DF_1_SINGLETON;
9835 }
9836 if (val & DF_1_STUB)
9837 {
9838 printf (" STUB");
9839 val ^= DF_1_STUB;
9840 }
9841 if (val & DF_1_PIE)
9842 {
9843 printf (" PIE");
9844 val ^= DF_1_PIE;
9845 }
9846 if (val != 0)
9847 printf (" %lx", val);
9848 puts ("");
9849 }
9850 }
9851 break;
9852
9853 case DT_PLTREL:
9854 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9855 if (do_dynamic)
9856 puts (get_dynamic_type (entry->d_un.d_val));
9857 break;
9858
9859 case DT_NULL :
9860 case DT_NEEDED :
9861 case DT_PLTGOT :
9862 case DT_HASH :
9863 case DT_STRTAB :
9864 case DT_SYMTAB :
9865 case DT_RELA :
9866 case DT_INIT :
9867 case DT_FINI :
9868 case DT_SONAME :
9869 case DT_RPATH :
9870 case DT_SYMBOLIC:
9871 case DT_REL :
9872 case DT_DEBUG :
9873 case DT_TEXTREL :
9874 case DT_JMPREL :
9875 case DT_RUNPATH :
9876 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9877
9878 if (do_dynamic)
9879 {
9880 char * name;
9881
9882 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9883 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9884 else
9885 name = NULL;
9886
9887 if (name)
9888 {
9889 switch (entry->d_tag)
9890 {
9891 case DT_NEEDED:
9892 printf (_("Shared library: [%s]"), name);
9893
9894 if (streq (name, program_interpreter))
9895 printf (_(" program interpreter"));
9896 break;
9897
9898 case DT_SONAME:
9899 printf (_("Library soname: [%s]"), name);
9900 break;
9901
9902 case DT_RPATH:
9903 printf (_("Library rpath: [%s]"), name);
9904 break;
9905
9906 case DT_RUNPATH:
9907 printf (_("Library runpath: [%s]"), name);
9908 break;
9909
9910 default:
9911 print_vma (entry->d_un.d_val, PREFIX_HEX);
9912 break;
9913 }
9914 }
9915 else
9916 print_vma (entry->d_un.d_val, PREFIX_HEX);
9917
9918 putchar ('\n');
9919 }
9920 break;
9921
9922 case DT_PLTRELSZ:
9923 case DT_RELASZ :
9924 case DT_STRSZ :
9925 case DT_RELSZ :
9926 case DT_RELAENT :
9927 case DT_SYMENT :
9928 case DT_RELENT :
9929 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9930 /* Fall through. */
9931 case DT_PLTPADSZ:
9932 case DT_MOVEENT :
9933 case DT_MOVESZ :
9934 case DT_INIT_ARRAYSZ:
9935 case DT_FINI_ARRAYSZ:
9936 case DT_GNU_CONFLICTSZ:
9937 case DT_GNU_LIBLISTSZ:
9938 if (do_dynamic)
9939 {
9940 print_vma (entry->d_un.d_val, UNSIGNED);
9941 printf (_(" (bytes)\n"));
9942 }
9943 break;
9944
9945 case DT_VERDEFNUM:
9946 case DT_VERNEEDNUM:
9947 case DT_RELACOUNT:
9948 case DT_RELCOUNT:
9949 if (do_dynamic)
9950 {
9951 print_vma (entry->d_un.d_val, UNSIGNED);
9952 putchar ('\n');
9953 }
9954 break;
9955
9956 case DT_SYMINSZ:
9957 case DT_SYMINENT:
9958 case DT_SYMINFO:
9959 case DT_USED:
9960 case DT_INIT_ARRAY:
9961 case DT_FINI_ARRAY:
9962 if (do_dynamic)
9963 {
9964 if (entry->d_tag == DT_USED
9965 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9966 {
9967 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9968
9969 if (*name)
9970 {
9971 printf (_("Not needed object: [%s]\n"), name);
9972 break;
9973 }
9974 }
9975
9976 print_vma (entry->d_un.d_val, PREFIX_HEX);
9977 putchar ('\n');
9978 }
9979 break;
9980
9981 case DT_BIND_NOW:
9982 /* The value of this entry is ignored. */
9983 if (do_dynamic)
9984 putchar ('\n');
9985 break;
9986
9987 case DT_GNU_PRELINKED:
9988 if (do_dynamic)
9989 {
9990 struct tm * tmp;
9991 time_t atime = entry->d_un.d_val;
9992
9993 tmp = gmtime (&atime);
9994 /* PR 17533 file: 041-1244816-0.004. */
9995 if (tmp == NULL)
9996 printf (_("<corrupt time val: %lx"),
9997 (unsigned long) atime);
9998 else
9999 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10000 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10001 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10002
10003 }
10004 break;
10005
10006 case DT_GNU_HASH:
10007 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10008 if (do_dynamic)
10009 {
10010 print_vma (entry->d_un.d_val, PREFIX_HEX);
10011 putchar ('\n');
10012 }
10013 break;
10014
10015 default:
10016 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10017 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10018 entry->d_un.d_val;
10019
10020 if (do_dynamic)
10021 {
10022 switch (elf_header.e_machine)
10023 {
10024 case EM_MIPS:
10025 case EM_MIPS_RS3_LE:
10026 dynamic_section_mips_val (entry);
10027 break;
10028 case EM_PARISC:
10029 dynamic_section_parisc_val (entry);
10030 break;
10031 case EM_IA_64:
10032 dynamic_section_ia64_val (entry);
10033 break;
10034 default:
10035 print_vma (entry->d_un.d_val, PREFIX_HEX);
10036 putchar ('\n');
10037 }
10038 }
10039 break;
10040 }
10041 }
10042
10043 return TRUE;
10044 }
10045
10046 static char *
10047 get_ver_flags (unsigned int flags)
10048 {
10049 static char buff[32];
10050
10051 buff[0] = 0;
10052
10053 if (flags == 0)
10054 return _("none");
10055
10056 if (flags & VER_FLG_BASE)
10057 strcat (buff, "BASE");
10058
10059 if (flags & VER_FLG_WEAK)
10060 {
10061 if (flags & VER_FLG_BASE)
10062 strcat (buff, " | ");
10063
10064 strcat (buff, "WEAK");
10065 }
10066
10067 if (flags & VER_FLG_INFO)
10068 {
10069 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10070 strcat (buff, " | ");
10071
10072 strcat (buff, "INFO");
10073 }
10074
10075 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10076 {
10077 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10078 strcat (buff, " | ");
10079
10080 strcat (buff, _("<unknown>"));
10081 }
10082
10083 return buff;
10084 }
10085
10086 /* Display the contents of the version sections. */
10087
10088 static bfd_boolean
10089 process_version_sections (FILE * file)
10090 {
10091 Elf_Internal_Shdr * section;
10092 unsigned i;
10093 bfd_boolean found = FALSE;
10094
10095 if (! do_version)
10096 return TRUE;
10097
10098 for (i = 0, section = section_headers;
10099 i < elf_header.e_shnum;
10100 i++, section++)
10101 {
10102 switch (section->sh_type)
10103 {
10104 case SHT_GNU_verdef:
10105 {
10106 Elf_External_Verdef * edefs;
10107 unsigned int idx;
10108 unsigned int cnt;
10109 unsigned int end;
10110 char * endbuf;
10111
10112 found = TRUE;
10113
10114 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10115 printable_section_name (section),
10116 section->sh_info);
10117
10118 printf (_(" Addr: 0x"));
10119 printf_vma (section->sh_addr);
10120 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10121 (unsigned long) section->sh_offset, section->sh_link,
10122 printable_section_name_from_index (section->sh_link));
10123
10124 edefs = (Elf_External_Verdef *)
10125 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10126 _("version definition section"));
10127 if (!edefs)
10128 break;
10129 endbuf = (char *) edefs + section->sh_size;
10130
10131 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10132 end = (section->sh_info < section->sh_size
10133 ? section->sh_info : section->sh_size);
10134 for (idx = cnt = 0; cnt < end; ++cnt)
10135 {
10136 char * vstart;
10137 Elf_External_Verdef * edef;
10138 Elf_Internal_Verdef ent;
10139 Elf_External_Verdaux * eaux;
10140 Elf_Internal_Verdaux aux;
10141 unsigned int isum;
10142 int j;
10143
10144 /* Check for very large indices. */
10145 if (idx > (size_t) (endbuf - (char *) edefs))
10146 break;
10147
10148 vstart = ((char *) edefs) + idx;
10149 if (vstart + sizeof (*edef) > endbuf)
10150 break;
10151
10152 edef = (Elf_External_Verdef *) vstart;
10153
10154 ent.vd_version = BYTE_GET (edef->vd_version);
10155 ent.vd_flags = BYTE_GET (edef->vd_flags);
10156 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10157 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10158 ent.vd_hash = BYTE_GET (edef->vd_hash);
10159 ent.vd_aux = BYTE_GET (edef->vd_aux);
10160 ent.vd_next = BYTE_GET (edef->vd_next);
10161
10162 printf (_(" %#06x: Rev: %d Flags: %s"),
10163 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10164
10165 printf (_(" Index: %d Cnt: %d "),
10166 ent.vd_ndx, ent.vd_cnt);
10167
10168 /* Check for overflow. */
10169 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart))
10170 break;
10171
10172 vstart += ent.vd_aux;
10173
10174 eaux = (Elf_External_Verdaux *) vstart;
10175
10176 aux.vda_name = BYTE_GET (eaux->vda_name);
10177 aux.vda_next = BYTE_GET (eaux->vda_next);
10178
10179 if (VALID_DYNAMIC_NAME (aux.vda_name))
10180 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10181 else
10182 printf (_("Name index: %ld\n"), aux.vda_name);
10183
10184 isum = idx + ent.vd_aux;
10185
10186 for (j = 1; j < ent.vd_cnt; j++)
10187 {
10188 /* Check for overflow. */
10189 if (aux.vda_next > (size_t) (endbuf - vstart))
10190 break;
10191
10192 isum += aux.vda_next;
10193 vstart += aux.vda_next;
10194
10195 eaux = (Elf_External_Verdaux *) vstart;
10196 if (vstart + sizeof (*eaux) > endbuf)
10197 break;
10198
10199 aux.vda_name = BYTE_GET (eaux->vda_name);
10200 aux.vda_next = BYTE_GET (eaux->vda_next);
10201
10202 if (VALID_DYNAMIC_NAME (aux.vda_name))
10203 printf (_(" %#06x: Parent %d: %s\n"),
10204 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10205 else
10206 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10207 isum, j, aux.vda_name);
10208 }
10209
10210 if (j < ent.vd_cnt)
10211 printf (_(" Version def aux past end of section\n"));
10212
10213 /* PR 17531:
10214 file: id:000001,src:000172+005151,op:splice,rep:2. */
10215 if (idx + ent.vd_next < idx)
10216 break;
10217
10218 idx += ent.vd_next;
10219 }
10220
10221 if (cnt < section->sh_info)
10222 printf (_(" Version definition past end of section\n"));
10223
10224 free (edefs);
10225 }
10226 break;
10227
10228 case SHT_GNU_verneed:
10229 {
10230 Elf_External_Verneed * eneed;
10231 unsigned int idx;
10232 unsigned int cnt;
10233 char * endbuf;
10234
10235 found = TRUE;
10236
10237 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10238 printable_section_name (section), section->sh_info);
10239
10240 printf (_(" Addr: 0x"));
10241 printf_vma (section->sh_addr);
10242 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10243 (unsigned long) section->sh_offset, section->sh_link,
10244 printable_section_name_from_index (section->sh_link));
10245
10246 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10247 section->sh_offset, 1,
10248 section->sh_size,
10249 _("Version Needs section"));
10250 if (!eneed)
10251 break;
10252 endbuf = (char *) eneed + section->sh_size;
10253
10254 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10255 {
10256 Elf_External_Verneed * entry;
10257 Elf_Internal_Verneed ent;
10258 unsigned int isum;
10259 int j;
10260 char * vstart;
10261
10262 if (idx > (size_t) (endbuf - (char *) eneed))
10263 break;
10264
10265 vstart = ((char *) eneed) + idx;
10266 if (vstart + sizeof (*entry) > endbuf)
10267 break;
10268
10269 entry = (Elf_External_Verneed *) vstart;
10270
10271 ent.vn_version = BYTE_GET (entry->vn_version);
10272 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10273 ent.vn_file = BYTE_GET (entry->vn_file);
10274 ent.vn_aux = BYTE_GET (entry->vn_aux);
10275 ent.vn_next = BYTE_GET (entry->vn_next);
10276
10277 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10278
10279 if (VALID_DYNAMIC_NAME (ent.vn_file))
10280 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10281 else
10282 printf (_(" File: %lx"), ent.vn_file);
10283
10284 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10285
10286 /* Check for overflow. */
10287 if (ent.vn_aux > (size_t) (endbuf - vstart))
10288 break;
10289 vstart += ent.vn_aux;
10290
10291 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10292 {
10293 Elf_External_Vernaux * eaux;
10294 Elf_Internal_Vernaux aux;
10295
10296 if (vstart + sizeof (*eaux) > endbuf)
10297 break;
10298 eaux = (Elf_External_Vernaux *) vstart;
10299
10300 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10301 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10302 aux.vna_other = BYTE_GET (eaux->vna_other);
10303 aux.vna_name = BYTE_GET (eaux->vna_name);
10304 aux.vna_next = BYTE_GET (eaux->vna_next);
10305
10306 if (VALID_DYNAMIC_NAME (aux.vna_name))
10307 printf (_(" %#06x: Name: %s"),
10308 isum, GET_DYNAMIC_NAME (aux.vna_name));
10309 else
10310 printf (_(" %#06x: Name index: %lx"),
10311 isum, aux.vna_name);
10312
10313 printf (_(" Flags: %s Version: %d\n"),
10314 get_ver_flags (aux.vna_flags), aux.vna_other);
10315
10316 /* Check for overflow. */
10317 if (aux.vna_next > (size_t) (endbuf - vstart)
10318 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10319 {
10320 warn (_("Invalid vna_next field of %lx\n"),
10321 aux.vna_next);
10322 j = ent.vn_cnt;
10323 break;
10324 }
10325 isum += aux.vna_next;
10326 vstart += aux.vna_next;
10327 }
10328
10329 if (j < ent.vn_cnt)
10330 warn (_("Missing Version Needs auxillary information\n"));
10331
10332 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10333 {
10334 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10335 cnt = section->sh_info;
10336 break;
10337 }
10338 idx += ent.vn_next;
10339 }
10340
10341 if (cnt < section->sh_info)
10342 warn (_("Missing Version Needs information\n"));
10343
10344 free (eneed);
10345 }
10346 break;
10347
10348 case SHT_GNU_versym:
10349 {
10350 Elf_Internal_Shdr * link_section;
10351 size_t total;
10352 unsigned int cnt;
10353 unsigned char * edata;
10354 unsigned short * data;
10355 char * strtab;
10356 Elf_Internal_Sym * symbols;
10357 Elf_Internal_Shdr * string_sec;
10358 unsigned long num_syms;
10359 long off;
10360
10361 if (section->sh_link >= elf_header.e_shnum)
10362 break;
10363
10364 link_section = section_headers + section->sh_link;
10365 total = section->sh_size / sizeof (Elf_External_Versym);
10366
10367 if (link_section->sh_link >= elf_header.e_shnum)
10368 break;
10369
10370 found = TRUE;
10371
10372 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10373 if (symbols == NULL)
10374 break;
10375
10376 string_sec = section_headers + link_section->sh_link;
10377
10378 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10379 string_sec->sh_size,
10380 _("version string table"));
10381 if (!strtab)
10382 {
10383 free (symbols);
10384 break;
10385 }
10386
10387 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10388 printable_section_name (section), (unsigned long) total);
10389
10390 printf (_(" Addr: "));
10391 printf_vma (section->sh_addr);
10392 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10393 (unsigned long) section->sh_offset, section->sh_link,
10394 printable_section_name (link_section));
10395
10396 off = offset_from_vma (file,
10397 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10398 total * sizeof (short));
10399 edata = (unsigned char *) get_data (NULL, file, off, total,
10400 sizeof (short),
10401 _("version symbol data"));
10402 if (!edata)
10403 {
10404 free (strtab);
10405 free (symbols);
10406 break;
10407 }
10408
10409 data = (short unsigned int *) cmalloc (total, sizeof (short));
10410
10411 for (cnt = total; cnt --;)
10412 data[cnt] = byte_get (edata + cnt * sizeof (short),
10413 sizeof (short));
10414
10415 free (edata);
10416
10417 for (cnt = 0; cnt < total; cnt += 4)
10418 {
10419 int j, nn;
10420 char *name;
10421 char *invalid = _("*invalid*");
10422
10423 printf (" %03x:", cnt);
10424
10425 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10426 switch (data[cnt + j])
10427 {
10428 case 0:
10429 fputs (_(" 0 (*local*) "), stdout);
10430 break;
10431
10432 case 1:
10433 fputs (_(" 1 (*global*) "), stdout);
10434 break;
10435
10436 default:
10437 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10438 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10439
10440 /* If this index value is greater than the size of the symbols
10441 array, break to avoid an out-of-bounds read. */
10442 if ((unsigned long)(cnt + j) >= num_syms)
10443 {
10444 warn (_("invalid index into symbol array\n"));
10445 break;
10446 }
10447
10448 name = NULL;
10449 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10450 {
10451 Elf_Internal_Verneed ivn;
10452 unsigned long offset;
10453
10454 offset = offset_from_vma
10455 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10456 sizeof (Elf_External_Verneed));
10457
10458 do
10459 {
10460 Elf_Internal_Vernaux ivna;
10461 Elf_External_Verneed evn;
10462 Elf_External_Vernaux evna;
10463 unsigned long a_off;
10464
10465 if (get_data (&evn, file, offset, sizeof (evn), 1,
10466 _("version need")) == NULL)
10467 break;
10468
10469 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10470 ivn.vn_next = BYTE_GET (evn.vn_next);
10471
10472 a_off = offset + ivn.vn_aux;
10473
10474 do
10475 {
10476 if (get_data (&evna, file, a_off, sizeof (evna),
10477 1, _("version need aux (2)")) == NULL)
10478 {
10479 ivna.vna_next = 0;
10480 ivna.vna_other = 0;
10481 }
10482 else
10483 {
10484 ivna.vna_next = BYTE_GET (evna.vna_next);
10485 ivna.vna_other = BYTE_GET (evna.vna_other);
10486 }
10487
10488 a_off += ivna.vna_next;
10489 }
10490 while (ivna.vna_other != data[cnt + j]
10491 && ivna.vna_next != 0);
10492
10493 if (ivna.vna_other == data[cnt + j])
10494 {
10495 ivna.vna_name = BYTE_GET (evna.vna_name);
10496
10497 if (ivna.vna_name >= string_sec->sh_size)
10498 name = invalid;
10499 else
10500 name = strtab + ivna.vna_name;
10501 break;
10502 }
10503
10504 offset += ivn.vn_next;
10505 }
10506 while (ivn.vn_next);
10507 }
10508
10509 if (data[cnt + j] != 0x8001
10510 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10511 {
10512 Elf_Internal_Verdef ivd;
10513 Elf_External_Verdef evd;
10514 unsigned long offset;
10515
10516 offset = offset_from_vma
10517 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10518 sizeof evd);
10519
10520 do
10521 {
10522 if (get_data (&evd, file, offset, sizeof (evd), 1,
10523 _("version def")) == NULL)
10524 {
10525 ivd.vd_next = 0;
10526 /* PR 17531: file: 046-1082287-0.004. */
10527 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10528 break;
10529 }
10530 else
10531 {
10532 ivd.vd_next = BYTE_GET (evd.vd_next);
10533 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10534 }
10535
10536 offset += ivd.vd_next;
10537 }
10538 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10539 && ivd.vd_next != 0);
10540
10541 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10542 {
10543 Elf_External_Verdaux evda;
10544 Elf_Internal_Verdaux ivda;
10545
10546 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10547
10548 if (get_data (&evda, file,
10549 offset - ivd.vd_next + ivd.vd_aux,
10550 sizeof (evda), 1,
10551 _("version def aux")) == NULL)
10552 break;
10553
10554 ivda.vda_name = BYTE_GET (evda.vda_name);
10555
10556 if (ivda.vda_name >= string_sec->sh_size)
10557 name = invalid;
10558 else if (name != NULL && name != invalid)
10559 name = _("*both*");
10560 else
10561 name = strtab + ivda.vda_name;
10562 }
10563 }
10564 if (name != NULL)
10565 nn += printf ("(%s%-*s",
10566 name,
10567 12 - (int) strlen (name),
10568 ")");
10569
10570 if (nn < 18)
10571 printf ("%*c", 18 - nn, ' ');
10572 }
10573
10574 putchar ('\n');
10575 }
10576
10577 free (data);
10578 free (strtab);
10579 free (symbols);
10580 }
10581 break;
10582
10583 default:
10584 break;
10585 }
10586 }
10587
10588 if (! found)
10589 printf (_("\nNo version information found in this file.\n"));
10590
10591 return TRUE;
10592 }
10593
10594 static const char *
10595 get_symbol_binding (unsigned int binding)
10596 {
10597 static char buff[32];
10598
10599 switch (binding)
10600 {
10601 case STB_LOCAL: return "LOCAL";
10602 case STB_GLOBAL: return "GLOBAL";
10603 case STB_WEAK: return "WEAK";
10604 default:
10605 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10606 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10607 binding);
10608 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10609 {
10610 if (binding == STB_GNU_UNIQUE
10611 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10612 /* GNU is still using the default value 0. */
10613 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10614 return "UNIQUE";
10615 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10616 }
10617 else
10618 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10619 return buff;
10620 }
10621 }
10622
10623 static const char *
10624 get_symbol_type (unsigned int type)
10625 {
10626 static char buff[32];
10627
10628 switch (type)
10629 {
10630 case STT_NOTYPE: return "NOTYPE";
10631 case STT_OBJECT: return "OBJECT";
10632 case STT_FUNC: return "FUNC";
10633 case STT_SECTION: return "SECTION";
10634 case STT_FILE: return "FILE";
10635 case STT_COMMON: return "COMMON";
10636 case STT_TLS: return "TLS";
10637 case STT_RELC: return "RELC";
10638 case STT_SRELC: return "SRELC";
10639 default:
10640 if (type >= STT_LOPROC && type <= STT_HIPROC)
10641 {
10642 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10643 return "THUMB_FUNC";
10644
10645 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10646 return "REGISTER";
10647
10648 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10649 return "PARISC_MILLI";
10650
10651 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10652 }
10653 else if (type >= STT_LOOS && type <= STT_HIOS)
10654 {
10655 if (elf_header.e_machine == EM_PARISC)
10656 {
10657 if (type == STT_HP_OPAQUE)
10658 return "HP_OPAQUE";
10659 if (type == STT_HP_STUB)
10660 return "HP_STUB";
10661 }
10662
10663 if (type == STT_GNU_IFUNC
10664 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10665 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10666 /* GNU is still using the default value 0. */
10667 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10668 return "IFUNC";
10669
10670 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10671 }
10672 else
10673 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10674 return buff;
10675 }
10676 }
10677
10678 static const char *
10679 get_symbol_visibility (unsigned int visibility)
10680 {
10681 switch (visibility)
10682 {
10683 case STV_DEFAULT: return "DEFAULT";
10684 case STV_INTERNAL: return "INTERNAL";
10685 case STV_HIDDEN: return "HIDDEN";
10686 case STV_PROTECTED: return "PROTECTED";
10687 default:
10688 error (_("Unrecognized visibility value: %u"), visibility);
10689 return _("<unknown>");
10690 }
10691 }
10692
10693 static const char *
10694 get_solaris_symbol_visibility (unsigned int visibility)
10695 {
10696 switch (visibility)
10697 {
10698 case 4: return "EXPORTED";
10699 case 5: return "SINGLETON";
10700 case 6: return "ELIMINATE";
10701 default: return get_symbol_visibility (visibility);
10702 }
10703 }
10704
10705 static const char *
10706 get_mips_symbol_other (unsigned int other)
10707 {
10708 switch (other)
10709 {
10710 case STO_OPTIONAL: return "OPTIONAL";
10711 case STO_MIPS_PLT: return "MIPS PLT";
10712 case STO_MIPS_PIC: return "MIPS PIC";
10713 case STO_MICROMIPS: return "MICROMIPS";
10714 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
10715 case STO_MIPS16: return "MIPS16";
10716 default: return NULL;
10717 }
10718 }
10719
10720 static const char *
10721 get_ia64_symbol_other (unsigned int other)
10722 {
10723 if (is_ia64_vms ())
10724 {
10725 static char res[32];
10726
10727 res[0] = 0;
10728
10729 /* Function types is for images and .STB files only. */
10730 switch (elf_header.e_type)
10731 {
10732 case ET_DYN:
10733 case ET_EXEC:
10734 switch (VMS_ST_FUNC_TYPE (other))
10735 {
10736 case VMS_SFT_CODE_ADDR:
10737 strcat (res, " CA");
10738 break;
10739 case VMS_SFT_SYMV_IDX:
10740 strcat (res, " VEC");
10741 break;
10742 case VMS_SFT_FD:
10743 strcat (res, " FD");
10744 break;
10745 case VMS_SFT_RESERVE:
10746 strcat (res, " RSV");
10747 break;
10748 default:
10749 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10750 VMS_ST_FUNC_TYPE (other));
10751 strcat (res, " <unknown>");
10752 break;
10753 }
10754 break;
10755 default:
10756 break;
10757 }
10758 switch (VMS_ST_LINKAGE (other))
10759 {
10760 case VMS_STL_IGNORE:
10761 strcat (res, " IGN");
10762 break;
10763 case VMS_STL_RESERVE:
10764 strcat (res, " RSV");
10765 break;
10766 case VMS_STL_STD:
10767 strcat (res, " STD");
10768 break;
10769 case VMS_STL_LNK:
10770 strcat (res, " LNK");
10771 break;
10772 default:
10773 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10774 VMS_ST_LINKAGE (other));
10775 strcat (res, " <unknown>");
10776 break;
10777 }
10778
10779 if (res[0] != 0)
10780 return res + 1;
10781 else
10782 return res;
10783 }
10784 return NULL;
10785 }
10786
10787 static const char *
10788 get_ppc64_symbol_other (unsigned int other)
10789 {
10790 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10791 {
10792 static char buf[32];
10793 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10794 PPC64_LOCAL_ENTRY_OFFSET (other));
10795 return buf;
10796 }
10797 return NULL;
10798 }
10799
10800 static const char *
10801 get_symbol_other (unsigned int other)
10802 {
10803 const char * result = NULL;
10804 static char buff [32];
10805
10806 if (other == 0)
10807 return "";
10808
10809 switch (elf_header.e_machine)
10810 {
10811 case EM_MIPS:
10812 result = get_mips_symbol_other (other);
10813 break;
10814 case EM_IA_64:
10815 result = get_ia64_symbol_other (other);
10816 break;
10817 case EM_PPC64:
10818 result = get_ppc64_symbol_other (other);
10819 break;
10820 default:
10821 result = NULL;
10822 break;
10823 }
10824
10825 if (result)
10826 return result;
10827
10828 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10829 return buff;
10830 }
10831
10832 static const char *
10833 get_symbol_index_type (unsigned int type)
10834 {
10835 static char buff[32];
10836
10837 switch (type)
10838 {
10839 case SHN_UNDEF: return "UND";
10840 case SHN_ABS: return "ABS";
10841 case SHN_COMMON: return "COM";
10842 default:
10843 if (type == SHN_IA_64_ANSI_COMMON
10844 && elf_header.e_machine == EM_IA_64
10845 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10846 return "ANSI_COM";
10847 else if ((elf_header.e_machine == EM_X86_64
10848 || elf_header.e_machine == EM_L1OM
10849 || elf_header.e_machine == EM_K1OM)
10850 && type == SHN_X86_64_LCOMMON)
10851 return "LARGE_COM";
10852 else if ((type == SHN_MIPS_SCOMMON
10853 && elf_header.e_machine == EM_MIPS)
10854 || (type == SHN_TIC6X_SCOMMON
10855 && elf_header.e_machine == EM_TI_C6000))
10856 return "SCOM";
10857 else if (type == SHN_MIPS_SUNDEFINED
10858 && elf_header.e_machine == EM_MIPS)
10859 return "SUND";
10860 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10861 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10862 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10863 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10864 else if (type >= SHN_LORESERVE)
10865 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10866 else if (type >= elf_header.e_shnum)
10867 sprintf (buff, _("bad section index[%3d]"), type);
10868 else
10869 sprintf (buff, "%3d", type);
10870 break;
10871 }
10872
10873 return buff;
10874 }
10875
10876 static bfd_vma *
10877 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10878 {
10879 unsigned char * e_data;
10880 bfd_vma * i_data;
10881
10882 /* If the size_t type is smaller than the bfd_size_type, eg because
10883 you are building a 32-bit tool on a 64-bit host, then make sure
10884 that when (number) is cast to (size_t) no information is lost. */
10885 if (sizeof (size_t) < sizeof (bfd_size_type)
10886 && (bfd_size_type) ((size_t) number) != number)
10887 {
10888 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10889 " elements of size %u\n"),
10890 number, ent_size);
10891 return NULL;
10892 }
10893
10894 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10895 attempting to allocate memory when the read is bound to fail. */
10896 if (ent_size * number > current_file_size)
10897 {
10898 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10899 number);
10900 return NULL;
10901 }
10902
10903 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10904 if (e_data == NULL)
10905 {
10906 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10907 number);
10908 return NULL;
10909 }
10910
10911 if (fread (e_data, ent_size, (size_t) number, file) != number)
10912 {
10913 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10914 number * ent_size);
10915 free (e_data);
10916 return NULL;
10917 }
10918
10919 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10920 if (i_data == NULL)
10921 {
10922 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10923 " dynamic entries\n"),
10924 number);
10925 free (e_data);
10926 return NULL;
10927 }
10928
10929 while (number--)
10930 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10931
10932 free (e_data);
10933
10934 return i_data;
10935 }
10936
10937 static void
10938 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10939 {
10940 Elf_Internal_Sym * psym;
10941 int n;
10942
10943 n = print_vma (si, DEC_5);
10944 if (n < 5)
10945 fputs (&" "[n], stdout);
10946 printf (" %3lu: ", hn);
10947
10948 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10949 {
10950 printf (_("<No info available for dynamic symbol number %lu>\n"),
10951 (unsigned long) si);
10952 return;
10953 }
10954
10955 psym = dynamic_symbols + si;
10956 print_vma (psym->st_value, LONG_HEX);
10957 putchar (' ');
10958 print_vma (psym->st_size, DEC_5);
10959
10960 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10961 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10962
10963 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10964 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10965 else
10966 {
10967 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10968
10969 printf (" %-7s", get_symbol_visibility (vis));
10970 /* Check to see if any other bits in the st_other field are set.
10971 Note - displaying this information disrupts the layout of the
10972 table being generated, but for the moment this case is very
10973 rare. */
10974 if (psym->st_other ^ vis)
10975 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10976 }
10977
10978 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10979 if (VALID_DYNAMIC_NAME (psym->st_name))
10980 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10981 else
10982 printf (_(" <corrupt: %14ld>"), psym->st_name);
10983 putchar ('\n');
10984 }
10985
10986 static const char *
10987 get_symbol_version_string (FILE * file,
10988 bfd_boolean is_dynsym,
10989 const char * strtab,
10990 unsigned long int strtab_size,
10991 unsigned int si,
10992 Elf_Internal_Sym * psym,
10993 enum versioned_symbol_info * sym_info,
10994 unsigned short * vna_other)
10995 {
10996 unsigned char data[2];
10997 unsigned short vers_data;
10998 unsigned long offset;
10999
11000 if (!is_dynsym
11001 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11002 return NULL;
11003
11004 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11005 sizeof data + si * sizeof (vers_data));
11006
11007 if (get_data (&data, file, offset + si * sizeof (vers_data),
11008 sizeof (data), 1, _("version data")) == NULL)
11009 return NULL;
11010
11011 vers_data = byte_get (data, 2);
11012
11013 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
11014 return NULL;
11015
11016 /* Usually we'd only see verdef for defined symbols, and verneed for
11017 undefined symbols. However, symbols defined by the linker in
11018 .dynbss for variables copied from a shared library in order to
11019 avoid text relocations are defined yet have verneed. We could
11020 use a heuristic to detect the special case, for example, check
11021 for verneed first on symbols defined in SHT_NOBITS sections, but
11022 it is simpler and more reliable to just look for both verdef and
11023 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11024
11025 if (psym->st_shndx != SHN_UNDEF
11026 && vers_data != 0x8001
11027 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11028 {
11029 Elf_Internal_Verdef ivd;
11030 Elf_Internal_Verdaux ivda;
11031 Elf_External_Verdaux evda;
11032 unsigned long off;
11033
11034 off = offset_from_vma (file,
11035 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11036 sizeof (Elf_External_Verdef));
11037
11038 do
11039 {
11040 Elf_External_Verdef evd;
11041
11042 if (get_data (&evd, file, off, sizeof (evd), 1,
11043 _("version def")) == NULL)
11044 {
11045 ivd.vd_ndx = 0;
11046 ivd.vd_aux = 0;
11047 ivd.vd_next = 0;
11048 }
11049 else
11050 {
11051 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11052 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11053 ivd.vd_next = BYTE_GET (evd.vd_next);
11054 }
11055
11056 off += ivd.vd_next;
11057 }
11058 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11059
11060 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11061 {
11062 off -= ivd.vd_next;
11063 off += ivd.vd_aux;
11064
11065 if (get_data (&evda, file, off, sizeof (evda), 1,
11066 _("version def aux")) != NULL)
11067 {
11068 ivda.vda_name = BYTE_GET (evda.vda_name);
11069
11070 if (psym->st_name != ivda.vda_name)
11071 {
11072 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11073 ? symbol_hidden : symbol_public);
11074 return (ivda.vda_name < strtab_size
11075 ? strtab + ivda.vda_name : _("<corrupt>"));
11076 }
11077 }
11078 }
11079 }
11080
11081 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11082 {
11083 Elf_External_Verneed evn;
11084 Elf_Internal_Verneed ivn;
11085 Elf_Internal_Vernaux ivna;
11086
11087 offset = offset_from_vma (file,
11088 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11089 sizeof evn);
11090 do
11091 {
11092 unsigned long vna_off;
11093
11094 if (get_data (&evn, file, offset, sizeof (evn), 1,
11095 _("version need")) == NULL)
11096 {
11097 ivna.vna_next = 0;
11098 ivna.vna_other = 0;
11099 ivna.vna_name = 0;
11100 break;
11101 }
11102
11103 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11104 ivn.vn_next = BYTE_GET (evn.vn_next);
11105
11106 vna_off = offset + ivn.vn_aux;
11107
11108 do
11109 {
11110 Elf_External_Vernaux evna;
11111
11112 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11113 _("version need aux (3)")) == NULL)
11114 {
11115 ivna.vna_next = 0;
11116 ivna.vna_other = 0;
11117 ivna.vna_name = 0;
11118 }
11119 else
11120 {
11121 ivna.vna_other = BYTE_GET (evna.vna_other);
11122 ivna.vna_next = BYTE_GET (evna.vna_next);
11123 ivna.vna_name = BYTE_GET (evna.vna_name);
11124 }
11125
11126 vna_off += ivna.vna_next;
11127 }
11128 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11129
11130 if (ivna.vna_other == vers_data)
11131 break;
11132
11133 offset += ivn.vn_next;
11134 }
11135 while (ivn.vn_next != 0);
11136
11137 if (ivna.vna_other == vers_data)
11138 {
11139 *sym_info = symbol_undefined;
11140 *vna_other = ivna.vna_other;
11141 return (ivna.vna_name < strtab_size
11142 ? strtab + ivna.vna_name : _("<corrupt>"));
11143 }
11144 }
11145 return NULL;
11146 }
11147
11148 /* Dump the symbol table. */
11149 static bfd_boolean
11150 process_symbol_table (FILE * file)
11151 {
11152 Elf_Internal_Shdr * section;
11153 bfd_size_type nbuckets = 0;
11154 bfd_size_type nchains = 0;
11155 bfd_vma * buckets = NULL;
11156 bfd_vma * chains = NULL;
11157 bfd_vma ngnubuckets = 0;
11158 bfd_vma * gnubuckets = NULL;
11159 bfd_vma * gnuchains = NULL;
11160 bfd_vma gnusymidx = 0;
11161 bfd_size_type ngnuchains = 0;
11162
11163 if (!do_syms && !do_dyn_syms && !do_histogram)
11164 return TRUE;
11165
11166 if (dynamic_info[DT_HASH]
11167 && (do_histogram
11168 || (do_using_dynamic
11169 && !do_dyn_syms
11170 && dynamic_strings != NULL)))
11171 {
11172 unsigned char nb[8];
11173 unsigned char nc[8];
11174 unsigned int hash_ent_size = 4;
11175
11176 if ((elf_header.e_machine == EM_ALPHA
11177 || elf_header.e_machine == EM_S390
11178 || elf_header.e_machine == EM_S390_OLD)
11179 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11180 hash_ent_size = 8;
11181
11182 if (fseek (file,
11183 (archive_file_offset
11184 + offset_from_vma (file, dynamic_info[DT_HASH],
11185 sizeof nb + sizeof nc)),
11186 SEEK_SET))
11187 {
11188 error (_("Unable to seek to start of dynamic information\n"));
11189 goto no_hash;
11190 }
11191
11192 if (fread (nb, hash_ent_size, 1, file) != 1)
11193 {
11194 error (_("Failed to read in number of buckets\n"));
11195 goto no_hash;
11196 }
11197
11198 if (fread (nc, hash_ent_size, 1, file) != 1)
11199 {
11200 error (_("Failed to read in number of chains\n"));
11201 goto no_hash;
11202 }
11203
11204 nbuckets = byte_get (nb, hash_ent_size);
11205 nchains = byte_get (nc, hash_ent_size);
11206
11207 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11208 chains = get_dynamic_data (file, nchains, hash_ent_size);
11209
11210 no_hash:
11211 if (buckets == NULL || chains == NULL)
11212 {
11213 if (do_using_dynamic)
11214 return FALSE;
11215 free (buckets);
11216 free (chains);
11217 buckets = NULL;
11218 chains = NULL;
11219 nbuckets = 0;
11220 nchains = 0;
11221 }
11222 }
11223
11224 if (dynamic_info_DT_GNU_HASH
11225 && (do_histogram
11226 || (do_using_dynamic
11227 && !do_dyn_syms
11228 && dynamic_strings != NULL)))
11229 {
11230 unsigned char nb[16];
11231 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11232 bfd_vma buckets_vma;
11233
11234 if (fseek (file,
11235 (archive_file_offset
11236 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11237 sizeof nb)),
11238 SEEK_SET))
11239 {
11240 error (_("Unable to seek to start of dynamic information\n"));
11241 goto no_gnu_hash;
11242 }
11243
11244 if (fread (nb, 16, 1, file) != 1)
11245 {
11246 error (_("Failed to read in number of buckets\n"));
11247 goto no_gnu_hash;
11248 }
11249
11250 ngnubuckets = byte_get (nb, 4);
11251 gnusymidx = byte_get (nb + 4, 4);
11252 bitmaskwords = byte_get (nb + 8, 4);
11253 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11254 if (is_32bit_elf)
11255 buckets_vma += bitmaskwords * 4;
11256 else
11257 buckets_vma += bitmaskwords * 8;
11258
11259 if (fseek (file,
11260 (archive_file_offset
11261 + offset_from_vma (file, buckets_vma, 4)),
11262 SEEK_SET))
11263 {
11264 error (_("Unable to seek to start of dynamic information\n"));
11265 goto no_gnu_hash;
11266 }
11267
11268 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11269
11270 if (gnubuckets == NULL)
11271 goto no_gnu_hash;
11272
11273 for (i = 0; i < ngnubuckets; i++)
11274 if (gnubuckets[i] != 0)
11275 {
11276 if (gnubuckets[i] < gnusymidx)
11277 return FALSE;
11278
11279 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11280 maxchain = gnubuckets[i];
11281 }
11282
11283 if (maxchain == 0xffffffff)
11284 goto no_gnu_hash;
11285
11286 maxchain -= gnusymidx;
11287
11288 if (fseek (file,
11289 (archive_file_offset
11290 + offset_from_vma (file, buckets_vma
11291 + 4 * (ngnubuckets + maxchain), 4)),
11292 SEEK_SET))
11293 {
11294 error (_("Unable to seek to start of dynamic information\n"));
11295 goto no_gnu_hash;
11296 }
11297
11298 do
11299 {
11300 if (fread (nb, 4, 1, file) != 1)
11301 {
11302 error (_("Failed to determine last chain length\n"));
11303 goto no_gnu_hash;
11304 }
11305
11306 if (maxchain + 1 == 0)
11307 goto no_gnu_hash;
11308
11309 ++maxchain;
11310 }
11311 while ((byte_get (nb, 4) & 1) == 0);
11312
11313 if (fseek (file,
11314 (archive_file_offset
11315 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11316 SEEK_SET))
11317 {
11318 error (_("Unable to seek to start of dynamic information\n"));
11319 goto no_gnu_hash;
11320 }
11321
11322 gnuchains = get_dynamic_data (file, maxchain, 4);
11323 ngnuchains = maxchain;
11324
11325 no_gnu_hash:
11326 if (gnuchains == NULL)
11327 {
11328 free (gnubuckets);
11329 gnubuckets = NULL;
11330 ngnubuckets = 0;
11331 if (do_using_dynamic)
11332 return FALSE;
11333 }
11334 }
11335
11336 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11337 && do_syms
11338 && do_using_dynamic
11339 && dynamic_strings != NULL
11340 && dynamic_symbols != NULL)
11341 {
11342 unsigned long hn;
11343
11344 if (dynamic_info[DT_HASH])
11345 {
11346 bfd_vma si;
11347
11348 printf (_("\nSymbol table for image:\n"));
11349 if (is_32bit_elf)
11350 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11351 else
11352 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11353
11354 for (hn = 0; hn < nbuckets; hn++)
11355 {
11356 if (! buckets[hn])
11357 continue;
11358
11359 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11360 print_dynamic_symbol (si, hn);
11361 }
11362 }
11363
11364 if (dynamic_info_DT_GNU_HASH)
11365 {
11366 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11367 if (is_32bit_elf)
11368 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11369 else
11370 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11371
11372 for (hn = 0; hn < ngnubuckets; ++hn)
11373 if (gnubuckets[hn] != 0)
11374 {
11375 bfd_vma si = gnubuckets[hn];
11376 bfd_vma off = si - gnusymidx;
11377
11378 do
11379 {
11380 print_dynamic_symbol (si, hn);
11381 si++;
11382 }
11383 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11384 }
11385 }
11386 }
11387 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11388 && section_headers != NULL)
11389 {
11390 unsigned int i;
11391
11392 for (i = 0, section = section_headers;
11393 i < elf_header.e_shnum;
11394 i++, section++)
11395 {
11396 unsigned int si;
11397 char * strtab = NULL;
11398 unsigned long int strtab_size = 0;
11399 Elf_Internal_Sym * symtab;
11400 Elf_Internal_Sym * psym;
11401 unsigned long num_syms;
11402
11403 if ((section->sh_type != SHT_SYMTAB
11404 && section->sh_type != SHT_DYNSYM)
11405 || (!do_syms
11406 && section->sh_type == SHT_SYMTAB))
11407 continue;
11408
11409 if (section->sh_entsize == 0)
11410 {
11411 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11412 printable_section_name (section));
11413 continue;
11414 }
11415
11416 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11417 printable_section_name (section),
11418 (unsigned long) (section->sh_size / section->sh_entsize));
11419
11420 if (is_32bit_elf)
11421 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11422 else
11423 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11424
11425 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11426 if (symtab == NULL)
11427 continue;
11428
11429 if (section->sh_link == elf_header.e_shstrndx)
11430 {
11431 strtab = string_table;
11432 strtab_size = string_table_length;
11433 }
11434 else if (section->sh_link < elf_header.e_shnum)
11435 {
11436 Elf_Internal_Shdr * string_sec;
11437
11438 string_sec = section_headers + section->sh_link;
11439
11440 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11441 1, string_sec->sh_size,
11442 _("string table"));
11443 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11444 }
11445
11446 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11447 {
11448 const char *version_string;
11449 enum versioned_symbol_info sym_info;
11450 unsigned short vna_other;
11451
11452 printf ("%6d: ", si);
11453 print_vma (psym->st_value, LONG_HEX);
11454 putchar (' ');
11455 print_vma (psym->st_size, DEC_5);
11456 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11457 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11458 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11459 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11460 else
11461 {
11462 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11463
11464 printf (" %-7s", get_symbol_visibility (vis));
11465 /* Check to see if any other bits in the st_other field are set.
11466 Note - displaying this information disrupts the layout of the
11467 table being generated, but for the moment this case is very rare. */
11468 if (psym->st_other ^ vis)
11469 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11470 }
11471 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11472 print_symbol (25, psym->st_name < strtab_size
11473 ? strtab + psym->st_name : _("<corrupt>"));
11474
11475 version_string
11476 = get_symbol_version_string (file,
11477 section->sh_type == SHT_DYNSYM,
11478 strtab, strtab_size, si,
11479 psym, &sym_info, &vna_other);
11480 if (version_string)
11481 {
11482 if (sym_info == symbol_undefined)
11483 printf ("@%s (%d)", version_string, vna_other);
11484 else
11485 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11486 version_string);
11487 }
11488
11489 putchar ('\n');
11490
11491 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11492 && si >= section->sh_info
11493 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11494 && elf_header.e_machine != EM_MIPS
11495 /* Solaris binaries have been found to violate this requirement as
11496 well. Not sure if this is a bug or an ABI requirement. */
11497 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11498 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11499 si, printable_section_name (section), section->sh_info);
11500 }
11501
11502 free (symtab);
11503 if (strtab != string_table)
11504 free (strtab);
11505 }
11506 }
11507 else if (do_syms)
11508 printf
11509 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11510
11511 if (do_histogram && buckets != NULL)
11512 {
11513 unsigned long * lengths;
11514 unsigned long * counts;
11515 unsigned long hn;
11516 bfd_vma si;
11517 unsigned long maxlength = 0;
11518 unsigned long nzero_counts = 0;
11519 unsigned long nsyms = 0;
11520 unsigned long chained;
11521
11522 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11523 (unsigned long) nbuckets);
11524
11525 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11526 if (lengths == NULL)
11527 {
11528 error (_("Out of memory allocating space for histogram buckets\n"));
11529 return FALSE;
11530 }
11531
11532 printf (_(" Length Number %% of total Coverage\n"));
11533 for (hn = 0; hn < nbuckets; ++hn)
11534 {
11535 for (si = buckets[hn], chained = 0;
11536 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11537 si = chains[si], ++chained)
11538 {
11539 ++nsyms;
11540 if (maxlength < ++lengths[hn])
11541 ++maxlength;
11542 }
11543
11544 /* PR binutils/17531: A corrupt binary could contain broken
11545 histogram data. Do not go into an infinite loop trying
11546 to process it. */
11547 if (chained > nchains)
11548 {
11549 error (_("histogram chain is corrupt\n"));
11550 break;
11551 }
11552 }
11553
11554 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11555 if (counts == NULL)
11556 {
11557 free (lengths);
11558 error (_("Out of memory allocating space for histogram counts\n"));
11559 return FALSE;
11560 }
11561
11562 for (hn = 0; hn < nbuckets; ++hn)
11563 ++counts[lengths[hn]];
11564
11565 if (nbuckets > 0)
11566 {
11567 unsigned long i;
11568 printf (" 0 %-10lu (%5.1f%%)\n",
11569 counts[0], (counts[0] * 100.0) / nbuckets);
11570 for (i = 1; i <= maxlength; ++i)
11571 {
11572 nzero_counts += counts[i] * i;
11573 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11574 i, counts[i], (counts[i] * 100.0) / nbuckets,
11575 (nzero_counts * 100.0) / nsyms);
11576 }
11577 }
11578
11579 free (counts);
11580 free (lengths);
11581 }
11582
11583 if (buckets != NULL)
11584 {
11585 free (buckets);
11586 free (chains);
11587 }
11588
11589 if (do_histogram && gnubuckets != NULL)
11590 {
11591 unsigned long * lengths;
11592 unsigned long * counts;
11593 unsigned long hn;
11594 unsigned long maxlength = 0;
11595 unsigned long nzero_counts = 0;
11596 unsigned long nsyms = 0;
11597
11598 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11599 (unsigned long) ngnubuckets);
11600
11601 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11602 if (lengths == NULL)
11603 {
11604 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11605 return FALSE;
11606 }
11607
11608 printf (_(" Length Number %% of total Coverage\n"));
11609
11610 for (hn = 0; hn < ngnubuckets; ++hn)
11611 if (gnubuckets[hn] != 0)
11612 {
11613 bfd_vma off, length = 1;
11614
11615 for (off = gnubuckets[hn] - gnusymidx;
11616 /* PR 17531 file: 010-77222-0.004. */
11617 off < ngnuchains && (gnuchains[off] & 1) == 0;
11618 ++off)
11619 ++length;
11620 lengths[hn] = length;
11621 if (length > maxlength)
11622 maxlength = length;
11623 nsyms += length;
11624 }
11625
11626 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11627 if (counts == NULL)
11628 {
11629 free (lengths);
11630 error (_("Out of memory allocating space for gnu histogram counts\n"));
11631 return FALSE;
11632 }
11633
11634 for (hn = 0; hn < ngnubuckets; ++hn)
11635 ++counts[lengths[hn]];
11636
11637 if (ngnubuckets > 0)
11638 {
11639 unsigned long j;
11640 printf (" 0 %-10lu (%5.1f%%)\n",
11641 counts[0], (counts[0] * 100.0) / ngnubuckets);
11642 for (j = 1; j <= maxlength; ++j)
11643 {
11644 nzero_counts += counts[j] * j;
11645 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11646 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11647 (nzero_counts * 100.0) / nsyms);
11648 }
11649 }
11650
11651 free (counts);
11652 free (lengths);
11653 free (gnubuckets);
11654 free (gnuchains);
11655 }
11656
11657 return TRUE;
11658 }
11659
11660 static bfd_boolean
11661 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11662 {
11663 unsigned int i;
11664
11665 if (dynamic_syminfo == NULL
11666 || !do_dynamic)
11667 /* No syminfo, this is ok. */
11668 return TRUE;
11669
11670 /* There better should be a dynamic symbol section. */
11671 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11672 return FALSE;
11673
11674 if (dynamic_addr)
11675 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11676 dynamic_syminfo_offset, dynamic_syminfo_nent);
11677
11678 printf (_(" Num: Name BoundTo Flags\n"));
11679 for (i = 0; i < dynamic_syminfo_nent; ++i)
11680 {
11681 unsigned short int flags = dynamic_syminfo[i].si_flags;
11682
11683 printf ("%4d: ", i);
11684 if (i >= num_dynamic_syms)
11685 printf (_("<corrupt index>"));
11686 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11687 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11688 else
11689 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11690 putchar (' ');
11691
11692 switch (dynamic_syminfo[i].si_boundto)
11693 {
11694 case SYMINFO_BT_SELF:
11695 fputs ("SELF ", stdout);
11696 break;
11697 case SYMINFO_BT_PARENT:
11698 fputs ("PARENT ", stdout);
11699 break;
11700 default:
11701 if (dynamic_syminfo[i].si_boundto > 0
11702 && dynamic_syminfo[i].si_boundto < dynamic_nent
11703 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11704 {
11705 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11706 putchar (' ' );
11707 }
11708 else
11709 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11710 break;
11711 }
11712
11713 if (flags & SYMINFO_FLG_DIRECT)
11714 printf (" DIRECT");
11715 if (flags & SYMINFO_FLG_PASSTHRU)
11716 printf (" PASSTHRU");
11717 if (flags & SYMINFO_FLG_COPY)
11718 printf (" COPY");
11719 if (flags & SYMINFO_FLG_LAZYLOAD)
11720 printf (" LAZYLOAD");
11721
11722 puts ("");
11723 }
11724
11725 return TRUE;
11726 }
11727
11728 #define IN_RANGE(START,END,ADDR,OFF) \
11729 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11730
11731 /* Check to see if the given reloc needs to be handled in a target specific
11732 manner. If so then process the reloc and return TRUE otherwise return
11733 FALSE.
11734
11735 If called with reloc == NULL, then this is a signal that reloc processing
11736 for the current section has finished, and any saved state should be
11737 discarded. */
11738
11739 static bfd_boolean
11740 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11741 unsigned char * start,
11742 unsigned char * end,
11743 Elf_Internal_Sym * symtab,
11744 unsigned long num_syms)
11745 {
11746 unsigned int reloc_type = 0;
11747 unsigned long sym_index = 0;
11748
11749 if (reloc)
11750 {
11751 reloc_type = get_reloc_type (reloc->r_info);
11752 sym_index = get_reloc_symindex (reloc->r_info);
11753 }
11754
11755 switch (elf_header.e_machine)
11756 {
11757 case EM_MSP430:
11758 case EM_MSP430_OLD:
11759 {
11760 static Elf_Internal_Sym * saved_sym = NULL;
11761
11762 if (reloc == NULL)
11763 {
11764 saved_sym = NULL;
11765 return TRUE;
11766 }
11767
11768 switch (reloc_type)
11769 {
11770 case 10: /* R_MSP430_SYM_DIFF */
11771 if (uses_msp430x_relocs ())
11772 break;
11773 /* Fall through. */
11774 case 21: /* R_MSP430X_SYM_DIFF */
11775 /* PR 21139. */
11776 if (sym_index >= num_syms)
11777 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11778 sym_index);
11779 else
11780 saved_sym = symtab + sym_index;
11781 return TRUE;
11782
11783 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11784 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11785 goto handle_sym_diff;
11786
11787 case 5: /* R_MSP430_16_BYTE */
11788 case 9: /* R_MSP430_8 */
11789 if (uses_msp430x_relocs ())
11790 break;
11791 goto handle_sym_diff;
11792
11793 case 2: /* R_MSP430_ABS16 */
11794 case 15: /* R_MSP430X_ABS16 */
11795 if (! uses_msp430x_relocs ())
11796 break;
11797 goto handle_sym_diff;
11798
11799 handle_sym_diff:
11800 if (saved_sym != NULL)
11801 {
11802 int reloc_size = reloc_type == 1 ? 4 : 2;
11803 bfd_vma value;
11804
11805 if (sym_index >= num_syms)
11806 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11807 sym_index);
11808 else
11809 {
11810 value = reloc->r_addend + (symtab[sym_index].st_value
11811 - saved_sym->st_value);
11812
11813 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11814 byte_put (start + reloc->r_offset, value, reloc_size);
11815 else
11816 /* PR 21137 */
11817 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11818 (long) reloc->r_offset);
11819 }
11820
11821 saved_sym = NULL;
11822 return TRUE;
11823 }
11824 break;
11825
11826 default:
11827 if (saved_sym != NULL)
11828 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11829 break;
11830 }
11831 break;
11832 }
11833
11834 case EM_MN10300:
11835 case EM_CYGNUS_MN10300:
11836 {
11837 static Elf_Internal_Sym * saved_sym = NULL;
11838
11839 if (reloc == NULL)
11840 {
11841 saved_sym = NULL;
11842 return TRUE;
11843 }
11844
11845 switch (reloc_type)
11846 {
11847 case 34: /* R_MN10300_ALIGN */
11848 return TRUE;
11849 case 33: /* R_MN10300_SYM_DIFF */
11850 if (sym_index >= num_syms)
11851 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11852 sym_index);
11853 else
11854 saved_sym = symtab + sym_index;
11855 return TRUE;
11856
11857 case 1: /* R_MN10300_32 */
11858 case 2: /* R_MN10300_16 */
11859 if (saved_sym != NULL)
11860 {
11861 int reloc_size = reloc_type == 1 ? 4 : 2;
11862 bfd_vma value;
11863
11864 if (sym_index >= num_syms)
11865 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11866 sym_index);
11867 else
11868 {
11869 value = reloc->r_addend + (symtab[sym_index].st_value
11870 - saved_sym->st_value);
11871
11872 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11873 byte_put (start + reloc->r_offset, value, reloc_size);
11874 else
11875 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11876 (long) reloc->r_offset);
11877 }
11878
11879 saved_sym = NULL;
11880 return TRUE;
11881 }
11882 break;
11883 default:
11884 if (saved_sym != NULL)
11885 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11886 break;
11887 }
11888 break;
11889 }
11890
11891 case EM_RL78:
11892 {
11893 static bfd_vma saved_sym1 = 0;
11894 static bfd_vma saved_sym2 = 0;
11895 static bfd_vma value;
11896
11897 if (reloc == NULL)
11898 {
11899 saved_sym1 = saved_sym2 = 0;
11900 return TRUE;
11901 }
11902
11903 switch (reloc_type)
11904 {
11905 case 0x80: /* R_RL78_SYM. */
11906 saved_sym1 = saved_sym2;
11907 if (sym_index >= num_syms)
11908 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11909 sym_index);
11910 else
11911 {
11912 saved_sym2 = symtab[sym_index].st_value;
11913 saved_sym2 += reloc->r_addend;
11914 }
11915 return TRUE;
11916
11917 case 0x83: /* R_RL78_OPsub. */
11918 value = saved_sym1 - saved_sym2;
11919 saved_sym2 = saved_sym1 = 0;
11920 return TRUE;
11921 break;
11922
11923 case 0x41: /* R_RL78_ABS32. */
11924 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11925 byte_put (start + reloc->r_offset, value, 4);
11926 else
11927 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11928 (long) reloc->r_offset);
11929 value = 0;
11930 return TRUE;
11931
11932 case 0x43: /* R_RL78_ABS16. */
11933 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11934 byte_put (start + reloc->r_offset, value, 2);
11935 else
11936 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11937 (long) reloc->r_offset);
11938 value = 0;
11939 return TRUE;
11940
11941 default:
11942 break;
11943 }
11944 break;
11945 }
11946 }
11947
11948 return FALSE;
11949 }
11950
11951 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11952 DWARF debug sections. This is a target specific test. Note - we do not
11953 go through the whole including-target-headers-multiple-times route, (as
11954 we have already done with <elf/h8.h>) because this would become very
11955 messy and even then this function would have to contain target specific
11956 information (the names of the relocs instead of their numeric values).
11957 FIXME: This is not the correct way to solve this problem. The proper way
11958 is to have target specific reloc sizing and typing functions created by
11959 the reloc-macros.h header, in the same way that it already creates the
11960 reloc naming functions. */
11961
11962 static bfd_boolean
11963 is_32bit_abs_reloc (unsigned int reloc_type)
11964 {
11965 /* Please keep this table alpha-sorted for ease of visual lookup. */
11966 switch (elf_header.e_machine)
11967 {
11968 case EM_386:
11969 case EM_IAMCU:
11970 return reloc_type == 1; /* R_386_32. */
11971 case EM_68K:
11972 return reloc_type == 1; /* R_68K_32. */
11973 case EM_860:
11974 return reloc_type == 1; /* R_860_32. */
11975 case EM_960:
11976 return reloc_type == 2; /* R_960_32. */
11977 case EM_AARCH64:
11978 return (reloc_type == 258
11979 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
11980 case EM_ADAPTEVA_EPIPHANY:
11981 return reloc_type == 3;
11982 case EM_ALPHA:
11983 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11984 case EM_ARC:
11985 return reloc_type == 1; /* R_ARC_32. */
11986 case EM_ARC_COMPACT:
11987 case EM_ARC_COMPACT2:
11988 return reloc_type == 4; /* R_ARC_32. */
11989 case EM_ARM:
11990 return reloc_type == 2; /* R_ARM_ABS32 */
11991 case EM_AVR_OLD:
11992 case EM_AVR:
11993 return reloc_type == 1;
11994 case EM_BLACKFIN:
11995 return reloc_type == 0x12; /* R_byte4_data. */
11996 case EM_CRIS:
11997 return reloc_type == 3; /* R_CRIS_32. */
11998 case EM_CR16:
11999 return reloc_type == 3; /* R_CR16_NUM32. */
12000 case EM_CRX:
12001 return reloc_type == 15; /* R_CRX_NUM32. */
12002 case EM_CYGNUS_FRV:
12003 return reloc_type == 1;
12004 case EM_CYGNUS_D10V:
12005 case EM_D10V:
12006 return reloc_type == 6; /* R_D10V_32. */
12007 case EM_CYGNUS_D30V:
12008 case EM_D30V:
12009 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12010 case EM_DLX:
12011 return reloc_type == 3; /* R_DLX_RELOC_32. */
12012 case EM_CYGNUS_FR30:
12013 case EM_FR30:
12014 return reloc_type == 3; /* R_FR30_32. */
12015 case EM_FT32:
12016 return reloc_type == 1; /* R_FT32_32. */
12017 case EM_H8S:
12018 case EM_H8_300:
12019 case EM_H8_300H:
12020 return reloc_type == 1; /* R_H8_DIR32. */
12021 case EM_IA_64:
12022 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12023 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
12024 case EM_IP2K_OLD:
12025 case EM_IP2K:
12026 return reloc_type == 2; /* R_IP2K_32. */
12027 case EM_IQ2000:
12028 return reloc_type == 2; /* R_IQ2000_32. */
12029 case EM_LATTICEMICO32:
12030 return reloc_type == 3; /* R_LM32_32. */
12031 case EM_M32C_OLD:
12032 case EM_M32C:
12033 return reloc_type == 3; /* R_M32C_32. */
12034 case EM_M32R:
12035 return reloc_type == 34; /* R_M32R_32_RELA. */
12036 case EM_68HC11:
12037 case EM_68HC12:
12038 return reloc_type == 6; /* R_M68HC11_32. */
12039 case EM_MCORE:
12040 return reloc_type == 1; /* R_MCORE_ADDR32. */
12041 case EM_CYGNUS_MEP:
12042 return reloc_type == 4; /* R_MEP_32. */
12043 case EM_METAG:
12044 return reloc_type == 2; /* R_METAG_ADDR32. */
12045 case EM_MICROBLAZE:
12046 return reloc_type == 1; /* R_MICROBLAZE_32. */
12047 case EM_MIPS:
12048 return reloc_type == 2; /* R_MIPS_32. */
12049 case EM_MMIX:
12050 return reloc_type == 4; /* R_MMIX_32. */
12051 case EM_CYGNUS_MN10200:
12052 case EM_MN10200:
12053 return reloc_type == 1; /* R_MN10200_32. */
12054 case EM_CYGNUS_MN10300:
12055 case EM_MN10300:
12056 return reloc_type == 1; /* R_MN10300_32. */
12057 case EM_MOXIE:
12058 return reloc_type == 1; /* R_MOXIE_32. */
12059 case EM_MSP430_OLD:
12060 case EM_MSP430:
12061 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12062 case EM_MT:
12063 return reloc_type == 2; /* R_MT_32. */
12064 case EM_NDS32:
12065 return reloc_type == 20; /* R_NDS32_RELA. */
12066 case EM_ALTERA_NIOS2:
12067 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12068 case EM_NIOS32:
12069 return reloc_type == 1; /* R_NIOS_32. */
12070 case EM_OR1K:
12071 return reloc_type == 1; /* R_OR1K_32. */
12072 case EM_PARISC:
12073 return (reloc_type == 1 /* R_PARISC_DIR32. */
12074 || reloc_type == 41); /* R_PARISC_SECREL32. */
12075 case EM_PJ:
12076 case EM_PJ_OLD:
12077 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12078 case EM_PPC64:
12079 return reloc_type == 1; /* R_PPC64_ADDR32. */
12080 case EM_PPC:
12081 return reloc_type == 1; /* R_PPC_ADDR32. */
12082 case EM_TI_PRU:
12083 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12084 case EM_RISCV:
12085 return reloc_type == 1; /* R_RISCV_32. */
12086 case EM_RL78:
12087 return reloc_type == 1; /* R_RL78_DIR32. */
12088 case EM_RX:
12089 return reloc_type == 1; /* R_RX_DIR32. */
12090 case EM_S370:
12091 return reloc_type == 1; /* R_I370_ADDR31. */
12092 case EM_S390_OLD:
12093 case EM_S390:
12094 return reloc_type == 4; /* R_S390_32. */
12095 case EM_SCORE:
12096 return reloc_type == 8; /* R_SCORE_ABS32. */
12097 case EM_SH:
12098 return reloc_type == 1; /* R_SH_DIR32. */
12099 case EM_SPARC32PLUS:
12100 case EM_SPARCV9:
12101 case EM_SPARC:
12102 return reloc_type == 3 /* R_SPARC_32. */
12103 || reloc_type == 23; /* R_SPARC_UA32. */
12104 case EM_SPU:
12105 return reloc_type == 6; /* R_SPU_ADDR32 */
12106 case EM_TI_C6000:
12107 return reloc_type == 1; /* R_C6000_ABS32. */
12108 case EM_TILEGX:
12109 return reloc_type == 2; /* R_TILEGX_32. */
12110 case EM_TILEPRO:
12111 return reloc_type == 1; /* R_TILEPRO_32. */
12112 case EM_CYGNUS_V850:
12113 case EM_V850:
12114 return reloc_type == 6; /* R_V850_ABS32. */
12115 case EM_V800:
12116 return reloc_type == 0x33; /* R_V810_WORD. */
12117 case EM_VAX:
12118 return reloc_type == 1; /* R_VAX_32. */
12119 case EM_VISIUM:
12120 return reloc_type == 3; /* R_VISIUM_32. */
12121 case EM_WEBASSEMBLY:
12122 return reloc_type == 1; /* R_WASM32_32. */
12123 case EM_X86_64:
12124 case EM_L1OM:
12125 case EM_K1OM:
12126 return reloc_type == 10; /* R_X86_64_32. */
12127 case EM_XC16X:
12128 case EM_C166:
12129 return reloc_type == 3; /* R_XC16C_ABS_32. */
12130 case EM_XGATE:
12131 return reloc_type == 4; /* R_XGATE_32. */
12132 case EM_XSTORMY16:
12133 return reloc_type == 1; /* R_XSTROMY16_32. */
12134 case EM_XTENSA_OLD:
12135 case EM_XTENSA:
12136 return reloc_type == 1; /* R_XTENSA_32. */
12137 default:
12138 {
12139 static unsigned int prev_warn = 0;
12140
12141 /* Avoid repeating the same warning multiple times. */
12142 if (prev_warn != elf_header.e_machine)
12143 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12144 elf_header.e_machine);
12145 prev_warn = elf_header.e_machine;
12146 return FALSE;
12147 }
12148 }
12149 }
12150
12151 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12152 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12153
12154 static bfd_boolean
12155 is_32bit_pcrel_reloc (unsigned int reloc_type)
12156 {
12157 switch (elf_header.e_machine)
12158 /* Please keep this table alpha-sorted for ease of visual lookup. */
12159 {
12160 case EM_386:
12161 case EM_IAMCU:
12162 return reloc_type == 2; /* R_386_PC32. */
12163 case EM_68K:
12164 return reloc_type == 4; /* R_68K_PC32. */
12165 case EM_AARCH64:
12166 return reloc_type == 261; /* R_AARCH64_PREL32 */
12167 case EM_ADAPTEVA_EPIPHANY:
12168 return reloc_type == 6;
12169 case EM_ALPHA:
12170 return reloc_type == 10; /* R_ALPHA_SREL32. */
12171 case EM_ARC_COMPACT:
12172 case EM_ARC_COMPACT2:
12173 return reloc_type == 49; /* R_ARC_32_PCREL. */
12174 case EM_ARM:
12175 return reloc_type == 3; /* R_ARM_REL32 */
12176 case EM_AVR_OLD:
12177 case EM_AVR:
12178 return reloc_type == 36; /* R_AVR_32_PCREL. */
12179 case EM_MICROBLAZE:
12180 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12181 case EM_OR1K:
12182 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12183 case EM_PARISC:
12184 return reloc_type == 9; /* R_PARISC_PCREL32. */
12185 case EM_PPC:
12186 return reloc_type == 26; /* R_PPC_REL32. */
12187 case EM_PPC64:
12188 return reloc_type == 26; /* R_PPC64_REL32. */
12189 case EM_S390_OLD:
12190 case EM_S390:
12191 return reloc_type == 5; /* R_390_PC32. */
12192 case EM_SH:
12193 return reloc_type == 2; /* R_SH_REL32. */
12194 case EM_SPARC32PLUS:
12195 case EM_SPARCV9:
12196 case EM_SPARC:
12197 return reloc_type == 6; /* R_SPARC_DISP32. */
12198 case EM_SPU:
12199 return reloc_type == 13; /* R_SPU_REL32. */
12200 case EM_TILEGX:
12201 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12202 case EM_TILEPRO:
12203 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12204 case EM_VISIUM:
12205 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12206 case EM_X86_64:
12207 case EM_L1OM:
12208 case EM_K1OM:
12209 return reloc_type == 2; /* R_X86_64_PC32. */
12210 case EM_XTENSA_OLD:
12211 case EM_XTENSA:
12212 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12213 default:
12214 /* Do not abort or issue an error message here. Not all targets use
12215 pc-relative 32-bit relocs in their DWARF debug information and we
12216 have already tested for target coverage in is_32bit_abs_reloc. A
12217 more helpful warning message will be generated by apply_relocations
12218 anyway, so just return. */
12219 return FALSE;
12220 }
12221 }
12222
12223 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12224 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12225
12226 static bfd_boolean
12227 is_64bit_abs_reloc (unsigned int reloc_type)
12228 {
12229 switch (elf_header.e_machine)
12230 {
12231 case EM_AARCH64:
12232 return reloc_type == 257; /* R_AARCH64_ABS64. */
12233 case EM_ALPHA:
12234 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12235 case EM_IA_64:
12236 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12237 case EM_PARISC:
12238 return reloc_type == 80; /* R_PARISC_DIR64. */
12239 case EM_PPC64:
12240 return reloc_type == 38; /* R_PPC64_ADDR64. */
12241 case EM_RISCV:
12242 return reloc_type == 2; /* R_RISCV_64. */
12243 case EM_SPARC32PLUS:
12244 case EM_SPARCV9:
12245 case EM_SPARC:
12246 return reloc_type == 54; /* R_SPARC_UA64. */
12247 case EM_X86_64:
12248 case EM_L1OM:
12249 case EM_K1OM:
12250 return reloc_type == 1; /* R_X86_64_64. */
12251 case EM_S390_OLD:
12252 case EM_S390:
12253 return reloc_type == 22; /* R_S390_64. */
12254 case EM_TILEGX:
12255 return reloc_type == 1; /* R_TILEGX_64. */
12256 case EM_MIPS:
12257 return reloc_type == 18; /* R_MIPS_64. */
12258 default:
12259 return FALSE;
12260 }
12261 }
12262
12263 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12264 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12265
12266 static bfd_boolean
12267 is_64bit_pcrel_reloc (unsigned int reloc_type)
12268 {
12269 switch (elf_header.e_machine)
12270 {
12271 case EM_AARCH64:
12272 return reloc_type == 260; /* R_AARCH64_PREL64. */
12273 case EM_ALPHA:
12274 return reloc_type == 11; /* R_ALPHA_SREL64. */
12275 case EM_IA_64:
12276 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12277 case EM_PARISC:
12278 return reloc_type == 72; /* R_PARISC_PCREL64. */
12279 case EM_PPC64:
12280 return reloc_type == 44; /* R_PPC64_REL64. */
12281 case EM_SPARC32PLUS:
12282 case EM_SPARCV9:
12283 case EM_SPARC:
12284 return reloc_type == 46; /* R_SPARC_DISP64. */
12285 case EM_X86_64:
12286 case EM_L1OM:
12287 case EM_K1OM:
12288 return reloc_type == 24; /* R_X86_64_PC64. */
12289 case EM_S390_OLD:
12290 case EM_S390:
12291 return reloc_type == 23; /* R_S390_PC64. */
12292 case EM_TILEGX:
12293 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12294 default:
12295 return FALSE;
12296 }
12297 }
12298
12299 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12300 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12301
12302 static bfd_boolean
12303 is_24bit_abs_reloc (unsigned int reloc_type)
12304 {
12305 switch (elf_header.e_machine)
12306 {
12307 case EM_CYGNUS_MN10200:
12308 case EM_MN10200:
12309 return reloc_type == 4; /* R_MN10200_24. */
12310 case EM_FT32:
12311 return reloc_type == 5; /* R_FT32_20. */
12312 default:
12313 return FALSE;
12314 }
12315 }
12316
12317 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12318 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12319
12320 static bfd_boolean
12321 is_16bit_abs_reloc (unsigned int reloc_type)
12322 {
12323 /* Please keep this table alpha-sorted for ease of visual lookup. */
12324 switch (elf_header.e_machine)
12325 {
12326 case EM_ARC:
12327 case EM_ARC_COMPACT:
12328 case EM_ARC_COMPACT2:
12329 return reloc_type == 2; /* R_ARC_16. */
12330 case EM_ADAPTEVA_EPIPHANY:
12331 return reloc_type == 5;
12332 case EM_AVR_OLD:
12333 case EM_AVR:
12334 return reloc_type == 4; /* R_AVR_16. */
12335 case EM_CYGNUS_D10V:
12336 case EM_D10V:
12337 return reloc_type == 3; /* R_D10V_16. */
12338 case EM_H8S:
12339 case EM_H8_300:
12340 case EM_H8_300H:
12341 return reloc_type == R_H8_DIR16;
12342 case EM_IP2K_OLD:
12343 case EM_IP2K:
12344 return reloc_type == 1; /* R_IP2K_16. */
12345 case EM_M32C_OLD:
12346 case EM_M32C:
12347 return reloc_type == 1; /* R_M32C_16 */
12348 case EM_CYGNUS_MN10200:
12349 case EM_MN10200:
12350 return reloc_type == 2; /* R_MN10200_16. */
12351 case EM_CYGNUS_MN10300:
12352 case EM_MN10300:
12353 return reloc_type == 2; /* R_MN10300_16. */
12354 case EM_MSP430:
12355 if (uses_msp430x_relocs ())
12356 return reloc_type == 2; /* R_MSP430_ABS16. */
12357 /* Fall through. */
12358 case EM_MSP430_OLD:
12359 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12360 case EM_NDS32:
12361 return reloc_type == 19; /* R_NDS32_RELA. */
12362 case EM_ALTERA_NIOS2:
12363 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12364 case EM_NIOS32:
12365 return reloc_type == 9; /* R_NIOS_16. */
12366 case EM_OR1K:
12367 return reloc_type == 2; /* R_OR1K_16. */
12368 case EM_TI_PRU:
12369 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12370 case EM_TI_C6000:
12371 return reloc_type == 2; /* R_C6000_ABS16. */
12372 case EM_VISIUM:
12373 return reloc_type == 2; /* R_VISIUM_16. */
12374 case EM_XC16X:
12375 case EM_C166:
12376 return reloc_type == 2; /* R_XC16C_ABS_16. */
12377 case EM_XGATE:
12378 return reloc_type == 3; /* R_XGATE_16. */
12379 default:
12380 return FALSE;
12381 }
12382 }
12383
12384 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12385 relocation entries (possibly formerly used for SHT_GROUP sections). */
12386
12387 static bfd_boolean
12388 is_none_reloc (unsigned int reloc_type)
12389 {
12390 switch (elf_header.e_machine)
12391 {
12392 case EM_386: /* R_386_NONE. */
12393 case EM_68K: /* R_68K_NONE. */
12394 case EM_ADAPTEVA_EPIPHANY:
12395 case EM_ALPHA: /* R_ALPHA_NONE. */
12396 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12397 case EM_ARC: /* R_ARC_NONE. */
12398 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12399 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12400 case EM_ARM: /* R_ARM_NONE. */
12401 case EM_C166: /* R_XC16X_NONE. */
12402 case EM_CRIS: /* R_CRIS_NONE. */
12403 case EM_FT32: /* R_FT32_NONE. */
12404 case EM_IA_64: /* R_IA64_NONE. */
12405 case EM_K1OM: /* R_X86_64_NONE. */
12406 case EM_L1OM: /* R_X86_64_NONE. */
12407 case EM_M32R: /* R_M32R_NONE. */
12408 case EM_MIPS: /* R_MIPS_NONE. */
12409 case EM_MN10300: /* R_MN10300_NONE. */
12410 case EM_MOXIE: /* R_MOXIE_NONE. */
12411 case EM_NIOS32: /* R_NIOS_NONE. */
12412 case EM_OR1K: /* R_OR1K_NONE. */
12413 case EM_PARISC: /* R_PARISC_NONE. */
12414 case EM_PPC64: /* R_PPC64_NONE. */
12415 case EM_PPC: /* R_PPC_NONE. */
12416 case EM_RISCV: /* R_RISCV_NONE. */
12417 case EM_S390: /* R_390_NONE. */
12418 case EM_S390_OLD:
12419 case EM_SH: /* R_SH_NONE. */
12420 case EM_SPARC32PLUS:
12421 case EM_SPARC: /* R_SPARC_NONE. */
12422 case EM_SPARCV9:
12423 case EM_TILEGX: /* R_TILEGX_NONE. */
12424 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12425 case EM_TI_C6000:/* R_C6000_NONE. */
12426 case EM_X86_64: /* R_X86_64_NONE. */
12427 case EM_XC16X:
12428 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
12429 return reloc_type == 0;
12430
12431 case EM_AARCH64:
12432 return reloc_type == 0 || reloc_type == 256;
12433 case EM_AVR_OLD:
12434 case EM_AVR:
12435 return (reloc_type == 0 /* R_AVR_NONE. */
12436 || reloc_type == 30 /* R_AVR_DIFF8. */
12437 || reloc_type == 31 /* R_AVR_DIFF16. */
12438 || reloc_type == 32 /* R_AVR_DIFF32. */);
12439 case EM_METAG:
12440 return reloc_type == 3; /* R_METAG_NONE. */
12441 case EM_NDS32:
12442 return (reloc_type == 0 /* R_XTENSA_NONE. */
12443 || reloc_type == 204 /* R_NDS32_DIFF8. */
12444 || reloc_type == 205 /* R_NDS32_DIFF16. */
12445 || reloc_type == 206 /* R_NDS32_DIFF32. */
12446 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12447 case EM_TI_PRU:
12448 return (reloc_type == 0 /* R_PRU_NONE. */
12449 || reloc_type == 65 /* R_PRU_DIFF8. */
12450 || reloc_type == 66 /* R_PRU_DIFF16. */
12451 || reloc_type == 67 /* R_PRU_DIFF32. */);
12452 case EM_XTENSA_OLD:
12453 case EM_XTENSA:
12454 return (reloc_type == 0 /* R_XTENSA_NONE. */
12455 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12456 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12457 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12458 }
12459 return FALSE;
12460 }
12461
12462 /* Returns TRUE if there is a relocation against
12463 section NAME at OFFSET bytes. */
12464
12465 bfd_boolean
12466 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12467 {
12468 Elf_Internal_Rela * relocs;
12469 Elf_Internal_Rela * rp;
12470
12471 if (dsec == NULL || dsec->reloc_info == NULL)
12472 return FALSE;
12473
12474 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12475
12476 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12477 if (rp->r_offset == offset)
12478 return TRUE;
12479
12480 return FALSE;
12481 }
12482
12483 /* Apply relocations to a section.
12484 Returns TRUE upon success, FALSE otherwise.
12485 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
12486 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
12487 will be set to the number of relocs loaded.
12488
12489 Note: So far support has been added only for those relocations
12490 which can be found in debug sections. FIXME: Add support for
12491 more relocations ? */
12492
12493 static bfd_boolean
12494 apply_relocations (void * file,
12495 const Elf_Internal_Shdr * section,
12496 unsigned char * start,
12497 bfd_size_type size,
12498 void ** relocs_return,
12499 unsigned long * num_relocs_return)
12500 {
12501 Elf_Internal_Shdr * relsec;
12502 unsigned char * end = start + size;
12503 bfd_boolean res = TRUE;
12504
12505 if (relocs_return != NULL)
12506 {
12507 * (Elf_Internal_Rela **) relocs_return = NULL;
12508 * num_relocs_return = 0;
12509 }
12510
12511 if (elf_header.e_type != ET_REL)
12512 /* No relocs to apply. */
12513 return TRUE;
12514
12515 /* Find the reloc section associated with the section. */
12516 for (relsec = section_headers;
12517 relsec < section_headers + elf_header.e_shnum;
12518 ++relsec)
12519 {
12520 bfd_boolean is_rela;
12521 unsigned long num_relocs;
12522 Elf_Internal_Rela * relocs;
12523 Elf_Internal_Rela * rp;
12524 Elf_Internal_Shdr * symsec;
12525 Elf_Internal_Sym * symtab;
12526 unsigned long num_syms;
12527 Elf_Internal_Sym * sym;
12528
12529 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12530 || relsec->sh_info >= elf_header.e_shnum
12531 || section_headers + relsec->sh_info != section
12532 || relsec->sh_size == 0
12533 || relsec->sh_link >= elf_header.e_shnum)
12534 continue;
12535
12536 is_rela = relsec->sh_type == SHT_RELA;
12537
12538 if (is_rela)
12539 {
12540 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12541 relsec->sh_size, & relocs, & num_relocs))
12542 return FALSE;
12543 }
12544 else
12545 {
12546 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12547 relsec->sh_size, & relocs, & num_relocs))
12548 return FALSE;
12549 }
12550
12551 /* SH uses RELA but uses in place value instead of the addend field. */
12552 if (elf_header.e_machine == EM_SH)
12553 is_rela = FALSE;
12554
12555 symsec = section_headers + relsec->sh_link;
12556 if (symsec->sh_type != SHT_SYMTAB
12557 && symsec->sh_type != SHT_DYNSYM)
12558 return FALSE;
12559 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12560
12561 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12562 {
12563 bfd_vma addend;
12564 unsigned int reloc_type;
12565 unsigned int reloc_size;
12566 unsigned char * rloc;
12567 unsigned long sym_index;
12568
12569 reloc_type = get_reloc_type (rp->r_info);
12570
12571 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12572 continue;
12573 else if (is_none_reloc (reloc_type))
12574 continue;
12575 else if (is_32bit_abs_reloc (reloc_type)
12576 || is_32bit_pcrel_reloc (reloc_type))
12577 reloc_size = 4;
12578 else if (is_64bit_abs_reloc (reloc_type)
12579 || is_64bit_pcrel_reloc (reloc_type))
12580 reloc_size = 8;
12581 else if (is_24bit_abs_reloc (reloc_type))
12582 reloc_size = 3;
12583 else if (is_16bit_abs_reloc (reloc_type))
12584 reloc_size = 2;
12585 else
12586 {
12587 static unsigned int prev_reloc = 0;
12588 if (reloc_type != prev_reloc)
12589 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12590 reloc_type, printable_section_name (section));
12591 prev_reloc = reloc_type;
12592 res = FALSE;
12593 continue;
12594 }
12595
12596 rloc = start + rp->r_offset;
12597 if ((rloc + reloc_size) > end || (rloc < start))
12598 {
12599 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12600 (unsigned long) rp->r_offset,
12601 printable_section_name (section));
12602 res = FALSE;
12603 continue;
12604 }
12605
12606 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12607 if (sym_index >= num_syms)
12608 {
12609 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12610 sym_index, printable_section_name (section));
12611 res = FALSE;
12612 continue;
12613 }
12614 sym = symtab + sym_index;
12615
12616 /* If the reloc has a symbol associated with it,
12617 make sure that it is of an appropriate type.
12618
12619 Relocations against symbols without type can happen.
12620 Gcc -feliminate-dwarf2-dups may generate symbols
12621 without type for debug info.
12622
12623 Icc generates relocations against function symbols
12624 instead of local labels.
12625
12626 Relocations against object symbols can happen, eg when
12627 referencing a global array. For an example of this see
12628 the _clz.o binary in libgcc.a. */
12629 if (sym != symtab
12630 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12631 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12632 {
12633 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12634 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12635 (long int)(rp - relocs),
12636 printable_section_name (relsec));
12637 res = FALSE;
12638 continue;
12639 }
12640
12641 addend = 0;
12642 if (is_rela)
12643 addend += rp->r_addend;
12644 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12645 partial_inplace. */
12646 if (!is_rela
12647 || (elf_header.e_machine == EM_XTENSA
12648 && reloc_type == 1)
12649 || ((elf_header.e_machine == EM_PJ
12650 || elf_header.e_machine == EM_PJ_OLD)
12651 && reloc_type == 1)
12652 || ((elf_header.e_machine == EM_D30V
12653 || elf_header.e_machine == EM_CYGNUS_D30V)
12654 && reloc_type == 12))
12655 addend += byte_get (rloc, reloc_size);
12656
12657 if (is_32bit_pcrel_reloc (reloc_type)
12658 || is_64bit_pcrel_reloc (reloc_type))
12659 {
12660 /* On HPPA, all pc-relative relocations are biased by 8. */
12661 if (elf_header.e_machine == EM_PARISC)
12662 addend -= 8;
12663 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12664 reloc_size);
12665 }
12666 else
12667 byte_put (rloc, addend + sym->st_value, reloc_size);
12668 }
12669
12670 free (symtab);
12671 /* Let the target specific reloc processing code know that
12672 we have finished with these relocs. */
12673 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12674
12675 if (relocs_return)
12676 {
12677 * (Elf_Internal_Rela **) relocs_return = relocs;
12678 * num_relocs_return = num_relocs;
12679 }
12680 else
12681 free (relocs);
12682
12683 break;
12684 }
12685
12686 return res;
12687 }
12688
12689 #ifdef SUPPORT_DISASSEMBLY
12690 static bfd_boolean
12691 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12692 {
12693 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12694
12695 /* FIXME: XXX -- to be done --- XXX */
12696
12697 return TRUE;
12698 }
12699 #endif
12700
12701 /* Reads in the contents of SECTION from FILE, returning a pointer
12702 to a malloc'ed buffer or NULL if something went wrong. */
12703
12704 static char *
12705 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12706 {
12707 bfd_size_type num_bytes;
12708
12709 num_bytes = section->sh_size;
12710
12711 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12712 {
12713 printf (_("\nSection '%s' has no data to dump.\n"),
12714 printable_section_name (section));
12715 return NULL;
12716 }
12717
12718 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12719 _("section contents"));
12720 }
12721
12722 /* Uncompresses a section that was compressed using zlib, in place. */
12723
12724 static bfd_boolean
12725 uncompress_section_contents (unsigned char **buffer,
12726 dwarf_size_type uncompressed_size,
12727 dwarf_size_type *size)
12728 {
12729 dwarf_size_type compressed_size = *size;
12730 unsigned char * compressed_buffer = *buffer;
12731 unsigned char * uncompressed_buffer;
12732 z_stream strm;
12733 int rc;
12734
12735 /* It is possible the section consists of several compressed
12736 buffers concatenated together, so we uncompress in a loop. */
12737 /* PR 18313: The state field in the z_stream structure is supposed
12738 to be invisible to the user (ie us), but some compilers will
12739 still complain about it being used without initialisation. So
12740 we first zero the entire z_stream structure and then set the fields
12741 that we need. */
12742 memset (& strm, 0, sizeof strm);
12743 strm.avail_in = compressed_size;
12744 strm.next_in = (Bytef *) compressed_buffer;
12745 strm.avail_out = uncompressed_size;
12746 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12747
12748 rc = inflateInit (& strm);
12749 while (strm.avail_in > 0)
12750 {
12751 if (rc != Z_OK)
12752 goto fail;
12753 strm.next_out = ((Bytef *) uncompressed_buffer
12754 + (uncompressed_size - strm.avail_out));
12755 rc = inflate (&strm, Z_FINISH);
12756 if (rc != Z_STREAM_END)
12757 goto fail;
12758 rc = inflateReset (& strm);
12759 }
12760 rc = inflateEnd (& strm);
12761 if (rc != Z_OK
12762 || strm.avail_out != 0)
12763 goto fail;
12764
12765 *buffer = uncompressed_buffer;
12766 *size = uncompressed_size;
12767 return TRUE;
12768
12769 fail:
12770 free (uncompressed_buffer);
12771 /* Indicate decompression failure. */
12772 *buffer = NULL;
12773 return FALSE;
12774 }
12775
12776 static bfd_boolean
12777 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12778 {
12779 Elf_Internal_Shdr * relsec;
12780 bfd_size_type num_bytes;
12781 unsigned char * data;
12782 unsigned char * end;
12783 unsigned char * real_start;
12784 unsigned char * start;
12785 bfd_boolean some_strings_shown;
12786
12787 real_start = start = (unsigned char *) get_section_contents (section,
12788 file);
12789 if (start == NULL)
12790 return FALSE;
12791 num_bytes = section->sh_size;
12792
12793 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12794
12795 if (decompress_dumps)
12796 {
12797 dwarf_size_type new_size = num_bytes;
12798 dwarf_size_type uncompressed_size = 0;
12799
12800 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12801 {
12802 Elf_Internal_Chdr chdr;
12803 unsigned int compression_header_size
12804 = get_compression_header (& chdr, (unsigned char *) start,
12805 num_bytes);
12806
12807 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12808 {
12809 warn (_("section '%s' has unsupported compress type: %d\n"),
12810 printable_section_name (section), chdr.ch_type);
12811 return FALSE;
12812 }
12813 else if (chdr.ch_addralign != section->sh_addralign)
12814 {
12815 warn (_("compressed section '%s' is corrupted\n"),
12816 printable_section_name (section));
12817 return FALSE;
12818 }
12819 uncompressed_size = chdr.ch_size;
12820 start += compression_header_size;
12821 new_size -= compression_header_size;
12822 }
12823 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12824 {
12825 /* Read the zlib header. In this case, it should be "ZLIB"
12826 followed by the uncompressed section size, 8 bytes in
12827 big-endian order. */
12828 uncompressed_size = start[4]; uncompressed_size <<= 8;
12829 uncompressed_size += start[5]; uncompressed_size <<= 8;
12830 uncompressed_size += start[6]; uncompressed_size <<= 8;
12831 uncompressed_size += start[7]; uncompressed_size <<= 8;
12832 uncompressed_size += start[8]; uncompressed_size <<= 8;
12833 uncompressed_size += start[9]; uncompressed_size <<= 8;
12834 uncompressed_size += start[10]; uncompressed_size <<= 8;
12835 uncompressed_size += start[11];
12836 start += 12;
12837 new_size -= 12;
12838 }
12839
12840 if (uncompressed_size)
12841 {
12842 if (uncompress_section_contents (& start,
12843 uncompressed_size, & new_size))
12844 num_bytes = new_size;
12845 else
12846 {
12847 error (_("Unable to decompress section %s\n"),
12848 printable_section_name (section));
12849 return FALSE;
12850 }
12851 }
12852 else
12853 start = real_start;
12854 }
12855
12856 /* If the section being dumped has relocations against it the user might
12857 be expecting these relocations to have been applied. Check for this
12858 case and issue a warning message in order to avoid confusion.
12859 FIXME: Maybe we ought to have an option that dumps a section with
12860 relocs applied ? */
12861 for (relsec = section_headers;
12862 relsec < section_headers + elf_header.e_shnum;
12863 ++relsec)
12864 {
12865 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12866 || relsec->sh_info >= elf_header.e_shnum
12867 || section_headers + relsec->sh_info != section
12868 || relsec->sh_size == 0
12869 || relsec->sh_link >= elf_header.e_shnum)
12870 continue;
12871
12872 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12873 break;
12874 }
12875
12876 data = start;
12877 end = start + num_bytes;
12878 some_strings_shown = FALSE;
12879
12880 while (data < end)
12881 {
12882 while (!ISPRINT (* data))
12883 if (++ data >= end)
12884 break;
12885
12886 if (data < end)
12887 {
12888 size_t maxlen = end - data;
12889
12890 #ifndef __MSVCRT__
12891 /* PR 11128: Use two separate invocations in order to work
12892 around bugs in the Solaris 8 implementation of printf. */
12893 printf (" [%6tx] ", data - start);
12894 #else
12895 printf (" [%6Ix] ", (size_t) (data - start));
12896 #endif
12897 if (maxlen > 0)
12898 {
12899 print_symbol ((int) maxlen, (const char *) data);
12900 putchar ('\n');
12901 data += strnlen ((const char *) data, maxlen);
12902 }
12903 else
12904 {
12905 printf (_("<corrupt>\n"));
12906 data = end;
12907 }
12908 some_strings_shown = TRUE;
12909 }
12910 }
12911
12912 if (! some_strings_shown)
12913 printf (_(" No strings found in this section."));
12914
12915 free (real_start);
12916
12917 putchar ('\n');
12918 return TRUE;
12919 }
12920
12921 static bfd_boolean
12922 dump_section_as_bytes (Elf_Internal_Shdr * section,
12923 FILE * file,
12924 bfd_boolean relocate)
12925 {
12926 Elf_Internal_Shdr * relsec;
12927 bfd_size_type bytes;
12928 bfd_size_type section_size;
12929 bfd_vma addr;
12930 unsigned char * data;
12931 unsigned char * real_start;
12932 unsigned char * start;
12933
12934 real_start = start = (unsigned char *) get_section_contents (section, file);
12935 if (start == NULL)
12936 return FALSE;
12937
12938 section_size = section->sh_size;
12939
12940 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12941
12942 if (decompress_dumps)
12943 {
12944 dwarf_size_type new_size = section_size;
12945 dwarf_size_type uncompressed_size = 0;
12946
12947 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12948 {
12949 Elf_Internal_Chdr chdr;
12950 unsigned int compression_header_size
12951 = get_compression_header (& chdr, start, section_size);
12952
12953 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12954 {
12955 warn (_("section '%s' has unsupported compress type: %d\n"),
12956 printable_section_name (section), chdr.ch_type);
12957 return FALSE;
12958 }
12959 else if (chdr.ch_addralign != section->sh_addralign)
12960 {
12961 warn (_("compressed section '%s' is corrupted\n"),
12962 printable_section_name (section));
12963 return FALSE;
12964 }
12965 uncompressed_size = chdr.ch_size;
12966 start += compression_header_size;
12967 new_size -= compression_header_size;
12968 }
12969 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12970 {
12971 /* Read the zlib header. In this case, it should be "ZLIB"
12972 followed by the uncompressed section size, 8 bytes in
12973 big-endian order. */
12974 uncompressed_size = start[4]; uncompressed_size <<= 8;
12975 uncompressed_size += start[5]; uncompressed_size <<= 8;
12976 uncompressed_size += start[6]; uncompressed_size <<= 8;
12977 uncompressed_size += start[7]; uncompressed_size <<= 8;
12978 uncompressed_size += start[8]; uncompressed_size <<= 8;
12979 uncompressed_size += start[9]; uncompressed_size <<= 8;
12980 uncompressed_size += start[10]; uncompressed_size <<= 8;
12981 uncompressed_size += start[11];
12982 start += 12;
12983 new_size -= 12;
12984 }
12985
12986 if (uncompressed_size)
12987 {
12988 if (uncompress_section_contents (& start, uncompressed_size,
12989 & new_size))
12990 {
12991 section_size = new_size;
12992 }
12993 else
12994 {
12995 error (_("Unable to decompress section %s\n"),
12996 printable_section_name (section));
12997 /* FIXME: Print the section anyway ? */
12998 return FALSE;
12999 }
13000 }
13001 else
13002 start = real_start;
13003 }
13004
13005 if (relocate)
13006 {
13007 if (! apply_relocations (file, section, start, section_size, NULL, NULL))
13008 return FALSE;
13009 }
13010 else
13011 {
13012 /* If the section being dumped has relocations against it the user might
13013 be expecting these relocations to have been applied. Check for this
13014 case and issue a warning message in order to avoid confusion.
13015 FIXME: Maybe we ought to have an option that dumps a section with
13016 relocs applied ? */
13017 for (relsec = section_headers;
13018 relsec < section_headers + elf_header.e_shnum;
13019 ++relsec)
13020 {
13021 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13022 || relsec->sh_info >= elf_header.e_shnum
13023 || section_headers + relsec->sh_info != section
13024 || relsec->sh_size == 0
13025 || relsec->sh_link >= elf_header.e_shnum)
13026 continue;
13027
13028 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13029 break;
13030 }
13031 }
13032
13033 addr = section->sh_addr;
13034 bytes = section_size;
13035 data = start;
13036
13037 while (bytes)
13038 {
13039 int j;
13040 int k;
13041 int lbytes;
13042
13043 lbytes = (bytes > 16 ? 16 : bytes);
13044
13045 printf (" 0x%8.8lx ", (unsigned long) addr);
13046
13047 for (j = 0; j < 16; j++)
13048 {
13049 if (j < lbytes)
13050 printf ("%2.2x", data[j]);
13051 else
13052 printf (" ");
13053
13054 if ((j & 3) == 3)
13055 printf (" ");
13056 }
13057
13058 for (j = 0; j < lbytes; j++)
13059 {
13060 k = data[j];
13061 if (k >= ' ' && k < 0x7f)
13062 printf ("%c", k);
13063 else
13064 printf (".");
13065 }
13066
13067 putchar ('\n');
13068
13069 data += lbytes;
13070 addr += lbytes;
13071 bytes -= lbytes;
13072 }
13073
13074 free (real_start);
13075
13076 putchar ('\n');
13077 return TRUE;
13078 }
13079
13080 static bfd_boolean
13081 load_specific_debug_section (enum dwarf_section_display_enum debug,
13082 const Elf_Internal_Shdr * sec, void * file)
13083 {
13084 struct dwarf_section * section = &debug_displays [debug].section;
13085 char buf [64];
13086
13087 /* If it is already loaded, do nothing. */
13088 if (section->start != NULL)
13089 return TRUE;
13090
13091 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
13092 section->address = sec->sh_addr;
13093 section->user_data = NULL;
13094 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
13095 sec->sh_offset, 1,
13096 sec->sh_size, buf);
13097 if (section->start == NULL)
13098 section->size = 0;
13099 else
13100 {
13101 unsigned char *start = section->start;
13102 dwarf_size_type size = sec->sh_size;
13103 dwarf_size_type uncompressed_size = 0;
13104
13105 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
13106 {
13107 Elf_Internal_Chdr chdr;
13108 unsigned int compression_header_size;
13109
13110 if (size < (is_32bit_elf
13111 ? sizeof (Elf32_External_Chdr)
13112 : sizeof (Elf64_External_Chdr)))
13113 {
13114 warn (_("compressed section %s is too small to contain a compression header"),
13115 section->name);
13116 return FALSE;
13117 }
13118
13119 compression_header_size = get_compression_header (&chdr, start, size);
13120
13121 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13122 {
13123 warn (_("section '%s' has unsupported compress type: %d\n"),
13124 section->name, chdr.ch_type);
13125 return FALSE;
13126 }
13127 else if (chdr.ch_addralign != sec->sh_addralign)
13128 {
13129 warn (_("compressed section '%s' is corrupted\n"),
13130 section->name);
13131 return FALSE;
13132 }
13133 uncompressed_size = chdr.ch_size;
13134 start += compression_header_size;
13135 size -= compression_header_size;
13136 }
13137 else if (size > 12 && streq ((char *) start, "ZLIB"))
13138 {
13139 /* Read the zlib header. In this case, it should be "ZLIB"
13140 followed by the uncompressed section size, 8 bytes in
13141 big-endian order. */
13142 uncompressed_size = start[4]; uncompressed_size <<= 8;
13143 uncompressed_size += start[5]; uncompressed_size <<= 8;
13144 uncompressed_size += start[6]; uncompressed_size <<= 8;
13145 uncompressed_size += start[7]; uncompressed_size <<= 8;
13146 uncompressed_size += start[8]; uncompressed_size <<= 8;
13147 uncompressed_size += start[9]; uncompressed_size <<= 8;
13148 uncompressed_size += start[10]; uncompressed_size <<= 8;
13149 uncompressed_size += start[11];
13150 start += 12;
13151 size -= 12;
13152 }
13153
13154 if (uncompressed_size)
13155 {
13156 if (uncompress_section_contents (&start, uncompressed_size,
13157 &size))
13158 {
13159 /* Free the compressed buffer, update the section buffer
13160 and the section size if uncompress is successful. */
13161 free (section->start);
13162 section->start = start;
13163 }
13164 else
13165 {
13166 error (_("Unable to decompress section %s\n"),
13167 printable_section_name (sec));
13168 return FALSE;
13169 }
13170 }
13171
13172 section->size = size;
13173 }
13174
13175 if (section->start == NULL)
13176 return FALSE;
13177
13178 if (debug_displays [debug].relocate)
13179 {
13180 if (! apply_relocations ((FILE *) file, sec, section->start, section->size,
13181 & section->reloc_info, & section->num_relocs))
13182 return FALSE;
13183 }
13184 else
13185 {
13186 section->reloc_info = NULL;
13187 section->num_relocs = 0;
13188 }
13189
13190 return TRUE;
13191 }
13192
13193 /* If this is not NULL, load_debug_section will only look for sections
13194 within the list of sections given here. */
13195 static unsigned int * section_subset = NULL;
13196
13197 bfd_boolean
13198 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13199 {
13200 struct dwarf_section * section = &debug_displays [debug].section;
13201 Elf_Internal_Shdr * sec;
13202
13203 /* Locate the debug section. */
13204 sec = find_section_in_set (section->uncompressed_name, section_subset);
13205 if (sec != NULL)
13206 section->name = section->uncompressed_name;
13207 else
13208 {
13209 sec = find_section_in_set (section->compressed_name, section_subset);
13210 if (sec != NULL)
13211 section->name = section->compressed_name;
13212 }
13213 if (sec == NULL)
13214 return FALSE;
13215
13216 /* If we're loading from a subset of sections, and we've loaded
13217 a section matching this name before, it's likely that it's a
13218 different one. */
13219 if (section_subset != NULL)
13220 free_debug_section (debug);
13221
13222 return load_specific_debug_section (debug, sec, (FILE *) file);
13223 }
13224
13225 void
13226 free_debug_section (enum dwarf_section_display_enum debug)
13227 {
13228 struct dwarf_section * section = &debug_displays [debug].section;
13229
13230 if (section->start == NULL)
13231 return;
13232
13233 free ((char *) section->start);
13234 section->start = NULL;
13235 section->address = 0;
13236 section->size = 0;
13237 }
13238
13239 static bfd_boolean
13240 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13241 {
13242 char * name = SECTION_NAME (section);
13243 const char * print_name = printable_section_name (section);
13244 bfd_size_type length;
13245 bfd_boolean result = TRUE;
13246 int i;
13247
13248 length = section->sh_size;
13249 if (length == 0)
13250 {
13251 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13252 return TRUE;
13253 }
13254 if (section->sh_type == SHT_NOBITS)
13255 {
13256 /* There is no point in dumping the contents of a debugging section
13257 which has the NOBITS type - the bits in the file will be random.
13258 This can happen when a file containing a .eh_frame section is
13259 stripped with the --only-keep-debug command line option. */
13260 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13261 print_name);
13262 return FALSE;
13263 }
13264
13265 if (const_strneq (name, ".gnu.linkonce.wi."))
13266 name = ".debug_info";
13267
13268 /* See if we know how to display the contents of this section. */
13269 for (i = 0; i < max; i++)
13270 if (streq (debug_displays[i].section.uncompressed_name, name)
13271 || (i == line && const_strneq (name, ".debug_line."))
13272 || streq (debug_displays[i].section.compressed_name, name))
13273 {
13274 struct dwarf_section * sec = &debug_displays [i].section;
13275 int secondary = (section != find_section (name));
13276
13277 if (secondary)
13278 free_debug_section ((enum dwarf_section_display_enum) i);
13279
13280 if (i == line && const_strneq (name, ".debug_line."))
13281 sec->name = name;
13282 else if (streq (sec->uncompressed_name, name))
13283 sec->name = sec->uncompressed_name;
13284 else
13285 sec->name = sec->compressed_name;
13286 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13287 section, file))
13288 {
13289 /* If this debug section is part of a CU/TU set in a .dwp file,
13290 restrict load_debug_section to the sections in that set. */
13291 section_subset = find_cu_tu_set (file, shndx);
13292
13293 result &= debug_displays[i].display (sec, file);
13294
13295 section_subset = NULL;
13296
13297 if (secondary || (i != info && i != abbrev))
13298 free_debug_section ((enum dwarf_section_display_enum) i);
13299 }
13300
13301 break;
13302 }
13303
13304 if (i == max)
13305 {
13306 printf (_("Unrecognized debug section: %s\n"), print_name);
13307 result = FALSE;
13308 }
13309
13310 return result;
13311 }
13312
13313 /* Set DUMP_SECTS for all sections where dumps were requested
13314 based on section name. */
13315
13316 static void
13317 initialise_dumps_byname (void)
13318 {
13319 struct dump_list_entry * cur;
13320
13321 for (cur = dump_sects_byname; cur; cur = cur->next)
13322 {
13323 unsigned int i;
13324 bfd_boolean any = FALSE;
13325
13326 for (i = 0; i < elf_header.e_shnum; i++)
13327 if (streq (SECTION_NAME (section_headers + i), cur->name))
13328 {
13329 request_dump_bynumber (i, cur->type);
13330 any = TRUE;
13331 }
13332
13333 if (!any)
13334 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13335 cur->name);
13336 }
13337 }
13338
13339 static bfd_boolean
13340 process_section_contents (FILE * file)
13341 {
13342 Elf_Internal_Shdr * section;
13343 unsigned int i;
13344 bfd_boolean res = TRUE;
13345
13346 if (! do_dump)
13347 return TRUE;
13348
13349 initialise_dumps_byname ();
13350
13351 for (i = 0, section = section_headers;
13352 i < elf_header.e_shnum && i < num_dump_sects;
13353 i++, section++)
13354 {
13355 #ifdef SUPPORT_DISASSEMBLY
13356 if (dump_sects[i] & DISASS_DUMP)
13357 disassemble_section (section, file);
13358 #endif
13359 if (dump_sects[i] & HEX_DUMP)
13360 {
13361 if (! dump_section_as_bytes (section, file, FALSE))
13362 res = FALSE;
13363 }
13364
13365 if (dump_sects[i] & RELOC_DUMP)
13366 {
13367 if (! dump_section_as_bytes (section, file, TRUE))
13368 res = FALSE;
13369 }
13370
13371 if (dump_sects[i] & STRING_DUMP)
13372 {
13373 if (! dump_section_as_strings (section, file))
13374 res = FALSE;
13375 }
13376
13377 if (dump_sects[i] & DEBUG_DUMP)
13378 {
13379 if (! display_debug_section (i, section, file))
13380 res = FALSE;
13381 }
13382 }
13383
13384 /* Check to see if the user requested a
13385 dump of a section that does not exist. */
13386 while (i < num_dump_sects)
13387 {
13388 if (dump_sects[i])
13389 {
13390 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13391 res = FALSE;
13392 }
13393 i++;
13394 }
13395
13396 return res;
13397 }
13398
13399 static void
13400 process_mips_fpe_exception (int mask)
13401 {
13402 if (mask)
13403 {
13404 bfd_boolean first = TRUE;
13405
13406 if (mask & OEX_FPU_INEX)
13407 fputs ("INEX", stdout), first = FALSE;
13408 if (mask & OEX_FPU_UFLO)
13409 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
13410 if (mask & OEX_FPU_OFLO)
13411 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
13412 if (mask & OEX_FPU_DIV0)
13413 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
13414 if (mask & OEX_FPU_INVAL)
13415 printf ("%sINVAL", first ? "" : "|");
13416 }
13417 else
13418 fputs ("0", stdout);
13419 }
13420
13421 /* Display's the value of TAG at location P. If TAG is
13422 greater than 0 it is assumed to be an unknown tag, and
13423 a message is printed to this effect. Otherwise it is
13424 assumed that a message has already been printed.
13425
13426 If the bottom bit of TAG is set it assumed to have a
13427 string value, otherwise it is assumed to have an integer
13428 value.
13429
13430 Returns an updated P pointing to the first unread byte
13431 beyond the end of TAG's value.
13432
13433 Reads at or beyond END will not be made. */
13434
13435 static unsigned char *
13436 display_tag_value (signed int tag,
13437 unsigned char * p,
13438 const unsigned char * const end)
13439 {
13440 unsigned long val;
13441
13442 if (tag > 0)
13443 printf (" Tag_unknown_%d: ", tag);
13444
13445 if (p >= end)
13446 {
13447 warn (_("<corrupt tag>\n"));
13448 }
13449 else if (tag & 1)
13450 {
13451 /* PR 17531 file: 027-19978-0.004. */
13452 size_t maxlen = (end - p) - 1;
13453
13454 putchar ('"');
13455 if (maxlen > 0)
13456 {
13457 print_symbol ((int) maxlen, (const char *) p);
13458 p += strnlen ((char *) p, maxlen) + 1;
13459 }
13460 else
13461 {
13462 printf (_("<corrupt string tag>"));
13463 p = (unsigned char *) end;
13464 }
13465 printf ("\"\n");
13466 }
13467 else
13468 {
13469 unsigned int len;
13470
13471 val = read_uleb128 (p, &len, end);
13472 p += len;
13473 printf ("%ld (0x%lx)\n", val, val);
13474 }
13475
13476 assert (p <= end);
13477 return p;
13478 }
13479
13480 /* ARM EABI attributes section. */
13481 typedef struct
13482 {
13483 unsigned int tag;
13484 const char * name;
13485 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13486 unsigned int type;
13487 const char ** table;
13488 } arm_attr_public_tag;
13489
13490 static const char * arm_attr_tag_CPU_arch[] =
13491 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13492 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13493 "v8-M.mainline"};
13494 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13495 static const char * arm_attr_tag_THUMB_ISA_use[] =
13496 {"No", "Thumb-1", "Thumb-2", "Yes"};
13497 static const char * arm_attr_tag_FP_arch[] =
13498 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13499 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13500 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13501 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13502 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13503 "NEON for ARMv8.1"};
13504 static const char * arm_attr_tag_PCS_config[] =
13505 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13506 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13507 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13508 {"V6", "SB", "TLS", "Unused"};
13509 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13510 {"Absolute", "PC-relative", "SB-relative", "None"};
13511 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13512 {"Absolute", "PC-relative", "None"};
13513 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13514 {"None", "direct", "GOT-indirect"};
13515 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13516 {"None", "??? 1", "2", "??? 3", "4"};
13517 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13518 static const char * arm_attr_tag_ABI_FP_denormal[] =
13519 {"Unused", "Needed", "Sign only"};
13520 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13521 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13522 static const char * arm_attr_tag_ABI_FP_number_model[] =
13523 {"Unused", "Finite", "RTABI", "IEEE 754"};
13524 static const char * arm_attr_tag_ABI_enum_size[] =
13525 {"Unused", "small", "int", "forced to int"};
13526 static const char * arm_attr_tag_ABI_HardFP_use[] =
13527 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13528 static const char * arm_attr_tag_ABI_VFP_args[] =
13529 {"AAPCS", "VFP registers", "custom", "compatible"};
13530 static const char * arm_attr_tag_ABI_WMMX_args[] =
13531 {"AAPCS", "WMMX registers", "custom"};
13532 static const char * arm_attr_tag_ABI_optimization_goals[] =
13533 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13534 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13535 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13536 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13537 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13538 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13539 static const char * arm_attr_tag_FP_HP_extension[] =
13540 {"Not Allowed", "Allowed"};
13541 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13542 {"None", "IEEE 754", "Alternative Format"};
13543 static const char * arm_attr_tag_DSP_extension[] =
13544 {"Follow architecture", "Allowed"};
13545 static const char * arm_attr_tag_MPextension_use[] =
13546 {"Not Allowed", "Allowed"};
13547 static const char * arm_attr_tag_DIV_use[] =
13548 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13549 "Allowed in v7-A with integer division extension"};
13550 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13551 static const char * arm_attr_tag_Virtualization_use[] =
13552 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13553 "TrustZone and Virtualization Extensions"};
13554 static const char * arm_attr_tag_MPextension_use_legacy[] =
13555 {"Not Allowed", "Allowed"};
13556
13557 #define LOOKUP(id, name) \
13558 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13559 static arm_attr_public_tag arm_attr_public_tags[] =
13560 {
13561 {4, "CPU_raw_name", 1, NULL},
13562 {5, "CPU_name", 1, NULL},
13563 LOOKUP(6, CPU_arch),
13564 {7, "CPU_arch_profile", 0, NULL},
13565 LOOKUP(8, ARM_ISA_use),
13566 LOOKUP(9, THUMB_ISA_use),
13567 LOOKUP(10, FP_arch),
13568 LOOKUP(11, WMMX_arch),
13569 LOOKUP(12, Advanced_SIMD_arch),
13570 LOOKUP(13, PCS_config),
13571 LOOKUP(14, ABI_PCS_R9_use),
13572 LOOKUP(15, ABI_PCS_RW_data),
13573 LOOKUP(16, ABI_PCS_RO_data),
13574 LOOKUP(17, ABI_PCS_GOT_use),
13575 LOOKUP(18, ABI_PCS_wchar_t),
13576 LOOKUP(19, ABI_FP_rounding),
13577 LOOKUP(20, ABI_FP_denormal),
13578 LOOKUP(21, ABI_FP_exceptions),
13579 LOOKUP(22, ABI_FP_user_exceptions),
13580 LOOKUP(23, ABI_FP_number_model),
13581 {24, "ABI_align_needed", 0, NULL},
13582 {25, "ABI_align_preserved", 0, NULL},
13583 LOOKUP(26, ABI_enum_size),
13584 LOOKUP(27, ABI_HardFP_use),
13585 LOOKUP(28, ABI_VFP_args),
13586 LOOKUP(29, ABI_WMMX_args),
13587 LOOKUP(30, ABI_optimization_goals),
13588 LOOKUP(31, ABI_FP_optimization_goals),
13589 {32, "compatibility", 0, NULL},
13590 LOOKUP(34, CPU_unaligned_access),
13591 LOOKUP(36, FP_HP_extension),
13592 LOOKUP(38, ABI_FP_16bit_format),
13593 LOOKUP(42, MPextension_use),
13594 LOOKUP(44, DIV_use),
13595 LOOKUP(46, DSP_extension),
13596 {64, "nodefaults", 0, NULL},
13597 {65, "also_compatible_with", 0, NULL},
13598 LOOKUP(66, T2EE_use),
13599 {67, "conformance", 1, NULL},
13600 LOOKUP(68, Virtualization_use),
13601 LOOKUP(70, MPextension_use_legacy)
13602 };
13603 #undef LOOKUP
13604
13605 static unsigned char *
13606 display_arm_attribute (unsigned char * p,
13607 const unsigned char * const end)
13608 {
13609 unsigned int tag;
13610 unsigned int len;
13611 unsigned int val;
13612 arm_attr_public_tag * attr;
13613 unsigned i;
13614 unsigned int type;
13615
13616 tag = read_uleb128 (p, &len, end);
13617 p += len;
13618 attr = NULL;
13619 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13620 {
13621 if (arm_attr_public_tags[i].tag == tag)
13622 {
13623 attr = &arm_attr_public_tags[i];
13624 break;
13625 }
13626 }
13627
13628 if (attr)
13629 {
13630 printf (" Tag_%s: ", attr->name);
13631 switch (attr->type)
13632 {
13633 case 0:
13634 switch (tag)
13635 {
13636 case 7: /* Tag_CPU_arch_profile. */
13637 val = read_uleb128 (p, &len, end);
13638 p += len;
13639 switch (val)
13640 {
13641 case 0: printf (_("None\n")); break;
13642 case 'A': printf (_("Application\n")); break;
13643 case 'R': printf (_("Realtime\n")); break;
13644 case 'M': printf (_("Microcontroller\n")); break;
13645 case 'S': printf (_("Application or Realtime\n")); break;
13646 default: printf ("??? (%d)\n", val); break;
13647 }
13648 break;
13649
13650 case 24: /* Tag_align_needed. */
13651 val = read_uleb128 (p, &len, end);
13652 p += len;
13653 switch (val)
13654 {
13655 case 0: printf (_("None\n")); break;
13656 case 1: printf (_("8-byte\n")); break;
13657 case 2: printf (_("4-byte\n")); break;
13658 case 3: printf ("??? 3\n"); break;
13659 default:
13660 if (val <= 12)
13661 printf (_("8-byte and up to %d-byte extended\n"),
13662 1 << val);
13663 else
13664 printf ("??? (%d)\n", val);
13665 break;
13666 }
13667 break;
13668
13669 case 25: /* Tag_align_preserved. */
13670 val = read_uleb128 (p, &len, end);
13671 p += len;
13672 switch (val)
13673 {
13674 case 0: printf (_("None\n")); break;
13675 case 1: printf (_("8-byte, except leaf SP\n")); break;
13676 case 2: printf (_("8-byte\n")); break;
13677 case 3: printf ("??? 3\n"); break;
13678 default:
13679 if (val <= 12)
13680 printf (_("8-byte and up to %d-byte extended\n"),
13681 1 << val);
13682 else
13683 printf ("??? (%d)\n", val);
13684 break;
13685 }
13686 break;
13687
13688 case 32: /* Tag_compatibility. */
13689 {
13690 val = read_uleb128 (p, &len, end);
13691 p += len;
13692 printf (_("flag = %d, vendor = "), val);
13693 if (p < end - 1)
13694 {
13695 size_t maxlen = (end - p) - 1;
13696
13697 print_symbol ((int) maxlen, (const char *) p);
13698 p += strnlen ((char *) p, maxlen) + 1;
13699 }
13700 else
13701 {
13702 printf (_("<corrupt>"));
13703 p = (unsigned char *) end;
13704 }
13705 putchar ('\n');
13706 }
13707 break;
13708
13709 case 64: /* Tag_nodefaults. */
13710 /* PR 17531: file: 001-505008-0.01. */
13711 if (p < end)
13712 p++;
13713 printf (_("True\n"));
13714 break;
13715
13716 case 65: /* Tag_also_compatible_with. */
13717 val = read_uleb128 (p, &len, end);
13718 p += len;
13719 if (val == 6 /* Tag_CPU_arch. */)
13720 {
13721 val = read_uleb128 (p, &len, end);
13722 p += len;
13723 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13724 printf ("??? (%d)\n", val);
13725 else
13726 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13727 }
13728 else
13729 printf ("???\n");
13730 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13731 ;
13732 break;
13733
13734 default:
13735 printf (_("<unknown: %d>\n"), tag);
13736 break;
13737 }
13738 return p;
13739
13740 case 1:
13741 return display_tag_value (-1, p, end);
13742 case 2:
13743 return display_tag_value (0, p, end);
13744
13745 default:
13746 assert (attr->type & 0x80);
13747 val = read_uleb128 (p, &len, end);
13748 p += len;
13749 type = attr->type & 0x7f;
13750 if (val >= type)
13751 printf ("??? (%d)\n", val);
13752 else
13753 printf ("%s\n", attr->table[val]);
13754 return p;
13755 }
13756 }
13757
13758 return display_tag_value (tag, p, end);
13759 }
13760
13761 static unsigned char *
13762 display_gnu_attribute (unsigned char * p,
13763 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
13764 const unsigned char * const end)
13765 {
13766 int tag;
13767 unsigned int len;
13768 unsigned int val;
13769
13770 tag = read_uleb128 (p, &len, end);
13771 p += len;
13772
13773 /* Tag_compatibility is the only generic GNU attribute defined at
13774 present. */
13775 if (tag == 32)
13776 {
13777 val = read_uleb128 (p, &len, end);
13778 p += len;
13779
13780 printf (_("flag = %d, vendor = "), val);
13781 if (p == end)
13782 {
13783 printf (_("<corrupt>\n"));
13784 warn (_("corrupt vendor attribute\n"));
13785 }
13786 else
13787 {
13788 if (p < end - 1)
13789 {
13790 size_t maxlen = (end - p) - 1;
13791
13792 print_symbol ((int) maxlen, (const char *) p);
13793 p += strnlen ((char *) p, maxlen) + 1;
13794 }
13795 else
13796 {
13797 printf (_("<corrupt>"));
13798 p = (unsigned char *) end;
13799 }
13800 putchar ('\n');
13801 }
13802 return p;
13803 }
13804
13805 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13806 return display_proc_gnu_attribute (p, tag, end);
13807
13808 return display_tag_value (tag, p, end);
13809 }
13810
13811 static unsigned char *
13812 display_power_gnu_attribute (unsigned char * p,
13813 unsigned int tag,
13814 const unsigned char * const end)
13815 {
13816 unsigned int len;
13817 unsigned int val;
13818
13819 if (tag == Tag_GNU_Power_ABI_FP)
13820 {
13821 val = read_uleb128 (p, &len, end);
13822 p += len;
13823 printf (" Tag_GNU_Power_ABI_FP: ");
13824 if (len == 0)
13825 {
13826 printf (_("<corrupt>\n"));
13827 return p;
13828 }
13829
13830 if (val > 15)
13831 printf ("(%#x), ", val);
13832
13833 switch (val & 3)
13834 {
13835 case 0:
13836 printf (_("unspecified hard/soft float, "));
13837 break;
13838 case 1:
13839 printf (_("hard float, "));
13840 break;
13841 case 2:
13842 printf (_("soft float, "));
13843 break;
13844 case 3:
13845 printf (_("single-precision hard float, "));
13846 break;
13847 }
13848
13849 switch (val & 0xC)
13850 {
13851 case 0:
13852 printf (_("unspecified long double\n"));
13853 break;
13854 case 4:
13855 printf (_("128-bit IBM long double\n"));
13856 break;
13857 case 8:
13858 printf (_("64-bit long double\n"));
13859 break;
13860 case 12:
13861 printf (_("128-bit IEEE long double\n"));
13862 break;
13863 }
13864 return p;
13865 }
13866
13867 if (tag == Tag_GNU_Power_ABI_Vector)
13868 {
13869 val = read_uleb128 (p, &len, end);
13870 p += len;
13871 printf (" Tag_GNU_Power_ABI_Vector: ");
13872 if (len == 0)
13873 {
13874 printf (_("<corrupt>\n"));
13875 return p;
13876 }
13877
13878 if (val > 3)
13879 printf ("(%#x), ", val);
13880
13881 switch (val & 3)
13882 {
13883 case 0:
13884 printf (_("unspecified\n"));
13885 break;
13886 case 1:
13887 printf (_("generic\n"));
13888 break;
13889 case 2:
13890 printf ("AltiVec\n");
13891 break;
13892 case 3:
13893 printf ("SPE\n");
13894 break;
13895 }
13896 return p;
13897 }
13898
13899 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13900 {
13901 val = read_uleb128 (p, &len, end);
13902 p += len;
13903 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13904 if (len == 0)
13905 {
13906 printf (_("<corrupt>\n"));
13907 return p;
13908 }
13909
13910 if (val > 2)
13911 printf ("(%#x), ", val);
13912
13913 switch (val & 3)
13914 {
13915 case 0:
13916 printf (_("unspecified\n"));
13917 break;
13918 case 1:
13919 printf ("r3/r4\n");
13920 break;
13921 case 2:
13922 printf (_("memory\n"));
13923 break;
13924 case 3:
13925 printf ("???\n");
13926 break;
13927 }
13928 return p;
13929 }
13930
13931 return display_tag_value (tag & 1, p, end);
13932 }
13933
13934 static unsigned char *
13935 display_s390_gnu_attribute (unsigned char * p,
13936 unsigned int tag,
13937 const unsigned char * const end)
13938 {
13939 unsigned int len;
13940 int val;
13941
13942 if (tag == Tag_GNU_S390_ABI_Vector)
13943 {
13944 val = read_uleb128 (p, &len, end);
13945 p += len;
13946 printf (" Tag_GNU_S390_ABI_Vector: ");
13947
13948 switch (val)
13949 {
13950 case 0:
13951 printf (_("any\n"));
13952 break;
13953 case 1:
13954 printf (_("software\n"));
13955 break;
13956 case 2:
13957 printf (_("hardware\n"));
13958 break;
13959 default:
13960 printf ("??? (%d)\n", val);
13961 break;
13962 }
13963 return p;
13964 }
13965
13966 return display_tag_value (tag & 1, p, end);
13967 }
13968
13969 static void
13970 display_sparc_hwcaps (unsigned int mask)
13971 {
13972 if (mask)
13973 {
13974 bfd_boolean first = TRUE;
13975
13976 if (mask & ELF_SPARC_HWCAP_MUL32)
13977 fputs ("mul32", stdout), first = FALSE;
13978 if (mask & ELF_SPARC_HWCAP_DIV32)
13979 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
13980 if (mask & ELF_SPARC_HWCAP_FSMULD)
13981 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
13982 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13983 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
13984 if (mask & ELF_SPARC_HWCAP_POPC)
13985 printf ("%spopc", first ? "" : "|"), first = FALSE;
13986 if (mask & ELF_SPARC_HWCAP_VIS)
13987 printf ("%svis", first ? "" : "|"), first = FALSE;
13988 if (mask & ELF_SPARC_HWCAP_VIS2)
13989 printf ("%svis2", first ? "" : "|"), first = FALSE;
13990 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13991 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
13992 if (mask & ELF_SPARC_HWCAP_FMAF)
13993 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
13994 if (mask & ELF_SPARC_HWCAP_VIS3)
13995 printf ("%svis3", first ? "" : "|"), first = FALSE;
13996 if (mask & ELF_SPARC_HWCAP_HPC)
13997 printf ("%shpc", first ? "" : "|"), first = FALSE;
13998 if (mask & ELF_SPARC_HWCAP_RANDOM)
13999 printf ("%srandom", first ? "" : "|"), first = FALSE;
14000 if (mask & ELF_SPARC_HWCAP_TRANS)
14001 printf ("%strans", first ? "" : "|"), first = FALSE;
14002 if (mask & ELF_SPARC_HWCAP_FJFMAU)
14003 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
14004 if (mask & ELF_SPARC_HWCAP_IMA)
14005 printf ("%sima", first ? "" : "|"), first = FALSE;
14006 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
14007 printf ("%scspare", first ? "" : "|"), first = FALSE;
14008 }
14009 else
14010 fputc ('0', stdout);
14011 fputc ('\n', stdout);
14012 }
14013
14014 static void
14015 display_sparc_hwcaps2 (unsigned int mask)
14016 {
14017 if (mask)
14018 {
14019 bfd_boolean first = TRUE;
14020
14021 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
14022 fputs ("fjathplus", stdout), first = FALSE;
14023 if (mask & ELF_SPARC_HWCAP2_VIS3B)
14024 printf ("%svis3b", first ? "" : "|"), first = FALSE;
14025 if (mask & ELF_SPARC_HWCAP2_ADP)
14026 printf ("%sadp", first ? "" : "|"), first = FALSE;
14027 if (mask & ELF_SPARC_HWCAP2_SPARC5)
14028 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
14029 if (mask & ELF_SPARC_HWCAP2_MWAIT)
14030 printf ("%smwait", first ? "" : "|"), first = FALSE;
14031 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
14032 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
14033 if (mask & ELF_SPARC_HWCAP2_XMONT)
14034 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
14035 if (mask & ELF_SPARC_HWCAP2_NSEC)
14036 printf ("%snsec", first ? "" : "|"), first = FALSE;
14037 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
14038 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
14039 if (mask & ELF_SPARC_HWCAP2_FJDES)
14040 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
14041 if (mask & ELF_SPARC_HWCAP2_FJAES)
14042 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
14043 }
14044 else
14045 fputc ('0', stdout);
14046 fputc ('\n', stdout);
14047 }
14048
14049 static unsigned char *
14050 display_sparc_gnu_attribute (unsigned char * p,
14051 unsigned int tag,
14052 const unsigned char * const end)
14053 {
14054 unsigned int len;
14055 int val;
14056
14057 if (tag == Tag_GNU_Sparc_HWCAPS)
14058 {
14059 val = read_uleb128 (p, &len, end);
14060 p += len;
14061 printf (" Tag_GNU_Sparc_HWCAPS: ");
14062 display_sparc_hwcaps (val);
14063 return p;
14064 }
14065 if (tag == Tag_GNU_Sparc_HWCAPS2)
14066 {
14067 val = read_uleb128 (p, &len, end);
14068 p += len;
14069 printf (" Tag_GNU_Sparc_HWCAPS2: ");
14070 display_sparc_hwcaps2 (val);
14071 return p;
14072 }
14073
14074 return display_tag_value (tag, p, end);
14075 }
14076
14077 static void
14078 print_mips_fp_abi_value (unsigned int val)
14079 {
14080 switch (val)
14081 {
14082 case Val_GNU_MIPS_ABI_FP_ANY:
14083 printf (_("Hard or soft float\n"));
14084 break;
14085 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14086 printf (_("Hard float (double precision)\n"));
14087 break;
14088 case Val_GNU_MIPS_ABI_FP_SINGLE:
14089 printf (_("Hard float (single precision)\n"));
14090 break;
14091 case Val_GNU_MIPS_ABI_FP_SOFT:
14092 printf (_("Soft float\n"));
14093 break;
14094 case Val_GNU_MIPS_ABI_FP_OLD_64:
14095 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
14096 break;
14097 case Val_GNU_MIPS_ABI_FP_XX:
14098 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
14099 break;
14100 case Val_GNU_MIPS_ABI_FP_64:
14101 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
14102 break;
14103 case Val_GNU_MIPS_ABI_FP_64A:
14104 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
14105 break;
14106 case Val_GNU_MIPS_ABI_FP_NAN2008:
14107 printf (_("NaN 2008 compatibility\n"));
14108 break;
14109 default:
14110 printf ("??? (%d)\n", val);
14111 break;
14112 }
14113 }
14114
14115 static unsigned char *
14116 display_mips_gnu_attribute (unsigned char * p,
14117 unsigned int tag,
14118 const unsigned char * const end)
14119 {
14120 if (tag == Tag_GNU_MIPS_ABI_FP)
14121 {
14122 unsigned int len;
14123 unsigned int val;
14124
14125 val = read_uleb128 (p, &len, end);
14126 p += len;
14127 printf (" Tag_GNU_MIPS_ABI_FP: ");
14128
14129 print_mips_fp_abi_value (val);
14130
14131 return p;
14132 }
14133
14134 if (tag == Tag_GNU_MIPS_ABI_MSA)
14135 {
14136 unsigned int len;
14137 unsigned int val;
14138
14139 val = read_uleb128 (p, &len, end);
14140 p += len;
14141 printf (" Tag_GNU_MIPS_ABI_MSA: ");
14142
14143 switch (val)
14144 {
14145 case Val_GNU_MIPS_ABI_MSA_ANY:
14146 printf (_("Any MSA or not\n"));
14147 break;
14148 case Val_GNU_MIPS_ABI_MSA_128:
14149 printf (_("128-bit MSA\n"));
14150 break;
14151 default:
14152 printf ("??? (%d)\n", val);
14153 break;
14154 }
14155 return p;
14156 }
14157
14158 return display_tag_value (tag & 1, p, end);
14159 }
14160
14161 static unsigned char *
14162 display_tic6x_attribute (unsigned char * p,
14163 const unsigned char * const end)
14164 {
14165 unsigned int tag;
14166 unsigned int len;
14167 int val;
14168
14169 tag = read_uleb128 (p, &len, end);
14170 p += len;
14171
14172 switch (tag)
14173 {
14174 case Tag_ISA:
14175 val = read_uleb128 (p, &len, end);
14176 p += len;
14177 printf (" Tag_ISA: ");
14178
14179 switch (val)
14180 {
14181 case C6XABI_Tag_ISA_none:
14182 printf (_("None\n"));
14183 break;
14184 case C6XABI_Tag_ISA_C62X:
14185 printf ("C62x\n");
14186 break;
14187 case C6XABI_Tag_ISA_C67X:
14188 printf ("C67x\n");
14189 break;
14190 case C6XABI_Tag_ISA_C67XP:
14191 printf ("C67x+\n");
14192 break;
14193 case C6XABI_Tag_ISA_C64X:
14194 printf ("C64x\n");
14195 break;
14196 case C6XABI_Tag_ISA_C64XP:
14197 printf ("C64x+\n");
14198 break;
14199 case C6XABI_Tag_ISA_C674X:
14200 printf ("C674x\n");
14201 break;
14202 default:
14203 printf ("??? (%d)\n", val);
14204 break;
14205 }
14206 return p;
14207
14208 case Tag_ABI_wchar_t:
14209 val = read_uleb128 (p, &len, end);
14210 p += len;
14211 printf (" Tag_ABI_wchar_t: ");
14212 switch (val)
14213 {
14214 case 0:
14215 printf (_("Not used\n"));
14216 break;
14217 case 1:
14218 printf (_("2 bytes\n"));
14219 break;
14220 case 2:
14221 printf (_("4 bytes\n"));
14222 break;
14223 default:
14224 printf ("??? (%d)\n", val);
14225 break;
14226 }
14227 return p;
14228
14229 case Tag_ABI_stack_align_needed:
14230 val = read_uleb128 (p, &len, end);
14231 p += len;
14232 printf (" Tag_ABI_stack_align_needed: ");
14233 switch (val)
14234 {
14235 case 0:
14236 printf (_("8-byte\n"));
14237 break;
14238 case 1:
14239 printf (_("16-byte\n"));
14240 break;
14241 default:
14242 printf ("??? (%d)\n", val);
14243 break;
14244 }
14245 return p;
14246
14247 case Tag_ABI_stack_align_preserved:
14248 val = read_uleb128 (p, &len, end);
14249 p += len;
14250 printf (" Tag_ABI_stack_align_preserved: ");
14251 switch (val)
14252 {
14253 case 0:
14254 printf (_("8-byte\n"));
14255 break;
14256 case 1:
14257 printf (_("16-byte\n"));
14258 break;
14259 default:
14260 printf ("??? (%d)\n", val);
14261 break;
14262 }
14263 return p;
14264
14265 case Tag_ABI_DSBT:
14266 val = read_uleb128 (p, &len, end);
14267 p += len;
14268 printf (" Tag_ABI_DSBT: ");
14269 switch (val)
14270 {
14271 case 0:
14272 printf (_("DSBT addressing not used\n"));
14273 break;
14274 case 1:
14275 printf (_("DSBT addressing used\n"));
14276 break;
14277 default:
14278 printf ("??? (%d)\n", val);
14279 break;
14280 }
14281 return p;
14282
14283 case Tag_ABI_PID:
14284 val = read_uleb128 (p, &len, end);
14285 p += len;
14286 printf (" Tag_ABI_PID: ");
14287 switch (val)
14288 {
14289 case 0:
14290 printf (_("Data addressing position-dependent\n"));
14291 break;
14292 case 1:
14293 printf (_("Data addressing position-independent, GOT near DP\n"));
14294 break;
14295 case 2:
14296 printf (_("Data addressing position-independent, GOT far from DP\n"));
14297 break;
14298 default:
14299 printf ("??? (%d)\n", val);
14300 break;
14301 }
14302 return p;
14303
14304 case Tag_ABI_PIC:
14305 val = read_uleb128 (p, &len, end);
14306 p += len;
14307 printf (" Tag_ABI_PIC: ");
14308 switch (val)
14309 {
14310 case 0:
14311 printf (_("Code addressing position-dependent\n"));
14312 break;
14313 case 1:
14314 printf (_("Code addressing position-independent\n"));
14315 break;
14316 default:
14317 printf ("??? (%d)\n", val);
14318 break;
14319 }
14320 return p;
14321
14322 case Tag_ABI_array_object_alignment:
14323 val = read_uleb128 (p, &len, end);
14324 p += len;
14325 printf (" Tag_ABI_array_object_alignment: ");
14326 switch (val)
14327 {
14328 case 0:
14329 printf (_("8-byte\n"));
14330 break;
14331 case 1:
14332 printf (_("4-byte\n"));
14333 break;
14334 case 2:
14335 printf (_("16-byte\n"));
14336 break;
14337 default:
14338 printf ("??? (%d)\n", val);
14339 break;
14340 }
14341 return p;
14342
14343 case Tag_ABI_array_object_align_expected:
14344 val = read_uleb128 (p, &len, end);
14345 p += len;
14346 printf (" Tag_ABI_array_object_align_expected: ");
14347 switch (val)
14348 {
14349 case 0:
14350 printf (_("8-byte\n"));
14351 break;
14352 case 1:
14353 printf (_("4-byte\n"));
14354 break;
14355 case 2:
14356 printf (_("16-byte\n"));
14357 break;
14358 default:
14359 printf ("??? (%d)\n", val);
14360 break;
14361 }
14362 return p;
14363
14364 case Tag_ABI_compatibility:
14365 {
14366 val = read_uleb128 (p, &len, end);
14367 p += len;
14368 printf (" Tag_ABI_compatibility: ");
14369 printf (_("flag = %d, vendor = "), val);
14370 if (p < end - 1)
14371 {
14372 size_t maxlen = (end - p) - 1;
14373
14374 print_symbol ((int) maxlen, (const char *) p);
14375 p += strnlen ((char *) p, maxlen) + 1;
14376 }
14377 else
14378 {
14379 printf (_("<corrupt>"));
14380 p = (unsigned char *) end;
14381 }
14382 putchar ('\n');
14383 return p;
14384 }
14385
14386 case Tag_ABI_conformance:
14387 {
14388 printf (" Tag_ABI_conformance: \"");
14389 if (p < end - 1)
14390 {
14391 size_t maxlen = (end - p) - 1;
14392
14393 print_symbol ((int) maxlen, (const char *) p);
14394 p += strnlen ((char *) p, maxlen) + 1;
14395 }
14396 else
14397 {
14398 printf (_("<corrupt>"));
14399 p = (unsigned char *) end;
14400 }
14401 printf ("\"\n");
14402 return p;
14403 }
14404 }
14405
14406 return display_tag_value (tag, p, end);
14407 }
14408
14409 static void
14410 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14411 {
14412 unsigned long addr = 0;
14413 size_t bytes = end - p;
14414
14415 assert (end > p);
14416 while (bytes)
14417 {
14418 int j;
14419 int k;
14420 int lbytes = (bytes > 16 ? 16 : bytes);
14421
14422 printf (" 0x%8.8lx ", addr);
14423
14424 for (j = 0; j < 16; j++)
14425 {
14426 if (j < lbytes)
14427 printf ("%2.2x", p[j]);
14428 else
14429 printf (" ");
14430
14431 if ((j & 3) == 3)
14432 printf (" ");
14433 }
14434
14435 for (j = 0; j < lbytes; j++)
14436 {
14437 k = p[j];
14438 if (k >= ' ' && k < 0x7f)
14439 printf ("%c", k);
14440 else
14441 printf (".");
14442 }
14443
14444 putchar ('\n');
14445
14446 p += lbytes;
14447 bytes -= lbytes;
14448 addr += lbytes;
14449 }
14450
14451 putchar ('\n');
14452 }
14453
14454 static unsigned char *
14455 display_msp430x_attribute (unsigned char * p,
14456 const unsigned char * const end)
14457 {
14458 unsigned int len;
14459 unsigned int val;
14460 unsigned int tag;
14461
14462 tag = read_uleb128 (p, & len, end);
14463 p += len;
14464
14465 switch (tag)
14466 {
14467 case OFBA_MSPABI_Tag_ISA:
14468 val = read_uleb128 (p, &len, end);
14469 p += len;
14470 printf (" Tag_ISA: ");
14471 switch (val)
14472 {
14473 case 0: printf (_("None\n")); break;
14474 case 1: printf (_("MSP430\n")); break;
14475 case 2: printf (_("MSP430X\n")); break;
14476 default: printf ("??? (%d)\n", val); break;
14477 }
14478 break;
14479
14480 case OFBA_MSPABI_Tag_Code_Model:
14481 val = read_uleb128 (p, &len, end);
14482 p += len;
14483 printf (" Tag_Code_Model: ");
14484 switch (val)
14485 {
14486 case 0: printf (_("None\n")); break;
14487 case 1: printf (_("Small\n")); break;
14488 case 2: printf (_("Large\n")); break;
14489 default: printf ("??? (%d)\n", val); break;
14490 }
14491 break;
14492
14493 case OFBA_MSPABI_Tag_Data_Model:
14494 val = read_uleb128 (p, &len, end);
14495 p += len;
14496 printf (" Tag_Data_Model: ");
14497 switch (val)
14498 {
14499 case 0: printf (_("None\n")); break;
14500 case 1: printf (_("Small\n")); break;
14501 case 2: printf (_("Large\n")); break;
14502 case 3: printf (_("Restricted Large\n")); break;
14503 default: printf ("??? (%d)\n", val); break;
14504 }
14505 break;
14506
14507 default:
14508 printf (_(" <unknown tag %d>: "), tag);
14509
14510 if (tag & 1)
14511 {
14512 putchar ('"');
14513 if (p < end - 1)
14514 {
14515 size_t maxlen = (end - p) - 1;
14516
14517 print_symbol ((int) maxlen, (const char *) p);
14518 p += strnlen ((char *) p, maxlen) + 1;
14519 }
14520 else
14521 {
14522 printf (_("<corrupt>"));
14523 p = (unsigned char *) end;
14524 }
14525 printf ("\"\n");
14526 }
14527 else
14528 {
14529 val = read_uleb128 (p, &len, end);
14530 p += len;
14531 printf ("%d (0x%x)\n", val, val);
14532 }
14533 break;
14534 }
14535
14536 assert (p <= end);
14537 return p;
14538 }
14539
14540 static bfd_boolean
14541 process_attributes (FILE * file,
14542 const char * public_name,
14543 unsigned int proc_type,
14544 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14545 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14546 {
14547 Elf_Internal_Shdr * sect;
14548 unsigned i;
14549 bfd_boolean res = TRUE;
14550
14551 /* Find the section header so that we get the size. */
14552 for (i = 0, sect = section_headers;
14553 i < elf_header.e_shnum;
14554 i++, sect++)
14555 {
14556 unsigned char * contents;
14557 unsigned char * p;
14558
14559 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14560 continue;
14561
14562 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14563 sect->sh_size, _("attributes"));
14564 if (contents == NULL)
14565 {
14566 res = FALSE;
14567 continue;
14568 }
14569
14570 p = contents;
14571 /* The first character is the version of the attributes.
14572 Currently only version 1, (aka 'A') is recognised here. */
14573 if (*p != 'A')
14574 {
14575 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14576 res = FALSE;
14577 }
14578 else
14579 {
14580 bfd_vma section_len;
14581
14582 section_len = sect->sh_size - 1;
14583 p++;
14584
14585 while (section_len > 0)
14586 {
14587 bfd_vma attr_len;
14588 unsigned int namelen;
14589 bfd_boolean public_section;
14590 bfd_boolean gnu_section;
14591
14592 if (section_len <= 4)
14593 {
14594 error (_("Tag section ends prematurely\n"));
14595 res = FALSE;
14596 break;
14597 }
14598 attr_len = byte_get (p, 4);
14599 p += 4;
14600
14601 if (attr_len > section_len)
14602 {
14603 error (_("Bad attribute length (%u > %u)\n"),
14604 (unsigned) attr_len, (unsigned) section_len);
14605 attr_len = section_len;
14606 res = FALSE;
14607 }
14608 /* PR 17531: file: 001-101425-0.004 */
14609 else if (attr_len < 5)
14610 {
14611 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14612 res = FALSE;
14613 break;
14614 }
14615
14616 section_len -= attr_len;
14617 attr_len -= 4;
14618
14619 namelen = strnlen ((char *) p, attr_len) + 1;
14620 if (namelen == 0 || namelen >= attr_len)
14621 {
14622 error (_("Corrupt attribute section name\n"));
14623 res = FALSE;
14624 break;
14625 }
14626
14627 printf (_("Attribute Section: "));
14628 print_symbol (INT_MAX, (const char *) p);
14629 putchar ('\n');
14630
14631 if (public_name && streq ((char *) p, public_name))
14632 public_section = TRUE;
14633 else
14634 public_section = FALSE;
14635
14636 if (streq ((char *) p, "gnu"))
14637 gnu_section = TRUE;
14638 else
14639 gnu_section = FALSE;
14640
14641 p += namelen;
14642 attr_len -= namelen;
14643
14644 while (attr_len > 0 && p < contents + sect->sh_size)
14645 {
14646 int tag;
14647 int val;
14648 bfd_vma size;
14649 unsigned char * end;
14650
14651 /* PR binutils/17531: Safe handling of corrupt files. */
14652 if (attr_len < 6)
14653 {
14654 error (_("Unused bytes at end of section\n"));
14655 res = FALSE;
14656 section_len = 0;
14657 break;
14658 }
14659
14660 tag = *(p++);
14661 size = byte_get (p, 4);
14662 if (size > attr_len)
14663 {
14664 error (_("Bad subsection length (%u > %u)\n"),
14665 (unsigned) size, (unsigned) attr_len);
14666 res = FALSE;
14667 size = attr_len;
14668 }
14669 /* PR binutils/17531: Safe handling of corrupt files. */
14670 if (size < 6)
14671 {
14672 error (_("Bad subsection length (%u < 6)\n"),
14673 (unsigned) size);
14674 res = FALSE;
14675 section_len = 0;
14676 break;
14677 }
14678
14679 attr_len -= size;
14680 end = p + size - 1;
14681 assert (end <= contents + sect->sh_size);
14682 p += 4;
14683
14684 switch (tag)
14685 {
14686 case 1:
14687 printf (_("File Attributes\n"));
14688 break;
14689 case 2:
14690 printf (_("Section Attributes:"));
14691 goto do_numlist;
14692 case 3:
14693 printf (_("Symbol Attributes:"));
14694 /* Fall through. */
14695 do_numlist:
14696 for (;;)
14697 {
14698 unsigned int j;
14699
14700 val = read_uleb128 (p, &j, end);
14701 p += j;
14702 if (val == 0)
14703 break;
14704 printf (" %d", val);
14705 }
14706 printf ("\n");
14707 break;
14708 default:
14709 printf (_("Unknown tag: %d\n"), tag);
14710 public_section = FALSE;
14711 break;
14712 }
14713
14714 if (public_section && display_pub_attribute != NULL)
14715 {
14716 while (p < end)
14717 p = display_pub_attribute (p, end);
14718 assert (p == end);
14719 }
14720 else if (gnu_section && display_proc_gnu_attribute != NULL)
14721 {
14722 while (p < end)
14723 p = display_gnu_attribute (p,
14724 display_proc_gnu_attribute,
14725 end);
14726 assert (p == end);
14727 }
14728 else if (p < end)
14729 {
14730 printf (_(" Unknown attribute:\n"));
14731 display_raw_attribute (p, end);
14732 p = end;
14733 }
14734 else
14735 attr_len = 0;
14736 }
14737 }
14738 }
14739
14740 free (contents);
14741 }
14742
14743 return res;
14744 }
14745
14746 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14747 Print the Address, Access and Initial fields of an entry at VMA ADDR
14748 and return the VMA of the next entry, or -1 if there was a problem.
14749 Does not read from DATA_END or beyond. */
14750
14751 static bfd_vma
14752 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14753 unsigned char * data_end)
14754 {
14755 printf (" ");
14756 print_vma (addr, LONG_HEX);
14757 printf (" ");
14758 if (addr < pltgot + 0xfff0)
14759 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14760 else
14761 printf ("%10s", "");
14762 printf (" ");
14763 if (data == NULL)
14764 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14765 else
14766 {
14767 bfd_vma entry;
14768 unsigned char * from = data + addr - pltgot;
14769
14770 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14771 {
14772 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14773 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14774 return (bfd_vma) -1;
14775 }
14776 else
14777 {
14778 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14779 print_vma (entry, LONG_HEX);
14780 }
14781 }
14782 return addr + (is_32bit_elf ? 4 : 8);
14783 }
14784
14785 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14786 PLTGOT. Print the Address and Initial fields of an entry at VMA
14787 ADDR and return the VMA of the next entry. */
14788
14789 static bfd_vma
14790 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14791 {
14792 printf (" ");
14793 print_vma (addr, LONG_HEX);
14794 printf (" ");
14795 if (data == NULL)
14796 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14797 else
14798 {
14799 bfd_vma entry;
14800
14801 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14802 print_vma (entry, LONG_HEX);
14803 }
14804 return addr + (is_32bit_elf ? 4 : 8);
14805 }
14806
14807 static void
14808 print_mips_ases (unsigned int mask)
14809 {
14810 if (mask & AFL_ASE_DSP)
14811 fputs ("\n\tDSP ASE", stdout);
14812 if (mask & AFL_ASE_DSPR2)
14813 fputs ("\n\tDSP R2 ASE", stdout);
14814 if (mask & AFL_ASE_DSPR3)
14815 fputs ("\n\tDSP R3 ASE", stdout);
14816 if (mask & AFL_ASE_EVA)
14817 fputs ("\n\tEnhanced VA Scheme", stdout);
14818 if (mask & AFL_ASE_MCU)
14819 fputs ("\n\tMCU (MicroController) ASE", stdout);
14820 if (mask & AFL_ASE_MDMX)
14821 fputs ("\n\tMDMX ASE", stdout);
14822 if (mask & AFL_ASE_MIPS3D)
14823 fputs ("\n\tMIPS-3D ASE", stdout);
14824 if (mask & AFL_ASE_MT)
14825 fputs ("\n\tMT ASE", stdout);
14826 if (mask & AFL_ASE_SMARTMIPS)
14827 fputs ("\n\tSmartMIPS ASE", stdout);
14828 if (mask & AFL_ASE_VIRT)
14829 fputs ("\n\tVZ ASE", stdout);
14830 if (mask & AFL_ASE_MSA)
14831 fputs ("\n\tMSA ASE", stdout);
14832 if (mask & AFL_ASE_MIPS16)
14833 fputs ("\n\tMIPS16 ASE", stdout);
14834 if (mask & AFL_ASE_MICROMIPS)
14835 fputs ("\n\tMICROMIPS ASE", stdout);
14836 if (mask & AFL_ASE_XPA)
14837 fputs ("\n\tXPA ASE", stdout);
14838 if (mask == 0)
14839 fprintf (stdout, "\n\t%s", _("None"));
14840 else if ((mask & ~AFL_ASE_MASK) != 0)
14841 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14842 }
14843
14844 static void
14845 print_mips_isa_ext (unsigned int isa_ext)
14846 {
14847 switch (isa_ext)
14848 {
14849 case 0:
14850 fputs (_("None"), stdout);
14851 break;
14852 case AFL_EXT_XLR:
14853 fputs ("RMI XLR", stdout);
14854 break;
14855 case AFL_EXT_OCTEON3:
14856 fputs ("Cavium Networks Octeon3", stdout);
14857 break;
14858 case AFL_EXT_OCTEON2:
14859 fputs ("Cavium Networks Octeon2", stdout);
14860 break;
14861 case AFL_EXT_OCTEONP:
14862 fputs ("Cavium Networks OcteonP", stdout);
14863 break;
14864 case AFL_EXT_LOONGSON_3A:
14865 fputs ("Loongson 3A", stdout);
14866 break;
14867 case AFL_EXT_OCTEON:
14868 fputs ("Cavium Networks Octeon", stdout);
14869 break;
14870 case AFL_EXT_5900:
14871 fputs ("Toshiba R5900", stdout);
14872 break;
14873 case AFL_EXT_4650:
14874 fputs ("MIPS R4650", stdout);
14875 break;
14876 case AFL_EXT_4010:
14877 fputs ("LSI R4010", stdout);
14878 break;
14879 case AFL_EXT_4100:
14880 fputs ("NEC VR4100", stdout);
14881 break;
14882 case AFL_EXT_3900:
14883 fputs ("Toshiba R3900", stdout);
14884 break;
14885 case AFL_EXT_10000:
14886 fputs ("MIPS R10000", stdout);
14887 break;
14888 case AFL_EXT_SB1:
14889 fputs ("Broadcom SB-1", stdout);
14890 break;
14891 case AFL_EXT_4111:
14892 fputs ("NEC VR4111/VR4181", stdout);
14893 break;
14894 case AFL_EXT_4120:
14895 fputs ("NEC VR4120", stdout);
14896 break;
14897 case AFL_EXT_5400:
14898 fputs ("NEC VR5400", stdout);
14899 break;
14900 case AFL_EXT_5500:
14901 fputs ("NEC VR5500", stdout);
14902 break;
14903 case AFL_EXT_LOONGSON_2E:
14904 fputs ("ST Microelectronics Loongson 2E", stdout);
14905 break;
14906 case AFL_EXT_LOONGSON_2F:
14907 fputs ("ST Microelectronics Loongson 2F", stdout);
14908 break;
14909 default:
14910 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14911 }
14912 }
14913
14914 static signed int
14915 get_mips_reg_size (int reg_size)
14916 {
14917 return (reg_size == AFL_REG_NONE) ? 0
14918 : (reg_size == AFL_REG_32) ? 32
14919 : (reg_size == AFL_REG_64) ? 64
14920 : (reg_size == AFL_REG_128) ? 128
14921 : -1;
14922 }
14923
14924 static bfd_boolean
14925 process_mips_specific (FILE * file)
14926 {
14927 Elf_Internal_Dyn * entry;
14928 Elf_Internal_Shdr *sect = NULL;
14929 size_t liblist_offset = 0;
14930 size_t liblistno = 0;
14931 size_t conflictsno = 0;
14932 size_t options_offset = 0;
14933 size_t conflicts_offset = 0;
14934 size_t pltrelsz = 0;
14935 size_t pltrel = 0;
14936 bfd_vma pltgot = 0;
14937 bfd_vma mips_pltgot = 0;
14938 bfd_vma jmprel = 0;
14939 bfd_vma local_gotno = 0;
14940 bfd_vma gotsym = 0;
14941 bfd_vma symtabno = 0;
14942 bfd_boolean res = TRUE;
14943
14944 if (! process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14945 display_mips_gnu_attribute))
14946 res = FALSE;
14947
14948 sect = find_section (".MIPS.abiflags");
14949
14950 if (sect != NULL)
14951 {
14952 Elf_External_ABIFlags_v0 *abiflags_ext;
14953 Elf_Internal_ABIFlags_v0 abiflags_in;
14954
14955 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14956 {
14957 error (_("Corrupt MIPS ABI Flags section.\n"));
14958 res = FALSE;
14959 }
14960 else
14961 {
14962 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14963 sect->sh_size, _("MIPS ABI Flags section"));
14964 if (abiflags_ext)
14965 {
14966 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14967 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14968 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14969 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14970 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14971 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14972 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14973 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14974 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14975 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14976 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14977
14978 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14979 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14980 if (abiflags_in.isa_rev > 1)
14981 printf ("r%d", abiflags_in.isa_rev);
14982 printf ("\nGPR size: %d",
14983 get_mips_reg_size (abiflags_in.gpr_size));
14984 printf ("\nCPR1 size: %d",
14985 get_mips_reg_size (abiflags_in.cpr1_size));
14986 printf ("\nCPR2 size: %d",
14987 get_mips_reg_size (abiflags_in.cpr2_size));
14988 fputs ("\nFP ABI: ", stdout);
14989 print_mips_fp_abi_value (abiflags_in.fp_abi);
14990 fputs ("ISA Extension: ", stdout);
14991 print_mips_isa_ext (abiflags_in.isa_ext);
14992 fputs ("\nASEs:", stdout);
14993 print_mips_ases (abiflags_in.ases);
14994 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14995 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14996 fputc ('\n', stdout);
14997 free (abiflags_ext);
14998 }
14999 }
15000 }
15001
15002 /* We have a lot of special sections. Thanks SGI! */
15003 if (dynamic_section == NULL)
15004 /* No information available. */
15005 return res;
15006
15007 for (entry = dynamic_section;
15008 /* PR 17531 file: 012-50589-0.004. */
15009 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
15010 ++entry)
15011 switch (entry->d_tag)
15012 {
15013 case DT_MIPS_LIBLIST:
15014 liblist_offset
15015 = offset_from_vma (file, entry->d_un.d_val,
15016 liblistno * sizeof (Elf32_External_Lib));
15017 break;
15018 case DT_MIPS_LIBLISTNO:
15019 liblistno = entry->d_un.d_val;
15020 break;
15021 case DT_MIPS_OPTIONS:
15022 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
15023 break;
15024 case DT_MIPS_CONFLICT:
15025 conflicts_offset
15026 = offset_from_vma (file, entry->d_un.d_val,
15027 conflictsno * sizeof (Elf32_External_Conflict));
15028 break;
15029 case DT_MIPS_CONFLICTNO:
15030 conflictsno = entry->d_un.d_val;
15031 break;
15032 case DT_PLTGOT:
15033 pltgot = entry->d_un.d_ptr;
15034 break;
15035 case DT_MIPS_LOCAL_GOTNO:
15036 local_gotno = entry->d_un.d_val;
15037 break;
15038 case DT_MIPS_GOTSYM:
15039 gotsym = entry->d_un.d_val;
15040 break;
15041 case DT_MIPS_SYMTABNO:
15042 symtabno = entry->d_un.d_val;
15043 break;
15044 case DT_MIPS_PLTGOT:
15045 mips_pltgot = entry->d_un.d_ptr;
15046 break;
15047 case DT_PLTREL:
15048 pltrel = entry->d_un.d_val;
15049 break;
15050 case DT_PLTRELSZ:
15051 pltrelsz = entry->d_un.d_val;
15052 break;
15053 case DT_JMPREL:
15054 jmprel = entry->d_un.d_ptr;
15055 break;
15056 default:
15057 break;
15058 }
15059
15060 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
15061 {
15062 Elf32_External_Lib * elib;
15063 size_t cnt;
15064
15065 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
15066 liblistno,
15067 sizeof (Elf32_External_Lib),
15068 _("liblist section data"));
15069 if (elib)
15070 {
15071 printf (_("\nSection '.liblist' contains %lu entries:\n"),
15072 (unsigned long) liblistno);
15073 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
15074 stdout);
15075
15076 for (cnt = 0; cnt < liblistno; ++cnt)
15077 {
15078 Elf32_Lib liblist;
15079 time_t atime;
15080 char timebuf[128];
15081 struct tm * tmp;
15082
15083 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15084 atime = BYTE_GET (elib[cnt].l_time_stamp);
15085 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15086 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15087 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15088
15089 tmp = gmtime (&atime);
15090 snprintf (timebuf, sizeof (timebuf),
15091 "%04u-%02u-%02uT%02u:%02u:%02u",
15092 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15093 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15094
15095 printf ("%3lu: ", (unsigned long) cnt);
15096 if (VALID_DYNAMIC_NAME (liblist.l_name))
15097 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
15098 else
15099 printf (_("<corrupt: %9ld>"), liblist.l_name);
15100 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
15101 liblist.l_version);
15102
15103 if (liblist.l_flags == 0)
15104 puts (_(" NONE"));
15105 else
15106 {
15107 static const struct
15108 {
15109 const char * name;
15110 int bit;
15111 }
15112 l_flags_vals[] =
15113 {
15114 { " EXACT_MATCH", LL_EXACT_MATCH },
15115 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
15116 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
15117 { " EXPORTS", LL_EXPORTS },
15118 { " DELAY_LOAD", LL_DELAY_LOAD },
15119 { " DELTA", LL_DELTA }
15120 };
15121 int flags = liblist.l_flags;
15122 size_t fcnt;
15123
15124 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
15125 if ((flags & l_flags_vals[fcnt].bit) != 0)
15126 {
15127 fputs (l_flags_vals[fcnt].name, stdout);
15128 flags ^= l_flags_vals[fcnt].bit;
15129 }
15130 if (flags != 0)
15131 printf (" %#x", (unsigned int) flags);
15132
15133 puts ("");
15134 }
15135 }
15136
15137 free (elib);
15138 }
15139 else
15140 res = FALSE;
15141 }
15142
15143 if (options_offset != 0)
15144 {
15145 Elf_External_Options * eopt;
15146 Elf_Internal_Options * iopt;
15147 Elf_Internal_Options * option;
15148 size_t offset;
15149 int cnt;
15150 sect = section_headers;
15151
15152 /* Find the section header so that we get the size. */
15153 sect = find_section_by_type (SHT_MIPS_OPTIONS);
15154 /* PR 17533 file: 012-277276-0.004. */
15155 if (sect == NULL)
15156 {
15157 error (_("No MIPS_OPTIONS header found\n"));
15158 return FALSE;
15159 }
15160
15161 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15162 sect->sh_size, _("options"));
15163 if (eopt)
15164 {
15165 iopt = (Elf_Internal_Options *)
15166 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15167 if (iopt == NULL)
15168 {
15169 error (_("Out of memory allocating space for MIPS options\n"));
15170 return FALSE;
15171 }
15172
15173 offset = cnt = 0;
15174 option = iopt;
15175
15176 while (offset <= sect->sh_size - sizeof (* eopt))
15177 {
15178 Elf_External_Options * eoption;
15179
15180 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15181
15182 option->kind = BYTE_GET (eoption->kind);
15183 option->size = BYTE_GET (eoption->size);
15184 option->section = BYTE_GET (eoption->section);
15185 option->info = BYTE_GET (eoption->info);
15186
15187 /* PR 17531: file: ffa0fa3b. */
15188 if (option->size < sizeof (* eopt)
15189 || offset + option->size > sect->sh_size)
15190 {
15191 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15192 return FALSE;
15193 }
15194 offset += option->size;
15195
15196 ++option;
15197 ++cnt;
15198 }
15199
15200 printf (_("\nSection '%s' contains %d entries:\n"),
15201 printable_section_name (sect), cnt);
15202
15203 option = iopt;
15204 offset = 0;
15205
15206 while (cnt-- > 0)
15207 {
15208 size_t len;
15209
15210 switch (option->kind)
15211 {
15212 case ODK_NULL:
15213 /* This shouldn't happen. */
15214 printf (" NULL %d %lx", option->section, option->info);
15215 break;
15216 case ODK_REGINFO:
15217 printf (" REGINFO ");
15218 if (elf_header.e_machine == EM_MIPS)
15219 {
15220 /* 32bit form. */
15221 Elf32_External_RegInfo * ereg;
15222 Elf32_RegInfo reginfo;
15223
15224 ereg = (Elf32_External_RegInfo *) (option + 1);
15225 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15226 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15227 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15228 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15229 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15230 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15231
15232 printf ("GPR %08lx GP 0x%lx\n",
15233 reginfo.ri_gprmask,
15234 (unsigned long) reginfo.ri_gp_value);
15235 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15236 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15237 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15238 }
15239 else
15240 {
15241 /* 64 bit form. */
15242 Elf64_External_RegInfo * ereg;
15243 Elf64_Internal_RegInfo reginfo;
15244
15245 ereg = (Elf64_External_RegInfo *) (option + 1);
15246 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15247 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15248 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15249 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15250 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15251 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15252
15253 printf ("GPR %08lx GP 0x",
15254 reginfo.ri_gprmask);
15255 printf_vma (reginfo.ri_gp_value);
15256 printf ("\n");
15257
15258 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15259 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15260 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15261 }
15262 ++option;
15263 continue;
15264 case ODK_EXCEPTIONS:
15265 fputs (" EXCEPTIONS fpe_min(", stdout);
15266 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15267 fputs (") fpe_max(", stdout);
15268 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15269 fputs (")", stdout);
15270
15271 if (option->info & OEX_PAGE0)
15272 fputs (" PAGE0", stdout);
15273 if (option->info & OEX_SMM)
15274 fputs (" SMM", stdout);
15275 if (option->info & OEX_FPDBUG)
15276 fputs (" FPDBUG", stdout);
15277 if (option->info & OEX_DISMISS)
15278 fputs (" DISMISS", stdout);
15279 break;
15280 case ODK_PAD:
15281 fputs (" PAD ", stdout);
15282 if (option->info & OPAD_PREFIX)
15283 fputs (" PREFIX", stdout);
15284 if (option->info & OPAD_POSTFIX)
15285 fputs (" POSTFIX", stdout);
15286 if (option->info & OPAD_SYMBOL)
15287 fputs (" SYMBOL", stdout);
15288 break;
15289 case ODK_HWPATCH:
15290 fputs (" HWPATCH ", stdout);
15291 if (option->info & OHW_R4KEOP)
15292 fputs (" R4KEOP", stdout);
15293 if (option->info & OHW_R8KPFETCH)
15294 fputs (" R8KPFETCH", stdout);
15295 if (option->info & OHW_R5KEOP)
15296 fputs (" R5KEOP", stdout);
15297 if (option->info & OHW_R5KCVTL)
15298 fputs (" R5KCVTL", stdout);
15299 break;
15300 case ODK_FILL:
15301 fputs (" FILL ", stdout);
15302 /* XXX Print content of info word? */
15303 break;
15304 case ODK_TAGS:
15305 fputs (" TAGS ", stdout);
15306 /* XXX Print content of info word? */
15307 break;
15308 case ODK_HWAND:
15309 fputs (" HWAND ", stdout);
15310 if (option->info & OHWA0_R4KEOP_CHECKED)
15311 fputs (" R4KEOP_CHECKED", stdout);
15312 if (option->info & OHWA0_R4KEOP_CLEAN)
15313 fputs (" R4KEOP_CLEAN", stdout);
15314 break;
15315 case ODK_HWOR:
15316 fputs (" HWOR ", stdout);
15317 if (option->info & OHWA0_R4KEOP_CHECKED)
15318 fputs (" R4KEOP_CHECKED", stdout);
15319 if (option->info & OHWA0_R4KEOP_CLEAN)
15320 fputs (" R4KEOP_CLEAN", stdout);
15321 break;
15322 case ODK_GP_GROUP:
15323 printf (" GP_GROUP %#06lx self-contained %#06lx",
15324 option->info & OGP_GROUP,
15325 (option->info & OGP_SELF) >> 16);
15326 break;
15327 case ODK_IDENT:
15328 printf (" IDENT %#06lx self-contained %#06lx",
15329 option->info & OGP_GROUP,
15330 (option->info & OGP_SELF) >> 16);
15331 break;
15332 default:
15333 /* This shouldn't happen. */
15334 printf (" %3d ??? %d %lx",
15335 option->kind, option->section, option->info);
15336 break;
15337 }
15338
15339 len = sizeof (* eopt);
15340 while (len < option->size)
15341 {
15342 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15343
15344 if (ISPRINT (datum))
15345 printf ("%c", datum);
15346 else
15347 printf ("\\%03o", datum);
15348 len ++;
15349 }
15350 fputs ("\n", stdout);
15351
15352 offset += option->size;
15353 ++option;
15354 }
15355
15356 free (eopt);
15357 }
15358 else
15359 res = FALSE;
15360 }
15361
15362 if (conflicts_offset != 0 && conflictsno != 0)
15363 {
15364 Elf32_Conflict * iconf;
15365 size_t cnt;
15366
15367 if (dynamic_symbols == NULL)
15368 {
15369 error (_("conflict list found without a dynamic symbol table\n"));
15370 return FALSE;
15371 }
15372
15373 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15374 if (iconf == NULL)
15375 {
15376 error (_("Out of memory allocating space for dynamic conflicts\n"));
15377 return FALSE;
15378 }
15379
15380 if (is_32bit_elf)
15381 {
15382 Elf32_External_Conflict * econf32;
15383
15384 econf32 = (Elf32_External_Conflict *)
15385 get_data (NULL, file, conflicts_offset, conflictsno,
15386 sizeof (* econf32), _("conflict"));
15387 if (!econf32)
15388 return FALSE;
15389
15390 for (cnt = 0; cnt < conflictsno; ++cnt)
15391 iconf[cnt] = BYTE_GET (econf32[cnt]);
15392
15393 free (econf32);
15394 }
15395 else
15396 {
15397 Elf64_External_Conflict * econf64;
15398
15399 econf64 = (Elf64_External_Conflict *)
15400 get_data (NULL, file, conflicts_offset, conflictsno,
15401 sizeof (* econf64), _("conflict"));
15402 if (!econf64)
15403 return FALSE;
15404
15405 for (cnt = 0; cnt < conflictsno; ++cnt)
15406 iconf[cnt] = BYTE_GET (econf64[cnt]);
15407
15408 free (econf64);
15409 }
15410
15411 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15412 (unsigned long) conflictsno);
15413 puts (_(" Num: Index Value Name"));
15414
15415 for (cnt = 0; cnt < conflictsno; ++cnt)
15416 {
15417 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15418
15419 if (iconf[cnt] >= num_dynamic_syms)
15420 printf (_("<corrupt symbol index>"));
15421 else
15422 {
15423 Elf_Internal_Sym * psym;
15424
15425 psym = & dynamic_symbols[iconf[cnt]];
15426 print_vma (psym->st_value, FULL_HEX);
15427 putchar (' ');
15428 if (VALID_DYNAMIC_NAME (psym->st_name))
15429 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15430 else
15431 printf (_("<corrupt: %14ld>"), psym->st_name);
15432 }
15433 putchar ('\n');
15434 }
15435
15436 free (iconf);
15437 }
15438
15439 if (pltgot != 0 && local_gotno != 0)
15440 {
15441 bfd_vma ent, local_end, global_end;
15442 size_t i, offset;
15443 unsigned char * data;
15444 unsigned char * data_end;
15445 int addr_size;
15446
15447 ent = pltgot;
15448 addr_size = (is_32bit_elf ? 4 : 8);
15449 local_end = pltgot + local_gotno * addr_size;
15450
15451 /* PR binutils/17533 file: 012-111227-0.004 */
15452 if (symtabno < gotsym)
15453 {
15454 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15455 (unsigned long) gotsym, (unsigned long) symtabno);
15456 return FALSE;
15457 }
15458
15459 global_end = local_end + (symtabno - gotsym) * addr_size;
15460 /* PR 17531: file: 54c91a34. */
15461 if (global_end < local_end)
15462 {
15463 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15464 return FALSE;
15465 }
15466
15467 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15468 data = (unsigned char *) get_data (NULL, file, offset,
15469 global_end - pltgot, 1,
15470 _("Global Offset Table data"));
15471 if (data == NULL)
15472 return FALSE;
15473 data_end = data + (global_end - pltgot);
15474
15475 printf (_("\nPrimary GOT:\n"));
15476 printf (_(" Canonical gp value: "));
15477 print_vma (pltgot + 0x7ff0, LONG_HEX);
15478 printf ("\n\n");
15479
15480 printf (_(" Reserved entries:\n"));
15481 printf (_(" %*s %10s %*s Purpose\n"),
15482 addr_size * 2, _("Address"), _("Access"),
15483 addr_size * 2, _("Initial"));
15484 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15485 printf (_(" Lazy resolver\n"));
15486 if (ent == (bfd_vma) -1)
15487 goto got_print_fail;
15488
15489 if (data)
15490 {
15491 /* PR 21344 */
15492 if (data + ent - pltgot > data_end - addr_size)
15493 {
15494 error (_("Invalid got entry - %#lx - overflows GOT table\n"),
15495 (long) ent);
15496 goto got_print_fail;
15497 }
15498
15499 if (byte_get (data + ent - pltgot, addr_size)
15500 >> (addr_size * 8 - 1) != 0)
15501 {
15502 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15503 printf (_(" Module pointer (GNU extension)\n"));
15504 if (ent == (bfd_vma) -1)
15505 goto got_print_fail;
15506 }
15507 }
15508 printf ("\n");
15509
15510 if (ent < local_end)
15511 {
15512 printf (_(" Local entries:\n"));
15513 printf (" %*s %10s %*s\n",
15514 addr_size * 2, _("Address"), _("Access"),
15515 addr_size * 2, _("Initial"));
15516 while (ent < local_end)
15517 {
15518 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15519 printf ("\n");
15520 if (ent == (bfd_vma) -1)
15521 goto got_print_fail;
15522 }
15523 printf ("\n");
15524 }
15525
15526 if (gotsym < symtabno)
15527 {
15528 int sym_width;
15529
15530 printf (_(" Global entries:\n"));
15531 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15532 addr_size * 2, _("Address"),
15533 _("Access"),
15534 addr_size * 2, _("Initial"),
15535 addr_size * 2, _("Sym.Val."),
15536 _("Type"),
15537 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15538 _("Ndx"), _("Name"));
15539
15540 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15541
15542 for (i = gotsym; i < symtabno; i++)
15543 {
15544 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15545 printf (" ");
15546
15547 if (dynamic_symbols == NULL)
15548 printf (_("<no dynamic symbols>"));
15549 else if (i < num_dynamic_syms)
15550 {
15551 Elf_Internal_Sym * psym = dynamic_symbols + i;
15552
15553 print_vma (psym->st_value, LONG_HEX);
15554 printf (" %-7s %3s ",
15555 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15556 get_symbol_index_type (psym->st_shndx));
15557
15558 if (VALID_DYNAMIC_NAME (psym->st_name))
15559 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15560 else
15561 printf (_("<corrupt: %14ld>"), psym->st_name);
15562 }
15563 else
15564 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15565 (unsigned long) i);
15566
15567 printf ("\n");
15568 if (ent == (bfd_vma) -1)
15569 break;
15570 }
15571 printf ("\n");
15572 }
15573
15574 got_print_fail:
15575 if (data)
15576 free (data);
15577 }
15578
15579 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15580 {
15581 bfd_vma ent, end;
15582 size_t offset, rel_offset;
15583 unsigned long count, i;
15584 unsigned char * data;
15585 int addr_size, sym_width;
15586 Elf_Internal_Rela * rels;
15587
15588 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15589 if (pltrel == DT_RELA)
15590 {
15591 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15592 return FALSE;
15593 }
15594 else
15595 {
15596 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15597 return FALSE;
15598 }
15599
15600 ent = mips_pltgot;
15601 addr_size = (is_32bit_elf ? 4 : 8);
15602 end = mips_pltgot + (2 + count) * addr_size;
15603
15604 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15605 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15606 1, _("Procedure Linkage Table data"));
15607 if (data == NULL)
15608 return FALSE;
15609
15610 printf ("\nPLT GOT:\n\n");
15611 printf (_(" Reserved entries:\n"));
15612 printf (_(" %*s %*s Purpose\n"),
15613 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15614 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15615 printf (_(" PLT lazy resolver\n"));
15616 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15617 printf (_(" Module pointer\n"));
15618 printf ("\n");
15619
15620 printf (_(" Entries:\n"));
15621 printf (" %*s %*s %*s %-7s %3s %s\n",
15622 addr_size * 2, _("Address"),
15623 addr_size * 2, _("Initial"),
15624 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15625 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15626 for (i = 0; i < count; i++)
15627 {
15628 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15629
15630 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15631 printf (" ");
15632
15633 if (idx >= num_dynamic_syms)
15634 printf (_("<corrupt symbol index: %lu>"), idx);
15635 else
15636 {
15637 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15638
15639 print_vma (psym->st_value, LONG_HEX);
15640 printf (" %-7s %3s ",
15641 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15642 get_symbol_index_type (psym->st_shndx));
15643 if (VALID_DYNAMIC_NAME (psym->st_name))
15644 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15645 else
15646 printf (_("<corrupt: %14ld>"), psym->st_name);
15647 }
15648 printf ("\n");
15649 }
15650 printf ("\n");
15651
15652 if (data)
15653 free (data);
15654 free (rels);
15655 }
15656
15657 return res;
15658 }
15659
15660 static bfd_boolean
15661 process_nds32_specific (FILE * file)
15662 {
15663 Elf_Internal_Shdr *sect = NULL;
15664
15665 sect = find_section (".nds32_e_flags");
15666 if (sect != NULL)
15667 {
15668 unsigned int *flag;
15669
15670 printf ("\nNDS32 elf flags section:\n");
15671 flag = get_data (NULL, file, sect->sh_offset, 1,
15672 sect->sh_size, _("NDS32 elf flags section"));
15673
15674 if (! flag)
15675 return FALSE;
15676
15677 switch ((*flag) & 0x3)
15678 {
15679 case 0:
15680 printf ("(VEC_SIZE):\tNo entry.\n");
15681 break;
15682 case 1:
15683 printf ("(VEC_SIZE):\t4 bytes\n");
15684 break;
15685 case 2:
15686 printf ("(VEC_SIZE):\t16 bytes\n");
15687 break;
15688 case 3:
15689 printf ("(VEC_SIZE):\treserved\n");
15690 break;
15691 }
15692 }
15693
15694 return TRUE;
15695 }
15696
15697 static bfd_boolean
15698 process_gnu_liblist (FILE * file)
15699 {
15700 Elf_Internal_Shdr * section;
15701 Elf_Internal_Shdr * string_sec;
15702 Elf32_External_Lib * elib;
15703 char * strtab;
15704 size_t strtab_size;
15705 size_t cnt;
15706 unsigned i;
15707 bfd_boolean res = TRUE;
15708
15709 if (! do_arch)
15710 return TRUE;
15711
15712 for (i = 0, section = section_headers;
15713 i < elf_header.e_shnum;
15714 i++, section++)
15715 {
15716 switch (section->sh_type)
15717 {
15718 case SHT_GNU_LIBLIST:
15719 if (section->sh_link >= elf_header.e_shnum)
15720 break;
15721
15722 elib = (Elf32_External_Lib *)
15723 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15724 _("liblist section data"));
15725
15726 if (elib == NULL)
15727 {
15728 res = FALSE;
15729 break;
15730 }
15731
15732 string_sec = section_headers + section->sh_link;
15733 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15734 string_sec->sh_size,
15735 _("liblist string table"));
15736 if (strtab == NULL
15737 || section->sh_entsize != sizeof (Elf32_External_Lib))
15738 {
15739 free (elib);
15740 free (strtab);
15741 res = FALSE;
15742 break;
15743 }
15744 strtab_size = string_sec->sh_size;
15745
15746 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15747 printable_section_name (section),
15748 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15749
15750 puts (_(" Library Time Stamp Checksum Version Flags"));
15751
15752 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15753 ++cnt)
15754 {
15755 Elf32_Lib liblist;
15756 time_t atime;
15757 char timebuf[128];
15758 struct tm * tmp;
15759
15760 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15761 atime = BYTE_GET (elib[cnt].l_time_stamp);
15762 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15763 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15764 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15765
15766 tmp = gmtime (&atime);
15767 snprintf (timebuf, sizeof (timebuf),
15768 "%04u-%02u-%02uT%02u:%02u:%02u",
15769 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15770 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15771
15772 printf ("%3lu: ", (unsigned long) cnt);
15773 if (do_wide)
15774 printf ("%-20s", liblist.l_name < strtab_size
15775 ? strtab + liblist.l_name : _("<corrupt>"));
15776 else
15777 printf ("%-20.20s", liblist.l_name < strtab_size
15778 ? strtab + liblist.l_name : _("<corrupt>"));
15779 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15780 liblist.l_version, liblist.l_flags);
15781 }
15782
15783 free (elib);
15784 free (strtab);
15785 }
15786 }
15787
15788 return res;
15789 }
15790
15791 static const char *
15792 get_note_type (unsigned e_type)
15793 {
15794 static char buff[64];
15795
15796 if (elf_header.e_type == ET_CORE)
15797 switch (e_type)
15798 {
15799 case NT_AUXV:
15800 return _("NT_AUXV (auxiliary vector)");
15801 case NT_PRSTATUS:
15802 return _("NT_PRSTATUS (prstatus structure)");
15803 case NT_FPREGSET:
15804 return _("NT_FPREGSET (floating point registers)");
15805 case NT_PRPSINFO:
15806 return _("NT_PRPSINFO (prpsinfo structure)");
15807 case NT_TASKSTRUCT:
15808 return _("NT_TASKSTRUCT (task structure)");
15809 case NT_PRXFPREG:
15810 return _("NT_PRXFPREG (user_xfpregs structure)");
15811 case NT_PPC_VMX:
15812 return _("NT_PPC_VMX (ppc Altivec registers)");
15813 case NT_PPC_VSX:
15814 return _("NT_PPC_VSX (ppc VSX registers)");
15815 case NT_386_TLS:
15816 return _("NT_386_TLS (x86 TLS information)");
15817 case NT_386_IOPERM:
15818 return _("NT_386_IOPERM (x86 I/O permissions)");
15819 case NT_X86_XSTATE:
15820 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15821 case NT_S390_HIGH_GPRS:
15822 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15823 case NT_S390_TIMER:
15824 return _("NT_S390_TIMER (s390 timer register)");
15825 case NT_S390_TODCMP:
15826 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15827 case NT_S390_TODPREG:
15828 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15829 case NT_S390_CTRS:
15830 return _("NT_S390_CTRS (s390 control registers)");
15831 case NT_S390_PREFIX:
15832 return _("NT_S390_PREFIX (s390 prefix register)");
15833 case NT_S390_LAST_BREAK:
15834 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15835 case NT_S390_SYSTEM_CALL:
15836 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15837 case NT_S390_TDB:
15838 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15839 case NT_S390_VXRS_LOW:
15840 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15841 case NT_S390_VXRS_HIGH:
15842 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15843 case NT_ARM_VFP:
15844 return _("NT_ARM_VFP (arm VFP registers)");
15845 case NT_ARM_TLS:
15846 return _("NT_ARM_TLS (AArch TLS registers)");
15847 case NT_ARM_HW_BREAK:
15848 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15849 case NT_ARM_HW_WATCH:
15850 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15851 case NT_PSTATUS:
15852 return _("NT_PSTATUS (pstatus structure)");
15853 case NT_FPREGS:
15854 return _("NT_FPREGS (floating point registers)");
15855 case NT_PSINFO:
15856 return _("NT_PSINFO (psinfo structure)");
15857 case NT_LWPSTATUS:
15858 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15859 case NT_LWPSINFO:
15860 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15861 case NT_WIN32PSTATUS:
15862 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15863 case NT_SIGINFO:
15864 return _("NT_SIGINFO (siginfo_t data)");
15865 case NT_FILE:
15866 return _("NT_FILE (mapped files)");
15867 default:
15868 break;
15869 }
15870 else
15871 switch (e_type)
15872 {
15873 case NT_VERSION:
15874 return _("NT_VERSION (version)");
15875 case NT_ARCH:
15876 return _("NT_ARCH (architecture)");
15877 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
15878 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
15879 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
15880 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
15881 default:
15882 break;
15883 }
15884
15885 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15886 return buff;
15887 }
15888
15889 static bfd_boolean
15890 print_core_note (Elf_Internal_Note *pnote)
15891 {
15892 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15893 bfd_vma count, page_size;
15894 unsigned char *descdata, *filenames, *descend;
15895
15896 if (pnote->type != NT_FILE)
15897 return TRUE;
15898
15899 #ifndef BFD64
15900 if (!is_32bit_elf)
15901 {
15902 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15903 /* Still "successful". */
15904 return TRUE;
15905 }
15906 #endif
15907
15908 if (pnote->descsz < 2 * addr_size)
15909 {
15910 error (_(" Malformed note - too short for header\n"));
15911 return FALSE;
15912 }
15913
15914 descdata = (unsigned char *) pnote->descdata;
15915 descend = descdata + pnote->descsz;
15916
15917 if (descdata[pnote->descsz - 1] != '\0')
15918 {
15919 error (_(" Malformed note - does not end with \\0\n"));
15920 return FALSE;
15921 }
15922
15923 count = byte_get (descdata, addr_size);
15924 descdata += addr_size;
15925
15926 page_size = byte_get (descdata, addr_size);
15927 descdata += addr_size;
15928
15929 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15930 {
15931 error (_(" Malformed note - too short for supplied file count\n"));
15932 return FALSE;
15933 }
15934
15935 printf (_(" Page size: "));
15936 print_vma (page_size, DEC);
15937 printf ("\n");
15938
15939 printf (_(" %*s%*s%*s\n"),
15940 (int) (2 + 2 * addr_size), _("Start"),
15941 (int) (4 + 2 * addr_size), _("End"),
15942 (int) (4 + 2 * addr_size), _("Page Offset"));
15943 filenames = descdata + count * 3 * addr_size;
15944 while (count-- > 0)
15945 {
15946 bfd_vma start, end, file_ofs;
15947
15948 if (filenames == descend)
15949 {
15950 error (_(" Malformed note - filenames end too early\n"));
15951 return FALSE;
15952 }
15953
15954 start = byte_get (descdata, addr_size);
15955 descdata += addr_size;
15956 end = byte_get (descdata, addr_size);
15957 descdata += addr_size;
15958 file_ofs = byte_get (descdata, addr_size);
15959 descdata += addr_size;
15960
15961 printf (" ");
15962 print_vma (start, FULL_HEX);
15963 printf (" ");
15964 print_vma (end, FULL_HEX);
15965 printf (" ");
15966 print_vma (file_ofs, FULL_HEX);
15967 printf ("\n %s\n", filenames);
15968
15969 filenames += 1 + strlen ((char *) filenames);
15970 }
15971
15972 return TRUE;
15973 }
15974
15975 static const char *
15976 get_gnu_elf_note_type (unsigned e_type)
15977 {
15978 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15979 switch (e_type)
15980 {
15981 case NT_GNU_ABI_TAG:
15982 return _("NT_GNU_ABI_TAG (ABI version tag)");
15983 case NT_GNU_HWCAP:
15984 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15985 case NT_GNU_BUILD_ID:
15986 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15987 case NT_GNU_GOLD_VERSION:
15988 return _("NT_GNU_GOLD_VERSION (gold version)");
15989 case NT_GNU_PROPERTY_TYPE_0:
15990 return _("NT_GNU_PROPERTY_TYPE_0");
15991 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
15992 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
15993 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
15994 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
15995 default:
15996 {
15997 static char buff[64];
15998
15999 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16000 return buff;
16001 }
16002 }
16003 }
16004
16005 static void
16006 decode_x86_isa (unsigned int bitmask)
16007 {
16008 while (bitmask)
16009 {
16010 unsigned int bit = bitmask & (- bitmask);
16011
16012 bitmask &= ~ bit;
16013 switch (bit)
16014 {
16015 case GNU_PROPERTY_X86_ISA_1_486: printf ("i486"); break;
16016 case GNU_PROPERTY_X86_ISA_1_586: printf ("586"); break;
16017 case GNU_PROPERTY_X86_ISA_1_686: printf ("686"); break;
16018 case GNU_PROPERTY_X86_ISA_1_SSE: printf ("SSE"); break;
16019 case GNU_PROPERTY_X86_ISA_1_SSE2: printf ("SSE2"); break;
16020 case GNU_PROPERTY_X86_ISA_1_SSE3: printf ("SSE3"); break;
16021 case GNU_PROPERTY_X86_ISA_1_SSSE3: printf ("SSSE3"); break;
16022 case GNU_PROPERTY_X86_ISA_1_SSE4_1: printf ("SSE4_1"); break;
16023 case GNU_PROPERTY_X86_ISA_1_SSE4_2: printf ("SSE4_2"); break;
16024 case GNU_PROPERTY_X86_ISA_1_AVX: printf ("AVX"); break;
16025 case GNU_PROPERTY_X86_ISA_1_AVX2: printf ("AVX2"); break;
16026 case GNU_PROPERTY_X86_ISA_1_AVX512F: printf ("AVX512F"); break;
16027 case GNU_PROPERTY_X86_ISA_1_AVX512CD: printf ("AVX512CD"); break;
16028 case GNU_PROPERTY_X86_ISA_1_AVX512ER: printf ("AVX512ER"); break;
16029 case GNU_PROPERTY_X86_ISA_1_AVX512PF: printf ("AVX512PF"); break;
16030 case GNU_PROPERTY_X86_ISA_1_AVX512VL: printf ("AVX512VL"); break;
16031 case GNU_PROPERTY_X86_ISA_1_AVX512DQ: printf ("AVX512DQ"); break;
16032 case GNU_PROPERTY_X86_ISA_1_AVX512BW: printf ("AVX512BW"); break;
16033 default: printf (_("<unknown: %x>"), bit); break;
16034 }
16035 if (bitmask)
16036 printf (", ");
16037 }
16038 }
16039
16040 static void
16041 print_gnu_property_note (Elf_Internal_Note * pnote)
16042 {
16043 unsigned char * ptr = (unsigned char *) pnote->descdata;
16044 unsigned char * ptr_end = ptr + pnote->descsz;
16045 unsigned int size = is_32bit_elf ? 4 : 8;
16046
16047 printf (_(" Properties: "));
16048
16049 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
16050 {
16051 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
16052 return;
16053 }
16054
16055 while (1)
16056 {
16057 unsigned int j;
16058 unsigned int type = byte_get (ptr, 4);
16059 unsigned int datasz = byte_get (ptr + 4, 4);
16060
16061 ptr += 8;
16062
16063 if ((ptr + datasz) > ptr_end)
16064 {
16065 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
16066 type, datasz);
16067 break;
16068 }
16069
16070 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
16071 {
16072 if (elf_header.e_machine == EM_X86_64
16073 || elf_header.e_machine == EM_IAMCU
16074 || elf_header.e_machine == EM_386)
16075 {
16076 switch (type)
16077 {
16078 case GNU_PROPERTY_X86_ISA_1_USED:
16079 printf ("x86 ISA used: ");
16080 if (datasz != 4)
16081 printf (_("<corrupt length: %#x> "), datasz);
16082 else
16083 decode_x86_isa (byte_get (ptr, 4));
16084 goto next;
16085
16086 case GNU_PROPERTY_X86_ISA_1_NEEDED:
16087 printf ("x86 ISA needed: ");
16088 if (datasz != 4)
16089 printf (_("<corrupt length: %#x> "), datasz);
16090 else
16091 decode_x86_isa (byte_get (ptr, 4));
16092 goto next;
16093
16094 default:
16095 break;
16096 }
16097 }
16098 }
16099 else
16100 {
16101 switch (type)
16102 {
16103 case GNU_PROPERTY_STACK_SIZE:
16104 printf (_("stack size: "));
16105 if (datasz != size)
16106 printf (_("<corrupt length: %#x> "), datasz);
16107 else
16108 printf ("%#lx", (unsigned long) byte_get (ptr, size));
16109 goto next;
16110
16111 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
16112 printf ("no copy on protected ");
16113 if (datasz)
16114 printf (_("<corrupt length: %#x> "), datasz);
16115 goto next;
16116
16117 default:
16118 break;
16119 }
16120 }
16121
16122 if (type < GNU_PROPERTY_LOPROC)
16123 printf (_("<unknown type %#x data: "), type);
16124 else if (type < GNU_PROPERTY_LOUSER)
16125 printf (_("<procesor-specific type %#x data: "), type);
16126 else
16127 printf (_("<application-specific type %#x data: "), type);
16128 for (j = 0; j < datasz; ++j)
16129 printf ("%02x ", ptr[j] & 0xff);
16130 printf (">");
16131
16132 next:
16133 ptr += ((datasz + (size - 1)) & ~ (size - 1));
16134 if (ptr == ptr_end)
16135 break;
16136 else
16137 {
16138 if (do_wide)
16139 printf (", ");
16140 else
16141 printf ("\n\t");
16142 }
16143
16144 if (ptr > (ptr_end - 8))
16145 {
16146 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
16147 break;
16148 }
16149 }
16150
16151 printf ("\n");
16152 }
16153
16154 static bfd_boolean
16155 print_gnu_note (Elf_Internal_Note *pnote)
16156 {
16157 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
16158 switch (pnote->type)
16159 {
16160 case NT_GNU_BUILD_ID:
16161 {
16162 unsigned long i;
16163
16164 printf (_(" Build ID: "));
16165 for (i = 0; i < pnote->descsz; ++i)
16166 printf ("%02x", pnote->descdata[i] & 0xff);
16167 printf ("\n");
16168 }
16169 break;
16170
16171 case NT_GNU_ABI_TAG:
16172 {
16173 unsigned long os, major, minor, subminor;
16174 const char *osname;
16175
16176 /* PR 17531: file: 030-599401-0.004. */
16177 if (pnote->descsz < 16)
16178 {
16179 printf (_(" <corrupt GNU_ABI_TAG>\n"));
16180 break;
16181 }
16182
16183 os = byte_get ((unsigned char *) pnote->descdata, 4);
16184 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16185 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
16186 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
16187
16188 switch (os)
16189 {
16190 case GNU_ABI_TAG_LINUX:
16191 osname = "Linux";
16192 break;
16193 case GNU_ABI_TAG_HURD:
16194 osname = "Hurd";
16195 break;
16196 case GNU_ABI_TAG_SOLARIS:
16197 osname = "Solaris";
16198 break;
16199 case GNU_ABI_TAG_FREEBSD:
16200 osname = "FreeBSD";
16201 break;
16202 case GNU_ABI_TAG_NETBSD:
16203 osname = "NetBSD";
16204 break;
16205 case GNU_ABI_TAG_SYLLABLE:
16206 osname = "Syllable";
16207 break;
16208 case GNU_ABI_TAG_NACL:
16209 osname = "NaCl";
16210 break;
16211 default:
16212 osname = "Unknown";
16213 break;
16214 }
16215
16216 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
16217 major, minor, subminor);
16218 }
16219 break;
16220
16221 case NT_GNU_GOLD_VERSION:
16222 {
16223 unsigned long i;
16224
16225 printf (_(" Version: "));
16226 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
16227 printf ("%c", pnote->descdata[i]);
16228 printf ("\n");
16229 }
16230 break;
16231
16232 case NT_GNU_HWCAP:
16233 {
16234 unsigned long num_entries, mask;
16235
16236 /* Hardware capabilities information. Word 0 is the number of entries.
16237 Word 1 is a bitmask of enabled entries. The rest of the descriptor
16238 is a series of entries, where each entry is a single byte followed
16239 by a nul terminated string. The byte gives the bit number to test
16240 if enabled in the bitmask. */
16241 printf (_(" Hardware Capabilities: "));
16242 if (pnote->descsz < 8)
16243 {
16244 error (_("<corrupt GNU_HWCAP>\n"));
16245 return FALSE;
16246 }
16247 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
16248 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16249 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
16250 /* FIXME: Add code to display the entries... */
16251 }
16252 break;
16253
16254 case NT_GNU_PROPERTY_TYPE_0:
16255 print_gnu_property_note (pnote);
16256 break;
16257
16258 default:
16259 /* Handle unrecognised types. An error message should have already been
16260 created by get_gnu_elf_note_type(), so all that we need to do is to
16261 display the data. */
16262 {
16263 unsigned long i;
16264
16265 printf (_(" Description data: "));
16266 for (i = 0; i < pnote->descsz; ++i)
16267 printf ("%02x ", pnote->descdata[i] & 0xff);
16268 printf ("\n");
16269 }
16270 break;
16271 }
16272
16273 return TRUE;
16274 }
16275
16276 static const char *
16277 get_v850_elf_note_type (enum v850_notes n_type)
16278 {
16279 static char buff[64];
16280
16281 switch (n_type)
16282 {
16283 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
16284 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
16285 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
16286 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
16287 case V850_NOTE_CACHE_INFO: return _("Use of cache");
16288 case V850_NOTE_MMU_INFO: return _("Use of MMU");
16289 default:
16290 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
16291 return buff;
16292 }
16293 }
16294
16295 static bfd_boolean
16296 print_v850_note (Elf_Internal_Note * pnote)
16297 {
16298 unsigned int val;
16299
16300 if (pnote->descsz != 4)
16301 return FALSE;
16302
16303 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
16304
16305 if (val == 0)
16306 {
16307 printf (_("not set\n"));
16308 return TRUE;
16309 }
16310
16311 switch (pnote->type)
16312 {
16313 case V850_NOTE_ALIGNMENT:
16314 switch (val)
16315 {
16316 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
16317 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
16318 }
16319 break;
16320
16321 case V850_NOTE_DATA_SIZE:
16322 switch (val)
16323 {
16324 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
16325 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
16326 }
16327 break;
16328
16329 case V850_NOTE_FPU_INFO:
16330 switch (val)
16331 {
16332 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
16333 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
16334 }
16335 break;
16336
16337 case V850_NOTE_MMU_INFO:
16338 case V850_NOTE_CACHE_INFO:
16339 case V850_NOTE_SIMD_INFO:
16340 if (val == EF_RH850_SIMD)
16341 {
16342 printf (_("yes\n"));
16343 return TRUE;
16344 }
16345 break;
16346
16347 default:
16348 /* An 'unknown note type' message will already have been displayed. */
16349 break;
16350 }
16351
16352 printf (_("unknown value: %x\n"), val);
16353 return FALSE;
16354 }
16355
16356 static bfd_boolean
16357 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16358 {
16359 unsigned int version;
16360
16361 switch (pnote->type)
16362 {
16363 case NT_NETBSD_IDENT:
16364 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16365 if ((version / 10000) % 100)
16366 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16367 version, version / 100000000, (version / 1000000) % 100,
16368 (version / 10000) % 100 > 26 ? "Z" : "",
16369 'A' + (version / 10000) % 26);
16370 else
16371 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16372 version, version / 100000000, (version / 1000000) % 100,
16373 (version / 100) % 100);
16374 return TRUE;
16375
16376 case NT_NETBSD_MARCH:
16377 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16378 pnote->descdata);
16379 return TRUE;
16380
16381 default:
16382 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16383 pnote->type);
16384 return FALSE;
16385 }
16386 }
16387
16388 static const char *
16389 get_freebsd_elfcore_note_type (unsigned e_type)
16390 {
16391 switch (e_type)
16392 {
16393 case NT_FREEBSD_THRMISC:
16394 return _("NT_THRMISC (thrmisc structure)");
16395 case NT_FREEBSD_PROCSTAT_PROC:
16396 return _("NT_PROCSTAT_PROC (proc data)");
16397 case NT_FREEBSD_PROCSTAT_FILES:
16398 return _("NT_PROCSTAT_FILES (files data)");
16399 case NT_FREEBSD_PROCSTAT_VMMAP:
16400 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16401 case NT_FREEBSD_PROCSTAT_GROUPS:
16402 return _("NT_PROCSTAT_GROUPS (groups data)");
16403 case NT_FREEBSD_PROCSTAT_UMASK:
16404 return _("NT_PROCSTAT_UMASK (umask data)");
16405 case NT_FREEBSD_PROCSTAT_RLIMIT:
16406 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16407 case NT_FREEBSD_PROCSTAT_OSREL:
16408 return _("NT_PROCSTAT_OSREL (osreldate data)");
16409 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16410 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16411 case NT_FREEBSD_PROCSTAT_AUXV:
16412 return _("NT_PROCSTAT_AUXV (auxv data)");
16413 }
16414 return get_note_type (e_type);
16415 }
16416
16417 static const char *
16418 get_netbsd_elfcore_note_type (unsigned e_type)
16419 {
16420 static char buff[64];
16421
16422 if (e_type == NT_NETBSDCORE_PROCINFO)
16423 {
16424 /* NetBSD core "procinfo" structure. */
16425 return _("NetBSD procinfo structure");
16426 }
16427
16428 /* As of Jan 2002 there are no other machine-independent notes
16429 defined for NetBSD core files. If the note type is less
16430 than the start of the machine-dependent note types, we don't
16431 understand it. */
16432
16433 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16434 {
16435 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16436 return buff;
16437 }
16438
16439 switch (elf_header.e_machine)
16440 {
16441 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16442 and PT_GETFPREGS == mach+2. */
16443
16444 case EM_OLD_ALPHA:
16445 case EM_ALPHA:
16446 case EM_SPARC:
16447 case EM_SPARC32PLUS:
16448 case EM_SPARCV9:
16449 switch (e_type)
16450 {
16451 case NT_NETBSDCORE_FIRSTMACH + 0:
16452 return _("PT_GETREGS (reg structure)");
16453 case NT_NETBSDCORE_FIRSTMACH + 2:
16454 return _("PT_GETFPREGS (fpreg structure)");
16455 default:
16456 break;
16457 }
16458 break;
16459
16460 /* On all other arch's, PT_GETREGS == mach+1 and
16461 PT_GETFPREGS == mach+3. */
16462 default:
16463 switch (e_type)
16464 {
16465 case NT_NETBSDCORE_FIRSTMACH + 1:
16466 return _("PT_GETREGS (reg structure)");
16467 case NT_NETBSDCORE_FIRSTMACH + 3:
16468 return _("PT_GETFPREGS (fpreg structure)");
16469 default:
16470 break;
16471 }
16472 }
16473
16474 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16475 e_type - NT_NETBSDCORE_FIRSTMACH);
16476 return buff;
16477 }
16478
16479 static const char *
16480 get_stapsdt_note_type (unsigned e_type)
16481 {
16482 static char buff[64];
16483
16484 switch (e_type)
16485 {
16486 case NT_STAPSDT:
16487 return _("NT_STAPSDT (SystemTap probe descriptors)");
16488
16489 default:
16490 break;
16491 }
16492
16493 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16494 return buff;
16495 }
16496
16497 static bfd_boolean
16498 print_stapsdt_note (Elf_Internal_Note *pnote)
16499 {
16500 int addr_size = is_32bit_elf ? 4 : 8;
16501 char *data = pnote->descdata;
16502 char *data_end = pnote->descdata + pnote->descsz;
16503 bfd_vma pc, base_addr, semaphore;
16504 char *provider, *probe, *arg_fmt;
16505
16506 pc = byte_get ((unsigned char *) data, addr_size);
16507 data += addr_size;
16508 base_addr = byte_get ((unsigned char *) data, addr_size);
16509 data += addr_size;
16510 semaphore = byte_get ((unsigned char *) data, addr_size);
16511 data += addr_size;
16512
16513 provider = data;
16514 data += strlen (data) + 1;
16515 probe = data;
16516 data += strlen (data) + 1;
16517 arg_fmt = data;
16518 data += strlen (data) + 1;
16519
16520 printf (_(" Provider: %s\n"), provider);
16521 printf (_(" Name: %s\n"), probe);
16522 printf (_(" Location: "));
16523 print_vma (pc, FULL_HEX);
16524 printf (_(", Base: "));
16525 print_vma (base_addr, FULL_HEX);
16526 printf (_(", Semaphore: "));
16527 print_vma (semaphore, FULL_HEX);
16528 printf ("\n");
16529 printf (_(" Arguments: %s\n"), arg_fmt);
16530
16531 return data == data_end;
16532 }
16533
16534 static const char *
16535 get_ia64_vms_note_type (unsigned e_type)
16536 {
16537 static char buff[64];
16538
16539 switch (e_type)
16540 {
16541 case NT_VMS_MHD:
16542 return _("NT_VMS_MHD (module header)");
16543 case NT_VMS_LNM:
16544 return _("NT_VMS_LNM (language name)");
16545 case NT_VMS_SRC:
16546 return _("NT_VMS_SRC (source files)");
16547 case NT_VMS_TITLE:
16548 return "NT_VMS_TITLE";
16549 case NT_VMS_EIDC:
16550 return _("NT_VMS_EIDC (consistency check)");
16551 case NT_VMS_FPMODE:
16552 return _("NT_VMS_FPMODE (FP mode)");
16553 case NT_VMS_LINKTIME:
16554 return "NT_VMS_LINKTIME";
16555 case NT_VMS_IMGNAM:
16556 return _("NT_VMS_IMGNAM (image name)");
16557 case NT_VMS_IMGID:
16558 return _("NT_VMS_IMGID (image id)");
16559 case NT_VMS_LINKID:
16560 return _("NT_VMS_LINKID (link id)");
16561 case NT_VMS_IMGBID:
16562 return _("NT_VMS_IMGBID (build id)");
16563 case NT_VMS_GSTNAM:
16564 return _("NT_VMS_GSTNAM (sym table name)");
16565 case NT_VMS_ORIG_DYN:
16566 return "NT_VMS_ORIG_DYN";
16567 case NT_VMS_PATCHTIME:
16568 return "NT_VMS_PATCHTIME";
16569 default:
16570 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16571 return buff;
16572 }
16573 }
16574
16575 static bfd_boolean
16576 print_ia64_vms_note (Elf_Internal_Note * pnote)
16577 {
16578 switch (pnote->type)
16579 {
16580 case NT_VMS_MHD:
16581 if (pnote->descsz > 36)
16582 {
16583 size_t l = strlen (pnote->descdata + 34);
16584 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16585 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16586 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16587 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16588 }
16589 else
16590 printf (_(" Invalid size\n"));
16591 break;
16592 case NT_VMS_LNM:
16593 printf (_(" Language: %s\n"), pnote->descdata);
16594 break;
16595 #ifdef BFD64
16596 case NT_VMS_FPMODE:
16597 printf (_(" Floating Point mode: "));
16598 printf ("0x%016" BFD_VMA_FMT "x\n",
16599 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16600 break;
16601 case NT_VMS_LINKTIME:
16602 printf (_(" Link time: "));
16603 print_vms_time
16604 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16605 printf ("\n");
16606 break;
16607 case NT_VMS_PATCHTIME:
16608 printf (_(" Patch time: "));
16609 print_vms_time
16610 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16611 printf ("\n");
16612 break;
16613 case NT_VMS_ORIG_DYN:
16614 printf (_(" Major id: %u, minor id: %u\n"),
16615 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16616 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16617 printf (_(" Last modified : "));
16618 print_vms_time
16619 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16620 printf (_("\n Link flags : "));
16621 printf ("0x%016" BFD_VMA_FMT "x\n",
16622 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16623 printf (_(" Header flags: 0x%08x\n"),
16624 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16625 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16626 break;
16627 #endif
16628 case NT_VMS_IMGNAM:
16629 printf (_(" Image name: %s\n"), pnote->descdata);
16630 break;
16631 case NT_VMS_GSTNAM:
16632 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16633 break;
16634 case NT_VMS_IMGID:
16635 printf (_(" Image id: %s\n"), pnote->descdata);
16636 break;
16637 case NT_VMS_LINKID:
16638 printf (_(" Linker id: %s\n"), pnote->descdata);
16639 break;
16640 default:
16641 return FALSE;
16642 }
16643 return TRUE;
16644 }
16645
16646 /* Print the name of the symbol associated with a build attribute
16647 that is attached to address OFFSET. */
16648
16649 static bfd_boolean
16650 print_symbol_for_build_attribute (FILE * file,
16651 unsigned long offset,
16652 bfd_boolean is_open_attr)
16653 {
16654 static FILE * saved_file = NULL;
16655 static char * strtab;
16656 static unsigned long strtablen;
16657 static Elf_Internal_Sym * symtab;
16658 static unsigned long nsyms;
16659 Elf_Internal_Sym * saved_sym = NULL;
16660 Elf_Internal_Sym * sym;
16661
16662 if (saved_file == NULL || file != saved_file)
16663 {
16664 Elf_Internal_Shdr * symsec;
16665
16666 /* Load the symbol and string sections. */
16667 for (symsec = section_headers;
16668 symsec < section_headers + elf_header.e_shnum;
16669 symsec ++)
16670 {
16671 if (symsec->sh_type == SHT_SYMTAB)
16672 {
16673 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
16674
16675 if (symsec->sh_link < elf_header.e_shnum)
16676 {
16677 Elf_Internal_Shdr * strtab_sec = section_headers + symsec->sh_link;
16678
16679 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
16680 1, strtab_sec->sh_size,
16681 _("string table"));
16682 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
16683 }
16684 }
16685 }
16686 saved_file = file;
16687 }
16688
16689 if (symtab == NULL || strtab == NULL)
16690 {
16691 printf ("\n");
16692 return FALSE;
16693 }
16694
16695 /* Find a symbol whose value matches offset. */
16696 for (sym = symtab; sym < symtab + nsyms; sym ++)
16697 if (sym->st_value == offset)
16698 {
16699 if (sym->st_name >= strtablen)
16700 /* Huh ? This should not happen. */
16701 continue;
16702
16703 if (strtab[sym->st_name] == 0)
16704 continue;
16705
16706 if (is_open_attr)
16707 {
16708 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
16709 and FILE or OBJECT symbols over NOTYPE symbols. We skip
16710 FUNC symbols entirely. */
16711 switch (ELF_ST_TYPE (sym->st_info))
16712 {
16713 case STT_FILE:
16714 saved_sym = sym;
16715 /* We can stop searching now. */
16716 sym = symtab + nsyms;
16717 continue;
16718
16719 case STT_OBJECT:
16720 saved_sym = sym;
16721 continue;
16722
16723 case STT_FUNC:
16724 /* Ignore function symbols. */
16725 continue;
16726
16727 default:
16728 break;
16729 }
16730
16731 switch (ELF_ST_BIND (sym->st_info))
16732 {
16733 case STB_GLOBAL:
16734 if (saved_sym == NULL
16735 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
16736 saved_sym = sym;
16737 break;
16738
16739 case STB_LOCAL:
16740 if (saved_sym == NULL)
16741 saved_sym = sym;
16742 break;
16743
16744 default:
16745 break;
16746 }
16747 }
16748 else
16749 {
16750 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
16751 continue;
16752
16753 saved_sym = sym;
16754 break;
16755 }
16756 }
16757
16758 printf (" (%s: %s)\n",
16759 is_open_attr ? _("file") : _("func"),
16760 saved_sym ? strtab + saved_sym->st_name : _("<no symbol found>)"));
16761 return TRUE;
16762 }
16763
16764 static bfd_boolean
16765 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
16766 FILE * file)
16767 {
16768 static unsigned long global_offset = 0;
16769 unsigned long offset;
16770 unsigned int desc_size = is_32bit_elf ? 4 : 8;
16771 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
16772
16773 if (pnote->descsz == 0)
16774 {
16775 if (is_open_attr)
16776 {
16777 printf (_(" Applies from offset %#lx\n"), global_offset);
16778 return TRUE;
16779 }
16780 else
16781 {
16782 printf (_(" Applies to func at %#lx"), global_offset);
16783 return print_symbol_for_build_attribute (file, global_offset, is_open_attr);
16784 }
16785 }
16786
16787 if (pnote->descsz != desc_size)
16788 {
16789 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
16790 printf (_(" <invalid descsz>"));
16791 return FALSE;
16792 }
16793
16794 offset = byte_get ((unsigned char *) pnote->descdata, desc_size);
16795
16796 if (is_open_attr)
16797 {
16798 printf (_(" Applies from offset %#lx"), offset);
16799 global_offset = offset;
16800 }
16801 else
16802 {
16803 printf (_(" Applies to func at %#lx"), offset);
16804 }
16805
16806 return print_symbol_for_build_attribute (file, offset, is_open_attr);
16807 }
16808
16809 static bfd_boolean
16810 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
16811 {
16812 char name_type;
16813 char name_attribute;
16814 char * expected_types;
16815 const char * name = pnote->namedata;
16816 const char * text;
16817 int left;
16818
16819 if (name == NULL || pnote->namesz < 2)
16820 {
16821 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
16822 print_symbol (-20, _(" <corrupt name field>"));
16823 return FALSE;
16824 }
16825
16826 switch ((name_type = * name))
16827 {
16828 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
16829 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
16830 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
16831 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
16832 printf ("%c", * name);
16833 break;
16834 default:
16835 error (_("unrecognised attribute type in name field: %d\n"), name_type);
16836 print_symbol (-20, _("<unknown name type>"));
16837 return FALSE;
16838 }
16839
16840 left = 19;
16841 ++ name;
16842 text = NULL;
16843
16844 switch ((name_attribute = * name))
16845 {
16846 case GNU_BUILD_ATTRIBUTE_VERSION:
16847 text = _("<version>");
16848 expected_types = "$";
16849 ++ name;
16850 break;
16851 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
16852 text = _("<stack prot>");
16853 expected_types = "!+*";
16854 ++ name;
16855 break;
16856 case GNU_BUILD_ATTRIBUTE_RELRO:
16857 text = _("<relro>");
16858 expected_types = "!+";
16859 ++ name;
16860 break;
16861 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
16862 text = _("<stack size>");
16863 expected_types = "*";
16864 ++ name;
16865 break;
16866 case GNU_BUILD_ATTRIBUTE_TOOL:
16867 text = _("<tool>");
16868 expected_types = "$";
16869 ++ name;
16870 break;
16871 case GNU_BUILD_ATTRIBUTE_ABI:
16872 text = _("<ABI>");
16873 expected_types = "$*";
16874 ++ name;
16875 break;
16876 case GNU_BUILD_ATTRIBUTE_PIC:
16877 text = _("<PIC>");
16878 expected_types = "*";
16879 ++ name;
16880 break;
16881 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
16882 text = _("<short enum>");
16883 expected_types = "!+";
16884 ++ name;
16885 break;
16886
16887 default:
16888 if (ISPRINT (* name))
16889 {
16890 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
16891
16892 if (len > left && ! do_wide)
16893 len = left;
16894 printf ("%.*s:", len, name);
16895 left -= len;
16896 name += len;
16897 }
16898 else
16899 {
16900 error (_("unexpected character in name field\n"));
16901 print_symbol (- left, _("<unknown attribute>"));
16902 return 0;
16903 }
16904 expected_types = "*$!+";
16905 break;
16906 }
16907
16908 if (text)
16909 {
16910 printf ("%s", text);
16911 left -= strlen (text);
16912 }
16913
16914 if (strchr (expected_types, name_type) == NULL)
16915 warn (_("attribute does not have an expected type (%c)\n"), name_type);
16916
16917 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
16918 {
16919 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
16920 (unsigned long) pnote->namesz,
16921 (long) (name - pnote->namedata));
16922 return FALSE;
16923 }
16924
16925 if (left < 1 && ! do_wide)
16926 return TRUE;
16927
16928 switch (name_type)
16929 {
16930 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
16931 {
16932 unsigned int bytes = pnote->namesz - (name - pnote->namedata);
16933 unsigned long val = 0;
16934 unsigned int shift = 0;
16935 char * decoded = NULL;
16936
16937 while (bytes --)
16938 {
16939 unsigned long byte = (* name ++) & 0xff;
16940
16941 val |= byte << shift;
16942 shift += 8;
16943 }
16944
16945 switch (name_attribute)
16946 {
16947 case GNU_BUILD_ATTRIBUTE_PIC:
16948 switch (val)
16949 {
16950 case 0: decoded = "static"; break;
16951 case 1: decoded = "pic"; break;
16952 case 2: decoded = "PIC"; break;
16953 case 3: decoded = "pie"; break;
16954 case 4: decoded = "PIE"; break;
16955 default: break;
16956 }
16957 break;
16958 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
16959 switch (val)
16960 {
16961 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
16962 case 0: decoded = "off"; break;
16963 case 1: decoded = "on"; break;
16964 case 2: decoded = "all"; break;
16965 case 3: decoded = "strong"; break;
16966 case 4: decoded = "explicit"; break;
16967 default: break;
16968 }
16969 break;
16970 default:
16971 break;
16972 }
16973
16974 if (decoded != NULL)
16975 print_symbol (-left, decoded);
16976 else
16977 {
16978 if (do_wide)
16979 left -= printf ("0x%lx", val);
16980 else
16981 left -= printf ("0x%-.*lx", left, val);
16982 }
16983 }
16984 break;
16985 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
16986 left -= print_symbol (- left, name);
16987 break;
16988 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
16989 left -= print_symbol (- left, "true");
16990 break;
16991 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
16992 left -= print_symbol (- left, "false");
16993 break;
16994 }
16995
16996 if (do_wide && left > 0)
16997 printf ("%-*s", left, " ");
16998
16999 return TRUE;
17000 }
17001
17002 /* Note that by the ELF standard, the name field is already null byte
17003 terminated, and namesz includes the terminating null byte.
17004 I.E. the value of namesz for the name "FSF" is 4.
17005
17006 If the value of namesz is zero, there is no name present. */
17007
17008 static bfd_boolean
17009 process_note (Elf_Internal_Note * pnote,
17010 FILE * file)
17011 {
17012 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
17013 const char * nt;
17014
17015 if (pnote->namesz == 0)
17016 /* If there is no note name, then use the default set of
17017 note type strings. */
17018 nt = get_note_type (pnote->type);
17019
17020 else if (const_strneq (pnote->namedata, "GNU"))
17021 /* GNU-specific object file notes. */
17022 nt = get_gnu_elf_note_type (pnote->type);
17023
17024 else if (const_strneq (pnote->namedata, "FreeBSD"))
17025 /* FreeBSD-specific core file notes. */
17026 nt = get_freebsd_elfcore_note_type (pnote->type);
17027
17028 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
17029 /* NetBSD-specific core file notes. */
17030 nt = get_netbsd_elfcore_note_type (pnote->type);
17031
17032 else if (const_strneq (pnote->namedata, "NetBSD"))
17033 /* NetBSD-specific core file notes. */
17034 return process_netbsd_elf_note (pnote);
17035
17036 else if (strneq (pnote->namedata, "SPU/", 4))
17037 {
17038 /* SPU-specific core file notes. */
17039 nt = pnote->namedata + 4;
17040 name = "SPU";
17041 }
17042
17043 else if (const_strneq (pnote->namedata, "IPF/VMS"))
17044 /* VMS/ia64-specific file notes. */
17045 nt = get_ia64_vms_note_type (pnote->type);
17046
17047 else if (const_strneq (pnote->namedata, "stapsdt"))
17048 nt = get_stapsdt_note_type (pnote->type);
17049
17050 else
17051 /* Don't recognize this note name; just use the default set of
17052 note type strings. */
17053 nt = get_note_type (pnote->type);
17054
17055 printf (" ");
17056
17057 if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17058 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17059 print_gnu_build_attribute_name (pnote);
17060 else
17061 print_symbol (-20, name);
17062
17063 if (do_wide)
17064 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
17065 else
17066 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
17067
17068 if (const_strneq (pnote->namedata, "IPF/VMS"))
17069 return print_ia64_vms_note (pnote);
17070 else if (const_strneq (pnote->namedata, "GNU"))
17071 return print_gnu_note (pnote);
17072 else if (const_strneq (pnote->namedata, "stapsdt"))
17073 return print_stapsdt_note (pnote);
17074 else if (const_strneq (pnote->namedata, "CORE"))
17075 return print_core_note (pnote);
17076 else if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17077 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17078 return print_gnu_build_attribute_description (pnote, file);
17079
17080 if (pnote->descsz)
17081 {
17082 unsigned long i;
17083
17084 printf (_(" description data: "));
17085 for (i = 0; i < pnote->descsz; i++)
17086 printf ("%02x ", pnote->descdata[i]);
17087 }
17088
17089 if (do_wide)
17090 printf ("\n");
17091
17092 return TRUE;
17093 }
17094
17095 static bfd_boolean
17096 process_notes_at (FILE * file,
17097 Elf_Internal_Shdr * section,
17098 bfd_vma offset,
17099 bfd_vma length)
17100 {
17101 Elf_External_Note * pnotes;
17102 Elf_External_Note * external;
17103 char * end;
17104 bfd_boolean res = TRUE;
17105
17106 if (length <= 0)
17107 return FALSE;
17108
17109 if (section)
17110 {
17111 pnotes = (Elf_External_Note *) get_section_contents (section, file);
17112 if (pnotes)
17113 {
17114 if (! apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL))
17115 return FALSE;
17116 }
17117 }
17118 else
17119 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17120 _("notes"));
17121 if (pnotes == NULL)
17122 return FALSE;
17123
17124 external = pnotes;
17125
17126 if (section)
17127 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
17128 else
17129 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
17130 (unsigned long) offset, (unsigned long) length);
17131
17132 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
17133
17134 end = (char *) pnotes + length;
17135 while ((char *) external < end)
17136 {
17137 Elf_Internal_Note inote;
17138 size_t min_notesz;
17139 char *next;
17140 char * temp = NULL;
17141 size_t data_remaining = end - (char *) external;
17142
17143 if (!is_ia64_vms ())
17144 {
17145 /* PR binutils/15191
17146 Make sure that there is enough data to read. */
17147 min_notesz = offsetof (Elf_External_Note, name);
17148 if (data_remaining < min_notesz)
17149 {
17150 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17151 (int) data_remaining);
17152 break;
17153 }
17154 inote.type = BYTE_GET (external->type);
17155 inote.namesz = BYTE_GET (external->namesz);
17156 inote.namedata = external->name;
17157 inote.descsz = BYTE_GET (external->descsz);
17158 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17159 /* PR 17531: file: 3443835e. */
17160 if (inote.descdata < (char *) pnotes || inote.descdata > end)
17161 {
17162 warn (_("Corrupt note: name size is too big: (got: %lx, expected no more than: %lx)\n"),
17163 inote.namesz, (long)(end - inote.namedata));
17164 inote.descdata = inote.namedata;
17165 inote.namesz = 0;
17166 }
17167
17168 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17169 next = inote.descdata + align_power (inote.descsz, 2);
17170 }
17171 else
17172 {
17173 Elf64_External_VMS_Note *vms_external;
17174
17175 /* PR binutils/15191
17176 Make sure that there is enough data to read. */
17177 min_notesz = offsetof (Elf64_External_VMS_Note, name);
17178 if (data_remaining < min_notesz)
17179 {
17180 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17181 (int) data_remaining);
17182 break;
17183 }
17184
17185 vms_external = (Elf64_External_VMS_Note *) external;
17186 inote.type = BYTE_GET (vms_external->type);
17187 inote.namesz = BYTE_GET (vms_external->namesz);
17188 inote.namedata = vms_external->name;
17189 inote.descsz = BYTE_GET (vms_external->descsz);
17190 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
17191 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17192 next = inote.descdata + align_power (inote.descsz, 3);
17193 }
17194
17195 if (inote.descdata < (char *) external + min_notesz
17196 || next < (char *) external + min_notesz
17197 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
17198 || inote.namedata + inote.namesz < inote.namedata
17199 || inote.descdata + inote.descsz < inote.descdata
17200 || data_remaining < (size_t)(next - (char *) external))
17201 {
17202 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
17203 (unsigned long) ((char *) external - (char *) pnotes));
17204 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
17205 inote.type, inote.namesz, inote.descsz);
17206 break;
17207 }
17208
17209 external = (Elf_External_Note *) next;
17210
17211 /* Verify that name is null terminated. It appears that at least
17212 one version of Linux (RedHat 6.0) generates corefiles that don't
17213 comply with the ELF spec by failing to include the null byte in
17214 namesz. */
17215 if (inote.namedata[inote.namesz - 1] != '\0')
17216 {
17217 temp = (char *) malloc (inote.namesz + 1);
17218 if (temp == NULL)
17219 {
17220 error (_("Out of memory allocating space for inote name\n"));
17221 res = FALSE;
17222 break;
17223 }
17224
17225 memcpy (temp, inote.namedata, inote.namesz);
17226 temp[inote.namesz] = 0;
17227
17228 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
17229 inote.namedata = temp;
17230 }
17231
17232 if (! process_note (& inote, file))
17233 res = FALSE;
17234
17235 if (temp != NULL)
17236 {
17237 free (temp);
17238 temp = NULL;
17239 }
17240 }
17241
17242 free (pnotes);
17243
17244 return res;
17245 }
17246
17247 static bfd_boolean
17248 process_corefile_note_segments (FILE * file)
17249 {
17250 Elf_Internal_Phdr * segment;
17251 unsigned int i;
17252 bfd_boolean res = TRUE;
17253
17254 if (! get_program_headers (file))
17255 return TRUE;
17256
17257 for (i = 0, segment = program_headers;
17258 i < elf_header.e_phnum;
17259 i++, segment++)
17260 {
17261 if (segment->p_type == PT_NOTE)
17262 if (! process_notes_at (file, NULL,
17263 (bfd_vma) segment->p_offset,
17264 (bfd_vma) segment->p_filesz))
17265 res = FALSE;
17266 }
17267
17268 return res;
17269 }
17270
17271 static bfd_boolean
17272 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
17273 {
17274 Elf_External_Note * pnotes;
17275 Elf_External_Note * external;
17276 char * end;
17277 bfd_boolean res = TRUE;
17278
17279 if (length <= 0)
17280 return FALSE;
17281
17282 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17283 _("v850 notes"));
17284 if (pnotes == NULL)
17285 return FALSE;
17286
17287 external = pnotes;
17288 end = (char*) pnotes + length;
17289
17290 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
17291 (unsigned long) offset, (unsigned long) length);
17292
17293 while ((char *) external + sizeof (Elf_External_Note) < end)
17294 {
17295 Elf_External_Note * next;
17296 Elf_Internal_Note inote;
17297
17298 inote.type = BYTE_GET (external->type);
17299 inote.namesz = BYTE_GET (external->namesz);
17300 inote.namedata = external->name;
17301 inote.descsz = BYTE_GET (external->descsz);
17302 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17303 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17304
17305 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
17306 {
17307 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
17308 inote.descdata = inote.namedata;
17309 inote.namesz = 0;
17310 }
17311
17312 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
17313
17314 if ( ((char *) next > end)
17315 || ((char *) next < (char *) pnotes))
17316 {
17317 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
17318 (unsigned long) ((char *) external - (char *) pnotes));
17319 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17320 inote.type, inote.namesz, inote.descsz);
17321 break;
17322 }
17323
17324 external = next;
17325
17326 /* Prevent out-of-bounds indexing. */
17327 if ( inote.namedata + inote.namesz > end
17328 || inote.namedata + inote.namesz < inote.namedata)
17329 {
17330 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
17331 (unsigned long) ((char *) external - (char *) pnotes));
17332 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17333 inote.type, inote.namesz, inote.descsz);
17334 break;
17335 }
17336
17337 printf (" %s: ", get_v850_elf_note_type (inote.type));
17338
17339 if (! print_v850_note (& inote))
17340 {
17341 res = FALSE;
17342 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
17343 inote.namesz, inote.descsz);
17344 }
17345 }
17346
17347 free (pnotes);
17348
17349 return res;
17350 }
17351
17352 static bfd_boolean
17353 process_note_sections (FILE * file)
17354 {
17355 Elf_Internal_Shdr * section;
17356 unsigned long i;
17357 unsigned int n = 0;
17358 bfd_boolean res = TRUE;
17359
17360 for (i = 0, section = section_headers;
17361 i < elf_header.e_shnum && section != NULL;
17362 i++, section++)
17363 {
17364 if (section->sh_type == SHT_NOTE)
17365 {
17366 if (! process_notes_at (file, section,
17367 (bfd_vma) section->sh_offset,
17368 (bfd_vma) section->sh_size))
17369 res = FALSE;
17370 n++;
17371 }
17372
17373 if (( elf_header.e_machine == EM_V800
17374 || elf_header.e_machine == EM_V850
17375 || elf_header.e_machine == EM_CYGNUS_V850)
17376 && section->sh_type == SHT_RENESAS_INFO)
17377 {
17378 if (! process_v850_notes (file,
17379 (bfd_vma) section->sh_offset,
17380 (bfd_vma) section->sh_size))
17381 res = FALSE;
17382 n++;
17383 }
17384 }
17385
17386 if (n == 0)
17387 /* Try processing NOTE segments instead. */
17388 return process_corefile_note_segments (file);
17389
17390 return res;
17391 }
17392
17393 static bfd_boolean
17394 process_notes (FILE * file)
17395 {
17396 /* If we have not been asked to display the notes then do nothing. */
17397 if (! do_notes)
17398 return TRUE;
17399
17400 if (elf_header.e_type != ET_CORE)
17401 return process_note_sections (file);
17402
17403 /* No program headers means no NOTE segment. */
17404 if (elf_header.e_phnum > 0)
17405 return process_corefile_note_segments (file);
17406
17407 printf (_("No note segments present in the core file.\n"));
17408 return TRUE;
17409 }
17410
17411 static unsigned char *
17412 display_public_gnu_attributes (unsigned char * start,
17413 const unsigned char * const end)
17414 {
17415 printf (_(" Unknown GNU attribute: %s\n"), start);
17416
17417 start += strnlen ((char *) start, end - start);
17418 display_raw_attribute (start, end);
17419
17420 return (unsigned char *) end;
17421 }
17422
17423 static unsigned char *
17424 display_generic_attribute (unsigned char * start,
17425 unsigned int tag,
17426 const unsigned char * const end)
17427 {
17428 if (tag == 0)
17429 return (unsigned char *) end;
17430
17431 return display_tag_value (tag, start, end);
17432 }
17433
17434 static bfd_boolean
17435 process_arch_specific (FILE * file)
17436 {
17437 if (! do_arch)
17438 return TRUE;
17439
17440 switch (elf_header.e_machine)
17441 {
17442 case EM_ARM:
17443 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
17444 display_arm_attribute,
17445 display_generic_attribute);
17446
17447 case EM_MIPS:
17448 case EM_MIPS_RS3_LE:
17449 return process_mips_specific (file);
17450
17451 case EM_MSP430:
17452 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
17453 display_msp430x_attribute,
17454 display_generic_attribute);
17455
17456 case EM_NDS32:
17457 return process_nds32_specific (file);
17458
17459 case EM_PPC:
17460 case EM_PPC64:
17461 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17462 display_power_gnu_attribute);
17463
17464 case EM_S390:
17465 case EM_S390_OLD:
17466 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17467 display_s390_gnu_attribute);
17468
17469 case EM_SPARC:
17470 case EM_SPARC32PLUS:
17471 case EM_SPARCV9:
17472 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17473 display_sparc_gnu_attribute);
17474
17475 case EM_TI_C6000:
17476 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
17477 display_tic6x_attribute,
17478 display_generic_attribute);
17479
17480 default:
17481 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
17482 display_public_gnu_attributes,
17483 display_generic_attribute);
17484 }
17485 }
17486
17487 static bfd_boolean
17488 get_file_header (FILE * file)
17489 {
17490 /* Read in the identity array. */
17491 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
17492 return FALSE;
17493
17494 /* Determine how to read the rest of the header. */
17495 switch (elf_header.e_ident[EI_DATA])
17496 {
17497 default:
17498 case ELFDATANONE:
17499 case ELFDATA2LSB:
17500 byte_get = byte_get_little_endian;
17501 byte_put = byte_put_little_endian;
17502 break;
17503 case ELFDATA2MSB:
17504 byte_get = byte_get_big_endian;
17505 byte_put = byte_put_big_endian;
17506 break;
17507 }
17508
17509 /* For now we only support 32 bit and 64 bit ELF files. */
17510 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
17511
17512 /* Read in the rest of the header. */
17513 if (is_32bit_elf)
17514 {
17515 Elf32_External_Ehdr ehdr32;
17516
17517 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
17518 return FALSE;
17519
17520 elf_header.e_type = BYTE_GET (ehdr32.e_type);
17521 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
17522 elf_header.e_version = BYTE_GET (ehdr32.e_version);
17523 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
17524 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
17525 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
17526 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
17527 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
17528 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
17529 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
17530 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
17531 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
17532 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
17533 }
17534 else
17535 {
17536 Elf64_External_Ehdr ehdr64;
17537
17538 /* If we have been compiled with sizeof (bfd_vma) == 4, then
17539 we will not be able to cope with the 64bit data found in
17540 64 ELF files. Detect this now and abort before we start
17541 overwriting things. */
17542 if (sizeof (bfd_vma) < 8)
17543 {
17544 error (_("This instance of readelf has been built without support for a\n\
17545 64 bit data type and so it cannot read 64 bit ELF files.\n"));
17546 return FALSE;
17547 }
17548
17549 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
17550 return FALSE;
17551
17552 elf_header.e_type = BYTE_GET (ehdr64.e_type);
17553 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
17554 elf_header.e_version = BYTE_GET (ehdr64.e_version);
17555 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
17556 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
17557 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
17558 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
17559 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
17560 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
17561 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
17562 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
17563 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
17564 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
17565 }
17566
17567 if (elf_header.e_shoff)
17568 {
17569 /* There may be some extensions in the first section header. Don't
17570 bomb if we can't read it. */
17571 if (is_32bit_elf)
17572 get_32bit_section_headers (file, TRUE);
17573 else
17574 get_64bit_section_headers (file, TRUE);
17575 }
17576
17577 return TRUE;
17578 }
17579
17580 /* Process one ELF object file according to the command line options.
17581 This file may actually be stored in an archive. The file is
17582 positioned at the start of the ELF object. Returns TRUE if no
17583 problems were encountered, FALSE otherwise. */
17584
17585 static bfd_boolean
17586 process_object (char * file_name, FILE * file)
17587 {
17588 unsigned int i;
17589 bfd_boolean res = TRUE;
17590
17591 if (! get_file_header (file))
17592 {
17593 error (_("%s: Failed to read file header\n"), file_name);
17594 return FALSE;
17595 }
17596
17597 /* Initialise per file variables. */
17598 for (i = ARRAY_SIZE (version_info); i--;)
17599 version_info[i] = 0;
17600
17601 for (i = ARRAY_SIZE (dynamic_info); i--;)
17602 dynamic_info[i] = 0;
17603 dynamic_info_DT_GNU_HASH = 0;
17604
17605 /* Process the file. */
17606 if (show_name)
17607 printf (_("\nFile: %s\n"), file_name);
17608
17609 /* Initialise the dump_sects array from the cmdline_dump_sects array.
17610 Note we do this even if cmdline_dump_sects is empty because we
17611 must make sure that the dump_sets array is zeroed out before each
17612 object file is processed. */
17613 if (num_dump_sects > num_cmdline_dump_sects)
17614 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
17615
17616 if (num_cmdline_dump_sects > 0)
17617 {
17618 if (num_dump_sects == 0)
17619 /* A sneaky way of allocating the dump_sects array. */
17620 request_dump_bynumber (num_cmdline_dump_sects, 0);
17621
17622 assert (num_dump_sects >= num_cmdline_dump_sects);
17623 memcpy (dump_sects, cmdline_dump_sects,
17624 num_cmdline_dump_sects * sizeof (* dump_sects));
17625 }
17626
17627 if (! process_file_header ())
17628 return FALSE;
17629
17630 if (! process_section_headers (file))
17631 {
17632 /* Without loaded section headers we cannot process lots of things. */
17633 do_unwind = do_version = do_dump = do_arch = FALSE;
17634
17635 if (! do_using_dynamic)
17636 do_syms = do_dyn_syms = do_reloc = FALSE;
17637 }
17638
17639 if (! process_section_groups (file))
17640 /* Without loaded section groups we cannot process unwind. */
17641 do_unwind = FALSE;
17642
17643 if (process_program_headers (file))
17644 process_dynamic_section (file);
17645 else
17646 res = FALSE;
17647
17648 if (! process_relocs (file))
17649 res = FALSE;
17650
17651 if (! process_unwind (file))
17652 res = FALSE;
17653
17654 if (! process_symbol_table (file))
17655 res = FALSE;
17656
17657 if (! process_syminfo (file))
17658 res = FALSE;
17659
17660 if (! process_version_sections (file))
17661 res = FALSE;
17662
17663 if (! process_section_contents (file))
17664 res = FALSE;
17665
17666 if (! process_notes (file))
17667 res = FALSE;
17668
17669 if (! process_gnu_liblist (file))
17670 res = FALSE;
17671
17672 if (! process_arch_specific (file))
17673 res = FALSE;
17674
17675 if (program_headers)
17676 {
17677 free (program_headers);
17678 program_headers = NULL;
17679 }
17680
17681 if (section_headers)
17682 {
17683 free (section_headers);
17684 section_headers = NULL;
17685 }
17686
17687 if (string_table)
17688 {
17689 free (string_table);
17690 string_table = NULL;
17691 string_table_length = 0;
17692 }
17693
17694 if (dynamic_strings)
17695 {
17696 free (dynamic_strings);
17697 dynamic_strings = NULL;
17698 dynamic_strings_length = 0;
17699 }
17700
17701 if (dynamic_symbols)
17702 {
17703 free (dynamic_symbols);
17704 dynamic_symbols = NULL;
17705 num_dynamic_syms = 0;
17706 }
17707
17708 if (dynamic_syminfo)
17709 {
17710 free (dynamic_syminfo);
17711 dynamic_syminfo = NULL;
17712 }
17713
17714 if (dynamic_section)
17715 {
17716 free (dynamic_section);
17717 dynamic_section = NULL;
17718 }
17719
17720 if (section_headers_groups)
17721 {
17722 free (section_headers_groups);
17723 section_headers_groups = NULL;
17724 }
17725
17726 if (section_groups)
17727 {
17728 struct group_list * g;
17729 struct group_list * next;
17730
17731 for (i = 0; i < group_count; i++)
17732 {
17733 for (g = section_groups [i].root; g != NULL; g = next)
17734 {
17735 next = g->next;
17736 free (g);
17737 }
17738 }
17739
17740 free (section_groups);
17741 section_groups = NULL;
17742 }
17743
17744 free_debug_memory ();
17745
17746 return res;
17747 }
17748
17749 /* Process an ELF archive.
17750 On entry the file is positioned just after the ARMAG string.
17751 Returns TRUE upon success, FALSE otherwise. */
17752
17753 static bfd_boolean
17754 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
17755 {
17756 struct archive_info arch;
17757 struct archive_info nested_arch;
17758 size_t got;
17759 bfd_boolean ret = TRUE;
17760
17761 show_name = TRUE;
17762
17763 /* The ARCH structure is used to hold information about this archive. */
17764 arch.file_name = NULL;
17765 arch.file = NULL;
17766 arch.index_array = NULL;
17767 arch.sym_table = NULL;
17768 arch.longnames = NULL;
17769
17770 /* The NESTED_ARCH structure is used as a single-item cache of information
17771 about a nested archive (when members of a thin archive reside within
17772 another regular archive file). */
17773 nested_arch.file_name = NULL;
17774 nested_arch.file = NULL;
17775 nested_arch.index_array = NULL;
17776 nested_arch.sym_table = NULL;
17777 nested_arch.longnames = NULL;
17778
17779 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
17780 {
17781 ret = FALSE;
17782 goto out;
17783 }
17784
17785 if (do_archive_index)
17786 {
17787 if (arch.sym_table == NULL)
17788 error (_("%s: unable to dump the index as none was found\n"), file_name);
17789 else
17790 {
17791 unsigned long i, l;
17792 unsigned long current_pos;
17793
17794 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
17795 file_name, (unsigned long) arch.index_num, arch.sym_size);
17796 current_pos = ftell (file);
17797
17798 for (i = l = 0; i < arch.index_num; i++)
17799 {
17800 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
17801 {
17802 char * member_name;
17803
17804 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
17805
17806 if (member_name != NULL)
17807 {
17808 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
17809
17810 if (qualified_name != NULL)
17811 {
17812 printf (_("Contents of binary %s at offset "), qualified_name);
17813 (void) print_vma (arch.index_array[i], PREFIX_HEX);
17814 putchar ('\n');
17815 free (qualified_name);
17816 }
17817 }
17818 }
17819
17820 if (l >= arch.sym_size)
17821 {
17822 error (_("%s: end of the symbol table reached before the end of the index\n"),
17823 file_name);
17824 ret = FALSE;
17825 break;
17826 }
17827 /* PR 17531: file: 0b6630b2. */
17828 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
17829 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
17830 }
17831
17832 if (arch.uses_64bit_indicies)
17833 l = (l + 7) & ~ 7;
17834 else
17835 l += l & 1;
17836
17837 if (l < arch.sym_size)
17838 {
17839 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
17840 file_name, arch.sym_size - l);
17841 ret = FALSE;
17842 }
17843
17844 if (fseek (file, current_pos, SEEK_SET) != 0)
17845 {
17846 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
17847 ret = FALSE;
17848 goto out;
17849 }
17850 }
17851
17852 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
17853 && !do_segments && !do_header && !do_dump && !do_version
17854 && !do_histogram && !do_debugging && !do_arch && !do_notes
17855 && !do_section_groups && !do_dyn_syms)
17856 {
17857 ret = TRUE; /* Archive index only. */
17858 goto out;
17859 }
17860 }
17861
17862 while (1)
17863 {
17864 char * name;
17865 size_t namelen;
17866 char * qualified_name;
17867
17868 /* Read the next archive header. */
17869 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
17870 {
17871 error (_("%s: failed to seek to next archive header\n"), file_name);
17872 return FALSE;
17873 }
17874 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
17875 if (got != sizeof arch.arhdr)
17876 {
17877 if (got == 0)
17878 break;
17879 error (_("%s: failed to read archive header\n"), file_name);
17880 ret = FALSE;
17881 break;
17882 }
17883 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
17884 {
17885 error (_("%s: did not find a valid archive header\n"), arch.file_name);
17886 ret = FALSE;
17887 break;
17888 }
17889
17890 arch.next_arhdr_offset += sizeof arch.arhdr;
17891
17892 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
17893 if (archive_file_size & 01)
17894 ++archive_file_size;
17895
17896 name = get_archive_member_name (&arch, &nested_arch);
17897 if (name == NULL)
17898 {
17899 error (_("%s: bad archive file name\n"), file_name);
17900 ret = FALSE;
17901 break;
17902 }
17903 namelen = strlen (name);
17904
17905 qualified_name = make_qualified_name (&arch, &nested_arch, name);
17906 if (qualified_name == NULL)
17907 {
17908 error (_("%s: bad archive file name\n"), file_name);
17909 ret = FALSE;
17910 break;
17911 }
17912
17913 if (is_thin_archive && arch.nested_member_origin == 0)
17914 {
17915 /* This is a proxy for an external member of a thin archive. */
17916 FILE * member_file;
17917 char * member_file_name = adjust_relative_path (file_name, name, namelen);
17918
17919 if (member_file_name == NULL)
17920 {
17921 ret = FALSE;
17922 break;
17923 }
17924
17925 member_file = fopen (member_file_name, "rb");
17926 if (member_file == NULL)
17927 {
17928 error (_("Input file '%s' is not readable.\n"), member_file_name);
17929 free (member_file_name);
17930 ret = FALSE;
17931 break;
17932 }
17933
17934 archive_file_offset = arch.nested_member_origin;
17935
17936 if (! process_object (qualified_name, member_file))
17937 ret = FALSE;
17938
17939 fclose (member_file);
17940 free (member_file_name);
17941 }
17942 else if (is_thin_archive)
17943 {
17944 /* PR 15140: Allow for corrupt thin archives. */
17945 if (nested_arch.file == NULL)
17946 {
17947 error (_("%s: contains corrupt thin archive: %s\n"),
17948 file_name, name);
17949 ret = FALSE;
17950 break;
17951 }
17952
17953 /* This is a proxy for a member of a nested archive. */
17954 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17955
17956 /* The nested archive file will have been opened and setup by
17957 get_archive_member_name. */
17958 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17959 {
17960 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17961 ret = FALSE;
17962 break;
17963 }
17964
17965 if (! process_object (qualified_name, nested_arch.file))
17966 ret = FALSE;
17967 }
17968 else
17969 {
17970 archive_file_offset = arch.next_arhdr_offset;
17971 arch.next_arhdr_offset += archive_file_size;
17972
17973 if (! process_object (qualified_name, file))
17974 ret = FALSE;
17975 }
17976
17977 if (dump_sects != NULL)
17978 {
17979 free (dump_sects);
17980 dump_sects = NULL;
17981 num_dump_sects = 0;
17982 }
17983
17984 free (qualified_name);
17985 }
17986
17987 out:
17988 if (nested_arch.file != NULL)
17989 fclose (nested_arch.file);
17990 release_archive (&nested_arch);
17991 release_archive (&arch);
17992
17993 return ret;
17994 }
17995
17996 static bfd_boolean
17997 process_file (char * file_name)
17998 {
17999 FILE * file;
18000 struct stat statbuf;
18001 char armag[SARMAG];
18002 bfd_boolean ret = TRUE;
18003
18004 if (stat (file_name, &statbuf) < 0)
18005 {
18006 if (errno == ENOENT)
18007 error (_("'%s': No such file\n"), file_name);
18008 else
18009 error (_("Could not locate '%s'. System error message: %s\n"),
18010 file_name, strerror (errno));
18011 return FALSE;
18012 }
18013
18014 if (! S_ISREG (statbuf.st_mode))
18015 {
18016 error (_("'%s' is not an ordinary file\n"), file_name);
18017 return FALSE;
18018 }
18019
18020 file = fopen (file_name, "rb");
18021 if (file == NULL)
18022 {
18023 error (_("Input file '%s' is not readable.\n"), file_name);
18024 return FALSE;
18025 }
18026
18027 if (fread (armag, SARMAG, 1, file) != 1)
18028 {
18029 error (_("%s: Failed to read file's magic number\n"), file_name);
18030 fclose (file);
18031 return FALSE;
18032 }
18033
18034 current_file_size = (bfd_size_type) statbuf.st_size;
18035
18036 if (memcmp (armag, ARMAG, SARMAG) == 0)
18037 {
18038 if (! process_archive (file_name, file, FALSE))
18039 ret = FALSE;
18040 }
18041 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
18042 {
18043 if ( ! process_archive (file_name, file, TRUE))
18044 ret = FALSE;
18045 }
18046 else
18047 {
18048 if (do_archive_index)
18049 error (_("File %s is not an archive so its index cannot be displayed.\n"),
18050 file_name);
18051
18052 rewind (file);
18053 archive_file_size = archive_file_offset = 0;
18054
18055 if (! process_object (file_name, file))
18056 ret = FALSE;
18057 }
18058
18059 fclose (file);
18060 current_file_size = 0;
18061
18062 return ret;
18063 }
18064
18065 #ifdef SUPPORT_DISASSEMBLY
18066 /* Needed by the i386 disassembler. For extra credit, someone could
18067 fix this so that we insert symbolic addresses here, esp for GOT/PLT
18068 symbols. */
18069
18070 void
18071 print_address (unsigned int addr, FILE * outfile)
18072 {
18073 fprintf (outfile,"0x%8.8x", addr);
18074 }
18075
18076 /* Needed by the i386 disassembler. */
18077 void
18078 db_task_printsym (unsigned int addr)
18079 {
18080 print_address (addr, stderr);
18081 }
18082 #endif
18083
18084 int
18085 main (int argc, char ** argv)
18086 {
18087 int err;
18088
18089 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
18090 setlocale (LC_MESSAGES, "");
18091 #endif
18092 #if defined (HAVE_SETLOCALE)
18093 setlocale (LC_CTYPE, "");
18094 #endif
18095 bindtextdomain (PACKAGE, LOCALEDIR);
18096 textdomain (PACKAGE);
18097
18098 expandargv (&argc, &argv);
18099
18100 parse_args (argc, argv);
18101
18102 if (num_dump_sects > 0)
18103 {
18104 /* Make a copy of the dump_sects array. */
18105 cmdline_dump_sects = (dump_type *)
18106 malloc (num_dump_sects * sizeof (* dump_sects));
18107 if (cmdline_dump_sects == NULL)
18108 error (_("Out of memory allocating dump request table.\n"));
18109 else
18110 {
18111 memcpy (cmdline_dump_sects, dump_sects,
18112 num_dump_sects * sizeof (* dump_sects));
18113 num_cmdline_dump_sects = num_dump_sects;
18114 }
18115 }
18116
18117 if (optind < (argc - 1))
18118 show_name = TRUE;
18119 else if (optind >= argc)
18120 {
18121 warn (_("Nothing to do.\n"));
18122 usage (stderr);
18123 }
18124
18125 err = FALSE;
18126 while (optind < argc)
18127 if (! process_file (argv[optind++]))
18128 err = TRUE;
18129
18130 if (dump_sects != NULL)
18131 free (dump_sects);
18132 if (cmdline_dump_sects != NULL)
18133 free (cmdline_dump_sects);
18134
18135 return err ? EXIT_FAILURE : EXIT_SUCCESS;
18136 }
This page took 0.716952 seconds and 4 git commands to generate.