binutils: add support for eBPF
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/csky.h"
102 #include "elf/d10v.h"
103 #include "elf/d30v.h"
104 #include "elf/dlx.h"
105 #include "elf/bpf.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/ft32.h"
110 #include "elf/h8.h"
111 #include "elf/hppa.h"
112 #include "elf/i386.h"
113 #include "elf/i370.h"
114 #include "elf/i860.h"
115 #include "elf/i960.h"
116 #include "elf/ia64.h"
117 #include "elf/ip2k.h"
118 #include "elf/lm32.h"
119 #include "elf/iq2000.h"
120 #include "elf/m32c.h"
121 #include "elf/m32r.h"
122 #include "elf/m68k.h"
123 #include "elf/m68hc11.h"
124 #include "elf/s12z.h"
125 #include "elf/mcore.h"
126 #include "elf/mep.h"
127 #include "elf/metag.h"
128 #include "elf/microblaze.h"
129 #include "elf/mips.h"
130 #include "elf/mmix.h"
131 #include "elf/mn10200.h"
132 #include "elf/mn10300.h"
133 #include "elf/moxie.h"
134 #include "elf/mt.h"
135 #include "elf/msp430.h"
136 #include "elf/nds32.h"
137 #include "elf/nfp.h"
138 #include "elf/nios2.h"
139 #include "elf/or1k.h"
140 #include "elf/pj.h"
141 #include "elf/ppc.h"
142 #include "elf/ppc64.h"
143 #include "elf/pru.h"
144 #include "elf/riscv.h"
145 #include "elf/rl78.h"
146 #include "elf/rx.h"
147 #include "elf/s390.h"
148 #include "elf/score.h"
149 #include "elf/sh.h"
150 #include "elf/sparc.h"
151 #include "elf/spu.h"
152 #include "elf/tic6x.h"
153 #include "elf/tilegx.h"
154 #include "elf/tilepro.h"
155 #include "elf/v850.h"
156 #include "elf/vax.h"
157 #include "elf/visium.h"
158 #include "elf/wasm32.h"
159 #include "elf/x86-64.h"
160 #include "elf/xc16x.h"
161 #include "elf/xgate.h"
162 #include "elf/xstormy16.h"
163 #include "elf/xtensa.h"
164
165 #include "getopt.h"
166 #include "libiberty.h"
167 #include "safe-ctype.h"
168 #include "filenames.h"
169
170 #ifndef offsetof
171 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
172 #endif
173
174 typedef struct elf_section_list
175 {
176 Elf_Internal_Shdr * hdr;
177 struct elf_section_list * next;
178 } elf_section_list;
179
180 /* Flag bits indicating particular types of dump. */
181 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
182 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
183 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
184 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
185 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
186
187 typedef unsigned char dump_type;
188
189 /* A linked list of the section names for which dumps were requested. */
190 struct dump_list_entry
191 {
192 char * name;
193 dump_type type;
194 struct dump_list_entry * next;
195 };
196
197 typedef struct filedata
198 {
199 const char * file_name;
200 FILE * handle;
201 bfd_size_type file_size;
202 Elf_Internal_Ehdr file_header;
203 Elf_Internal_Shdr * section_headers;
204 Elf_Internal_Phdr * program_headers;
205 char * string_table;
206 unsigned long string_table_length;
207 /* A dynamic array of flags indicating for which sections a dump of
208 some kind has been requested. It is reset on a per-object file
209 basis and then initialised from the cmdline_dump_sects array,
210 the results of interpreting the -w switch, and the
211 dump_sects_byname list. */
212 dump_type * dump_sects;
213 unsigned int num_dump_sects;
214 } Filedata;
215
216 char * program_name = "readelf";
217
218 static unsigned long archive_file_offset;
219 static unsigned long archive_file_size;
220 static unsigned long dynamic_addr;
221 static bfd_size_type dynamic_size;
222 static size_t dynamic_nent;
223 static char * dynamic_strings;
224 static unsigned long dynamic_strings_length;
225 static unsigned long num_dynamic_syms;
226 static Elf_Internal_Sym * dynamic_symbols;
227 static Elf_Internal_Syminfo * dynamic_syminfo;
228 static unsigned long dynamic_syminfo_offset;
229 static unsigned int dynamic_syminfo_nent;
230 static char program_interpreter[PATH_MAX];
231 static bfd_vma dynamic_info[DT_ENCODING];
232 static bfd_vma dynamic_info_DT_GNU_HASH;
233 static bfd_vma version_info[16];
234 static Elf_Internal_Dyn * dynamic_section;
235 static elf_section_list * symtab_shndx_list;
236 static bfd_boolean show_name = FALSE;
237 static bfd_boolean do_dynamic = FALSE;
238 static bfd_boolean do_syms = FALSE;
239 static bfd_boolean do_dyn_syms = FALSE;
240 static bfd_boolean do_reloc = FALSE;
241 static bfd_boolean do_sections = FALSE;
242 static bfd_boolean do_section_groups = FALSE;
243 static bfd_boolean do_section_details = FALSE;
244 static bfd_boolean do_segments = FALSE;
245 static bfd_boolean do_unwind = FALSE;
246 static bfd_boolean do_using_dynamic = FALSE;
247 static bfd_boolean do_header = FALSE;
248 static bfd_boolean do_dump = FALSE;
249 static bfd_boolean do_version = FALSE;
250 static bfd_boolean do_histogram = FALSE;
251 static bfd_boolean do_debugging = FALSE;
252 static bfd_boolean do_arch = FALSE;
253 static bfd_boolean do_notes = FALSE;
254 static bfd_boolean do_archive_index = FALSE;
255 static bfd_boolean is_32bit_elf = FALSE;
256 static bfd_boolean decompress_dumps = FALSE;
257
258 struct group_list
259 {
260 struct group_list * next;
261 unsigned int section_index;
262 };
263
264 struct group
265 {
266 struct group_list * root;
267 unsigned int group_index;
268 };
269
270 static size_t group_count;
271 static struct group * section_groups;
272 static struct group ** section_headers_groups;
273
274 /* A dynamic array of flags indicating for which sections a dump
275 has been requested via command line switches. */
276 static Filedata cmdline;
277
278 static struct dump_list_entry * dump_sects_byname;
279
280 /* How to print a vma value. */
281 typedef enum print_mode
282 {
283 HEX,
284 DEC,
285 DEC_5,
286 UNSIGNED,
287 PREFIX_HEX,
288 FULL_HEX,
289 LONG_HEX
290 }
291 print_mode;
292
293 /* Versioned symbol info. */
294 enum versioned_symbol_info
295 {
296 symbol_undefined,
297 symbol_hidden,
298 symbol_public
299 };
300
301 static const char * get_symbol_version_string
302 (Filedata *, bfd_boolean, const char *, unsigned long, unsigned,
303 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
304
305 #define UNKNOWN -1
306
307 #define SECTION_NAME(X) \
308 ((X) == NULL ? _("<none>") \
309 : filedata->string_table == NULL ? _("<no-strings>") \
310 : ((X)->sh_name >= filedata->string_table_length ? _("<corrupt>") \
311 : filedata->string_table + (X)->sh_name))
312
313 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
314
315 #define GET_ELF_SYMBOLS(file, section, sym_count) \
316 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
317 : get_64bit_elf_symbols (file, section, sym_count))
318
319 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
320 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
321 already been called and verified that the string exists. */
322 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
323
324 #define REMOVE_ARCH_BITS(ADDR) \
325 do \
326 { \
327 if (filedata->file_header.e_machine == EM_ARM) \
328 (ADDR) &= ~1; \
329 } \
330 while (0)
331 \f
332 /* Print a BFD_VMA to an internal buffer, for use in error messages.
333 BFD_FMA_FMT can't be used in translated strings. */
334
335 static const char *
336 bfd_vmatoa (char *fmtch, bfd_vma value)
337 {
338 /* bfd_vmatoa is used more then once in a printf call for output.
339 Cycle through an array of buffers. */
340 static int buf_pos = 0;
341 static struct bfd_vmatoa_buf
342 {
343 char place[64];
344 } buf[4];
345 char *ret;
346 char fmt[32];
347
348 ret = buf[buf_pos++].place;
349 buf_pos %= ARRAY_SIZE (buf);
350
351 sprintf (fmt, "%%%s%s", BFD_VMA_FMT, fmtch);
352 snprintf (ret, sizeof (buf[0].place), fmt, value);
353 return ret;
354 }
355
356 /* Retrieve NMEMB structures, each SIZE bytes long from FILEDATA starting at
357 OFFSET + the offset of the current archive member, if we are examining an
358 archive. Put the retrieved data into VAR, if it is not NULL. Otherwise
359 allocate a buffer using malloc and fill that. In either case return the
360 pointer to the start of the retrieved data or NULL if something went wrong.
361 If something does go wrong and REASON is not NULL then emit an error
362 message using REASON as part of the context. */
363
364 static void *
365 get_data (void * var,
366 Filedata * filedata,
367 unsigned long offset,
368 bfd_size_type size,
369 bfd_size_type nmemb,
370 const char * reason)
371 {
372 void * mvar;
373 bfd_size_type amt = size * nmemb;
374
375 if (size == 0 || nmemb == 0)
376 return NULL;
377
378 /* If the size_t type is smaller than the bfd_size_type, eg because
379 you are building a 32-bit tool on a 64-bit host, then make sure
380 that when the sizes are cast to (size_t) no information is lost. */
381 if (sizeof (size_t) < sizeof (bfd_size_type)
382 && ( (bfd_size_type) ((size_t) size) != size
383 || (bfd_size_type) ((size_t) nmemb) != nmemb))
384 {
385 if (reason)
386 error (_("Size truncation prevents reading %s"
387 " elements of size %s for %s\n"),
388 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
389 return NULL;
390 }
391
392 /* Check for size overflow. */
393 if (amt < nmemb)
394 {
395 if (reason)
396 error (_("Size overflow prevents reading %s"
397 " elements of size %s for %s\n"),
398 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
399 return NULL;
400 }
401
402 /* Be kind to memory checkers (eg valgrind, address sanitizer) by not
403 attempting to allocate memory when the read is bound to fail. */
404 if (archive_file_offset > filedata->file_size
405 || offset > filedata->file_size - archive_file_offset
406 || amt > filedata->file_size - archive_file_offset - offset)
407 {
408 if (reason)
409 error (_("Reading %s bytes extends past end of file for %s\n"),
410 bfd_vmatoa ("u", amt), reason);
411 return NULL;
412 }
413
414 if (fseek (filedata->handle, archive_file_offset + offset, SEEK_SET))
415 {
416 if (reason)
417 error (_("Unable to seek to 0x%lx for %s\n"),
418 archive_file_offset + offset, reason);
419 return NULL;
420 }
421
422 mvar = var;
423 if (mvar == NULL)
424 {
425 /* Check for overflow. */
426 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
427 /* + 1 so that we can '\0' terminate invalid string table sections. */
428 mvar = malloc ((size_t) amt + 1);
429
430 if (mvar == NULL)
431 {
432 if (reason)
433 error (_("Out of memory allocating %s bytes for %s\n"),
434 bfd_vmatoa ("u", amt), reason);
435 return NULL;
436 }
437
438 ((char *) mvar)[amt] = '\0';
439 }
440
441 if (fread (mvar, (size_t) size, (size_t) nmemb, filedata->handle) != nmemb)
442 {
443 if (reason)
444 error (_("Unable to read in %s bytes of %s\n"),
445 bfd_vmatoa ("u", amt), reason);
446 if (mvar != var)
447 free (mvar);
448 return NULL;
449 }
450
451 return mvar;
452 }
453
454 /* Print a VMA value in the MODE specified.
455 Returns the number of characters displayed. */
456
457 static unsigned int
458 print_vma (bfd_vma vma, print_mode mode)
459 {
460 unsigned int nc = 0;
461
462 switch (mode)
463 {
464 case FULL_HEX:
465 nc = printf ("0x");
466 /* Fall through. */
467 case LONG_HEX:
468 #ifdef BFD64
469 if (is_32bit_elf)
470 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
471 #endif
472 printf_vma (vma);
473 return nc + 16;
474
475 case DEC_5:
476 if (vma <= 99999)
477 return printf ("%5" BFD_VMA_FMT "d", vma);
478 /* Fall through. */
479 case PREFIX_HEX:
480 nc = printf ("0x");
481 /* Fall through. */
482 case HEX:
483 return nc + printf ("%" BFD_VMA_FMT "x", vma);
484
485 case DEC:
486 return printf ("%" BFD_VMA_FMT "d", vma);
487
488 case UNSIGNED:
489 return printf ("%" BFD_VMA_FMT "u", vma);
490
491 default:
492 /* FIXME: Report unrecognised mode ? */
493 return 0;
494 }
495 }
496
497 /* Display a symbol on stdout. Handles the display of control characters and
498 multibye characters (assuming the host environment supports them).
499
500 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
501
502 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
503 padding as necessary.
504
505 Returns the number of emitted characters. */
506
507 static unsigned int
508 print_symbol (signed int width, const char *symbol)
509 {
510 bfd_boolean extra_padding = FALSE;
511 signed int num_printed = 0;
512 #ifdef HAVE_MBSTATE_T
513 mbstate_t state;
514 #endif
515 unsigned int width_remaining;
516
517 if (width < 0)
518 {
519 /* Keep the width positive. This helps the code below. */
520 width = - width;
521 extra_padding = TRUE;
522 }
523 else if (width == 0)
524 return 0;
525
526 if (do_wide)
527 /* Set the remaining width to a very large value.
528 This simplifies the code below. */
529 width_remaining = INT_MAX;
530 else
531 width_remaining = width;
532
533 #ifdef HAVE_MBSTATE_T
534 /* Initialise the multibyte conversion state. */
535 memset (& state, 0, sizeof (state));
536 #endif
537
538 while (width_remaining)
539 {
540 size_t n;
541 const char c = *symbol++;
542
543 if (c == 0)
544 break;
545
546 /* Do not print control characters directly as they can affect terminal
547 settings. Such characters usually appear in the names generated
548 by the assembler for local labels. */
549 if (ISCNTRL (c))
550 {
551 if (width_remaining < 2)
552 break;
553
554 printf ("^%c", c + 0x40);
555 width_remaining -= 2;
556 num_printed += 2;
557 }
558 else if (ISPRINT (c))
559 {
560 putchar (c);
561 width_remaining --;
562 num_printed ++;
563 }
564 else
565 {
566 #ifdef HAVE_MBSTATE_T
567 wchar_t w;
568 #endif
569 /* Let printf do the hard work of displaying multibyte characters. */
570 printf ("%.1s", symbol - 1);
571 width_remaining --;
572 num_printed ++;
573
574 #ifdef HAVE_MBSTATE_T
575 /* Try to find out how many bytes made up the character that was
576 just printed. Advance the symbol pointer past the bytes that
577 were displayed. */
578 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
579 #else
580 n = 1;
581 #endif
582 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
583 symbol += (n - 1);
584 }
585 }
586
587 if (extra_padding && num_printed < width)
588 {
589 /* Fill in the remaining spaces. */
590 printf ("%-*s", width - num_printed, " ");
591 num_printed = width;
592 }
593
594 return num_printed;
595 }
596
597 /* Returns a pointer to a static buffer containing a printable version of
598 the given section's name. Like print_symbol, except that it does not try
599 to print multibyte characters, it just interprets them as hex values. */
600
601 static const char *
602 printable_section_name (Filedata * filedata, const Elf_Internal_Shdr * sec)
603 {
604 #define MAX_PRINT_SEC_NAME_LEN 128
605 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
606 const char * name = SECTION_NAME (sec);
607 char * buf = sec_name_buf;
608 char c;
609 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
610
611 while ((c = * name ++) != 0)
612 {
613 if (ISCNTRL (c))
614 {
615 if (remaining < 2)
616 break;
617
618 * buf ++ = '^';
619 * buf ++ = c + 0x40;
620 remaining -= 2;
621 }
622 else if (ISPRINT (c))
623 {
624 * buf ++ = c;
625 remaining -= 1;
626 }
627 else
628 {
629 static char hex[17] = "0123456789ABCDEF";
630
631 if (remaining < 4)
632 break;
633 * buf ++ = '<';
634 * buf ++ = hex[(c & 0xf0) >> 4];
635 * buf ++ = hex[c & 0x0f];
636 * buf ++ = '>';
637 remaining -= 4;
638 }
639
640 if (remaining == 0)
641 break;
642 }
643
644 * buf = 0;
645 return sec_name_buf;
646 }
647
648 static const char *
649 printable_section_name_from_index (Filedata * filedata, unsigned long ndx)
650 {
651 if (ndx >= filedata->file_header.e_shnum)
652 return _("<corrupt>");
653
654 return printable_section_name (filedata, filedata->section_headers + ndx);
655 }
656
657 /* Return a pointer to section NAME, or NULL if no such section exists. */
658
659 static Elf_Internal_Shdr *
660 find_section (Filedata * filedata, const char * name)
661 {
662 unsigned int i;
663
664 if (filedata->section_headers == NULL)
665 return NULL;
666
667 for (i = 0; i < filedata->file_header.e_shnum; i++)
668 if (streq (SECTION_NAME (filedata->section_headers + i), name))
669 return filedata->section_headers + i;
670
671 return NULL;
672 }
673
674 /* Return a pointer to a section containing ADDR, or NULL if no such
675 section exists. */
676
677 static Elf_Internal_Shdr *
678 find_section_by_address (Filedata * filedata, bfd_vma addr)
679 {
680 unsigned int i;
681
682 if (filedata->section_headers == NULL)
683 return NULL;
684
685 for (i = 0; i < filedata->file_header.e_shnum; i++)
686 {
687 Elf_Internal_Shdr *sec = filedata->section_headers + i;
688
689 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
690 return sec;
691 }
692
693 return NULL;
694 }
695
696 static Elf_Internal_Shdr *
697 find_section_by_type (Filedata * filedata, unsigned int type)
698 {
699 unsigned int i;
700
701 if (filedata->section_headers == NULL)
702 return NULL;
703
704 for (i = 0; i < filedata->file_header.e_shnum; i++)
705 {
706 Elf_Internal_Shdr *sec = filedata->section_headers + i;
707
708 if (sec->sh_type == type)
709 return sec;
710 }
711
712 return NULL;
713 }
714
715 /* Return a pointer to section NAME, or NULL if no such section exists,
716 restricted to the list of sections given in SET. */
717
718 static Elf_Internal_Shdr *
719 find_section_in_set (Filedata * filedata, const char * name, unsigned int * set)
720 {
721 unsigned int i;
722
723 if (filedata->section_headers == NULL)
724 return NULL;
725
726 if (set != NULL)
727 {
728 while ((i = *set++) > 0)
729 {
730 /* See PR 21156 for a reproducer. */
731 if (i >= filedata->file_header.e_shnum)
732 continue; /* FIXME: Should we issue an error message ? */
733
734 if (streq (SECTION_NAME (filedata->section_headers + i), name))
735 return filedata->section_headers + i;
736 }
737 }
738
739 return find_section (filedata, name);
740 }
741
742 /* Read an unsigned LEB128 encoded value from DATA.
743 Set *LENGTH_RETURN to the number of bytes read. */
744
745 static inline unsigned long
746 read_uleb128 (unsigned char * data,
747 unsigned int * length_return,
748 const unsigned char * const end)
749 {
750 return read_leb128 (data, length_return, FALSE, end);
751 }
752
753 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
754 This OS has so many departures from the ELF standard that we test it at
755 many places. */
756
757 static inline bfd_boolean
758 is_ia64_vms (Filedata * filedata)
759 {
760 return filedata->file_header.e_machine == EM_IA_64
761 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
762 }
763
764 /* Guess the relocation size commonly used by the specific machines. */
765
766 static bfd_boolean
767 guess_is_rela (unsigned int e_machine)
768 {
769 switch (e_machine)
770 {
771 /* Targets that use REL relocations. */
772 case EM_386:
773 case EM_IAMCU:
774 case EM_960:
775 case EM_ARM:
776 case EM_D10V:
777 case EM_CYGNUS_D10V:
778 case EM_DLX:
779 case EM_MIPS:
780 case EM_MIPS_RS3_LE:
781 case EM_CYGNUS_M32R:
782 case EM_SCORE:
783 case EM_XGATE:
784 case EM_NFP:
785 case EM_BPF:
786 return FALSE;
787
788 /* Targets that use RELA relocations. */
789 case EM_68K:
790 case EM_860:
791 case EM_AARCH64:
792 case EM_ADAPTEVA_EPIPHANY:
793 case EM_ALPHA:
794 case EM_ALTERA_NIOS2:
795 case EM_ARC:
796 case EM_ARC_COMPACT:
797 case EM_ARC_COMPACT2:
798 case EM_AVR:
799 case EM_AVR_OLD:
800 case EM_BLACKFIN:
801 case EM_CR16:
802 case EM_CRIS:
803 case EM_CRX:
804 case EM_CSKY:
805 case EM_D30V:
806 case EM_CYGNUS_D30V:
807 case EM_FR30:
808 case EM_FT32:
809 case EM_CYGNUS_FR30:
810 case EM_CYGNUS_FRV:
811 case EM_H8S:
812 case EM_H8_300:
813 case EM_H8_300H:
814 case EM_IA_64:
815 case EM_IP2K:
816 case EM_IP2K_OLD:
817 case EM_IQ2000:
818 case EM_LATTICEMICO32:
819 case EM_M32C_OLD:
820 case EM_M32C:
821 case EM_M32R:
822 case EM_MCORE:
823 case EM_CYGNUS_MEP:
824 case EM_METAG:
825 case EM_MMIX:
826 case EM_MN10200:
827 case EM_CYGNUS_MN10200:
828 case EM_MN10300:
829 case EM_CYGNUS_MN10300:
830 case EM_MOXIE:
831 case EM_MSP430:
832 case EM_MSP430_OLD:
833 case EM_MT:
834 case EM_NDS32:
835 case EM_NIOS32:
836 case EM_OR1K:
837 case EM_PPC64:
838 case EM_PPC:
839 case EM_TI_PRU:
840 case EM_RISCV:
841 case EM_RL78:
842 case EM_RX:
843 case EM_S390:
844 case EM_S390_OLD:
845 case EM_SH:
846 case EM_SPARC:
847 case EM_SPARC32PLUS:
848 case EM_SPARCV9:
849 case EM_SPU:
850 case EM_TI_C6000:
851 case EM_TILEGX:
852 case EM_TILEPRO:
853 case EM_V800:
854 case EM_V850:
855 case EM_CYGNUS_V850:
856 case EM_VAX:
857 case EM_VISIUM:
858 case EM_X86_64:
859 case EM_L1OM:
860 case EM_K1OM:
861 case EM_XSTORMY16:
862 case EM_XTENSA:
863 case EM_XTENSA_OLD:
864 case EM_MICROBLAZE:
865 case EM_MICROBLAZE_OLD:
866 case EM_WEBASSEMBLY:
867 return TRUE;
868
869 case EM_68HC05:
870 case EM_68HC08:
871 case EM_68HC11:
872 case EM_68HC16:
873 case EM_FX66:
874 case EM_ME16:
875 case EM_MMA:
876 case EM_NCPU:
877 case EM_NDR1:
878 case EM_PCP:
879 case EM_ST100:
880 case EM_ST19:
881 case EM_ST7:
882 case EM_ST9PLUS:
883 case EM_STARCORE:
884 case EM_SVX:
885 case EM_TINYJ:
886 default:
887 warn (_("Don't know about relocations on this machine architecture\n"));
888 return FALSE;
889 }
890 }
891
892 /* Load RELA type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
893 Returns TRUE upon success, FALSE otherwise. If successful then a
894 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
895 and the number of relocs loaded is placed in *NRELASP. It is the caller's
896 responsibility to free the allocated buffer. */
897
898 static bfd_boolean
899 slurp_rela_relocs (Filedata * filedata,
900 unsigned long rel_offset,
901 unsigned long rel_size,
902 Elf_Internal_Rela ** relasp,
903 unsigned long * nrelasp)
904 {
905 Elf_Internal_Rela * relas;
906 size_t nrelas;
907 unsigned int i;
908
909 if (is_32bit_elf)
910 {
911 Elf32_External_Rela * erelas;
912
913 erelas = (Elf32_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
914 rel_size, _("32-bit relocation data"));
915 if (!erelas)
916 return FALSE;
917
918 nrelas = rel_size / sizeof (Elf32_External_Rela);
919
920 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
921 sizeof (Elf_Internal_Rela));
922
923 if (relas == NULL)
924 {
925 free (erelas);
926 error (_("out of memory parsing relocs\n"));
927 return FALSE;
928 }
929
930 for (i = 0; i < nrelas; i++)
931 {
932 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
933 relas[i].r_info = BYTE_GET (erelas[i].r_info);
934 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
935 }
936
937 free (erelas);
938 }
939 else
940 {
941 Elf64_External_Rela * erelas;
942
943 erelas = (Elf64_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
944 rel_size, _("64-bit relocation data"));
945 if (!erelas)
946 return FALSE;
947
948 nrelas = rel_size / sizeof (Elf64_External_Rela);
949
950 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
951 sizeof (Elf_Internal_Rela));
952
953 if (relas == NULL)
954 {
955 free (erelas);
956 error (_("out of memory parsing relocs\n"));
957 return FALSE;
958 }
959
960 for (i = 0; i < nrelas; i++)
961 {
962 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
963 relas[i].r_info = BYTE_GET (erelas[i].r_info);
964 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
965
966 /* The #ifdef BFD64 below is to prevent a compile time
967 warning. We know that if we do not have a 64 bit data
968 type that we will never execute this code anyway. */
969 #ifdef BFD64
970 if (filedata->file_header.e_machine == EM_MIPS
971 && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
972 {
973 /* In little-endian objects, r_info isn't really a
974 64-bit little-endian value: it has a 32-bit
975 little-endian symbol index followed by four
976 individual byte fields. Reorder INFO
977 accordingly. */
978 bfd_vma inf = relas[i].r_info;
979 inf = (((inf & 0xffffffff) << 32)
980 | ((inf >> 56) & 0xff)
981 | ((inf >> 40) & 0xff00)
982 | ((inf >> 24) & 0xff0000)
983 | ((inf >> 8) & 0xff000000));
984 relas[i].r_info = inf;
985 }
986 #endif /* BFD64 */
987 }
988
989 free (erelas);
990 }
991
992 *relasp = relas;
993 *nrelasp = nrelas;
994 return TRUE;
995 }
996
997 /* Load REL type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
998 Returns TRUE upon success, FALSE otherwise. If successful then a
999 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
1000 and the number of relocs loaded is placed in *NRELSP. It is the caller's
1001 responsibility to free the allocated buffer. */
1002
1003 static bfd_boolean
1004 slurp_rel_relocs (Filedata * filedata,
1005 unsigned long rel_offset,
1006 unsigned long rel_size,
1007 Elf_Internal_Rela ** relsp,
1008 unsigned long * nrelsp)
1009 {
1010 Elf_Internal_Rela * rels;
1011 size_t nrels;
1012 unsigned int i;
1013
1014 if (is_32bit_elf)
1015 {
1016 Elf32_External_Rel * erels;
1017
1018 erels = (Elf32_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
1019 rel_size, _("32-bit relocation data"));
1020 if (!erels)
1021 return FALSE;
1022
1023 nrels = rel_size / sizeof (Elf32_External_Rel);
1024
1025 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1026
1027 if (rels == NULL)
1028 {
1029 free (erels);
1030 error (_("out of memory parsing relocs\n"));
1031 return FALSE;
1032 }
1033
1034 for (i = 0; i < nrels; i++)
1035 {
1036 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1037 rels[i].r_info = BYTE_GET (erels[i].r_info);
1038 rels[i].r_addend = 0;
1039 }
1040
1041 free (erels);
1042 }
1043 else
1044 {
1045 Elf64_External_Rel * erels;
1046
1047 erels = (Elf64_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
1048 rel_size, _("64-bit relocation data"));
1049 if (!erels)
1050 return FALSE;
1051
1052 nrels = rel_size / sizeof (Elf64_External_Rel);
1053
1054 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1055
1056 if (rels == NULL)
1057 {
1058 free (erels);
1059 error (_("out of memory parsing relocs\n"));
1060 return FALSE;
1061 }
1062
1063 for (i = 0; i < nrels; i++)
1064 {
1065 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1066 rels[i].r_info = BYTE_GET (erels[i].r_info);
1067 rels[i].r_addend = 0;
1068
1069 /* The #ifdef BFD64 below is to prevent a compile time
1070 warning. We know that if we do not have a 64 bit data
1071 type that we will never execute this code anyway. */
1072 #ifdef BFD64
1073 if (filedata->file_header.e_machine == EM_MIPS
1074 && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
1075 {
1076 /* In little-endian objects, r_info isn't really a
1077 64-bit little-endian value: it has a 32-bit
1078 little-endian symbol index followed by four
1079 individual byte fields. Reorder INFO
1080 accordingly. */
1081 bfd_vma inf = rels[i].r_info;
1082 inf = (((inf & 0xffffffff) << 32)
1083 | ((inf >> 56) & 0xff)
1084 | ((inf >> 40) & 0xff00)
1085 | ((inf >> 24) & 0xff0000)
1086 | ((inf >> 8) & 0xff000000));
1087 rels[i].r_info = inf;
1088 }
1089 #endif /* BFD64 */
1090 }
1091
1092 free (erels);
1093 }
1094
1095 *relsp = rels;
1096 *nrelsp = nrels;
1097 return TRUE;
1098 }
1099
1100 /* Returns the reloc type extracted from the reloc info field. */
1101
1102 static unsigned int
1103 get_reloc_type (Filedata * filedata, bfd_vma reloc_info)
1104 {
1105 if (is_32bit_elf)
1106 return ELF32_R_TYPE (reloc_info);
1107
1108 switch (filedata->file_header.e_machine)
1109 {
1110 case EM_MIPS:
1111 /* Note: We assume that reloc_info has already been adjusted for us. */
1112 return ELF64_MIPS_R_TYPE (reloc_info);
1113
1114 case EM_SPARCV9:
1115 return ELF64_R_TYPE_ID (reloc_info);
1116
1117 default:
1118 return ELF64_R_TYPE (reloc_info);
1119 }
1120 }
1121
1122 /* Return the symbol index extracted from the reloc info field. */
1123
1124 static bfd_vma
1125 get_reloc_symindex (bfd_vma reloc_info)
1126 {
1127 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1128 }
1129
1130 static inline bfd_boolean
1131 uses_msp430x_relocs (Filedata * filedata)
1132 {
1133 return
1134 filedata->file_header.e_machine == EM_MSP430 /* Paranoia. */
1135 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1136 && (((filedata->file_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1137 /* TI compiler uses ELFOSABI_NONE. */
1138 || (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1139 }
1140
1141 /* Display the contents of the relocation data found at the specified
1142 offset. */
1143
1144 static bfd_boolean
1145 dump_relocations (Filedata * filedata,
1146 unsigned long rel_offset,
1147 unsigned long rel_size,
1148 Elf_Internal_Sym * symtab,
1149 unsigned long nsyms,
1150 char * strtab,
1151 unsigned long strtablen,
1152 int is_rela,
1153 bfd_boolean is_dynsym)
1154 {
1155 unsigned long i;
1156 Elf_Internal_Rela * rels;
1157 bfd_boolean res = TRUE;
1158
1159 if (is_rela == UNKNOWN)
1160 is_rela = guess_is_rela (filedata->file_header.e_machine);
1161
1162 if (is_rela)
1163 {
1164 if (!slurp_rela_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
1165 return FALSE;
1166 }
1167 else
1168 {
1169 if (!slurp_rel_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
1170 return FALSE;
1171 }
1172
1173 if (is_32bit_elf)
1174 {
1175 if (is_rela)
1176 {
1177 if (do_wide)
1178 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1179 else
1180 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1181 }
1182 else
1183 {
1184 if (do_wide)
1185 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1186 else
1187 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1188 }
1189 }
1190 else
1191 {
1192 if (is_rela)
1193 {
1194 if (do_wide)
1195 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1196 else
1197 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1198 }
1199 else
1200 {
1201 if (do_wide)
1202 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1203 else
1204 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1205 }
1206 }
1207
1208 for (i = 0; i < rel_size; i++)
1209 {
1210 const char * rtype;
1211 bfd_vma offset;
1212 bfd_vma inf;
1213 bfd_vma symtab_index;
1214 bfd_vma type;
1215
1216 offset = rels[i].r_offset;
1217 inf = rels[i].r_info;
1218
1219 type = get_reloc_type (filedata, inf);
1220 symtab_index = get_reloc_symindex (inf);
1221
1222 if (is_32bit_elf)
1223 {
1224 printf ("%8.8lx %8.8lx ",
1225 (unsigned long) offset & 0xffffffff,
1226 (unsigned long) inf & 0xffffffff);
1227 }
1228 else
1229 {
1230 #if BFD_HOST_64BIT_LONG
1231 printf (do_wide
1232 ? "%16.16lx %16.16lx "
1233 : "%12.12lx %12.12lx ",
1234 offset, inf);
1235 #elif BFD_HOST_64BIT_LONG_LONG
1236 #ifndef __MSVCRT__
1237 printf (do_wide
1238 ? "%16.16llx %16.16llx "
1239 : "%12.12llx %12.12llx ",
1240 offset, inf);
1241 #else
1242 printf (do_wide
1243 ? "%16.16I64x %16.16I64x "
1244 : "%12.12I64x %12.12I64x ",
1245 offset, inf);
1246 #endif
1247 #else
1248 printf (do_wide
1249 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1250 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1251 _bfd_int64_high (offset),
1252 _bfd_int64_low (offset),
1253 _bfd_int64_high (inf),
1254 _bfd_int64_low (inf));
1255 #endif
1256 }
1257
1258 switch (filedata->file_header.e_machine)
1259 {
1260 default:
1261 rtype = NULL;
1262 break;
1263
1264 case EM_AARCH64:
1265 rtype = elf_aarch64_reloc_type (type);
1266 break;
1267
1268 case EM_M32R:
1269 case EM_CYGNUS_M32R:
1270 rtype = elf_m32r_reloc_type (type);
1271 break;
1272
1273 case EM_386:
1274 case EM_IAMCU:
1275 rtype = elf_i386_reloc_type (type);
1276 break;
1277
1278 case EM_68HC11:
1279 case EM_68HC12:
1280 rtype = elf_m68hc11_reloc_type (type);
1281 break;
1282
1283 case EM_S12Z:
1284 rtype = elf_s12z_reloc_type (type);
1285 break;
1286
1287 case EM_68K:
1288 rtype = elf_m68k_reloc_type (type);
1289 break;
1290
1291 case EM_960:
1292 rtype = elf_i960_reloc_type (type);
1293 break;
1294
1295 case EM_AVR:
1296 case EM_AVR_OLD:
1297 rtype = elf_avr_reloc_type (type);
1298 break;
1299
1300 case EM_OLD_SPARCV9:
1301 case EM_SPARC32PLUS:
1302 case EM_SPARCV9:
1303 case EM_SPARC:
1304 rtype = elf_sparc_reloc_type (type);
1305 break;
1306
1307 case EM_SPU:
1308 rtype = elf_spu_reloc_type (type);
1309 break;
1310
1311 case EM_V800:
1312 rtype = v800_reloc_type (type);
1313 break;
1314 case EM_V850:
1315 case EM_CYGNUS_V850:
1316 rtype = v850_reloc_type (type);
1317 break;
1318
1319 case EM_D10V:
1320 case EM_CYGNUS_D10V:
1321 rtype = elf_d10v_reloc_type (type);
1322 break;
1323
1324 case EM_D30V:
1325 case EM_CYGNUS_D30V:
1326 rtype = elf_d30v_reloc_type (type);
1327 break;
1328
1329 case EM_DLX:
1330 rtype = elf_dlx_reloc_type (type);
1331 break;
1332
1333 case EM_SH:
1334 rtype = elf_sh_reloc_type (type);
1335 break;
1336
1337 case EM_MN10300:
1338 case EM_CYGNUS_MN10300:
1339 rtype = elf_mn10300_reloc_type (type);
1340 break;
1341
1342 case EM_MN10200:
1343 case EM_CYGNUS_MN10200:
1344 rtype = elf_mn10200_reloc_type (type);
1345 break;
1346
1347 case EM_FR30:
1348 case EM_CYGNUS_FR30:
1349 rtype = elf_fr30_reloc_type (type);
1350 break;
1351
1352 case EM_CYGNUS_FRV:
1353 rtype = elf_frv_reloc_type (type);
1354 break;
1355
1356 case EM_CSKY:
1357 rtype = elf_csky_reloc_type (type);
1358 break;
1359
1360 case EM_FT32:
1361 rtype = elf_ft32_reloc_type (type);
1362 break;
1363
1364 case EM_MCORE:
1365 rtype = elf_mcore_reloc_type (type);
1366 break;
1367
1368 case EM_MMIX:
1369 rtype = elf_mmix_reloc_type (type);
1370 break;
1371
1372 case EM_MOXIE:
1373 rtype = elf_moxie_reloc_type (type);
1374 break;
1375
1376 case EM_MSP430:
1377 if (uses_msp430x_relocs (filedata))
1378 {
1379 rtype = elf_msp430x_reloc_type (type);
1380 break;
1381 }
1382 /* Fall through. */
1383 case EM_MSP430_OLD:
1384 rtype = elf_msp430_reloc_type (type);
1385 break;
1386
1387 case EM_NDS32:
1388 rtype = elf_nds32_reloc_type (type);
1389 break;
1390
1391 case EM_PPC:
1392 rtype = elf_ppc_reloc_type (type);
1393 break;
1394
1395 case EM_PPC64:
1396 rtype = elf_ppc64_reloc_type (type);
1397 break;
1398
1399 case EM_MIPS:
1400 case EM_MIPS_RS3_LE:
1401 rtype = elf_mips_reloc_type (type);
1402 break;
1403
1404 case EM_RISCV:
1405 rtype = elf_riscv_reloc_type (type);
1406 break;
1407
1408 case EM_ALPHA:
1409 rtype = elf_alpha_reloc_type (type);
1410 break;
1411
1412 case EM_ARM:
1413 rtype = elf_arm_reloc_type (type);
1414 break;
1415
1416 case EM_ARC:
1417 case EM_ARC_COMPACT:
1418 case EM_ARC_COMPACT2:
1419 rtype = elf_arc_reloc_type (type);
1420 break;
1421
1422 case EM_PARISC:
1423 rtype = elf_hppa_reloc_type (type);
1424 break;
1425
1426 case EM_H8_300:
1427 case EM_H8_300H:
1428 case EM_H8S:
1429 rtype = elf_h8_reloc_type (type);
1430 break;
1431
1432 case EM_OR1K:
1433 rtype = elf_or1k_reloc_type (type);
1434 break;
1435
1436 case EM_PJ:
1437 case EM_PJ_OLD:
1438 rtype = elf_pj_reloc_type (type);
1439 break;
1440 case EM_IA_64:
1441 rtype = elf_ia64_reloc_type (type);
1442 break;
1443
1444 case EM_CRIS:
1445 rtype = elf_cris_reloc_type (type);
1446 break;
1447
1448 case EM_860:
1449 rtype = elf_i860_reloc_type (type);
1450 break;
1451
1452 case EM_X86_64:
1453 case EM_L1OM:
1454 case EM_K1OM:
1455 rtype = elf_x86_64_reloc_type (type);
1456 break;
1457
1458 case EM_S370:
1459 rtype = i370_reloc_type (type);
1460 break;
1461
1462 case EM_S390_OLD:
1463 case EM_S390:
1464 rtype = elf_s390_reloc_type (type);
1465 break;
1466
1467 case EM_SCORE:
1468 rtype = elf_score_reloc_type (type);
1469 break;
1470
1471 case EM_XSTORMY16:
1472 rtype = elf_xstormy16_reloc_type (type);
1473 break;
1474
1475 case EM_CRX:
1476 rtype = elf_crx_reloc_type (type);
1477 break;
1478
1479 case EM_VAX:
1480 rtype = elf_vax_reloc_type (type);
1481 break;
1482
1483 case EM_VISIUM:
1484 rtype = elf_visium_reloc_type (type);
1485 break;
1486
1487 case EM_BPF:
1488 rtype = elf_bpf_reloc_type (type);
1489 break;
1490
1491 case EM_ADAPTEVA_EPIPHANY:
1492 rtype = elf_epiphany_reloc_type (type);
1493 break;
1494
1495 case EM_IP2K:
1496 case EM_IP2K_OLD:
1497 rtype = elf_ip2k_reloc_type (type);
1498 break;
1499
1500 case EM_IQ2000:
1501 rtype = elf_iq2000_reloc_type (type);
1502 break;
1503
1504 case EM_XTENSA_OLD:
1505 case EM_XTENSA:
1506 rtype = elf_xtensa_reloc_type (type);
1507 break;
1508
1509 case EM_LATTICEMICO32:
1510 rtype = elf_lm32_reloc_type (type);
1511 break;
1512
1513 case EM_M32C_OLD:
1514 case EM_M32C:
1515 rtype = elf_m32c_reloc_type (type);
1516 break;
1517
1518 case EM_MT:
1519 rtype = elf_mt_reloc_type (type);
1520 break;
1521
1522 case EM_BLACKFIN:
1523 rtype = elf_bfin_reloc_type (type);
1524 break;
1525
1526 case EM_CYGNUS_MEP:
1527 rtype = elf_mep_reloc_type (type);
1528 break;
1529
1530 case EM_CR16:
1531 rtype = elf_cr16_reloc_type (type);
1532 break;
1533
1534 case EM_MICROBLAZE:
1535 case EM_MICROBLAZE_OLD:
1536 rtype = elf_microblaze_reloc_type (type);
1537 break;
1538
1539 case EM_RL78:
1540 rtype = elf_rl78_reloc_type (type);
1541 break;
1542
1543 case EM_RX:
1544 rtype = elf_rx_reloc_type (type);
1545 break;
1546
1547 case EM_METAG:
1548 rtype = elf_metag_reloc_type (type);
1549 break;
1550
1551 case EM_XC16X:
1552 case EM_C166:
1553 rtype = elf_xc16x_reloc_type (type);
1554 break;
1555
1556 case EM_TI_C6000:
1557 rtype = elf_tic6x_reloc_type (type);
1558 break;
1559
1560 case EM_TILEGX:
1561 rtype = elf_tilegx_reloc_type (type);
1562 break;
1563
1564 case EM_TILEPRO:
1565 rtype = elf_tilepro_reloc_type (type);
1566 break;
1567
1568 case EM_WEBASSEMBLY:
1569 rtype = elf_wasm32_reloc_type (type);
1570 break;
1571
1572 case EM_XGATE:
1573 rtype = elf_xgate_reloc_type (type);
1574 break;
1575
1576 case EM_ALTERA_NIOS2:
1577 rtype = elf_nios2_reloc_type (type);
1578 break;
1579
1580 case EM_TI_PRU:
1581 rtype = elf_pru_reloc_type (type);
1582 break;
1583
1584 case EM_NFP:
1585 if (EF_NFP_MACH (filedata->file_header.e_flags) == E_NFP_MACH_3200)
1586 rtype = elf_nfp3200_reloc_type (type);
1587 else
1588 rtype = elf_nfp_reloc_type (type);
1589 break;
1590 }
1591
1592 if (rtype == NULL)
1593 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1594 else
1595 printf (do_wide ? "%-22s" : "%-17.17s", rtype);
1596
1597 if (filedata->file_header.e_machine == EM_ALPHA
1598 && rtype != NULL
1599 && streq (rtype, "R_ALPHA_LITUSE")
1600 && is_rela)
1601 {
1602 switch (rels[i].r_addend)
1603 {
1604 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1605 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1606 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1607 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1608 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1609 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1610 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1611 default: rtype = NULL;
1612 }
1613
1614 if (rtype)
1615 printf (" (%s)", rtype);
1616 else
1617 {
1618 putchar (' ');
1619 printf (_("<unknown addend: %lx>"),
1620 (unsigned long) rels[i].r_addend);
1621 res = FALSE;
1622 }
1623 }
1624 else if (symtab_index)
1625 {
1626 if (symtab == NULL || symtab_index >= nsyms)
1627 {
1628 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1629 res = FALSE;
1630 }
1631 else
1632 {
1633 Elf_Internal_Sym * psym;
1634 const char * version_string;
1635 enum versioned_symbol_info sym_info;
1636 unsigned short vna_other;
1637
1638 psym = symtab + symtab_index;
1639
1640 version_string
1641 = get_symbol_version_string (filedata, is_dynsym,
1642 strtab, strtablen,
1643 symtab_index,
1644 psym,
1645 &sym_info,
1646 &vna_other);
1647
1648 printf (" ");
1649
1650 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1651 {
1652 const char * name;
1653 unsigned int len;
1654 unsigned int width = is_32bit_elf ? 8 : 14;
1655
1656 /* Relocations against GNU_IFUNC symbols do not use the value
1657 of the symbol as the address to relocate against. Instead
1658 they invoke the function named by the symbol and use its
1659 result as the address for relocation.
1660
1661 To indicate this to the user, do not display the value of
1662 the symbol in the "Symbols's Value" field. Instead show
1663 its name followed by () as a hint that the symbol is
1664 invoked. */
1665
1666 if (strtab == NULL
1667 || psym->st_name == 0
1668 || psym->st_name >= strtablen)
1669 name = "??";
1670 else
1671 name = strtab + psym->st_name;
1672
1673 len = print_symbol (width, name);
1674 if (version_string)
1675 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1676 version_string);
1677 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1678 }
1679 else
1680 {
1681 print_vma (psym->st_value, LONG_HEX);
1682
1683 printf (is_32bit_elf ? " " : " ");
1684 }
1685
1686 if (psym->st_name == 0)
1687 {
1688 const char * sec_name = "<null>";
1689 char name_buf[40];
1690
1691 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1692 {
1693 if (psym->st_shndx < filedata->file_header.e_shnum)
1694 sec_name = SECTION_NAME (filedata->section_headers + psym->st_shndx);
1695 else if (psym->st_shndx == SHN_ABS)
1696 sec_name = "ABS";
1697 else if (psym->st_shndx == SHN_COMMON)
1698 sec_name = "COMMON";
1699 else if ((filedata->file_header.e_machine == EM_MIPS
1700 && psym->st_shndx == SHN_MIPS_SCOMMON)
1701 || (filedata->file_header.e_machine == EM_TI_C6000
1702 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1703 sec_name = "SCOMMON";
1704 else if (filedata->file_header.e_machine == EM_MIPS
1705 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1706 sec_name = "SUNDEF";
1707 else if ((filedata->file_header.e_machine == EM_X86_64
1708 || filedata->file_header.e_machine == EM_L1OM
1709 || filedata->file_header.e_machine == EM_K1OM)
1710 && psym->st_shndx == SHN_X86_64_LCOMMON)
1711 sec_name = "LARGE_COMMON";
1712 else if (filedata->file_header.e_machine == EM_IA_64
1713 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1714 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1715 sec_name = "ANSI_COM";
1716 else if (is_ia64_vms (filedata)
1717 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1718 sec_name = "VMS_SYMVEC";
1719 else
1720 {
1721 sprintf (name_buf, "<section 0x%x>",
1722 (unsigned int) psym->st_shndx);
1723 sec_name = name_buf;
1724 }
1725 }
1726 print_symbol (22, sec_name);
1727 }
1728 else if (strtab == NULL)
1729 printf (_("<string table index: %3ld>"), psym->st_name);
1730 else if (psym->st_name >= strtablen)
1731 {
1732 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1733 res = FALSE;
1734 }
1735 else
1736 {
1737 print_symbol (22, strtab + psym->st_name);
1738 if (version_string)
1739 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1740 version_string);
1741 }
1742
1743 if (is_rela)
1744 {
1745 bfd_vma off = rels[i].r_addend;
1746
1747 if ((bfd_signed_vma) off < 0)
1748 printf (" - %" BFD_VMA_FMT "x", - off);
1749 else
1750 printf (" + %" BFD_VMA_FMT "x", off);
1751 }
1752 }
1753 }
1754 else if (is_rela)
1755 {
1756 bfd_vma off = rels[i].r_addend;
1757
1758 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1759 if ((bfd_signed_vma) off < 0)
1760 printf ("-%" BFD_VMA_FMT "x", - off);
1761 else
1762 printf ("%" BFD_VMA_FMT "x", off);
1763 }
1764
1765 if (filedata->file_header.e_machine == EM_SPARCV9
1766 && rtype != NULL
1767 && streq (rtype, "R_SPARC_OLO10"))
1768 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1769
1770 putchar ('\n');
1771
1772 #ifdef BFD64
1773 if (! is_32bit_elf && filedata->file_header.e_machine == EM_MIPS)
1774 {
1775 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1776 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1777 const char * rtype2 = elf_mips_reloc_type (type2);
1778 const char * rtype3 = elf_mips_reloc_type (type3);
1779
1780 printf (" Type2: ");
1781
1782 if (rtype2 == NULL)
1783 printf (_("unrecognized: %-7lx"),
1784 (unsigned long) type2 & 0xffffffff);
1785 else
1786 printf ("%-17.17s", rtype2);
1787
1788 printf ("\n Type3: ");
1789
1790 if (rtype3 == NULL)
1791 printf (_("unrecognized: %-7lx"),
1792 (unsigned long) type3 & 0xffffffff);
1793 else
1794 printf ("%-17.17s", rtype3);
1795
1796 putchar ('\n');
1797 }
1798 #endif /* BFD64 */
1799 }
1800
1801 free (rels);
1802
1803 return res;
1804 }
1805
1806 static const char *
1807 get_aarch64_dynamic_type (unsigned long type)
1808 {
1809 switch (type)
1810 {
1811 case DT_AARCH64_BTI_PLT: return "AARCH64_BTI_PLT";
1812 case DT_AARCH64_PAC_PLT: return "AARCH64_PAC_PLT";
1813 default:
1814 return NULL;
1815 }
1816 }
1817
1818 static const char *
1819 get_mips_dynamic_type (unsigned long type)
1820 {
1821 switch (type)
1822 {
1823 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1824 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1825 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1826 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1827 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1828 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1829 case DT_MIPS_MSYM: return "MIPS_MSYM";
1830 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1831 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1832 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1833 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1834 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1835 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1836 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1837 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1838 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1839 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1840 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1841 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1842 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1843 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1844 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1845 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1846 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1847 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1848 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1849 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1850 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1851 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1852 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1853 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1854 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1855 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1856 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1857 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1858 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1859 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1860 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1861 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1862 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1863 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1864 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1865 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1866 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1867 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1868 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1869 default:
1870 return NULL;
1871 }
1872 }
1873
1874 static const char *
1875 get_sparc64_dynamic_type (unsigned long type)
1876 {
1877 switch (type)
1878 {
1879 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1880 default:
1881 return NULL;
1882 }
1883 }
1884
1885 static const char *
1886 get_ppc_dynamic_type (unsigned long type)
1887 {
1888 switch (type)
1889 {
1890 case DT_PPC_GOT: return "PPC_GOT";
1891 case DT_PPC_OPT: return "PPC_OPT";
1892 default:
1893 return NULL;
1894 }
1895 }
1896
1897 static const char *
1898 get_ppc64_dynamic_type (unsigned long type)
1899 {
1900 switch (type)
1901 {
1902 case DT_PPC64_GLINK: return "PPC64_GLINK";
1903 case DT_PPC64_OPD: return "PPC64_OPD";
1904 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1905 case DT_PPC64_OPT: return "PPC64_OPT";
1906 default:
1907 return NULL;
1908 }
1909 }
1910
1911 static const char *
1912 get_parisc_dynamic_type (unsigned long type)
1913 {
1914 switch (type)
1915 {
1916 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1917 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1918 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1919 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1920 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1921 case DT_HP_PREINIT: return "HP_PREINIT";
1922 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1923 case DT_HP_NEEDED: return "HP_NEEDED";
1924 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1925 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1926 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1927 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1928 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1929 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1930 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1931 case DT_HP_FILTERED: return "HP_FILTERED";
1932 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1933 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1934 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1935 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1936 case DT_PLT: return "PLT";
1937 case DT_PLT_SIZE: return "PLT_SIZE";
1938 case DT_DLT: return "DLT";
1939 case DT_DLT_SIZE: return "DLT_SIZE";
1940 default:
1941 return NULL;
1942 }
1943 }
1944
1945 static const char *
1946 get_ia64_dynamic_type (unsigned long type)
1947 {
1948 switch (type)
1949 {
1950 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1951 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1952 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1953 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1954 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1955 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1956 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1957 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1958 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1959 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1960 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1961 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1962 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1963 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1964 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1965 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1966 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1967 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1968 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1969 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1970 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1971 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1972 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1973 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1974 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1975 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1976 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1977 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1978 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1979 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1980 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1981 default:
1982 return NULL;
1983 }
1984 }
1985
1986 static const char *
1987 get_solaris_section_type (unsigned long type)
1988 {
1989 switch (type)
1990 {
1991 case 0x6fffffee: return "SUNW_ancillary";
1992 case 0x6fffffef: return "SUNW_capchain";
1993 case 0x6ffffff0: return "SUNW_capinfo";
1994 case 0x6ffffff1: return "SUNW_symsort";
1995 case 0x6ffffff2: return "SUNW_tlssort";
1996 case 0x6ffffff3: return "SUNW_LDYNSYM";
1997 case 0x6ffffff4: return "SUNW_dof";
1998 case 0x6ffffff5: return "SUNW_cap";
1999 case 0x6ffffff6: return "SUNW_SIGNATURE";
2000 case 0x6ffffff7: return "SUNW_ANNOTATE";
2001 case 0x6ffffff8: return "SUNW_DEBUGSTR";
2002 case 0x6ffffff9: return "SUNW_DEBUG";
2003 case 0x6ffffffa: return "SUNW_move";
2004 case 0x6ffffffb: return "SUNW_COMDAT";
2005 case 0x6ffffffc: return "SUNW_syminfo";
2006 case 0x6ffffffd: return "SUNW_verdef";
2007 case 0x6ffffffe: return "SUNW_verneed";
2008 case 0x6fffffff: return "SUNW_versym";
2009 case 0x70000000: return "SPARC_GOTDATA";
2010 default: return NULL;
2011 }
2012 }
2013
2014 static const char *
2015 get_alpha_dynamic_type (unsigned long type)
2016 {
2017 switch (type)
2018 {
2019 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
2020 default: return NULL;
2021 }
2022 }
2023
2024 static const char *
2025 get_score_dynamic_type (unsigned long type)
2026 {
2027 switch (type)
2028 {
2029 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
2030 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
2031 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
2032 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
2033 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
2034 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
2035 default: return NULL;
2036 }
2037 }
2038
2039 static const char *
2040 get_tic6x_dynamic_type (unsigned long type)
2041 {
2042 switch (type)
2043 {
2044 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
2045 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
2046 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
2047 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
2048 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
2049 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
2050 default: return NULL;
2051 }
2052 }
2053
2054 static const char *
2055 get_nios2_dynamic_type (unsigned long type)
2056 {
2057 switch (type)
2058 {
2059 case DT_NIOS2_GP: return "NIOS2_GP";
2060 default: return NULL;
2061 }
2062 }
2063
2064 static const char *
2065 get_solaris_dynamic_type (unsigned long type)
2066 {
2067 switch (type)
2068 {
2069 case 0x6000000d: return "SUNW_AUXILIARY";
2070 case 0x6000000e: return "SUNW_RTLDINF";
2071 case 0x6000000f: return "SUNW_FILTER";
2072 case 0x60000010: return "SUNW_CAP";
2073 case 0x60000011: return "SUNW_SYMTAB";
2074 case 0x60000012: return "SUNW_SYMSZ";
2075 case 0x60000013: return "SUNW_SORTENT";
2076 case 0x60000014: return "SUNW_SYMSORT";
2077 case 0x60000015: return "SUNW_SYMSORTSZ";
2078 case 0x60000016: return "SUNW_TLSSORT";
2079 case 0x60000017: return "SUNW_TLSSORTSZ";
2080 case 0x60000018: return "SUNW_CAPINFO";
2081 case 0x60000019: return "SUNW_STRPAD";
2082 case 0x6000001a: return "SUNW_CAPCHAIN";
2083 case 0x6000001b: return "SUNW_LDMACH";
2084 case 0x6000001d: return "SUNW_CAPCHAINENT";
2085 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2086 case 0x60000021: return "SUNW_PARENT";
2087 case 0x60000023: return "SUNW_ASLR";
2088 case 0x60000025: return "SUNW_RELAX";
2089 case 0x60000029: return "SUNW_NXHEAP";
2090 case 0x6000002b: return "SUNW_NXSTACK";
2091
2092 case 0x70000001: return "SPARC_REGISTER";
2093 case 0x7ffffffd: return "AUXILIARY";
2094 case 0x7ffffffe: return "USED";
2095 case 0x7fffffff: return "FILTER";
2096
2097 default: return NULL;
2098 }
2099 }
2100
2101 static const char *
2102 get_dynamic_type (Filedata * filedata, unsigned long type)
2103 {
2104 static char buff[64];
2105
2106 switch (type)
2107 {
2108 case DT_NULL: return "NULL";
2109 case DT_NEEDED: return "NEEDED";
2110 case DT_PLTRELSZ: return "PLTRELSZ";
2111 case DT_PLTGOT: return "PLTGOT";
2112 case DT_HASH: return "HASH";
2113 case DT_STRTAB: return "STRTAB";
2114 case DT_SYMTAB: return "SYMTAB";
2115 case DT_RELA: return "RELA";
2116 case DT_RELASZ: return "RELASZ";
2117 case DT_RELAENT: return "RELAENT";
2118 case DT_STRSZ: return "STRSZ";
2119 case DT_SYMENT: return "SYMENT";
2120 case DT_INIT: return "INIT";
2121 case DT_FINI: return "FINI";
2122 case DT_SONAME: return "SONAME";
2123 case DT_RPATH: return "RPATH";
2124 case DT_SYMBOLIC: return "SYMBOLIC";
2125 case DT_REL: return "REL";
2126 case DT_RELSZ: return "RELSZ";
2127 case DT_RELENT: return "RELENT";
2128 case DT_PLTREL: return "PLTREL";
2129 case DT_DEBUG: return "DEBUG";
2130 case DT_TEXTREL: return "TEXTREL";
2131 case DT_JMPREL: return "JMPREL";
2132 case DT_BIND_NOW: return "BIND_NOW";
2133 case DT_INIT_ARRAY: return "INIT_ARRAY";
2134 case DT_FINI_ARRAY: return "FINI_ARRAY";
2135 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2136 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2137 case DT_RUNPATH: return "RUNPATH";
2138 case DT_FLAGS: return "FLAGS";
2139
2140 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2141 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2142 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2143
2144 case DT_CHECKSUM: return "CHECKSUM";
2145 case DT_PLTPADSZ: return "PLTPADSZ";
2146 case DT_MOVEENT: return "MOVEENT";
2147 case DT_MOVESZ: return "MOVESZ";
2148 case DT_FEATURE: return "FEATURE";
2149 case DT_POSFLAG_1: return "POSFLAG_1";
2150 case DT_SYMINSZ: return "SYMINSZ";
2151 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2152
2153 case DT_ADDRRNGLO: return "ADDRRNGLO";
2154 case DT_CONFIG: return "CONFIG";
2155 case DT_DEPAUDIT: return "DEPAUDIT";
2156 case DT_AUDIT: return "AUDIT";
2157 case DT_PLTPAD: return "PLTPAD";
2158 case DT_MOVETAB: return "MOVETAB";
2159 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2160
2161 case DT_VERSYM: return "VERSYM";
2162
2163 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2164 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2165 case DT_RELACOUNT: return "RELACOUNT";
2166 case DT_RELCOUNT: return "RELCOUNT";
2167 case DT_FLAGS_1: return "FLAGS_1";
2168 case DT_VERDEF: return "VERDEF";
2169 case DT_VERDEFNUM: return "VERDEFNUM";
2170 case DT_VERNEED: return "VERNEED";
2171 case DT_VERNEEDNUM: return "VERNEEDNUM";
2172
2173 case DT_AUXILIARY: return "AUXILIARY";
2174 case DT_USED: return "USED";
2175 case DT_FILTER: return "FILTER";
2176
2177 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2178 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2179 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2180 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2181 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2182 case DT_GNU_HASH: return "GNU_HASH";
2183
2184 default:
2185 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2186 {
2187 const char * result;
2188
2189 switch (filedata->file_header.e_machine)
2190 {
2191 case EM_AARCH64:
2192 result = get_aarch64_dynamic_type (type);
2193 break;
2194 case EM_MIPS:
2195 case EM_MIPS_RS3_LE:
2196 result = get_mips_dynamic_type (type);
2197 break;
2198 case EM_SPARCV9:
2199 result = get_sparc64_dynamic_type (type);
2200 break;
2201 case EM_PPC:
2202 result = get_ppc_dynamic_type (type);
2203 break;
2204 case EM_PPC64:
2205 result = get_ppc64_dynamic_type (type);
2206 break;
2207 case EM_IA_64:
2208 result = get_ia64_dynamic_type (type);
2209 break;
2210 case EM_ALPHA:
2211 result = get_alpha_dynamic_type (type);
2212 break;
2213 case EM_SCORE:
2214 result = get_score_dynamic_type (type);
2215 break;
2216 case EM_TI_C6000:
2217 result = get_tic6x_dynamic_type (type);
2218 break;
2219 case EM_ALTERA_NIOS2:
2220 result = get_nios2_dynamic_type (type);
2221 break;
2222 default:
2223 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2224 result = get_solaris_dynamic_type (type);
2225 else
2226 result = NULL;
2227 break;
2228 }
2229
2230 if (result != NULL)
2231 return result;
2232
2233 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2234 }
2235 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2236 || (filedata->file_header.e_machine == EM_PARISC
2237 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2238 {
2239 const char * result;
2240
2241 switch (filedata->file_header.e_machine)
2242 {
2243 case EM_PARISC:
2244 result = get_parisc_dynamic_type (type);
2245 break;
2246 case EM_IA_64:
2247 result = get_ia64_dynamic_type (type);
2248 break;
2249 default:
2250 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2251 result = get_solaris_dynamic_type (type);
2252 else
2253 result = NULL;
2254 break;
2255 }
2256
2257 if (result != NULL)
2258 return result;
2259
2260 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2261 type);
2262 }
2263 else
2264 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2265
2266 return buff;
2267 }
2268 }
2269
2270 static char *
2271 get_file_type (unsigned e_type)
2272 {
2273 static char buff[32];
2274
2275 switch (e_type)
2276 {
2277 case ET_NONE: return _("NONE (None)");
2278 case ET_REL: return _("REL (Relocatable file)");
2279 case ET_EXEC: return _("EXEC (Executable file)");
2280 case ET_DYN: return _("DYN (Shared object file)");
2281 case ET_CORE: return _("CORE (Core file)");
2282
2283 default:
2284 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2285 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2286 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2287 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2288 else
2289 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2290 return buff;
2291 }
2292 }
2293
2294 static char *
2295 get_machine_name (unsigned e_machine)
2296 {
2297 static char buff[64]; /* XXX */
2298
2299 switch (e_machine)
2300 {
2301 /* Please keep this switch table sorted by increasing EM_ value. */
2302 /* 0 */
2303 case EM_NONE: return _("None");
2304 case EM_M32: return "WE32100";
2305 case EM_SPARC: return "Sparc";
2306 case EM_386: return "Intel 80386";
2307 case EM_68K: return "MC68000";
2308 case EM_88K: return "MC88000";
2309 case EM_IAMCU: return "Intel MCU";
2310 case EM_860: return "Intel 80860";
2311 case EM_MIPS: return "MIPS R3000";
2312 case EM_S370: return "IBM System/370";
2313 /* 10 */
2314 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2315 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2316 case EM_PARISC: return "HPPA";
2317 case EM_VPP550: return "Fujitsu VPP500";
2318 case EM_SPARC32PLUS: return "Sparc v8+" ;
2319 case EM_960: return "Intel 80960";
2320 case EM_PPC: return "PowerPC";
2321 /* 20 */
2322 case EM_PPC64: return "PowerPC64";
2323 case EM_S390_OLD:
2324 case EM_S390: return "IBM S/390";
2325 case EM_SPU: return "SPU";
2326 /* 30 */
2327 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2328 case EM_FR20: return "Fujitsu FR20";
2329 case EM_RH32: return "TRW RH32";
2330 case EM_MCORE: return "MCORE";
2331 /* 40 */
2332 case EM_ARM: return "ARM";
2333 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2334 case EM_SH: return "Renesas / SuperH SH";
2335 case EM_SPARCV9: return "Sparc v9";
2336 case EM_TRICORE: return "Siemens Tricore";
2337 case EM_ARC: return "ARC";
2338 case EM_H8_300: return "Renesas H8/300";
2339 case EM_H8_300H: return "Renesas H8/300H";
2340 case EM_H8S: return "Renesas H8S";
2341 case EM_H8_500: return "Renesas H8/500";
2342 /* 50 */
2343 case EM_IA_64: return "Intel IA-64";
2344 case EM_MIPS_X: return "Stanford MIPS-X";
2345 case EM_COLDFIRE: return "Motorola Coldfire";
2346 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2347 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2348 case EM_PCP: return "Siemens PCP";
2349 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2350 case EM_NDR1: return "Denso NDR1 microprocesspr";
2351 case EM_STARCORE: return "Motorola Star*Core processor";
2352 case EM_ME16: return "Toyota ME16 processor";
2353 /* 60 */
2354 case EM_ST100: return "STMicroelectronics ST100 processor";
2355 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2356 case EM_X86_64: return "Advanced Micro Devices X86-64";
2357 case EM_PDSP: return "Sony DSP processor";
2358 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2359 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2360 case EM_FX66: return "Siemens FX66 microcontroller";
2361 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2362 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2363 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2364 /* 70 */
2365 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2366 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2367 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2368 case EM_SVX: return "Silicon Graphics SVx";
2369 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2370 case EM_VAX: return "Digital VAX";
2371 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2372 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2373 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2374 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2375 /* 80 */
2376 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2377 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2378 case EM_PRISM: return "Vitesse Prism";
2379 case EM_AVR_OLD:
2380 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2381 case EM_CYGNUS_FR30:
2382 case EM_FR30: return "Fujitsu FR30";
2383 case EM_CYGNUS_D10V:
2384 case EM_D10V: return "d10v";
2385 case EM_CYGNUS_D30V:
2386 case EM_D30V: return "d30v";
2387 case EM_CYGNUS_V850:
2388 case EM_V850: return "Renesas V850";
2389 case EM_CYGNUS_M32R:
2390 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2391 case EM_CYGNUS_MN10300:
2392 case EM_MN10300: return "mn10300";
2393 /* 90 */
2394 case EM_CYGNUS_MN10200:
2395 case EM_MN10200: return "mn10200";
2396 case EM_PJ: return "picoJava";
2397 case EM_OR1K: return "OpenRISC 1000";
2398 case EM_ARC_COMPACT: return "ARCompact";
2399 case EM_XTENSA_OLD:
2400 case EM_XTENSA: return "Tensilica Xtensa Processor";
2401 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2402 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2403 case EM_NS32K: return "National Semiconductor 32000 series";
2404 case EM_TPC: return "Tenor Network TPC processor";
2405 case EM_SNP1K: return "Trebia SNP 1000 processor";
2406 /* 100 */
2407 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2408 case EM_IP2K_OLD:
2409 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2410 case EM_MAX: return "MAX Processor";
2411 case EM_CR: return "National Semiconductor CompactRISC";
2412 case EM_F2MC16: return "Fujitsu F2MC16";
2413 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2414 case EM_BLACKFIN: return "Analog Devices Blackfin";
2415 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2416 case EM_SEP: return "Sharp embedded microprocessor";
2417 case EM_ARCA: return "Arca RISC microprocessor";
2418 /* 110 */
2419 case EM_UNICORE: return "Unicore";
2420 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2421 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2422 case EM_ALTERA_NIOS2: return "Altera Nios II";
2423 case EM_CRX: return "National Semiconductor CRX microprocessor";
2424 case EM_XGATE: return "Motorola XGATE embedded processor";
2425 case EM_C166:
2426 case EM_XC16X: return "Infineon Technologies xc16x";
2427 case EM_M16C: return "Renesas M16C series microprocessors";
2428 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2429 case EM_CE: return "Freescale Communication Engine RISC core";
2430 /* 120 */
2431 case EM_M32C: return "Renesas M32c";
2432 /* 130 */
2433 case EM_TSK3000: return "Altium TSK3000 core";
2434 case EM_RS08: return "Freescale RS08 embedded processor";
2435 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2436 case EM_SCORE: return "SUNPLUS S+Core";
2437 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2438 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2439 case EM_LATTICEMICO32: return "Lattice Mico32";
2440 case EM_SE_C17: return "Seiko Epson C17 family";
2441 /* 140 */
2442 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2443 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2444 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2445 case EM_TI_PRU: return "TI PRU I/O processor";
2446 /* 160 */
2447 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2448 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2449 case EM_R32C: return "Renesas R32C series microprocessors";
2450 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2451 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2452 case EM_8051: return "Intel 8051 and variants";
2453 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2454 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2455 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2456 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2457 /* 170 */
2458 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2459 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2460 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2461 case EM_RX: return "Renesas RX";
2462 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2463 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2464 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2465 case EM_CR16:
2466 case EM_MICROBLAZE:
2467 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2468 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2469 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2470 /* 180 */
2471 case EM_L1OM: return "Intel L1OM";
2472 case EM_K1OM: return "Intel K1OM";
2473 case EM_INTEL182: return "Intel (reserved)";
2474 case EM_AARCH64: return "AArch64";
2475 case EM_ARM184: return "ARM (reserved)";
2476 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2477 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2478 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2479 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2480 /* 190 */
2481 case EM_CUDA: return "NVIDIA CUDA architecture";
2482 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2483 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2484 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2485 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2486 case EM_ARC_COMPACT2: return "ARCv2";
2487 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2488 case EM_RL78: return "Renesas RL78";
2489 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2490 case EM_78K0R: return "Renesas 78K0R";
2491 /* 200 */
2492 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2493 case EM_BA1: return "Beyond BA1 CPU architecture";
2494 case EM_BA2: return "Beyond BA2 CPU architecture";
2495 case EM_XCORE: return "XMOS xCORE processor family";
2496 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2497 /* 210 */
2498 case EM_KM32: return "KM211 KM32 32-bit processor";
2499 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2500 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2501 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2502 case EM_KVARC: return "KM211 KVARC processor";
2503 case EM_CDP: return "Paneve CDP architecture family";
2504 case EM_COGE: return "Cognitive Smart Memory Processor";
2505 case EM_COOL: return "Bluechip Systems CoolEngine";
2506 case EM_NORC: return "Nanoradio Optimized RISC";
2507 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2508 /* 220 */
2509 case EM_Z80: return "Zilog Z80";
2510 case EM_VISIUM: return "CDS VISIUMcore processor";
2511 case EM_FT32: return "FTDI Chip FT32";
2512 case EM_MOXIE: return "Moxie";
2513 case EM_AMDGPU: return "AMD GPU";
2514 case EM_RISCV: return "RISC-V";
2515 case EM_LANAI: return "Lanai 32-bit processor";
2516 case EM_BPF: return "Linux BPF";
2517 case EM_NFP: return "Netronome Flow Processor";
2518
2519 /* Large numbers... */
2520 case EM_MT: return "Morpho Techologies MT processor";
2521 case EM_ALPHA: return "Alpha";
2522 case EM_WEBASSEMBLY: return "Web Assembly";
2523 case EM_DLX: return "OpenDLX";
2524 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2525 case EM_IQ2000: return "Vitesse IQ2000";
2526 case EM_M32C_OLD:
2527 case EM_NIOS32: return "Altera Nios";
2528 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2529 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2530 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2531 case EM_S12Z: return "Freescale S12Z";
2532 case EM_CSKY: return "C-SKY";
2533
2534 default:
2535 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2536 return buff;
2537 }
2538 }
2539
2540 static void
2541 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2542 {
2543 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2544 other compilers don't a specific architecture type in the e_flags, and
2545 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2546 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2547 architectures.
2548
2549 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2550 but also sets a specific architecture type in the e_flags field.
2551
2552 However, when decoding the flags we don't worry if we see an
2553 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2554 ARCEM architecture type. */
2555
2556 switch (e_flags & EF_ARC_MACH_MSK)
2557 {
2558 /* We only expect these to occur for EM_ARC_COMPACT2. */
2559 case EF_ARC_CPU_ARCV2EM:
2560 strcat (buf, ", ARC EM");
2561 break;
2562 case EF_ARC_CPU_ARCV2HS:
2563 strcat (buf, ", ARC HS");
2564 break;
2565
2566 /* We only expect these to occur for EM_ARC_COMPACT. */
2567 case E_ARC_MACH_ARC600:
2568 strcat (buf, ", ARC600");
2569 break;
2570 case E_ARC_MACH_ARC601:
2571 strcat (buf, ", ARC601");
2572 break;
2573 case E_ARC_MACH_ARC700:
2574 strcat (buf, ", ARC700");
2575 break;
2576
2577 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2578 new ELF with new architecture being read by an old version of
2579 readelf, or (c) An ELF built with non-GNU compiler that does not
2580 set the architecture in the e_flags. */
2581 default:
2582 if (e_machine == EM_ARC_COMPACT)
2583 strcat (buf, ", Unknown ARCompact");
2584 else
2585 strcat (buf, ", Unknown ARC");
2586 break;
2587 }
2588
2589 switch (e_flags & EF_ARC_OSABI_MSK)
2590 {
2591 case E_ARC_OSABI_ORIG:
2592 strcat (buf, ", (ABI:legacy)");
2593 break;
2594 case E_ARC_OSABI_V2:
2595 strcat (buf, ", (ABI:v2)");
2596 break;
2597 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2598 case E_ARC_OSABI_V3:
2599 strcat (buf, ", v3 no-legacy-syscalls ABI");
2600 break;
2601 case E_ARC_OSABI_V4:
2602 strcat (buf, ", v4 ABI");
2603 break;
2604 default:
2605 strcat (buf, ", unrecognised ARC OSABI flag");
2606 break;
2607 }
2608 }
2609
2610 static void
2611 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2612 {
2613 unsigned eabi;
2614 bfd_boolean unknown = FALSE;
2615
2616 eabi = EF_ARM_EABI_VERSION (e_flags);
2617 e_flags &= ~ EF_ARM_EABIMASK;
2618
2619 /* Handle "generic" ARM flags. */
2620 if (e_flags & EF_ARM_RELEXEC)
2621 {
2622 strcat (buf, ", relocatable executable");
2623 e_flags &= ~ EF_ARM_RELEXEC;
2624 }
2625
2626 if (e_flags & EF_ARM_PIC)
2627 {
2628 strcat (buf, ", position independent");
2629 e_flags &= ~ EF_ARM_PIC;
2630 }
2631
2632 /* Now handle EABI specific flags. */
2633 switch (eabi)
2634 {
2635 default:
2636 strcat (buf, ", <unrecognized EABI>");
2637 if (e_flags)
2638 unknown = TRUE;
2639 break;
2640
2641 case EF_ARM_EABI_VER1:
2642 strcat (buf, ", Version1 EABI");
2643 while (e_flags)
2644 {
2645 unsigned flag;
2646
2647 /* Process flags one bit at a time. */
2648 flag = e_flags & - e_flags;
2649 e_flags &= ~ flag;
2650
2651 switch (flag)
2652 {
2653 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2654 strcat (buf, ", sorted symbol tables");
2655 break;
2656
2657 default:
2658 unknown = TRUE;
2659 break;
2660 }
2661 }
2662 break;
2663
2664 case EF_ARM_EABI_VER2:
2665 strcat (buf, ", Version2 EABI");
2666 while (e_flags)
2667 {
2668 unsigned flag;
2669
2670 /* Process flags one bit at a time. */
2671 flag = e_flags & - e_flags;
2672 e_flags &= ~ flag;
2673
2674 switch (flag)
2675 {
2676 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2677 strcat (buf, ", sorted symbol tables");
2678 break;
2679
2680 case EF_ARM_DYNSYMSUSESEGIDX:
2681 strcat (buf, ", dynamic symbols use segment index");
2682 break;
2683
2684 case EF_ARM_MAPSYMSFIRST:
2685 strcat (buf, ", mapping symbols precede others");
2686 break;
2687
2688 default:
2689 unknown = TRUE;
2690 break;
2691 }
2692 }
2693 break;
2694
2695 case EF_ARM_EABI_VER3:
2696 strcat (buf, ", Version3 EABI");
2697 break;
2698
2699 case EF_ARM_EABI_VER4:
2700 strcat (buf, ", Version4 EABI");
2701 while (e_flags)
2702 {
2703 unsigned flag;
2704
2705 /* Process flags one bit at a time. */
2706 flag = e_flags & - e_flags;
2707 e_flags &= ~ flag;
2708
2709 switch (flag)
2710 {
2711 case EF_ARM_BE8:
2712 strcat (buf, ", BE8");
2713 break;
2714
2715 case EF_ARM_LE8:
2716 strcat (buf, ", LE8");
2717 break;
2718
2719 default:
2720 unknown = TRUE;
2721 break;
2722 }
2723 }
2724 break;
2725
2726 case EF_ARM_EABI_VER5:
2727 strcat (buf, ", Version5 EABI");
2728 while (e_flags)
2729 {
2730 unsigned flag;
2731
2732 /* Process flags one bit at a time. */
2733 flag = e_flags & - e_flags;
2734 e_flags &= ~ flag;
2735
2736 switch (flag)
2737 {
2738 case EF_ARM_BE8:
2739 strcat (buf, ", BE8");
2740 break;
2741
2742 case EF_ARM_LE8:
2743 strcat (buf, ", LE8");
2744 break;
2745
2746 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2747 strcat (buf, ", soft-float ABI");
2748 break;
2749
2750 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2751 strcat (buf, ", hard-float ABI");
2752 break;
2753
2754 default:
2755 unknown = TRUE;
2756 break;
2757 }
2758 }
2759 break;
2760
2761 case EF_ARM_EABI_UNKNOWN:
2762 strcat (buf, ", GNU EABI");
2763 while (e_flags)
2764 {
2765 unsigned flag;
2766
2767 /* Process flags one bit at a time. */
2768 flag = e_flags & - e_flags;
2769 e_flags &= ~ flag;
2770
2771 switch (flag)
2772 {
2773 case EF_ARM_INTERWORK:
2774 strcat (buf, ", interworking enabled");
2775 break;
2776
2777 case EF_ARM_APCS_26:
2778 strcat (buf, ", uses APCS/26");
2779 break;
2780
2781 case EF_ARM_APCS_FLOAT:
2782 strcat (buf, ", uses APCS/float");
2783 break;
2784
2785 case EF_ARM_PIC:
2786 strcat (buf, ", position independent");
2787 break;
2788
2789 case EF_ARM_ALIGN8:
2790 strcat (buf, ", 8 bit structure alignment");
2791 break;
2792
2793 case EF_ARM_NEW_ABI:
2794 strcat (buf, ", uses new ABI");
2795 break;
2796
2797 case EF_ARM_OLD_ABI:
2798 strcat (buf, ", uses old ABI");
2799 break;
2800
2801 case EF_ARM_SOFT_FLOAT:
2802 strcat (buf, ", software FP");
2803 break;
2804
2805 case EF_ARM_VFP_FLOAT:
2806 strcat (buf, ", VFP");
2807 break;
2808
2809 case EF_ARM_MAVERICK_FLOAT:
2810 strcat (buf, ", Maverick FP");
2811 break;
2812
2813 default:
2814 unknown = TRUE;
2815 break;
2816 }
2817 }
2818 }
2819
2820 if (unknown)
2821 strcat (buf,_(", <unknown>"));
2822 }
2823
2824 static void
2825 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2826 {
2827 --size; /* Leave space for null terminator. */
2828
2829 switch (e_flags & EF_AVR_MACH)
2830 {
2831 case E_AVR_MACH_AVR1:
2832 strncat (buf, ", avr:1", size);
2833 break;
2834 case E_AVR_MACH_AVR2:
2835 strncat (buf, ", avr:2", size);
2836 break;
2837 case E_AVR_MACH_AVR25:
2838 strncat (buf, ", avr:25", size);
2839 break;
2840 case E_AVR_MACH_AVR3:
2841 strncat (buf, ", avr:3", size);
2842 break;
2843 case E_AVR_MACH_AVR31:
2844 strncat (buf, ", avr:31", size);
2845 break;
2846 case E_AVR_MACH_AVR35:
2847 strncat (buf, ", avr:35", size);
2848 break;
2849 case E_AVR_MACH_AVR4:
2850 strncat (buf, ", avr:4", size);
2851 break;
2852 case E_AVR_MACH_AVR5:
2853 strncat (buf, ", avr:5", size);
2854 break;
2855 case E_AVR_MACH_AVR51:
2856 strncat (buf, ", avr:51", size);
2857 break;
2858 case E_AVR_MACH_AVR6:
2859 strncat (buf, ", avr:6", size);
2860 break;
2861 case E_AVR_MACH_AVRTINY:
2862 strncat (buf, ", avr:100", size);
2863 break;
2864 case E_AVR_MACH_XMEGA1:
2865 strncat (buf, ", avr:101", size);
2866 break;
2867 case E_AVR_MACH_XMEGA2:
2868 strncat (buf, ", avr:102", size);
2869 break;
2870 case E_AVR_MACH_XMEGA3:
2871 strncat (buf, ", avr:103", size);
2872 break;
2873 case E_AVR_MACH_XMEGA4:
2874 strncat (buf, ", avr:104", size);
2875 break;
2876 case E_AVR_MACH_XMEGA5:
2877 strncat (buf, ", avr:105", size);
2878 break;
2879 case E_AVR_MACH_XMEGA6:
2880 strncat (buf, ", avr:106", size);
2881 break;
2882 case E_AVR_MACH_XMEGA7:
2883 strncat (buf, ", avr:107", size);
2884 break;
2885 default:
2886 strncat (buf, ", avr:<unknown>", size);
2887 break;
2888 }
2889
2890 size -= strlen (buf);
2891 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2892 strncat (buf, ", link-relax", size);
2893 }
2894
2895 static void
2896 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2897 {
2898 unsigned abi;
2899 unsigned arch;
2900 unsigned config;
2901 unsigned version;
2902 bfd_boolean has_fpu = FALSE;
2903 unsigned int r = 0;
2904
2905 static const char *ABI_STRINGS[] =
2906 {
2907 "ABI v0", /* use r5 as return register; only used in N1213HC */
2908 "ABI v1", /* use r0 as return register */
2909 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2910 "ABI v2fp", /* for FPU */
2911 "AABI",
2912 "ABI2 FP+"
2913 };
2914 static const char *VER_STRINGS[] =
2915 {
2916 "Andes ELF V1.3 or older",
2917 "Andes ELF V1.3.1",
2918 "Andes ELF V1.4"
2919 };
2920 static const char *ARCH_STRINGS[] =
2921 {
2922 "",
2923 "Andes Star v1.0",
2924 "Andes Star v2.0",
2925 "Andes Star v3.0",
2926 "Andes Star v3.0m"
2927 };
2928
2929 abi = EF_NDS_ABI & e_flags;
2930 arch = EF_NDS_ARCH & e_flags;
2931 config = EF_NDS_INST & e_flags;
2932 version = EF_NDS32_ELF_VERSION & e_flags;
2933
2934 memset (buf, 0, size);
2935
2936 switch (abi)
2937 {
2938 case E_NDS_ABI_V0:
2939 case E_NDS_ABI_V1:
2940 case E_NDS_ABI_V2:
2941 case E_NDS_ABI_V2FP:
2942 case E_NDS_ABI_AABI:
2943 case E_NDS_ABI_V2FP_PLUS:
2944 /* In case there are holes in the array. */
2945 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2946 break;
2947
2948 default:
2949 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2950 break;
2951 }
2952
2953 switch (version)
2954 {
2955 case E_NDS32_ELF_VER_1_2:
2956 case E_NDS32_ELF_VER_1_3:
2957 case E_NDS32_ELF_VER_1_4:
2958 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2959 break;
2960
2961 default:
2962 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2963 break;
2964 }
2965
2966 if (E_NDS_ABI_V0 == abi)
2967 {
2968 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2969 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2970 if (arch == E_NDS_ARCH_STAR_V1_0)
2971 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2972 return;
2973 }
2974
2975 switch (arch)
2976 {
2977 case E_NDS_ARCH_STAR_V1_0:
2978 case E_NDS_ARCH_STAR_V2_0:
2979 case E_NDS_ARCH_STAR_V3_0:
2980 case E_NDS_ARCH_STAR_V3_M:
2981 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2982 break;
2983
2984 default:
2985 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2986 /* ARCH version determines how the e_flags are interpreted.
2987 If it is unknown, we cannot proceed. */
2988 return;
2989 }
2990
2991 /* Newer ABI; Now handle architecture specific flags. */
2992 if (arch == E_NDS_ARCH_STAR_V1_0)
2993 {
2994 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2995 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2996
2997 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2998 r += snprintf (buf + r, size -r, ", MAC");
2999
3000 if (config & E_NDS32_HAS_DIV_INST)
3001 r += snprintf (buf + r, size -r, ", DIV");
3002
3003 if (config & E_NDS32_HAS_16BIT_INST)
3004 r += snprintf (buf + r, size -r, ", 16b");
3005 }
3006 else
3007 {
3008 if (config & E_NDS32_HAS_MFUSR_PC_INST)
3009 {
3010 if (version <= E_NDS32_ELF_VER_1_3)
3011 r += snprintf (buf + r, size -r, ", [B8]");
3012 else
3013 r += snprintf (buf + r, size -r, ", EX9");
3014 }
3015
3016 if (config & E_NDS32_HAS_MAC_DX_INST)
3017 r += snprintf (buf + r, size -r, ", MAC_DX");
3018
3019 if (config & E_NDS32_HAS_DIV_DX_INST)
3020 r += snprintf (buf + r, size -r, ", DIV_DX");
3021
3022 if (config & E_NDS32_HAS_16BIT_INST)
3023 {
3024 if (version <= E_NDS32_ELF_VER_1_3)
3025 r += snprintf (buf + r, size -r, ", 16b");
3026 else
3027 r += snprintf (buf + r, size -r, ", IFC");
3028 }
3029 }
3030
3031 if (config & E_NDS32_HAS_EXT_INST)
3032 r += snprintf (buf + r, size -r, ", PERF1");
3033
3034 if (config & E_NDS32_HAS_EXT2_INST)
3035 r += snprintf (buf + r, size -r, ", PERF2");
3036
3037 if (config & E_NDS32_HAS_FPU_INST)
3038 {
3039 has_fpu = TRUE;
3040 r += snprintf (buf + r, size -r, ", FPU_SP");
3041 }
3042
3043 if (config & E_NDS32_HAS_FPU_DP_INST)
3044 {
3045 has_fpu = TRUE;
3046 r += snprintf (buf + r, size -r, ", FPU_DP");
3047 }
3048
3049 if (config & E_NDS32_HAS_FPU_MAC_INST)
3050 {
3051 has_fpu = TRUE;
3052 r += snprintf (buf + r, size -r, ", FPU_MAC");
3053 }
3054
3055 if (has_fpu)
3056 {
3057 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
3058 {
3059 case E_NDS32_FPU_REG_8SP_4DP:
3060 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
3061 break;
3062 case E_NDS32_FPU_REG_16SP_8DP:
3063 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
3064 break;
3065 case E_NDS32_FPU_REG_32SP_16DP:
3066 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
3067 break;
3068 case E_NDS32_FPU_REG_32SP_32DP:
3069 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
3070 break;
3071 }
3072 }
3073
3074 if (config & E_NDS32_HAS_AUDIO_INST)
3075 r += snprintf (buf + r, size -r, ", AUDIO");
3076
3077 if (config & E_NDS32_HAS_STRING_INST)
3078 r += snprintf (buf + r, size -r, ", STR");
3079
3080 if (config & E_NDS32_HAS_REDUCED_REGS)
3081 r += snprintf (buf + r, size -r, ", 16REG");
3082
3083 if (config & E_NDS32_HAS_VIDEO_INST)
3084 {
3085 if (version <= E_NDS32_ELF_VER_1_3)
3086 r += snprintf (buf + r, size -r, ", VIDEO");
3087 else
3088 r += snprintf (buf + r, size -r, ", SATURATION");
3089 }
3090
3091 if (config & E_NDS32_HAS_ENCRIPT_INST)
3092 r += snprintf (buf + r, size -r, ", ENCRP");
3093
3094 if (config & E_NDS32_HAS_L2C_INST)
3095 r += snprintf (buf + r, size -r, ", L2C");
3096 }
3097
3098 static char *
3099 get_machine_flags (Filedata * filedata, unsigned e_flags, unsigned e_machine)
3100 {
3101 static char buf[1024];
3102
3103 buf[0] = '\0';
3104
3105 if (e_flags)
3106 {
3107 switch (e_machine)
3108 {
3109 default:
3110 break;
3111
3112 case EM_ARC_COMPACT2:
3113 case EM_ARC_COMPACT:
3114 decode_ARC_machine_flags (e_flags, e_machine, buf);
3115 break;
3116
3117 case EM_ARM:
3118 decode_ARM_machine_flags (e_flags, buf);
3119 break;
3120
3121 case EM_AVR:
3122 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3123 break;
3124
3125 case EM_BLACKFIN:
3126 if (e_flags & EF_BFIN_PIC)
3127 strcat (buf, ", PIC");
3128
3129 if (e_flags & EF_BFIN_FDPIC)
3130 strcat (buf, ", FDPIC");
3131
3132 if (e_flags & EF_BFIN_CODE_IN_L1)
3133 strcat (buf, ", code in L1");
3134
3135 if (e_flags & EF_BFIN_DATA_IN_L1)
3136 strcat (buf, ", data in L1");
3137
3138 break;
3139
3140 case EM_CYGNUS_FRV:
3141 switch (e_flags & EF_FRV_CPU_MASK)
3142 {
3143 case EF_FRV_CPU_GENERIC:
3144 break;
3145
3146 default:
3147 strcat (buf, ", fr???");
3148 break;
3149
3150 case EF_FRV_CPU_FR300:
3151 strcat (buf, ", fr300");
3152 break;
3153
3154 case EF_FRV_CPU_FR400:
3155 strcat (buf, ", fr400");
3156 break;
3157 case EF_FRV_CPU_FR405:
3158 strcat (buf, ", fr405");
3159 break;
3160
3161 case EF_FRV_CPU_FR450:
3162 strcat (buf, ", fr450");
3163 break;
3164
3165 case EF_FRV_CPU_FR500:
3166 strcat (buf, ", fr500");
3167 break;
3168 case EF_FRV_CPU_FR550:
3169 strcat (buf, ", fr550");
3170 break;
3171
3172 case EF_FRV_CPU_SIMPLE:
3173 strcat (buf, ", simple");
3174 break;
3175 case EF_FRV_CPU_TOMCAT:
3176 strcat (buf, ", tomcat");
3177 break;
3178 }
3179 break;
3180
3181 case EM_68K:
3182 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3183 strcat (buf, ", m68000");
3184 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3185 strcat (buf, ", cpu32");
3186 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3187 strcat (buf, ", fido_a");
3188 else
3189 {
3190 char const * isa = _("unknown");
3191 char const * mac = _("unknown mac");
3192 char const * additional = NULL;
3193
3194 switch (e_flags & EF_M68K_CF_ISA_MASK)
3195 {
3196 case EF_M68K_CF_ISA_A_NODIV:
3197 isa = "A";
3198 additional = ", nodiv";
3199 break;
3200 case EF_M68K_CF_ISA_A:
3201 isa = "A";
3202 break;
3203 case EF_M68K_CF_ISA_A_PLUS:
3204 isa = "A+";
3205 break;
3206 case EF_M68K_CF_ISA_B_NOUSP:
3207 isa = "B";
3208 additional = ", nousp";
3209 break;
3210 case EF_M68K_CF_ISA_B:
3211 isa = "B";
3212 break;
3213 case EF_M68K_CF_ISA_C:
3214 isa = "C";
3215 break;
3216 case EF_M68K_CF_ISA_C_NODIV:
3217 isa = "C";
3218 additional = ", nodiv";
3219 break;
3220 }
3221 strcat (buf, ", cf, isa ");
3222 strcat (buf, isa);
3223 if (additional)
3224 strcat (buf, additional);
3225 if (e_flags & EF_M68K_CF_FLOAT)
3226 strcat (buf, ", float");
3227 switch (e_flags & EF_M68K_CF_MAC_MASK)
3228 {
3229 case 0:
3230 mac = NULL;
3231 break;
3232 case EF_M68K_CF_MAC:
3233 mac = "mac";
3234 break;
3235 case EF_M68K_CF_EMAC:
3236 mac = "emac";
3237 break;
3238 case EF_M68K_CF_EMAC_B:
3239 mac = "emac_b";
3240 break;
3241 }
3242 if (mac)
3243 {
3244 strcat (buf, ", ");
3245 strcat (buf, mac);
3246 }
3247 }
3248 break;
3249
3250 case EM_CYGNUS_MEP:
3251 switch (e_flags & EF_MEP_CPU_MASK)
3252 {
3253 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3254 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3255 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3256 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3257 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3258 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3259 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3260 }
3261
3262 switch (e_flags & EF_MEP_COP_MASK)
3263 {
3264 case EF_MEP_COP_NONE: break;
3265 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3266 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3267 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3268 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3269 default: strcat (buf, _("<unknown MeP copro type>")); break;
3270 }
3271
3272 if (e_flags & EF_MEP_LIBRARY)
3273 strcat (buf, ", Built for Library");
3274
3275 if (e_flags & EF_MEP_INDEX_MASK)
3276 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3277 e_flags & EF_MEP_INDEX_MASK);
3278
3279 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3280 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3281 e_flags & ~ EF_MEP_ALL_FLAGS);
3282 break;
3283
3284 case EM_PPC:
3285 if (e_flags & EF_PPC_EMB)
3286 strcat (buf, ", emb");
3287
3288 if (e_flags & EF_PPC_RELOCATABLE)
3289 strcat (buf, _(", relocatable"));
3290
3291 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3292 strcat (buf, _(", relocatable-lib"));
3293 break;
3294
3295 case EM_PPC64:
3296 if (e_flags & EF_PPC64_ABI)
3297 {
3298 char abi[] = ", abiv0";
3299
3300 abi[6] += e_flags & EF_PPC64_ABI;
3301 strcat (buf, abi);
3302 }
3303 break;
3304
3305 case EM_V800:
3306 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3307 strcat (buf, ", RH850 ABI");
3308
3309 if (e_flags & EF_V800_850E3)
3310 strcat (buf, ", V3 architecture");
3311
3312 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3313 strcat (buf, ", FPU not used");
3314
3315 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3316 strcat (buf, ", regmode: COMMON");
3317
3318 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3319 strcat (buf, ", r4 not used");
3320
3321 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3322 strcat (buf, ", r30 not used");
3323
3324 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3325 strcat (buf, ", r5 not used");
3326
3327 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3328 strcat (buf, ", r2 not used");
3329
3330 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3331 {
3332 switch (e_flags & - e_flags)
3333 {
3334 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3335 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3336 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3337 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3338 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3339 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3340 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3341 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3342 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3343 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3344 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3345 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3346 default: break;
3347 }
3348 }
3349 break;
3350
3351 case EM_V850:
3352 case EM_CYGNUS_V850:
3353 switch (e_flags & EF_V850_ARCH)
3354 {
3355 case E_V850E3V5_ARCH:
3356 strcat (buf, ", v850e3v5");
3357 break;
3358 case E_V850E2V3_ARCH:
3359 strcat (buf, ", v850e2v3");
3360 break;
3361 case E_V850E2_ARCH:
3362 strcat (buf, ", v850e2");
3363 break;
3364 case E_V850E1_ARCH:
3365 strcat (buf, ", v850e1");
3366 break;
3367 case E_V850E_ARCH:
3368 strcat (buf, ", v850e");
3369 break;
3370 case E_V850_ARCH:
3371 strcat (buf, ", v850");
3372 break;
3373 default:
3374 strcat (buf, _(", unknown v850 architecture variant"));
3375 break;
3376 }
3377 break;
3378
3379 case EM_M32R:
3380 case EM_CYGNUS_M32R:
3381 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3382 strcat (buf, ", m32r");
3383 break;
3384
3385 case EM_MIPS:
3386 case EM_MIPS_RS3_LE:
3387 if (e_flags & EF_MIPS_NOREORDER)
3388 strcat (buf, ", noreorder");
3389
3390 if (e_flags & EF_MIPS_PIC)
3391 strcat (buf, ", pic");
3392
3393 if (e_flags & EF_MIPS_CPIC)
3394 strcat (buf, ", cpic");
3395
3396 if (e_flags & EF_MIPS_UCODE)
3397 strcat (buf, ", ugen_reserved");
3398
3399 if (e_flags & EF_MIPS_ABI2)
3400 strcat (buf, ", abi2");
3401
3402 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3403 strcat (buf, ", odk first");
3404
3405 if (e_flags & EF_MIPS_32BITMODE)
3406 strcat (buf, ", 32bitmode");
3407
3408 if (e_flags & EF_MIPS_NAN2008)
3409 strcat (buf, ", nan2008");
3410
3411 if (e_flags & EF_MIPS_FP64)
3412 strcat (buf, ", fp64");
3413
3414 switch ((e_flags & EF_MIPS_MACH))
3415 {
3416 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3417 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3418 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3419 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3420 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3421 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3422 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3423 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3424 case E_MIPS_MACH_5900: strcat (buf, ", 5900"); break;
3425 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3426 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3427 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3428 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3429 case E_MIPS_MACH_GS464: strcat (buf, ", gs464"); break;
3430 case E_MIPS_MACH_GS464E: strcat (buf, ", gs464e"); break;
3431 case E_MIPS_MACH_GS264E: strcat (buf, ", gs264e"); break;
3432 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3433 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3434 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3435 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3436 case E_MIPS_MACH_IAMR2: strcat (buf, ", interaptiv-mr2"); break;
3437 case 0:
3438 /* We simply ignore the field in this case to avoid confusion:
3439 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3440 extension. */
3441 break;
3442 default: strcat (buf, _(", unknown CPU")); break;
3443 }
3444
3445 switch ((e_flags & EF_MIPS_ABI))
3446 {
3447 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3448 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3449 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3450 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3451 case 0:
3452 /* We simply ignore the field in this case to avoid confusion:
3453 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3454 This means it is likely to be an o32 file, but not for
3455 sure. */
3456 break;
3457 default: strcat (buf, _(", unknown ABI")); break;
3458 }
3459
3460 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3461 strcat (buf, ", mdmx");
3462
3463 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3464 strcat (buf, ", mips16");
3465
3466 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3467 strcat (buf, ", micromips");
3468
3469 switch ((e_flags & EF_MIPS_ARCH))
3470 {
3471 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3472 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3473 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3474 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3475 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3476 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3477 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3478 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3479 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3480 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3481 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3482 default: strcat (buf, _(", unknown ISA")); break;
3483 }
3484 break;
3485
3486 case EM_NDS32:
3487 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3488 break;
3489
3490 case EM_NFP:
3491 switch (EF_NFP_MACH (e_flags))
3492 {
3493 case E_NFP_MACH_3200:
3494 strcat (buf, ", NFP-32xx");
3495 break;
3496 case E_NFP_MACH_6000:
3497 strcat (buf, ", NFP-6xxx");
3498 break;
3499 }
3500 break;
3501
3502 case EM_RISCV:
3503 if (e_flags & EF_RISCV_RVC)
3504 strcat (buf, ", RVC");
3505
3506 if (e_flags & EF_RISCV_RVE)
3507 strcat (buf, ", RVE");
3508
3509 switch (e_flags & EF_RISCV_FLOAT_ABI)
3510 {
3511 case EF_RISCV_FLOAT_ABI_SOFT:
3512 strcat (buf, ", soft-float ABI");
3513 break;
3514
3515 case EF_RISCV_FLOAT_ABI_SINGLE:
3516 strcat (buf, ", single-float ABI");
3517 break;
3518
3519 case EF_RISCV_FLOAT_ABI_DOUBLE:
3520 strcat (buf, ", double-float ABI");
3521 break;
3522
3523 case EF_RISCV_FLOAT_ABI_QUAD:
3524 strcat (buf, ", quad-float ABI");
3525 break;
3526 }
3527 break;
3528
3529 case EM_SH:
3530 switch ((e_flags & EF_SH_MACH_MASK))
3531 {
3532 case EF_SH1: strcat (buf, ", sh1"); break;
3533 case EF_SH2: strcat (buf, ", sh2"); break;
3534 case EF_SH3: strcat (buf, ", sh3"); break;
3535 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3536 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3537 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3538 case EF_SH3E: strcat (buf, ", sh3e"); break;
3539 case EF_SH4: strcat (buf, ", sh4"); break;
3540 case EF_SH5: strcat (buf, ", sh5"); break;
3541 case EF_SH2E: strcat (buf, ", sh2e"); break;
3542 case EF_SH4A: strcat (buf, ", sh4a"); break;
3543 case EF_SH2A: strcat (buf, ", sh2a"); break;
3544 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3545 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3546 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3547 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3548 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3549 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3550 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3551 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3552 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3553 default: strcat (buf, _(", unknown ISA")); break;
3554 }
3555
3556 if (e_flags & EF_SH_PIC)
3557 strcat (buf, ", pic");
3558
3559 if (e_flags & EF_SH_FDPIC)
3560 strcat (buf, ", fdpic");
3561 break;
3562
3563 case EM_OR1K:
3564 if (e_flags & EF_OR1K_NODELAY)
3565 strcat (buf, ", no delay");
3566 break;
3567
3568 case EM_SPARCV9:
3569 if (e_flags & EF_SPARC_32PLUS)
3570 strcat (buf, ", v8+");
3571
3572 if (e_flags & EF_SPARC_SUN_US1)
3573 strcat (buf, ", ultrasparcI");
3574
3575 if (e_flags & EF_SPARC_SUN_US3)
3576 strcat (buf, ", ultrasparcIII");
3577
3578 if (e_flags & EF_SPARC_HAL_R1)
3579 strcat (buf, ", halr1");
3580
3581 if (e_flags & EF_SPARC_LEDATA)
3582 strcat (buf, ", ledata");
3583
3584 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3585 strcat (buf, ", tso");
3586
3587 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3588 strcat (buf, ", pso");
3589
3590 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3591 strcat (buf, ", rmo");
3592 break;
3593
3594 case EM_PARISC:
3595 switch (e_flags & EF_PARISC_ARCH)
3596 {
3597 case EFA_PARISC_1_0:
3598 strcpy (buf, ", PA-RISC 1.0");
3599 break;
3600 case EFA_PARISC_1_1:
3601 strcpy (buf, ", PA-RISC 1.1");
3602 break;
3603 case EFA_PARISC_2_0:
3604 strcpy (buf, ", PA-RISC 2.0");
3605 break;
3606 default:
3607 break;
3608 }
3609 if (e_flags & EF_PARISC_TRAPNIL)
3610 strcat (buf, ", trapnil");
3611 if (e_flags & EF_PARISC_EXT)
3612 strcat (buf, ", ext");
3613 if (e_flags & EF_PARISC_LSB)
3614 strcat (buf, ", lsb");
3615 if (e_flags & EF_PARISC_WIDE)
3616 strcat (buf, ", wide");
3617 if (e_flags & EF_PARISC_NO_KABP)
3618 strcat (buf, ", no kabp");
3619 if (e_flags & EF_PARISC_LAZYSWAP)
3620 strcat (buf, ", lazyswap");
3621 break;
3622
3623 case EM_PJ:
3624 case EM_PJ_OLD:
3625 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3626 strcat (buf, ", new calling convention");
3627
3628 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3629 strcat (buf, ", gnu calling convention");
3630 break;
3631
3632 case EM_IA_64:
3633 if ((e_flags & EF_IA_64_ABI64))
3634 strcat (buf, ", 64-bit");
3635 else
3636 strcat (buf, ", 32-bit");
3637 if ((e_flags & EF_IA_64_REDUCEDFP))
3638 strcat (buf, ", reduced fp model");
3639 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3640 strcat (buf, ", no function descriptors, constant gp");
3641 else if ((e_flags & EF_IA_64_CONS_GP))
3642 strcat (buf, ", constant gp");
3643 if ((e_flags & EF_IA_64_ABSOLUTE))
3644 strcat (buf, ", absolute");
3645 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3646 {
3647 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3648 strcat (buf, ", vms_linkages");
3649 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3650 {
3651 case EF_IA_64_VMS_COMCOD_SUCCESS:
3652 break;
3653 case EF_IA_64_VMS_COMCOD_WARNING:
3654 strcat (buf, ", warning");
3655 break;
3656 case EF_IA_64_VMS_COMCOD_ERROR:
3657 strcat (buf, ", error");
3658 break;
3659 case EF_IA_64_VMS_COMCOD_ABORT:
3660 strcat (buf, ", abort");
3661 break;
3662 default:
3663 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3664 e_flags & EF_IA_64_VMS_COMCOD);
3665 strcat (buf, ", <unknown>");
3666 }
3667 }
3668 break;
3669
3670 case EM_VAX:
3671 if ((e_flags & EF_VAX_NONPIC))
3672 strcat (buf, ", non-PIC");
3673 if ((e_flags & EF_VAX_DFLOAT))
3674 strcat (buf, ", D-Float");
3675 if ((e_flags & EF_VAX_GFLOAT))
3676 strcat (buf, ", G-Float");
3677 break;
3678
3679 case EM_VISIUM:
3680 if (e_flags & EF_VISIUM_ARCH_MCM)
3681 strcat (buf, ", mcm");
3682 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3683 strcat (buf, ", mcm24");
3684 if (e_flags & EF_VISIUM_ARCH_GR6)
3685 strcat (buf, ", gr6");
3686 break;
3687
3688 case EM_RL78:
3689 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3690 {
3691 case E_FLAG_RL78_ANY_CPU: break;
3692 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3693 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3694 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3695 }
3696 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3697 strcat (buf, ", 64-bit doubles");
3698 break;
3699
3700 case EM_RX:
3701 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3702 strcat (buf, ", 64-bit doubles");
3703 if (e_flags & E_FLAG_RX_DSP)
3704 strcat (buf, ", dsp");
3705 if (e_flags & E_FLAG_RX_PID)
3706 strcat (buf, ", pid");
3707 if (e_flags & E_FLAG_RX_ABI)
3708 strcat (buf, ", RX ABI");
3709 if (e_flags & E_FLAG_RX_SINSNS_SET)
3710 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3711 ? ", uses String instructions" : ", bans String instructions");
3712 if (e_flags & E_FLAG_RX_V2)
3713 strcat (buf, ", V2");
3714 if (e_flags & E_FLAG_RX_V3)
3715 strcat (buf, ", V3");
3716 break;
3717
3718 case EM_S390:
3719 if (e_flags & EF_S390_HIGH_GPRS)
3720 strcat (buf, ", highgprs");
3721 break;
3722
3723 case EM_TI_C6000:
3724 if ((e_flags & EF_C6000_REL))
3725 strcat (buf, ", relocatable module");
3726 break;
3727
3728 case EM_MSP430:
3729 strcat (buf, _(": architecture variant: "));
3730 switch (e_flags & EF_MSP430_MACH)
3731 {
3732 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3733 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3734 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3735 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3736 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3737 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3738 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3739 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3740 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3741 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3742 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3743 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3744 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3745 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3746 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3747 default:
3748 strcat (buf, _(": unknown")); break;
3749 }
3750
3751 if (e_flags & ~ EF_MSP430_MACH)
3752 strcat (buf, _(": unknown extra flag bits also present"));
3753 }
3754 }
3755
3756 return buf;
3757 }
3758
3759 static const char *
3760 get_osabi_name (Filedata * filedata, unsigned int osabi)
3761 {
3762 static char buff[32];
3763
3764 switch (osabi)
3765 {
3766 case ELFOSABI_NONE: return "UNIX - System V";
3767 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3768 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3769 case ELFOSABI_GNU: return "UNIX - GNU";
3770 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3771 case ELFOSABI_AIX: return "UNIX - AIX";
3772 case ELFOSABI_IRIX: return "UNIX - IRIX";
3773 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3774 case ELFOSABI_TRU64: return "UNIX - TRU64";
3775 case ELFOSABI_MODESTO: return "Novell - Modesto";
3776 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3777 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3778 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3779 case ELFOSABI_AROS: return "AROS";
3780 case ELFOSABI_FENIXOS: return "FenixOS";
3781 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3782 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3783 default:
3784 if (osabi >= 64)
3785 switch (filedata->file_header.e_machine)
3786 {
3787 case EM_ARM:
3788 switch (osabi)
3789 {
3790 case ELFOSABI_ARM: return "ARM";
3791 case ELFOSABI_ARM_FDPIC: return "ARM FDPIC";
3792 default:
3793 break;
3794 }
3795 break;
3796
3797 case EM_MSP430:
3798 case EM_MSP430_OLD:
3799 case EM_VISIUM:
3800 switch (osabi)
3801 {
3802 case ELFOSABI_STANDALONE: return _("Standalone App");
3803 default:
3804 break;
3805 }
3806 break;
3807
3808 case EM_TI_C6000:
3809 switch (osabi)
3810 {
3811 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3812 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3813 default:
3814 break;
3815 }
3816 break;
3817
3818 default:
3819 break;
3820 }
3821 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3822 return buff;
3823 }
3824 }
3825
3826 static const char *
3827 get_aarch64_segment_type (unsigned long type)
3828 {
3829 switch (type)
3830 {
3831 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3832 default: return NULL;
3833 }
3834 }
3835
3836 static const char *
3837 get_arm_segment_type (unsigned long type)
3838 {
3839 switch (type)
3840 {
3841 case PT_ARM_EXIDX: return "EXIDX";
3842 default: return NULL;
3843 }
3844 }
3845
3846 static const char *
3847 get_s390_segment_type (unsigned long type)
3848 {
3849 switch (type)
3850 {
3851 case PT_S390_PGSTE: return "S390_PGSTE";
3852 default: return NULL;
3853 }
3854 }
3855
3856 static const char *
3857 get_mips_segment_type (unsigned long type)
3858 {
3859 switch (type)
3860 {
3861 case PT_MIPS_REGINFO: return "REGINFO";
3862 case PT_MIPS_RTPROC: return "RTPROC";
3863 case PT_MIPS_OPTIONS: return "OPTIONS";
3864 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3865 default: return NULL;
3866 }
3867 }
3868
3869 static const char *
3870 get_parisc_segment_type (unsigned long type)
3871 {
3872 switch (type)
3873 {
3874 case PT_HP_TLS: return "HP_TLS";
3875 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3876 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3877 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3878 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3879 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3880 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3881 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3882 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3883 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3884 case PT_HP_PARALLEL: return "HP_PARALLEL";
3885 case PT_HP_FASTBIND: return "HP_FASTBIND";
3886 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3887 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3888 case PT_HP_STACK: return "HP_STACK";
3889 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3890 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3891 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3892 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3893 default: return NULL;
3894 }
3895 }
3896
3897 static const char *
3898 get_ia64_segment_type (unsigned long type)
3899 {
3900 switch (type)
3901 {
3902 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3903 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3904 case PT_HP_TLS: return "HP_TLS";
3905 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3906 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3907 case PT_IA_64_HP_STACK: return "HP_STACK";
3908 default: return NULL;
3909 }
3910 }
3911
3912 static const char *
3913 get_tic6x_segment_type (unsigned long type)
3914 {
3915 switch (type)
3916 {
3917 case PT_C6000_PHATTR: return "C6000_PHATTR";
3918 default: return NULL;
3919 }
3920 }
3921
3922 static const char *
3923 get_solaris_segment_type (unsigned long type)
3924 {
3925 switch (type)
3926 {
3927 case 0x6464e550: return "PT_SUNW_UNWIND";
3928 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3929 case 0x6ffffff7: return "PT_LOSUNW";
3930 case 0x6ffffffa: return "PT_SUNWBSS";
3931 case 0x6ffffffb: return "PT_SUNWSTACK";
3932 case 0x6ffffffc: return "PT_SUNWDTRACE";
3933 case 0x6ffffffd: return "PT_SUNWCAP";
3934 case 0x6fffffff: return "PT_HISUNW";
3935 default: return NULL;
3936 }
3937 }
3938
3939 static const char *
3940 get_segment_type (Filedata * filedata, unsigned long p_type)
3941 {
3942 static char buff[32];
3943
3944 switch (p_type)
3945 {
3946 case PT_NULL: return "NULL";
3947 case PT_LOAD: return "LOAD";
3948 case PT_DYNAMIC: return "DYNAMIC";
3949 case PT_INTERP: return "INTERP";
3950 case PT_NOTE: return "NOTE";
3951 case PT_SHLIB: return "SHLIB";
3952 case PT_PHDR: return "PHDR";
3953 case PT_TLS: return "TLS";
3954 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3955 case PT_GNU_STACK: return "GNU_STACK";
3956 case PT_GNU_RELRO: return "GNU_RELRO";
3957 case PT_GNU_PROPERTY: return "GNU_PROPERTY";
3958
3959 default:
3960 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
3961 {
3962 sprintf (buff, "GNU_MBIND+%#lx",
3963 p_type - PT_GNU_MBIND_LO);
3964 }
3965 else if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3966 {
3967 const char * result;
3968
3969 switch (filedata->file_header.e_machine)
3970 {
3971 case EM_AARCH64:
3972 result = get_aarch64_segment_type (p_type);
3973 break;
3974 case EM_ARM:
3975 result = get_arm_segment_type (p_type);
3976 break;
3977 case EM_MIPS:
3978 case EM_MIPS_RS3_LE:
3979 result = get_mips_segment_type (p_type);
3980 break;
3981 case EM_PARISC:
3982 result = get_parisc_segment_type (p_type);
3983 break;
3984 case EM_IA_64:
3985 result = get_ia64_segment_type (p_type);
3986 break;
3987 case EM_TI_C6000:
3988 result = get_tic6x_segment_type (p_type);
3989 break;
3990 case EM_S390:
3991 case EM_S390_OLD:
3992 result = get_s390_segment_type (p_type);
3993 break;
3994 default:
3995 result = NULL;
3996 break;
3997 }
3998
3999 if (result != NULL)
4000 return result;
4001
4002 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
4003 }
4004 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
4005 {
4006 const char * result;
4007
4008 switch (filedata->file_header.e_machine)
4009 {
4010 case EM_PARISC:
4011 result = get_parisc_segment_type (p_type);
4012 break;
4013 case EM_IA_64:
4014 result = get_ia64_segment_type (p_type);
4015 break;
4016 default:
4017 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4018 result = get_solaris_segment_type (p_type);
4019 else
4020 result = NULL;
4021 break;
4022 }
4023
4024 if (result != NULL)
4025 return result;
4026
4027 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
4028 }
4029 else
4030 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
4031
4032 return buff;
4033 }
4034 }
4035
4036 static const char *
4037 get_arc_section_type_name (unsigned int sh_type)
4038 {
4039 switch (sh_type)
4040 {
4041 case SHT_ARC_ATTRIBUTES: return "ARC_ATTRIBUTES";
4042 default:
4043 break;
4044 }
4045 return NULL;
4046 }
4047
4048 static const char *
4049 get_mips_section_type_name (unsigned int sh_type)
4050 {
4051 switch (sh_type)
4052 {
4053 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
4054 case SHT_MIPS_MSYM: return "MIPS_MSYM";
4055 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
4056 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
4057 case SHT_MIPS_UCODE: return "MIPS_UCODE";
4058 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
4059 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
4060 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
4061 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
4062 case SHT_MIPS_RELD: return "MIPS_RELD";
4063 case SHT_MIPS_IFACE: return "MIPS_IFACE";
4064 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
4065 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
4066 case SHT_MIPS_SHDR: return "MIPS_SHDR";
4067 case SHT_MIPS_FDESC: return "MIPS_FDESC";
4068 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
4069 case SHT_MIPS_DENSE: return "MIPS_DENSE";
4070 case SHT_MIPS_PDESC: return "MIPS_PDESC";
4071 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
4072 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
4073 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
4074 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
4075 case SHT_MIPS_LINE: return "MIPS_LINE";
4076 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
4077 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
4078 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
4079 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
4080 case SHT_MIPS_DWARF: return "MIPS_DWARF";
4081 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
4082 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
4083 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
4084 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
4085 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
4086 case SHT_MIPS_XLATE: return "MIPS_XLATE";
4087 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
4088 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
4089 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
4090 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
4091 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
4092 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
4093 default:
4094 break;
4095 }
4096 return NULL;
4097 }
4098
4099 static const char *
4100 get_parisc_section_type_name (unsigned int sh_type)
4101 {
4102 switch (sh_type)
4103 {
4104 case SHT_PARISC_EXT: return "PARISC_EXT";
4105 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
4106 case SHT_PARISC_DOC: return "PARISC_DOC";
4107 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
4108 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
4109 case SHT_PARISC_STUBS: return "PARISC_STUBS";
4110 case SHT_PARISC_DLKM: return "PARISC_DLKM";
4111 default: return NULL;
4112 }
4113 }
4114
4115 static const char *
4116 get_ia64_section_type_name (Filedata * filedata, unsigned int sh_type)
4117 {
4118 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
4119 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
4120 return get_osabi_name (filedata, (sh_type & 0x00FF0000) >> 16);
4121
4122 switch (sh_type)
4123 {
4124 case SHT_IA_64_EXT: return "IA_64_EXT";
4125 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
4126 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
4127 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
4128 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
4129 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
4130 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
4131 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
4132 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
4133 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
4134 default:
4135 break;
4136 }
4137 return NULL;
4138 }
4139
4140 static const char *
4141 get_x86_64_section_type_name (unsigned int sh_type)
4142 {
4143 switch (sh_type)
4144 {
4145 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
4146 default: return NULL;
4147 }
4148 }
4149
4150 static const char *
4151 get_aarch64_section_type_name (unsigned int sh_type)
4152 {
4153 switch (sh_type)
4154 {
4155 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4156 default: return NULL;
4157 }
4158 }
4159
4160 static const char *
4161 get_arm_section_type_name (unsigned int sh_type)
4162 {
4163 switch (sh_type)
4164 {
4165 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4166 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4167 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4168 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4169 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4170 default: return NULL;
4171 }
4172 }
4173
4174 static const char *
4175 get_tic6x_section_type_name (unsigned int sh_type)
4176 {
4177 switch (sh_type)
4178 {
4179 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4180 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4181 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4182 case SHT_TI_ICODE: return "TI_ICODE";
4183 case SHT_TI_XREF: return "TI_XREF";
4184 case SHT_TI_HANDLER: return "TI_HANDLER";
4185 case SHT_TI_INITINFO: return "TI_INITINFO";
4186 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4187 default: return NULL;
4188 }
4189 }
4190
4191 static const char *
4192 get_msp430x_section_type_name (unsigned int sh_type)
4193 {
4194 switch (sh_type)
4195 {
4196 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4197 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4198 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4199 default: return NULL;
4200 }
4201 }
4202
4203 static const char *
4204 get_nfp_section_type_name (unsigned int sh_type)
4205 {
4206 switch (sh_type)
4207 {
4208 case SHT_NFP_MECONFIG: return "NFP_MECONFIG";
4209 case SHT_NFP_INITREG: return "NFP_INITREG";
4210 case SHT_NFP_UDEBUG: return "NFP_UDEBUG";
4211 default: return NULL;
4212 }
4213 }
4214
4215 static const char *
4216 get_v850_section_type_name (unsigned int sh_type)
4217 {
4218 switch (sh_type)
4219 {
4220 case SHT_V850_SCOMMON: return "V850 Small Common";
4221 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4222 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4223 case SHT_RENESAS_IOP: return "RENESAS IOP";
4224 case SHT_RENESAS_INFO: return "RENESAS INFO";
4225 default: return NULL;
4226 }
4227 }
4228
4229 static const char *
4230 get_riscv_section_type_name (unsigned int sh_type)
4231 {
4232 switch (sh_type)
4233 {
4234 case SHT_RISCV_ATTRIBUTES: return "RISCV_ATTRIBUTES";
4235 default: return NULL;
4236 }
4237 }
4238
4239 static const char *
4240 get_section_type_name (Filedata * filedata, unsigned int sh_type)
4241 {
4242 static char buff[32];
4243 const char * result;
4244
4245 switch (sh_type)
4246 {
4247 case SHT_NULL: return "NULL";
4248 case SHT_PROGBITS: return "PROGBITS";
4249 case SHT_SYMTAB: return "SYMTAB";
4250 case SHT_STRTAB: return "STRTAB";
4251 case SHT_RELA: return "RELA";
4252 case SHT_HASH: return "HASH";
4253 case SHT_DYNAMIC: return "DYNAMIC";
4254 case SHT_NOTE: return "NOTE";
4255 case SHT_NOBITS: return "NOBITS";
4256 case SHT_REL: return "REL";
4257 case SHT_SHLIB: return "SHLIB";
4258 case SHT_DYNSYM: return "DYNSYM";
4259 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4260 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4261 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4262 case SHT_GNU_HASH: return "GNU_HASH";
4263 case SHT_GROUP: return "GROUP";
4264 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICES";
4265 case SHT_GNU_verdef: return "VERDEF";
4266 case SHT_GNU_verneed: return "VERNEED";
4267 case SHT_GNU_versym: return "VERSYM";
4268 case 0x6ffffff0: return "VERSYM";
4269 case 0x6ffffffc: return "VERDEF";
4270 case 0x7ffffffd: return "AUXILIARY";
4271 case 0x7fffffff: return "FILTER";
4272 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4273
4274 default:
4275 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4276 {
4277 switch (filedata->file_header.e_machine)
4278 {
4279 case EM_ARC:
4280 case EM_ARC_COMPACT:
4281 case EM_ARC_COMPACT2:
4282 result = get_arc_section_type_name (sh_type);
4283 break;
4284 case EM_MIPS:
4285 case EM_MIPS_RS3_LE:
4286 result = get_mips_section_type_name (sh_type);
4287 break;
4288 case EM_PARISC:
4289 result = get_parisc_section_type_name (sh_type);
4290 break;
4291 case EM_IA_64:
4292 result = get_ia64_section_type_name (filedata, sh_type);
4293 break;
4294 case EM_X86_64:
4295 case EM_L1OM:
4296 case EM_K1OM:
4297 result = get_x86_64_section_type_name (sh_type);
4298 break;
4299 case EM_AARCH64:
4300 result = get_aarch64_section_type_name (sh_type);
4301 break;
4302 case EM_ARM:
4303 result = get_arm_section_type_name (sh_type);
4304 break;
4305 case EM_TI_C6000:
4306 result = get_tic6x_section_type_name (sh_type);
4307 break;
4308 case EM_MSP430:
4309 result = get_msp430x_section_type_name (sh_type);
4310 break;
4311 case EM_NFP:
4312 result = get_nfp_section_type_name (sh_type);
4313 break;
4314 case EM_V800:
4315 case EM_V850:
4316 case EM_CYGNUS_V850:
4317 result = get_v850_section_type_name (sh_type);
4318 break;
4319 case EM_RISCV:
4320 result = get_riscv_section_type_name (sh_type);
4321 break;
4322 default:
4323 result = NULL;
4324 break;
4325 }
4326
4327 if (result != NULL)
4328 return result;
4329
4330 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4331 }
4332 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4333 {
4334 switch (filedata->file_header.e_machine)
4335 {
4336 case EM_IA_64:
4337 result = get_ia64_section_type_name (filedata, sh_type);
4338 break;
4339 default:
4340 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4341 result = get_solaris_section_type (sh_type);
4342 else
4343 {
4344 switch (sh_type)
4345 {
4346 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4347 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4348 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4349 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4350 default:
4351 result = NULL;
4352 break;
4353 }
4354 }
4355 break;
4356 }
4357
4358 if (result != NULL)
4359 return result;
4360
4361 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4362 }
4363 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4364 {
4365 switch (filedata->file_header.e_machine)
4366 {
4367 case EM_V800:
4368 case EM_V850:
4369 case EM_CYGNUS_V850:
4370 result = get_v850_section_type_name (sh_type);
4371 break;
4372 default:
4373 result = NULL;
4374 break;
4375 }
4376
4377 if (result != NULL)
4378 return result;
4379
4380 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4381 }
4382 else
4383 /* This message is probably going to be displayed in a 15
4384 character wide field, so put the hex value first. */
4385 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4386
4387 return buff;
4388 }
4389 }
4390
4391 #define OPTION_DEBUG_DUMP 512
4392 #define OPTION_DYN_SYMS 513
4393 #define OPTION_DWARF_DEPTH 514
4394 #define OPTION_DWARF_START 515
4395 #define OPTION_DWARF_CHECK 516
4396
4397 static struct option options[] =
4398 {
4399 {"all", no_argument, 0, 'a'},
4400 {"file-header", no_argument, 0, 'h'},
4401 {"program-headers", no_argument, 0, 'l'},
4402 {"headers", no_argument, 0, 'e'},
4403 {"histogram", no_argument, 0, 'I'},
4404 {"segments", no_argument, 0, 'l'},
4405 {"sections", no_argument, 0, 'S'},
4406 {"section-headers", no_argument, 0, 'S'},
4407 {"section-groups", no_argument, 0, 'g'},
4408 {"section-details", no_argument, 0, 't'},
4409 {"full-section-name",no_argument, 0, 'N'},
4410 {"symbols", no_argument, 0, 's'},
4411 {"syms", no_argument, 0, 's'},
4412 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4413 {"relocs", no_argument, 0, 'r'},
4414 {"notes", no_argument, 0, 'n'},
4415 {"dynamic", no_argument, 0, 'd'},
4416 {"arch-specific", no_argument, 0, 'A'},
4417 {"version-info", no_argument, 0, 'V'},
4418 {"use-dynamic", no_argument, 0, 'D'},
4419 {"unwind", no_argument, 0, 'u'},
4420 {"archive-index", no_argument, 0, 'c'},
4421 {"hex-dump", required_argument, 0, 'x'},
4422 {"relocated-dump", required_argument, 0, 'R'},
4423 {"string-dump", required_argument, 0, 'p'},
4424 {"decompress", no_argument, 0, 'z'},
4425 #ifdef SUPPORT_DISASSEMBLY
4426 {"instruction-dump", required_argument, 0, 'i'},
4427 #endif
4428 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4429
4430 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4431 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4432 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4433
4434 {"version", no_argument, 0, 'v'},
4435 {"wide", no_argument, 0, 'W'},
4436 {"help", no_argument, 0, 'H'},
4437 {0, no_argument, 0, 0}
4438 };
4439
4440 static void
4441 usage (FILE * stream)
4442 {
4443 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4444 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4445 fprintf (stream, _(" Options are:\n\
4446 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4447 -h --file-header Display the ELF file header\n\
4448 -l --program-headers Display the program headers\n\
4449 --segments An alias for --program-headers\n\
4450 -S --section-headers Display the sections' header\n\
4451 --sections An alias for --section-headers\n\
4452 -g --section-groups Display the section groups\n\
4453 -t --section-details Display the section details\n\
4454 -e --headers Equivalent to: -h -l -S\n\
4455 -s --syms Display the symbol table\n\
4456 --symbols An alias for --syms\n\
4457 --dyn-syms Display the dynamic symbol table\n\
4458 -n --notes Display the core notes (if present)\n\
4459 -r --relocs Display the relocations (if present)\n\
4460 -u --unwind Display the unwind info (if present)\n\
4461 -d --dynamic Display the dynamic section (if present)\n\
4462 -V --version-info Display the version sections (if present)\n\
4463 -A --arch-specific Display architecture specific information (if any)\n\
4464 -c --archive-index Display the symbol/file index in an archive\n\
4465 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4466 -x --hex-dump=<number|name>\n\
4467 Dump the contents of section <number|name> as bytes\n\
4468 -p --string-dump=<number|name>\n\
4469 Dump the contents of section <number|name> as strings\n\
4470 -R --relocated-dump=<number|name>\n\
4471 Dump the contents of section <number|name> as relocated bytes\n\
4472 -z --decompress Decompress section before dumping it\n\
4473 -w[lLiaprmfFsoRtUuTgAckK] or\n\
4474 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4475 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4476 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4477 =addr,=cu_index,=links,=follow-links]\n\
4478 Display the contents of DWARF debug sections\n"));
4479 fprintf (stream, _("\
4480 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4481 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4482 or deeper\n"));
4483 #ifdef SUPPORT_DISASSEMBLY
4484 fprintf (stream, _("\
4485 -i --instruction-dump=<number|name>\n\
4486 Disassemble the contents of section <number|name>\n"));
4487 #endif
4488 fprintf (stream, _("\
4489 -I --histogram Display histogram of bucket list lengths\n\
4490 -W --wide Allow output width to exceed 80 characters\n\
4491 @<file> Read options from <file>\n\
4492 -H --help Display this information\n\
4493 -v --version Display the version number of readelf\n"));
4494
4495 if (REPORT_BUGS_TO[0] && stream == stdout)
4496 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4497
4498 exit (stream == stdout ? 0 : 1);
4499 }
4500
4501 /* Record the fact that the user wants the contents of section number
4502 SECTION to be displayed using the method(s) encoded as flags bits
4503 in TYPE. Note, TYPE can be zero if we are creating the array for
4504 the first time. */
4505
4506 static void
4507 request_dump_bynumber (Filedata * filedata, unsigned int section, dump_type type)
4508 {
4509 if (section >= filedata->num_dump_sects)
4510 {
4511 dump_type * new_dump_sects;
4512
4513 new_dump_sects = (dump_type *) calloc (section + 1,
4514 sizeof (* new_dump_sects));
4515
4516 if (new_dump_sects == NULL)
4517 error (_("Out of memory allocating dump request table.\n"));
4518 else
4519 {
4520 if (filedata->dump_sects)
4521 {
4522 /* Copy current flag settings. */
4523 memcpy (new_dump_sects, filedata->dump_sects,
4524 filedata->num_dump_sects * sizeof (* new_dump_sects));
4525
4526 free (filedata->dump_sects);
4527 }
4528
4529 filedata->dump_sects = new_dump_sects;
4530 filedata->num_dump_sects = section + 1;
4531 }
4532 }
4533
4534 if (filedata->dump_sects)
4535 filedata->dump_sects[section] |= type;
4536 }
4537
4538 /* Request a dump by section name. */
4539
4540 static void
4541 request_dump_byname (const char * section, dump_type type)
4542 {
4543 struct dump_list_entry * new_request;
4544
4545 new_request = (struct dump_list_entry *)
4546 malloc (sizeof (struct dump_list_entry));
4547 if (!new_request)
4548 error (_("Out of memory allocating dump request table.\n"));
4549
4550 new_request->name = strdup (section);
4551 if (!new_request->name)
4552 error (_("Out of memory allocating dump request table.\n"));
4553
4554 new_request->type = type;
4555
4556 new_request->next = dump_sects_byname;
4557 dump_sects_byname = new_request;
4558 }
4559
4560 static inline void
4561 request_dump (Filedata * filedata, dump_type type)
4562 {
4563 int section;
4564 char * cp;
4565
4566 do_dump++;
4567 section = strtoul (optarg, & cp, 0);
4568
4569 if (! *cp && section >= 0)
4570 request_dump_bynumber (filedata, section, type);
4571 else
4572 request_dump_byname (optarg, type);
4573 }
4574
4575 static void
4576 parse_args (Filedata * filedata, int argc, char ** argv)
4577 {
4578 int c;
4579
4580 if (argc < 2)
4581 usage (stderr);
4582
4583 while ((c = getopt_long
4584 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4585 {
4586 switch (c)
4587 {
4588 case 0:
4589 /* Long options. */
4590 break;
4591 case 'H':
4592 usage (stdout);
4593 break;
4594
4595 case 'a':
4596 do_syms = TRUE;
4597 do_reloc = TRUE;
4598 do_unwind = TRUE;
4599 do_dynamic = TRUE;
4600 do_header = TRUE;
4601 do_sections = TRUE;
4602 do_section_groups = TRUE;
4603 do_segments = TRUE;
4604 do_version = TRUE;
4605 do_histogram = TRUE;
4606 do_arch = TRUE;
4607 do_notes = TRUE;
4608 break;
4609 case 'g':
4610 do_section_groups = TRUE;
4611 break;
4612 case 't':
4613 case 'N':
4614 do_sections = TRUE;
4615 do_section_details = TRUE;
4616 break;
4617 case 'e':
4618 do_header = TRUE;
4619 do_sections = TRUE;
4620 do_segments = TRUE;
4621 break;
4622 case 'A':
4623 do_arch = TRUE;
4624 break;
4625 case 'D':
4626 do_using_dynamic = TRUE;
4627 break;
4628 case 'r':
4629 do_reloc = TRUE;
4630 break;
4631 case 'u':
4632 do_unwind = TRUE;
4633 break;
4634 case 'h':
4635 do_header = TRUE;
4636 break;
4637 case 'l':
4638 do_segments = TRUE;
4639 break;
4640 case 's':
4641 do_syms = TRUE;
4642 break;
4643 case 'S':
4644 do_sections = TRUE;
4645 break;
4646 case 'd':
4647 do_dynamic = TRUE;
4648 break;
4649 case 'I':
4650 do_histogram = TRUE;
4651 break;
4652 case 'n':
4653 do_notes = TRUE;
4654 break;
4655 case 'c':
4656 do_archive_index = TRUE;
4657 break;
4658 case 'x':
4659 request_dump (filedata, HEX_DUMP);
4660 break;
4661 case 'p':
4662 request_dump (filedata, STRING_DUMP);
4663 break;
4664 case 'R':
4665 request_dump (filedata, RELOC_DUMP);
4666 break;
4667 case 'z':
4668 decompress_dumps = TRUE;
4669 break;
4670 case 'w':
4671 do_dump = TRUE;
4672 if (optarg == 0)
4673 {
4674 do_debugging = TRUE;
4675 dwarf_select_sections_all ();
4676 }
4677 else
4678 {
4679 do_debugging = FALSE;
4680 dwarf_select_sections_by_letters (optarg);
4681 }
4682 break;
4683 case OPTION_DEBUG_DUMP:
4684 do_dump = TRUE;
4685 if (optarg == 0)
4686 do_debugging = TRUE;
4687 else
4688 {
4689 do_debugging = FALSE;
4690 dwarf_select_sections_by_names (optarg);
4691 }
4692 break;
4693 case OPTION_DWARF_DEPTH:
4694 {
4695 char *cp;
4696
4697 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4698 }
4699 break;
4700 case OPTION_DWARF_START:
4701 {
4702 char *cp;
4703
4704 dwarf_start_die = strtoul (optarg, & cp, 0);
4705 }
4706 break;
4707 case OPTION_DWARF_CHECK:
4708 dwarf_check = TRUE;
4709 break;
4710 case OPTION_DYN_SYMS:
4711 do_dyn_syms = TRUE;
4712 break;
4713 #ifdef SUPPORT_DISASSEMBLY
4714 case 'i':
4715 request_dump (filedata, DISASS_DUMP);
4716 break;
4717 #endif
4718 case 'v':
4719 print_version (program_name);
4720 break;
4721 case 'V':
4722 do_version = TRUE;
4723 break;
4724 case 'W':
4725 do_wide = TRUE;
4726 break;
4727 default:
4728 /* xgettext:c-format */
4729 error (_("Invalid option '-%c'\n"), c);
4730 /* Fall through. */
4731 case '?':
4732 usage (stderr);
4733 }
4734 }
4735
4736 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4737 && !do_segments && !do_header && !do_dump && !do_version
4738 && !do_histogram && !do_debugging && !do_arch && !do_notes
4739 && !do_section_groups && !do_archive_index
4740 && !do_dyn_syms)
4741 usage (stderr);
4742 }
4743
4744 static const char *
4745 get_elf_class (unsigned int elf_class)
4746 {
4747 static char buff[32];
4748
4749 switch (elf_class)
4750 {
4751 case ELFCLASSNONE: return _("none");
4752 case ELFCLASS32: return "ELF32";
4753 case ELFCLASS64: return "ELF64";
4754 default:
4755 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4756 return buff;
4757 }
4758 }
4759
4760 static const char *
4761 get_data_encoding (unsigned int encoding)
4762 {
4763 static char buff[32];
4764
4765 switch (encoding)
4766 {
4767 case ELFDATANONE: return _("none");
4768 case ELFDATA2LSB: return _("2's complement, little endian");
4769 case ELFDATA2MSB: return _("2's complement, big endian");
4770 default:
4771 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4772 return buff;
4773 }
4774 }
4775
4776 /* Decode the data held in 'filedata->file_header'. */
4777
4778 static bfd_boolean
4779 process_file_header (Filedata * filedata)
4780 {
4781 Elf_Internal_Ehdr * header = & filedata->file_header;
4782
4783 if ( header->e_ident[EI_MAG0] != ELFMAG0
4784 || header->e_ident[EI_MAG1] != ELFMAG1
4785 || header->e_ident[EI_MAG2] != ELFMAG2
4786 || header->e_ident[EI_MAG3] != ELFMAG3)
4787 {
4788 error
4789 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4790 return FALSE;
4791 }
4792
4793 init_dwarf_regnames (header->e_machine);
4794
4795 if (do_header)
4796 {
4797 unsigned i;
4798
4799 printf (_("ELF Header:\n"));
4800 printf (_(" Magic: "));
4801 for (i = 0; i < EI_NIDENT; i++)
4802 printf ("%2.2x ", header->e_ident[i]);
4803 printf ("\n");
4804 printf (_(" Class: %s\n"),
4805 get_elf_class (header->e_ident[EI_CLASS]));
4806 printf (_(" Data: %s\n"),
4807 get_data_encoding (header->e_ident[EI_DATA]));
4808 printf (_(" Version: %d%s\n"),
4809 header->e_ident[EI_VERSION],
4810 (header->e_ident[EI_VERSION] == EV_CURRENT
4811 ? _(" (current)")
4812 : (header->e_ident[EI_VERSION] != EV_NONE
4813 ? _(" <unknown>")
4814 : "")));
4815 printf (_(" OS/ABI: %s\n"),
4816 get_osabi_name (filedata, header->e_ident[EI_OSABI]));
4817 printf (_(" ABI Version: %d\n"),
4818 header->e_ident[EI_ABIVERSION]);
4819 printf (_(" Type: %s\n"),
4820 get_file_type (header->e_type));
4821 printf (_(" Machine: %s\n"),
4822 get_machine_name (header->e_machine));
4823 printf (_(" Version: 0x%lx\n"),
4824 header->e_version);
4825
4826 printf (_(" Entry point address: "));
4827 print_vma (header->e_entry, PREFIX_HEX);
4828 printf (_("\n Start of program headers: "));
4829 print_vma (header->e_phoff, DEC);
4830 printf (_(" (bytes into file)\n Start of section headers: "));
4831 print_vma (header->e_shoff, DEC);
4832 printf (_(" (bytes into file)\n"));
4833
4834 printf (_(" Flags: 0x%lx%s\n"),
4835 header->e_flags,
4836 get_machine_flags (filedata, header->e_flags, header->e_machine));
4837 printf (_(" Size of this header: %u (bytes)\n"),
4838 header->e_ehsize);
4839 printf (_(" Size of program headers: %u (bytes)\n"),
4840 header->e_phentsize);
4841 printf (_(" Number of program headers: %u"),
4842 header->e_phnum);
4843 if (filedata->section_headers != NULL
4844 && header->e_phnum == PN_XNUM
4845 && filedata->section_headers[0].sh_info != 0)
4846 {
4847 header->e_phnum = filedata->section_headers[0].sh_info;
4848 printf (" (%u)", header->e_phnum);
4849 }
4850 putc ('\n', stdout);
4851 printf (_(" Size of section headers: %u (bytes)\n"),
4852 header->e_shentsize);
4853 printf (_(" Number of section headers: %u"),
4854 header->e_shnum);
4855 if (filedata->section_headers != NULL && header->e_shnum == SHN_UNDEF)
4856 {
4857 header->e_shnum = filedata->section_headers[0].sh_size;
4858 printf (" (%u)", header->e_shnum);
4859 }
4860 putc ('\n', stdout);
4861 printf (_(" Section header string table index: %u"),
4862 header->e_shstrndx);
4863 if (filedata->section_headers != NULL
4864 && header->e_shstrndx == (SHN_XINDEX & 0xffff))
4865 {
4866 header->e_shstrndx = filedata->section_headers[0].sh_link;
4867 printf (" (%u)", header->e_shstrndx);
4868 }
4869 if (header->e_shstrndx != SHN_UNDEF
4870 && header->e_shstrndx >= header->e_shnum)
4871 {
4872 header->e_shstrndx = SHN_UNDEF;
4873 printf (_(" <corrupt: out of range>"));
4874 }
4875 putc ('\n', stdout);
4876 }
4877
4878 if (filedata->section_headers != NULL)
4879 {
4880 if (header->e_phnum == PN_XNUM
4881 && filedata->section_headers[0].sh_info != 0)
4882 header->e_phnum = filedata->section_headers[0].sh_info;
4883 if (header->e_shnum == SHN_UNDEF)
4884 header->e_shnum = filedata->section_headers[0].sh_size;
4885 if (header->e_shstrndx == (SHN_XINDEX & 0xffff))
4886 header->e_shstrndx = filedata->section_headers[0].sh_link;
4887 if (header->e_shstrndx >= header->e_shnum)
4888 header->e_shstrndx = SHN_UNDEF;
4889 free (filedata->section_headers);
4890 filedata->section_headers = NULL;
4891 }
4892
4893 return TRUE;
4894 }
4895
4896 /* Read in the program headers from FILEDATA and store them in PHEADERS.
4897 Returns TRUE upon success, FALSE otherwise. Loads 32-bit headers. */
4898
4899 static bfd_boolean
4900 get_32bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
4901 {
4902 Elf32_External_Phdr * phdrs;
4903 Elf32_External_Phdr * external;
4904 Elf_Internal_Phdr * internal;
4905 unsigned int i;
4906 unsigned int size = filedata->file_header.e_phentsize;
4907 unsigned int num = filedata->file_header.e_phnum;
4908
4909 /* PR binutils/17531: Cope with unexpected section header sizes. */
4910 if (size == 0 || num == 0)
4911 return FALSE;
4912 if (size < sizeof * phdrs)
4913 {
4914 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4915 return FALSE;
4916 }
4917 if (size > sizeof * phdrs)
4918 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4919
4920 phdrs = (Elf32_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
4921 size, num, _("program headers"));
4922 if (phdrs == NULL)
4923 return FALSE;
4924
4925 for (i = 0, internal = pheaders, external = phdrs;
4926 i < filedata->file_header.e_phnum;
4927 i++, internal++, external++)
4928 {
4929 internal->p_type = BYTE_GET (external->p_type);
4930 internal->p_offset = BYTE_GET (external->p_offset);
4931 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4932 internal->p_paddr = BYTE_GET (external->p_paddr);
4933 internal->p_filesz = BYTE_GET (external->p_filesz);
4934 internal->p_memsz = BYTE_GET (external->p_memsz);
4935 internal->p_flags = BYTE_GET (external->p_flags);
4936 internal->p_align = BYTE_GET (external->p_align);
4937 }
4938
4939 free (phdrs);
4940 return TRUE;
4941 }
4942
4943 /* Read in the program headers from FILEDATA and store them in PHEADERS.
4944 Returns TRUE upon success, FALSE otherwise. Loads 64-bit headers. */
4945
4946 static bfd_boolean
4947 get_64bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
4948 {
4949 Elf64_External_Phdr * phdrs;
4950 Elf64_External_Phdr * external;
4951 Elf_Internal_Phdr * internal;
4952 unsigned int i;
4953 unsigned int size = filedata->file_header.e_phentsize;
4954 unsigned int num = filedata->file_header.e_phnum;
4955
4956 /* PR binutils/17531: Cope with unexpected section header sizes. */
4957 if (size == 0 || num == 0)
4958 return FALSE;
4959 if (size < sizeof * phdrs)
4960 {
4961 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4962 return FALSE;
4963 }
4964 if (size > sizeof * phdrs)
4965 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4966
4967 phdrs = (Elf64_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
4968 size, num, _("program headers"));
4969 if (!phdrs)
4970 return FALSE;
4971
4972 for (i = 0, internal = pheaders, external = phdrs;
4973 i < filedata->file_header.e_phnum;
4974 i++, internal++, external++)
4975 {
4976 internal->p_type = BYTE_GET (external->p_type);
4977 internal->p_flags = BYTE_GET (external->p_flags);
4978 internal->p_offset = BYTE_GET (external->p_offset);
4979 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4980 internal->p_paddr = BYTE_GET (external->p_paddr);
4981 internal->p_filesz = BYTE_GET (external->p_filesz);
4982 internal->p_memsz = BYTE_GET (external->p_memsz);
4983 internal->p_align = BYTE_GET (external->p_align);
4984 }
4985
4986 free (phdrs);
4987 return TRUE;
4988 }
4989
4990 /* Returns TRUE if the program headers were read into `program_headers'. */
4991
4992 static bfd_boolean
4993 get_program_headers (Filedata * filedata)
4994 {
4995 Elf_Internal_Phdr * phdrs;
4996
4997 /* Check cache of prior read. */
4998 if (filedata->program_headers != NULL)
4999 return TRUE;
5000
5001 /* Be kind to memory checkers by looking for
5002 e_phnum values which we know must be invalid. */
5003 if (filedata->file_header.e_phnum
5004 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
5005 >= filedata->file_size)
5006 {
5007 error (_("Too many program headers - %#x - the file is not that big\n"),
5008 filedata->file_header.e_phnum);
5009 return FALSE;
5010 }
5011
5012 phdrs = (Elf_Internal_Phdr *) cmalloc (filedata->file_header.e_phnum,
5013 sizeof (Elf_Internal_Phdr));
5014 if (phdrs == NULL)
5015 {
5016 error (_("Out of memory reading %u program headers\n"),
5017 filedata->file_header.e_phnum);
5018 return FALSE;
5019 }
5020
5021 if (is_32bit_elf
5022 ? get_32bit_program_headers (filedata, phdrs)
5023 : get_64bit_program_headers (filedata, phdrs))
5024 {
5025 filedata->program_headers = phdrs;
5026 return TRUE;
5027 }
5028
5029 free (phdrs);
5030 return FALSE;
5031 }
5032
5033 /* Returns TRUE if the program headers were loaded. */
5034
5035 static bfd_boolean
5036 process_program_headers (Filedata * filedata)
5037 {
5038 Elf_Internal_Phdr * segment;
5039 unsigned int i;
5040 Elf_Internal_Phdr * previous_load = NULL;
5041
5042 if (filedata->file_header.e_phnum == 0)
5043 {
5044 /* PR binutils/12467. */
5045 if (filedata->file_header.e_phoff != 0)
5046 {
5047 warn (_("possibly corrupt ELF header - it has a non-zero program"
5048 " header offset, but no program headers\n"));
5049 return FALSE;
5050 }
5051 else if (do_segments)
5052 printf (_("\nThere are no program headers in this file.\n"));
5053 return TRUE;
5054 }
5055
5056 if (do_segments && !do_header)
5057 {
5058 printf (_("\nElf file type is %s\n"), get_file_type (filedata->file_header.e_type));
5059 printf (_("Entry point 0x%s\n"), bfd_vmatoa ("x", filedata->file_header.e_entry));
5060 printf (ngettext ("There is %d program header, starting at offset %s\n",
5061 "There are %d program headers, starting at offset %s\n",
5062 filedata->file_header.e_phnum),
5063 filedata->file_header.e_phnum,
5064 bfd_vmatoa ("u", filedata->file_header.e_phoff));
5065 }
5066
5067 if (! get_program_headers (filedata))
5068 return TRUE;
5069
5070 if (do_segments)
5071 {
5072 if (filedata->file_header.e_phnum > 1)
5073 printf (_("\nProgram Headers:\n"));
5074 else
5075 printf (_("\nProgram Headers:\n"));
5076
5077 if (is_32bit_elf)
5078 printf
5079 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
5080 else if (do_wide)
5081 printf
5082 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
5083 else
5084 {
5085 printf
5086 (_(" Type Offset VirtAddr PhysAddr\n"));
5087 printf
5088 (_(" FileSiz MemSiz Flags Align\n"));
5089 }
5090 }
5091
5092 dynamic_addr = 0;
5093 dynamic_size = 0;
5094
5095 for (i = 0, segment = filedata->program_headers;
5096 i < filedata->file_header.e_phnum;
5097 i++, segment++)
5098 {
5099 if (do_segments)
5100 {
5101 printf (" %-14.14s ", get_segment_type (filedata, segment->p_type));
5102
5103 if (is_32bit_elf)
5104 {
5105 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
5106 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
5107 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
5108 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
5109 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
5110 printf ("%c%c%c ",
5111 (segment->p_flags & PF_R ? 'R' : ' '),
5112 (segment->p_flags & PF_W ? 'W' : ' '),
5113 (segment->p_flags & PF_X ? 'E' : ' '));
5114 printf ("%#lx", (unsigned long) segment->p_align);
5115 }
5116 else if (do_wide)
5117 {
5118 if ((unsigned long) segment->p_offset == segment->p_offset)
5119 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
5120 else
5121 {
5122 print_vma (segment->p_offset, FULL_HEX);
5123 putchar (' ');
5124 }
5125
5126 print_vma (segment->p_vaddr, FULL_HEX);
5127 putchar (' ');
5128 print_vma (segment->p_paddr, FULL_HEX);
5129 putchar (' ');
5130
5131 if ((unsigned long) segment->p_filesz == segment->p_filesz)
5132 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
5133 else
5134 {
5135 print_vma (segment->p_filesz, FULL_HEX);
5136 putchar (' ');
5137 }
5138
5139 if ((unsigned long) segment->p_memsz == segment->p_memsz)
5140 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
5141 else
5142 {
5143 print_vma (segment->p_memsz, FULL_HEX);
5144 }
5145
5146 printf (" %c%c%c ",
5147 (segment->p_flags & PF_R ? 'R' : ' '),
5148 (segment->p_flags & PF_W ? 'W' : ' '),
5149 (segment->p_flags & PF_X ? 'E' : ' '));
5150
5151 if ((unsigned long) segment->p_align == segment->p_align)
5152 printf ("%#lx", (unsigned long) segment->p_align);
5153 else
5154 {
5155 print_vma (segment->p_align, PREFIX_HEX);
5156 }
5157 }
5158 else
5159 {
5160 print_vma (segment->p_offset, FULL_HEX);
5161 putchar (' ');
5162 print_vma (segment->p_vaddr, FULL_HEX);
5163 putchar (' ');
5164 print_vma (segment->p_paddr, FULL_HEX);
5165 printf ("\n ");
5166 print_vma (segment->p_filesz, FULL_HEX);
5167 putchar (' ');
5168 print_vma (segment->p_memsz, FULL_HEX);
5169 printf (" %c%c%c ",
5170 (segment->p_flags & PF_R ? 'R' : ' '),
5171 (segment->p_flags & PF_W ? 'W' : ' '),
5172 (segment->p_flags & PF_X ? 'E' : ' '));
5173 print_vma (segment->p_align, PREFIX_HEX);
5174 }
5175
5176 putc ('\n', stdout);
5177 }
5178
5179 switch (segment->p_type)
5180 {
5181 case PT_LOAD:
5182 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
5183 required by the ELF standard, several programs, including the Linux
5184 kernel, make use of non-ordered segments. */
5185 if (previous_load
5186 && previous_load->p_vaddr > segment->p_vaddr)
5187 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
5188 #endif
5189 if (segment->p_memsz < segment->p_filesz)
5190 error (_("the segment's file size is larger than its memory size\n"));
5191 previous_load = segment;
5192 break;
5193
5194 case PT_PHDR:
5195 /* PR 20815 - Verify that the program header is loaded into memory. */
5196 if (i > 0 && previous_load != NULL)
5197 error (_("the PHDR segment must occur before any LOAD segment\n"));
5198 if (filedata->file_header.e_machine != EM_PARISC)
5199 {
5200 unsigned int j;
5201
5202 for (j = 1; j < filedata->file_header.e_phnum; j++)
5203 if (filedata->program_headers[j].p_vaddr <= segment->p_vaddr
5204 && (filedata->program_headers[j].p_vaddr
5205 + filedata->program_headers[j].p_memsz)
5206 >= (segment->p_vaddr + segment->p_filesz))
5207 break;
5208 if (j == filedata->file_header.e_phnum)
5209 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5210 }
5211 break;
5212
5213 case PT_DYNAMIC:
5214 if (dynamic_addr)
5215 error (_("more than one dynamic segment\n"));
5216
5217 /* By default, assume that the .dynamic section is the first
5218 section in the DYNAMIC segment. */
5219 dynamic_addr = segment->p_offset;
5220 dynamic_size = segment->p_filesz;
5221
5222 /* Try to locate the .dynamic section. If there is
5223 a section header table, we can easily locate it. */
5224 if (filedata->section_headers != NULL)
5225 {
5226 Elf_Internal_Shdr * sec;
5227
5228 sec = find_section (filedata, ".dynamic");
5229 if (sec == NULL || sec->sh_size == 0)
5230 {
5231 /* A corresponding .dynamic section is expected, but on
5232 IA-64/OpenVMS it is OK for it to be missing. */
5233 if (!is_ia64_vms (filedata))
5234 error (_("no .dynamic section in the dynamic segment\n"));
5235 break;
5236 }
5237
5238 if (sec->sh_type == SHT_NOBITS)
5239 {
5240 dynamic_size = 0;
5241 break;
5242 }
5243
5244 dynamic_addr = sec->sh_offset;
5245 dynamic_size = sec->sh_size;
5246
5247 if (dynamic_addr < segment->p_offset
5248 || dynamic_addr > segment->p_offset + segment->p_filesz)
5249 warn (_("the .dynamic section is not contained"
5250 " within the dynamic segment\n"));
5251 else if (dynamic_addr > segment->p_offset)
5252 warn (_("the .dynamic section is not the first section"
5253 " in the dynamic segment.\n"));
5254 }
5255
5256 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5257 segment. Check this after matching against the section headers
5258 so we don't warn on debuginfo file (which have NOBITS .dynamic
5259 sections). */
5260 if (dynamic_addr > filedata->file_size
5261 || dynamic_size > filedata->file_size - dynamic_addr)
5262 {
5263 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5264 dynamic_addr = dynamic_size = 0;
5265 }
5266 break;
5267
5268 case PT_INTERP:
5269 if (fseek (filedata->handle, archive_file_offset + (long) segment->p_offset,
5270 SEEK_SET))
5271 error (_("Unable to find program interpreter name\n"));
5272 else
5273 {
5274 char fmt [32];
5275 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5276
5277 if (ret >= (int) sizeof (fmt) || ret < 0)
5278 error (_("Internal error: failed to create format string to display program interpreter\n"));
5279
5280 program_interpreter[0] = 0;
5281 if (fscanf (filedata->handle, fmt, program_interpreter) <= 0)
5282 error (_("Unable to read program interpreter name\n"));
5283
5284 if (do_segments)
5285 printf (_(" [Requesting program interpreter: %s]\n"),
5286 program_interpreter);
5287 }
5288 break;
5289 }
5290 }
5291
5292 if (do_segments
5293 && filedata->section_headers != NULL
5294 && filedata->string_table != NULL)
5295 {
5296 printf (_("\n Section to Segment mapping:\n"));
5297 printf (_(" Segment Sections...\n"));
5298
5299 for (i = 0; i < filedata->file_header.e_phnum; i++)
5300 {
5301 unsigned int j;
5302 Elf_Internal_Shdr * section;
5303
5304 segment = filedata->program_headers + i;
5305 section = filedata->section_headers + 1;
5306
5307 printf (" %2.2d ", i);
5308
5309 for (j = 1; j < filedata->file_header.e_shnum; j++, section++)
5310 {
5311 if (!ELF_TBSS_SPECIAL (section, segment)
5312 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5313 printf ("%s ", printable_section_name (filedata, section));
5314 }
5315
5316 putc ('\n',stdout);
5317 }
5318 }
5319
5320 return TRUE;
5321 }
5322
5323
5324 /* Find the file offset corresponding to VMA by using the program headers. */
5325
5326 static long
5327 offset_from_vma (Filedata * filedata, bfd_vma vma, bfd_size_type size)
5328 {
5329 Elf_Internal_Phdr * seg;
5330
5331 if (! get_program_headers (filedata))
5332 {
5333 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5334 return (long) vma;
5335 }
5336
5337 for (seg = filedata->program_headers;
5338 seg < filedata->program_headers + filedata->file_header.e_phnum;
5339 ++seg)
5340 {
5341 if (seg->p_type != PT_LOAD)
5342 continue;
5343
5344 if (vma >= (seg->p_vaddr & -seg->p_align)
5345 && vma + size <= seg->p_vaddr + seg->p_filesz)
5346 return vma - seg->p_vaddr + seg->p_offset;
5347 }
5348
5349 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5350 (unsigned long) vma);
5351 return (long) vma;
5352 }
5353
5354
5355 /* Allocate memory and load the sections headers into FILEDATA->filedata->section_headers.
5356 If PROBE is true, this is just a probe and we do not generate any error
5357 messages if the load fails. */
5358
5359 static bfd_boolean
5360 get_32bit_section_headers (Filedata * filedata, bfd_boolean probe)
5361 {
5362 Elf32_External_Shdr * shdrs;
5363 Elf_Internal_Shdr * internal;
5364 unsigned int i;
5365 unsigned int size = filedata->file_header.e_shentsize;
5366 unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
5367
5368 /* PR binutils/17531: Cope with unexpected section header sizes. */
5369 if (size == 0 || num == 0)
5370 return FALSE;
5371 if (size < sizeof * shdrs)
5372 {
5373 if (! probe)
5374 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5375 return FALSE;
5376 }
5377 if (!probe && size > sizeof * shdrs)
5378 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5379
5380 shdrs = (Elf32_External_Shdr *) get_data (NULL, filedata, filedata->file_header.e_shoff,
5381 size, num,
5382 probe ? NULL : _("section headers"));
5383 if (shdrs == NULL)
5384 return FALSE;
5385
5386 free (filedata->section_headers);
5387 filedata->section_headers = (Elf_Internal_Shdr *)
5388 cmalloc (num, sizeof (Elf_Internal_Shdr));
5389 if (filedata->section_headers == NULL)
5390 {
5391 if (!probe)
5392 error (_("Out of memory reading %u section headers\n"), num);
5393 free (shdrs);
5394 return FALSE;
5395 }
5396
5397 for (i = 0, internal = filedata->section_headers;
5398 i < num;
5399 i++, internal++)
5400 {
5401 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5402 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5403 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5404 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5405 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5406 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5407 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5408 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5409 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5410 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5411 if (!probe && internal->sh_link > num)
5412 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5413 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5414 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5415 }
5416
5417 free (shdrs);
5418 return TRUE;
5419 }
5420
5421 /* Like get_32bit_section_headers, except that it fetches 64-bit headers. */
5422
5423 static bfd_boolean
5424 get_64bit_section_headers (Filedata * filedata, bfd_boolean probe)
5425 {
5426 Elf64_External_Shdr * shdrs;
5427 Elf_Internal_Shdr * internal;
5428 unsigned int i;
5429 unsigned int size = filedata->file_header.e_shentsize;
5430 unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
5431
5432 /* PR binutils/17531: Cope with unexpected section header sizes. */
5433 if (size == 0 || num == 0)
5434 return FALSE;
5435
5436 if (size < sizeof * shdrs)
5437 {
5438 if (! probe)
5439 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5440 return FALSE;
5441 }
5442
5443 if (! probe && size > sizeof * shdrs)
5444 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5445
5446 shdrs = (Elf64_External_Shdr *) get_data (NULL, filedata,
5447 filedata->file_header.e_shoff,
5448 size, num,
5449 probe ? NULL : _("section headers"));
5450 if (shdrs == NULL)
5451 return FALSE;
5452
5453 free (filedata->section_headers);
5454 filedata->section_headers = (Elf_Internal_Shdr *)
5455 cmalloc (num, sizeof (Elf_Internal_Shdr));
5456 if (filedata->section_headers == NULL)
5457 {
5458 if (! probe)
5459 error (_("Out of memory reading %u section headers\n"), num);
5460 free (shdrs);
5461 return FALSE;
5462 }
5463
5464 for (i = 0, internal = filedata->section_headers;
5465 i < num;
5466 i++, internal++)
5467 {
5468 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5469 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5470 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5471 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5472 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5473 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5474 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5475 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5476 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5477 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5478 if (!probe && internal->sh_link > num)
5479 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5480 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5481 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5482 }
5483
5484 free (shdrs);
5485 return TRUE;
5486 }
5487
5488 static Elf_Internal_Sym *
5489 get_32bit_elf_symbols (Filedata * filedata,
5490 Elf_Internal_Shdr * section,
5491 unsigned long * num_syms_return)
5492 {
5493 unsigned long number = 0;
5494 Elf32_External_Sym * esyms = NULL;
5495 Elf_External_Sym_Shndx * shndx = NULL;
5496 Elf_Internal_Sym * isyms = NULL;
5497 Elf_Internal_Sym * psym;
5498 unsigned int j;
5499 elf_section_list * entry;
5500
5501 if (section->sh_size == 0)
5502 {
5503 if (num_syms_return != NULL)
5504 * num_syms_return = 0;
5505 return NULL;
5506 }
5507
5508 /* Run some sanity checks first. */
5509 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5510 {
5511 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5512 printable_section_name (filedata, section),
5513 (unsigned long) section->sh_entsize);
5514 goto exit_point;
5515 }
5516
5517 if (section->sh_size > filedata->file_size)
5518 {
5519 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5520 printable_section_name (filedata, section),
5521 (unsigned long) section->sh_size);
5522 goto exit_point;
5523 }
5524
5525 number = section->sh_size / section->sh_entsize;
5526
5527 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5528 {
5529 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5530 (unsigned long) section->sh_size,
5531 printable_section_name (filedata, section),
5532 (unsigned long) section->sh_entsize);
5533 goto exit_point;
5534 }
5535
5536 esyms = (Elf32_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
5537 section->sh_size, _("symbols"));
5538 if (esyms == NULL)
5539 goto exit_point;
5540
5541 shndx = NULL;
5542 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5543 {
5544 if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
5545 continue;
5546
5547 if (shndx != NULL)
5548 {
5549 error (_("Multiple symbol table index sections associated with the same symbol section\n"));
5550 free (shndx);
5551 }
5552
5553 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
5554 entry->hdr->sh_offset,
5555 1, entry->hdr->sh_size,
5556 _("symbol table section indices"));
5557 if (shndx == NULL)
5558 goto exit_point;
5559
5560 /* PR17531: file: heap-buffer-overflow */
5561 if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5562 {
5563 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5564 printable_section_name (filedata, entry->hdr),
5565 (unsigned long) entry->hdr->sh_size,
5566 (unsigned long) section->sh_size);
5567 goto exit_point;
5568 }
5569 }
5570
5571 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5572
5573 if (isyms == NULL)
5574 {
5575 error (_("Out of memory reading %lu symbols\n"),
5576 (unsigned long) number);
5577 goto exit_point;
5578 }
5579
5580 for (j = 0, psym = isyms; j < number; j++, psym++)
5581 {
5582 psym->st_name = BYTE_GET (esyms[j].st_name);
5583 psym->st_value = BYTE_GET (esyms[j].st_value);
5584 psym->st_size = BYTE_GET (esyms[j].st_size);
5585 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5586 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5587 psym->st_shndx
5588 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5589 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5590 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5591 psym->st_info = BYTE_GET (esyms[j].st_info);
5592 psym->st_other = BYTE_GET (esyms[j].st_other);
5593 }
5594
5595 exit_point:
5596 free (shndx);
5597 free (esyms);
5598
5599 if (num_syms_return != NULL)
5600 * num_syms_return = isyms == NULL ? 0 : number;
5601
5602 return isyms;
5603 }
5604
5605 static Elf_Internal_Sym *
5606 get_64bit_elf_symbols (Filedata * filedata,
5607 Elf_Internal_Shdr * section,
5608 unsigned long * num_syms_return)
5609 {
5610 unsigned long number = 0;
5611 Elf64_External_Sym * esyms = NULL;
5612 Elf_External_Sym_Shndx * shndx = NULL;
5613 Elf_Internal_Sym * isyms = NULL;
5614 Elf_Internal_Sym * psym;
5615 unsigned int j;
5616 elf_section_list * entry;
5617
5618 if (section->sh_size == 0)
5619 {
5620 if (num_syms_return != NULL)
5621 * num_syms_return = 0;
5622 return NULL;
5623 }
5624
5625 /* Run some sanity checks first. */
5626 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5627 {
5628 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5629 printable_section_name (filedata, section),
5630 (unsigned long) section->sh_entsize);
5631 goto exit_point;
5632 }
5633
5634 if (section->sh_size > filedata->file_size)
5635 {
5636 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5637 printable_section_name (filedata, section),
5638 (unsigned long) section->sh_size);
5639 goto exit_point;
5640 }
5641
5642 number = section->sh_size / section->sh_entsize;
5643
5644 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5645 {
5646 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5647 (unsigned long) section->sh_size,
5648 printable_section_name (filedata, section),
5649 (unsigned long) section->sh_entsize);
5650 goto exit_point;
5651 }
5652
5653 esyms = (Elf64_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
5654 section->sh_size, _("symbols"));
5655 if (!esyms)
5656 goto exit_point;
5657
5658 shndx = NULL;
5659 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5660 {
5661 if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
5662 continue;
5663
5664 if (shndx != NULL)
5665 {
5666 error (_("Multiple symbol table index sections associated with the same symbol section\n"));
5667 free (shndx);
5668 }
5669
5670 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
5671 entry->hdr->sh_offset,
5672 1, entry->hdr->sh_size,
5673 _("symbol table section indices"));
5674 if (shndx == NULL)
5675 goto exit_point;
5676
5677 /* PR17531: file: heap-buffer-overflow */
5678 if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5679 {
5680 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5681 printable_section_name (filedata, entry->hdr),
5682 (unsigned long) entry->hdr->sh_size,
5683 (unsigned long) section->sh_size);
5684 goto exit_point;
5685 }
5686 }
5687
5688 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5689
5690 if (isyms == NULL)
5691 {
5692 error (_("Out of memory reading %lu symbols\n"),
5693 (unsigned long) number);
5694 goto exit_point;
5695 }
5696
5697 for (j = 0, psym = isyms; j < number; j++, psym++)
5698 {
5699 psym->st_name = BYTE_GET (esyms[j].st_name);
5700 psym->st_info = BYTE_GET (esyms[j].st_info);
5701 psym->st_other = BYTE_GET (esyms[j].st_other);
5702 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5703
5704 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5705 psym->st_shndx
5706 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5707 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5708 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5709
5710 psym->st_value = BYTE_GET (esyms[j].st_value);
5711 psym->st_size = BYTE_GET (esyms[j].st_size);
5712 }
5713
5714 exit_point:
5715 free (shndx);
5716 free (esyms);
5717
5718 if (num_syms_return != NULL)
5719 * num_syms_return = isyms == NULL ? 0 : number;
5720
5721 return isyms;
5722 }
5723
5724 static const char *
5725 get_elf_section_flags (Filedata * filedata, bfd_vma sh_flags)
5726 {
5727 static char buff[1024];
5728 char * p = buff;
5729 unsigned int field_size = is_32bit_elf ? 8 : 16;
5730 signed int sindex;
5731 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5732 bfd_vma os_flags = 0;
5733 bfd_vma proc_flags = 0;
5734 bfd_vma unknown_flags = 0;
5735 static const struct
5736 {
5737 const char * str;
5738 unsigned int len;
5739 }
5740 flags [] =
5741 {
5742 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5743 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5744 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5745 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5746 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5747 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5748 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5749 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5750 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5751 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5752 /* IA-64 specific. */
5753 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5754 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5755 /* IA-64 OpenVMS specific. */
5756 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5757 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5758 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5759 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5760 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5761 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5762 /* Generic. */
5763 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5764 /* SPARC specific. */
5765 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5766 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5767 /* ARM specific. */
5768 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5769 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5770 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5771 /* GNU specific. */
5772 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5773 /* VLE specific. */
5774 /* 25 */ { STRING_COMMA_LEN ("VLE") },
5775 };
5776
5777 if (do_section_details)
5778 {
5779 sprintf (buff, "[%*.*lx]: ",
5780 field_size, field_size, (unsigned long) sh_flags);
5781 p += field_size + 4;
5782 }
5783
5784 while (sh_flags)
5785 {
5786 bfd_vma flag;
5787
5788 flag = sh_flags & - sh_flags;
5789 sh_flags &= ~ flag;
5790
5791 if (do_section_details)
5792 {
5793 switch (flag)
5794 {
5795 case SHF_WRITE: sindex = 0; break;
5796 case SHF_ALLOC: sindex = 1; break;
5797 case SHF_EXECINSTR: sindex = 2; break;
5798 case SHF_MERGE: sindex = 3; break;
5799 case SHF_STRINGS: sindex = 4; break;
5800 case SHF_INFO_LINK: sindex = 5; break;
5801 case SHF_LINK_ORDER: sindex = 6; break;
5802 case SHF_OS_NONCONFORMING: sindex = 7; break;
5803 case SHF_GROUP: sindex = 8; break;
5804 case SHF_TLS: sindex = 9; break;
5805 case SHF_EXCLUDE: sindex = 18; break;
5806 case SHF_COMPRESSED: sindex = 20; break;
5807 case SHF_GNU_MBIND: sindex = 24; break;
5808
5809 default:
5810 sindex = -1;
5811 switch (filedata->file_header.e_machine)
5812 {
5813 case EM_IA_64:
5814 if (flag == SHF_IA_64_SHORT)
5815 sindex = 10;
5816 else if (flag == SHF_IA_64_NORECOV)
5817 sindex = 11;
5818 #ifdef BFD64
5819 else if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5820 switch (flag)
5821 {
5822 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5823 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5824 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5825 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5826 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5827 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5828 default: break;
5829 }
5830 #endif
5831 break;
5832
5833 case EM_386:
5834 case EM_IAMCU:
5835 case EM_X86_64:
5836 case EM_L1OM:
5837 case EM_K1OM:
5838 case EM_OLD_SPARCV9:
5839 case EM_SPARC32PLUS:
5840 case EM_SPARCV9:
5841 case EM_SPARC:
5842 if (flag == SHF_ORDERED)
5843 sindex = 19;
5844 break;
5845
5846 case EM_ARM:
5847 switch (flag)
5848 {
5849 case SHF_ENTRYSECT: sindex = 21; break;
5850 case SHF_ARM_PURECODE: sindex = 22; break;
5851 case SHF_COMDEF: sindex = 23; break;
5852 default: break;
5853 }
5854 break;
5855 case EM_PPC:
5856 if (flag == SHF_PPC_VLE)
5857 sindex = 25;
5858 break;
5859
5860 default:
5861 break;
5862 }
5863 }
5864
5865 if (sindex != -1)
5866 {
5867 if (p != buff + field_size + 4)
5868 {
5869 if (size < (10 + 2))
5870 {
5871 warn (_("Internal error: not enough buffer room for section flag info"));
5872 return _("<unknown>");
5873 }
5874 size -= 2;
5875 *p++ = ',';
5876 *p++ = ' ';
5877 }
5878
5879 size -= flags [sindex].len;
5880 p = stpcpy (p, flags [sindex].str);
5881 }
5882 else if (flag & SHF_MASKOS)
5883 os_flags |= flag;
5884 else if (flag & SHF_MASKPROC)
5885 proc_flags |= flag;
5886 else
5887 unknown_flags |= flag;
5888 }
5889 else
5890 {
5891 switch (flag)
5892 {
5893 case SHF_WRITE: *p = 'W'; break;
5894 case SHF_ALLOC: *p = 'A'; break;
5895 case SHF_EXECINSTR: *p = 'X'; break;
5896 case SHF_MERGE: *p = 'M'; break;
5897 case SHF_STRINGS: *p = 'S'; break;
5898 case SHF_INFO_LINK: *p = 'I'; break;
5899 case SHF_LINK_ORDER: *p = 'L'; break;
5900 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5901 case SHF_GROUP: *p = 'G'; break;
5902 case SHF_TLS: *p = 'T'; break;
5903 case SHF_EXCLUDE: *p = 'E'; break;
5904 case SHF_COMPRESSED: *p = 'C'; break;
5905 case SHF_GNU_MBIND: *p = 'D'; break;
5906
5907 default:
5908 if ((filedata->file_header.e_machine == EM_X86_64
5909 || filedata->file_header.e_machine == EM_L1OM
5910 || filedata->file_header.e_machine == EM_K1OM)
5911 && flag == SHF_X86_64_LARGE)
5912 *p = 'l';
5913 else if (filedata->file_header.e_machine == EM_ARM
5914 && flag == SHF_ARM_PURECODE)
5915 *p = 'y';
5916 else if (filedata->file_header.e_machine == EM_PPC
5917 && flag == SHF_PPC_VLE)
5918 *p = 'v';
5919 else if (flag & SHF_MASKOS)
5920 {
5921 *p = 'o';
5922 sh_flags &= ~ SHF_MASKOS;
5923 }
5924 else if (flag & SHF_MASKPROC)
5925 {
5926 *p = 'p';
5927 sh_flags &= ~ SHF_MASKPROC;
5928 }
5929 else
5930 *p = 'x';
5931 break;
5932 }
5933 p++;
5934 }
5935 }
5936
5937 if (do_section_details)
5938 {
5939 if (os_flags)
5940 {
5941 size -= 5 + field_size;
5942 if (p != buff + field_size + 4)
5943 {
5944 if (size < (2 + 1))
5945 {
5946 warn (_("Internal error: not enough buffer room for section flag info"));
5947 return _("<unknown>");
5948 }
5949 size -= 2;
5950 *p++ = ',';
5951 *p++ = ' ';
5952 }
5953 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5954 (unsigned long) os_flags);
5955 p += 5 + field_size;
5956 }
5957 if (proc_flags)
5958 {
5959 size -= 7 + field_size;
5960 if (p != buff + field_size + 4)
5961 {
5962 if (size < (2 + 1))
5963 {
5964 warn (_("Internal error: not enough buffer room for section flag info"));
5965 return _("<unknown>");
5966 }
5967 size -= 2;
5968 *p++ = ',';
5969 *p++ = ' ';
5970 }
5971 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5972 (unsigned long) proc_flags);
5973 p += 7 + field_size;
5974 }
5975 if (unknown_flags)
5976 {
5977 size -= 10 + field_size;
5978 if (p != buff + field_size + 4)
5979 {
5980 if (size < (2 + 1))
5981 {
5982 warn (_("Internal error: not enough buffer room for section flag info"));
5983 return _("<unknown>");
5984 }
5985 size -= 2;
5986 *p++ = ',';
5987 *p++ = ' ';
5988 }
5989 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5990 (unsigned long) unknown_flags);
5991 p += 10 + field_size;
5992 }
5993 }
5994
5995 *p = '\0';
5996 return buff;
5997 }
5998
5999 static unsigned int
6000 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
6001 {
6002 if (is_32bit_elf)
6003 {
6004 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
6005
6006 if (size < sizeof (* echdr))
6007 {
6008 error (_("Compressed section is too small even for a compression header\n"));
6009 return 0;
6010 }
6011
6012 chdr->ch_type = BYTE_GET (echdr->ch_type);
6013 chdr->ch_size = BYTE_GET (echdr->ch_size);
6014 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
6015 return sizeof (*echdr);
6016 }
6017 else
6018 {
6019 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
6020
6021 if (size < sizeof (* echdr))
6022 {
6023 error (_("Compressed section is too small even for a compression header\n"));
6024 return 0;
6025 }
6026
6027 chdr->ch_type = BYTE_GET (echdr->ch_type);
6028 chdr->ch_size = BYTE_GET (echdr->ch_size);
6029 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
6030 return sizeof (*echdr);
6031 }
6032 }
6033
6034 static bfd_boolean
6035 process_section_headers (Filedata * filedata)
6036 {
6037 Elf_Internal_Shdr * section;
6038 unsigned int i;
6039
6040 filedata->section_headers = NULL;
6041
6042 if (filedata->file_header.e_shnum == 0)
6043 {
6044 /* PR binutils/12467. */
6045 if (filedata->file_header.e_shoff != 0)
6046 {
6047 warn (_("possibly corrupt ELF file header - it has a non-zero"
6048 " section header offset, but no section headers\n"));
6049 return FALSE;
6050 }
6051 else if (do_sections)
6052 printf (_("\nThere are no sections in this file.\n"));
6053
6054 return TRUE;
6055 }
6056
6057 if (do_sections && !do_header)
6058 printf (ngettext ("There is %d section header, "
6059 "starting at offset 0x%lx:\n",
6060 "There are %d section headers, "
6061 "starting at offset 0x%lx:\n",
6062 filedata->file_header.e_shnum),
6063 filedata->file_header.e_shnum,
6064 (unsigned long) filedata->file_header.e_shoff);
6065
6066 if (is_32bit_elf)
6067 {
6068 if (! get_32bit_section_headers (filedata, FALSE))
6069 return FALSE;
6070 }
6071 else
6072 {
6073 if (! get_64bit_section_headers (filedata, FALSE))
6074 return FALSE;
6075 }
6076
6077 /* Read in the string table, so that we have names to display. */
6078 if (filedata->file_header.e_shstrndx != SHN_UNDEF
6079 && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum)
6080 {
6081 section = filedata->section_headers + filedata->file_header.e_shstrndx;
6082
6083 if (section->sh_size != 0)
6084 {
6085 filedata->string_table = (char *) get_data (NULL, filedata, section->sh_offset,
6086 1, section->sh_size,
6087 _("string table"));
6088
6089 filedata->string_table_length = filedata->string_table != NULL ? section->sh_size : 0;
6090 }
6091 }
6092
6093 /* Scan the sections for the dynamic symbol table
6094 and dynamic string table and debug sections. */
6095 dynamic_symbols = NULL;
6096 dynamic_strings = NULL;
6097 dynamic_syminfo = NULL;
6098 symtab_shndx_list = NULL;
6099
6100 eh_addr_size = is_32bit_elf ? 4 : 8;
6101 switch (filedata->file_header.e_machine)
6102 {
6103 case EM_MIPS:
6104 case EM_MIPS_RS3_LE:
6105 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
6106 FDE addresses. However, the ABI also has a semi-official ILP32
6107 variant for which the normal FDE address size rules apply.
6108
6109 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
6110 section, where XX is the size of longs in bits. Unfortunately,
6111 earlier compilers provided no way of distinguishing ILP32 objects
6112 from LP64 objects, so if there's any doubt, we should assume that
6113 the official LP64 form is being used. */
6114 if ((filedata->file_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
6115 && find_section (filedata, ".gcc_compiled_long32") == NULL)
6116 eh_addr_size = 8;
6117 break;
6118
6119 case EM_H8_300:
6120 case EM_H8_300H:
6121 switch (filedata->file_header.e_flags & EF_H8_MACH)
6122 {
6123 case E_H8_MACH_H8300:
6124 case E_H8_MACH_H8300HN:
6125 case E_H8_MACH_H8300SN:
6126 case E_H8_MACH_H8300SXN:
6127 eh_addr_size = 2;
6128 break;
6129 case E_H8_MACH_H8300H:
6130 case E_H8_MACH_H8300S:
6131 case E_H8_MACH_H8300SX:
6132 eh_addr_size = 4;
6133 break;
6134 }
6135 break;
6136
6137 case EM_M32C_OLD:
6138 case EM_M32C:
6139 switch (filedata->file_header.e_flags & EF_M32C_CPU_MASK)
6140 {
6141 case EF_M32C_CPU_M16C:
6142 eh_addr_size = 2;
6143 break;
6144 }
6145 break;
6146 }
6147
6148 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
6149 do \
6150 { \
6151 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
6152 if (section->sh_entsize != expected_entsize) \
6153 { \
6154 char buf[40]; \
6155 sprintf_vma (buf, section->sh_entsize); \
6156 /* Note: coded this way so that there is a single string for \
6157 translation. */ \
6158 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
6159 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
6160 (unsigned) expected_entsize); \
6161 section->sh_entsize = expected_entsize; \
6162 } \
6163 } \
6164 while (0)
6165
6166 #define CHECK_ENTSIZE(section, i, type) \
6167 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
6168 sizeof (Elf64_External_##type))
6169
6170 for (i = 0, section = filedata->section_headers;
6171 i < filedata->file_header.e_shnum;
6172 i++, section++)
6173 {
6174 char * name = SECTION_NAME (section);
6175
6176 if (section->sh_type == SHT_DYNSYM)
6177 {
6178 if (dynamic_symbols != NULL)
6179 {
6180 error (_("File contains multiple dynamic symbol tables\n"));
6181 continue;
6182 }
6183
6184 CHECK_ENTSIZE (section, i, Sym);
6185 dynamic_symbols = GET_ELF_SYMBOLS (filedata, section, & num_dynamic_syms);
6186 }
6187 else if (section->sh_type == SHT_STRTAB
6188 && streq (name, ".dynstr"))
6189 {
6190 if (dynamic_strings != NULL)
6191 {
6192 error (_("File contains multiple dynamic string tables\n"));
6193 continue;
6194 }
6195
6196 dynamic_strings = (char *) get_data (NULL, filedata, section->sh_offset,
6197 1, section->sh_size,
6198 _("dynamic strings"));
6199 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
6200 }
6201 else if (section->sh_type == SHT_SYMTAB_SHNDX)
6202 {
6203 elf_section_list * entry = xmalloc (sizeof * entry);
6204
6205 entry->hdr = section;
6206 entry->next = symtab_shndx_list;
6207 symtab_shndx_list = entry;
6208 }
6209 else if (section->sh_type == SHT_SYMTAB)
6210 CHECK_ENTSIZE (section, i, Sym);
6211 else if (section->sh_type == SHT_GROUP)
6212 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
6213 else if (section->sh_type == SHT_REL)
6214 CHECK_ENTSIZE (section, i, Rel);
6215 else if (section->sh_type == SHT_RELA)
6216 CHECK_ENTSIZE (section, i, Rela);
6217 else if ((do_debugging || do_debug_info || do_debug_abbrevs
6218 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
6219 || do_debug_aranges || do_debug_frames || do_debug_macinfo
6220 || do_debug_str || do_debug_loc || do_debug_ranges
6221 || do_debug_addr || do_debug_cu_index || do_debug_links)
6222 && (const_strneq (name, ".debug_")
6223 || const_strneq (name, ".zdebug_")))
6224 {
6225 if (name[1] == 'z')
6226 name += sizeof (".zdebug_") - 1;
6227 else
6228 name += sizeof (".debug_") - 1;
6229
6230 if (do_debugging
6231 || (do_debug_info && const_strneq (name, "info"))
6232 || (do_debug_info && const_strneq (name, "types"))
6233 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6234 || (do_debug_lines && strcmp (name, "line") == 0)
6235 || (do_debug_lines && const_strneq (name, "line."))
6236 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6237 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6238 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6239 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6240 || (do_debug_aranges && const_strneq (name, "aranges"))
6241 || (do_debug_ranges && const_strneq (name, "ranges"))
6242 || (do_debug_ranges && const_strneq (name, "rnglists"))
6243 || (do_debug_frames && const_strneq (name, "frame"))
6244 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6245 || (do_debug_macinfo && const_strneq (name, "macro"))
6246 || (do_debug_str && const_strneq (name, "str"))
6247 || (do_debug_loc && const_strneq (name, "loc"))
6248 || (do_debug_loc && const_strneq (name, "loclists"))
6249 || (do_debug_addr && const_strneq (name, "addr"))
6250 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6251 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6252 )
6253 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6254 }
6255 /* Linkonce section to be combined with .debug_info at link time. */
6256 else if ((do_debugging || do_debug_info)
6257 && const_strneq (name, ".gnu.linkonce.wi."))
6258 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6259 else if (do_debug_frames && streq (name, ".eh_frame"))
6260 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6261 else if (do_gdb_index && (streq (name, ".gdb_index")
6262 || streq (name, ".debug_names")))
6263 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6264 /* Trace sections for Itanium VMS. */
6265 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6266 || do_trace_aranges)
6267 && const_strneq (name, ".trace_"))
6268 {
6269 name += sizeof (".trace_") - 1;
6270
6271 if (do_debugging
6272 || (do_trace_info && streq (name, "info"))
6273 || (do_trace_abbrevs && streq (name, "abbrev"))
6274 || (do_trace_aranges && streq (name, "aranges"))
6275 )
6276 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6277 }
6278 else if ((do_debugging || do_debug_links)
6279 && (const_strneq (name, ".gnu_debuglink")
6280 || const_strneq (name, ".gnu_debugaltlink")))
6281 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6282 }
6283
6284 if (! do_sections)
6285 return TRUE;
6286
6287 if (filedata->file_header.e_shnum > 1)
6288 printf (_("\nSection Headers:\n"));
6289 else
6290 printf (_("\nSection Header:\n"));
6291
6292 if (is_32bit_elf)
6293 {
6294 if (do_section_details)
6295 {
6296 printf (_(" [Nr] Name\n"));
6297 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6298 }
6299 else
6300 printf
6301 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6302 }
6303 else if (do_wide)
6304 {
6305 if (do_section_details)
6306 {
6307 printf (_(" [Nr] Name\n"));
6308 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6309 }
6310 else
6311 printf
6312 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6313 }
6314 else
6315 {
6316 if (do_section_details)
6317 {
6318 printf (_(" [Nr] Name\n"));
6319 printf (_(" Type Address Offset Link\n"));
6320 printf (_(" Size EntSize Info Align\n"));
6321 }
6322 else
6323 {
6324 printf (_(" [Nr] Name Type Address Offset\n"));
6325 printf (_(" Size EntSize Flags Link Info Align\n"));
6326 }
6327 }
6328
6329 if (do_section_details)
6330 printf (_(" Flags\n"));
6331
6332 for (i = 0, section = filedata->section_headers;
6333 i < filedata->file_header.e_shnum;
6334 i++, section++)
6335 {
6336 /* Run some sanity checks on the section header. */
6337
6338 /* Check the sh_link field. */
6339 switch (section->sh_type)
6340 {
6341 case SHT_REL:
6342 case SHT_RELA:
6343 if (section->sh_link == 0
6344 && (filedata->file_header.e_type == ET_EXEC
6345 || filedata->file_header.e_type == ET_DYN))
6346 /* A dynamic relocation section where all entries use a
6347 zero symbol index need not specify a symtab section. */
6348 break;
6349 /* Fall through. */
6350 case SHT_SYMTAB_SHNDX:
6351 case SHT_GROUP:
6352 case SHT_HASH:
6353 case SHT_GNU_HASH:
6354 case SHT_GNU_versym:
6355 if (section->sh_link == 0
6356 || section->sh_link >= filedata->file_header.e_shnum
6357 || (filedata->section_headers[section->sh_link].sh_type != SHT_SYMTAB
6358 && filedata->section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6359 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6360 i, section->sh_link);
6361 break;
6362
6363 case SHT_DYNAMIC:
6364 case SHT_SYMTAB:
6365 case SHT_DYNSYM:
6366 case SHT_GNU_verneed:
6367 case SHT_GNU_verdef:
6368 case SHT_GNU_LIBLIST:
6369 if (section->sh_link == 0
6370 || section->sh_link >= filedata->file_header.e_shnum
6371 || filedata->section_headers[section->sh_link].sh_type != SHT_STRTAB)
6372 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6373 i, section->sh_link);
6374 break;
6375
6376 case SHT_INIT_ARRAY:
6377 case SHT_FINI_ARRAY:
6378 case SHT_PREINIT_ARRAY:
6379 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6380 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6381 i, section->sh_link);
6382 break;
6383
6384 default:
6385 /* FIXME: Add support for target specific section types. */
6386 #if 0 /* Currently we do not check other section types as there are too
6387 many special cases. Stab sections for example have a type
6388 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6389 section. */
6390 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6391 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6392 i, section->sh_link);
6393 #endif
6394 break;
6395 }
6396
6397 /* Check the sh_info field. */
6398 switch (section->sh_type)
6399 {
6400 case SHT_REL:
6401 case SHT_RELA:
6402 if (section->sh_info == 0
6403 && (filedata->file_header.e_type == ET_EXEC
6404 || filedata->file_header.e_type == ET_DYN))
6405 /* Dynamic relocations apply to segments, so they do not
6406 need to specify the section they relocate. */
6407 break;
6408 if (section->sh_info == 0
6409 || section->sh_info >= filedata->file_header.e_shnum
6410 || (filedata->section_headers[section->sh_info].sh_type != SHT_PROGBITS
6411 && filedata->section_headers[section->sh_info].sh_type != SHT_NOBITS
6412 && filedata->section_headers[section->sh_info].sh_type != SHT_NOTE
6413 && filedata->section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6414 && filedata->section_headers[section->sh_info].sh_type != SHT_FINI_ARRAY
6415 && filedata->section_headers[section->sh_info].sh_type != SHT_PREINIT_ARRAY
6416 /* FIXME: Are other section types valid ? */
6417 && filedata->section_headers[section->sh_info].sh_type < SHT_LOOS))
6418 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6419 i, section->sh_info);
6420 break;
6421
6422 case SHT_DYNAMIC:
6423 case SHT_HASH:
6424 case SHT_SYMTAB_SHNDX:
6425 case SHT_INIT_ARRAY:
6426 case SHT_FINI_ARRAY:
6427 case SHT_PREINIT_ARRAY:
6428 if (section->sh_info != 0)
6429 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6430 i, section->sh_info);
6431 break;
6432
6433 case SHT_GROUP:
6434 case SHT_SYMTAB:
6435 case SHT_DYNSYM:
6436 /* A symbol index - we assume that it is valid. */
6437 break;
6438
6439 default:
6440 /* FIXME: Add support for target specific section types. */
6441 if (section->sh_type == SHT_NOBITS)
6442 /* NOBITS section headers with non-zero sh_info fields can be
6443 created when a binary is stripped of everything but its debug
6444 information. The stripped sections have their headers
6445 preserved but their types set to SHT_NOBITS. So do not check
6446 this type of section. */
6447 ;
6448 else if (section->sh_flags & SHF_INFO_LINK)
6449 {
6450 if (section->sh_info < 1 || section->sh_info >= filedata->file_header.e_shnum)
6451 warn (_("[%2u]: Expected link to another section in info field"), i);
6452 }
6453 else if (section->sh_type < SHT_LOOS
6454 && (section->sh_flags & SHF_GNU_MBIND) == 0
6455 && section->sh_info != 0)
6456 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6457 i, section->sh_info);
6458 break;
6459 }
6460
6461 /* Check the sh_size field. */
6462 if (section->sh_size > filedata->file_size
6463 && section->sh_type != SHT_NOBITS
6464 && section->sh_type != SHT_NULL
6465 && section->sh_type < SHT_LOOS)
6466 warn (_("Size of section %u is larger than the entire file!\n"), i);
6467
6468 printf (" [%2u] ", i);
6469 if (do_section_details)
6470 printf ("%s\n ", printable_section_name (filedata, section));
6471 else
6472 print_symbol (-17, SECTION_NAME (section));
6473
6474 printf (do_wide ? " %-15s " : " %-15.15s ",
6475 get_section_type_name (filedata, section->sh_type));
6476
6477 if (is_32bit_elf)
6478 {
6479 const char * link_too_big = NULL;
6480
6481 print_vma (section->sh_addr, LONG_HEX);
6482
6483 printf ( " %6.6lx %6.6lx %2.2lx",
6484 (unsigned long) section->sh_offset,
6485 (unsigned long) section->sh_size,
6486 (unsigned long) section->sh_entsize);
6487
6488 if (do_section_details)
6489 fputs (" ", stdout);
6490 else
6491 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6492
6493 if (section->sh_link >= filedata->file_header.e_shnum)
6494 {
6495 link_too_big = "";
6496 /* The sh_link value is out of range. Normally this indicates
6497 an error but it can have special values in Solaris binaries. */
6498 switch (filedata->file_header.e_machine)
6499 {
6500 case EM_386:
6501 case EM_IAMCU:
6502 case EM_X86_64:
6503 case EM_L1OM:
6504 case EM_K1OM:
6505 case EM_OLD_SPARCV9:
6506 case EM_SPARC32PLUS:
6507 case EM_SPARCV9:
6508 case EM_SPARC:
6509 if (section->sh_link == (SHN_BEFORE & 0xffff))
6510 link_too_big = "BEFORE";
6511 else if (section->sh_link == (SHN_AFTER & 0xffff))
6512 link_too_big = "AFTER";
6513 break;
6514 default:
6515 break;
6516 }
6517 }
6518
6519 if (do_section_details)
6520 {
6521 if (link_too_big != NULL && * link_too_big)
6522 printf ("<%s> ", link_too_big);
6523 else
6524 printf ("%2u ", section->sh_link);
6525 printf ("%3u %2lu\n", section->sh_info,
6526 (unsigned long) section->sh_addralign);
6527 }
6528 else
6529 printf ("%2u %3u %2lu\n",
6530 section->sh_link,
6531 section->sh_info,
6532 (unsigned long) section->sh_addralign);
6533
6534 if (link_too_big && ! * link_too_big)
6535 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6536 i, section->sh_link);
6537 }
6538 else if (do_wide)
6539 {
6540 print_vma (section->sh_addr, LONG_HEX);
6541
6542 if ((long) section->sh_offset == section->sh_offset)
6543 printf (" %6.6lx", (unsigned long) section->sh_offset);
6544 else
6545 {
6546 putchar (' ');
6547 print_vma (section->sh_offset, LONG_HEX);
6548 }
6549
6550 if ((unsigned long) section->sh_size == section->sh_size)
6551 printf (" %6.6lx", (unsigned long) section->sh_size);
6552 else
6553 {
6554 putchar (' ');
6555 print_vma (section->sh_size, LONG_HEX);
6556 }
6557
6558 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6559 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6560 else
6561 {
6562 putchar (' ');
6563 print_vma (section->sh_entsize, LONG_HEX);
6564 }
6565
6566 if (do_section_details)
6567 fputs (" ", stdout);
6568 else
6569 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6570
6571 printf ("%2u %3u ", section->sh_link, section->sh_info);
6572
6573 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6574 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6575 else
6576 {
6577 print_vma (section->sh_addralign, DEC);
6578 putchar ('\n');
6579 }
6580 }
6581 else if (do_section_details)
6582 {
6583 putchar (' ');
6584 print_vma (section->sh_addr, LONG_HEX);
6585 if ((long) section->sh_offset == section->sh_offset)
6586 printf (" %16.16lx", (unsigned long) section->sh_offset);
6587 else
6588 {
6589 printf (" ");
6590 print_vma (section->sh_offset, LONG_HEX);
6591 }
6592 printf (" %u\n ", section->sh_link);
6593 print_vma (section->sh_size, LONG_HEX);
6594 putchar (' ');
6595 print_vma (section->sh_entsize, LONG_HEX);
6596
6597 printf (" %-16u %lu\n",
6598 section->sh_info,
6599 (unsigned long) section->sh_addralign);
6600 }
6601 else
6602 {
6603 putchar (' ');
6604 print_vma (section->sh_addr, LONG_HEX);
6605 if ((long) section->sh_offset == section->sh_offset)
6606 printf (" %8.8lx", (unsigned long) section->sh_offset);
6607 else
6608 {
6609 printf (" ");
6610 print_vma (section->sh_offset, LONG_HEX);
6611 }
6612 printf ("\n ");
6613 print_vma (section->sh_size, LONG_HEX);
6614 printf (" ");
6615 print_vma (section->sh_entsize, LONG_HEX);
6616
6617 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6618
6619 printf (" %2u %3u %lu\n",
6620 section->sh_link,
6621 section->sh_info,
6622 (unsigned long) section->sh_addralign);
6623 }
6624
6625 if (do_section_details)
6626 {
6627 printf (" %s\n", get_elf_section_flags (filedata, section->sh_flags));
6628 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6629 {
6630 /* Minimum section size is 12 bytes for 32-bit compression
6631 header + 12 bytes for compressed data header. */
6632 unsigned char buf[24];
6633
6634 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6635 if (get_data (&buf, filedata, section->sh_offset, 1,
6636 sizeof (buf), _("compression header")))
6637 {
6638 Elf_Internal_Chdr chdr;
6639
6640 (void) get_compression_header (&chdr, buf, sizeof (buf));
6641
6642 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6643 printf (" ZLIB, ");
6644 else
6645 printf (_(" [<unknown>: 0x%x], "),
6646 chdr.ch_type);
6647 print_vma (chdr.ch_size, LONG_HEX);
6648 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6649 }
6650 }
6651 }
6652 }
6653
6654 if (!do_section_details)
6655 {
6656 /* The ordering of the letters shown here matches the ordering of the
6657 corresponding SHF_xxx values, and hence the order in which these
6658 letters will be displayed to the user. */
6659 printf (_("Key to Flags:\n\
6660 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6661 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6662 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6663 if (filedata->file_header.e_machine == EM_X86_64
6664 || filedata->file_header.e_machine == EM_L1OM
6665 || filedata->file_header.e_machine == EM_K1OM)
6666 printf (_("l (large), "));
6667 else if (filedata->file_header.e_machine == EM_ARM)
6668 printf (_("y (purecode), "));
6669 else if (filedata->file_header.e_machine == EM_PPC)
6670 printf (_("v (VLE), "));
6671 printf ("p (processor specific)\n");
6672 }
6673
6674 return TRUE;
6675 }
6676
6677 static const char *
6678 get_group_flags (unsigned int flags)
6679 {
6680 static char buff[128];
6681
6682 if (flags == 0)
6683 return "";
6684 else if (flags == GRP_COMDAT)
6685 return "COMDAT ";
6686
6687 snprintf (buff, 14, _("[0x%x: "), flags);
6688
6689 flags &= ~ GRP_COMDAT;
6690 if (flags & GRP_MASKOS)
6691 {
6692 strcat (buff, "<OS specific>");
6693 flags &= ~ GRP_MASKOS;
6694 }
6695
6696 if (flags & GRP_MASKPROC)
6697 {
6698 strcat (buff, "<PROC specific>");
6699 flags &= ~ GRP_MASKPROC;
6700 }
6701
6702 if (flags)
6703 strcat (buff, "<unknown>");
6704
6705 strcat (buff, "]");
6706 return buff;
6707 }
6708
6709 static bfd_boolean
6710 process_section_groups (Filedata * filedata)
6711 {
6712 Elf_Internal_Shdr * section;
6713 unsigned int i;
6714 struct group * group;
6715 Elf_Internal_Shdr * symtab_sec;
6716 Elf_Internal_Shdr * strtab_sec;
6717 Elf_Internal_Sym * symtab;
6718 unsigned long num_syms;
6719 char * strtab;
6720 size_t strtab_size;
6721
6722 /* Don't process section groups unless needed. */
6723 if (!do_unwind && !do_section_groups)
6724 return TRUE;
6725
6726 if (filedata->file_header.e_shnum == 0)
6727 {
6728 if (do_section_groups)
6729 printf (_("\nThere are no sections to group in this file.\n"));
6730
6731 return TRUE;
6732 }
6733
6734 if (filedata->section_headers == NULL)
6735 {
6736 error (_("Section headers are not available!\n"));
6737 /* PR 13622: This can happen with a corrupt ELF header. */
6738 return FALSE;
6739 }
6740
6741 section_headers_groups = (struct group **) calloc (filedata->file_header.e_shnum,
6742 sizeof (struct group *));
6743
6744 if (section_headers_groups == NULL)
6745 {
6746 error (_("Out of memory reading %u section group headers\n"),
6747 filedata->file_header.e_shnum);
6748 return FALSE;
6749 }
6750
6751 /* Scan the sections for the group section. */
6752 group_count = 0;
6753 for (i = 0, section = filedata->section_headers;
6754 i < filedata->file_header.e_shnum;
6755 i++, section++)
6756 if (section->sh_type == SHT_GROUP)
6757 group_count++;
6758
6759 if (group_count == 0)
6760 {
6761 if (do_section_groups)
6762 printf (_("\nThere are no section groups in this file.\n"));
6763
6764 return TRUE;
6765 }
6766
6767 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6768
6769 if (section_groups == NULL)
6770 {
6771 error (_("Out of memory reading %lu groups\n"),
6772 (unsigned long) group_count);
6773 return FALSE;
6774 }
6775
6776 symtab_sec = NULL;
6777 strtab_sec = NULL;
6778 symtab = NULL;
6779 num_syms = 0;
6780 strtab = NULL;
6781 strtab_size = 0;
6782 for (i = 0, section = filedata->section_headers, group = section_groups;
6783 i < filedata->file_header.e_shnum;
6784 i++, section++)
6785 {
6786 if (section->sh_type == SHT_GROUP)
6787 {
6788 const char * name = printable_section_name (filedata, section);
6789 const char * group_name;
6790 unsigned char * start;
6791 unsigned char * indices;
6792 unsigned int entry, j, size;
6793 Elf_Internal_Shdr * sec;
6794 Elf_Internal_Sym * sym;
6795
6796 /* Get the symbol table. */
6797 if (section->sh_link >= filedata->file_header.e_shnum
6798 || ((sec = filedata->section_headers + section->sh_link)->sh_type
6799 != SHT_SYMTAB))
6800 {
6801 error (_("Bad sh_link in group section `%s'\n"), name);
6802 continue;
6803 }
6804
6805 if (symtab_sec != sec)
6806 {
6807 symtab_sec = sec;
6808 if (symtab)
6809 free (symtab);
6810 symtab = GET_ELF_SYMBOLS (filedata, symtab_sec, & num_syms);
6811 }
6812
6813 if (symtab == NULL)
6814 {
6815 error (_("Corrupt header in group section `%s'\n"), name);
6816 continue;
6817 }
6818
6819 if (section->sh_info >= num_syms)
6820 {
6821 error (_("Bad sh_info in group section `%s'\n"), name);
6822 continue;
6823 }
6824
6825 sym = symtab + section->sh_info;
6826
6827 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6828 {
6829 if (sym->st_shndx == 0
6830 || sym->st_shndx >= filedata->file_header.e_shnum)
6831 {
6832 error (_("Bad sh_info in group section `%s'\n"), name);
6833 continue;
6834 }
6835
6836 group_name = SECTION_NAME (filedata->section_headers + sym->st_shndx);
6837 strtab_sec = NULL;
6838 if (strtab)
6839 free (strtab);
6840 strtab = NULL;
6841 strtab_size = 0;
6842 }
6843 else
6844 {
6845 /* Get the string table. */
6846 if (symtab_sec->sh_link >= filedata->file_header.e_shnum)
6847 {
6848 strtab_sec = NULL;
6849 if (strtab)
6850 free (strtab);
6851 strtab = NULL;
6852 strtab_size = 0;
6853 }
6854 else if (strtab_sec
6855 != (sec = filedata->section_headers + symtab_sec->sh_link))
6856 {
6857 strtab_sec = sec;
6858 if (strtab)
6859 free (strtab);
6860
6861 strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset,
6862 1, strtab_sec->sh_size,
6863 _("string table"));
6864 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6865 }
6866 group_name = sym->st_name < strtab_size
6867 ? strtab + sym->st_name : _("<corrupt>");
6868 }
6869
6870 /* PR 17531: file: loop. */
6871 if (section->sh_entsize > section->sh_size)
6872 {
6873 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6874 printable_section_name (filedata, section),
6875 (unsigned long) section->sh_entsize,
6876 (unsigned long) section->sh_size);
6877 break;
6878 }
6879
6880 start = (unsigned char *) get_data (NULL, filedata, section->sh_offset,
6881 1, section->sh_size,
6882 _("section data"));
6883 if (start == NULL)
6884 continue;
6885
6886 indices = start;
6887 size = (section->sh_size / section->sh_entsize) - 1;
6888 entry = byte_get (indices, 4);
6889 indices += 4;
6890
6891 if (do_section_groups)
6892 {
6893 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6894 get_group_flags (entry), i, name, group_name, size);
6895
6896 printf (_(" [Index] Name\n"));
6897 }
6898
6899 group->group_index = i;
6900
6901 for (j = 0; j < size; j++)
6902 {
6903 struct group_list * g;
6904
6905 entry = byte_get (indices, 4);
6906 indices += 4;
6907
6908 if (entry >= filedata->file_header.e_shnum)
6909 {
6910 static unsigned num_group_errors = 0;
6911
6912 if (num_group_errors ++ < 10)
6913 {
6914 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6915 entry, i, filedata->file_header.e_shnum - 1);
6916 if (num_group_errors == 10)
6917 warn (_("Further error messages about overlarge group section indices suppressed\n"));
6918 }
6919 continue;
6920 }
6921
6922 if (section_headers_groups [entry] != NULL)
6923 {
6924 if (entry)
6925 {
6926 static unsigned num_errs = 0;
6927
6928 if (num_errs ++ < 10)
6929 {
6930 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6931 entry, i,
6932 section_headers_groups [entry]->group_index);
6933 if (num_errs == 10)
6934 warn (_("Further error messages about already contained group sections suppressed\n"));
6935 }
6936 continue;
6937 }
6938 else
6939 {
6940 /* Intel C/C++ compiler may put section 0 in a
6941 section group. We just warn it the first time
6942 and ignore it afterwards. */
6943 static bfd_boolean warned = FALSE;
6944 if (!warned)
6945 {
6946 error (_("section 0 in group section [%5u]\n"),
6947 section_headers_groups [entry]->group_index);
6948 warned = TRUE;
6949 }
6950 }
6951 }
6952
6953 section_headers_groups [entry] = group;
6954
6955 if (do_section_groups)
6956 {
6957 sec = filedata->section_headers + entry;
6958 printf (" [%5u] %s\n", entry, printable_section_name (filedata, sec));
6959 }
6960
6961 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6962 g->section_index = entry;
6963 g->next = group->root;
6964 group->root = g;
6965 }
6966
6967 if (start)
6968 free (start);
6969
6970 group++;
6971 }
6972 }
6973
6974 if (symtab)
6975 free (symtab);
6976 if (strtab)
6977 free (strtab);
6978 return TRUE;
6979 }
6980
6981 /* Data used to display dynamic fixups. */
6982
6983 struct ia64_vms_dynfixup
6984 {
6985 bfd_vma needed_ident; /* Library ident number. */
6986 bfd_vma needed; /* Index in the dstrtab of the library name. */
6987 bfd_vma fixup_needed; /* Index of the library. */
6988 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6989 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6990 };
6991
6992 /* Data used to display dynamic relocations. */
6993
6994 struct ia64_vms_dynimgrela
6995 {
6996 bfd_vma img_rela_cnt; /* Number of relocations. */
6997 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6998 };
6999
7000 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
7001 library). */
7002
7003 static bfd_boolean
7004 dump_ia64_vms_dynamic_fixups (Filedata * filedata,
7005 struct ia64_vms_dynfixup * fixup,
7006 const char * strtab,
7007 unsigned int strtab_sz)
7008 {
7009 Elf64_External_VMS_IMAGE_FIXUP * imfs;
7010 long i;
7011 const char * lib_name;
7012
7013 imfs = get_data (NULL, filedata, dynamic_addr + fixup->fixup_rela_off,
7014 1, fixup->fixup_rela_cnt * sizeof (*imfs),
7015 _("dynamic section image fixups"));
7016 if (!imfs)
7017 return FALSE;
7018
7019 if (fixup->needed < strtab_sz)
7020 lib_name = strtab + fixup->needed;
7021 else
7022 {
7023 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
7024 (unsigned long) fixup->needed);
7025 lib_name = "???";
7026 }
7027 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
7028 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
7029 printf
7030 (_("Seg Offset Type SymVec DataType\n"));
7031
7032 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
7033 {
7034 unsigned int type;
7035 const char *rtype;
7036
7037 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
7038 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
7039 type = BYTE_GET (imfs [i].type);
7040 rtype = elf_ia64_reloc_type (type);
7041 if (rtype == NULL)
7042 printf (" 0x%08x ", type);
7043 else
7044 printf (" %-32s ", rtype);
7045 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
7046 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
7047 }
7048
7049 free (imfs);
7050 return TRUE;
7051 }
7052
7053 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
7054
7055 static bfd_boolean
7056 dump_ia64_vms_dynamic_relocs (Filedata * filedata, struct ia64_vms_dynimgrela *imgrela)
7057 {
7058 Elf64_External_VMS_IMAGE_RELA *imrs;
7059 long i;
7060
7061 imrs = get_data (NULL, filedata, dynamic_addr + imgrela->img_rela_off,
7062 1, imgrela->img_rela_cnt * sizeof (*imrs),
7063 _("dynamic section image relocations"));
7064 if (!imrs)
7065 return FALSE;
7066
7067 printf (_("\nImage relocs\n"));
7068 printf
7069 (_("Seg Offset Type Addend Seg Sym Off\n"));
7070
7071 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
7072 {
7073 unsigned int type;
7074 const char *rtype;
7075
7076 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
7077 printf ("%08" BFD_VMA_FMT "x ",
7078 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
7079 type = BYTE_GET (imrs [i].type);
7080 rtype = elf_ia64_reloc_type (type);
7081 if (rtype == NULL)
7082 printf ("0x%08x ", type);
7083 else
7084 printf ("%-31s ", rtype);
7085 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
7086 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
7087 printf ("%08" BFD_VMA_FMT "x\n",
7088 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
7089 }
7090
7091 free (imrs);
7092 return TRUE;
7093 }
7094
7095 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
7096
7097 static bfd_boolean
7098 process_ia64_vms_dynamic_relocs (Filedata * filedata)
7099 {
7100 struct ia64_vms_dynfixup fixup;
7101 struct ia64_vms_dynimgrela imgrela;
7102 Elf_Internal_Dyn *entry;
7103 bfd_vma strtab_off = 0;
7104 bfd_vma strtab_sz = 0;
7105 char *strtab = NULL;
7106 bfd_boolean res = TRUE;
7107
7108 memset (&fixup, 0, sizeof (fixup));
7109 memset (&imgrela, 0, sizeof (imgrela));
7110
7111 /* Note: the order of the entries is specified by the OpenVMS specs. */
7112 for (entry = dynamic_section;
7113 entry < dynamic_section + dynamic_nent;
7114 entry++)
7115 {
7116 switch (entry->d_tag)
7117 {
7118 case DT_IA_64_VMS_STRTAB_OFFSET:
7119 strtab_off = entry->d_un.d_val;
7120 break;
7121 case DT_STRSZ:
7122 strtab_sz = entry->d_un.d_val;
7123 if (strtab == NULL)
7124 strtab = get_data (NULL, filedata, dynamic_addr + strtab_off,
7125 1, strtab_sz, _("dynamic string section"));
7126 break;
7127
7128 case DT_IA_64_VMS_NEEDED_IDENT:
7129 fixup.needed_ident = entry->d_un.d_val;
7130 break;
7131 case DT_NEEDED:
7132 fixup.needed = entry->d_un.d_val;
7133 break;
7134 case DT_IA_64_VMS_FIXUP_NEEDED:
7135 fixup.fixup_needed = entry->d_un.d_val;
7136 break;
7137 case DT_IA_64_VMS_FIXUP_RELA_CNT:
7138 fixup.fixup_rela_cnt = entry->d_un.d_val;
7139 break;
7140 case DT_IA_64_VMS_FIXUP_RELA_OFF:
7141 fixup.fixup_rela_off = entry->d_un.d_val;
7142 if (! dump_ia64_vms_dynamic_fixups (filedata, &fixup, strtab, strtab_sz))
7143 res = FALSE;
7144 break;
7145 case DT_IA_64_VMS_IMG_RELA_CNT:
7146 imgrela.img_rela_cnt = entry->d_un.d_val;
7147 break;
7148 case DT_IA_64_VMS_IMG_RELA_OFF:
7149 imgrela.img_rela_off = entry->d_un.d_val;
7150 if (! dump_ia64_vms_dynamic_relocs (filedata, &imgrela))
7151 res = FALSE;
7152 break;
7153
7154 default:
7155 break;
7156 }
7157 }
7158
7159 if (strtab != NULL)
7160 free (strtab);
7161
7162 return res;
7163 }
7164
7165 static struct
7166 {
7167 const char * name;
7168 int reloc;
7169 int size;
7170 int rela;
7171 }
7172 dynamic_relocations [] =
7173 {
7174 { "REL", DT_REL, DT_RELSZ, FALSE },
7175 { "RELA", DT_RELA, DT_RELASZ, TRUE },
7176 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
7177 };
7178
7179 /* Process the reloc section. */
7180
7181 static bfd_boolean
7182 process_relocs (Filedata * filedata)
7183 {
7184 unsigned long rel_size;
7185 unsigned long rel_offset;
7186
7187 if (!do_reloc)
7188 return TRUE;
7189
7190 if (do_using_dynamic)
7191 {
7192 int is_rela;
7193 const char * name;
7194 bfd_boolean has_dynamic_reloc;
7195 unsigned int i;
7196
7197 has_dynamic_reloc = FALSE;
7198
7199 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7200 {
7201 is_rela = dynamic_relocations [i].rela;
7202 name = dynamic_relocations [i].name;
7203 rel_size = dynamic_info [dynamic_relocations [i].size];
7204 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
7205
7206 if (rel_size)
7207 has_dynamic_reloc = TRUE;
7208
7209 if (is_rela == UNKNOWN)
7210 {
7211 if (dynamic_relocations [i].reloc == DT_JMPREL)
7212 switch (dynamic_info[DT_PLTREL])
7213 {
7214 case DT_REL:
7215 is_rela = FALSE;
7216 break;
7217 case DT_RELA:
7218 is_rela = TRUE;
7219 break;
7220 }
7221 }
7222
7223 if (rel_size)
7224 {
7225 printf
7226 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
7227 name, rel_offset, rel_size);
7228
7229 dump_relocations (filedata,
7230 offset_from_vma (filedata, rel_offset, rel_size),
7231 rel_size,
7232 dynamic_symbols, num_dynamic_syms,
7233 dynamic_strings, dynamic_strings_length,
7234 is_rela, TRUE /* is_dynamic */);
7235 }
7236 }
7237
7238 if (is_ia64_vms (filedata))
7239 if (process_ia64_vms_dynamic_relocs (filedata))
7240 has_dynamic_reloc = TRUE;
7241
7242 if (! has_dynamic_reloc)
7243 printf (_("\nThere are no dynamic relocations in this file.\n"));
7244 }
7245 else
7246 {
7247 Elf_Internal_Shdr * section;
7248 unsigned long i;
7249 bfd_boolean found = FALSE;
7250
7251 for (i = 0, section = filedata->section_headers;
7252 i < filedata->file_header.e_shnum;
7253 i++, section++)
7254 {
7255 if ( section->sh_type != SHT_RELA
7256 && section->sh_type != SHT_REL)
7257 continue;
7258
7259 rel_offset = section->sh_offset;
7260 rel_size = section->sh_size;
7261
7262 if (rel_size)
7263 {
7264 Elf_Internal_Shdr * strsec;
7265 int is_rela;
7266 unsigned long num_rela;
7267
7268 printf (_("\nRelocation section "));
7269
7270 if (filedata->string_table == NULL)
7271 printf ("%d", section->sh_name);
7272 else
7273 printf ("'%s'", printable_section_name (filedata, section));
7274
7275 num_rela = rel_size / section->sh_entsize;
7276 printf (ngettext (" at offset 0x%lx contains %lu entry:\n",
7277 " at offset 0x%lx contains %lu entries:\n",
7278 num_rela),
7279 rel_offset, num_rela);
7280
7281 is_rela = section->sh_type == SHT_RELA;
7282
7283 if (section->sh_link != 0
7284 && section->sh_link < filedata->file_header.e_shnum)
7285 {
7286 Elf_Internal_Shdr * symsec;
7287 Elf_Internal_Sym * symtab;
7288 unsigned long nsyms;
7289 unsigned long strtablen = 0;
7290 char * strtab = NULL;
7291
7292 symsec = filedata->section_headers + section->sh_link;
7293 if (symsec->sh_type != SHT_SYMTAB
7294 && symsec->sh_type != SHT_DYNSYM)
7295 continue;
7296
7297 symtab = GET_ELF_SYMBOLS (filedata, symsec, & nsyms);
7298
7299 if (symtab == NULL)
7300 continue;
7301
7302 if (symsec->sh_link != 0
7303 && symsec->sh_link < filedata->file_header.e_shnum)
7304 {
7305 strsec = filedata->section_headers + symsec->sh_link;
7306
7307 strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
7308 1, strsec->sh_size,
7309 _("string table"));
7310 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7311 }
7312
7313 dump_relocations (filedata, rel_offset, rel_size,
7314 symtab, nsyms, strtab, strtablen,
7315 is_rela,
7316 symsec->sh_type == SHT_DYNSYM);
7317 if (strtab)
7318 free (strtab);
7319 free (symtab);
7320 }
7321 else
7322 dump_relocations (filedata, rel_offset, rel_size,
7323 NULL, 0, NULL, 0, is_rela,
7324 FALSE /* is_dynamic */);
7325
7326 found = TRUE;
7327 }
7328 }
7329
7330 if (! found)
7331 {
7332 /* Users sometimes forget the -D option, so try to be helpful. */
7333 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7334 {
7335 if (dynamic_info [dynamic_relocations [i].size])
7336 {
7337 printf (_("\nThere are no static relocations in this file."));
7338 printf (_("\nTo see the dynamic relocations add --use-dynamic to the command line.\n"));
7339
7340 break;
7341 }
7342 }
7343 if (i == ARRAY_SIZE (dynamic_relocations))
7344 printf (_("\nThere are no relocations in this file.\n"));
7345 }
7346 }
7347
7348 return TRUE;
7349 }
7350
7351 /* An absolute address consists of a section and an offset. If the
7352 section is NULL, the offset itself is the address, otherwise, the
7353 address equals to LOAD_ADDRESS(section) + offset. */
7354
7355 struct absaddr
7356 {
7357 unsigned short section;
7358 bfd_vma offset;
7359 };
7360
7361 #define ABSADDR(a) \
7362 ((a).section \
7363 ? filedata->section_headers [(a).section].sh_addr + (a).offset \
7364 : (a).offset)
7365
7366 /* Find the nearest symbol at or below ADDR. Returns the symbol
7367 name, if found, and the offset from the symbol to ADDR. */
7368
7369 static void
7370 find_symbol_for_address (Filedata * filedata,
7371 Elf_Internal_Sym * symtab,
7372 unsigned long nsyms,
7373 const char * strtab,
7374 unsigned long strtab_size,
7375 struct absaddr addr,
7376 const char ** symname,
7377 bfd_vma * offset)
7378 {
7379 bfd_vma dist = 0x100000;
7380 Elf_Internal_Sym * sym;
7381 Elf_Internal_Sym * beg;
7382 Elf_Internal_Sym * end;
7383 Elf_Internal_Sym * best = NULL;
7384
7385 REMOVE_ARCH_BITS (addr.offset);
7386 beg = symtab;
7387 end = symtab + nsyms;
7388
7389 while (beg < end)
7390 {
7391 bfd_vma value;
7392
7393 sym = beg + (end - beg) / 2;
7394
7395 value = sym->st_value;
7396 REMOVE_ARCH_BITS (value);
7397
7398 if (sym->st_name != 0
7399 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7400 && addr.offset >= value
7401 && addr.offset - value < dist)
7402 {
7403 best = sym;
7404 dist = addr.offset - value;
7405 if (!dist)
7406 break;
7407 }
7408
7409 if (addr.offset < value)
7410 end = sym;
7411 else
7412 beg = sym + 1;
7413 }
7414
7415 if (best)
7416 {
7417 *symname = (best->st_name >= strtab_size
7418 ? _("<corrupt>") : strtab + best->st_name);
7419 *offset = dist;
7420 return;
7421 }
7422
7423 *symname = NULL;
7424 *offset = addr.offset;
7425 }
7426
7427 static /* signed */ int
7428 symcmp (const void *p, const void *q)
7429 {
7430 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7431 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7432
7433 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7434 }
7435
7436 /* Process the unwind section. */
7437
7438 #include "unwind-ia64.h"
7439
7440 struct ia64_unw_table_entry
7441 {
7442 struct absaddr start;
7443 struct absaddr end;
7444 struct absaddr info;
7445 };
7446
7447 struct ia64_unw_aux_info
7448 {
7449 struct ia64_unw_table_entry * table; /* Unwind table. */
7450 unsigned long table_len; /* Length of unwind table. */
7451 unsigned char * info; /* Unwind info. */
7452 unsigned long info_size; /* Size of unwind info. */
7453 bfd_vma info_addr; /* Starting address of unwind info. */
7454 bfd_vma seg_base; /* Starting address of segment. */
7455 Elf_Internal_Sym * symtab; /* The symbol table. */
7456 unsigned long nsyms; /* Number of symbols. */
7457 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7458 unsigned long nfuns; /* Number of entries in funtab. */
7459 char * strtab; /* The string table. */
7460 unsigned long strtab_size; /* Size of string table. */
7461 };
7462
7463 static bfd_boolean
7464 dump_ia64_unwind (Filedata * filedata, struct ia64_unw_aux_info * aux)
7465 {
7466 struct ia64_unw_table_entry * tp;
7467 unsigned long j, nfuns;
7468 int in_body;
7469 bfd_boolean res = TRUE;
7470
7471 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7472 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7473 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7474 aux->funtab[nfuns++] = aux->symtab[j];
7475 aux->nfuns = nfuns;
7476 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7477
7478 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7479 {
7480 bfd_vma stamp;
7481 bfd_vma offset;
7482 const unsigned char * dp;
7483 const unsigned char * head;
7484 const unsigned char * end;
7485 const char * procname;
7486
7487 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
7488 aux->strtab_size, tp->start, &procname, &offset);
7489
7490 fputs ("\n<", stdout);
7491
7492 if (procname)
7493 {
7494 fputs (procname, stdout);
7495
7496 if (offset)
7497 printf ("+%lx", (unsigned long) offset);
7498 }
7499
7500 fputs (">: [", stdout);
7501 print_vma (tp->start.offset, PREFIX_HEX);
7502 fputc ('-', stdout);
7503 print_vma (tp->end.offset, PREFIX_HEX);
7504 printf ("], info at +0x%lx\n",
7505 (unsigned long) (tp->info.offset - aux->seg_base));
7506
7507 /* PR 17531: file: 86232b32. */
7508 if (aux->info == NULL)
7509 continue;
7510
7511 /* PR 17531: file: 0997b4d1. */
7512 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7513 {
7514 warn (_("Invalid offset %lx in table entry %ld\n"),
7515 (long) tp->info.offset, (long) (tp - aux->table));
7516 res = FALSE;
7517 continue;
7518 }
7519
7520 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7521 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7522
7523 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7524 (unsigned) UNW_VER (stamp),
7525 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7526 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7527 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7528 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7529
7530 if (UNW_VER (stamp) != 1)
7531 {
7532 printf (_("\tUnknown version.\n"));
7533 continue;
7534 }
7535
7536 in_body = 0;
7537 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7538 /* PR 17531: file: 16ceda89. */
7539 if (end > aux->info + aux->info_size)
7540 end = aux->info + aux->info_size;
7541 for (dp = head + 8; dp < end;)
7542 dp = unw_decode (dp, in_body, & in_body, end);
7543 }
7544
7545 free (aux->funtab);
7546
7547 return res;
7548 }
7549
7550 static bfd_boolean
7551 slurp_ia64_unwind_table (Filedata * filedata,
7552 struct ia64_unw_aux_info * aux,
7553 Elf_Internal_Shdr * sec)
7554 {
7555 unsigned long size, nrelas, i;
7556 Elf_Internal_Phdr * seg;
7557 struct ia64_unw_table_entry * tep;
7558 Elf_Internal_Shdr * relsec;
7559 Elf_Internal_Rela * rela;
7560 Elf_Internal_Rela * rp;
7561 unsigned char * table;
7562 unsigned char * tp;
7563 Elf_Internal_Sym * sym;
7564 const char * relname;
7565
7566 aux->table_len = 0;
7567
7568 /* First, find the starting address of the segment that includes
7569 this section: */
7570
7571 if (filedata->file_header.e_phnum)
7572 {
7573 if (! get_program_headers (filedata))
7574 return FALSE;
7575
7576 for (seg = filedata->program_headers;
7577 seg < filedata->program_headers + filedata->file_header.e_phnum;
7578 ++seg)
7579 {
7580 if (seg->p_type != PT_LOAD)
7581 continue;
7582
7583 if (sec->sh_addr >= seg->p_vaddr
7584 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7585 {
7586 aux->seg_base = seg->p_vaddr;
7587 break;
7588 }
7589 }
7590 }
7591
7592 /* Second, build the unwind table from the contents of the unwind section: */
7593 size = sec->sh_size;
7594 table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
7595 _("unwind table"));
7596 if (!table)
7597 return FALSE;
7598
7599 aux->table_len = size / (3 * eh_addr_size);
7600 aux->table = (struct ia64_unw_table_entry *)
7601 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7602 tep = aux->table;
7603
7604 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7605 {
7606 tep->start.section = SHN_UNDEF;
7607 tep->end.section = SHN_UNDEF;
7608 tep->info.section = SHN_UNDEF;
7609 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7610 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7611 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7612 tep->start.offset += aux->seg_base;
7613 tep->end.offset += aux->seg_base;
7614 tep->info.offset += aux->seg_base;
7615 }
7616 free (table);
7617
7618 /* Third, apply any relocations to the unwind table: */
7619 for (relsec = filedata->section_headers;
7620 relsec < filedata->section_headers + filedata->file_header.e_shnum;
7621 ++relsec)
7622 {
7623 if (relsec->sh_type != SHT_RELA
7624 || relsec->sh_info >= filedata->file_header.e_shnum
7625 || filedata->section_headers + relsec->sh_info != sec)
7626 continue;
7627
7628 if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
7629 & rela, & nrelas))
7630 {
7631 free (aux->table);
7632 aux->table = NULL;
7633 aux->table_len = 0;
7634 return FALSE;
7635 }
7636
7637 for (rp = rela; rp < rela + nrelas; ++rp)
7638 {
7639 unsigned int sym_ndx;
7640 unsigned int r_type = get_reloc_type (filedata, rp->r_info);
7641 relname = elf_ia64_reloc_type (r_type);
7642
7643 /* PR 17531: file: 9fa67536. */
7644 if (relname == NULL)
7645 {
7646 warn (_("Skipping unknown relocation type: %u\n"), r_type);
7647 continue;
7648 }
7649
7650 if (! const_strneq (relname, "R_IA64_SEGREL"))
7651 {
7652 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7653 continue;
7654 }
7655
7656 i = rp->r_offset / (3 * eh_addr_size);
7657
7658 /* PR 17531: file: 5bc8d9bf. */
7659 if (i >= aux->table_len)
7660 {
7661 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7662 continue;
7663 }
7664
7665 sym_ndx = get_reloc_symindex (rp->r_info);
7666 if (sym_ndx >= aux->nsyms)
7667 {
7668 warn (_("Skipping reloc with invalid symbol index: %u\n"),
7669 sym_ndx);
7670 continue;
7671 }
7672 sym = aux->symtab + sym_ndx;
7673
7674 switch (rp->r_offset / eh_addr_size % 3)
7675 {
7676 case 0:
7677 aux->table[i].start.section = sym->st_shndx;
7678 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7679 break;
7680 case 1:
7681 aux->table[i].end.section = sym->st_shndx;
7682 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7683 break;
7684 case 2:
7685 aux->table[i].info.section = sym->st_shndx;
7686 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7687 break;
7688 default:
7689 break;
7690 }
7691 }
7692
7693 free (rela);
7694 }
7695
7696 return TRUE;
7697 }
7698
7699 static bfd_boolean
7700 ia64_process_unwind (Filedata * filedata)
7701 {
7702 Elf_Internal_Shdr * sec;
7703 Elf_Internal_Shdr * unwsec = NULL;
7704 Elf_Internal_Shdr * strsec;
7705 unsigned long i, unwcount = 0, unwstart = 0;
7706 struct ia64_unw_aux_info aux;
7707 bfd_boolean res = TRUE;
7708
7709 memset (& aux, 0, sizeof (aux));
7710
7711 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
7712 {
7713 if (sec->sh_type == SHT_SYMTAB
7714 && sec->sh_link < filedata->file_header.e_shnum)
7715 {
7716 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
7717
7718 strsec = filedata->section_headers + sec->sh_link;
7719 if (aux.strtab != NULL)
7720 {
7721 error (_("Multiple auxillary string tables encountered\n"));
7722 free (aux.strtab);
7723 res = FALSE;
7724 }
7725 aux.strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
7726 1, strsec->sh_size,
7727 _("string table"));
7728 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7729 }
7730 else if (sec->sh_type == SHT_IA_64_UNWIND)
7731 unwcount++;
7732 }
7733
7734 if (!unwcount)
7735 printf (_("\nThere are no unwind sections in this file.\n"));
7736
7737 while (unwcount-- > 0)
7738 {
7739 char * suffix;
7740 size_t len, len2;
7741
7742 for (i = unwstart, sec = filedata->section_headers + unwstart, unwsec = NULL;
7743 i < filedata->file_header.e_shnum; ++i, ++sec)
7744 if (sec->sh_type == SHT_IA_64_UNWIND)
7745 {
7746 unwsec = sec;
7747 break;
7748 }
7749 /* We have already counted the number of SHT_IA64_UNWIND
7750 sections so the loop above should never fail. */
7751 assert (unwsec != NULL);
7752
7753 unwstart = i + 1;
7754 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7755
7756 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7757 {
7758 /* We need to find which section group it is in. */
7759 struct group_list * g;
7760
7761 if (section_headers_groups == NULL
7762 || section_headers_groups [i] == NULL)
7763 i = filedata->file_header.e_shnum;
7764 else
7765 {
7766 g = section_headers_groups [i]->root;
7767
7768 for (; g != NULL; g = g->next)
7769 {
7770 sec = filedata->section_headers + g->section_index;
7771
7772 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7773 break;
7774 }
7775
7776 if (g == NULL)
7777 i = filedata->file_header.e_shnum;
7778 }
7779 }
7780 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7781 {
7782 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7783 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7784 suffix = SECTION_NAME (unwsec) + len;
7785 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum;
7786 ++i, ++sec)
7787 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7788 && streq (SECTION_NAME (sec) + len2, suffix))
7789 break;
7790 }
7791 else
7792 {
7793 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7794 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7795 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7796 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7797 suffix = "";
7798 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7799 suffix = SECTION_NAME (unwsec) + len;
7800 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum;
7801 ++i, ++sec)
7802 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7803 && streq (SECTION_NAME (sec) + len2, suffix))
7804 break;
7805 }
7806
7807 if (i == filedata->file_header.e_shnum)
7808 {
7809 printf (_("\nCould not find unwind info section for "));
7810
7811 if (filedata->string_table == NULL)
7812 printf ("%d", unwsec->sh_name);
7813 else
7814 printf ("'%s'", printable_section_name (filedata, unwsec));
7815 }
7816 else
7817 {
7818 aux.info_addr = sec->sh_addr;
7819 aux.info = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1,
7820 sec->sh_size,
7821 _("unwind info"));
7822 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7823
7824 printf (_("\nUnwind section "));
7825
7826 if (filedata->string_table == NULL)
7827 printf ("%d", unwsec->sh_name);
7828 else
7829 printf ("'%s'", printable_section_name (filedata, unwsec));
7830
7831 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7832 (unsigned long) unwsec->sh_offset,
7833 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7834
7835 if (slurp_ia64_unwind_table (filedata, & aux, unwsec)
7836 && aux.table_len > 0)
7837 dump_ia64_unwind (filedata, & aux);
7838
7839 if (aux.table)
7840 free ((char *) aux.table);
7841 if (aux.info)
7842 free ((char *) aux.info);
7843 aux.table = NULL;
7844 aux.info = NULL;
7845 }
7846 }
7847
7848 if (aux.symtab)
7849 free (aux.symtab);
7850 if (aux.strtab)
7851 free ((char *) aux.strtab);
7852
7853 return res;
7854 }
7855
7856 struct hppa_unw_table_entry
7857 {
7858 struct absaddr start;
7859 struct absaddr end;
7860 unsigned int Cannot_unwind:1; /* 0 */
7861 unsigned int Millicode:1; /* 1 */
7862 unsigned int Millicode_save_sr0:1; /* 2 */
7863 unsigned int Region_description:2; /* 3..4 */
7864 unsigned int reserved1:1; /* 5 */
7865 unsigned int Entry_SR:1; /* 6 */
7866 unsigned int Entry_FR:4; /* Number saved 7..10 */
7867 unsigned int Entry_GR:5; /* Number saved 11..15 */
7868 unsigned int Args_stored:1; /* 16 */
7869 unsigned int Variable_Frame:1; /* 17 */
7870 unsigned int Separate_Package_Body:1; /* 18 */
7871 unsigned int Frame_Extension_Millicode:1; /* 19 */
7872 unsigned int Stack_Overflow_Check:1; /* 20 */
7873 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7874 unsigned int Ada_Region:1; /* 22 */
7875 unsigned int cxx_info:1; /* 23 */
7876 unsigned int cxx_try_catch:1; /* 24 */
7877 unsigned int sched_entry_seq:1; /* 25 */
7878 unsigned int reserved2:1; /* 26 */
7879 unsigned int Save_SP:1; /* 27 */
7880 unsigned int Save_RP:1; /* 28 */
7881 unsigned int Save_MRP_in_frame:1; /* 29 */
7882 unsigned int extn_ptr_defined:1; /* 30 */
7883 unsigned int Cleanup_defined:1; /* 31 */
7884
7885 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7886 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7887 unsigned int Large_frame:1; /* 2 */
7888 unsigned int Pseudo_SP_Set:1; /* 3 */
7889 unsigned int reserved4:1; /* 4 */
7890 unsigned int Total_frame_size:27; /* 5..31 */
7891 };
7892
7893 struct hppa_unw_aux_info
7894 {
7895 struct hppa_unw_table_entry * table; /* Unwind table. */
7896 unsigned long table_len; /* Length of unwind table. */
7897 bfd_vma seg_base; /* Starting address of segment. */
7898 Elf_Internal_Sym * symtab; /* The symbol table. */
7899 unsigned long nsyms; /* Number of symbols. */
7900 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7901 unsigned long nfuns; /* Number of entries in funtab. */
7902 char * strtab; /* The string table. */
7903 unsigned long strtab_size; /* Size of string table. */
7904 };
7905
7906 static bfd_boolean
7907 dump_hppa_unwind (Filedata * filedata, struct hppa_unw_aux_info * aux)
7908 {
7909 struct hppa_unw_table_entry * tp;
7910 unsigned long j, nfuns;
7911 bfd_boolean res = TRUE;
7912
7913 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7914 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7915 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7916 aux->funtab[nfuns++] = aux->symtab[j];
7917 aux->nfuns = nfuns;
7918 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7919
7920 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7921 {
7922 bfd_vma offset;
7923 const char * procname;
7924
7925 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
7926 aux->strtab_size, tp->start, &procname,
7927 &offset);
7928
7929 fputs ("\n<", stdout);
7930
7931 if (procname)
7932 {
7933 fputs (procname, stdout);
7934
7935 if (offset)
7936 printf ("+%lx", (unsigned long) offset);
7937 }
7938
7939 fputs (">: [", stdout);
7940 print_vma (tp->start.offset, PREFIX_HEX);
7941 fputc ('-', stdout);
7942 print_vma (tp->end.offset, PREFIX_HEX);
7943 printf ("]\n\t");
7944
7945 #define PF(_m) if (tp->_m) printf (#_m " ");
7946 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7947 PF(Cannot_unwind);
7948 PF(Millicode);
7949 PF(Millicode_save_sr0);
7950 /* PV(Region_description); */
7951 PF(Entry_SR);
7952 PV(Entry_FR);
7953 PV(Entry_GR);
7954 PF(Args_stored);
7955 PF(Variable_Frame);
7956 PF(Separate_Package_Body);
7957 PF(Frame_Extension_Millicode);
7958 PF(Stack_Overflow_Check);
7959 PF(Two_Instruction_SP_Increment);
7960 PF(Ada_Region);
7961 PF(cxx_info);
7962 PF(cxx_try_catch);
7963 PF(sched_entry_seq);
7964 PF(Save_SP);
7965 PF(Save_RP);
7966 PF(Save_MRP_in_frame);
7967 PF(extn_ptr_defined);
7968 PF(Cleanup_defined);
7969 PF(MPE_XL_interrupt_marker);
7970 PF(HP_UX_interrupt_marker);
7971 PF(Large_frame);
7972 PF(Pseudo_SP_Set);
7973 PV(Total_frame_size);
7974 #undef PF
7975 #undef PV
7976 }
7977
7978 printf ("\n");
7979
7980 free (aux->funtab);
7981
7982 return res;
7983 }
7984
7985 static bfd_boolean
7986 slurp_hppa_unwind_table (Filedata * filedata,
7987 struct hppa_unw_aux_info * aux,
7988 Elf_Internal_Shdr * sec)
7989 {
7990 unsigned long size, unw_ent_size, nentries, nrelas, i;
7991 Elf_Internal_Phdr * seg;
7992 struct hppa_unw_table_entry * tep;
7993 Elf_Internal_Shdr * relsec;
7994 Elf_Internal_Rela * rela;
7995 Elf_Internal_Rela * rp;
7996 unsigned char * table;
7997 unsigned char * tp;
7998 Elf_Internal_Sym * sym;
7999 const char * relname;
8000
8001 /* First, find the starting address of the segment that includes
8002 this section. */
8003 if (filedata->file_header.e_phnum)
8004 {
8005 if (! get_program_headers (filedata))
8006 return FALSE;
8007
8008 for (seg = filedata->program_headers;
8009 seg < filedata->program_headers + filedata->file_header.e_phnum;
8010 ++seg)
8011 {
8012 if (seg->p_type != PT_LOAD)
8013 continue;
8014
8015 if (sec->sh_addr >= seg->p_vaddr
8016 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
8017 {
8018 aux->seg_base = seg->p_vaddr;
8019 break;
8020 }
8021 }
8022 }
8023
8024 /* Second, build the unwind table from the contents of the unwind
8025 section. */
8026 size = sec->sh_size;
8027 table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
8028 _("unwind table"));
8029 if (!table)
8030 return FALSE;
8031
8032 unw_ent_size = 16;
8033 nentries = size / unw_ent_size;
8034 size = unw_ent_size * nentries;
8035
8036 tep = aux->table = (struct hppa_unw_table_entry *)
8037 xcmalloc (nentries, sizeof (aux->table[0]));
8038
8039 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
8040 {
8041 unsigned int tmp1, tmp2;
8042
8043 tep->start.section = SHN_UNDEF;
8044 tep->end.section = SHN_UNDEF;
8045
8046 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
8047 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
8048 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
8049 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
8050
8051 tep->start.offset += aux->seg_base;
8052 tep->end.offset += aux->seg_base;
8053
8054 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
8055 tep->Millicode = (tmp1 >> 30) & 0x1;
8056 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
8057 tep->Region_description = (tmp1 >> 27) & 0x3;
8058 tep->reserved1 = (tmp1 >> 26) & 0x1;
8059 tep->Entry_SR = (tmp1 >> 25) & 0x1;
8060 tep->Entry_FR = (tmp1 >> 21) & 0xf;
8061 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
8062 tep->Args_stored = (tmp1 >> 15) & 0x1;
8063 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
8064 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
8065 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
8066 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
8067 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
8068 tep->Ada_Region = (tmp1 >> 9) & 0x1;
8069 tep->cxx_info = (tmp1 >> 8) & 0x1;
8070 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
8071 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
8072 tep->reserved2 = (tmp1 >> 5) & 0x1;
8073 tep->Save_SP = (tmp1 >> 4) & 0x1;
8074 tep->Save_RP = (tmp1 >> 3) & 0x1;
8075 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
8076 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
8077 tep->Cleanup_defined = tmp1 & 0x1;
8078
8079 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
8080 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
8081 tep->Large_frame = (tmp2 >> 29) & 0x1;
8082 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
8083 tep->reserved4 = (tmp2 >> 27) & 0x1;
8084 tep->Total_frame_size = tmp2 & 0x7ffffff;
8085 }
8086 free (table);
8087
8088 /* Third, apply any relocations to the unwind table. */
8089 for (relsec = filedata->section_headers;
8090 relsec < filedata->section_headers + filedata->file_header.e_shnum;
8091 ++relsec)
8092 {
8093 if (relsec->sh_type != SHT_RELA
8094 || relsec->sh_info >= filedata->file_header.e_shnum
8095 || filedata->section_headers + relsec->sh_info != sec)
8096 continue;
8097
8098 if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
8099 & rela, & nrelas))
8100 return FALSE;
8101
8102 for (rp = rela; rp < rela + nrelas; ++rp)
8103 {
8104 unsigned int sym_ndx;
8105 unsigned int r_type = get_reloc_type (filedata, rp->r_info);
8106 relname = elf_hppa_reloc_type (r_type);
8107
8108 if (relname == NULL)
8109 {
8110 warn (_("Skipping unknown relocation type: %u\n"), r_type);
8111 continue;
8112 }
8113
8114 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
8115 if (! const_strneq (relname, "R_PARISC_SEGREL"))
8116 {
8117 warn (_("Skipping unexpected relocation type: %s\n"), relname);
8118 continue;
8119 }
8120
8121 i = rp->r_offset / unw_ent_size;
8122 if (i >= aux->table_len)
8123 {
8124 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
8125 continue;
8126 }
8127
8128 sym_ndx = get_reloc_symindex (rp->r_info);
8129 if (sym_ndx >= aux->nsyms)
8130 {
8131 warn (_("Skipping reloc with invalid symbol index: %u\n"),
8132 sym_ndx);
8133 continue;
8134 }
8135 sym = aux->symtab + sym_ndx;
8136
8137 switch ((rp->r_offset % unw_ent_size) / 4)
8138 {
8139 case 0:
8140 aux->table[i].start.section = sym->st_shndx;
8141 aux->table[i].start.offset = sym->st_value + rp->r_addend;
8142 break;
8143 case 1:
8144 aux->table[i].end.section = sym->st_shndx;
8145 aux->table[i].end.offset = sym->st_value + rp->r_addend;
8146 break;
8147 default:
8148 break;
8149 }
8150 }
8151
8152 free (rela);
8153 }
8154
8155 aux->table_len = nentries;
8156
8157 return TRUE;
8158 }
8159
8160 static bfd_boolean
8161 hppa_process_unwind (Filedata * filedata)
8162 {
8163 struct hppa_unw_aux_info aux;
8164 Elf_Internal_Shdr * unwsec = NULL;
8165 Elf_Internal_Shdr * strsec;
8166 Elf_Internal_Shdr * sec;
8167 unsigned long i;
8168 bfd_boolean res = TRUE;
8169
8170 if (filedata->string_table == NULL)
8171 return FALSE;
8172
8173 memset (& aux, 0, sizeof (aux));
8174
8175 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
8176 {
8177 if (sec->sh_type == SHT_SYMTAB
8178 && sec->sh_link < filedata->file_header.e_shnum)
8179 {
8180 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
8181
8182 strsec = filedata->section_headers + sec->sh_link;
8183 if (aux.strtab != NULL)
8184 {
8185 error (_("Multiple auxillary string tables encountered\n"));
8186 free (aux.strtab);
8187 res = FALSE;
8188 }
8189 aux.strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
8190 1, strsec->sh_size,
8191 _("string table"));
8192 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8193 }
8194 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
8195 unwsec = sec;
8196 }
8197
8198 if (!unwsec)
8199 printf (_("\nThere are no unwind sections in this file.\n"));
8200
8201 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
8202 {
8203 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
8204 {
8205 unsigned long num_unwind = sec->sh_size / 16;
8206
8207 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
8208 "contains %lu entry:\n",
8209 "\nUnwind section '%s' at offset 0x%lx "
8210 "contains %lu entries:\n",
8211 num_unwind),
8212 printable_section_name (filedata, sec),
8213 (unsigned long) sec->sh_offset,
8214 num_unwind);
8215
8216 if (! slurp_hppa_unwind_table (filedata, &aux, sec))
8217 res = FALSE;
8218
8219 if (res && aux.table_len > 0)
8220 {
8221 if (! dump_hppa_unwind (filedata, &aux))
8222 res = FALSE;
8223 }
8224
8225 if (aux.table)
8226 free ((char *) aux.table);
8227 aux.table = NULL;
8228 }
8229 }
8230
8231 if (aux.symtab)
8232 free (aux.symtab);
8233 if (aux.strtab)
8234 free ((char *) aux.strtab);
8235
8236 return res;
8237 }
8238
8239 struct arm_section
8240 {
8241 unsigned char * data; /* The unwind data. */
8242 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
8243 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
8244 unsigned long nrelas; /* The number of relocations. */
8245 unsigned int rel_type; /* REL or RELA ? */
8246 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
8247 };
8248
8249 struct arm_unw_aux_info
8250 {
8251 Filedata * filedata; /* The file containing the unwind sections. */
8252 Elf_Internal_Sym * symtab; /* The file's symbol table. */
8253 unsigned long nsyms; /* Number of symbols. */
8254 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
8255 unsigned long nfuns; /* Number of these symbols. */
8256 char * strtab; /* The file's string table. */
8257 unsigned long strtab_size; /* Size of string table. */
8258 };
8259
8260 static const char *
8261 arm_print_vma_and_name (Filedata * filedata,
8262 struct arm_unw_aux_info * aux,
8263 bfd_vma fn,
8264 struct absaddr addr)
8265 {
8266 const char *procname;
8267 bfd_vma sym_offset;
8268
8269 if (addr.section == SHN_UNDEF)
8270 addr.offset = fn;
8271
8272 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
8273 aux->strtab_size, addr, &procname,
8274 &sym_offset);
8275
8276 print_vma (fn, PREFIX_HEX);
8277
8278 if (procname)
8279 {
8280 fputs (" <", stdout);
8281 fputs (procname, stdout);
8282
8283 if (sym_offset)
8284 printf ("+0x%lx", (unsigned long) sym_offset);
8285 fputc ('>', stdout);
8286 }
8287
8288 return procname;
8289 }
8290
8291 static void
8292 arm_free_section (struct arm_section *arm_sec)
8293 {
8294 if (arm_sec->data != NULL)
8295 free (arm_sec->data);
8296
8297 if (arm_sec->rela != NULL)
8298 free (arm_sec->rela);
8299 }
8300
8301 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
8302 cached section and install SEC instead.
8303 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
8304 and return its valued in * WORDP, relocating if necessary.
8305 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
8306 relocation's offset in ADDR.
8307 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
8308 into the string table of the symbol associated with the reloc. If no
8309 reloc was applied store -1 there.
8310 5) Return TRUE upon success, FALSE otherwise. */
8311
8312 static bfd_boolean
8313 get_unwind_section_word (Filedata * filedata,
8314 struct arm_unw_aux_info * aux,
8315 struct arm_section * arm_sec,
8316 Elf_Internal_Shdr * sec,
8317 bfd_vma word_offset,
8318 unsigned int * wordp,
8319 struct absaddr * addr,
8320 bfd_vma * sym_name)
8321 {
8322 Elf_Internal_Rela *rp;
8323 Elf_Internal_Sym *sym;
8324 const char * relname;
8325 unsigned int word;
8326 bfd_boolean wrapped;
8327
8328 if (sec == NULL || arm_sec == NULL)
8329 return FALSE;
8330
8331 addr->section = SHN_UNDEF;
8332 addr->offset = 0;
8333
8334 if (sym_name != NULL)
8335 *sym_name = (bfd_vma) -1;
8336
8337 /* If necessary, update the section cache. */
8338 if (sec != arm_sec->sec)
8339 {
8340 Elf_Internal_Shdr *relsec;
8341
8342 arm_free_section (arm_sec);
8343
8344 arm_sec->sec = sec;
8345 arm_sec->data = get_data (NULL, aux->filedata, sec->sh_offset, 1,
8346 sec->sh_size, _("unwind data"));
8347 arm_sec->rela = NULL;
8348 arm_sec->nrelas = 0;
8349
8350 for (relsec = filedata->section_headers;
8351 relsec < filedata->section_headers + filedata->file_header.e_shnum;
8352 ++relsec)
8353 {
8354 if (relsec->sh_info >= filedata->file_header.e_shnum
8355 || filedata->section_headers + relsec->sh_info != sec
8356 /* PR 15745: Check the section type as well. */
8357 || (relsec->sh_type != SHT_REL
8358 && relsec->sh_type != SHT_RELA))
8359 continue;
8360
8361 arm_sec->rel_type = relsec->sh_type;
8362 if (relsec->sh_type == SHT_REL)
8363 {
8364 if (!slurp_rel_relocs (aux->filedata, relsec->sh_offset,
8365 relsec->sh_size,
8366 & arm_sec->rela, & arm_sec->nrelas))
8367 return FALSE;
8368 }
8369 else /* relsec->sh_type == SHT_RELA */
8370 {
8371 if (!slurp_rela_relocs (aux->filedata, relsec->sh_offset,
8372 relsec->sh_size,
8373 & arm_sec->rela, & arm_sec->nrelas))
8374 return FALSE;
8375 }
8376 break;
8377 }
8378
8379 arm_sec->next_rela = arm_sec->rela;
8380 }
8381
8382 /* If there is no unwind data we can do nothing. */
8383 if (arm_sec->data == NULL)
8384 return FALSE;
8385
8386 /* If the offset is invalid then fail. */
8387 if (/* PR 21343 *//* PR 18879 */
8388 sec->sh_size < 4
8389 || word_offset > (sec->sh_size - 4)
8390 || ((bfd_signed_vma) word_offset) < 0)
8391 return FALSE;
8392
8393 /* Get the word at the required offset. */
8394 word = byte_get (arm_sec->data + word_offset, 4);
8395
8396 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8397 if (arm_sec->rela == NULL)
8398 {
8399 * wordp = word;
8400 return TRUE;
8401 }
8402
8403 /* Look through the relocs to find the one that applies to the provided offset. */
8404 wrapped = FALSE;
8405 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8406 {
8407 bfd_vma prelval, offset;
8408
8409 if (rp->r_offset > word_offset && !wrapped)
8410 {
8411 rp = arm_sec->rela;
8412 wrapped = TRUE;
8413 }
8414 if (rp->r_offset > word_offset)
8415 break;
8416
8417 if (rp->r_offset & 3)
8418 {
8419 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8420 (unsigned long) rp->r_offset);
8421 continue;
8422 }
8423
8424 if (rp->r_offset < word_offset)
8425 continue;
8426
8427 /* PR 17531: file: 027-161405-0.004 */
8428 if (aux->symtab == NULL)
8429 continue;
8430
8431 if (arm_sec->rel_type == SHT_REL)
8432 {
8433 offset = word & 0x7fffffff;
8434 if (offset & 0x40000000)
8435 offset |= ~ (bfd_vma) 0x7fffffff;
8436 }
8437 else if (arm_sec->rel_type == SHT_RELA)
8438 offset = rp->r_addend;
8439 else
8440 {
8441 error (_("Unknown section relocation type %d encountered\n"),
8442 arm_sec->rel_type);
8443 break;
8444 }
8445
8446 /* PR 17531 file: 027-1241568-0.004. */
8447 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8448 {
8449 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8450 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8451 break;
8452 }
8453
8454 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8455 offset += sym->st_value;
8456 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8457
8458 /* Check that we are processing the expected reloc type. */
8459 if (filedata->file_header.e_machine == EM_ARM)
8460 {
8461 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8462 if (relname == NULL)
8463 {
8464 warn (_("Skipping unknown ARM relocation type: %d\n"),
8465 (int) ELF32_R_TYPE (rp->r_info));
8466 continue;
8467 }
8468
8469 if (streq (relname, "R_ARM_NONE"))
8470 continue;
8471
8472 if (! streq (relname, "R_ARM_PREL31"))
8473 {
8474 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8475 continue;
8476 }
8477 }
8478 else if (filedata->file_header.e_machine == EM_TI_C6000)
8479 {
8480 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8481 if (relname == NULL)
8482 {
8483 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8484 (int) ELF32_R_TYPE (rp->r_info));
8485 continue;
8486 }
8487
8488 if (streq (relname, "R_C6000_NONE"))
8489 continue;
8490
8491 if (! streq (relname, "R_C6000_PREL31"))
8492 {
8493 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8494 continue;
8495 }
8496
8497 prelval >>= 1;
8498 }
8499 else
8500 {
8501 /* This function currently only supports ARM and TI unwinders. */
8502 warn (_("Only TI and ARM unwinders are currently supported\n"));
8503 break;
8504 }
8505
8506 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8507 addr->section = sym->st_shndx;
8508 addr->offset = offset;
8509
8510 if (sym_name)
8511 * sym_name = sym->st_name;
8512 break;
8513 }
8514
8515 *wordp = word;
8516 arm_sec->next_rela = rp;
8517
8518 return TRUE;
8519 }
8520
8521 static const char *tic6x_unwind_regnames[16] =
8522 {
8523 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8524 "A14", "A13", "A12", "A11", "A10",
8525 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8526 };
8527
8528 static void
8529 decode_tic6x_unwind_regmask (unsigned int mask)
8530 {
8531 int i;
8532
8533 for (i = 12; mask; mask >>= 1, i--)
8534 {
8535 if (mask & 1)
8536 {
8537 fputs (tic6x_unwind_regnames[i], stdout);
8538 if (mask > 1)
8539 fputs (", ", stdout);
8540 }
8541 }
8542 }
8543
8544 #define ADVANCE \
8545 if (remaining == 0 && more_words) \
8546 { \
8547 data_offset += 4; \
8548 if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, \
8549 data_offset, & word, & addr, NULL)) \
8550 return FALSE; \
8551 remaining = 4; \
8552 more_words--; \
8553 } \
8554
8555 #define GET_OP(OP) \
8556 ADVANCE; \
8557 if (remaining) \
8558 { \
8559 remaining--; \
8560 (OP) = word >> 24; \
8561 word <<= 8; \
8562 } \
8563 else \
8564 { \
8565 printf (_("[Truncated opcode]\n")); \
8566 return FALSE; \
8567 } \
8568 printf ("0x%02x ", OP)
8569
8570 static bfd_boolean
8571 decode_arm_unwind_bytecode (Filedata * filedata,
8572 struct arm_unw_aux_info * aux,
8573 unsigned int word,
8574 unsigned int remaining,
8575 unsigned int more_words,
8576 bfd_vma data_offset,
8577 Elf_Internal_Shdr * data_sec,
8578 struct arm_section * data_arm_sec)
8579 {
8580 struct absaddr addr;
8581 bfd_boolean res = TRUE;
8582
8583 /* Decode the unwinding instructions. */
8584 while (1)
8585 {
8586 unsigned int op, op2;
8587
8588 ADVANCE;
8589 if (remaining == 0)
8590 break;
8591 remaining--;
8592 op = word >> 24;
8593 word <<= 8;
8594
8595 printf (" 0x%02x ", op);
8596
8597 if ((op & 0xc0) == 0x00)
8598 {
8599 int offset = ((op & 0x3f) << 2) + 4;
8600
8601 printf (" vsp = vsp + %d", offset);
8602 }
8603 else if ((op & 0xc0) == 0x40)
8604 {
8605 int offset = ((op & 0x3f) << 2) + 4;
8606
8607 printf (" vsp = vsp - %d", offset);
8608 }
8609 else if ((op & 0xf0) == 0x80)
8610 {
8611 GET_OP (op2);
8612 if (op == 0x80 && op2 == 0)
8613 printf (_("Refuse to unwind"));
8614 else
8615 {
8616 unsigned int mask = ((op & 0x0f) << 8) | op2;
8617 bfd_boolean first = TRUE;
8618 int i;
8619
8620 printf ("pop {");
8621 for (i = 0; i < 12; i++)
8622 if (mask & (1 << i))
8623 {
8624 if (first)
8625 first = FALSE;
8626 else
8627 printf (", ");
8628 printf ("r%d", 4 + i);
8629 }
8630 printf ("}");
8631 }
8632 }
8633 else if ((op & 0xf0) == 0x90)
8634 {
8635 if (op == 0x9d || op == 0x9f)
8636 printf (_(" [Reserved]"));
8637 else
8638 printf (" vsp = r%d", op & 0x0f);
8639 }
8640 else if ((op & 0xf0) == 0xa0)
8641 {
8642 int end = 4 + (op & 0x07);
8643 bfd_boolean first = TRUE;
8644 int i;
8645
8646 printf (" pop {");
8647 for (i = 4; i <= end; i++)
8648 {
8649 if (first)
8650 first = FALSE;
8651 else
8652 printf (", ");
8653 printf ("r%d", i);
8654 }
8655 if (op & 0x08)
8656 {
8657 if (!first)
8658 printf (", ");
8659 printf ("r14");
8660 }
8661 printf ("}");
8662 }
8663 else if (op == 0xb0)
8664 printf (_(" finish"));
8665 else if (op == 0xb1)
8666 {
8667 GET_OP (op2);
8668 if (op2 == 0 || (op2 & 0xf0) != 0)
8669 printf (_("[Spare]"));
8670 else
8671 {
8672 unsigned int mask = op2 & 0x0f;
8673 bfd_boolean first = TRUE;
8674 int i;
8675
8676 printf ("pop {");
8677 for (i = 0; i < 12; i++)
8678 if (mask & (1 << i))
8679 {
8680 if (first)
8681 first = FALSE;
8682 else
8683 printf (", ");
8684 printf ("r%d", i);
8685 }
8686 printf ("}");
8687 }
8688 }
8689 else if (op == 0xb2)
8690 {
8691 unsigned char buf[9];
8692 unsigned int i, len;
8693 unsigned long offset;
8694
8695 for (i = 0; i < sizeof (buf); i++)
8696 {
8697 GET_OP (buf[i]);
8698 if ((buf[i] & 0x80) == 0)
8699 break;
8700 }
8701 if (i == sizeof (buf))
8702 {
8703 error (_("corrupt change to vsp"));
8704 res = FALSE;
8705 }
8706 else
8707 {
8708 offset = read_uleb128 (buf, &len, buf + i + 1);
8709 assert (len == i + 1);
8710 offset = offset * 4 + 0x204;
8711 printf ("vsp = vsp + %ld", offset);
8712 }
8713 }
8714 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8715 {
8716 unsigned int first, last;
8717
8718 GET_OP (op2);
8719 first = op2 >> 4;
8720 last = op2 & 0x0f;
8721 if (op == 0xc8)
8722 first = first + 16;
8723 printf ("pop {D%d", first);
8724 if (last)
8725 printf ("-D%d", first + last);
8726 printf ("}");
8727 }
8728 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8729 {
8730 unsigned int count = op & 0x07;
8731
8732 printf ("pop {D8");
8733 if (count)
8734 printf ("-D%d", 8 + count);
8735 printf ("}");
8736 }
8737 else if (op >= 0xc0 && op <= 0xc5)
8738 {
8739 unsigned int count = op & 0x07;
8740
8741 printf (" pop {wR10");
8742 if (count)
8743 printf ("-wR%d", 10 + count);
8744 printf ("}");
8745 }
8746 else if (op == 0xc6)
8747 {
8748 unsigned int first, last;
8749
8750 GET_OP (op2);
8751 first = op2 >> 4;
8752 last = op2 & 0x0f;
8753 printf ("pop {wR%d", first);
8754 if (last)
8755 printf ("-wR%d", first + last);
8756 printf ("}");
8757 }
8758 else if (op == 0xc7)
8759 {
8760 GET_OP (op2);
8761 if (op2 == 0 || (op2 & 0xf0) != 0)
8762 printf (_("[Spare]"));
8763 else
8764 {
8765 unsigned int mask = op2 & 0x0f;
8766 bfd_boolean first = TRUE;
8767 int i;
8768
8769 printf ("pop {");
8770 for (i = 0; i < 4; i++)
8771 if (mask & (1 << i))
8772 {
8773 if (first)
8774 first = FALSE;
8775 else
8776 printf (", ");
8777 printf ("wCGR%d", i);
8778 }
8779 printf ("}");
8780 }
8781 }
8782 else
8783 {
8784 printf (_(" [unsupported opcode]"));
8785 res = FALSE;
8786 }
8787
8788 printf ("\n");
8789 }
8790
8791 return res;
8792 }
8793
8794 static bfd_boolean
8795 decode_tic6x_unwind_bytecode (Filedata * filedata,
8796 struct arm_unw_aux_info * aux,
8797 unsigned int word,
8798 unsigned int remaining,
8799 unsigned int more_words,
8800 bfd_vma data_offset,
8801 Elf_Internal_Shdr * data_sec,
8802 struct arm_section * data_arm_sec)
8803 {
8804 struct absaddr addr;
8805
8806 /* Decode the unwinding instructions. */
8807 while (1)
8808 {
8809 unsigned int op, op2;
8810
8811 ADVANCE;
8812 if (remaining == 0)
8813 break;
8814 remaining--;
8815 op = word >> 24;
8816 word <<= 8;
8817
8818 printf (" 0x%02x ", op);
8819
8820 if ((op & 0xc0) == 0x00)
8821 {
8822 int offset = ((op & 0x3f) << 3) + 8;
8823 printf (" sp = sp + %d", offset);
8824 }
8825 else if ((op & 0xc0) == 0x80)
8826 {
8827 GET_OP (op2);
8828 if (op == 0x80 && op2 == 0)
8829 printf (_("Refuse to unwind"));
8830 else
8831 {
8832 unsigned int mask = ((op & 0x1f) << 8) | op2;
8833 if (op & 0x20)
8834 printf ("pop compact {");
8835 else
8836 printf ("pop {");
8837
8838 decode_tic6x_unwind_regmask (mask);
8839 printf("}");
8840 }
8841 }
8842 else if ((op & 0xf0) == 0xc0)
8843 {
8844 unsigned int reg;
8845 unsigned int nregs;
8846 unsigned int i;
8847 const char *name;
8848 struct
8849 {
8850 unsigned int offset;
8851 unsigned int reg;
8852 } regpos[16];
8853
8854 /* Scan entire instruction first so that GET_OP output is not
8855 interleaved with disassembly. */
8856 nregs = 0;
8857 for (i = 0; nregs < (op & 0xf); i++)
8858 {
8859 GET_OP (op2);
8860 reg = op2 >> 4;
8861 if (reg != 0xf)
8862 {
8863 regpos[nregs].offset = i * 2;
8864 regpos[nregs].reg = reg;
8865 nregs++;
8866 }
8867
8868 reg = op2 & 0xf;
8869 if (reg != 0xf)
8870 {
8871 regpos[nregs].offset = i * 2 + 1;
8872 regpos[nregs].reg = reg;
8873 nregs++;
8874 }
8875 }
8876
8877 printf (_("pop frame {"));
8878 if (nregs == 0)
8879 {
8880 printf (_("*corrupt* - no registers specified"));
8881 }
8882 else
8883 {
8884 reg = nregs - 1;
8885 for (i = i * 2; i > 0; i--)
8886 {
8887 if (regpos[reg].offset == i - 1)
8888 {
8889 name = tic6x_unwind_regnames[regpos[reg].reg];
8890 if (reg > 0)
8891 reg--;
8892 }
8893 else
8894 name = _("[pad]");
8895
8896 fputs (name, stdout);
8897 if (i > 1)
8898 printf (", ");
8899 }
8900 }
8901
8902 printf ("}");
8903 }
8904 else if (op == 0xd0)
8905 printf (" MOV FP, SP");
8906 else if (op == 0xd1)
8907 printf (" __c6xabi_pop_rts");
8908 else if (op == 0xd2)
8909 {
8910 unsigned char buf[9];
8911 unsigned int i, len;
8912 unsigned long offset;
8913
8914 for (i = 0; i < sizeof (buf); i++)
8915 {
8916 GET_OP (buf[i]);
8917 if ((buf[i] & 0x80) == 0)
8918 break;
8919 }
8920 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8921 if (i == sizeof (buf))
8922 {
8923 warn (_("Corrupt stack pointer adjustment detected\n"));
8924 return FALSE;
8925 }
8926
8927 offset = read_uleb128 (buf, &len, buf + i + 1);
8928 assert (len == i + 1);
8929 offset = offset * 8 + 0x408;
8930 printf (_("sp = sp + %ld"), offset);
8931 }
8932 else if ((op & 0xf0) == 0xe0)
8933 {
8934 if ((op & 0x0f) == 7)
8935 printf (" RETURN");
8936 else
8937 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8938 }
8939 else
8940 {
8941 printf (_(" [unsupported opcode]"));
8942 }
8943 putchar ('\n');
8944 }
8945
8946 return TRUE;
8947 }
8948
8949 static bfd_vma
8950 arm_expand_prel31 (Filedata * filedata, bfd_vma word, bfd_vma where)
8951 {
8952 bfd_vma offset;
8953
8954 offset = word & 0x7fffffff;
8955 if (offset & 0x40000000)
8956 offset |= ~ (bfd_vma) 0x7fffffff;
8957
8958 if (filedata->file_header.e_machine == EM_TI_C6000)
8959 offset <<= 1;
8960
8961 return offset + where;
8962 }
8963
8964 static bfd_boolean
8965 decode_arm_unwind (Filedata * filedata,
8966 struct arm_unw_aux_info * aux,
8967 unsigned int word,
8968 unsigned int remaining,
8969 bfd_vma data_offset,
8970 Elf_Internal_Shdr * data_sec,
8971 struct arm_section * data_arm_sec)
8972 {
8973 int per_index;
8974 unsigned int more_words = 0;
8975 struct absaddr addr;
8976 bfd_vma sym_name = (bfd_vma) -1;
8977 bfd_boolean res = TRUE;
8978
8979 if (remaining == 0)
8980 {
8981 /* Fetch the first word.
8982 Note - when decoding an object file the address extracted
8983 here will always be 0. So we also pass in the sym_name
8984 parameter so that we can find the symbol associated with
8985 the personality routine. */
8986 if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, data_offset,
8987 & word, & addr, & sym_name))
8988 return FALSE;
8989
8990 remaining = 4;
8991 }
8992
8993 if ((word & 0x80000000) == 0)
8994 {
8995 /* Expand prel31 for personality routine. */
8996 bfd_vma fn;
8997 const char *procname;
8998
8999 fn = arm_expand_prel31 (filedata, word, data_sec->sh_addr + data_offset);
9000 printf (_(" Personality routine: "));
9001 if (fn == 0
9002 && addr.section == SHN_UNDEF && addr.offset == 0
9003 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
9004 {
9005 procname = aux->strtab + sym_name;
9006 print_vma (fn, PREFIX_HEX);
9007 if (procname)
9008 {
9009 fputs (" <", stdout);
9010 fputs (procname, stdout);
9011 fputc ('>', stdout);
9012 }
9013 }
9014 else
9015 procname = arm_print_vma_and_name (filedata, aux, fn, addr);
9016 fputc ('\n', stdout);
9017
9018 /* The GCC personality routines use the standard compact
9019 encoding, starting with one byte giving the number of
9020 words. */
9021 if (procname != NULL
9022 && (const_strneq (procname, "__gcc_personality_v0")
9023 || const_strneq (procname, "__gxx_personality_v0")
9024 || const_strneq (procname, "__gcj_personality_v0")
9025 || const_strneq (procname, "__gnu_objc_personality_v0")))
9026 {
9027 remaining = 0;
9028 more_words = 1;
9029 ADVANCE;
9030 if (!remaining)
9031 {
9032 printf (_(" [Truncated data]\n"));
9033 return FALSE;
9034 }
9035 more_words = word >> 24;
9036 word <<= 8;
9037 remaining--;
9038 per_index = -1;
9039 }
9040 else
9041 return TRUE;
9042 }
9043 else
9044 {
9045 /* ARM EHABI Section 6.3:
9046
9047 An exception-handling table entry for the compact model looks like:
9048
9049 31 30-28 27-24 23-0
9050 -- ----- ----- ----
9051 1 0 index Data for personalityRoutine[index] */
9052
9053 if (filedata->file_header.e_machine == EM_ARM
9054 && (word & 0x70000000))
9055 {
9056 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
9057 res = FALSE;
9058 }
9059
9060 per_index = (word >> 24) & 0x7f;
9061 printf (_(" Compact model index: %d\n"), per_index);
9062 if (per_index == 0)
9063 {
9064 more_words = 0;
9065 word <<= 8;
9066 remaining--;
9067 }
9068 else if (per_index < 3)
9069 {
9070 more_words = (word >> 16) & 0xff;
9071 word <<= 16;
9072 remaining -= 2;
9073 }
9074 }
9075
9076 switch (filedata->file_header.e_machine)
9077 {
9078 case EM_ARM:
9079 if (per_index < 3)
9080 {
9081 if (! decode_arm_unwind_bytecode (filedata, aux, word, remaining, more_words,
9082 data_offset, data_sec, data_arm_sec))
9083 res = FALSE;
9084 }
9085 else
9086 {
9087 warn (_("Unknown ARM compact model index encountered\n"));
9088 printf (_(" [reserved]\n"));
9089 res = FALSE;
9090 }
9091 break;
9092
9093 case EM_TI_C6000:
9094 if (per_index < 3)
9095 {
9096 if (! decode_tic6x_unwind_bytecode (filedata, aux, word, remaining, more_words,
9097 data_offset, data_sec, data_arm_sec))
9098 res = FALSE;
9099 }
9100 else if (per_index < 5)
9101 {
9102 if (((word >> 17) & 0x7f) == 0x7f)
9103 printf (_(" Restore stack from frame pointer\n"));
9104 else
9105 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
9106 printf (_(" Registers restored: "));
9107 if (per_index == 4)
9108 printf (" (compact) ");
9109 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
9110 putchar ('\n');
9111 printf (_(" Return register: %s\n"),
9112 tic6x_unwind_regnames[word & 0xf]);
9113 }
9114 else
9115 printf (_(" [reserved (%d)]\n"), per_index);
9116 break;
9117
9118 default:
9119 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
9120 filedata->file_header.e_machine);
9121 res = FALSE;
9122 }
9123
9124 /* Decode the descriptors. Not implemented. */
9125
9126 return res;
9127 }
9128
9129 static bfd_boolean
9130 dump_arm_unwind (Filedata * filedata,
9131 struct arm_unw_aux_info * aux,
9132 Elf_Internal_Shdr * exidx_sec)
9133 {
9134 struct arm_section exidx_arm_sec, extab_arm_sec;
9135 unsigned int i, exidx_len;
9136 unsigned long j, nfuns;
9137 bfd_boolean res = TRUE;
9138
9139 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
9140 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
9141 exidx_len = exidx_sec->sh_size / 8;
9142
9143 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
9144 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
9145 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
9146 aux->funtab[nfuns++] = aux->symtab[j];
9147 aux->nfuns = nfuns;
9148 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
9149
9150 for (i = 0; i < exidx_len; i++)
9151 {
9152 unsigned int exidx_fn, exidx_entry;
9153 struct absaddr fn_addr, entry_addr;
9154 bfd_vma fn;
9155
9156 fputc ('\n', stdout);
9157
9158 if (! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
9159 8 * i, & exidx_fn, & fn_addr, NULL)
9160 || ! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
9161 8 * i + 4, & exidx_entry, & entry_addr, NULL))
9162 {
9163 free (aux->funtab);
9164 arm_free_section (& exidx_arm_sec);
9165 arm_free_section (& extab_arm_sec);
9166 return FALSE;
9167 }
9168
9169 /* ARM EHABI, Section 5:
9170 An index table entry consists of 2 words.
9171 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
9172 if (exidx_fn & 0x80000000)
9173 {
9174 warn (_("corrupt index table entry: %x\n"), exidx_fn);
9175 res = FALSE;
9176 }
9177
9178 fn = arm_expand_prel31 (filedata, exidx_fn, exidx_sec->sh_addr + 8 * i);
9179
9180 arm_print_vma_and_name (filedata, aux, fn, fn_addr);
9181 fputs (": ", stdout);
9182
9183 if (exidx_entry == 1)
9184 {
9185 print_vma (exidx_entry, PREFIX_HEX);
9186 fputs (" [cantunwind]\n", stdout);
9187 }
9188 else if (exidx_entry & 0x80000000)
9189 {
9190 print_vma (exidx_entry, PREFIX_HEX);
9191 fputc ('\n', stdout);
9192 decode_arm_unwind (filedata, aux, exidx_entry, 4, 0, NULL, NULL);
9193 }
9194 else
9195 {
9196 bfd_vma table, table_offset = 0;
9197 Elf_Internal_Shdr *table_sec;
9198
9199 fputs ("@", stdout);
9200 table = arm_expand_prel31 (filedata, exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
9201 print_vma (table, PREFIX_HEX);
9202 printf ("\n");
9203
9204 /* Locate the matching .ARM.extab. */
9205 if (entry_addr.section != SHN_UNDEF
9206 && entry_addr.section < filedata->file_header.e_shnum)
9207 {
9208 table_sec = filedata->section_headers + entry_addr.section;
9209 table_offset = entry_addr.offset;
9210 /* PR 18879 */
9211 if (table_offset > table_sec->sh_size
9212 || ((bfd_signed_vma) table_offset) < 0)
9213 {
9214 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
9215 (unsigned long) table_offset,
9216 printable_section_name (filedata, table_sec));
9217 res = FALSE;
9218 continue;
9219 }
9220 }
9221 else
9222 {
9223 table_sec = find_section_by_address (filedata, table);
9224 if (table_sec != NULL)
9225 table_offset = table - table_sec->sh_addr;
9226 }
9227
9228 if (table_sec == NULL)
9229 {
9230 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
9231 (unsigned long) table);
9232 res = FALSE;
9233 continue;
9234 }
9235
9236 if (! decode_arm_unwind (filedata, aux, 0, 0, table_offset, table_sec,
9237 &extab_arm_sec))
9238 res = FALSE;
9239 }
9240 }
9241
9242 printf ("\n");
9243
9244 free (aux->funtab);
9245 arm_free_section (&exidx_arm_sec);
9246 arm_free_section (&extab_arm_sec);
9247
9248 return res;
9249 }
9250
9251 /* Used for both ARM and C6X unwinding tables. */
9252
9253 static bfd_boolean
9254 arm_process_unwind (Filedata * filedata)
9255 {
9256 struct arm_unw_aux_info aux;
9257 Elf_Internal_Shdr *unwsec = NULL;
9258 Elf_Internal_Shdr *strsec;
9259 Elf_Internal_Shdr *sec;
9260 unsigned long i;
9261 unsigned int sec_type;
9262 bfd_boolean res = TRUE;
9263
9264 switch (filedata->file_header.e_machine)
9265 {
9266 case EM_ARM:
9267 sec_type = SHT_ARM_EXIDX;
9268 break;
9269
9270 case EM_TI_C6000:
9271 sec_type = SHT_C6000_UNWIND;
9272 break;
9273
9274 default:
9275 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
9276 filedata->file_header.e_machine);
9277 return FALSE;
9278 }
9279
9280 if (filedata->string_table == NULL)
9281 return FALSE;
9282
9283 memset (& aux, 0, sizeof (aux));
9284 aux.filedata = filedata;
9285
9286 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
9287 {
9288 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < filedata->file_header.e_shnum)
9289 {
9290 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
9291
9292 strsec = filedata->section_headers + sec->sh_link;
9293
9294 /* PR binutils/17531 file: 011-12666-0.004. */
9295 if (aux.strtab != NULL)
9296 {
9297 error (_("Multiple string tables found in file.\n"));
9298 free (aux.strtab);
9299 res = FALSE;
9300 }
9301 aux.strtab = get_data (NULL, filedata, strsec->sh_offset,
9302 1, strsec->sh_size, _("string table"));
9303 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
9304 }
9305 else if (sec->sh_type == sec_type)
9306 unwsec = sec;
9307 }
9308
9309 if (unwsec == NULL)
9310 printf (_("\nThere are no unwind sections in this file.\n"));
9311 else
9312 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
9313 {
9314 if (sec->sh_type == sec_type)
9315 {
9316 unsigned long num_unwind = sec->sh_size / (2 * eh_addr_size);
9317 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
9318 "contains %lu entry:\n",
9319 "\nUnwind section '%s' at offset 0x%lx "
9320 "contains %lu entries:\n",
9321 num_unwind),
9322 printable_section_name (filedata, sec),
9323 (unsigned long) sec->sh_offset,
9324 num_unwind);
9325
9326 if (! dump_arm_unwind (filedata, &aux, sec))
9327 res = FALSE;
9328 }
9329 }
9330
9331 if (aux.symtab)
9332 free (aux.symtab);
9333 if (aux.strtab)
9334 free ((char *) aux.strtab);
9335
9336 return res;
9337 }
9338
9339 static bfd_boolean
9340 process_unwind (Filedata * filedata)
9341 {
9342 struct unwind_handler
9343 {
9344 unsigned int machtype;
9345 bfd_boolean (* handler)(Filedata *);
9346 } handlers[] =
9347 {
9348 { EM_ARM, arm_process_unwind },
9349 { EM_IA_64, ia64_process_unwind },
9350 { EM_PARISC, hppa_process_unwind },
9351 { EM_TI_C6000, arm_process_unwind },
9352 { 0, NULL }
9353 };
9354 int i;
9355
9356 if (!do_unwind)
9357 return TRUE;
9358
9359 for (i = 0; handlers[i].handler != NULL; i++)
9360 if (filedata->file_header.e_machine == handlers[i].machtype)
9361 return handlers[i].handler (filedata);
9362
9363 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9364 get_machine_name (filedata->file_header.e_machine));
9365 return TRUE;
9366 }
9367
9368 static void
9369 dynamic_section_aarch64_val (Elf_Internal_Dyn * entry)
9370 {
9371 switch (entry->d_tag)
9372 {
9373 case DT_AARCH64_BTI_PLT:
9374 case DT_AARCH64_PAC_PLT:
9375 break;
9376 default:
9377 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9378 break;
9379 }
9380 putchar ('\n');
9381 }
9382
9383 static void
9384 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9385 {
9386 switch (entry->d_tag)
9387 {
9388 case DT_MIPS_FLAGS:
9389 if (entry->d_un.d_val == 0)
9390 printf (_("NONE"));
9391 else
9392 {
9393 static const char * opts[] =
9394 {
9395 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9396 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9397 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9398 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9399 "RLD_ORDER_SAFE"
9400 };
9401 unsigned int cnt;
9402 bfd_boolean first = TRUE;
9403
9404 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9405 if (entry->d_un.d_val & (1 << cnt))
9406 {
9407 printf ("%s%s", first ? "" : " ", opts[cnt]);
9408 first = FALSE;
9409 }
9410 }
9411 break;
9412
9413 case DT_MIPS_IVERSION:
9414 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9415 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9416 else
9417 {
9418 char buf[40];
9419 sprintf_vma (buf, entry->d_un.d_ptr);
9420 /* Note: coded this way so that there is a single string for translation. */
9421 printf (_("<corrupt: %s>"), buf);
9422 }
9423 break;
9424
9425 case DT_MIPS_TIME_STAMP:
9426 {
9427 char timebuf[128];
9428 struct tm * tmp;
9429 time_t atime = entry->d_un.d_val;
9430
9431 tmp = gmtime (&atime);
9432 /* PR 17531: file: 6accc532. */
9433 if (tmp == NULL)
9434 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9435 else
9436 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9437 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9438 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9439 printf (_("Time Stamp: %s"), timebuf);
9440 }
9441 break;
9442
9443 case DT_MIPS_RLD_VERSION:
9444 case DT_MIPS_LOCAL_GOTNO:
9445 case DT_MIPS_CONFLICTNO:
9446 case DT_MIPS_LIBLISTNO:
9447 case DT_MIPS_SYMTABNO:
9448 case DT_MIPS_UNREFEXTNO:
9449 case DT_MIPS_HIPAGENO:
9450 case DT_MIPS_DELTA_CLASS_NO:
9451 case DT_MIPS_DELTA_INSTANCE_NO:
9452 case DT_MIPS_DELTA_RELOC_NO:
9453 case DT_MIPS_DELTA_SYM_NO:
9454 case DT_MIPS_DELTA_CLASSSYM_NO:
9455 case DT_MIPS_COMPACT_SIZE:
9456 print_vma (entry->d_un.d_val, DEC);
9457 break;
9458
9459 default:
9460 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9461 }
9462 putchar ('\n');
9463 }
9464
9465 static void
9466 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9467 {
9468 switch (entry->d_tag)
9469 {
9470 case DT_HP_DLD_FLAGS:
9471 {
9472 static struct
9473 {
9474 long int bit;
9475 const char * str;
9476 }
9477 flags[] =
9478 {
9479 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9480 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9481 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9482 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9483 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9484 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9485 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9486 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9487 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9488 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9489 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9490 { DT_HP_GST, "HP_GST" },
9491 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9492 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9493 { DT_HP_NODELETE, "HP_NODELETE" },
9494 { DT_HP_GROUP, "HP_GROUP" },
9495 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9496 };
9497 bfd_boolean first = TRUE;
9498 size_t cnt;
9499 bfd_vma val = entry->d_un.d_val;
9500
9501 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9502 if (val & flags[cnt].bit)
9503 {
9504 if (! first)
9505 putchar (' ');
9506 fputs (flags[cnt].str, stdout);
9507 first = FALSE;
9508 val ^= flags[cnt].bit;
9509 }
9510
9511 if (val != 0 || first)
9512 {
9513 if (! first)
9514 putchar (' ');
9515 print_vma (val, HEX);
9516 }
9517 }
9518 break;
9519
9520 default:
9521 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9522 break;
9523 }
9524 putchar ('\n');
9525 }
9526
9527 #ifdef BFD64
9528
9529 /* VMS vs Unix time offset and factor. */
9530
9531 #define VMS_EPOCH_OFFSET 35067168000000000LL
9532 #define VMS_GRANULARITY_FACTOR 10000000
9533
9534 /* Display a VMS time in a human readable format. */
9535
9536 static void
9537 print_vms_time (bfd_int64_t vmstime)
9538 {
9539 struct tm *tm;
9540 time_t unxtime;
9541
9542 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9543 tm = gmtime (&unxtime);
9544 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9545 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9546 tm->tm_hour, tm->tm_min, tm->tm_sec);
9547 }
9548 #endif /* BFD64 */
9549
9550 static void
9551 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9552 {
9553 switch (entry->d_tag)
9554 {
9555 case DT_IA_64_PLT_RESERVE:
9556 /* First 3 slots reserved. */
9557 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9558 printf (" -- ");
9559 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9560 break;
9561
9562 case DT_IA_64_VMS_LINKTIME:
9563 #ifdef BFD64
9564 print_vms_time (entry->d_un.d_val);
9565 #endif
9566 break;
9567
9568 case DT_IA_64_VMS_LNKFLAGS:
9569 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9570 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9571 printf (" CALL_DEBUG");
9572 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9573 printf (" NOP0BUFS");
9574 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9575 printf (" P0IMAGE");
9576 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9577 printf (" MKTHREADS");
9578 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9579 printf (" UPCALLS");
9580 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9581 printf (" IMGSTA");
9582 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9583 printf (" INITIALIZE");
9584 if (entry->d_un.d_val & VMS_LF_MAIN)
9585 printf (" MAIN");
9586 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9587 printf (" EXE_INIT");
9588 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9589 printf (" TBK_IN_IMG");
9590 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9591 printf (" DBG_IN_IMG");
9592 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9593 printf (" TBK_IN_DSF");
9594 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9595 printf (" DBG_IN_DSF");
9596 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9597 printf (" SIGNATURES");
9598 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9599 printf (" REL_SEG_OFF");
9600 break;
9601
9602 default:
9603 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9604 break;
9605 }
9606 putchar ('\n');
9607 }
9608
9609 static bfd_boolean
9610 get_32bit_dynamic_section (Filedata * filedata)
9611 {
9612 Elf32_External_Dyn * edyn;
9613 Elf32_External_Dyn * ext;
9614 Elf_Internal_Dyn * entry;
9615
9616 edyn = (Elf32_External_Dyn *) get_data (NULL, filedata, dynamic_addr, 1,
9617 dynamic_size, _("dynamic section"));
9618 if (!edyn)
9619 return FALSE;
9620
9621 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9622 might not have the luxury of section headers. Look for the DT_NULL
9623 terminator to determine the number of entries. */
9624 for (ext = edyn, dynamic_nent = 0;
9625 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9626 ext++)
9627 {
9628 dynamic_nent++;
9629 if (BYTE_GET (ext->d_tag) == DT_NULL)
9630 break;
9631 }
9632
9633 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9634 sizeof (* entry));
9635 if (dynamic_section == NULL)
9636 {
9637 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9638 (unsigned long) dynamic_nent);
9639 free (edyn);
9640 return FALSE;
9641 }
9642
9643 for (ext = edyn, entry = dynamic_section;
9644 entry < dynamic_section + dynamic_nent;
9645 ext++, entry++)
9646 {
9647 entry->d_tag = BYTE_GET (ext->d_tag);
9648 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9649 }
9650
9651 free (edyn);
9652
9653 return TRUE;
9654 }
9655
9656 static bfd_boolean
9657 get_64bit_dynamic_section (Filedata * filedata)
9658 {
9659 Elf64_External_Dyn * edyn;
9660 Elf64_External_Dyn * ext;
9661 Elf_Internal_Dyn * entry;
9662
9663 /* Read in the data. */
9664 edyn = (Elf64_External_Dyn *) get_data (NULL, filedata, dynamic_addr, 1,
9665 dynamic_size, _("dynamic section"));
9666 if (!edyn)
9667 return FALSE;
9668
9669 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9670 might not have the luxury of section headers. Look for the DT_NULL
9671 terminator to determine the number of entries. */
9672 for (ext = edyn, dynamic_nent = 0;
9673 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9674 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9675 ext++)
9676 {
9677 dynamic_nent++;
9678 if (BYTE_GET (ext->d_tag) == DT_NULL)
9679 break;
9680 }
9681
9682 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9683 sizeof (* entry));
9684 if (dynamic_section == NULL)
9685 {
9686 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9687 (unsigned long) dynamic_nent);
9688 free (edyn);
9689 return FALSE;
9690 }
9691
9692 /* Convert from external to internal formats. */
9693 for (ext = edyn, entry = dynamic_section;
9694 entry < dynamic_section + dynamic_nent;
9695 ext++, entry++)
9696 {
9697 entry->d_tag = BYTE_GET (ext->d_tag);
9698 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9699 }
9700
9701 free (edyn);
9702
9703 return TRUE;
9704 }
9705
9706 static void
9707 print_dynamic_flags (bfd_vma flags)
9708 {
9709 bfd_boolean first = TRUE;
9710
9711 while (flags)
9712 {
9713 bfd_vma flag;
9714
9715 flag = flags & - flags;
9716 flags &= ~ flag;
9717
9718 if (first)
9719 first = FALSE;
9720 else
9721 putc (' ', stdout);
9722
9723 switch (flag)
9724 {
9725 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9726 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9727 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9728 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9729 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9730 default: fputs (_("unknown"), stdout); break;
9731 }
9732 }
9733 puts ("");
9734 }
9735
9736 /* Parse and display the contents of the dynamic section. */
9737
9738 static bfd_boolean
9739 process_dynamic_section (Filedata * filedata)
9740 {
9741 Elf_Internal_Dyn * entry;
9742
9743 if (dynamic_size == 0)
9744 {
9745 if (do_dynamic)
9746 printf (_("\nThere is no dynamic section in this file.\n"));
9747
9748 return TRUE;
9749 }
9750
9751 if (is_32bit_elf)
9752 {
9753 if (! get_32bit_dynamic_section (filedata))
9754 return FALSE;
9755 }
9756 else
9757 {
9758 if (! get_64bit_dynamic_section (filedata))
9759 return FALSE;
9760 }
9761
9762 /* Find the appropriate symbol table. */
9763 if (dynamic_symbols == NULL)
9764 {
9765 for (entry = dynamic_section;
9766 entry < dynamic_section + dynamic_nent;
9767 ++entry)
9768 {
9769 Elf_Internal_Shdr section;
9770
9771 if (entry->d_tag != DT_SYMTAB)
9772 continue;
9773
9774 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9775
9776 /* Since we do not know how big the symbol table is,
9777 we default to reading in the entire file (!) and
9778 processing that. This is overkill, I know, but it
9779 should work. */
9780 section.sh_offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
9781 if ((bfd_size_type) section.sh_offset > filedata->file_size)
9782 {
9783 /* See PR 21379 for a reproducer. */
9784 error (_("Invalid DT_SYMTAB entry: %lx"), (long) section.sh_offset);
9785 return FALSE;
9786 }
9787
9788 if (archive_file_offset != 0)
9789 section.sh_size = archive_file_size - section.sh_offset;
9790 else
9791 section.sh_size = filedata->file_size - section.sh_offset;
9792
9793 if (is_32bit_elf)
9794 section.sh_entsize = sizeof (Elf32_External_Sym);
9795 else
9796 section.sh_entsize = sizeof (Elf64_External_Sym);
9797 section.sh_name = filedata->string_table_length;
9798
9799 if (dynamic_symbols != NULL)
9800 {
9801 error (_("Multiple dynamic symbol table sections found\n"));
9802 free (dynamic_symbols);
9803 }
9804 dynamic_symbols = GET_ELF_SYMBOLS (filedata, &section, & num_dynamic_syms);
9805 if (num_dynamic_syms < 1)
9806 {
9807 error (_("Unable to determine the number of symbols to load\n"));
9808 continue;
9809 }
9810 }
9811 }
9812
9813 /* Similarly find a string table. */
9814 if (dynamic_strings == NULL)
9815 {
9816 for (entry = dynamic_section;
9817 entry < dynamic_section + dynamic_nent;
9818 ++entry)
9819 {
9820 unsigned long offset;
9821 long str_tab_len;
9822
9823 if (entry->d_tag != DT_STRTAB)
9824 continue;
9825
9826 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9827
9828 /* Since we do not know how big the string table is,
9829 we default to reading in the entire file (!) and
9830 processing that. This is overkill, I know, but it
9831 should work. */
9832
9833 offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
9834
9835 if (archive_file_offset != 0)
9836 str_tab_len = archive_file_size - offset;
9837 else
9838 str_tab_len = filedata->file_size - offset;
9839
9840 if (str_tab_len < 1)
9841 {
9842 error
9843 (_("Unable to determine the length of the dynamic string table\n"));
9844 continue;
9845 }
9846
9847 if (dynamic_strings != NULL)
9848 {
9849 error (_("Multiple dynamic string tables found\n"));
9850 free (dynamic_strings);
9851 }
9852
9853 dynamic_strings = (char *) get_data (NULL, filedata, offset, 1,
9854 str_tab_len,
9855 _("dynamic string table"));
9856 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9857 }
9858 }
9859
9860 /* And find the syminfo section if available. */
9861 if (dynamic_syminfo == NULL)
9862 {
9863 unsigned long syminsz = 0;
9864
9865 for (entry = dynamic_section;
9866 entry < dynamic_section + dynamic_nent;
9867 ++entry)
9868 {
9869 if (entry->d_tag == DT_SYMINENT)
9870 {
9871 /* Note: these braces are necessary to avoid a syntax
9872 error from the SunOS4 C compiler. */
9873 /* PR binutils/17531: A corrupt file can trigger this test.
9874 So do not use an assert, instead generate an error message. */
9875 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9876 error (_("Bad value (%d) for SYMINENT entry\n"),
9877 (int) entry->d_un.d_val);
9878 }
9879 else if (entry->d_tag == DT_SYMINSZ)
9880 syminsz = entry->d_un.d_val;
9881 else if (entry->d_tag == DT_SYMINFO)
9882 dynamic_syminfo_offset = offset_from_vma (filedata, entry->d_un.d_val,
9883 syminsz);
9884 }
9885
9886 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9887 {
9888 Elf_External_Syminfo * extsyminfo;
9889 Elf_External_Syminfo * extsym;
9890 Elf_Internal_Syminfo * syminfo;
9891
9892 /* There is a syminfo section. Read the data. */
9893 extsyminfo = (Elf_External_Syminfo *)
9894 get_data (NULL, filedata, dynamic_syminfo_offset, 1, syminsz,
9895 _("symbol information"));
9896 if (!extsyminfo)
9897 return FALSE;
9898
9899 if (dynamic_syminfo != NULL)
9900 {
9901 error (_("Multiple dynamic symbol information sections found\n"));
9902 free (dynamic_syminfo);
9903 }
9904 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9905 if (dynamic_syminfo == NULL)
9906 {
9907 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9908 (unsigned long) syminsz);
9909 return FALSE;
9910 }
9911
9912 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9913 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9914 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9915 ++syminfo, ++extsym)
9916 {
9917 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9918 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9919 }
9920
9921 free (extsyminfo);
9922 }
9923 }
9924
9925 if (do_dynamic && dynamic_addr)
9926 printf (ngettext ("\nDynamic section at offset 0x%lx "
9927 "contains %lu entry:\n",
9928 "\nDynamic section at offset 0x%lx "
9929 "contains %lu entries:\n",
9930 dynamic_nent),
9931 dynamic_addr, (unsigned long) dynamic_nent);
9932 if (do_dynamic)
9933 printf (_(" Tag Type Name/Value\n"));
9934
9935 for (entry = dynamic_section;
9936 entry < dynamic_section + dynamic_nent;
9937 entry++)
9938 {
9939 if (do_dynamic)
9940 {
9941 const char * dtype;
9942
9943 putchar (' ');
9944 print_vma (entry->d_tag, FULL_HEX);
9945 dtype = get_dynamic_type (filedata, entry->d_tag);
9946 printf (" (%s)%*s", dtype,
9947 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
9948 }
9949
9950 switch (entry->d_tag)
9951 {
9952 case DT_FLAGS:
9953 if (do_dynamic)
9954 print_dynamic_flags (entry->d_un.d_val);
9955 break;
9956
9957 case DT_AUXILIARY:
9958 case DT_FILTER:
9959 case DT_CONFIG:
9960 case DT_DEPAUDIT:
9961 case DT_AUDIT:
9962 if (do_dynamic)
9963 {
9964 switch (entry->d_tag)
9965 {
9966 case DT_AUXILIARY:
9967 printf (_("Auxiliary library"));
9968 break;
9969
9970 case DT_FILTER:
9971 printf (_("Filter library"));
9972 break;
9973
9974 case DT_CONFIG:
9975 printf (_("Configuration file"));
9976 break;
9977
9978 case DT_DEPAUDIT:
9979 printf (_("Dependency audit library"));
9980 break;
9981
9982 case DT_AUDIT:
9983 printf (_("Audit library"));
9984 break;
9985 }
9986
9987 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9988 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9989 else
9990 {
9991 printf (": ");
9992 print_vma (entry->d_un.d_val, PREFIX_HEX);
9993 putchar ('\n');
9994 }
9995 }
9996 break;
9997
9998 case DT_FEATURE:
9999 if (do_dynamic)
10000 {
10001 printf (_("Flags:"));
10002
10003 if (entry->d_un.d_val == 0)
10004 printf (_(" None\n"));
10005 else
10006 {
10007 unsigned long int val = entry->d_un.d_val;
10008
10009 if (val & DTF_1_PARINIT)
10010 {
10011 printf (" PARINIT");
10012 val ^= DTF_1_PARINIT;
10013 }
10014 if (val & DTF_1_CONFEXP)
10015 {
10016 printf (" CONFEXP");
10017 val ^= DTF_1_CONFEXP;
10018 }
10019 if (val != 0)
10020 printf (" %lx", val);
10021 puts ("");
10022 }
10023 }
10024 break;
10025
10026 case DT_POSFLAG_1:
10027 if (do_dynamic)
10028 {
10029 printf (_("Flags:"));
10030
10031 if (entry->d_un.d_val == 0)
10032 printf (_(" None\n"));
10033 else
10034 {
10035 unsigned long int val = entry->d_un.d_val;
10036
10037 if (val & DF_P1_LAZYLOAD)
10038 {
10039 printf (" LAZYLOAD");
10040 val ^= DF_P1_LAZYLOAD;
10041 }
10042 if (val & DF_P1_GROUPPERM)
10043 {
10044 printf (" GROUPPERM");
10045 val ^= DF_P1_GROUPPERM;
10046 }
10047 if (val != 0)
10048 printf (" %lx", val);
10049 puts ("");
10050 }
10051 }
10052 break;
10053
10054 case DT_FLAGS_1:
10055 if (do_dynamic)
10056 {
10057 printf (_("Flags:"));
10058 if (entry->d_un.d_val == 0)
10059 printf (_(" None\n"));
10060 else
10061 {
10062 unsigned long int val = entry->d_un.d_val;
10063
10064 if (val & DF_1_NOW)
10065 {
10066 printf (" NOW");
10067 val ^= DF_1_NOW;
10068 }
10069 if (val & DF_1_GLOBAL)
10070 {
10071 printf (" GLOBAL");
10072 val ^= DF_1_GLOBAL;
10073 }
10074 if (val & DF_1_GROUP)
10075 {
10076 printf (" GROUP");
10077 val ^= DF_1_GROUP;
10078 }
10079 if (val & DF_1_NODELETE)
10080 {
10081 printf (" NODELETE");
10082 val ^= DF_1_NODELETE;
10083 }
10084 if (val & DF_1_LOADFLTR)
10085 {
10086 printf (" LOADFLTR");
10087 val ^= DF_1_LOADFLTR;
10088 }
10089 if (val & DF_1_INITFIRST)
10090 {
10091 printf (" INITFIRST");
10092 val ^= DF_1_INITFIRST;
10093 }
10094 if (val & DF_1_NOOPEN)
10095 {
10096 printf (" NOOPEN");
10097 val ^= DF_1_NOOPEN;
10098 }
10099 if (val & DF_1_ORIGIN)
10100 {
10101 printf (" ORIGIN");
10102 val ^= DF_1_ORIGIN;
10103 }
10104 if (val & DF_1_DIRECT)
10105 {
10106 printf (" DIRECT");
10107 val ^= DF_1_DIRECT;
10108 }
10109 if (val & DF_1_TRANS)
10110 {
10111 printf (" TRANS");
10112 val ^= DF_1_TRANS;
10113 }
10114 if (val & DF_1_INTERPOSE)
10115 {
10116 printf (" INTERPOSE");
10117 val ^= DF_1_INTERPOSE;
10118 }
10119 if (val & DF_1_NODEFLIB)
10120 {
10121 printf (" NODEFLIB");
10122 val ^= DF_1_NODEFLIB;
10123 }
10124 if (val & DF_1_NODUMP)
10125 {
10126 printf (" NODUMP");
10127 val ^= DF_1_NODUMP;
10128 }
10129 if (val & DF_1_CONFALT)
10130 {
10131 printf (" CONFALT");
10132 val ^= DF_1_CONFALT;
10133 }
10134 if (val & DF_1_ENDFILTEE)
10135 {
10136 printf (" ENDFILTEE");
10137 val ^= DF_1_ENDFILTEE;
10138 }
10139 if (val & DF_1_DISPRELDNE)
10140 {
10141 printf (" DISPRELDNE");
10142 val ^= DF_1_DISPRELDNE;
10143 }
10144 if (val & DF_1_DISPRELPND)
10145 {
10146 printf (" DISPRELPND");
10147 val ^= DF_1_DISPRELPND;
10148 }
10149 if (val & DF_1_NODIRECT)
10150 {
10151 printf (" NODIRECT");
10152 val ^= DF_1_NODIRECT;
10153 }
10154 if (val & DF_1_IGNMULDEF)
10155 {
10156 printf (" IGNMULDEF");
10157 val ^= DF_1_IGNMULDEF;
10158 }
10159 if (val & DF_1_NOKSYMS)
10160 {
10161 printf (" NOKSYMS");
10162 val ^= DF_1_NOKSYMS;
10163 }
10164 if (val & DF_1_NOHDR)
10165 {
10166 printf (" NOHDR");
10167 val ^= DF_1_NOHDR;
10168 }
10169 if (val & DF_1_EDITED)
10170 {
10171 printf (" EDITED");
10172 val ^= DF_1_EDITED;
10173 }
10174 if (val & DF_1_NORELOC)
10175 {
10176 printf (" NORELOC");
10177 val ^= DF_1_NORELOC;
10178 }
10179 if (val & DF_1_SYMINTPOSE)
10180 {
10181 printf (" SYMINTPOSE");
10182 val ^= DF_1_SYMINTPOSE;
10183 }
10184 if (val & DF_1_GLOBAUDIT)
10185 {
10186 printf (" GLOBAUDIT");
10187 val ^= DF_1_GLOBAUDIT;
10188 }
10189 if (val & DF_1_SINGLETON)
10190 {
10191 printf (" SINGLETON");
10192 val ^= DF_1_SINGLETON;
10193 }
10194 if (val & DF_1_STUB)
10195 {
10196 printf (" STUB");
10197 val ^= DF_1_STUB;
10198 }
10199 if (val & DF_1_PIE)
10200 {
10201 printf (" PIE");
10202 val ^= DF_1_PIE;
10203 }
10204 if (val & DF_1_KMOD)
10205 {
10206 printf (" KMOD");
10207 val ^= DF_1_KMOD;
10208 }
10209 if (val & DF_1_WEAKFILTER)
10210 {
10211 printf (" WEAKFILTER");
10212 val ^= DF_1_WEAKFILTER;
10213 }
10214 if (val & DF_1_NOCOMMON)
10215 {
10216 printf (" NOCOMMON");
10217 val ^= DF_1_NOCOMMON;
10218 }
10219 if (val != 0)
10220 printf (" %lx", val);
10221 puts ("");
10222 }
10223 }
10224 break;
10225
10226 case DT_PLTREL:
10227 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10228 if (do_dynamic)
10229 puts (get_dynamic_type (filedata, entry->d_un.d_val));
10230 break;
10231
10232 case DT_NULL :
10233 case DT_NEEDED :
10234 case DT_PLTGOT :
10235 case DT_HASH :
10236 case DT_STRTAB :
10237 case DT_SYMTAB :
10238 case DT_RELA :
10239 case DT_INIT :
10240 case DT_FINI :
10241 case DT_SONAME :
10242 case DT_RPATH :
10243 case DT_SYMBOLIC:
10244 case DT_REL :
10245 case DT_DEBUG :
10246 case DT_TEXTREL :
10247 case DT_JMPREL :
10248 case DT_RUNPATH :
10249 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10250
10251 if (do_dynamic)
10252 {
10253 char * name;
10254
10255 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
10256 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10257 else
10258 name = NULL;
10259
10260 if (name)
10261 {
10262 switch (entry->d_tag)
10263 {
10264 case DT_NEEDED:
10265 printf (_("Shared library: [%s]"), name);
10266
10267 if (streq (name, program_interpreter))
10268 printf (_(" program interpreter"));
10269 break;
10270
10271 case DT_SONAME:
10272 printf (_("Library soname: [%s]"), name);
10273 break;
10274
10275 case DT_RPATH:
10276 printf (_("Library rpath: [%s]"), name);
10277 break;
10278
10279 case DT_RUNPATH:
10280 printf (_("Library runpath: [%s]"), name);
10281 break;
10282
10283 default:
10284 print_vma (entry->d_un.d_val, PREFIX_HEX);
10285 break;
10286 }
10287 }
10288 else
10289 print_vma (entry->d_un.d_val, PREFIX_HEX);
10290
10291 putchar ('\n');
10292 }
10293 break;
10294
10295 case DT_PLTRELSZ:
10296 case DT_RELASZ :
10297 case DT_STRSZ :
10298 case DT_RELSZ :
10299 case DT_RELAENT :
10300 case DT_SYMENT :
10301 case DT_RELENT :
10302 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10303 /* Fall through. */
10304 case DT_PLTPADSZ:
10305 case DT_MOVEENT :
10306 case DT_MOVESZ :
10307 case DT_INIT_ARRAYSZ:
10308 case DT_FINI_ARRAYSZ:
10309 case DT_GNU_CONFLICTSZ:
10310 case DT_GNU_LIBLISTSZ:
10311 if (do_dynamic)
10312 {
10313 print_vma (entry->d_un.d_val, UNSIGNED);
10314 printf (_(" (bytes)\n"));
10315 }
10316 break;
10317
10318 case DT_VERDEFNUM:
10319 case DT_VERNEEDNUM:
10320 case DT_RELACOUNT:
10321 case DT_RELCOUNT:
10322 if (do_dynamic)
10323 {
10324 print_vma (entry->d_un.d_val, UNSIGNED);
10325 putchar ('\n');
10326 }
10327 break;
10328
10329 case DT_SYMINSZ:
10330 case DT_SYMINENT:
10331 case DT_SYMINFO:
10332 case DT_USED:
10333 case DT_INIT_ARRAY:
10334 case DT_FINI_ARRAY:
10335 if (do_dynamic)
10336 {
10337 if (entry->d_tag == DT_USED
10338 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
10339 {
10340 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10341
10342 if (*name)
10343 {
10344 printf (_("Not needed object: [%s]\n"), name);
10345 break;
10346 }
10347 }
10348
10349 print_vma (entry->d_un.d_val, PREFIX_HEX);
10350 putchar ('\n');
10351 }
10352 break;
10353
10354 case DT_BIND_NOW:
10355 /* The value of this entry is ignored. */
10356 if (do_dynamic)
10357 putchar ('\n');
10358 break;
10359
10360 case DT_GNU_PRELINKED:
10361 if (do_dynamic)
10362 {
10363 struct tm * tmp;
10364 time_t atime = entry->d_un.d_val;
10365
10366 tmp = gmtime (&atime);
10367 /* PR 17533 file: 041-1244816-0.004. */
10368 if (tmp == NULL)
10369 printf (_("<corrupt time val: %lx"),
10370 (unsigned long) atime);
10371 else
10372 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10373 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10374 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10375
10376 }
10377 break;
10378
10379 case DT_GNU_HASH:
10380 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10381 if (do_dynamic)
10382 {
10383 print_vma (entry->d_un.d_val, PREFIX_HEX);
10384 putchar ('\n');
10385 }
10386 break;
10387
10388 default:
10389 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10390 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10391 entry->d_un.d_val;
10392
10393 if (do_dynamic)
10394 {
10395 switch (filedata->file_header.e_machine)
10396 {
10397 case EM_AARCH64:
10398 dynamic_section_aarch64_val (entry);
10399 break;
10400 case EM_MIPS:
10401 case EM_MIPS_RS3_LE:
10402 dynamic_section_mips_val (entry);
10403 break;
10404 case EM_PARISC:
10405 dynamic_section_parisc_val (entry);
10406 break;
10407 case EM_IA_64:
10408 dynamic_section_ia64_val (entry);
10409 break;
10410 default:
10411 print_vma (entry->d_un.d_val, PREFIX_HEX);
10412 putchar ('\n');
10413 }
10414 }
10415 break;
10416 }
10417 }
10418
10419 return TRUE;
10420 }
10421
10422 static char *
10423 get_ver_flags (unsigned int flags)
10424 {
10425 static char buff[128];
10426
10427 buff[0] = 0;
10428
10429 if (flags == 0)
10430 return _("none");
10431
10432 if (flags & VER_FLG_BASE)
10433 strcat (buff, "BASE");
10434
10435 if (flags & VER_FLG_WEAK)
10436 {
10437 if (flags & VER_FLG_BASE)
10438 strcat (buff, " | ");
10439
10440 strcat (buff, "WEAK");
10441 }
10442
10443 if (flags & VER_FLG_INFO)
10444 {
10445 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10446 strcat (buff, " | ");
10447
10448 strcat (buff, "INFO");
10449 }
10450
10451 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10452 {
10453 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10454 strcat (buff, " | ");
10455
10456 strcat (buff, _("<unknown>"));
10457 }
10458
10459 return buff;
10460 }
10461
10462 /* Display the contents of the version sections. */
10463
10464 static bfd_boolean
10465 process_version_sections (Filedata * filedata)
10466 {
10467 Elf_Internal_Shdr * section;
10468 unsigned i;
10469 bfd_boolean found = FALSE;
10470
10471 if (! do_version)
10472 return TRUE;
10473
10474 for (i = 0, section = filedata->section_headers;
10475 i < filedata->file_header.e_shnum;
10476 i++, section++)
10477 {
10478 switch (section->sh_type)
10479 {
10480 case SHT_GNU_verdef:
10481 {
10482 Elf_External_Verdef * edefs;
10483 unsigned long idx;
10484 unsigned long cnt;
10485 char * endbuf;
10486
10487 found = TRUE;
10488
10489 printf (ngettext ("\nVersion definition section '%s' "
10490 "contains %u entry:\n",
10491 "\nVersion definition section '%s' "
10492 "contains %u entries:\n",
10493 section->sh_info),
10494 printable_section_name (filedata, section),
10495 section->sh_info);
10496
10497 printf (_(" Addr: 0x"));
10498 printf_vma (section->sh_addr);
10499 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10500 (unsigned long) section->sh_offset, section->sh_link,
10501 printable_section_name_from_index (filedata, section->sh_link));
10502
10503 edefs = (Elf_External_Verdef *)
10504 get_data (NULL, filedata, section->sh_offset, 1,section->sh_size,
10505 _("version definition section"));
10506 if (!edefs)
10507 break;
10508 endbuf = (char *) edefs + section->sh_size;
10509
10510 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10511 {
10512 char * vstart;
10513 Elf_External_Verdef * edef;
10514 Elf_Internal_Verdef ent;
10515 Elf_External_Verdaux * eaux;
10516 Elf_Internal_Verdaux aux;
10517 unsigned long isum;
10518 int j;
10519
10520 vstart = ((char *) edefs) + idx;
10521 if (vstart + sizeof (*edef) > endbuf)
10522 break;
10523
10524 edef = (Elf_External_Verdef *) vstart;
10525
10526 ent.vd_version = BYTE_GET (edef->vd_version);
10527 ent.vd_flags = BYTE_GET (edef->vd_flags);
10528 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10529 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10530 ent.vd_hash = BYTE_GET (edef->vd_hash);
10531 ent.vd_aux = BYTE_GET (edef->vd_aux);
10532 ent.vd_next = BYTE_GET (edef->vd_next);
10533
10534 printf (_(" %#06lx: Rev: %d Flags: %s"),
10535 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10536
10537 printf (_(" Index: %d Cnt: %d "),
10538 ent.vd_ndx, ent.vd_cnt);
10539
10540 /* Check for overflow. */
10541 if (ent.vd_aux > (size_t) (endbuf - vstart))
10542 break;
10543
10544 vstart += ent.vd_aux;
10545
10546 if (vstart + sizeof (*eaux) > endbuf)
10547 break;
10548 eaux = (Elf_External_Verdaux *) vstart;
10549
10550 aux.vda_name = BYTE_GET (eaux->vda_name);
10551 aux.vda_next = BYTE_GET (eaux->vda_next);
10552
10553 if (VALID_DYNAMIC_NAME (aux.vda_name))
10554 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10555 else
10556 printf (_("Name index: %ld\n"), aux.vda_name);
10557
10558 isum = idx + ent.vd_aux;
10559
10560 for (j = 1; j < ent.vd_cnt; j++)
10561 {
10562 if (aux.vda_next < sizeof (*eaux)
10563 && !(j == ent.vd_cnt - 1 && aux.vda_next == 0))
10564 {
10565 warn (_("Invalid vda_next field of %lx\n"),
10566 aux.vda_next);
10567 j = ent.vd_cnt;
10568 break;
10569 }
10570 /* Check for overflow. */
10571 if (aux.vda_next > (size_t) (endbuf - vstart))
10572 break;
10573
10574 isum += aux.vda_next;
10575 vstart += aux.vda_next;
10576
10577 if (vstart + sizeof (*eaux) > endbuf)
10578 break;
10579 eaux = (Elf_External_Verdaux *) vstart;
10580
10581 aux.vda_name = BYTE_GET (eaux->vda_name);
10582 aux.vda_next = BYTE_GET (eaux->vda_next);
10583
10584 if (VALID_DYNAMIC_NAME (aux.vda_name))
10585 printf (_(" %#06lx: Parent %d: %s\n"),
10586 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10587 else
10588 printf (_(" %#06lx: Parent %d, name index: %ld\n"),
10589 isum, j, aux.vda_name);
10590 }
10591
10592 if (j < ent.vd_cnt)
10593 printf (_(" Version def aux past end of section\n"));
10594
10595 /* PR 17531:
10596 file: id:000001,src:000172+005151,op:splice,rep:2. */
10597 if (ent.vd_next < sizeof (*edef)
10598 && !(cnt == section->sh_info - 1 && ent.vd_next == 0))
10599 {
10600 warn (_("Invalid vd_next field of %lx\n"), ent.vd_next);
10601 cnt = section->sh_info;
10602 break;
10603 }
10604 if (ent.vd_next > (size_t) (endbuf - ((char *) edefs + idx)))
10605 break;
10606
10607 idx += ent.vd_next;
10608 }
10609
10610 if (cnt < section->sh_info)
10611 printf (_(" Version definition past end of section\n"));
10612
10613 free (edefs);
10614 }
10615 break;
10616
10617 case SHT_GNU_verneed:
10618 {
10619 Elf_External_Verneed * eneed;
10620 unsigned long idx;
10621 unsigned long cnt;
10622 char * endbuf;
10623
10624 found = TRUE;
10625
10626 printf (ngettext ("\nVersion needs section '%s' "
10627 "contains %u entry:\n",
10628 "\nVersion needs section '%s' "
10629 "contains %u entries:\n",
10630 section->sh_info),
10631 printable_section_name (filedata, section), section->sh_info);
10632
10633 printf (_(" Addr: 0x"));
10634 printf_vma (section->sh_addr);
10635 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10636 (unsigned long) section->sh_offset, section->sh_link,
10637 printable_section_name_from_index (filedata, section->sh_link));
10638
10639 eneed = (Elf_External_Verneed *) get_data (NULL, filedata,
10640 section->sh_offset, 1,
10641 section->sh_size,
10642 _("Version Needs section"));
10643 if (!eneed)
10644 break;
10645 endbuf = (char *) eneed + section->sh_size;
10646
10647 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10648 {
10649 Elf_External_Verneed * entry;
10650 Elf_Internal_Verneed ent;
10651 unsigned long isum;
10652 int j;
10653 char * vstart;
10654
10655 vstart = ((char *) eneed) + idx;
10656 if (vstart + sizeof (*entry) > endbuf)
10657 break;
10658
10659 entry = (Elf_External_Verneed *) vstart;
10660
10661 ent.vn_version = BYTE_GET (entry->vn_version);
10662 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10663 ent.vn_file = BYTE_GET (entry->vn_file);
10664 ent.vn_aux = BYTE_GET (entry->vn_aux);
10665 ent.vn_next = BYTE_GET (entry->vn_next);
10666
10667 printf (_(" %#06lx: Version: %d"), idx, ent.vn_version);
10668
10669 if (VALID_DYNAMIC_NAME (ent.vn_file))
10670 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10671 else
10672 printf (_(" File: %lx"), ent.vn_file);
10673
10674 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10675
10676 /* Check for overflow. */
10677 if (ent.vn_aux > (size_t) (endbuf - vstart))
10678 break;
10679 vstart += ent.vn_aux;
10680
10681 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10682 {
10683 Elf_External_Vernaux * eaux;
10684 Elf_Internal_Vernaux aux;
10685
10686 if (vstart + sizeof (*eaux) > endbuf)
10687 break;
10688 eaux = (Elf_External_Vernaux *) vstart;
10689
10690 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10691 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10692 aux.vna_other = BYTE_GET (eaux->vna_other);
10693 aux.vna_name = BYTE_GET (eaux->vna_name);
10694 aux.vna_next = BYTE_GET (eaux->vna_next);
10695
10696 if (VALID_DYNAMIC_NAME (aux.vna_name))
10697 printf (_(" %#06lx: Name: %s"),
10698 isum, GET_DYNAMIC_NAME (aux.vna_name));
10699 else
10700 printf (_(" %#06lx: Name index: %lx"),
10701 isum, aux.vna_name);
10702
10703 printf (_(" Flags: %s Version: %d\n"),
10704 get_ver_flags (aux.vna_flags), aux.vna_other);
10705
10706 if (aux.vna_next < sizeof (*eaux)
10707 && !(j == ent.vn_cnt - 1 && aux.vna_next == 0))
10708 {
10709 warn (_("Invalid vna_next field of %lx\n"),
10710 aux.vna_next);
10711 j = ent.vn_cnt;
10712 break;
10713 }
10714 /* Check for overflow. */
10715 if (aux.vna_next > (size_t) (endbuf - vstart))
10716 break;
10717 isum += aux.vna_next;
10718 vstart += aux.vna_next;
10719 }
10720
10721 if (j < ent.vn_cnt)
10722 warn (_("Missing Version Needs auxillary information\n"));
10723
10724 if (ent.vn_next < sizeof (*entry)
10725 && !(cnt == section->sh_info - 1 && ent.vn_next == 0))
10726 {
10727 warn (_("Invalid vn_next field of %lx\n"), ent.vn_next);
10728 cnt = section->sh_info;
10729 break;
10730 }
10731 if (ent.vn_next > (size_t) (endbuf - ((char *) eneed + idx)))
10732 break;
10733 idx += ent.vn_next;
10734 }
10735
10736 if (cnt < section->sh_info)
10737 warn (_("Missing Version Needs information\n"));
10738
10739 free (eneed);
10740 }
10741 break;
10742
10743 case SHT_GNU_versym:
10744 {
10745 Elf_Internal_Shdr * link_section;
10746 size_t total;
10747 unsigned int cnt;
10748 unsigned char * edata;
10749 unsigned short * data;
10750 char * strtab;
10751 Elf_Internal_Sym * symbols;
10752 Elf_Internal_Shdr * string_sec;
10753 unsigned long num_syms;
10754 long off;
10755
10756 if (section->sh_link >= filedata->file_header.e_shnum)
10757 break;
10758
10759 link_section = filedata->section_headers + section->sh_link;
10760 total = section->sh_size / sizeof (Elf_External_Versym);
10761
10762 if (link_section->sh_link >= filedata->file_header.e_shnum)
10763 break;
10764
10765 found = TRUE;
10766
10767 symbols = GET_ELF_SYMBOLS (filedata, link_section, & num_syms);
10768 if (symbols == NULL)
10769 break;
10770
10771 string_sec = filedata->section_headers + link_section->sh_link;
10772
10773 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1,
10774 string_sec->sh_size,
10775 _("version string table"));
10776 if (!strtab)
10777 {
10778 free (symbols);
10779 break;
10780 }
10781
10782 printf (ngettext ("\nVersion symbols section '%s' "
10783 "contains %lu entry:\n",
10784 "\nVersion symbols section '%s' "
10785 "contains %lu entries:\n",
10786 total),
10787 printable_section_name (filedata, section), (unsigned long) total);
10788
10789 printf (_(" Addr: "));
10790 printf_vma (section->sh_addr);
10791 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10792 (unsigned long) section->sh_offset, section->sh_link,
10793 printable_section_name (filedata, link_section));
10794
10795 off = offset_from_vma (filedata,
10796 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10797 total * sizeof (short));
10798 edata = (unsigned char *) get_data (NULL, filedata, off, total,
10799 sizeof (short),
10800 _("version symbol data"));
10801 if (!edata)
10802 {
10803 free (strtab);
10804 free (symbols);
10805 break;
10806 }
10807
10808 data = (short unsigned int *) cmalloc (total, sizeof (short));
10809
10810 for (cnt = total; cnt --;)
10811 data[cnt] = byte_get (edata + cnt * sizeof (short),
10812 sizeof (short));
10813
10814 free (edata);
10815
10816 for (cnt = 0; cnt < total; cnt += 4)
10817 {
10818 int j, nn;
10819 char *name;
10820 char *invalid = _("*invalid*");
10821
10822 printf (" %03x:", cnt);
10823
10824 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10825 switch (data[cnt + j])
10826 {
10827 case 0:
10828 fputs (_(" 0 (*local*) "), stdout);
10829 break;
10830
10831 case 1:
10832 fputs (_(" 1 (*global*) "), stdout);
10833 break;
10834
10835 default:
10836 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10837 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10838
10839 /* If this index value is greater than the size of the symbols
10840 array, break to avoid an out-of-bounds read. */
10841 if ((unsigned long)(cnt + j) >= num_syms)
10842 {
10843 warn (_("invalid index into symbol array\n"));
10844 break;
10845 }
10846
10847 name = NULL;
10848 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10849 {
10850 Elf_Internal_Verneed ivn;
10851 unsigned long offset;
10852
10853 offset = offset_from_vma
10854 (filedata, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10855 sizeof (Elf_External_Verneed));
10856
10857 do
10858 {
10859 Elf_Internal_Vernaux ivna;
10860 Elf_External_Verneed evn;
10861 Elf_External_Vernaux evna;
10862 unsigned long a_off;
10863
10864 if (get_data (&evn, filedata, offset, sizeof (evn), 1,
10865 _("version need")) == NULL)
10866 break;
10867
10868 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10869 ivn.vn_next = BYTE_GET (evn.vn_next);
10870
10871 a_off = offset + ivn.vn_aux;
10872
10873 do
10874 {
10875 if (get_data (&evna, filedata, a_off, sizeof (evna),
10876 1, _("version need aux (2)")) == NULL)
10877 {
10878 ivna.vna_next = 0;
10879 ivna.vna_other = 0;
10880 }
10881 else
10882 {
10883 ivna.vna_next = BYTE_GET (evna.vna_next);
10884 ivna.vna_other = BYTE_GET (evna.vna_other);
10885 }
10886
10887 a_off += ivna.vna_next;
10888 }
10889 while (ivna.vna_other != data[cnt + j]
10890 && ivna.vna_next != 0);
10891
10892 if (ivna.vna_other == data[cnt + j])
10893 {
10894 ivna.vna_name = BYTE_GET (evna.vna_name);
10895
10896 if (ivna.vna_name >= string_sec->sh_size)
10897 name = invalid;
10898 else
10899 name = strtab + ivna.vna_name;
10900 break;
10901 }
10902
10903 offset += ivn.vn_next;
10904 }
10905 while (ivn.vn_next);
10906 }
10907
10908 if (data[cnt + j] != 0x8001
10909 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10910 {
10911 Elf_Internal_Verdef ivd;
10912 Elf_External_Verdef evd;
10913 unsigned long offset;
10914
10915 offset = offset_from_vma
10916 (filedata, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10917 sizeof evd);
10918
10919 do
10920 {
10921 if (get_data (&evd, filedata, offset, sizeof (evd), 1,
10922 _("version def")) == NULL)
10923 {
10924 ivd.vd_next = 0;
10925 /* PR 17531: file: 046-1082287-0.004. */
10926 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10927 break;
10928 }
10929 else
10930 {
10931 ivd.vd_next = BYTE_GET (evd.vd_next);
10932 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10933 }
10934
10935 offset += ivd.vd_next;
10936 }
10937 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10938 && ivd.vd_next != 0);
10939
10940 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10941 {
10942 Elf_External_Verdaux evda;
10943 Elf_Internal_Verdaux ivda;
10944
10945 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10946
10947 if (get_data (&evda, filedata,
10948 offset - ivd.vd_next + ivd.vd_aux,
10949 sizeof (evda), 1,
10950 _("version def aux")) == NULL)
10951 break;
10952
10953 ivda.vda_name = BYTE_GET (evda.vda_name);
10954
10955 if (ivda.vda_name >= string_sec->sh_size)
10956 name = invalid;
10957 else if (name != NULL && name != invalid)
10958 name = _("*both*");
10959 else
10960 name = strtab + ivda.vda_name;
10961 }
10962 }
10963 if (name != NULL)
10964 nn += printf ("(%s%-*s",
10965 name,
10966 12 - (int) strlen (name),
10967 ")");
10968
10969 if (nn < 18)
10970 printf ("%*c", 18 - nn, ' ');
10971 }
10972
10973 putchar ('\n');
10974 }
10975
10976 free (data);
10977 free (strtab);
10978 free (symbols);
10979 }
10980 break;
10981
10982 default:
10983 break;
10984 }
10985 }
10986
10987 if (! found)
10988 printf (_("\nNo version information found in this file.\n"));
10989
10990 return TRUE;
10991 }
10992
10993 static const char *
10994 get_symbol_binding (Filedata * filedata, unsigned int binding)
10995 {
10996 static char buff[32];
10997
10998 switch (binding)
10999 {
11000 case STB_LOCAL: return "LOCAL";
11001 case STB_GLOBAL: return "GLOBAL";
11002 case STB_WEAK: return "WEAK";
11003 default:
11004 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
11005 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
11006 binding);
11007 else if (binding >= STB_LOOS && binding <= STB_HIOS)
11008 {
11009 if (binding == STB_GNU_UNIQUE
11010 && (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU
11011 /* GNU is still using the default value 0. */
11012 || filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
11013 return "UNIQUE";
11014 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
11015 }
11016 else
11017 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
11018 return buff;
11019 }
11020 }
11021
11022 static const char *
11023 get_symbol_type (Filedata * filedata, unsigned int type)
11024 {
11025 static char buff[32];
11026
11027 switch (type)
11028 {
11029 case STT_NOTYPE: return "NOTYPE";
11030 case STT_OBJECT: return "OBJECT";
11031 case STT_FUNC: return "FUNC";
11032 case STT_SECTION: return "SECTION";
11033 case STT_FILE: return "FILE";
11034 case STT_COMMON: return "COMMON";
11035 case STT_TLS: return "TLS";
11036 case STT_RELC: return "RELC";
11037 case STT_SRELC: return "SRELC";
11038 default:
11039 if (type >= STT_LOPROC && type <= STT_HIPROC)
11040 {
11041 if (filedata->file_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
11042 return "THUMB_FUNC";
11043
11044 if (filedata->file_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
11045 return "REGISTER";
11046
11047 if (filedata->file_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
11048 return "PARISC_MILLI";
11049
11050 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
11051 }
11052 else if (type >= STT_LOOS && type <= STT_HIOS)
11053 {
11054 if (filedata->file_header.e_machine == EM_PARISC)
11055 {
11056 if (type == STT_HP_OPAQUE)
11057 return "HP_OPAQUE";
11058 if (type == STT_HP_STUB)
11059 return "HP_STUB";
11060 }
11061
11062 if (type == STT_GNU_IFUNC
11063 && (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU
11064 || filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
11065 /* GNU is still using the default value 0. */
11066 || filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
11067 return "IFUNC";
11068
11069 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
11070 }
11071 else
11072 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
11073 return buff;
11074 }
11075 }
11076
11077 static const char *
11078 get_symbol_visibility (unsigned int visibility)
11079 {
11080 switch (visibility)
11081 {
11082 case STV_DEFAULT: return "DEFAULT";
11083 case STV_INTERNAL: return "INTERNAL";
11084 case STV_HIDDEN: return "HIDDEN";
11085 case STV_PROTECTED: return "PROTECTED";
11086 default:
11087 error (_("Unrecognized visibility value: %u"), visibility);
11088 return _("<unknown>");
11089 }
11090 }
11091
11092 static const char *
11093 get_solaris_symbol_visibility (unsigned int visibility)
11094 {
11095 switch (visibility)
11096 {
11097 case 4: return "EXPORTED";
11098 case 5: return "SINGLETON";
11099 case 6: return "ELIMINATE";
11100 default: return get_symbol_visibility (visibility);
11101 }
11102 }
11103
11104 static const char *
11105 get_mips_symbol_other (unsigned int other)
11106 {
11107 switch (other)
11108 {
11109 case STO_OPTIONAL: return "OPTIONAL";
11110 case STO_MIPS_PLT: return "MIPS PLT";
11111 case STO_MIPS_PIC: return "MIPS PIC";
11112 case STO_MICROMIPS: return "MICROMIPS";
11113 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
11114 case STO_MIPS16: return "MIPS16";
11115 default: return NULL;
11116 }
11117 }
11118
11119 static const char *
11120 get_ia64_symbol_other (Filedata * filedata, unsigned int other)
11121 {
11122 if (is_ia64_vms (filedata))
11123 {
11124 static char res[32];
11125
11126 res[0] = 0;
11127
11128 /* Function types is for images and .STB files only. */
11129 switch (filedata->file_header.e_type)
11130 {
11131 case ET_DYN:
11132 case ET_EXEC:
11133 switch (VMS_ST_FUNC_TYPE (other))
11134 {
11135 case VMS_SFT_CODE_ADDR:
11136 strcat (res, " CA");
11137 break;
11138 case VMS_SFT_SYMV_IDX:
11139 strcat (res, " VEC");
11140 break;
11141 case VMS_SFT_FD:
11142 strcat (res, " FD");
11143 break;
11144 case VMS_SFT_RESERVE:
11145 strcat (res, " RSV");
11146 break;
11147 default:
11148 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
11149 VMS_ST_FUNC_TYPE (other));
11150 strcat (res, " <unknown>");
11151 break;
11152 }
11153 break;
11154 default:
11155 break;
11156 }
11157 switch (VMS_ST_LINKAGE (other))
11158 {
11159 case VMS_STL_IGNORE:
11160 strcat (res, " IGN");
11161 break;
11162 case VMS_STL_RESERVE:
11163 strcat (res, " RSV");
11164 break;
11165 case VMS_STL_STD:
11166 strcat (res, " STD");
11167 break;
11168 case VMS_STL_LNK:
11169 strcat (res, " LNK");
11170 break;
11171 default:
11172 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
11173 VMS_ST_LINKAGE (other));
11174 strcat (res, " <unknown>");
11175 break;
11176 }
11177
11178 if (res[0] != 0)
11179 return res + 1;
11180 else
11181 return res;
11182 }
11183 return NULL;
11184 }
11185
11186 static const char *
11187 get_ppc64_symbol_other (unsigned int other)
11188 {
11189 if ((other & ~STO_PPC64_LOCAL_MASK) != 0)
11190 return NULL;
11191
11192 other >>= STO_PPC64_LOCAL_BIT;
11193 if (other <= 6)
11194 {
11195 static char buf[32];
11196 if (other >= 2)
11197 other = ppc64_decode_local_entry (other);
11198 snprintf (buf, sizeof buf, _("<localentry>: %d"), other);
11199 return buf;
11200 }
11201 return NULL;
11202 }
11203
11204 static const char *
11205 get_symbol_other (Filedata * filedata, unsigned int other)
11206 {
11207 const char * result = NULL;
11208 static char buff [32];
11209
11210 if (other == 0)
11211 return "";
11212
11213 switch (filedata->file_header.e_machine)
11214 {
11215 case EM_MIPS:
11216 result = get_mips_symbol_other (other);
11217 break;
11218 case EM_IA_64:
11219 result = get_ia64_symbol_other (filedata, other);
11220 break;
11221 case EM_PPC64:
11222 result = get_ppc64_symbol_other (other);
11223 break;
11224 default:
11225 result = NULL;
11226 break;
11227 }
11228
11229 if (result)
11230 return result;
11231
11232 snprintf (buff, sizeof buff, _("<other>: %x"), other);
11233 return buff;
11234 }
11235
11236 static const char *
11237 get_symbol_index_type (Filedata * filedata, unsigned int type)
11238 {
11239 static char buff[32];
11240
11241 switch (type)
11242 {
11243 case SHN_UNDEF: return "UND";
11244 case SHN_ABS: return "ABS";
11245 case SHN_COMMON: return "COM";
11246 default:
11247 if (type == SHN_IA_64_ANSI_COMMON
11248 && filedata->file_header.e_machine == EM_IA_64
11249 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
11250 return "ANSI_COM";
11251 else if ((filedata->file_header.e_machine == EM_X86_64
11252 || filedata->file_header.e_machine == EM_L1OM
11253 || filedata->file_header.e_machine == EM_K1OM)
11254 && type == SHN_X86_64_LCOMMON)
11255 return "LARGE_COM";
11256 else if ((type == SHN_MIPS_SCOMMON
11257 && filedata->file_header.e_machine == EM_MIPS)
11258 || (type == SHN_TIC6X_SCOMMON
11259 && filedata->file_header.e_machine == EM_TI_C6000))
11260 return "SCOM";
11261 else if (type == SHN_MIPS_SUNDEFINED
11262 && filedata->file_header.e_machine == EM_MIPS)
11263 return "SUND";
11264 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
11265 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
11266 else if (type >= SHN_LOOS && type <= SHN_HIOS)
11267 sprintf (buff, "OS [0x%04x]", type & 0xffff);
11268 else if (type >= SHN_LORESERVE)
11269 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
11270 else if (type >= filedata->file_header.e_shnum)
11271 sprintf (buff, _("bad section index[%3d]"), type);
11272 else
11273 sprintf (buff, "%3d", type);
11274 break;
11275 }
11276
11277 return buff;
11278 }
11279
11280 static bfd_vma *
11281 get_dynamic_data (Filedata * filedata, bfd_size_type number, unsigned int ent_size)
11282 {
11283 unsigned char * e_data;
11284 bfd_vma * i_data;
11285
11286 /* If the size_t type is smaller than the bfd_size_type, eg because
11287 you are building a 32-bit tool on a 64-bit host, then make sure
11288 that when (number) is cast to (size_t) no information is lost. */
11289 if (sizeof (size_t) < sizeof (bfd_size_type)
11290 && (bfd_size_type) ((size_t) number) != number)
11291 {
11292 error (_("Size truncation prevents reading %s elements of size %u\n"),
11293 bfd_vmatoa ("u", number), ent_size);
11294 return NULL;
11295 }
11296
11297 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
11298 attempting to allocate memory when the read is bound to fail. */
11299 if (ent_size * number > filedata->file_size)
11300 {
11301 error (_("Invalid number of dynamic entries: %s\n"),
11302 bfd_vmatoa ("u", number));
11303 return NULL;
11304 }
11305
11306 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
11307 if (e_data == NULL)
11308 {
11309 error (_("Out of memory reading %s dynamic entries\n"),
11310 bfd_vmatoa ("u", number));
11311 return NULL;
11312 }
11313
11314 if (fread (e_data, ent_size, (size_t) number, filedata->handle) != number)
11315 {
11316 error (_("Unable to read in %s bytes of dynamic data\n"),
11317 bfd_vmatoa ("u", number * ent_size));
11318 free (e_data);
11319 return NULL;
11320 }
11321
11322 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
11323 if (i_data == NULL)
11324 {
11325 error (_("Out of memory allocating space for %s dynamic entries\n"),
11326 bfd_vmatoa ("u", number));
11327 free (e_data);
11328 return NULL;
11329 }
11330
11331 while (number--)
11332 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
11333
11334 free (e_data);
11335
11336 return i_data;
11337 }
11338
11339 static void
11340 print_dynamic_symbol (Filedata * filedata, bfd_vma si, unsigned long hn)
11341 {
11342 Elf_Internal_Sym * psym;
11343 int n;
11344
11345 n = print_vma (si, DEC_5);
11346 if (n < 5)
11347 fputs (&" "[n], stdout);
11348 printf (" %3lu: ", hn);
11349
11350 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
11351 {
11352 printf (_("<No info available for dynamic symbol number %lu>\n"),
11353 (unsigned long) si);
11354 return;
11355 }
11356
11357 psym = dynamic_symbols + si;
11358 print_vma (psym->st_value, LONG_HEX);
11359 putchar (' ');
11360 print_vma (psym->st_size, DEC_5);
11361
11362 printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)));
11363 printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info)));
11364
11365 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11366 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11367 else
11368 {
11369 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11370
11371 printf (" %-7s", get_symbol_visibility (vis));
11372 /* Check to see if any other bits in the st_other field are set.
11373 Note - displaying this information disrupts the layout of the
11374 table being generated, but for the moment this case is very
11375 rare. */
11376 if (psym->st_other ^ vis)
11377 printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis));
11378 }
11379
11380 printf (" %3.3s ", get_symbol_index_type (filedata, psym->st_shndx));
11381 if (VALID_DYNAMIC_NAME (psym->st_name))
11382 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
11383 else
11384 printf (_(" <corrupt: %14ld>"), psym->st_name);
11385 putchar ('\n');
11386 }
11387
11388 static const char *
11389 get_symbol_version_string (Filedata * filedata,
11390 bfd_boolean is_dynsym,
11391 const char * strtab,
11392 unsigned long int strtab_size,
11393 unsigned int si,
11394 Elf_Internal_Sym * psym,
11395 enum versioned_symbol_info * sym_info,
11396 unsigned short * vna_other)
11397 {
11398 unsigned char data[2];
11399 unsigned short vers_data;
11400 unsigned long offset;
11401 unsigned short max_vd_ndx;
11402
11403 if (!is_dynsym
11404 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11405 return NULL;
11406
11407 offset = offset_from_vma (filedata, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11408 sizeof data + si * sizeof (vers_data));
11409
11410 if (get_data (&data, filedata, offset + si * sizeof (vers_data),
11411 sizeof (data), 1, _("version data")) == NULL)
11412 return NULL;
11413
11414 vers_data = byte_get (data, 2);
11415
11416 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data == 0)
11417 return NULL;
11418
11419 max_vd_ndx = 0;
11420
11421 /* Usually we'd only see verdef for defined symbols, and verneed for
11422 undefined symbols. However, symbols defined by the linker in
11423 .dynbss for variables copied from a shared library in order to
11424 avoid text relocations are defined yet have verneed. We could
11425 use a heuristic to detect the special case, for example, check
11426 for verneed first on symbols defined in SHT_NOBITS sections, but
11427 it is simpler and more reliable to just look for both verdef and
11428 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11429
11430 if (psym->st_shndx != SHN_UNDEF
11431 && vers_data != 0x8001
11432 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11433 {
11434 Elf_Internal_Verdef ivd;
11435 Elf_Internal_Verdaux ivda;
11436 Elf_External_Verdaux evda;
11437 unsigned long off;
11438
11439 off = offset_from_vma (filedata,
11440 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11441 sizeof (Elf_External_Verdef));
11442
11443 do
11444 {
11445 Elf_External_Verdef evd;
11446
11447 if (get_data (&evd, filedata, off, sizeof (evd), 1,
11448 _("version def")) == NULL)
11449 {
11450 ivd.vd_ndx = 0;
11451 ivd.vd_aux = 0;
11452 ivd.vd_next = 0;
11453 ivd.vd_flags = 0;
11454 }
11455 else
11456 {
11457 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11458 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11459 ivd.vd_next = BYTE_GET (evd.vd_next);
11460 ivd.vd_flags = BYTE_GET (evd.vd_flags);
11461 }
11462
11463 if ((ivd.vd_ndx & VERSYM_VERSION) > max_vd_ndx)
11464 max_vd_ndx = ivd.vd_ndx & VERSYM_VERSION;
11465
11466 off += ivd.vd_next;
11467 }
11468 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11469
11470 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11471 {
11472 if (ivd.vd_ndx == 1 && ivd.vd_flags == VER_FLG_BASE)
11473 return NULL;
11474
11475 off -= ivd.vd_next;
11476 off += ivd.vd_aux;
11477
11478 if (get_data (&evda, filedata, off, sizeof (evda), 1,
11479 _("version def aux")) != NULL)
11480 {
11481 ivda.vda_name = BYTE_GET (evda.vda_name);
11482
11483 if (psym->st_name != ivda.vda_name)
11484 {
11485 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11486 ? symbol_hidden : symbol_public);
11487 return (ivda.vda_name < strtab_size
11488 ? strtab + ivda.vda_name : _("<corrupt>"));
11489 }
11490 }
11491 }
11492 }
11493
11494 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11495 {
11496 Elf_External_Verneed evn;
11497 Elf_Internal_Verneed ivn;
11498 Elf_Internal_Vernaux ivna;
11499
11500 offset = offset_from_vma (filedata,
11501 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11502 sizeof evn);
11503 do
11504 {
11505 unsigned long vna_off;
11506
11507 if (get_data (&evn, filedata, offset, sizeof (evn), 1,
11508 _("version need")) == NULL)
11509 {
11510 ivna.vna_next = 0;
11511 ivna.vna_other = 0;
11512 ivna.vna_name = 0;
11513 break;
11514 }
11515
11516 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11517 ivn.vn_next = BYTE_GET (evn.vn_next);
11518
11519 vna_off = offset + ivn.vn_aux;
11520
11521 do
11522 {
11523 Elf_External_Vernaux evna;
11524
11525 if (get_data (&evna, filedata, vna_off, sizeof (evna), 1,
11526 _("version need aux (3)")) == NULL)
11527 {
11528 ivna.vna_next = 0;
11529 ivna.vna_other = 0;
11530 ivna.vna_name = 0;
11531 }
11532 else
11533 {
11534 ivna.vna_other = BYTE_GET (evna.vna_other);
11535 ivna.vna_next = BYTE_GET (evna.vna_next);
11536 ivna.vna_name = BYTE_GET (evna.vna_name);
11537 }
11538
11539 vna_off += ivna.vna_next;
11540 }
11541 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11542
11543 if (ivna.vna_other == vers_data)
11544 break;
11545
11546 offset += ivn.vn_next;
11547 }
11548 while (ivn.vn_next != 0);
11549
11550 if (ivna.vna_other == vers_data)
11551 {
11552 *sym_info = symbol_undefined;
11553 *vna_other = ivna.vna_other;
11554 return (ivna.vna_name < strtab_size
11555 ? strtab + ivna.vna_name : _("<corrupt>"));
11556 }
11557 else if ((max_vd_ndx || (vers_data & VERSYM_VERSION) != 1)
11558 && (vers_data & VERSYM_VERSION) > max_vd_ndx)
11559 return _("<corrupt>");
11560 }
11561 return NULL;
11562 }
11563
11564 /* Dump the symbol table. */
11565 static bfd_boolean
11566 process_symbol_table (Filedata * filedata)
11567 {
11568 Elf_Internal_Shdr * section;
11569 bfd_size_type nbuckets = 0;
11570 bfd_size_type nchains = 0;
11571 bfd_vma * buckets = NULL;
11572 bfd_vma * chains = NULL;
11573 bfd_vma ngnubuckets = 0;
11574 bfd_vma * gnubuckets = NULL;
11575 bfd_vma * gnuchains = NULL;
11576 bfd_vma gnusymidx = 0;
11577 bfd_size_type ngnuchains = 0;
11578
11579 if (!do_syms && !do_dyn_syms && !do_histogram)
11580 return TRUE;
11581
11582 if (dynamic_info[DT_HASH]
11583 && (do_histogram
11584 || (do_using_dynamic
11585 && !do_dyn_syms
11586 && dynamic_strings != NULL)))
11587 {
11588 unsigned char nb[8];
11589 unsigned char nc[8];
11590 unsigned int hash_ent_size = 4;
11591
11592 if ((filedata->file_header.e_machine == EM_ALPHA
11593 || filedata->file_header.e_machine == EM_S390
11594 || filedata->file_header.e_machine == EM_S390_OLD)
11595 && filedata->file_header.e_ident[EI_CLASS] == ELFCLASS64)
11596 hash_ent_size = 8;
11597
11598 if (fseek (filedata->handle,
11599 (archive_file_offset
11600 + offset_from_vma (filedata, dynamic_info[DT_HASH],
11601 sizeof nb + sizeof nc)),
11602 SEEK_SET))
11603 {
11604 error (_("Unable to seek to start of dynamic information\n"));
11605 goto no_hash;
11606 }
11607
11608 if (fread (nb, hash_ent_size, 1, filedata->handle) != 1)
11609 {
11610 error (_("Failed to read in number of buckets\n"));
11611 goto no_hash;
11612 }
11613
11614 if (fread (nc, hash_ent_size, 1, filedata->handle) != 1)
11615 {
11616 error (_("Failed to read in number of chains\n"));
11617 goto no_hash;
11618 }
11619
11620 nbuckets = byte_get (nb, hash_ent_size);
11621 nchains = byte_get (nc, hash_ent_size);
11622
11623 buckets = get_dynamic_data (filedata, nbuckets, hash_ent_size);
11624 chains = get_dynamic_data (filedata, nchains, hash_ent_size);
11625
11626 no_hash:
11627 if (buckets == NULL || chains == NULL)
11628 {
11629 if (do_using_dynamic)
11630 return FALSE;
11631 free (buckets);
11632 free (chains);
11633 buckets = NULL;
11634 chains = NULL;
11635 nbuckets = 0;
11636 nchains = 0;
11637 }
11638 }
11639
11640 if (dynamic_info_DT_GNU_HASH
11641 && (do_histogram
11642 || (do_using_dynamic
11643 && !do_dyn_syms
11644 && dynamic_strings != NULL)))
11645 {
11646 unsigned char nb[16];
11647 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11648 bfd_vma buckets_vma;
11649
11650 if (fseek (filedata->handle,
11651 (archive_file_offset
11652 + offset_from_vma (filedata, dynamic_info_DT_GNU_HASH,
11653 sizeof nb)),
11654 SEEK_SET))
11655 {
11656 error (_("Unable to seek to start of dynamic information\n"));
11657 goto no_gnu_hash;
11658 }
11659
11660 if (fread (nb, 16, 1, filedata->handle) != 1)
11661 {
11662 error (_("Failed to read in number of buckets\n"));
11663 goto no_gnu_hash;
11664 }
11665
11666 ngnubuckets = byte_get (nb, 4);
11667 gnusymidx = byte_get (nb + 4, 4);
11668 bitmaskwords = byte_get (nb + 8, 4);
11669 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11670 if (is_32bit_elf)
11671 buckets_vma += bitmaskwords * 4;
11672 else
11673 buckets_vma += bitmaskwords * 8;
11674
11675 if (fseek (filedata->handle,
11676 (archive_file_offset
11677 + offset_from_vma (filedata, buckets_vma, 4)),
11678 SEEK_SET))
11679 {
11680 error (_("Unable to seek to start of dynamic information\n"));
11681 goto no_gnu_hash;
11682 }
11683
11684 gnubuckets = get_dynamic_data (filedata, ngnubuckets, 4);
11685
11686 if (gnubuckets == NULL)
11687 goto no_gnu_hash;
11688
11689 for (i = 0; i < ngnubuckets; i++)
11690 if (gnubuckets[i] != 0)
11691 {
11692 if (gnubuckets[i] < gnusymidx)
11693 return FALSE;
11694
11695 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11696 maxchain = gnubuckets[i];
11697 }
11698
11699 if (maxchain == 0xffffffff)
11700 goto no_gnu_hash;
11701
11702 maxchain -= gnusymidx;
11703
11704 if (fseek (filedata->handle,
11705 (archive_file_offset
11706 + offset_from_vma (filedata, buckets_vma
11707 + 4 * (ngnubuckets + maxchain), 4)),
11708 SEEK_SET))
11709 {
11710 error (_("Unable to seek to start of dynamic information\n"));
11711 goto no_gnu_hash;
11712 }
11713
11714 do
11715 {
11716 if (fread (nb, 4, 1, filedata->handle) != 1)
11717 {
11718 error (_("Failed to determine last chain length\n"));
11719 goto no_gnu_hash;
11720 }
11721
11722 if (maxchain + 1 == 0)
11723 goto no_gnu_hash;
11724
11725 ++maxchain;
11726 }
11727 while ((byte_get (nb, 4) & 1) == 0);
11728
11729 if (fseek (filedata->handle,
11730 (archive_file_offset
11731 + offset_from_vma (filedata, buckets_vma + 4 * ngnubuckets, 4)),
11732 SEEK_SET))
11733 {
11734 error (_("Unable to seek to start of dynamic information\n"));
11735 goto no_gnu_hash;
11736 }
11737
11738 gnuchains = get_dynamic_data (filedata, maxchain, 4);
11739 ngnuchains = maxchain;
11740
11741 no_gnu_hash:
11742 if (gnuchains == NULL)
11743 {
11744 free (gnubuckets);
11745 gnubuckets = NULL;
11746 ngnubuckets = 0;
11747 if (do_using_dynamic)
11748 return FALSE;
11749 }
11750 }
11751
11752 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11753 && do_syms
11754 && do_using_dynamic
11755 && dynamic_strings != NULL
11756 && dynamic_symbols != NULL)
11757 {
11758 unsigned long hn;
11759
11760 if (dynamic_info[DT_HASH])
11761 {
11762 bfd_vma si;
11763 char *visited;
11764
11765 printf (_("\nSymbol table for image:\n"));
11766 if (is_32bit_elf)
11767 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11768 else
11769 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11770
11771 visited = xcmalloc (nchains, 1);
11772 memset (visited, 0, nchains);
11773 for (hn = 0; hn < nbuckets; hn++)
11774 {
11775 for (si = buckets[hn]; si > 0; si = chains[si])
11776 {
11777 print_dynamic_symbol (filedata, si, hn);
11778 if (si >= nchains || visited[si])
11779 {
11780 error (_("histogram chain is corrupt\n"));
11781 break;
11782 }
11783 visited[si] = 1;
11784 }
11785 }
11786 free (visited);
11787 }
11788
11789 if (dynamic_info_DT_GNU_HASH)
11790 {
11791 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11792 if (is_32bit_elf)
11793 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11794 else
11795 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11796
11797 for (hn = 0; hn < ngnubuckets; ++hn)
11798 if (gnubuckets[hn] != 0)
11799 {
11800 bfd_vma si = gnubuckets[hn];
11801 bfd_vma off = si - gnusymidx;
11802
11803 do
11804 {
11805 print_dynamic_symbol (filedata, si, hn);
11806 si++;
11807 }
11808 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11809 }
11810 }
11811 }
11812 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11813 && filedata->section_headers != NULL)
11814 {
11815 unsigned int i;
11816
11817 for (i = 0, section = filedata->section_headers;
11818 i < filedata->file_header.e_shnum;
11819 i++, section++)
11820 {
11821 unsigned int si;
11822 char * strtab = NULL;
11823 unsigned long int strtab_size = 0;
11824 Elf_Internal_Sym * symtab;
11825 Elf_Internal_Sym * psym;
11826 unsigned long num_syms;
11827
11828 if ((section->sh_type != SHT_SYMTAB
11829 && section->sh_type != SHT_DYNSYM)
11830 || (!do_syms
11831 && section->sh_type == SHT_SYMTAB))
11832 continue;
11833
11834 if (section->sh_entsize == 0)
11835 {
11836 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11837 printable_section_name (filedata, section));
11838 continue;
11839 }
11840
11841 num_syms = section->sh_size / section->sh_entsize;
11842 printf (ngettext ("\nSymbol table '%s' contains %lu entry:\n",
11843 "\nSymbol table '%s' contains %lu entries:\n",
11844 num_syms),
11845 printable_section_name (filedata, section),
11846 num_syms);
11847
11848 if (is_32bit_elf)
11849 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11850 else
11851 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11852
11853 symtab = GET_ELF_SYMBOLS (filedata, section, & num_syms);
11854 if (symtab == NULL)
11855 continue;
11856
11857 if (section->sh_link == filedata->file_header.e_shstrndx)
11858 {
11859 strtab = filedata->string_table;
11860 strtab_size = filedata->string_table_length;
11861 }
11862 else if (section->sh_link < filedata->file_header.e_shnum)
11863 {
11864 Elf_Internal_Shdr * string_sec;
11865
11866 string_sec = filedata->section_headers + section->sh_link;
11867
11868 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset,
11869 1, string_sec->sh_size,
11870 _("string table"));
11871 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11872 }
11873
11874 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11875 {
11876 const char *version_string;
11877 enum versioned_symbol_info sym_info;
11878 unsigned short vna_other;
11879
11880 printf ("%6d: ", si);
11881 print_vma (psym->st_value, LONG_HEX);
11882 putchar (' ');
11883 print_vma (psym->st_size, DEC_5);
11884 printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)));
11885 printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info)));
11886 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11887 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11888 else
11889 {
11890 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11891
11892 printf (" %-7s", get_symbol_visibility (vis));
11893 /* Check to see if any other bits in the st_other field are set.
11894 Note - displaying this information disrupts the layout of the
11895 table being generated, but for the moment this case is very rare. */
11896 if (psym->st_other ^ vis)
11897 printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis));
11898 }
11899 printf (" %4s ", get_symbol_index_type (filedata, psym->st_shndx));
11900 print_symbol (25, psym->st_name < strtab_size
11901 ? strtab + psym->st_name : _("<corrupt>"));
11902
11903 version_string
11904 = get_symbol_version_string (filedata,
11905 section->sh_type == SHT_DYNSYM,
11906 strtab, strtab_size, si,
11907 psym, &sym_info, &vna_other);
11908 if (version_string)
11909 {
11910 if (sym_info == symbol_undefined)
11911 printf ("@%s (%d)", version_string, vna_other);
11912 else
11913 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11914 version_string);
11915 }
11916
11917 putchar ('\n');
11918
11919 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11920 && si >= section->sh_info
11921 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11922 && filedata->file_header.e_machine != EM_MIPS
11923 /* Solaris binaries have been found to violate this requirement as
11924 well. Not sure if this is a bug or an ABI requirement. */
11925 && filedata->file_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11926 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11927 si, printable_section_name (filedata, section), section->sh_info);
11928 }
11929
11930 free (symtab);
11931 if (strtab != filedata->string_table)
11932 free (strtab);
11933 }
11934 }
11935 else if (do_syms)
11936 printf
11937 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11938
11939 if (do_histogram && buckets != NULL)
11940 {
11941 unsigned long * lengths;
11942 unsigned long * counts;
11943 unsigned long hn;
11944 bfd_vma si;
11945 unsigned long maxlength = 0;
11946 unsigned long nzero_counts = 0;
11947 unsigned long nsyms = 0;
11948 char *visited;
11949
11950 printf (ngettext ("\nHistogram for bucket list length "
11951 "(total of %lu bucket):\n",
11952 "\nHistogram for bucket list length "
11953 "(total of %lu buckets):\n",
11954 (unsigned long) nbuckets),
11955 (unsigned long) nbuckets);
11956
11957 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11958 if (lengths == NULL)
11959 {
11960 error (_("Out of memory allocating space for histogram buckets\n"));
11961 return FALSE;
11962 }
11963 visited = xcmalloc (nchains, 1);
11964 memset (visited, 0, nchains);
11965
11966 printf (_(" Length Number %% of total Coverage\n"));
11967 for (hn = 0; hn < nbuckets; ++hn)
11968 {
11969 for (si = buckets[hn]; si > 0; si = chains[si])
11970 {
11971 ++nsyms;
11972 if (maxlength < ++lengths[hn])
11973 ++maxlength;
11974 if (si >= nchains || visited[si])
11975 {
11976 error (_("histogram chain is corrupt\n"));
11977 break;
11978 }
11979 visited[si] = 1;
11980 }
11981 }
11982 free (visited);
11983
11984 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11985 if (counts == NULL)
11986 {
11987 free (lengths);
11988 error (_("Out of memory allocating space for histogram counts\n"));
11989 return FALSE;
11990 }
11991
11992 for (hn = 0; hn < nbuckets; ++hn)
11993 ++counts[lengths[hn]];
11994
11995 if (nbuckets > 0)
11996 {
11997 unsigned long i;
11998 printf (" 0 %-10lu (%5.1f%%)\n",
11999 counts[0], (counts[0] * 100.0) / nbuckets);
12000 for (i = 1; i <= maxlength; ++i)
12001 {
12002 nzero_counts += counts[i] * i;
12003 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
12004 i, counts[i], (counts[i] * 100.0) / nbuckets,
12005 (nzero_counts * 100.0) / nsyms);
12006 }
12007 }
12008
12009 free (counts);
12010 free (lengths);
12011 }
12012
12013 if (buckets != NULL)
12014 {
12015 free (buckets);
12016 free (chains);
12017 }
12018
12019 if (do_histogram && gnubuckets != NULL)
12020 {
12021 unsigned long * lengths;
12022 unsigned long * counts;
12023 unsigned long hn;
12024 unsigned long maxlength = 0;
12025 unsigned long nzero_counts = 0;
12026 unsigned long nsyms = 0;
12027
12028 printf (ngettext ("\nHistogram for `.gnu.hash' bucket list length "
12029 "(total of %lu bucket):\n",
12030 "\nHistogram for `.gnu.hash' bucket list length "
12031 "(total of %lu buckets):\n",
12032 (unsigned long) ngnubuckets),
12033 (unsigned long) ngnubuckets);
12034
12035 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
12036 if (lengths == NULL)
12037 {
12038 error (_("Out of memory allocating space for gnu histogram buckets\n"));
12039 return FALSE;
12040 }
12041
12042 printf (_(" Length Number %% of total Coverage\n"));
12043
12044 for (hn = 0; hn < ngnubuckets; ++hn)
12045 if (gnubuckets[hn] != 0)
12046 {
12047 bfd_vma off, length = 1;
12048
12049 for (off = gnubuckets[hn] - gnusymidx;
12050 /* PR 17531 file: 010-77222-0.004. */
12051 off < ngnuchains && (gnuchains[off] & 1) == 0;
12052 ++off)
12053 ++length;
12054 lengths[hn] = length;
12055 if (length > maxlength)
12056 maxlength = length;
12057 nsyms += length;
12058 }
12059
12060 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
12061 if (counts == NULL)
12062 {
12063 free (lengths);
12064 error (_("Out of memory allocating space for gnu histogram counts\n"));
12065 return FALSE;
12066 }
12067
12068 for (hn = 0; hn < ngnubuckets; ++hn)
12069 ++counts[lengths[hn]];
12070
12071 if (ngnubuckets > 0)
12072 {
12073 unsigned long j;
12074 printf (" 0 %-10lu (%5.1f%%)\n",
12075 counts[0], (counts[0] * 100.0) / ngnubuckets);
12076 for (j = 1; j <= maxlength; ++j)
12077 {
12078 nzero_counts += counts[j] * j;
12079 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
12080 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
12081 (nzero_counts * 100.0) / nsyms);
12082 }
12083 }
12084
12085 free (counts);
12086 free (lengths);
12087 free (gnubuckets);
12088 free (gnuchains);
12089 }
12090
12091 return TRUE;
12092 }
12093
12094 static bfd_boolean
12095 process_syminfo (Filedata * filedata ATTRIBUTE_UNUSED)
12096 {
12097 unsigned int i;
12098
12099 if (dynamic_syminfo == NULL
12100 || !do_dynamic)
12101 /* No syminfo, this is ok. */
12102 return TRUE;
12103
12104 /* There better should be a dynamic symbol section. */
12105 if (dynamic_symbols == NULL || dynamic_strings == NULL)
12106 return FALSE;
12107
12108 if (dynamic_addr)
12109 printf (ngettext ("\nDynamic info segment at offset 0x%lx "
12110 "contains %d entry:\n",
12111 "\nDynamic info segment at offset 0x%lx "
12112 "contains %d entries:\n",
12113 dynamic_syminfo_nent),
12114 dynamic_syminfo_offset, dynamic_syminfo_nent);
12115
12116 printf (_(" Num: Name BoundTo Flags\n"));
12117 for (i = 0; i < dynamic_syminfo_nent; ++i)
12118 {
12119 unsigned short int flags = dynamic_syminfo[i].si_flags;
12120
12121 printf ("%4d: ", i);
12122 if (i >= num_dynamic_syms)
12123 printf (_("<corrupt index>"));
12124 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
12125 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
12126 else
12127 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
12128 putchar (' ');
12129
12130 switch (dynamic_syminfo[i].si_boundto)
12131 {
12132 case SYMINFO_BT_SELF:
12133 fputs ("SELF ", stdout);
12134 break;
12135 case SYMINFO_BT_PARENT:
12136 fputs ("PARENT ", stdout);
12137 break;
12138 default:
12139 if (dynamic_syminfo[i].si_boundto > 0
12140 && dynamic_syminfo[i].si_boundto < dynamic_nent
12141 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
12142 {
12143 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
12144 putchar (' ' );
12145 }
12146 else
12147 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
12148 break;
12149 }
12150
12151 if (flags & SYMINFO_FLG_DIRECT)
12152 printf (" DIRECT");
12153 if (flags & SYMINFO_FLG_PASSTHRU)
12154 printf (" PASSTHRU");
12155 if (flags & SYMINFO_FLG_COPY)
12156 printf (" COPY");
12157 if (flags & SYMINFO_FLG_LAZYLOAD)
12158 printf (" LAZYLOAD");
12159
12160 puts ("");
12161 }
12162
12163 return TRUE;
12164 }
12165
12166 #define IN_RANGE(START,END,ADDR,OFF) \
12167 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
12168
12169 /* Check to see if the given reloc needs to be handled in a target specific
12170 manner. If so then process the reloc and return TRUE otherwise return
12171 FALSE.
12172
12173 If called with reloc == NULL, then this is a signal that reloc processing
12174 for the current section has finished, and any saved state should be
12175 discarded. */
12176
12177 static bfd_boolean
12178 target_specific_reloc_handling (Filedata * filedata,
12179 Elf_Internal_Rela * reloc,
12180 unsigned char * start,
12181 unsigned char * end,
12182 Elf_Internal_Sym * symtab,
12183 unsigned long num_syms)
12184 {
12185 unsigned int reloc_type = 0;
12186 unsigned long sym_index = 0;
12187
12188 if (reloc)
12189 {
12190 reloc_type = get_reloc_type (filedata, reloc->r_info);
12191 sym_index = get_reloc_symindex (reloc->r_info);
12192 }
12193
12194 switch (filedata->file_header.e_machine)
12195 {
12196 case EM_MSP430:
12197 case EM_MSP430_OLD:
12198 {
12199 static Elf_Internal_Sym * saved_sym = NULL;
12200
12201 if (reloc == NULL)
12202 {
12203 saved_sym = NULL;
12204 return TRUE;
12205 }
12206
12207 switch (reloc_type)
12208 {
12209 case 10: /* R_MSP430_SYM_DIFF */
12210 if (uses_msp430x_relocs (filedata))
12211 break;
12212 /* Fall through. */
12213 case 21: /* R_MSP430X_SYM_DIFF */
12214 /* PR 21139. */
12215 if (sym_index >= num_syms)
12216 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
12217 sym_index);
12218 else
12219 saved_sym = symtab + sym_index;
12220 return TRUE;
12221
12222 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
12223 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
12224 goto handle_sym_diff;
12225
12226 case 5: /* R_MSP430_16_BYTE */
12227 case 9: /* R_MSP430_8 */
12228 if (uses_msp430x_relocs (filedata))
12229 break;
12230 goto handle_sym_diff;
12231
12232 case 2: /* R_MSP430_ABS16 */
12233 case 15: /* R_MSP430X_ABS16 */
12234 if (! uses_msp430x_relocs (filedata))
12235 break;
12236 goto handle_sym_diff;
12237
12238 handle_sym_diff:
12239 if (saved_sym != NULL)
12240 {
12241 int reloc_size = reloc_type == 1 ? 4 : 2;
12242 bfd_vma value;
12243
12244 if (sym_index >= num_syms)
12245 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
12246 sym_index);
12247 else
12248 {
12249 value = reloc->r_addend + (symtab[sym_index].st_value
12250 - saved_sym->st_value);
12251
12252 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
12253 byte_put (start + reloc->r_offset, value, reloc_size);
12254 else
12255 /* PR 21137 */
12256 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
12257 (long) reloc->r_offset);
12258 }
12259
12260 saved_sym = NULL;
12261 return TRUE;
12262 }
12263 break;
12264
12265 default:
12266 if (saved_sym != NULL)
12267 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
12268 break;
12269 }
12270 break;
12271 }
12272
12273 case EM_MN10300:
12274 case EM_CYGNUS_MN10300:
12275 {
12276 static Elf_Internal_Sym * saved_sym = NULL;
12277
12278 if (reloc == NULL)
12279 {
12280 saved_sym = NULL;
12281 return TRUE;
12282 }
12283
12284 switch (reloc_type)
12285 {
12286 case 34: /* R_MN10300_ALIGN */
12287 return TRUE;
12288 case 33: /* R_MN10300_SYM_DIFF */
12289 if (sym_index >= num_syms)
12290 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
12291 sym_index);
12292 else
12293 saved_sym = symtab + sym_index;
12294 return TRUE;
12295
12296 case 1: /* R_MN10300_32 */
12297 case 2: /* R_MN10300_16 */
12298 if (saved_sym != NULL)
12299 {
12300 int reloc_size = reloc_type == 1 ? 4 : 2;
12301 bfd_vma value;
12302
12303 if (sym_index >= num_syms)
12304 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
12305 sym_index);
12306 else
12307 {
12308 value = reloc->r_addend + (symtab[sym_index].st_value
12309 - saved_sym->st_value);
12310
12311 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
12312 byte_put (start + reloc->r_offset, value, reloc_size);
12313 else
12314 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
12315 (long) reloc->r_offset);
12316 }
12317
12318 saved_sym = NULL;
12319 return TRUE;
12320 }
12321 break;
12322 default:
12323 if (saved_sym != NULL)
12324 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
12325 break;
12326 }
12327 break;
12328 }
12329
12330 case EM_RL78:
12331 {
12332 static bfd_vma saved_sym1 = 0;
12333 static bfd_vma saved_sym2 = 0;
12334 static bfd_vma value;
12335
12336 if (reloc == NULL)
12337 {
12338 saved_sym1 = saved_sym2 = 0;
12339 return TRUE;
12340 }
12341
12342 switch (reloc_type)
12343 {
12344 case 0x80: /* R_RL78_SYM. */
12345 saved_sym1 = saved_sym2;
12346 if (sym_index >= num_syms)
12347 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
12348 sym_index);
12349 else
12350 {
12351 saved_sym2 = symtab[sym_index].st_value;
12352 saved_sym2 += reloc->r_addend;
12353 }
12354 return TRUE;
12355
12356 case 0x83: /* R_RL78_OPsub. */
12357 value = saved_sym1 - saved_sym2;
12358 saved_sym2 = saved_sym1 = 0;
12359 return TRUE;
12360 break;
12361
12362 case 0x41: /* R_RL78_ABS32. */
12363 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
12364 byte_put (start + reloc->r_offset, value, 4);
12365 else
12366 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12367 (long) reloc->r_offset);
12368 value = 0;
12369 return TRUE;
12370
12371 case 0x43: /* R_RL78_ABS16. */
12372 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
12373 byte_put (start + reloc->r_offset, value, 2);
12374 else
12375 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12376 (long) reloc->r_offset);
12377 value = 0;
12378 return TRUE;
12379
12380 default:
12381 break;
12382 }
12383 break;
12384 }
12385 }
12386
12387 return FALSE;
12388 }
12389
12390 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
12391 DWARF debug sections. This is a target specific test. Note - we do not
12392 go through the whole including-target-headers-multiple-times route, (as
12393 we have already done with <elf/h8.h>) because this would become very
12394 messy and even then this function would have to contain target specific
12395 information (the names of the relocs instead of their numeric values).
12396 FIXME: This is not the correct way to solve this problem. The proper way
12397 is to have target specific reloc sizing and typing functions created by
12398 the reloc-macros.h header, in the same way that it already creates the
12399 reloc naming functions. */
12400
12401 static bfd_boolean
12402 is_32bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12403 {
12404 /* Please keep this table alpha-sorted for ease of visual lookup. */
12405 switch (filedata->file_header.e_machine)
12406 {
12407 case EM_386:
12408 case EM_IAMCU:
12409 return reloc_type == 1; /* R_386_32. */
12410 case EM_68K:
12411 return reloc_type == 1; /* R_68K_32. */
12412 case EM_860:
12413 return reloc_type == 1; /* R_860_32. */
12414 case EM_960:
12415 return reloc_type == 2; /* R_960_32. */
12416 case EM_AARCH64:
12417 return (reloc_type == 258
12418 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
12419 case EM_BPF:
12420 return reloc_type == 11; /* R_BPF_DATA_32 */
12421 case EM_ADAPTEVA_EPIPHANY:
12422 return reloc_type == 3;
12423 case EM_ALPHA:
12424 return reloc_type == 1; /* R_ALPHA_REFLONG. */
12425 case EM_ARC:
12426 return reloc_type == 1; /* R_ARC_32. */
12427 case EM_ARC_COMPACT:
12428 case EM_ARC_COMPACT2:
12429 return reloc_type == 4; /* R_ARC_32. */
12430 case EM_ARM:
12431 return reloc_type == 2; /* R_ARM_ABS32 */
12432 case EM_AVR_OLD:
12433 case EM_AVR:
12434 return reloc_type == 1;
12435 case EM_BLACKFIN:
12436 return reloc_type == 0x12; /* R_byte4_data. */
12437 case EM_CRIS:
12438 return reloc_type == 3; /* R_CRIS_32. */
12439 case EM_CR16:
12440 return reloc_type == 3; /* R_CR16_NUM32. */
12441 case EM_CRX:
12442 return reloc_type == 15; /* R_CRX_NUM32. */
12443 case EM_CSKY:
12444 return reloc_type == 1; /* R_CKCORE_ADDR32. */
12445 case EM_CYGNUS_FRV:
12446 return reloc_type == 1;
12447 case EM_CYGNUS_D10V:
12448 case EM_D10V:
12449 return reloc_type == 6; /* R_D10V_32. */
12450 case EM_CYGNUS_D30V:
12451 case EM_D30V:
12452 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12453 case EM_DLX:
12454 return reloc_type == 3; /* R_DLX_RELOC_32. */
12455 case EM_CYGNUS_FR30:
12456 case EM_FR30:
12457 return reloc_type == 3; /* R_FR30_32. */
12458 case EM_FT32:
12459 return reloc_type == 1; /* R_FT32_32. */
12460 case EM_H8S:
12461 case EM_H8_300:
12462 case EM_H8_300H:
12463 return reloc_type == 1; /* R_H8_DIR32. */
12464 case EM_IA_64:
12465 return (reloc_type == 0x64 /* R_IA64_SECREL32MSB. */
12466 || reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12467 || reloc_type == 0x24 /* R_IA64_DIR32MSB. */
12468 || reloc_type == 0x25 /* R_IA64_DIR32LSB. */);
12469 case EM_IP2K_OLD:
12470 case EM_IP2K:
12471 return reloc_type == 2; /* R_IP2K_32. */
12472 case EM_IQ2000:
12473 return reloc_type == 2; /* R_IQ2000_32. */
12474 case EM_LATTICEMICO32:
12475 return reloc_type == 3; /* R_LM32_32. */
12476 case EM_M32C_OLD:
12477 case EM_M32C:
12478 return reloc_type == 3; /* R_M32C_32. */
12479 case EM_M32R:
12480 return reloc_type == 34; /* R_M32R_32_RELA. */
12481 case EM_68HC11:
12482 case EM_68HC12:
12483 return reloc_type == 6; /* R_M68HC11_32. */
12484 case EM_S12Z:
12485 return reloc_type == 7 || /* R_S12Z_EXT32 */
12486 reloc_type == 6; /* R_S12Z_CW32. */
12487 case EM_MCORE:
12488 return reloc_type == 1; /* R_MCORE_ADDR32. */
12489 case EM_CYGNUS_MEP:
12490 return reloc_type == 4; /* R_MEP_32. */
12491 case EM_METAG:
12492 return reloc_type == 2; /* R_METAG_ADDR32. */
12493 case EM_MICROBLAZE:
12494 return reloc_type == 1; /* R_MICROBLAZE_32. */
12495 case EM_MIPS:
12496 return reloc_type == 2; /* R_MIPS_32. */
12497 case EM_MMIX:
12498 return reloc_type == 4; /* R_MMIX_32. */
12499 case EM_CYGNUS_MN10200:
12500 case EM_MN10200:
12501 return reloc_type == 1; /* R_MN10200_32. */
12502 case EM_CYGNUS_MN10300:
12503 case EM_MN10300:
12504 return reloc_type == 1; /* R_MN10300_32. */
12505 case EM_MOXIE:
12506 return reloc_type == 1; /* R_MOXIE_32. */
12507 case EM_MSP430_OLD:
12508 case EM_MSP430:
12509 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12510 case EM_MT:
12511 return reloc_type == 2; /* R_MT_32. */
12512 case EM_NDS32:
12513 return reloc_type == 20; /* R_NDS32_RELA. */
12514 case EM_ALTERA_NIOS2:
12515 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12516 case EM_NIOS32:
12517 return reloc_type == 1; /* R_NIOS_32. */
12518 case EM_OR1K:
12519 return reloc_type == 1; /* R_OR1K_32. */
12520 case EM_PARISC:
12521 return (reloc_type == 1 /* R_PARISC_DIR32. */
12522 || reloc_type == 2 /* R_PARISC_DIR21L. */
12523 || reloc_type == 41); /* R_PARISC_SECREL32. */
12524 case EM_PJ:
12525 case EM_PJ_OLD:
12526 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12527 case EM_PPC64:
12528 return reloc_type == 1; /* R_PPC64_ADDR32. */
12529 case EM_PPC:
12530 return reloc_type == 1; /* R_PPC_ADDR32. */
12531 case EM_TI_PRU:
12532 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12533 case EM_RISCV:
12534 return reloc_type == 1; /* R_RISCV_32. */
12535 case EM_RL78:
12536 return reloc_type == 1; /* R_RL78_DIR32. */
12537 case EM_RX:
12538 return reloc_type == 1; /* R_RX_DIR32. */
12539 case EM_S370:
12540 return reloc_type == 1; /* R_I370_ADDR31. */
12541 case EM_S390_OLD:
12542 case EM_S390:
12543 return reloc_type == 4; /* R_S390_32. */
12544 case EM_SCORE:
12545 return reloc_type == 8; /* R_SCORE_ABS32. */
12546 case EM_SH:
12547 return reloc_type == 1; /* R_SH_DIR32. */
12548 case EM_SPARC32PLUS:
12549 case EM_SPARCV9:
12550 case EM_SPARC:
12551 return reloc_type == 3 /* R_SPARC_32. */
12552 || reloc_type == 23; /* R_SPARC_UA32. */
12553 case EM_SPU:
12554 return reloc_type == 6; /* R_SPU_ADDR32 */
12555 case EM_TI_C6000:
12556 return reloc_type == 1; /* R_C6000_ABS32. */
12557 case EM_TILEGX:
12558 return reloc_type == 2; /* R_TILEGX_32. */
12559 case EM_TILEPRO:
12560 return reloc_type == 1; /* R_TILEPRO_32. */
12561 case EM_CYGNUS_V850:
12562 case EM_V850:
12563 return reloc_type == 6; /* R_V850_ABS32. */
12564 case EM_V800:
12565 return reloc_type == 0x33; /* R_V810_WORD. */
12566 case EM_VAX:
12567 return reloc_type == 1; /* R_VAX_32. */
12568 case EM_VISIUM:
12569 return reloc_type == 3; /* R_VISIUM_32. */
12570 case EM_WEBASSEMBLY:
12571 return reloc_type == 1; /* R_WASM32_32. */
12572 case EM_X86_64:
12573 case EM_L1OM:
12574 case EM_K1OM:
12575 return reloc_type == 10; /* R_X86_64_32. */
12576 case EM_XC16X:
12577 case EM_C166:
12578 return reloc_type == 3; /* R_XC16C_ABS_32. */
12579 case EM_XGATE:
12580 return reloc_type == 4; /* R_XGATE_32. */
12581 case EM_XSTORMY16:
12582 return reloc_type == 1; /* R_XSTROMY16_32. */
12583 case EM_XTENSA_OLD:
12584 case EM_XTENSA:
12585 return reloc_type == 1; /* R_XTENSA_32. */
12586 default:
12587 {
12588 static unsigned int prev_warn = 0;
12589
12590 /* Avoid repeating the same warning multiple times. */
12591 if (prev_warn != filedata->file_header.e_machine)
12592 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12593 filedata->file_header.e_machine);
12594 prev_warn = filedata->file_header.e_machine;
12595 return FALSE;
12596 }
12597 }
12598 }
12599
12600 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12601 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12602
12603 static bfd_boolean
12604 is_32bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
12605 {
12606 switch (filedata->file_header.e_machine)
12607 /* Please keep this table alpha-sorted for ease of visual lookup. */
12608 {
12609 case EM_386:
12610 case EM_IAMCU:
12611 return reloc_type == 2; /* R_386_PC32. */
12612 case EM_68K:
12613 return reloc_type == 4; /* R_68K_PC32. */
12614 case EM_AARCH64:
12615 return reloc_type == 261; /* R_AARCH64_PREL32 */
12616 case EM_ADAPTEVA_EPIPHANY:
12617 return reloc_type == 6;
12618 case EM_ALPHA:
12619 return reloc_type == 10; /* R_ALPHA_SREL32. */
12620 case EM_ARC_COMPACT:
12621 case EM_ARC_COMPACT2:
12622 return reloc_type == 49; /* R_ARC_32_PCREL. */
12623 case EM_ARM:
12624 return reloc_type == 3; /* R_ARM_REL32 */
12625 case EM_AVR_OLD:
12626 case EM_AVR:
12627 return reloc_type == 36; /* R_AVR_32_PCREL. */
12628 case EM_MICROBLAZE:
12629 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12630 case EM_OR1K:
12631 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12632 case EM_PARISC:
12633 return reloc_type == 9; /* R_PARISC_PCREL32. */
12634 case EM_PPC:
12635 return reloc_type == 26; /* R_PPC_REL32. */
12636 case EM_PPC64:
12637 return reloc_type == 26; /* R_PPC64_REL32. */
12638 case EM_RISCV:
12639 return reloc_type == 57; /* R_RISCV_32_PCREL. */
12640 case EM_S390_OLD:
12641 case EM_S390:
12642 return reloc_type == 5; /* R_390_PC32. */
12643 case EM_SH:
12644 return reloc_type == 2; /* R_SH_REL32. */
12645 case EM_SPARC32PLUS:
12646 case EM_SPARCV9:
12647 case EM_SPARC:
12648 return reloc_type == 6; /* R_SPARC_DISP32. */
12649 case EM_SPU:
12650 return reloc_type == 13; /* R_SPU_REL32. */
12651 case EM_TILEGX:
12652 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12653 case EM_TILEPRO:
12654 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12655 case EM_VISIUM:
12656 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12657 case EM_X86_64:
12658 case EM_L1OM:
12659 case EM_K1OM:
12660 return reloc_type == 2; /* R_X86_64_PC32. */
12661 case EM_XTENSA_OLD:
12662 case EM_XTENSA:
12663 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12664 default:
12665 /* Do not abort or issue an error message here. Not all targets use
12666 pc-relative 32-bit relocs in their DWARF debug information and we
12667 have already tested for target coverage in is_32bit_abs_reloc. A
12668 more helpful warning message will be generated by apply_relocations
12669 anyway, so just return. */
12670 return FALSE;
12671 }
12672 }
12673
12674 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12675 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12676
12677 static bfd_boolean
12678 is_64bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12679 {
12680 switch (filedata->file_header.e_machine)
12681 {
12682 case EM_AARCH64:
12683 return reloc_type == 257; /* R_AARCH64_ABS64. */
12684 case EM_ALPHA:
12685 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12686 case EM_IA_64:
12687 return (reloc_type == 0x26 /* R_IA64_DIR64MSB. */
12688 || reloc_type == 0x27 /* R_IA64_DIR64LSB. */);
12689 case EM_PARISC:
12690 return reloc_type == 80; /* R_PARISC_DIR64. */
12691 case EM_PPC64:
12692 return reloc_type == 38; /* R_PPC64_ADDR64. */
12693 case EM_RISCV:
12694 return reloc_type == 2; /* R_RISCV_64. */
12695 case EM_SPARC32PLUS:
12696 case EM_SPARCV9:
12697 case EM_SPARC:
12698 return reloc_type == 32 /* R_SPARC_64. */
12699 || reloc_type == 54; /* R_SPARC_UA64. */
12700 case EM_X86_64:
12701 case EM_L1OM:
12702 case EM_K1OM:
12703 return reloc_type == 1; /* R_X86_64_64. */
12704 case EM_S390_OLD:
12705 case EM_S390:
12706 return reloc_type == 22; /* R_S390_64. */
12707 case EM_TILEGX:
12708 return reloc_type == 1; /* R_TILEGX_64. */
12709 case EM_MIPS:
12710 return reloc_type == 18; /* R_MIPS_64. */
12711 default:
12712 return FALSE;
12713 }
12714 }
12715
12716 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12717 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12718
12719 static bfd_boolean
12720 is_64bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
12721 {
12722 switch (filedata->file_header.e_machine)
12723 {
12724 case EM_AARCH64:
12725 return reloc_type == 260; /* R_AARCH64_PREL64. */
12726 case EM_ALPHA:
12727 return reloc_type == 11; /* R_ALPHA_SREL64. */
12728 case EM_IA_64:
12729 return (reloc_type == 0x4e /* R_IA64_PCREL64MSB. */
12730 || reloc_type == 0x4f /* R_IA64_PCREL64LSB. */);
12731 case EM_PARISC:
12732 return reloc_type == 72; /* R_PARISC_PCREL64. */
12733 case EM_PPC64:
12734 return reloc_type == 44; /* R_PPC64_REL64. */
12735 case EM_SPARC32PLUS:
12736 case EM_SPARCV9:
12737 case EM_SPARC:
12738 return reloc_type == 46; /* R_SPARC_DISP64. */
12739 case EM_X86_64:
12740 case EM_L1OM:
12741 case EM_K1OM:
12742 return reloc_type == 24; /* R_X86_64_PC64. */
12743 case EM_S390_OLD:
12744 case EM_S390:
12745 return reloc_type == 23; /* R_S390_PC64. */
12746 case EM_TILEGX:
12747 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12748 default:
12749 return FALSE;
12750 }
12751 }
12752
12753 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12754 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12755
12756 static bfd_boolean
12757 is_24bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12758 {
12759 switch (filedata->file_header.e_machine)
12760 {
12761 case EM_CYGNUS_MN10200:
12762 case EM_MN10200:
12763 return reloc_type == 4; /* R_MN10200_24. */
12764 case EM_FT32:
12765 return reloc_type == 5; /* R_FT32_20. */
12766 default:
12767 return FALSE;
12768 }
12769 }
12770
12771 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12772 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12773
12774 static bfd_boolean
12775 is_16bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12776 {
12777 /* Please keep this table alpha-sorted for ease of visual lookup. */
12778 switch (filedata->file_header.e_machine)
12779 {
12780 case EM_ARC:
12781 case EM_ARC_COMPACT:
12782 case EM_ARC_COMPACT2:
12783 return reloc_type == 2; /* R_ARC_16. */
12784 case EM_ADAPTEVA_EPIPHANY:
12785 return reloc_type == 5;
12786 case EM_AVR_OLD:
12787 case EM_AVR:
12788 return reloc_type == 4; /* R_AVR_16. */
12789 case EM_CYGNUS_D10V:
12790 case EM_D10V:
12791 return reloc_type == 3; /* R_D10V_16. */
12792 case EM_FT32:
12793 return reloc_type == 2; /* R_FT32_16. */
12794 case EM_H8S:
12795 case EM_H8_300:
12796 case EM_H8_300H:
12797 return reloc_type == R_H8_DIR16;
12798 case EM_IP2K_OLD:
12799 case EM_IP2K:
12800 return reloc_type == 1; /* R_IP2K_16. */
12801 case EM_M32C_OLD:
12802 case EM_M32C:
12803 return reloc_type == 1; /* R_M32C_16 */
12804 case EM_CYGNUS_MN10200:
12805 case EM_MN10200:
12806 return reloc_type == 2; /* R_MN10200_16. */
12807 case EM_CYGNUS_MN10300:
12808 case EM_MN10300:
12809 return reloc_type == 2; /* R_MN10300_16. */
12810 case EM_MSP430:
12811 if (uses_msp430x_relocs (filedata))
12812 return reloc_type == 2; /* R_MSP430_ABS16. */
12813 /* Fall through. */
12814 case EM_MSP430_OLD:
12815 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12816 case EM_NDS32:
12817 return reloc_type == 19; /* R_NDS32_RELA. */
12818 case EM_ALTERA_NIOS2:
12819 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12820 case EM_NIOS32:
12821 return reloc_type == 9; /* R_NIOS_16. */
12822 case EM_OR1K:
12823 return reloc_type == 2; /* R_OR1K_16. */
12824 case EM_RISCV:
12825 return reloc_type == 55; /* R_RISCV_SET16. */
12826 case EM_TI_PRU:
12827 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12828 case EM_TI_C6000:
12829 return reloc_type == 2; /* R_C6000_ABS16. */
12830 case EM_VISIUM:
12831 return reloc_type == 2; /* R_VISIUM_16. */
12832 case EM_XC16X:
12833 case EM_C166:
12834 return reloc_type == 2; /* R_XC16C_ABS_16. */
12835 case EM_XGATE:
12836 return reloc_type == 3; /* R_XGATE_16. */
12837 default:
12838 return FALSE;
12839 }
12840 }
12841
12842 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12843 a 8-bit absolute RELA relocation used in DWARF debug sections. */
12844
12845 static bfd_boolean
12846 is_8bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12847 {
12848 switch (filedata->file_header.e_machine)
12849 {
12850 case EM_RISCV:
12851 return reloc_type == 54; /* R_RISCV_SET8. */
12852 default:
12853 return FALSE;
12854 }
12855 }
12856
12857 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12858 a 6-bit absolute RELA relocation used in DWARF debug sections. */
12859
12860 static bfd_boolean
12861 is_6bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12862 {
12863 switch (filedata->file_header.e_machine)
12864 {
12865 case EM_RISCV:
12866 return reloc_type == 53; /* R_RISCV_SET6. */
12867 default:
12868 return FALSE;
12869 }
12870 }
12871
12872 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12873 a 32-bit inplace add RELA relocation used in DWARF debug sections. */
12874
12875 static bfd_boolean
12876 is_32bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
12877 {
12878 /* Please keep this table alpha-sorted for ease of visual lookup. */
12879 switch (filedata->file_header.e_machine)
12880 {
12881 case EM_RISCV:
12882 return reloc_type == 35; /* R_RISCV_ADD32. */
12883 default:
12884 return FALSE;
12885 }
12886 }
12887
12888 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12889 a 32-bit inplace sub RELA relocation used in DWARF debug sections. */
12890
12891 static bfd_boolean
12892 is_32bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
12893 {
12894 /* Please keep this table alpha-sorted for ease of visual lookup. */
12895 switch (filedata->file_header.e_machine)
12896 {
12897 case EM_RISCV:
12898 return reloc_type == 39; /* R_RISCV_SUB32. */
12899 default:
12900 return FALSE;
12901 }
12902 }
12903
12904 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12905 a 64-bit inplace add RELA relocation used in DWARF debug sections. */
12906
12907 static bfd_boolean
12908 is_64bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
12909 {
12910 /* Please keep this table alpha-sorted for ease of visual lookup. */
12911 switch (filedata->file_header.e_machine)
12912 {
12913 case EM_RISCV:
12914 return reloc_type == 36; /* R_RISCV_ADD64. */
12915 default:
12916 return FALSE;
12917 }
12918 }
12919
12920 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12921 a 64-bit inplace sub RELA relocation used in DWARF debug sections. */
12922
12923 static bfd_boolean
12924 is_64bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
12925 {
12926 /* Please keep this table alpha-sorted for ease of visual lookup. */
12927 switch (filedata->file_header.e_machine)
12928 {
12929 case EM_RISCV:
12930 return reloc_type == 40; /* R_RISCV_SUB64. */
12931 default:
12932 return FALSE;
12933 }
12934 }
12935
12936 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12937 a 16-bit inplace add RELA relocation used in DWARF debug sections. */
12938
12939 static bfd_boolean
12940 is_16bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
12941 {
12942 /* Please keep this table alpha-sorted for ease of visual lookup. */
12943 switch (filedata->file_header.e_machine)
12944 {
12945 case EM_RISCV:
12946 return reloc_type == 34; /* R_RISCV_ADD16. */
12947 default:
12948 return FALSE;
12949 }
12950 }
12951
12952 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12953 a 16-bit inplace sub RELA relocation used in DWARF debug sections. */
12954
12955 static bfd_boolean
12956 is_16bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
12957 {
12958 /* Please keep this table alpha-sorted for ease of visual lookup. */
12959 switch (filedata->file_header.e_machine)
12960 {
12961 case EM_RISCV:
12962 return reloc_type == 38; /* R_RISCV_SUB16. */
12963 default:
12964 return FALSE;
12965 }
12966 }
12967
12968 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12969 a 8-bit inplace add RELA relocation used in DWARF debug sections. */
12970
12971 static bfd_boolean
12972 is_8bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
12973 {
12974 /* Please keep this table alpha-sorted for ease of visual lookup. */
12975 switch (filedata->file_header.e_machine)
12976 {
12977 case EM_RISCV:
12978 return reloc_type == 33; /* R_RISCV_ADD8. */
12979 default:
12980 return FALSE;
12981 }
12982 }
12983
12984 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12985 a 8-bit inplace sub RELA relocation used in DWARF debug sections. */
12986
12987 static bfd_boolean
12988 is_8bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
12989 {
12990 /* Please keep this table alpha-sorted for ease of visual lookup. */
12991 switch (filedata->file_header.e_machine)
12992 {
12993 case EM_RISCV:
12994 return reloc_type == 37; /* R_RISCV_SUB8. */
12995 default:
12996 return FALSE;
12997 }
12998 }
12999
13000 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13001 a 6-bit inplace sub RELA relocation used in DWARF debug sections. */
13002
13003 static bfd_boolean
13004 is_6bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13005 {
13006 switch (filedata->file_header.e_machine)
13007 {
13008 case EM_RISCV:
13009 return reloc_type == 52; /* R_RISCV_SUB6. */
13010 default:
13011 return FALSE;
13012 }
13013 }
13014
13015 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
13016 relocation entries (possibly formerly used for SHT_GROUP sections). */
13017
13018 static bfd_boolean
13019 is_none_reloc (Filedata * filedata, unsigned int reloc_type)
13020 {
13021 switch (filedata->file_header.e_machine)
13022 {
13023 case EM_386: /* R_386_NONE. */
13024 case EM_68K: /* R_68K_NONE. */
13025 case EM_ADAPTEVA_EPIPHANY:
13026 case EM_ALPHA: /* R_ALPHA_NONE. */
13027 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
13028 case EM_ARC: /* R_ARC_NONE. */
13029 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
13030 case EM_ARC_COMPACT: /* R_ARC_NONE. */
13031 case EM_ARM: /* R_ARM_NONE. */
13032 case EM_C166: /* R_XC16X_NONE. */
13033 case EM_CRIS: /* R_CRIS_NONE. */
13034 case EM_FT32: /* R_FT32_NONE. */
13035 case EM_IA_64: /* R_IA64_NONE. */
13036 case EM_K1OM: /* R_X86_64_NONE. */
13037 case EM_L1OM: /* R_X86_64_NONE. */
13038 case EM_M32R: /* R_M32R_NONE. */
13039 case EM_MIPS: /* R_MIPS_NONE. */
13040 case EM_MN10300: /* R_MN10300_NONE. */
13041 case EM_MOXIE: /* R_MOXIE_NONE. */
13042 case EM_NIOS32: /* R_NIOS_NONE. */
13043 case EM_OR1K: /* R_OR1K_NONE. */
13044 case EM_PARISC: /* R_PARISC_NONE. */
13045 case EM_PPC64: /* R_PPC64_NONE. */
13046 case EM_PPC: /* R_PPC_NONE. */
13047 case EM_RISCV: /* R_RISCV_NONE. */
13048 case EM_S390: /* R_390_NONE. */
13049 case EM_S390_OLD:
13050 case EM_SH: /* R_SH_NONE. */
13051 case EM_SPARC32PLUS:
13052 case EM_SPARC: /* R_SPARC_NONE. */
13053 case EM_SPARCV9:
13054 case EM_TILEGX: /* R_TILEGX_NONE. */
13055 case EM_TILEPRO: /* R_TILEPRO_NONE. */
13056 case EM_TI_C6000:/* R_C6000_NONE. */
13057 case EM_X86_64: /* R_X86_64_NONE. */
13058 case EM_XC16X:
13059 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
13060 return reloc_type == 0;
13061
13062 case EM_AARCH64:
13063 return reloc_type == 0 || reloc_type == 256;
13064 case EM_AVR_OLD:
13065 case EM_AVR:
13066 return (reloc_type == 0 /* R_AVR_NONE. */
13067 || reloc_type == 30 /* R_AVR_DIFF8. */
13068 || reloc_type == 31 /* R_AVR_DIFF16. */
13069 || reloc_type == 32 /* R_AVR_DIFF32. */);
13070 case EM_METAG:
13071 return reloc_type == 3; /* R_METAG_NONE. */
13072 case EM_NDS32:
13073 return (reloc_type == 0 /* R_XTENSA_NONE. */
13074 || reloc_type == 204 /* R_NDS32_DIFF8. */
13075 || reloc_type == 205 /* R_NDS32_DIFF16. */
13076 || reloc_type == 206 /* R_NDS32_DIFF32. */
13077 || reloc_type == 207 /* R_NDS32_ULEB128. */);
13078 case EM_TI_PRU:
13079 return (reloc_type == 0 /* R_PRU_NONE. */
13080 || reloc_type == 65 /* R_PRU_DIFF8. */
13081 || reloc_type == 66 /* R_PRU_DIFF16. */
13082 || reloc_type == 67 /* R_PRU_DIFF32. */);
13083 case EM_XTENSA_OLD:
13084 case EM_XTENSA:
13085 return (reloc_type == 0 /* R_XTENSA_NONE. */
13086 || reloc_type == 17 /* R_XTENSA_DIFF8. */
13087 || reloc_type == 18 /* R_XTENSA_DIFF16. */
13088 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
13089 }
13090 return FALSE;
13091 }
13092
13093 /* Returns TRUE if there is a relocation against
13094 section NAME at OFFSET bytes. */
13095
13096 bfd_boolean
13097 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
13098 {
13099 Elf_Internal_Rela * relocs;
13100 Elf_Internal_Rela * rp;
13101
13102 if (dsec == NULL || dsec->reloc_info == NULL)
13103 return FALSE;
13104
13105 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
13106
13107 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
13108 if (rp->r_offset == offset)
13109 return TRUE;
13110
13111 return FALSE;
13112 }
13113
13114 /* Apply relocations to a section.
13115 Returns TRUE upon success, FALSE otherwise.
13116 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
13117 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
13118 will be set to the number of relocs loaded.
13119
13120 Note: So far support has been added only for those relocations
13121 which can be found in debug sections. FIXME: Add support for
13122 more relocations ? */
13123
13124 static bfd_boolean
13125 apply_relocations (Filedata * filedata,
13126 const Elf_Internal_Shdr * section,
13127 unsigned char * start,
13128 bfd_size_type size,
13129 void ** relocs_return,
13130 unsigned long * num_relocs_return)
13131 {
13132 Elf_Internal_Shdr * relsec;
13133 unsigned char * end = start + size;
13134
13135 if (relocs_return != NULL)
13136 {
13137 * (Elf_Internal_Rela **) relocs_return = NULL;
13138 * num_relocs_return = 0;
13139 }
13140
13141 if (filedata->file_header.e_type != ET_REL)
13142 /* No relocs to apply. */
13143 return TRUE;
13144
13145 /* Find the reloc section associated with the section. */
13146 for (relsec = filedata->section_headers;
13147 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13148 ++relsec)
13149 {
13150 bfd_boolean is_rela;
13151 unsigned long num_relocs;
13152 Elf_Internal_Rela * relocs;
13153 Elf_Internal_Rela * rp;
13154 Elf_Internal_Shdr * symsec;
13155 Elf_Internal_Sym * symtab;
13156 unsigned long num_syms;
13157 Elf_Internal_Sym * sym;
13158
13159 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13160 || relsec->sh_info >= filedata->file_header.e_shnum
13161 || filedata->section_headers + relsec->sh_info != section
13162 || relsec->sh_size == 0
13163 || relsec->sh_link >= filedata->file_header.e_shnum)
13164 continue;
13165
13166 is_rela = relsec->sh_type == SHT_RELA;
13167
13168 if (is_rela)
13169 {
13170 if (!slurp_rela_relocs (filedata, relsec->sh_offset,
13171 relsec->sh_size, & relocs, & num_relocs))
13172 return FALSE;
13173 }
13174 else
13175 {
13176 if (!slurp_rel_relocs (filedata, relsec->sh_offset,
13177 relsec->sh_size, & relocs, & num_relocs))
13178 return FALSE;
13179 }
13180
13181 /* SH uses RELA but uses in place value instead of the addend field. */
13182 if (filedata->file_header.e_machine == EM_SH)
13183 is_rela = FALSE;
13184
13185 symsec = filedata->section_headers + relsec->sh_link;
13186 if (symsec->sh_type != SHT_SYMTAB
13187 && symsec->sh_type != SHT_DYNSYM)
13188 return FALSE;
13189 symtab = GET_ELF_SYMBOLS (filedata, symsec, & num_syms);
13190
13191 for (rp = relocs; rp < relocs + num_relocs; ++rp)
13192 {
13193 bfd_vma addend;
13194 unsigned int reloc_type;
13195 unsigned int reloc_size;
13196 bfd_boolean reloc_inplace = FALSE;
13197 bfd_boolean reloc_subtract = FALSE;
13198 unsigned char * rloc;
13199 unsigned long sym_index;
13200
13201 reloc_type = get_reloc_type (filedata, rp->r_info);
13202
13203 if (target_specific_reloc_handling (filedata, rp, start, end, symtab, num_syms))
13204 continue;
13205 else if (is_none_reloc (filedata, reloc_type))
13206 continue;
13207 else if (is_32bit_abs_reloc (filedata, reloc_type)
13208 || is_32bit_pcrel_reloc (filedata, reloc_type))
13209 reloc_size = 4;
13210 else if (is_64bit_abs_reloc (filedata, reloc_type)
13211 || is_64bit_pcrel_reloc (filedata, reloc_type))
13212 reloc_size = 8;
13213 else if (is_24bit_abs_reloc (filedata, reloc_type))
13214 reloc_size = 3;
13215 else if (is_16bit_abs_reloc (filedata, reloc_type))
13216 reloc_size = 2;
13217 else if (is_8bit_abs_reloc (filedata, reloc_type)
13218 || is_6bit_abs_reloc (filedata, reloc_type))
13219 reloc_size = 1;
13220 else if ((reloc_subtract = is_32bit_inplace_sub_reloc (filedata,
13221 reloc_type))
13222 || is_32bit_inplace_add_reloc (filedata, reloc_type))
13223 {
13224 reloc_size = 4;
13225 reloc_inplace = TRUE;
13226 }
13227 else if ((reloc_subtract = is_64bit_inplace_sub_reloc (filedata,
13228 reloc_type))
13229 || is_64bit_inplace_add_reloc (filedata, reloc_type))
13230 {
13231 reloc_size = 8;
13232 reloc_inplace = TRUE;
13233 }
13234 else if ((reloc_subtract = is_16bit_inplace_sub_reloc (filedata,
13235 reloc_type))
13236 || is_16bit_inplace_add_reloc (filedata, reloc_type))
13237 {
13238 reloc_size = 2;
13239 reloc_inplace = TRUE;
13240 }
13241 else if ((reloc_subtract = is_8bit_inplace_sub_reloc (filedata,
13242 reloc_type))
13243 || is_8bit_inplace_add_reloc (filedata, reloc_type))
13244 {
13245 reloc_size = 1;
13246 reloc_inplace = TRUE;
13247 }
13248 else if ((reloc_subtract = is_6bit_inplace_sub_reloc (filedata,
13249 reloc_type)))
13250 {
13251 reloc_size = 1;
13252 reloc_inplace = TRUE;
13253 }
13254 else
13255 {
13256 static unsigned int prev_reloc = 0;
13257
13258 if (reloc_type != prev_reloc)
13259 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
13260 reloc_type, printable_section_name (filedata, section));
13261 prev_reloc = reloc_type;
13262 continue;
13263 }
13264
13265 rloc = start + rp->r_offset;
13266 if ((rloc + reloc_size) > end || (rloc < start))
13267 {
13268 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
13269 (unsigned long) rp->r_offset,
13270 printable_section_name (filedata, section));
13271 continue;
13272 }
13273
13274 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
13275 if (sym_index >= num_syms)
13276 {
13277 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
13278 sym_index, printable_section_name (filedata, section));
13279 continue;
13280 }
13281 sym = symtab + sym_index;
13282
13283 /* If the reloc has a symbol associated with it,
13284 make sure that it is of an appropriate type.
13285
13286 Relocations against symbols without type can happen.
13287 Gcc -feliminate-dwarf2-dups may generate symbols
13288 without type for debug info.
13289
13290 Icc generates relocations against function symbols
13291 instead of local labels.
13292
13293 Relocations against object symbols can happen, eg when
13294 referencing a global array. For an example of this see
13295 the _clz.o binary in libgcc.a. */
13296 if (sym != symtab
13297 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
13298 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
13299 {
13300 warn (_("skipping unexpected symbol type %s in section %s relocation %ld\n"),
13301 get_symbol_type (filedata, ELF_ST_TYPE (sym->st_info)),
13302 printable_section_name (filedata, relsec),
13303 (long int)(rp - relocs));
13304 continue;
13305 }
13306
13307 addend = 0;
13308 if (is_rela)
13309 addend += rp->r_addend;
13310 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
13311 partial_inplace. */
13312 if (!is_rela
13313 || (filedata->file_header.e_machine == EM_XTENSA
13314 && reloc_type == 1)
13315 || ((filedata->file_header.e_machine == EM_PJ
13316 || filedata->file_header.e_machine == EM_PJ_OLD)
13317 && reloc_type == 1)
13318 || ((filedata->file_header.e_machine == EM_D30V
13319 || filedata->file_header.e_machine == EM_CYGNUS_D30V)
13320 && reloc_type == 12)
13321 || reloc_inplace)
13322 {
13323 if (is_6bit_inplace_sub_reloc (filedata, reloc_type))
13324 addend += byte_get (rloc, reloc_size) & 0x3f;
13325 else
13326 addend += byte_get (rloc, reloc_size);
13327 }
13328
13329 if (is_32bit_pcrel_reloc (filedata, reloc_type)
13330 || is_64bit_pcrel_reloc (filedata, reloc_type))
13331 {
13332 /* On HPPA, all pc-relative relocations are biased by 8. */
13333 if (filedata->file_header.e_machine == EM_PARISC)
13334 addend -= 8;
13335 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
13336 reloc_size);
13337 }
13338 else if (is_6bit_abs_reloc (filedata, reloc_type)
13339 || is_6bit_inplace_sub_reloc (filedata, reloc_type))
13340 {
13341 if (reloc_subtract)
13342 addend -= sym->st_value;
13343 else
13344 addend += sym->st_value;
13345 addend = (addend & 0x3f) | (byte_get (rloc, reloc_size) & 0xc0);
13346 byte_put (rloc, addend, reloc_size);
13347 }
13348 else if (reloc_subtract)
13349 byte_put (rloc, addend - sym->st_value, reloc_size);
13350 else
13351 byte_put (rloc, addend + sym->st_value, reloc_size);
13352 }
13353
13354 free (symtab);
13355 /* Let the target specific reloc processing code know that
13356 we have finished with these relocs. */
13357 target_specific_reloc_handling (filedata, NULL, NULL, NULL, NULL, 0);
13358
13359 if (relocs_return)
13360 {
13361 * (Elf_Internal_Rela **) relocs_return = relocs;
13362 * num_relocs_return = num_relocs;
13363 }
13364 else
13365 free (relocs);
13366
13367 break;
13368 }
13369
13370 return TRUE;
13371 }
13372
13373 #ifdef SUPPORT_DISASSEMBLY
13374 static bfd_boolean
13375 disassemble_section (Elf_Internal_Shdr * section, Filedata * filedata)
13376 {
13377 printf (_("\nAssembly dump of section %s\n"), printable_section_name (filedata, section));
13378
13379 /* FIXME: XXX -- to be done --- XXX */
13380
13381 return TRUE;
13382 }
13383 #endif
13384
13385 /* Reads in the contents of SECTION from FILE, returning a pointer
13386 to a malloc'ed buffer or NULL if something went wrong. */
13387
13388 static char *
13389 get_section_contents (Elf_Internal_Shdr * section, Filedata * filedata)
13390 {
13391 bfd_size_type num_bytes = section->sh_size;
13392
13393 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
13394 {
13395 printf (_("Section '%s' has no data to dump.\n"),
13396 printable_section_name (filedata, section));
13397 return NULL;
13398 }
13399
13400 return (char *) get_data (NULL, filedata, section->sh_offset, 1, num_bytes,
13401 _("section contents"));
13402 }
13403
13404 /* Uncompresses a section that was compressed using zlib, in place. */
13405
13406 static bfd_boolean
13407 uncompress_section_contents (unsigned char ** buffer,
13408 dwarf_size_type uncompressed_size,
13409 dwarf_size_type * size)
13410 {
13411 dwarf_size_type compressed_size = *size;
13412 unsigned char * compressed_buffer = *buffer;
13413 unsigned char * uncompressed_buffer;
13414 z_stream strm;
13415 int rc;
13416
13417 /* It is possible the section consists of several compressed
13418 buffers concatenated together, so we uncompress in a loop. */
13419 /* PR 18313: The state field in the z_stream structure is supposed
13420 to be invisible to the user (ie us), but some compilers will
13421 still complain about it being used without initialisation. So
13422 we first zero the entire z_stream structure and then set the fields
13423 that we need. */
13424 memset (& strm, 0, sizeof strm);
13425 strm.avail_in = compressed_size;
13426 strm.next_in = (Bytef *) compressed_buffer;
13427 strm.avail_out = uncompressed_size;
13428 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
13429
13430 rc = inflateInit (& strm);
13431 while (strm.avail_in > 0)
13432 {
13433 if (rc != Z_OK)
13434 goto fail;
13435 strm.next_out = ((Bytef *) uncompressed_buffer
13436 + (uncompressed_size - strm.avail_out));
13437 rc = inflate (&strm, Z_FINISH);
13438 if (rc != Z_STREAM_END)
13439 goto fail;
13440 rc = inflateReset (& strm);
13441 }
13442 rc = inflateEnd (& strm);
13443 if (rc != Z_OK
13444 || strm.avail_out != 0)
13445 goto fail;
13446
13447 *buffer = uncompressed_buffer;
13448 *size = uncompressed_size;
13449 return TRUE;
13450
13451 fail:
13452 free (uncompressed_buffer);
13453 /* Indicate decompression failure. */
13454 *buffer = NULL;
13455 return FALSE;
13456 }
13457
13458 static bfd_boolean
13459 dump_section_as_strings (Elf_Internal_Shdr * section, Filedata * filedata)
13460 {
13461 Elf_Internal_Shdr * relsec;
13462 bfd_size_type num_bytes;
13463 unsigned char * data;
13464 unsigned char * end;
13465 unsigned char * real_start;
13466 unsigned char * start;
13467 bfd_boolean some_strings_shown;
13468
13469 real_start = start = (unsigned char *) get_section_contents (section, filedata);
13470 if (start == NULL)
13471 /* PR 21820: Do not fail if the section was empty. */
13472 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13473
13474 num_bytes = section->sh_size;
13475
13476 printf (_("\nString dump of section '%s':\n"), printable_section_name (filedata, section));
13477
13478 if (decompress_dumps)
13479 {
13480 dwarf_size_type new_size = num_bytes;
13481 dwarf_size_type uncompressed_size = 0;
13482
13483 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13484 {
13485 Elf_Internal_Chdr chdr;
13486 unsigned int compression_header_size
13487 = get_compression_header (& chdr, (unsigned char *) start,
13488 num_bytes);
13489
13490 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13491 {
13492 warn (_("section '%s' has unsupported compress type: %d\n"),
13493 printable_section_name (filedata, section), chdr.ch_type);
13494 return FALSE;
13495 }
13496 uncompressed_size = chdr.ch_size;
13497 start += compression_header_size;
13498 new_size -= compression_header_size;
13499 }
13500 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13501 {
13502 /* Read the zlib header. In this case, it should be "ZLIB"
13503 followed by the uncompressed section size, 8 bytes in
13504 big-endian order. */
13505 uncompressed_size = start[4]; uncompressed_size <<= 8;
13506 uncompressed_size += start[5]; uncompressed_size <<= 8;
13507 uncompressed_size += start[6]; uncompressed_size <<= 8;
13508 uncompressed_size += start[7]; uncompressed_size <<= 8;
13509 uncompressed_size += start[8]; uncompressed_size <<= 8;
13510 uncompressed_size += start[9]; uncompressed_size <<= 8;
13511 uncompressed_size += start[10]; uncompressed_size <<= 8;
13512 uncompressed_size += start[11];
13513 start += 12;
13514 new_size -= 12;
13515 }
13516
13517 if (uncompressed_size)
13518 {
13519 if (uncompress_section_contents (& start,
13520 uncompressed_size, & new_size))
13521 num_bytes = new_size;
13522 else
13523 {
13524 error (_("Unable to decompress section %s\n"),
13525 printable_section_name (filedata, section));
13526 return FALSE;
13527 }
13528 }
13529 else
13530 start = real_start;
13531 }
13532
13533 /* If the section being dumped has relocations against it the user might
13534 be expecting these relocations to have been applied. Check for this
13535 case and issue a warning message in order to avoid confusion.
13536 FIXME: Maybe we ought to have an option that dumps a section with
13537 relocs applied ? */
13538 for (relsec = filedata->section_headers;
13539 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13540 ++relsec)
13541 {
13542 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13543 || relsec->sh_info >= filedata->file_header.e_shnum
13544 || filedata->section_headers + relsec->sh_info != section
13545 || relsec->sh_size == 0
13546 || relsec->sh_link >= filedata->file_header.e_shnum)
13547 continue;
13548
13549 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13550 break;
13551 }
13552
13553 data = start;
13554 end = start + num_bytes;
13555 some_strings_shown = FALSE;
13556
13557 while (data < end)
13558 {
13559 while (!ISPRINT (* data))
13560 if (++ data >= end)
13561 break;
13562
13563 if (data < end)
13564 {
13565 size_t maxlen = end - data;
13566
13567 #ifndef __MSVCRT__
13568 /* PR 11128: Use two separate invocations in order to work
13569 around bugs in the Solaris 8 implementation of printf. */
13570 printf (" [%6tx] ", data - start);
13571 #else
13572 printf (" [%6Ix] ", (size_t) (data - start));
13573 #endif
13574 if (maxlen > 0)
13575 {
13576 print_symbol ((int) maxlen, (const char *) data);
13577 putchar ('\n');
13578 data += strnlen ((const char *) data, maxlen);
13579 }
13580 else
13581 {
13582 printf (_("<corrupt>\n"));
13583 data = end;
13584 }
13585 some_strings_shown = TRUE;
13586 }
13587 }
13588
13589 if (! some_strings_shown)
13590 printf (_(" No strings found in this section."));
13591
13592 free (real_start);
13593
13594 putchar ('\n');
13595 return TRUE;
13596 }
13597
13598 static bfd_boolean
13599 dump_section_as_bytes (Elf_Internal_Shdr * section,
13600 Filedata * filedata,
13601 bfd_boolean relocate)
13602 {
13603 Elf_Internal_Shdr * relsec;
13604 bfd_size_type bytes;
13605 bfd_size_type section_size;
13606 bfd_vma addr;
13607 unsigned char * data;
13608 unsigned char * real_start;
13609 unsigned char * start;
13610
13611 real_start = start = (unsigned char *) get_section_contents (section, filedata);
13612 if (start == NULL)
13613 /* PR 21820: Do not fail if the section was empty. */
13614 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13615
13616 section_size = section->sh_size;
13617
13618 printf (_("\nHex dump of section '%s':\n"), printable_section_name (filedata, section));
13619
13620 if (decompress_dumps)
13621 {
13622 dwarf_size_type new_size = section_size;
13623 dwarf_size_type uncompressed_size = 0;
13624
13625 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13626 {
13627 Elf_Internal_Chdr chdr;
13628 unsigned int compression_header_size
13629 = get_compression_header (& chdr, start, section_size);
13630
13631 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13632 {
13633 warn (_("section '%s' has unsupported compress type: %d\n"),
13634 printable_section_name (filedata, section), chdr.ch_type);
13635 return FALSE;
13636 }
13637 uncompressed_size = chdr.ch_size;
13638 start += compression_header_size;
13639 new_size -= compression_header_size;
13640 }
13641 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13642 {
13643 /* Read the zlib header. In this case, it should be "ZLIB"
13644 followed by the uncompressed section size, 8 bytes in
13645 big-endian order. */
13646 uncompressed_size = start[4]; uncompressed_size <<= 8;
13647 uncompressed_size += start[5]; uncompressed_size <<= 8;
13648 uncompressed_size += start[6]; uncompressed_size <<= 8;
13649 uncompressed_size += start[7]; uncompressed_size <<= 8;
13650 uncompressed_size += start[8]; uncompressed_size <<= 8;
13651 uncompressed_size += start[9]; uncompressed_size <<= 8;
13652 uncompressed_size += start[10]; uncompressed_size <<= 8;
13653 uncompressed_size += start[11];
13654 start += 12;
13655 new_size -= 12;
13656 }
13657
13658 if (uncompressed_size)
13659 {
13660 if (uncompress_section_contents (& start, uncompressed_size,
13661 & new_size))
13662 {
13663 section_size = new_size;
13664 }
13665 else
13666 {
13667 error (_("Unable to decompress section %s\n"),
13668 printable_section_name (filedata, section));
13669 /* FIXME: Print the section anyway ? */
13670 return FALSE;
13671 }
13672 }
13673 else
13674 start = real_start;
13675 }
13676
13677 if (relocate)
13678 {
13679 if (! apply_relocations (filedata, section, start, section_size, NULL, NULL))
13680 return FALSE;
13681 }
13682 else
13683 {
13684 /* If the section being dumped has relocations against it the user might
13685 be expecting these relocations to have been applied. Check for this
13686 case and issue a warning message in order to avoid confusion.
13687 FIXME: Maybe we ought to have an option that dumps a section with
13688 relocs applied ? */
13689 for (relsec = filedata->section_headers;
13690 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13691 ++relsec)
13692 {
13693 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13694 || relsec->sh_info >= filedata->file_header.e_shnum
13695 || filedata->section_headers + relsec->sh_info != section
13696 || relsec->sh_size == 0
13697 || relsec->sh_link >= filedata->file_header.e_shnum)
13698 continue;
13699
13700 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13701 break;
13702 }
13703 }
13704
13705 addr = section->sh_addr;
13706 bytes = section_size;
13707 data = start;
13708
13709 while (bytes)
13710 {
13711 int j;
13712 int k;
13713 int lbytes;
13714
13715 lbytes = (bytes > 16 ? 16 : bytes);
13716
13717 printf (" 0x%8.8lx ", (unsigned long) addr);
13718
13719 for (j = 0; j < 16; j++)
13720 {
13721 if (j < lbytes)
13722 printf ("%2.2x", data[j]);
13723 else
13724 printf (" ");
13725
13726 if ((j & 3) == 3)
13727 printf (" ");
13728 }
13729
13730 for (j = 0; j < lbytes; j++)
13731 {
13732 k = data[j];
13733 if (k >= ' ' && k < 0x7f)
13734 printf ("%c", k);
13735 else
13736 printf (".");
13737 }
13738
13739 putchar ('\n');
13740
13741 data += lbytes;
13742 addr += lbytes;
13743 bytes -= lbytes;
13744 }
13745
13746 free (real_start);
13747
13748 putchar ('\n');
13749 return TRUE;
13750 }
13751
13752 static bfd_boolean
13753 load_specific_debug_section (enum dwarf_section_display_enum debug,
13754 const Elf_Internal_Shdr * sec,
13755 void * data)
13756 {
13757 struct dwarf_section * section = &debug_displays [debug].section;
13758 char buf [64];
13759 Filedata * filedata = (Filedata *) data;
13760
13761 if (section->start != NULL)
13762 {
13763 /* If it is already loaded, do nothing. */
13764 if (streq (section->filename, filedata->file_name))
13765 return TRUE;
13766 free (section->start);
13767 }
13768
13769 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
13770 section->address = sec->sh_addr;
13771 section->user_data = NULL;
13772 section->filename = filedata->file_name;
13773 section->start = (unsigned char *) get_data (NULL, filedata,
13774 sec->sh_offset, 1,
13775 sec->sh_size, buf);
13776 if (section->start == NULL)
13777 section->size = 0;
13778 else
13779 {
13780 unsigned char *start = section->start;
13781 dwarf_size_type size = sec->sh_size;
13782 dwarf_size_type uncompressed_size = 0;
13783
13784 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
13785 {
13786 Elf_Internal_Chdr chdr;
13787 unsigned int compression_header_size;
13788
13789 if (size < (is_32bit_elf
13790 ? sizeof (Elf32_External_Chdr)
13791 : sizeof (Elf64_External_Chdr)))
13792 {
13793 warn (_("compressed section %s is too small to contain a compression header"),
13794 section->name);
13795 return FALSE;
13796 }
13797
13798 compression_header_size = get_compression_header (&chdr, start, size);
13799
13800 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13801 {
13802 warn (_("section '%s' has unsupported compress type: %d\n"),
13803 section->name, chdr.ch_type);
13804 return FALSE;
13805 }
13806 uncompressed_size = chdr.ch_size;
13807 start += compression_header_size;
13808 size -= compression_header_size;
13809 }
13810 else if (size > 12 && streq ((char *) start, "ZLIB"))
13811 {
13812 /* Read the zlib header. In this case, it should be "ZLIB"
13813 followed by the uncompressed section size, 8 bytes in
13814 big-endian order. */
13815 uncompressed_size = start[4]; uncompressed_size <<= 8;
13816 uncompressed_size += start[5]; uncompressed_size <<= 8;
13817 uncompressed_size += start[6]; uncompressed_size <<= 8;
13818 uncompressed_size += start[7]; uncompressed_size <<= 8;
13819 uncompressed_size += start[8]; uncompressed_size <<= 8;
13820 uncompressed_size += start[9]; uncompressed_size <<= 8;
13821 uncompressed_size += start[10]; uncompressed_size <<= 8;
13822 uncompressed_size += start[11];
13823 start += 12;
13824 size -= 12;
13825 }
13826
13827 if (uncompressed_size)
13828 {
13829 if (uncompress_section_contents (&start, uncompressed_size,
13830 &size))
13831 {
13832 /* Free the compressed buffer, update the section buffer
13833 and the section size if uncompress is successful. */
13834 free (section->start);
13835 section->start = start;
13836 }
13837 else
13838 {
13839 error (_("Unable to decompress section %s\n"),
13840 printable_section_name (filedata, sec));
13841 return FALSE;
13842 }
13843 }
13844
13845 section->size = size;
13846 }
13847
13848 if (section->start == NULL)
13849 return FALSE;
13850
13851 if (debug_displays [debug].relocate)
13852 {
13853 if (! apply_relocations (filedata, sec, section->start, section->size,
13854 & section->reloc_info, & section->num_relocs))
13855 return FALSE;
13856 }
13857 else
13858 {
13859 section->reloc_info = NULL;
13860 section->num_relocs = 0;
13861 }
13862
13863 return TRUE;
13864 }
13865
13866 /* If this is not NULL, load_debug_section will only look for sections
13867 within the list of sections given here. */
13868 static unsigned int * section_subset = NULL;
13869
13870 bfd_boolean
13871 load_debug_section (enum dwarf_section_display_enum debug, void * data)
13872 {
13873 struct dwarf_section * section = &debug_displays [debug].section;
13874 Elf_Internal_Shdr * sec;
13875 Filedata * filedata = (Filedata *) data;
13876
13877 /* Without section headers we cannot find any sections. */
13878 if (filedata->section_headers == NULL)
13879 return FALSE;
13880
13881 if (filedata->string_table == NULL
13882 && filedata->file_header.e_shstrndx != SHN_UNDEF
13883 && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum)
13884 {
13885 Elf_Internal_Shdr * strs;
13886
13887 /* Read in the string table, so that we have section names to scan. */
13888 strs = filedata->section_headers + filedata->file_header.e_shstrndx;
13889
13890 if (strs != NULL && strs->sh_size != 0)
13891 {
13892 filedata->string_table
13893 = (char *) get_data (NULL, filedata, strs->sh_offset,
13894 1, strs->sh_size, _("string table"));
13895
13896 filedata->string_table_length
13897 = filedata->string_table != NULL ? strs->sh_size : 0;
13898 }
13899 }
13900
13901 /* Locate the debug section. */
13902 sec = find_section_in_set (filedata, section->uncompressed_name, section_subset);
13903 if (sec != NULL)
13904 section->name = section->uncompressed_name;
13905 else
13906 {
13907 sec = find_section_in_set (filedata, section->compressed_name, section_subset);
13908 if (sec != NULL)
13909 section->name = section->compressed_name;
13910 }
13911 if (sec == NULL)
13912 return FALSE;
13913
13914 /* If we're loading from a subset of sections, and we've loaded
13915 a section matching this name before, it's likely that it's a
13916 different one. */
13917 if (section_subset != NULL)
13918 free_debug_section (debug);
13919
13920 return load_specific_debug_section (debug, sec, data);
13921 }
13922
13923 void
13924 free_debug_section (enum dwarf_section_display_enum debug)
13925 {
13926 struct dwarf_section * section = &debug_displays [debug].section;
13927
13928 if (section->start == NULL)
13929 return;
13930
13931 free ((char *) section->start);
13932 section->start = NULL;
13933 section->address = 0;
13934 section->size = 0;
13935 }
13936
13937 static bfd_boolean
13938 display_debug_section (int shndx, Elf_Internal_Shdr * section, Filedata * filedata)
13939 {
13940 char * name = SECTION_NAME (section);
13941 const char * print_name = printable_section_name (filedata, section);
13942 bfd_size_type length;
13943 bfd_boolean result = TRUE;
13944 int i;
13945
13946 length = section->sh_size;
13947 if (length == 0)
13948 {
13949 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13950 return TRUE;
13951 }
13952 if (section->sh_type == SHT_NOBITS)
13953 {
13954 /* There is no point in dumping the contents of a debugging section
13955 which has the NOBITS type - the bits in the file will be random.
13956 This can happen when a file containing a .eh_frame section is
13957 stripped with the --only-keep-debug command line option. */
13958 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13959 print_name);
13960 return FALSE;
13961 }
13962
13963 if (const_strneq (name, ".gnu.linkonce.wi."))
13964 name = ".debug_info";
13965
13966 /* See if we know how to display the contents of this section. */
13967 for (i = 0; i < max; i++)
13968 {
13969 enum dwarf_section_display_enum id = (enum dwarf_section_display_enum) i;
13970 struct dwarf_section_display * display = debug_displays + i;
13971 struct dwarf_section * sec = & display->section;
13972
13973 if (streq (sec->uncompressed_name, name)
13974 || (id == line && const_strneq (name, ".debug_line."))
13975 || streq (sec->compressed_name, name))
13976 {
13977 bfd_boolean secondary = (section != find_section (filedata, name));
13978
13979 if (secondary)
13980 free_debug_section (id);
13981
13982 if (i == line && const_strneq (name, ".debug_line."))
13983 sec->name = name;
13984 else if (streq (sec->uncompressed_name, name))
13985 sec->name = sec->uncompressed_name;
13986 else
13987 sec->name = sec->compressed_name;
13988
13989 if (load_specific_debug_section (id, section, filedata))
13990 {
13991 /* If this debug section is part of a CU/TU set in a .dwp file,
13992 restrict load_debug_section to the sections in that set. */
13993 section_subset = find_cu_tu_set (filedata, shndx);
13994
13995 result &= display->display (sec, filedata);
13996
13997 section_subset = NULL;
13998
13999 if (secondary || (id != info && id != abbrev))
14000 free_debug_section (id);
14001 }
14002 break;
14003 }
14004 }
14005
14006 if (i == max)
14007 {
14008 printf (_("Unrecognized debug section: %s\n"), print_name);
14009 result = FALSE;
14010 }
14011
14012 return result;
14013 }
14014
14015 /* Set DUMP_SECTS for all sections where dumps were requested
14016 based on section name. */
14017
14018 static void
14019 initialise_dumps_byname (Filedata * filedata)
14020 {
14021 struct dump_list_entry * cur;
14022
14023 for (cur = dump_sects_byname; cur; cur = cur->next)
14024 {
14025 unsigned int i;
14026 bfd_boolean any = FALSE;
14027
14028 for (i = 0; i < filedata->file_header.e_shnum; i++)
14029 if (streq (SECTION_NAME (filedata->section_headers + i), cur->name))
14030 {
14031 request_dump_bynumber (filedata, i, cur->type);
14032 any = TRUE;
14033 }
14034
14035 if (!any)
14036 warn (_("Section '%s' was not dumped because it does not exist!\n"),
14037 cur->name);
14038 }
14039 }
14040
14041 static bfd_boolean
14042 process_section_contents (Filedata * filedata)
14043 {
14044 Elf_Internal_Shdr * section;
14045 unsigned int i;
14046 bfd_boolean res = TRUE;
14047
14048 if (! do_dump)
14049 return TRUE;
14050
14051 initialise_dumps_byname (filedata);
14052
14053 for (i = 0, section = filedata->section_headers;
14054 i < filedata->file_header.e_shnum && i < filedata->num_dump_sects;
14055 i++, section++)
14056 {
14057 dump_type dump = filedata->dump_sects[i];
14058
14059 #ifdef SUPPORT_DISASSEMBLY
14060 if (dump & DISASS_DUMP)
14061 {
14062 if (! disassemble_section (section, filedata))
14063 res = FALSE;
14064 }
14065 #endif
14066 if (dump & HEX_DUMP)
14067 {
14068 if (! dump_section_as_bytes (section, filedata, FALSE))
14069 res = FALSE;
14070 }
14071
14072 if (dump & RELOC_DUMP)
14073 {
14074 if (! dump_section_as_bytes (section, filedata, TRUE))
14075 res = FALSE;
14076 }
14077
14078 if (dump & STRING_DUMP)
14079 {
14080 if (! dump_section_as_strings (section, filedata))
14081 res = FALSE;
14082 }
14083
14084 if (dump & DEBUG_DUMP)
14085 {
14086 if (! display_debug_section (i, section, filedata))
14087 res = FALSE;
14088 }
14089 }
14090
14091 /* Check to see if the user requested a
14092 dump of a section that does not exist. */
14093 while (i < filedata->num_dump_sects)
14094 {
14095 if (filedata->dump_sects[i])
14096 {
14097 warn (_("Section %d was not dumped because it does not exist!\n"), i);
14098 res = FALSE;
14099 }
14100 i++;
14101 }
14102
14103 return res;
14104 }
14105
14106 static void
14107 process_mips_fpe_exception (int mask)
14108 {
14109 if (mask)
14110 {
14111 bfd_boolean first = TRUE;
14112
14113 if (mask & OEX_FPU_INEX)
14114 fputs ("INEX", stdout), first = FALSE;
14115 if (mask & OEX_FPU_UFLO)
14116 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
14117 if (mask & OEX_FPU_OFLO)
14118 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
14119 if (mask & OEX_FPU_DIV0)
14120 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
14121 if (mask & OEX_FPU_INVAL)
14122 printf ("%sINVAL", first ? "" : "|");
14123 }
14124 else
14125 fputs ("0", stdout);
14126 }
14127
14128 /* Display's the value of TAG at location P. If TAG is
14129 greater than 0 it is assumed to be an unknown tag, and
14130 a message is printed to this effect. Otherwise it is
14131 assumed that a message has already been printed.
14132
14133 If the bottom bit of TAG is set it assumed to have a
14134 string value, otherwise it is assumed to have an integer
14135 value.
14136
14137 Returns an updated P pointing to the first unread byte
14138 beyond the end of TAG's value.
14139
14140 Reads at or beyond END will not be made. */
14141
14142 static unsigned char *
14143 display_tag_value (signed int tag,
14144 unsigned char * p,
14145 const unsigned char * const end)
14146 {
14147 unsigned long val;
14148
14149 if (tag > 0)
14150 printf (" Tag_unknown_%d: ", tag);
14151
14152 if (p >= end)
14153 {
14154 warn (_("<corrupt tag>\n"));
14155 }
14156 else if (tag & 1)
14157 {
14158 /* PR 17531 file: 027-19978-0.004. */
14159 size_t maxlen = (end - p) - 1;
14160
14161 putchar ('"');
14162 if (maxlen > 0)
14163 {
14164 print_symbol ((int) maxlen, (const char *) p);
14165 p += strnlen ((char *) p, maxlen) + 1;
14166 }
14167 else
14168 {
14169 printf (_("<corrupt string tag>"));
14170 p = (unsigned char *) end;
14171 }
14172 printf ("\"\n");
14173 }
14174 else
14175 {
14176 unsigned int len;
14177
14178 val = read_uleb128 (p, &len, end);
14179 p += len;
14180 printf ("%ld (0x%lx)\n", val, val);
14181 }
14182
14183 assert (p <= end);
14184 return p;
14185 }
14186
14187 /* ARC ABI attributes section. */
14188
14189 static unsigned char *
14190 display_arc_attribute (unsigned char * p,
14191 const unsigned char * const end)
14192 {
14193 unsigned int tag;
14194 unsigned int len;
14195 unsigned int val;
14196
14197 tag = read_uleb128 (p, &len, end);
14198 p += len;
14199
14200 switch (tag)
14201 {
14202 case Tag_ARC_PCS_config:
14203 val = read_uleb128 (p, &len, end);
14204 p += len;
14205 printf (" Tag_ARC_PCS_config: ");
14206 switch (val)
14207 {
14208 case 0:
14209 printf (_("Absent/Non standard\n"));
14210 break;
14211 case 1:
14212 printf (_("Bare metal/mwdt\n"));
14213 break;
14214 case 2:
14215 printf (_("Bare metal/newlib\n"));
14216 break;
14217 case 3:
14218 printf (_("Linux/uclibc\n"));
14219 break;
14220 case 4:
14221 printf (_("Linux/glibc\n"));
14222 break;
14223 default:
14224 printf (_("Unknown\n"));
14225 break;
14226 }
14227 break;
14228
14229 case Tag_ARC_CPU_base:
14230 val = read_uleb128 (p, &len, end);
14231 p += len;
14232 printf (" Tag_ARC_CPU_base: ");
14233 switch (val)
14234 {
14235 default:
14236 case TAG_CPU_NONE:
14237 printf (_("Absent\n"));
14238 break;
14239 case TAG_CPU_ARC6xx:
14240 printf ("ARC6xx\n");
14241 break;
14242 case TAG_CPU_ARC7xx:
14243 printf ("ARC7xx\n");
14244 break;
14245 case TAG_CPU_ARCEM:
14246 printf ("ARCEM\n");
14247 break;
14248 case TAG_CPU_ARCHS:
14249 printf ("ARCHS\n");
14250 break;
14251 }
14252 break;
14253
14254 case Tag_ARC_CPU_variation:
14255 val = read_uleb128 (p, &len, end);
14256 p += len;
14257 printf (" Tag_ARC_CPU_variation: ");
14258 switch (val)
14259 {
14260 default:
14261 if (val > 0 && val < 16)
14262 printf ("Core%d\n", val);
14263 else
14264 printf ("Unknown\n");
14265 break;
14266
14267 case 0:
14268 printf (_("Absent\n"));
14269 break;
14270 }
14271 break;
14272
14273 case Tag_ARC_CPU_name:
14274 printf (" Tag_ARC_CPU_name: ");
14275 p = display_tag_value (-1, p, end);
14276 break;
14277
14278 case Tag_ARC_ABI_rf16:
14279 val = read_uleb128 (p, &len, end);
14280 p += len;
14281 printf (" Tag_ARC_ABI_rf16: %s\n", val ? _("yes") : _("no"));
14282 break;
14283
14284 case Tag_ARC_ABI_osver:
14285 val = read_uleb128 (p, &len, end);
14286 p += len;
14287 printf (" Tag_ARC_ABI_osver: v%d\n", val);
14288 break;
14289
14290 case Tag_ARC_ABI_pic:
14291 case Tag_ARC_ABI_sda:
14292 val = read_uleb128 (p, &len, end);
14293 p += len;
14294 printf (tag == Tag_ARC_ABI_sda ? " Tag_ARC_ABI_sda: "
14295 : " Tag_ARC_ABI_pic: ");
14296 switch (val)
14297 {
14298 case 0:
14299 printf (_("Absent\n"));
14300 break;
14301 case 1:
14302 printf ("MWDT\n");
14303 break;
14304 case 2:
14305 printf ("GNU\n");
14306 break;
14307 default:
14308 printf (_("Unknown\n"));
14309 break;
14310 }
14311 break;
14312
14313 case Tag_ARC_ABI_tls:
14314 val = read_uleb128 (p, &len, end);
14315 p += len;
14316 printf (" Tag_ARC_ABI_tls: %s\n", val ? "r25": "none");
14317 break;
14318
14319 case Tag_ARC_ABI_enumsize:
14320 val = read_uleb128 (p, &len, end);
14321 p += len;
14322 printf (" Tag_ARC_ABI_enumsize: %s\n", val ? _("default") :
14323 _("smallest"));
14324 break;
14325
14326 case Tag_ARC_ABI_exceptions:
14327 val = read_uleb128 (p, &len, end);
14328 p += len;
14329 printf (" Tag_ARC_ABI_exceptions: %s\n", val ? _("OPTFP")
14330 : _("default"));
14331 break;
14332
14333 case Tag_ARC_ABI_double_size:
14334 val = read_uleb128 (p, &len, end);
14335 p += len;
14336 printf (" Tag_ARC_ABI_double_size: %d\n", val);
14337 break;
14338
14339 case Tag_ARC_ISA_config:
14340 printf (" Tag_ARC_ISA_config: ");
14341 p = display_tag_value (-1, p, end);
14342 break;
14343
14344 case Tag_ARC_ISA_apex:
14345 printf (" Tag_ARC_ISA_apex: ");
14346 p = display_tag_value (-1, p, end);
14347 break;
14348
14349 case Tag_ARC_ISA_mpy_option:
14350 val = read_uleb128 (p, &len, end);
14351 p += len;
14352 printf (" Tag_ARC_ISA_mpy_option: %d\n", val);
14353 break;
14354
14355 case Tag_ARC_ATR_version:
14356 val = read_uleb128 (p, &len, end);
14357 p += len;
14358 printf (" Tag_ARC_ATR_version: %d\n", val);
14359 break;
14360
14361 default:
14362 return display_tag_value (tag & 1, p, end);
14363 }
14364
14365 return p;
14366 }
14367
14368 /* ARM EABI attributes section. */
14369 typedef struct
14370 {
14371 unsigned int tag;
14372 const char * name;
14373 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
14374 unsigned int type;
14375 const char ** table;
14376 } arm_attr_public_tag;
14377
14378 static const char * arm_attr_tag_CPU_arch[] =
14379 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
14380 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "v8-R", "v8-M.baseline",
14381 "v8-M.mainline", "", "", "", "v8.1-M.mainline"};
14382 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
14383 static const char * arm_attr_tag_THUMB_ISA_use[] =
14384 {"No", "Thumb-1", "Thumb-2", "Yes"};
14385 static const char * arm_attr_tag_FP_arch[] =
14386 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
14387 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
14388 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
14389 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
14390 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
14391 "NEON for ARMv8.1"};
14392 static const char * arm_attr_tag_PCS_config[] =
14393 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
14394 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
14395 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
14396 {"V6", "SB", "TLS", "Unused"};
14397 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
14398 {"Absolute", "PC-relative", "SB-relative", "None"};
14399 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
14400 {"Absolute", "PC-relative", "None"};
14401 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
14402 {"None", "direct", "GOT-indirect"};
14403 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
14404 {"None", "??? 1", "2", "??? 3", "4"};
14405 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
14406 static const char * arm_attr_tag_ABI_FP_denormal[] =
14407 {"Unused", "Needed", "Sign only"};
14408 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
14409 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
14410 static const char * arm_attr_tag_ABI_FP_number_model[] =
14411 {"Unused", "Finite", "RTABI", "IEEE 754"};
14412 static const char * arm_attr_tag_ABI_enum_size[] =
14413 {"Unused", "small", "int", "forced to int"};
14414 static const char * arm_attr_tag_ABI_HardFP_use[] =
14415 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
14416 static const char * arm_attr_tag_ABI_VFP_args[] =
14417 {"AAPCS", "VFP registers", "custom", "compatible"};
14418 static const char * arm_attr_tag_ABI_WMMX_args[] =
14419 {"AAPCS", "WMMX registers", "custom"};
14420 static const char * arm_attr_tag_ABI_optimization_goals[] =
14421 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
14422 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
14423 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
14424 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
14425 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
14426 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
14427 static const char * arm_attr_tag_FP_HP_extension[] =
14428 {"Not Allowed", "Allowed"};
14429 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
14430 {"None", "IEEE 754", "Alternative Format"};
14431 static const char * arm_attr_tag_DSP_extension[] =
14432 {"Follow architecture", "Allowed"};
14433 static const char * arm_attr_tag_MPextension_use[] =
14434 {"Not Allowed", "Allowed"};
14435 static const char * arm_attr_tag_DIV_use[] =
14436 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
14437 "Allowed in v7-A with integer division extension"};
14438 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
14439 static const char * arm_attr_tag_Virtualization_use[] =
14440 {"Not Allowed", "TrustZone", "Virtualization Extensions",
14441 "TrustZone and Virtualization Extensions"};
14442 static const char * arm_attr_tag_MPextension_use_legacy[] =
14443 {"Not Allowed", "Allowed"};
14444
14445 static const char * arm_attr_tag_MVE_arch[] =
14446 {"No MVE", "MVE Integer only", "MVE Integer and FP"};
14447
14448 #define LOOKUP(id, name) \
14449 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
14450 static arm_attr_public_tag arm_attr_public_tags[] =
14451 {
14452 {4, "CPU_raw_name", 1, NULL},
14453 {5, "CPU_name", 1, NULL},
14454 LOOKUP(6, CPU_arch),
14455 {7, "CPU_arch_profile", 0, NULL},
14456 LOOKUP(8, ARM_ISA_use),
14457 LOOKUP(9, THUMB_ISA_use),
14458 LOOKUP(10, FP_arch),
14459 LOOKUP(11, WMMX_arch),
14460 LOOKUP(12, Advanced_SIMD_arch),
14461 LOOKUP(13, PCS_config),
14462 LOOKUP(14, ABI_PCS_R9_use),
14463 LOOKUP(15, ABI_PCS_RW_data),
14464 LOOKUP(16, ABI_PCS_RO_data),
14465 LOOKUP(17, ABI_PCS_GOT_use),
14466 LOOKUP(18, ABI_PCS_wchar_t),
14467 LOOKUP(19, ABI_FP_rounding),
14468 LOOKUP(20, ABI_FP_denormal),
14469 LOOKUP(21, ABI_FP_exceptions),
14470 LOOKUP(22, ABI_FP_user_exceptions),
14471 LOOKUP(23, ABI_FP_number_model),
14472 {24, "ABI_align_needed", 0, NULL},
14473 {25, "ABI_align_preserved", 0, NULL},
14474 LOOKUP(26, ABI_enum_size),
14475 LOOKUP(27, ABI_HardFP_use),
14476 LOOKUP(28, ABI_VFP_args),
14477 LOOKUP(29, ABI_WMMX_args),
14478 LOOKUP(30, ABI_optimization_goals),
14479 LOOKUP(31, ABI_FP_optimization_goals),
14480 {32, "compatibility", 0, NULL},
14481 LOOKUP(34, CPU_unaligned_access),
14482 LOOKUP(36, FP_HP_extension),
14483 LOOKUP(38, ABI_FP_16bit_format),
14484 LOOKUP(42, MPextension_use),
14485 LOOKUP(44, DIV_use),
14486 LOOKUP(46, DSP_extension),
14487 LOOKUP(48, MVE_arch),
14488 {64, "nodefaults", 0, NULL},
14489 {65, "also_compatible_with", 0, NULL},
14490 LOOKUP(66, T2EE_use),
14491 {67, "conformance", 1, NULL},
14492 LOOKUP(68, Virtualization_use),
14493 LOOKUP(70, MPextension_use_legacy)
14494 };
14495 #undef LOOKUP
14496
14497 static unsigned char *
14498 display_arm_attribute (unsigned char * p,
14499 const unsigned char * const end)
14500 {
14501 unsigned int tag;
14502 unsigned int len;
14503 unsigned int val;
14504 arm_attr_public_tag * attr;
14505 unsigned i;
14506 unsigned int type;
14507
14508 tag = read_uleb128 (p, &len, end);
14509 p += len;
14510 attr = NULL;
14511 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
14512 {
14513 if (arm_attr_public_tags[i].tag == tag)
14514 {
14515 attr = &arm_attr_public_tags[i];
14516 break;
14517 }
14518 }
14519
14520 if (attr)
14521 {
14522 printf (" Tag_%s: ", attr->name);
14523 switch (attr->type)
14524 {
14525 case 0:
14526 switch (tag)
14527 {
14528 case 7: /* Tag_CPU_arch_profile. */
14529 val = read_uleb128 (p, &len, end);
14530 p += len;
14531 switch (val)
14532 {
14533 case 0: printf (_("None\n")); break;
14534 case 'A': printf (_("Application\n")); break;
14535 case 'R': printf (_("Realtime\n")); break;
14536 case 'M': printf (_("Microcontroller\n")); break;
14537 case 'S': printf (_("Application or Realtime\n")); break;
14538 default: printf ("??? (%d)\n", val); break;
14539 }
14540 break;
14541
14542 case 24: /* Tag_align_needed. */
14543 val = read_uleb128 (p, &len, end);
14544 p += len;
14545 switch (val)
14546 {
14547 case 0: printf (_("None\n")); break;
14548 case 1: printf (_("8-byte\n")); break;
14549 case 2: printf (_("4-byte\n")); break;
14550 case 3: printf ("??? 3\n"); break;
14551 default:
14552 if (val <= 12)
14553 printf (_("8-byte and up to %d-byte extended\n"),
14554 1 << val);
14555 else
14556 printf ("??? (%d)\n", val);
14557 break;
14558 }
14559 break;
14560
14561 case 25: /* Tag_align_preserved. */
14562 val = read_uleb128 (p, &len, end);
14563 p += len;
14564 switch (val)
14565 {
14566 case 0: printf (_("None\n")); break;
14567 case 1: printf (_("8-byte, except leaf SP\n")); break;
14568 case 2: printf (_("8-byte\n")); break;
14569 case 3: printf ("??? 3\n"); break;
14570 default:
14571 if (val <= 12)
14572 printf (_("8-byte and up to %d-byte extended\n"),
14573 1 << val);
14574 else
14575 printf ("??? (%d)\n", val);
14576 break;
14577 }
14578 break;
14579
14580 case 32: /* Tag_compatibility. */
14581 {
14582 val = read_uleb128 (p, &len, end);
14583 p += len;
14584 printf (_("flag = %d, vendor = "), val);
14585 if (p < end - 1)
14586 {
14587 size_t maxlen = (end - p) - 1;
14588
14589 print_symbol ((int) maxlen, (const char *) p);
14590 p += strnlen ((char *) p, maxlen) + 1;
14591 }
14592 else
14593 {
14594 printf (_("<corrupt>"));
14595 p = (unsigned char *) end;
14596 }
14597 putchar ('\n');
14598 }
14599 break;
14600
14601 case 64: /* Tag_nodefaults. */
14602 /* PR 17531: file: 001-505008-0.01. */
14603 if (p < end)
14604 p++;
14605 printf (_("True\n"));
14606 break;
14607
14608 case 65: /* Tag_also_compatible_with. */
14609 val = read_uleb128 (p, &len, end);
14610 p += len;
14611 if (val == 6 /* Tag_CPU_arch. */)
14612 {
14613 val = read_uleb128 (p, &len, end);
14614 p += len;
14615 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
14616 printf ("??? (%d)\n", val);
14617 else
14618 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
14619 }
14620 else
14621 printf ("???\n");
14622 while (p < end && *(p++) != '\0' /* NUL terminator. */)
14623 ;
14624 break;
14625
14626 default:
14627 printf (_("<unknown: %d>\n"), tag);
14628 break;
14629 }
14630 return p;
14631
14632 case 1:
14633 return display_tag_value (-1, p, end);
14634 case 2:
14635 return display_tag_value (0, p, end);
14636
14637 default:
14638 assert (attr->type & 0x80);
14639 val = read_uleb128 (p, &len, end);
14640 p += len;
14641 type = attr->type & 0x7f;
14642 if (val >= type)
14643 printf ("??? (%d)\n", val);
14644 else
14645 printf ("%s\n", attr->table[val]);
14646 return p;
14647 }
14648 }
14649
14650 return display_tag_value (tag, p, end);
14651 }
14652
14653 static unsigned char *
14654 display_gnu_attribute (unsigned char * p,
14655 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
14656 const unsigned char * const end)
14657 {
14658 int tag;
14659 unsigned int len;
14660 unsigned int val;
14661
14662 tag = read_uleb128 (p, &len, end);
14663 p += len;
14664
14665 /* Tag_compatibility is the only generic GNU attribute defined at
14666 present. */
14667 if (tag == 32)
14668 {
14669 val = read_uleb128 (p, &len, end);
14670 p += len;
14671
14672 printf (_("flag = %d, vendor = "), val);
14673 if (p == end)
14674 {
14675 printf (_("<corrupt>\n"));
14676 warn (_("corrupt vendor attribute\n"));
14677 }
14678 else
14679 {
14680 if (p < end - 1)
14681 {
14682 size_t maxlen = (end - p) - 1;
14683
14684 print_symbol ((int) maxlen, (const char *) p);
14685 p += strnlen ((char *) p, maxlen) + 1;
14686 }
14687 else
14688 {
14689 printf (_("<corrupt>"));
14690 p = (unsigned char *) end;
14691 }
14692 putchar ('\n');
14693 }
14694 return p;
14695 }
14696
14697 if ((tag & 2) == 0 && display_proc_gnu_attribute)
14698 return display_proc_gnu_attribute (p, tag, end);
14699
14700 return display_tag_value (tag, p, end);
14701 }
14702
14703 static unsigned char *
14704 display_power_gnu_attribute (unsigned char * p,
14705 unsigned int tag,
14706 const unsigned char * const end)
14707 {
14708 unsigned int len;
14709 unsigned int val;
14710
14711 if (tag == Tag_GNU_Power_ABI_FP)
14712 {
14713 val = read_uleb128 (p, &len, end);
14714 p += len;
14715 printf (" Tag_GNU_Power_ABI_FP: ");
14716 if (len == 0)
14717 {
14718 printf (_("<corrupt>\n"));
14719 return p;
14720 }
14721
14722 if (val > 15)
14723 printf ("(%#x), ", val);
14724
14725 switch (val & 3)
14726 {
14727 case 0:
14728 printf (_("unspecified hard/soft float, "));
14729 break;
14730 case 1:
14731 printf (_("hard float, "));
14732 break;
14733 case 2:
14734 printf (_("soft float, "));
14735 break;
14736 case 3:
14737 printf (_("single-precision hard float, "));
14738 break;
14739 }
14740
14741 switch (val & 0xC)
14742 {
14743 case 0:
14744 printf (_("unspecified long double\n"));
14745 break;
14746 case 4:
14747 printf (_("128-bit IBM long double\n"));
14748 break;
14749 case 8:
14750 printf (_("64-bit long double\n"));
14751 break;
14752 case 12:
14753 printf (_("128-bit IEEE long double\n"));
14754 break;
14755 }
14756 return p;
14757 }
14758
14759 if (tag == Tag_GNU_Power_ABI_Vector)
14760 {
14761 val = read_uleb128 (p, &len, end);
14762 p += len;
14763 printf (" Tag_GNU_Power_ABI_Vector: ");
14764 if (len == 0)
14765 {
14766 printf (_("<corrupt>\n"));
14767 return p;
14768 }
14769
14770 if (val > 3)
14771 printf ("(%#x), ", val);
14772
14773 switch (val & 3)
14774 {
14775 case 0:
14776 printf (_("unspecified\n"));
14777 break;
14778 case 1:
14779 printf (_("generic\n"));
14780 break;
14781 case 2:
14782 printf ("AltiVec\n");
14783 break;
14784 case 3:
14785 printf ("SPE\n");
14786 break;
14787 }
14788 return p;
14789 }
14790
14791 if (tag == Tag_GNU_Power_ABI_Struct_Return)
14792 {
14793 val = read_uleb128 (p, &len, end);
14794 p += len;
14795 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
14796 if (len == 0)
14797 {
14798 printf (_("<corrupt>\n"));
14799 return p;
14800 }
14801
14802 if (val > 2)
14803 printf ("(%#x), ", val);
14804
14805 switch (val & 3)
14806 {
14807 case 0:
14808 printf (_("unspecified\n"));
14809 break;
14810 case 1:
14811 printf ("r3/r4\n");
14812 break;
14813 case 2:
14814 printf (_("memory\n"));
14815 break;
14816 case 3:
14817 printf ("???\n");
14818 break;
14819 }
14820 return p;
14821 }
14822
14823 return display_tag_value (tag & 1, p, end);
14824 }
14825
14826 static unsigned char *
14827 display_s390_gnu_attribute (unsigned char * p,
14828 unsigned int tag,
14829 const unsigned char * const end)
14830 {
14831 unsigned int len;
14832 int val;
14833
14834 if (tag == Tag_GNU_S390_ABI_Vector)
14835 {
14836 val = read_uleb128 (p, &len, end);
14837 p += len;
14838 printf (" Tag_GNU_S390_ABI_Vector: ");
14839
14840 switch (val)
14841 {
14842 case 0:
14843 printf (_("any\n"));
14844 break;
14845 case 1:
14846 printf (_("software\n"));
14847 break;
14848 case 2:
14849 printf (_("hardware\n"));
14850 break;
14851 default:
14852 printf ("??? (%d)\n", val);
14853 break;
14854 }
14855 return p;
14856 }
14857
14858 return display_tag_value (tag & 1, p, end);
14859 }
14860
14861 static void
14862 display_sparc_hwcaps (unsigned int mask)
14863 {
14864 if (mask)
14865 {
14866 bfd_boolean first = TRUE;
14867
14868 if (mask & ELF_SPARC_HWCAP_MUL32)
14869 fputs ("mul32", stdout), first = FALSE;
14870 if (mask & ELF_SPARC_HWCAP_DIV32)
14871 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
14872 if (mask & ELF_SPARC_HWCAP_FSMULD)
14873 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
14874 if (mask & ELF_SPARC_HWCAP_V8PLUS)
14875 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
14876 if (mask & ELF_SPARC_HWCAP_POPC)
14877 printf ("%spopc", first ? "" : "|"), first = FALSE;
14878 if (mask & ELF_SPARC_HWCAP_VIS)
14879 printf ("%svis", first ? "" : "|"), first = FALSE;
14880 if (mask & ELF_SPARC_HWCAP_VIS2)
14881 printf ("%svis2", first ? "" : "|"), first = FALSE;
14882 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
14883 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
14884 if (mask & ELF_SPARC_HWCAP_FMAF)
14885 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
14886 if (mask & ELF_SPARC_HWCAP_VIS3)
14887 printf ("%svis3", first ? "" : "|"), first = FALSE;
14888 if (mask & ELF_SPARC_HWCAP_HPC)
14889 printf ("%shpc", first ? "" : "|"), first = FALSE;
14890 if (mask & ELF_SPARC_HWCAP_RANDOM)
14891 printf ("%srandom", first ? "" : "|"), first = FALSE;
14892 if (mask & ELF_SPARC_HWCAP_TRANS)
14893 printf ("%strans", first ? "" : "|"), first = FALSE;
14894 if (mask & ELF_SPARC_HWCAP_FJFMAU)
14895 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
14896 if (mask & ELF_SPARC_HWCAP_IMA)
14897 printf ("%sima", first ? "" : "|"), first = FALSE;
14898 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
14899 printf ("%scspare", first ? "" : "|"), first = FALSE;
14900 }
14901 else
14902 fputc ('0', stdout);
14903 fputc ('\n', stdout);
14904 }
14905
14906 static void
14907 display_sparc_hwcaps2 (unsigned int mask)
14908 {
14909 if (mask)
14910 {
14911 bfd_boolean first = TRUE;
14912
14913 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
14914 fputs ("fjathplus", stdout), first = FALSE;
14915 if (mask & ELF_SPARC_HWCAP2_VIS3B)
14916 printf ("%svis3b", first ? "" : "|"), first = FALSE;
14917 if (mask & ELF_SPARC_HWCAP2_ADP)
14918 printf ("%sadp", first ? "" : "|"), first = FALSE;
14919 if (mask & ELF_SPARC_HWCAP2_SPARC5)
14920 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
14921 if (mask & ELF_SPARC_HWCAP2_MWAIT)
14922 printf ("%smwait", first ? "" : "|"), first = FALSE;
14923 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
14924 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
14925 if (mask & ELF_SPARC_HWCAP2_XMONT)
14926 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
14927 if (mask & ELF_SPARC_HWCAP2_NSEC)
14928 printf ("%snsec", first ? "" : "|"), first = FALSE;
14929 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
14930 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
14931 if (mask & ELF_SPARC_HWCAP2_FJDES)
14932 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
14933 if (mask & ELF_SPARC_HWCAP2_FJAES)
14934 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
14935 }
14936 else
14937 fputc ('0', stdout);
14938 fputc ('\n', stdout);
14939 }
14940
14941 static unsigned char *
14942 display_sparc_gnu_attribute (unsigned char * p,
14943 unsigned int tag,
14944 const unsigned char * const end)
14945 {
14946 unsigned int len;
14947 int val;
14948
14949 if (tag == Tag_GNU_Sparc_HWCAPS)
14950 {
14951 val = read_uleb128 (p, &len, end);
14952 p += len;
14953 printf (" Tag_GNU_Sparc_HWCAPS: ");
14954 display_sparc_hwcaps (val);
14955 return p;
14956 }
14957 if (tag == Tag_GNU_Sparc_HWCAPS2)
14958 {
14959 val = read_uleb128 (p, &len, end);
14960 p += len;
14961 printf (" Tag_GNU_Sparc_HWCAPS2: ");
14962 display_sparc_hwcaps2 (val);
14963 return p;
14964 }
14965
14966 return display_tag_value (tag, p, end);
14967 }
14968
14969 static void
14970 print_mips_fp_abi_value (unsigned int val)
14971 {
14972 switch (val)
14973 {
14974 case Val_GNU_MIPS_ABI_FP_ANY:
14975 printf (_("Hard or soft float\n"));
14976 break;
14977 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14978 printf (_("Hard float (double precision)\n"));
14979 break;
14980 case Val_GNU_MIPS_ABI_FP_SINGLE:
14981 printf (_("Hard float (single precision)\n"));
14982 break;
14983 case Val_GNU_MIPS_ABI_FP_SOFT:
14984 printf (_("Soft float\n"));
14985 break;
14986 case Val_GNU_MIPS_ABI_FP_OLD_64:
14987 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
14988 break;
14989 case Val_GNU_MIPS_ABI_FP_XX:
14990 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
14991 break;
14992 case Val_GNU_MIPS_ABI_FP_64:
14993 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
14994 break;
14995 case Val_GNU_MIPS_ABI_FP_64A:
14996 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
14997 break;
14998 case Val_GNU_MIPS_ABI_FP_NAN2008:
14999 printf (_("NaN 2008 compatibility\n"));
15000 break;
15001 default:
15002 printf ("??? (%d)\n", val);
15003 break;
15004 }
15005 }
15006
15007 static unsigned char *
15008 display_mips_gnu_attribute (unsigned char * p,
15009 unsigned int tag,
15010 const unsigned char * const end)
15011 {
15012 if (tag == Tag_GNU_MIPS_ABI_FP)
15013 {
15014 unsigned int len;
15015 unsigned int val;
15016
15017 val = read_uleb128 (p, &len, end);
15018 p += len;
15019 printf (" Tag_GNU_MIPS_ABI_FP: ");
15020
15021 print_mips_fp_abi_value (val);
15022
15023 return p;
15024 }
15025
15026 if (tag == Tag_GNU_MIPS_ABI_MSA)
15027 {
15028 unsigned int len;
15029 unsigned int val;
15030
15031 val = read_uleb128 (p, &len, end);
15032 p += len;
15033 printf (" Tag_GNU_MIPS_ABI_MSA: ");
15034
15035 switch (val)
15036 {
15037 case Val_GNU_MIPS_ABI_MSA_ANY:
15038 printf (_("Any MSA or not\n"));
15039 break;
15040 case Val_GNU_MIPS_ABI_MSA_128:
15041 printf (_("128-bit MSA\n"));
15042 break;
15043 default:
15044 printf ("??? (%d)\n", val);
15045 break;
15046 }
15047 return p;
15048 }
15049
15050 return display_tag_value (tag & 1, p, end);
15051 }
15052
15053 static unsigned char *
15054 display_tic6x_attribute (unsigned char * p,
15055 const unsigned char * const end)
15056 {
15057 unsigned int tag;
15058 unsigned int len;
15059 int val;
15060
15061 tag = read_uleb128 (p, &len, end);
15062 p += len;
15063
15064 switch (tag)
15065 {
15066 case Tag_ISA:
15067 val = read_uleb128 (p, &len, end);
15068 p += len;
15069 printf (" Tag_ISA: ");
15070
15071 switch (val)
15072 {
15073 case C6XABI_Tag_ISA_none:
15074 printf (_("None\n"));
15075 break;
15076 case C6XABI_Tag_ISA_C62X:
15077 printf ("C62x\n");
15078 break;
15079 case C6XABI_Tag_ISA_C67X:
15080 printf ("C67x\n");
15081 break;
15082 case C6XABI_Tag_ISA_C67XP:
15083 printf ("C67x+\n");
15084 break;
15085 case C6XABI_Tag_ISA_C64X:
15086 printf ("C64x\n");
15087 break;
15088 case C6XABI_Tag_ISA_C64XP:
15089 printf ("C64x+\n");
15090 break;
15091 case C6XABI_Tag_ISA_C674X:
15092 printf ("C674x\n");
15093 break;
15094 default:
15095 printf ("??? (%d)\n", val);
15096 break;
15097 }
15098 return p;
15099
15100 case Tag_ABI_wchar_t:
15101 val = read_uleb128 (p, &len, end);
15102 p += len;
15103 printf (" Tag_ABI_wchar_t: ");
15104 switch (val)
15105 {
15106 case 0:
15107 printf (_("Not used\n"));
15108 break;
15109 case 1:
15110 printf (_("2 bytes\n"));
15111 break;
15112 case 2:
15113 printf (_("4 bytes\n"));
15114 break;
15115 default:
15116 printf ("??? (%d)\n", val);
15117 break;
15118 }
15119 return p;
15120
15121 case Tag_ABI_stack_align_needed:
15122 val = read_uleb128 (p, &len, end);
15123 p += len;
15124 printf (" Tag_ABI_stack_align_needed: ");
15125 switch (val)
15126 {
15127 case 0:
15128 printf (_("8-byte\n"));
15129 break;
15130 case 1:
15131 printf (_("16-byte\n"));
15132 break;
15133 default:
15134 printf ("??? (%d)\n", val);
15135 break;
15136 }
15137 return p;
15138
15139 case Tag_ABI_stack_align_preserved:
15140 val = read_uleb128 (p, &len, end);
15141 p += len;
15142 printf (" Tag_ABI_stack_align_preserved: ");
15143 switch (val)
15144 {
15145 case 0:
15146 printf (_("8-byte\n"));
15147 break;
15148 case 1:
15149 printf (_("16-byte\n"));
15150 break;
15151 default:
15152 printf ("??? (%d)\n", val);
15153 break;
15154 }
15155 return p;
15156
15157 case Tag_ABI_DSBT:
15158 val = read_uleb128 (p, &len, end);
15159 p += len;
15160 printf (" Tag_ABI_DSBT: ");
15161 switch (val)
15162 {
15163 case 0:
15164 printf (_("DSBT addressing not used\n"));
15165 break;
15166 case 1:
15167 printf (_("DSBT addressing used\n"));
15168 break;
15169 default:
15170 printf ("??? (%d)\n", val);
15171 break;
15172 }
15173 return p;
15174
15175 case Tag_ABI_PID:
15176 val = read_uleb128 (p, &len, end);
15177 p += len;
15178 printf (" Tag_ABI_PID: ");
15179 switch (val)
15180 {
15181 case 0:
15182 printf (_("Data addressing position-dependent\n"));
15183 break;
15184 case 1:
15185 printf (_("Data addressing position-independent, GOT near DP\n"));
15186 break;
15187 case 2:
15188 printf (_("Data addressing position-independent, GOT far from DP\n"));
15189 break;
15190 default:
15191 printf ("??? (%d)\n", val);
15192 break;
15193 }
15194 return p;
15195
15196 case Tag_ABI_PIC:
15197 val = read_uleb128 (p, &len, end);
15198 p += len;
15199 printf (" Tag_ABI_PIC: ");
15200 switch (val)
15201 {
15202 case 0:
15203 printf (_("Code addressing position-dependent\n"));
15204 break;
15205 case 1:
15206 printf (_("Code addressing position-independent\n"));
15207 break;
15208 default:
15209 printf ("??? (%d)\n", val);
15210 break;
15211 }
15212 return p;
15213
15214 case Tag_ABI_array_object_alignment:
15215 val = read_uleb128 (p, &len, end);
15216 p += len;
15217 printf (" Tag_ABI_array_object_alignment: ");
15218 switch (val)
15219 {
15220 case 0:
15221 printf (_("8-byte\n"));
15222 break;
15223 case 1:
15224 printf (_("4-byte\n"));
15225 break;
15226 case 2:
15227 printf (_("16-byte\n"));
15228 break;
15229 default:
15230 printf ("??? (%d)\n", val);
15231 break;
15232 }
15233 return p;
15234
15235 case Tag_ABI_array_object_align_expected:
15236 val = read_uleb128 (p, &len, end);
15237 p += len;
15238 printf (" Tag_ABI_array_object_align_expected: ");
15239 switch (val)
15240 {
15241 case 0:
15242 printf (_("8-byte\n"));
15243 break;
15244 case 1:
15245 printf (_("4-byte\n"));
15246 break;
15247 case 2:
15248 printf (_("16-byte\n"));
15249 break;
15250 default:
15251 printf ("??? (%d)\n", val);
15252 break;
15253 }
15254 return p;
15255
15256 case Tag_ABI_compatibility:
15257 {
15258 val = read_uleb128 (p, &len, end);
15259 p += len;
15260 printf (" Tag_ABI_compatibility: ");
15261 printf (_("flag = %d, vendor = "), val);
15262 if (p < end - 1)
15263 {
15264 size_t maxlen = (end - p) - 1;
15265
15266 print_symbol ((int) maxlen, (const char *) p);
15267 p += strnlen ((char *) p, maxlen) + 1;
15268 }
15269 else
15270 {
15271 printf (_("<corrupt>"));
15272 p = (unsigned char *) end;
15273 }
15274 putchar ('\n');
15275 return p;
15276 }
15277
15278 case Tag_ABI_conformance:
15279 {
15280 printf (" Tag_ABI_conformance: \"");
15281 if (p < end - 1)
15282 {
15283 size_t maxlen = (end - p) - 1;
15284
15285 print_symbol ((int) maxlen, (const char *) p);
15286 p += strnlen ((char *) p, maxlen) + 1;
15287 }
15288 else
15289 {
15290 printf (_("<corrupt>"));
15291 p = (unsigned char *) end;
15292 }
15293 printf ("\"\n");
15294 return p;
15295 }
15296 }
15297
15298 return display_tag_value (tag, p, end);
15299 }
15300
15301 static void
15302 display_raw_attribute (unsigned char * p, unsigned char const * const end)
15303 {
15304 unsigned long addr = 0;
15305 size_t bytes = end - p;
15306
15307 assert (end >= p);
15308 while (bytes)
15309 {
15310 int j;
15311 int k;
15312 int lbytes = (bytes > 16 ? 16 : bytes);
15313
15314 printf (" 0x%8.8lx ", addr);
15315
15316 for (j = 0; j < 16; j++)
15317 {
15318 if (j < lbytes)
15319 printf ("%2.2x", p[j]);
15320 else
15321 printf (" ");
15322
15323 if ((j & 3) == 3)
15324 printf (" ");
15325 }
15326
15327 for (j = 0; j < lbytes; j++)
15328 {
15329 k = p[j];
15330 if (k >= ' ' && k < 0x7f)
15331 printf ("%c", k);
15332 else
15333 printf (".");
15334 }
15335
15336 putchar ('\n');
15337
15338 p += lbytes;
15339 bytes -= lbytes;
15340 addr += lbytes;
15341 }
15342
15343 putchar ('\n');
15344 }
15345
15346 static unsigned char *
15347 display_msp430x_attribute (unsigned char * p,
15348 const unsigned char * const end)
15349 {
15350 unsigned int len;
15351 unsigned int val;
15352 unsigned int tag;
15353
15354 tag = read_uleb128 (p, & len, end);
15355 p += len;
15356
15357 switch (tag)
15358 {
15359 case OFBA_MSPABI_Tag_ISA:
15360 val = read_uleb128 (p, &len, end);
15361 p += len;
15362 printf (" Tag_ISA: ");
15363 switch (val)
15364 {
15365 case 0: printf (_("None\n")); break;
15366 case 1: printf (_("MSP430\n")); break;
15367 case 2: printf (_("MSP430X\n")); break;
15368 default: printf ("??? (%d)\n", val); break;
15369 }
15370 break;
15371
15372 case OFBA_MSPABI_Tag_Code_Model:
15373 val = read_uleb128 (p, &len, end);
15374 p += len;
15375 printf (" Tag_Code_Model: ");
15376 switch (val)
15377 {
15378 case 0: printf (_("None\n")); break;
15379 case 1: printf (_("Small\n")); break;
15380 case 2: printf (_("Large\n")); break;
15381 default: printf ("??? (%d)\n", val); break;
15382 }
15383 break;
15384
15385 case OFBA_MSPABI_Tag_Data_Model:
15386 val = read_uleb128 (p, &len, end);
15387 p += len;
15388 printf (" Tag_Data_Model: ");
15389 switch (val)
15390 {
15391 case 0: printf (_("None\n")); break;
15392 case 1: printf (_("Small\n")); break;
15393 case 2: printf (_("Large\n")); break;
15394 case 3: printf (_("Restricted Large\n")); break;
15395 default: printf ("??? (%d)\n", val); break;
15396 }
15397 break;
15398
15399 default:
15400 printf (_(" <unknown tag %d>: "), tag);
15401
15402 if (tag & 1)
15403 {
15404 putchar ('"');
15405 if (p < end - 1)
15406 {
15407 size_t maxlen = (end - p) - 1;
15408
15409 print_symbol ((int) maxlen, (const char *) p);
15410 p += strnlen ((char *) p, maxlen) + 1;
15411 }
15412 else
15413 {
15414 printf (_("<corrupt>"));
15415 p = (unsigned char *) end;
15416 }
15417 printf ("\"\n");
15418 }
15419 else
15420 {
15421 val = read_uleb128 (p, &len, end);
15422 p += len;
15423 printf ("%d (0x%x)\n", val, val);
15424 }
15425 break;
15426 }
15427
15428 assert (p <= end);
15429 return p;
15430 }
15431
15432 struct riscv_attr_tag_t {
15433 const char *name;
15434 int tag;
15435 };
15436
15437 static struct riscv_attr_tag_t riscv_attr_tag[] =
15438 {
15439 #define T(tag) {"Tag_RISCV_" #tag, Tag_RISCV_##tag}
15440 T(arch),
15441 T(priv_spec),
15442 T(priv_spec_minor),
15443 T(priv_spec_revision),
15444 T(unaligned_access),
15445 T(stack_align),
15446 #undef T
15447 };
15448
15449 static unsigned char *
15450 display_riscv_attribute (unsigned char *p,
15451 const unsigned char * const end)
15452 {
15453 unsigned int len;
15454 int val;
15455 int tag;
15456 struct riscv_attr_tag_t *attr = NULL;
15457 unsigned i;
15458
15459 tag = read_uleb128 (p, &len, end);
15460 p += len;
15461
15462 /* Find the name of attribute. */
15463 for (i = 0; i < ARRAY_SIZE (riscv_attr_tag); i++)
15464 {
15465 if (riscv_attr_tag[i].tag == tag)
15466 {
15467 attr = &riscv_attr_tag[i];
15468 break;
15469 }
15470 }
15471
15472 if (attr)
15473 printf (" %s: ", attr->name);
15474 else
15475 return display_tag_value (tag, p, end);
15476
15477 switch (tag)
15478 {
15479 case Tag_RISCV_priv_spec:
15480 case Tag_RISCV_priv_spec_minor:
15481 case Tag_RISCV_priv_spec_revision:
15482 val = read_uleb128 (p, &len, end);
15483 p += len;
15484 printf (_("%d\n"), val);
15485 break;
15486 case Tag_RISCV_unaligned_access:
15487 val = read_uleb128 (p, &len, end);
15488 p += len;
15489 switch (val)
15490 {
15491 case 0:
15492 printf (_("No unaligned access\n"));
15493 break;
15494 case 1:
15495 printf (_("Unaligned access\n"));
15496 break;
15497 }
15498 break;
15499 case Tag_RISCV_stack_align:
15500 val = read_uleb128 (p, &len, end);
15501 p += len;
15502 printf (_("%d-bytes\n"), val);
15503 break;
15504 case Tag_RISCV_arch:
15505 p = display_tag_value (-1, p, end);
15506 break;
15507 default:
15508 return display_tag_value (tag, p, end);
15509 }
15510
15511 return p;
15512 }
15513
15514 static bfd_boolean
15515 process_attributes (Filedata * filedata,
15516 const char * public_name,
15517 unsigned int proc_type,
15518 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
15519 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
15520 {
15521 Elf_Internal_Shdr * sect;
15522 unsigned i;
15523 bfd_boolean res = TRUE;
15524
15525 /* Find the section header so that we get the size. */
15526 for (i = 0, sect = filedata->section_headers;
15527 i < filedata->file_header.e_shnum;
15528 i++, sect++)
15529 {
15530 unsigned char * contents;
15531 unsigned char * p;
15532
15533 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
15534 continue;
15535
15536 contents = (unsigned char *) get_data (NULL, filedata, sect->sh_offset, 1,
15537 sect->sh_size, _("attributes"));
15538 if (contents == NULL)
15539 {
15540 res = FALSE;
15541 continue;
15542 }
15543
15544 p = contents;
15545 /* The first character is the version of the attributes.
15546 Currently only version 1, (aka 'A') is recognised here. */
15547 if (*p != 'A')
15548 {
15549 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
15550 res = FALSE;
15551 }
15552 else
15553 {
15554 bfd_vma section_len;
15555
15556 section_len = sect->sh_size - 1;
15557 p++;
15558
15559 while (section_len > 0)
15560 {
15561 bfd_vma attr_len;
15562 unsigned int namelen;
15563 bfd_boolean public_section;
15564 bfd_boolean gnu_section;
15565
15566 if (section_len <= 4)
15567 {
15568 error (_("Tag section ends prematurely\n"));
15569 res = FALSE;
15570 break;
15571 }
15572 attr_len = byte_get (p, 4);
15573 p += 4;
15574
15575 if (attr_len > section_len)
15576 {
15577 error (_("Bad attribute length (%u > %u)\n"),
15578 (unsigned) attr_len, (unsigned) section_len);
15579 attr_len = section_len;
15580 res = FALSE;
15581 }
15582 /* PR 17531: file: 001-101425-0.004 */
15583 else if (attr_len < 5)
15584 {
15585 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
15586 res = FALSE;
15587 break;
15588 }
15589
15590 section_len -= attr_len;
15591 attr_len -= 4;
15592
15593 namelen = strnlen ((char *) p, attr_len) + 1;
15594 if (namelen == 0 || namelen >= attr_len)
15595 {
15596 error (_("Corrupt attribute section name\n"));
15597 res = FALSE;
15598 break;
15599 }
15600
15601 printf (_("Attribute Section: "));
15602 print_symbol (INT_MAX, (const char *) p);
15603 putchar ('\n');
15604
15605 if (public_name && streq ((char *) p, public_name))
15606 public_section = TRUE;
15607 else
15608 public_section = FALSE;
15609
15610 if (streq ((char *) p, "gnu"))
15611 gnu_section = TRUE;
15612 else
15613 gnu_section = FALSE;
15614
15615 p += namelen;
15616 attr_len -= namelen;
15617
15618 while (attr_len > 0 && p < contents + sect->sh_size)
15619 {
15620 int tag;
15621 int val;
15622 bfd_vma size;
15623 unsigned char * end;
15624
15625 /* PR binutils/17531: Safe handling of corrupt files. */
15626 if (attr_len < 6)
15627 {
15628 error (_("Unused bytes at end of section\n"));
15629 res = FALSE;
15630 section_len = 0;
15631 break;
15632 }
15633
15634 tag = *(p++);
15635 size = byte_get (p, 4);
15636 if (size > attr_len)
15637 {
15638 error (_("Bad subsection length (%u > %u)\n"),
15639 (unsigned) size, (unsigned) attr_len);
15640 res = FALSE;
15641 size = attr_len;
15642 }
15643 /* PR binutils/17531: Safe handling of corrupt files. */
15644 if (size < 6)
15645 {
15646 error (_("Bad subsection length (%u < 6)\n"),
15647 (unsigned) size);
15648 res = FALSE;
15649 section_len = 0;
15650 break;
15651 }
15652
15653 attr_len -= size;
15654 end = p + size - 1;
15655 assert (end <= contents + sect->sh_size);
15656 p += 4;
15657
15658 switch (tag)
15659 {
15660 case 1:
15661 printf (_("File Attributes\n"));
15662 break;
15663 case 2:
15664 printf (_("Section Attributes:"));
15665 goto do_numlist;
15666 case 3:
15667 printf (_("Symbol Attributes:"));
15668 /* Fall through. */
15669 do_numlist:
15670 for (;;)
15671 {
15672 unsigned int j;
15673
15674 val = read_uleb128 (p, &j, end);
15675 p += j;
15676 if (val == 0)
15677 break;
15678 printf (" %d", val);
15679 }
15680 printf ("\n");
15681 break;
15682 default:
15683 printf (_("Unknown tag: %d\n"), tag);
15684 public_section = FALSE;
15685 break;
15686 }
15687
15688 if (public_section && display_pub_attribute != NULL)
15689 {
15690 while (p < end)
15691 p = display_pub_attribute (p, end);
15692 assert (p == end);
15693 }
15694 else if (gnu_section && display_proc_gnu_attribute != NULL)
15695 {
15696 while (p < end)
15697 p = display_gnu_attribute (p,
15698 display_proc_gnu_attribute,
15699 end);
15700 assert (p == end);
15701 }
15702 else if (p < end)
15703 {
15704 printf (_(" Unknown attribute:\n"));
15705 display_raw_attribute (p, end);
15706 p = end;
15707 }
15708 else
15709 attr_len = 0;
15710 }
15711 }
15712 }
15713
15714 free (contents);
15715 }
15716
15717 return res;
15718 }
15719
15720 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
15721 Print the Address, Access and Initial fields of an entry at VMA ADDR
15722 and return the VMA of the next entry, or -1 if there was a problem.
15723 Does not read from DATA_END or beyond. */
15724
15725 static bfd_vma
15726 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
15727 unsigned char * data_end)
15728 {
15729 printf (" ");
15730 print_vma (addr, LONG_HEX);
15731 printf (" ");
15732 if (addr < pltgot + 0xfff0)
15733 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
15734 else
15735 printf ("%10s", "");
15736 printf (" ");
15737 if (data == NULL)
15738 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
15739 else
15740 {
15741 bfd_vma entry;
15742 unsigned char * from = data + addr - pltgot;
15743
15744 if (from + (is_32bit_elf ? 4 : 8) > data_end)
15745 {
15746 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
15747 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
15748 return (bfd_vma) -1;
15749 }
15750 else
15751 {
15752 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
15753 print_vma (entry, LONG_HEX);
15754 }
15755 }
15756 return addr + (is_32bit_elf ? 4 : 8);
15757 }
15758
15759 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
15760 PLTGOT. Print the Address and Initial fields of an entry at VMA
15761 ADDR and return the VMA of the next entry. */
15762
15763 static bfd_vma
15764 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
15765 {
15766 printf (" ");
15767 print_vma (addr, LONG_HEX);
15768 printf (" ");
15769 if (data == NULL)
15770 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
15771 else
15772 {
15773 bfd_vma entry;
15774
15775 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
15776 print_vma (entry, LONG_HEX);
15777 }
15778 return addr + (is_32bit_elf ? 4 : 8);
15779 }
15780
15781 static void
15782 print_mips_ases (unsigned int mask)
15783 {
15784 if (mask & AFL_ASE_DSP)
15785 fputs ("\n\tDSP ASE", stdout);
15786 if (mask & AFL_ASE_DSPR2)
15787 fputs ("\n\tDSP R2 ASE", stdout);
15788 if (mask & AFL_ASE_DSPR3)
15789 fputs ("\n\tDSP R3 ASE", stdout);
15790 if (mask & AFL_ASE_EVA)
15791 fputs ("\n\tEnhanced VA Scheme", stdout);
15792 if (mask & AFL_ASE_MCU)
15793 fputs ("\n\tMCU (MicroController) ASE", stdout);
15794 if (mask & AFL_ASE_MDMX)
15795 fputs ("\n\tMDMX ASE", stdout);
15796 if (mask & AFL_ASE_MIPS3D)
15797 fputs ("\n\tMIPS-3D ASE", stdout);
15798 if (mask & AFL_ASE_MT)
15799 fputs ("\n\tMT ASE", stdout);
15800 if (mask & AFL_ASE_SMARTMIPS)
15801 fputs ("\n\tSmartMIPS ASE", stdout);
15802 if (mask & AFL_ASE_VIRT)
15803 fputs ("\n\tVZ ASE", stdout);
15804 if (mask & AFL_ASE_MSA)
15805 fputs ("\n\tMSA ASE", stdout);
15806 if (mask & AFL_ASE_MIPS16)
15807 fputs ("\n\tMIPS16 ASE", stdout);
15808 if (mask & AFL_ASE_MICROMIPS)
15809 fputs ("\n\tMICROMIPS ASE", stdout);
15810 if (mask & AFL_ASE_XPA)
15811 fputs ("\n\tXPA ASE", stdout);
15812 if (mask & AFL_ASE_MIPS16E2)
15813 fputs ("\n\tMIPS16e2 ASE", stdout);
15814 if (mask & AFL_ASE_CRC)
15815 fputs ("\n\tCRC ASE", stdout);
15816 if (mask & AFL_ASE_GINV)
15817 fputs ("\n\tGINV ASE", stdout);
15818 if (mask & AFL_ASE_LOONGSON_MMI)
15819 fputs ("\n\tLoongson MMI ASE", stdout);
15820 if (mask & AFL_ASE_LOONGSON_CAM)
15821 fputs ("\n\tLoongson CAM ASE", stdout);
15822 if (mask & AFL_ASE_LOONGSON_EXT)
15823 fputs ("\n\tLoongson EXT ASE", stdout);
15824 if (mask & AFL_ASE_LOONGSON_EXT2)
15825 fputs ("\n\tLoongson EXT2 ASE", stdout);
15826 if (mask == 0)
15827 fprintf (stdout, "\n\t%s", _("None"));
15828 else if ((mask & ~AFL_ASE_MASK) != 0)
15829 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15830 }
15831
15832 static void
15833 print_mips_isa_ext (unsigned int isa_ext)
15834 {
15835 switch (isa_ext)
15836 {
15837 case 0:
15838 fputs (_("None"), stdout);
15839 break;
15840 case AFL_EXT_XLR:
15841 fputs ("RMI XLR", stdout);
15842 break;
15843 case AFL_EXT_OCTEON3:
15844 fputs ("Cavium Networks Octeon3", stdout);
15845 break;
15846 case AFL_EXT_OCTEON2:
15847 fputs ("Cavium Networks Octeon2", stdout);
15848 break;
15849 case AFL_EXT_OCTEONP:
15850 fputs ("Cavium Networks OcteonP", stdout);
15851 break;
15852 case AFL_EXT_OCTEON:
15853 fputs ("Cavium Networks Octeon", stdout);
15854 break;
15855 case AFL_EXT_5900:
15856 fputs ("Toshiba R5900", stdout);
15857 break;
15858 case AFL_EXT_4650:
15859 fputs ("MIPS R4650", stdout);
15860 break;
15861 case AFL_EXT_4010:
15862 fputs ("LSI R4010", stdout);
15863 break;
15864 case AFL_EXT_4100:
15865 fputs ("NEC VR4100", stdout);
15866 break;
15867 case AFL_EXT_3900:
15868 fputs ("Toshiba R3900", stdout);
15869 break;
15870 case AFL_EXT_10000:
15871 fputs ("MIPS R10000", stdout);
15872 break;
15873 case AFL_EXT_SB1:
15874 fputs ("Broadcom SB-1", stdout);
15875 break;
15876 case AFL_EXT_4111:
15877 fputs ("NEC VR4111/VR4181", stdout);
15878 break;
15879 case AFL_EXT_4120:
15880 fputs ("NEC VR4120", stdout);
15881 break;
15882 case AFL_EXT_5400:
15883 fputs ("NEC VR5400", stdout);
15884 break;
15885 case AFL_EXT_5500:
15886 fputs ("NEC VR5500", stdout);
15887 break;
15888 case AFL_EXT_LOONGSON_2E:
15889 fputs ("ST Microelectronics Loongson 2E", stdout);
15890 break;
15891 case AFL_EXT_LOONGSON_2F:
15892 fputs ("ST Microelectronics Loongson 2F", stdout);
15893 break;
15894 case AFL_EXT_INTERAPTIV_MR2:
15895 fputs ("Imagination interAptiv MR2", stdout);
15896 break;
15897 default:
15898 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
15899 }
15900 }
15901
15902 static signed int
15903 get_mips_reg_size (int reg_size)
15904 {
15905 return (reg_size == AFL_REG_NONE) ? 0
15906 : (reg_size == AFL_REG_32) ? 32
15907 : (reg_size == AFL_REG_64) ? 64
15908 : (reg_size == AFL_REG_128) ? 128
15909 : -1;
15910 }
15911
15912 static bfd_boolean
15913 process_mips_specific (Filedata * filedata)
15914 {
15915 Elf_Internal_Dyn * entry;
15916 Elf_Internal_Shdr *sect = NULL;
15917 size_t liblist_offset = 0;
15918 size_t liblistno = 0;
15919 size_t conflictsno = 0;
15920 size_t options_offset = 0;
15921 size_t conflicts_offset = 0;
15922 size_t pltrelsz = 0;
15923 size_t pltrel = 0;
15924 bfd_vma pltgot = 0;
15925 bfd_vma mips_pltgot = 0;
15926 bfd_vma jmprel = 0;
15927 bfd_vma local_gotno = 0;
15928 bfd_vma gotsym = 0;
15929 bfd_vma symtabno = 0;
15930 bfd_boolean res = TRUE;
15931
15932 if (! process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
15933 display_mips_gnu_attribute))
15934 res = FALSE;
15935
15936 sect = find_section (filedata, ".MIPS.abiflags");
15937
15938 if (sect != NULL)
15939 {
15940 Elf_External_ABIFlags_v0 *abiflags_ext;
15941 Elf_Internal_ABIFlags_v0 abiflags_in;
15942
15943 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
15944 {
15945 error (_("Corrupt MIPS ABI Flags section.\n"));
15946 res = FALSE;
15947 }
15948 else
15949 {
15950 abiflags_ext = get_data (NULL, filedata, sect->sh_offset, 1,
15951 sect->sh_size, _("MIPS ABI Flags section"));
15952 if (abiflags_ext)
15953 {
15954 abiflags_in.version = BYTE_GET (abiflags_ext->version);
15955 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
15956 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
15957 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
15958 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
15959 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
15960 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
15961 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
15962 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
15963 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
15964 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
15965
15966 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
15967 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
15968 if (abiflags_in.isa_rev > 1)
15969 printf ("r%d", abiflags_in.isa_rev);
15970 printf ("\nGPR size: %d",
15971 get_mips_reg_size (abiflags_in.gpr_size));
15972 printf ("\nCPR1 size: %d",
15973 get_mips_reg_size (abiflags_in.cpr1_size));
15974 printf ("\nCPR2 size: %d",
15975 get_mips_reg_size (abiflags_in.cpr2_size));
15976 fputs ("\nFP ABI: ", stdout);
15977 print_mips_fp_abi_value (abiflags_in.fp_abi);
15978 fputs ("ISA Extension: ", stdout);
15979 print_mips_isa_ext (abiflags_in.isa_ext);
15980 fputs ("\nASEs:", stdout);
15981 print_mips_ases (abiflags_in.ases);
15982 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
15983 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
15984 fputc ('\n', stdout);
15985 free (abiflags_ext);
15986 }
15987 }
15988 }
15989
15990 /* We have a lot of special sections. Thanks SGI! */
15991 if (dynamic_section == NULL)
15992 {
15993 /* No dynamic information available. See if there is static GOT. */
15994 sect = find_section (filedata, ".got");
15995 if (sect != NULL)
15996 {
15997 unsigned char *data_end;
15998 unsigned char *data;
15999 bfd_vma ent, end;
16000 int addr_size;
16001
16002 pltgot = sect->sh_addr;
16003
16004 ent = pltgot;
16005 addr_size = (is_32bit_elf ? 4 : 8);
16006 end = pltgot + sect->sh_size;
16007
16008 data = (unsigned char *) get_data (NULL, filedata, sect->sh_offset,
16009 end - pltgot, 1,
16010 _("Global Offset Table data"));
16011 /* PR 12855: Null data is handled gracefully throughout. */
16012 data_end = data + (end - pltgot);
16013
16014 printf (_("\nStatic GOT:\n"));
16015 printf (_(" Canonical gp value: "));
16016 print_vma (ent + 0x7ff0, LONG_HEX);
16017 printf ("\n\n");
16018
16019 /* In a dynamic binary GOT[0] is reserved for the dynamic
16020 loader to store the lazy resolver pointer, however in
16021 a static binary it may well have been omitted and GOT
16022 reduced to a table of addresses.
16023 PR 21344: Check for the entry being fully available
16024 before fetching it. */
16025 if (data
16026 && data + ent - pltgot + addr_size <= data_end
16027 && byte_get (data + ent - pltgot, addr_size) == 0)
16028 {
16029 printf (_(" Reserved entries:\n"));
16030 printf (_(" %*s %10s %*s\n"),
16031 addr_size * 2, _("Address"), _("Access"),
16032 addr_size * 2, _("Value"));
16033 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16034 printf ("\n");
16035 if (ent == (bfd_vma) -1)
16036 goto sgot_print_fail;
16037
16038 /* Check for the MSB of GOT[1] being set, identifying a
16039 GNU object. This entry will be used by some runtime
16040 loaders, to store the module pointer. Otherwise this
16041 is an ordinary local entry.
16042 PR 21344: Check for the entry being fully available
16043 before fetching it. */
16044 if (data
16045 && data + ent - pltgot + addr_size <= data_end
16046 && (byte_get (data + ent - pltgot, addr_size)
16047 >> (addr_size * 8 - 1)) != 0)
16048 {
16049 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16050 printf ("\n");
16051 if (ent == (bfd_vma) -1)
16052 goto sgot_print_fail;
16053 }
16054 printf ("\n");
16055 }
16056
16057 if (data != NULL && ent < end)
16058 {
16059 printf (_(" Local entries:\n"));
16060 printf (" %*s %10s %*s\n",
16061 addr_size * 2, _("Address"), _("Access"),
16062 addr_size * 2, _("Value"));
16063 while (ent < end)
16064 {
16065 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16066 printf ("\n");
16067 if (ent == (bfd_vma) -1)
16068 goto sgot_print_fail;
16069 }
16070 printf ("\n");
16071 }
16072
16073 sgot_print_fail:
16074 if (data)
16075 free (data);
16076 }
16077 return res;
16078 }
16079
16080 for (entry = dynamic_section;
16081 /* PR 17531 file: 012-50589-0.004. */
16082 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
16083 ++entry)
16084 switch (entry->d_tag)
16085 {
16086 case DT_MIPS_LIBLIST:
16087 liblist_offset
16088 = offset_from_vma (filedata, entry->d_un.d_val,
16089 liblistno * sizeof (Elf32_External_Lib));
16090 break;
16091 case DT_MIPS_LIBLISTNO:
16092 liblistno = entry->d_un.d_val;
16093 break;
16094 case DT_MIPS_OPTIONS:
16095 options_offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
16096 break;
16097 case DT_MIPS_CONFLICT:
16098 conflicts_offset
16099 = offset_from_vma (filedata, entry->d_un.d_val,
16100 conflictsno * sizeof (Elf32_External_Conflict));
16101 break;
16102 case DT_MIPS_CONFLICTNO:
16103 conflictsno = entry->d_un.d_val;
16104 break;
16105 case DT_PLTGOT:
16106 pltgot = entry->d_un.d_ptr;
16107 break;
16108 case DT_MIPS_LOCAL_GOTNO:
16109 local_gotno = entry->d_un.d_val;
16110 break;
16111 case DT_MIPS_GOTSYM:
16112 gotsym = entry->d_un.d_val;
16113 break;
16114 case DT_MIPS_SYMTABNO:
16115 symtabno = entry->d_un.d_val;
16116 break;
16117 case DT_MIPS_PLTGOT:
16118 mips_pltgot = entry->d_un.d_ptr;
16119 break;
16120 case DT_PLTREL:
16121 pltrel = entry->d_un.d_val;
16122 break;
16123 case DT_PLTRELSZ:
16124 pltrelsz = entry->d_un.d_val;
16125 break;
16126 case DT_JMPREL:
16127 jmprel = entry->d_un.d_ptr;
16128 break;
16129 default:
16130 break;
16131 }
16132
16133 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
16134 {
16135 Elf32_External_Lib * elib;
16136 size_t cnt;
16137
16138 elib = (Elf32_External_Lib *) get_data (NULL, filedata, liblist_offset,
16139 liblistno,
16140 sizeof (Elf32_External_Lib),
16141 _("liblist section data"));
16142 if (elib)
16143 {
16144 printf (ngettext ("\nSection '.liblist' contains %lu entry:\n",
16145 "\nSection '.liblist' contains %lu entries:\n",
16146 (unsigned long) liblistno),
16147 (unsigned long) liblistno);
16148 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
16149 stdout);
16150
16151 for (cnt = 0; cnt < liblistno; ++cnt)
16152 {
16153 Elf32_Lib liblist;
16154 time_t atime;
16155 char timebuf[128];
16156 struct tm * tmp;
16157
16158 liblist.l_name = BYTE_GET (elib[cnt].l_name);
16159 atime = BYTE_GET (elib[cnt].l_time_stamp);
16160 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
16161 liblist.l_version = BYTE_GET (elib[cnt].l_version);
16162 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
16163
16164 tmp = gmtime (&atime);
16165 snprintf (timebuf, sizeof (timebuf),
16166 "%04u-%02u-%02uT%02u:%02u:%02u",
16167 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
16168 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
16169
16170 printf ("%3lu: ", (unsigned long) cnt);
16171 if (VALID_DYNAMIC_NAME (liblist.l_name))
16172 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
16173 else
16174 printf (_("<corrupt: %9ld>"), liblist.l_name);
16175 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
16176 liblist.l_version);
16177
16178 if (liblist.l_flags == 0)
16179 puts (_(" NONE"));
16180 else
16181 {
16182 static const struct
16183 {
16184 const char * name;
16185 int bit;
16186 }
16187 l_flags_vals[] =
16188 {
16189 { " EXACT_MATCH", LL_EXACT_MATCH },
16190 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
16191 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
16192 { " EXPORTS", LL_EXPORTS },
16193 { " DELAY_LOAD", LL_DELAY_LOAD },
16194 { " DELTA", LL_DELTA }
16195 };
16196 int flags = liblist.l_flags;
16197 size_t fcnt;
16198
16199 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
16200 if ((flags & l_flags_vals[fcnt].bit) != 0)
16201 {
16202 fputs (l_flags_vals[fcnt].name, stdout);
16203 flags ^= l_flags_vals[fcnt].bit;
16204 }
16205 if (flags != 0)
16206 printf (" %#x", (unsigned int) flags);
16207
16208 puts ("");
16209 }
16210 }
16211
16212 free (elib);
16213 }
16214 else
16215 res = FALSE;
16216 }
16217
16218 if (options_offset != 0)
16219 {
16220 Elf_External_Options * eopt;
16221 Elf_Internal_Options * iopt;
16222 Elf_Internal_Options * option;
16223 size_t offset;
16224 int cnt;
16225 sect = filedata->section_headers;
16226
16227 /* Find the section header so that we get the size. */
16228 sect = find_section_by_type (filedata, SHT_MIPS_OPTIONS);
16229 /* PR 17533 file: 012-277276-0.004. */
16230 if (sect == NULL)
16231 {
16232 error (_("No MIPS_OPTIONS header found\n"));
16233 return FALSE;
16234 }
16235 /* PR 24243 */
16236 if (sect->sh_size < sizeof (* eopt))
16237 {
16238 error (_("The MIPS options section is too small.\n"));
16239 return FALSE;
16240 }
16241
16242 eopt = (Elf_External_Options *) get_data (NULL, filedata, options_offset, 1,
16243 sect->sh_size, _("options"));
16244 if (eopt)
16245 {
16246 iopt = (Elf_Internal_Options *)
16247 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
16248 if (iopt == NULL)
16249 {
16250 error (_("Out of memory allocating space for MIPS options\n"));
16251 return FALSE;
16252 }
16253
16254 offset = cnt = 0;
16255 option = iopt;
16256
16257 while (offset <= sect->sh_size - sizeof (* eopt))
16258 {
16259 Elf_External_Options * eoption;
16260
16261 eoption = (Elf_External_Options *) ((char *) eopt + offset);
16262
16263 option->kind = BYTE_GET (eoption->kind);
16264 option->size = BYTE_GET (eoption->size);
16265 option->section = BYTE_GET (eoption->section);
16266 option->info = BYTE_GET (eoption->info);
16267
16268 /* PR 17531: file: ffa0fa3b. */
16269 if (option->size < sizeof (* eopt)
16270 || offset + option->size > sect->sh_size)
16271 {
16272 error (_("Invalid size (%u) for MIPS option\n"), option->size);
16273 return FALSE;
16274 }
16275 offset += option->size;
16276
16277 ++option;
16278 ++cnt;
16279 }
16280
16281 printf (ngettext ("\nSection '%s' contains %d entry:\n",
16282 "\nSection '%s' contains %d entries:\n",
16283 cnt),
16284 printable_section_name (filedata, sect), cnt);
16285
16286 option = iopt;
16287 offset = 0;
16288
16289 while (cnt-- > 0)
16290 {
16291 size_t len;
16292
16293 switch (option->kind)
16294 {
16295 case ODK_NULL:
16296 /* This shouldn't happen. */
16297 printf (" NULL %d %lx", option->section, option->info);
16298 break;
16299 case ODK_REGINFO:
16300 printf (" REGINFO ");
16301 if (filedata->file_header.e_machine == EM_MIPS)
16302 {
16303 /* 32bit form. */
16304 Elf32_External_RegInfo * ereg;
16305 Elf32_RegInfo reginfo;
16306
16307 ereg = (Elf32_External_RegInfo *) (option + 1);
16308 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
16309 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
16310 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
16311 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
16312 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
16313 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
16314
16315 printf ("GPR %08lx GP 0x%lx\n",
16316 reginfo.ri_gprmask,
16317 (unsigned long) reginfo.ri_gp_value);
16318 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
16319 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
16320 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
16321 }
16322 else
16323 {
16324 /* 64 bit form. */
16325 Elf64_External_RegInfo * ereg;
16326 Elf64_Internal_RegInfo reginfo;
16327
16328 ereg = (Elf64_External_RegInfo *) (option + 1);
16329 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
16330 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
16331 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
16332 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
16333 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
16334 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
16335
16336 printf ("GPR %08lx GP 0x",
16337 reginfo.ri_gprmask);
16338 printf_vma (reginfo.ri_gp_value);
16339 printf ("\n");
16340
16341 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
16342 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
16343 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
16344 }
16345 ++option;
16346 continue;
16347 case ODK_EXCEPTIONS:
16348 fputs (" EXCEPTIONS fpe_min(", stdout);
16349 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
16350 fputs (") fpe_max(", stdout);
16351 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
16352 fputs (")", stdout);
16353
16354 if (option->info & OEX_PAGE0)
16355 fputs (" PAGE0", stdout);
16356 if (option->info & OEX_SMM)
16357 fputs (" SMM", stdout);
16358 if (option->info & OEX_FPDBUG)
16359 fputs (" FPDBUG", stdout);
16360 if (option->info & OEX_DISMISS)
16361 fputs (" DISMISS", stdout);
16362 break;
16363 case ODK_PAD:
16364 fputs (" PAD ", stdout);
16365 if (option->info & OPAD_PREFIX)
16366 fputs (" PREFIX", stdout);
16367 if (option->info & OPAD_POSTFIX)
16368 fputs (" POSTFIX", stdout);
16369 if (option->info & OPAD_SYMBOL)
16370 fputs (" SYMBOL", stdout);
16371 break;
16372 case ODK_HWPATCH:
16373 fputs (" HWPATCH ", stdout);
16374 if (option->info & OHW_R4KEOP)
16375 fputs (" R4KEOP", stdout);
16376 if (option->info & OHW_R8KPFETCH)
16377 fputs (" R8KPFETCH", stdout);
16378 if (option->info & OHW_R5KEOP)
16379 fputs (" R5KEOP", stdout);
16380 if (option->info & OHW_R5KCVTL)
16381 fputs (" R5KCVTL", stdout);
16382 break;
16383 case ODK_FILL:
16384 fputs (" FILL ", stdout);
16385 /* XXX Print content of info word? */
16386 break;
16387 case ODK_TAGS:
16388 fputs (" TAGS ", stdout);
16389 /* XXX Print content of info word? */
16390 break;
16391 case ODK_HWAND:
16392 fputs (" HWAND ", stdout);
16393 if (option->info & OHWA0_R4KEOP_CHECKED)
16394 fputs (" R4KEOP_CHECKED", stdout);
16395 if (option->info & OHWA0_R4KEOP_CLEAN)
16396 fputs (" R4KEOP_CLEAN", stdout);
16397 break;
16398 case ODK_HWOR:
16399 fputs (" HWOR ", stdout);
16400 if (option->info & OHWA0_R4KEOP_CHECKED)
16401 fputs (" R4KEOP_CHECKED", stdout);
16402 if (option->info & OHWA0_R4KEOP_CLEAN)
16403 fputs (" R4KEOP_CLEAN", stdout);
16404 break;
16405 case ODK_GP_GROUP:
16406 printf (" GP_GROUP %#06lx self-contained %#06lx",
16407 option->info & OGP_GROUP,
16408 (option->info & OGP_SELF) >> 16);
16409 break;
16410 case ODK_IDENT:
16411 printf (" IDENT %#06lx self-contained %#06lx",
16412 option->info & OGP_GROUP,
16413 (option->info & OGP_SELF) >> 16);
16414 break;
16415 default:
16416 /* This shouldn't happen. */
16417 printf (" %3d ??? %d %lx",
16418 option->kind, option->section, option->info);
16419 break;
16420 }
16421
16422 len = sizeof (* eopt);
16423 while (len < option->size)
16424 {
16425 unsigned char datum = * ((unsigned char *) eopt + offset + len);
16426
16427 if (ISPRINT (datum))
16428 printf ("%c", datum);
16429 else
16430 printf ("\\%03o", datum);
16431 len ++;
16432 }
16433 fputs ("\n", stdout);
16434
16435 offset += option->size;
16436 ++option;
16437 }
16438
16439 free (eopt);
16440 }
16441 else
16442 res = FALSE;
16443 }
16444
16445 if (conflicts_offset != 0 && conflictsno != 0)
16446 {
16447 Elf32_Conflict * iconf;
16448 size_t cnt;
16449
16450 if (dynamic_symbols == NULL)
16451 {
16452 error (_("conflict list found without a dynamic symbol table\n"));
16453 return FALSE;
16454 }
16455
16456 /* PR 21345 - print a slightly more helpful error message
16457 if we are sure that the cmalloc will fail. */
16458 if (conflictsno * sizeof (* iconf) > filedata->file_size)
16459 {
16460 error (_("Overlarge number of conflicts detected: %lx\n"),
16461 (long) conflictsno);
16462 return FALSE;
16463 }
16464
16465 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
16466 if (iconf == NULL)
16467 {
16468 error (_("Out of memory allocating space for dynamic conflicts\n"));
16469 return FALSE;
16470 }
16471
16472 if (is_32bit_elf)
16473 {
16474 Elf32_External_Conflict * econf32;
16475
16476 econf32 = (Elf32_External_Conflict *)
16477 get_data (NULL, filedata, conflicts_offset, conflictsno,
16478 sizeof (* econf32), _("conflict"));
16479 if (!econf32)
16480 return FALSE;
16481
16482 for (cnt = 0; cnt < conflictsno; ++cnt)
16483 iconf[cnt] = BYTE_GET (econf32[cnt]);
16484
16485 free (econf32);
16486 }
16487 else
16488 {
16489 Elf64_External_Conflict * econf64;
16490
16491 econf64 = (Elf64_External_Conflict *)
16492 get_data (NULL, filedata, conflicts_offset, conflictsno,
16493 sizeof (* econf64), _("conflict"));
16494 if (!econf64)
16495 return FALSE;
16496
16497 for (cnt = 0; cnt < conflictsno; ++cnt)
16498 iconf[cnt] = BYTE_GET (econf64[cnt]);
16499
16500 free (econf64);
16501 }
16502
16503 printf (ngettext ("\nSection '.conflict' contains %lu entry:\n",
16504 "\nSection '.conflict' contains %lu entries:\n",
16505 (unsigned long) conflictsno),
16506 (unsigned long) conflictsno);
16507 puts (_(" Num: Index Value Name"));
16508
16509 for (cnt = 0; cnt < conflictsno; ++cnt)
16510 {
16511 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
16512
16513 if (iconf[cnt] >= num_dynamic_syms)
16514 printf (_("<corrupt symbol index>"));
16515 else
16516 {
16517 Elf_Internal_Sym * psym;
16518
16519 psym = & dynamic_symbols[iconf[cnt]];
16520 print_vma (psym->st_value, FULL_HEX);
16521 putchar (' ');
16522 if (VALID_DYNAMIC_NAME (psym->st_name))
16523 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
16524 else
16525 printf (_("<corrupt: %14ld>"), psym->st_name);
16526 }
16527 putchar ('\n');
16528 }
16529
16530 free (iconf);
16531 }
16532
16533 if (pltgot != 0 && local_gotno != 0)
16534 {
16535 bfd_vma ent, local_end, global_end;
16536 size_t i, offset;
16537 unsigned char * data;
16538 unsigned char * data_end;
16539 int addr_size;
16540
16541 ent = pltgot;
16542 addr_size = (is_32bit_elf ? 4 : 8);
16543 local_end = pltgot + local_gotno * addr_size;
16544
16545 /* PR binutils/17533 file: 012-111227-0.004 */
16546 if (symtabno < gotsym)
16547 {
16548 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
16549 (unsigned long) gotsym, (unsigned long) symtabno);
16550 return FALSE;
16551 }
16552
16553 global_end = local_end + (symtabno - gotsym) * addr_size;
16554 /* PR 17531: file: 54c91a34. */
16555 if (global_end < local_end)
16556 {
16557 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
16558 return FALSE;
16559 }
16560
16561 offset = offset_from_vma (filedata, pltgot, global_end - pltgot);
16562 data = (unsigned char *) get_data (NULL, filedata, offset,
16563 global_end - pltgot, 1,
16564 _("Global Offset Table data"));
16565 /* PR 12855: Null data is handled gracefully throughout. */
16566 data_end = data + (global_end - pltgot);
16567
16568 printf (_("\nPrimary GOT:\n"));
16569 printf (_(" Canonical gp value: "));
16570 print_vma (pltgot + 0x7ff0, LONG_HEX);
16571 printf ("\n\n");
16572
16573 printf (_(" Reserved entries:\n"));
16574 printf (_(" %*s %10s %*s Purpose\n"),
16575 addr_size * 2, _("Address"), _("Access"),
16576 addr_size * 2, _("Initial"));
16577 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16578 printf (_(" Lazy resolver\n"));
16579 if (ent == (bfd_vma) -1)
16580 goto got_print_fail;
16581
16582 /* Check for the MSB of GOT[1] being set, denoting a GNU object.
16583 This entry will be used by some runtime loaders, to store the
16584 module pointer. Otherwise this is an ordinary local entry.
16585 PR 21344: Check for the entry being fully available before
16586 fetching it. */
16587 if (data
16588 && data + ent - pltgot + addr_size <= data_end
16589 && (byte_get (data + ent - pltgot, addr_size)
16590 >> (addr_size * 8 - 1)) != 0)
16591 {
16592 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16593 printf (_(" Module pointer (GNU extension)\n"));
16594 if (ent == (bfd_vma) -1)
16595 goto got_print_fail;
16596 }
16597 printf ("\n");
16598
16599 if (data != NULL && ent < local_end)
16600 {
16601 printf (_(" Local entries:\n"));
16602 printf (" %*s %10s %*s\n",
16603 addr_size * 2, _("Address"), _("Access"),
16604 addr_size * 2, _("Initial"));
16605 while (ent < local_end)
16606 {
16607 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16608 printf ("\n");
16609 if (ent == (bfd_vma) -1)
16610 goto got_print_fail;
16611 }
16612 printf ("\n");
16613 }
16614
16615 if (data != NULL && gotsym < symtabno)
16616 {
16617 int sym_width;
16618
16619 printf (_(" Global entries:\n"));
16620 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
16621 addr_size * 2, _("Address"),
16622 _("Access"),
16623 addr_size * 2, _("Initial"),
16624 addr_size * 2, _("Sym.Val."),
16625 _("Type"),
16626 /* Note for translators: "Ndx" = abbreviated form of "Index". */
16627 _("Ndx"), _("Name"));
16628
16629 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
16630
16631 for (i = gotsym; i < symtabno; i++)
16632 {
16633 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16634 printf (" ");
16635
16636 if (dynamic_symbols == NULL)
16637 printf (_("<no dynamic symbols>"));
16638 else if (i < num_dynamic_syms)
16639 {
16640 Elf_Internal_Sym * psym = dynamic_symbols + i;
16641
16642 print_vma (psym->st_value, LONG_HEX);
16643 printf (" %-7s %3s ",
16644 get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)),
16645 get_symbol_index_type (filedata, psym->st_shndx));
16646
16647 if (VALID_DYNAMIC_NAME (psym->st_name))
16648 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
16649 else
16650 printf (_("<corrupt: %14ld>"), psym->st_name);
16651 }
16652 else
16653 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
16654 (unsigned long) i);
16655
16656 printf ("\n");
16657 if (ent == (bfd_vma) -1)
16658 break;
16659 }
16660 printf ("\n");
16661 }
16662
16663 got_print_fail:
16664 if (data)
16665 free (data);
16666 }
16667
16668 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
16669 {
16670 bfd_vma ent, end;
16671 size_t offset, rel_offset;
16672 unsigned long count, i;
16673 unsigned char * data;
16674 int addr_size, sym_width;
16675 Elf_Internal_Rela * rels;
16676
16677 rel_offset = offset_from_vma (filedata, jmprel, pltrelsz);
16678 if (pltrel == DT_RELA)
16679 {
16680 if (!slurp_rela_relocs (filedata, rel_offset, pltrelsz, &rels, &count))
16681 return FALSE;
16682 }
16683 else
16684 {
16685 if (!slurp_rel_relocs (filedata, rel_offset, pltrelsz, &rels, &count))
16686 return FALSE;
16687 }
16688
16689 ent = mips_pltgot;
16690 addr_size = (is_32bit_elf ? 4 : 8);
16691 end = mips_pltgot + (2 + count) * addr_size;
16692
16693 offset = offset_from_vma (filedata, mips_pltgot, end - mips_pltgot);
16694 data = (unsigned char *) get_data (NULL, filedata, offset, end - mips_pltgot,
16695 1, _("Procedure Linkage Table data"));
16696 if (data == NULL)
16697 return FALSE;
16698
16699 printf ("\nPLT GOT:\n\n");
16700 printf (_(" Reserved entries:\n"));
16701 printf (_(" %*s %*s Purpose\n"),
16702 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
16703 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
16704 printf (_(" PLT lazy resolver\n"));
16705 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
16706 printf (_(" Module pointer\n"));
16707 printf ("\n");
16708
16709 printf (_(" Entries:\n"));
16710 printf (" %*s %*s %*s %-7s %3s %s\n",
16711 addr_size * 2, _("Address"),
16712 addr_size * 2, _("Initial"),
16713 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
16714 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
16715 for (i = 0; i < count; i++)
16716 {
16717 unsigned long idx = get_reloc_symindex (rels[i].r_info);
16718
16719 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
16720 printf (" ");
16721
16722 if (idx >= num_dynamic_syms)
16723 printf (_("<corrupt symbol index: %lu>"), idx);
16724 else
16725 {
16726 Elf_Internal_Sym * psym = dynamic_symbols + idx;
16727
16728 print_vma (psym->st_value, LONG_HEX);
16729 printf (" %-7s %3s ",
16730 get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)),
16731 get_symbol_index_type (filedata, psym->st_shndx));
16732 if (VALID_DYNAMIC_NAME (psym->st_name))
16733 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
16734 else
16735 printf (_("<corrupt: %14ld>"), psym->st_name);
16736 }
16737 printf ("\n");
16738 }
16739 printf ("\n");
16740
16741 if (data)
16742 free (data);
16743 free (rels);
16744 }
16745
16746 return res;
16747 }
16748
16749 static bfd_boolean
16750 process_nds32_specific (Filedata * filedata)
16751 {
16752 Elf_Internal_Shdr *sect = NULL;
16753
16754 sect = find_section (filedata, ".nds32_e_flags");
16755 if (sect != NULL)
16756 {
16757 unsigned int *flag;
16758
16759 printf ("\nNDS32 elf flags section:\n");
16760 flag = get_data (NULL, filedata, sect->sh_offset, 1,
16761 sect->sh_size, _("NDS32 elf flags section"));
16762
16763 if (! flag)
16764 return FALSE;
16765
16766 switch ((*flag) & 0x3)
16767 {
16768 case 0:
16769 printf ("(VEC_SIZE):\tNo entry.\n");
16770 break;
16771 case 1:
16772 printf ("(VEC_SIZE):\t4 bytes\n");
16773 break;
16774 case 2:
16775 printf ("(VEC_SIZE):\t16 bytes\n");
16776 break;
16777 case 3:
16778 printf ("(VEC_SIZE):\treserved\n");
16779 break;
16780 }
16781 }
16782
16783 return TRUE;
16784 }
16785
16786 static bfd_boolean
16787 process_gnu_liblist (Filedata * filedata)
16788 {
16789 Elf_Internal_Shdr * section;
16790 Elf_Internal_Shdr * string_sec;
16791 Elf32_External_Lib * elib;
16792 char * strtab;
16793 size_t strtab_size;
16794 size_t cnt;
16795 unsigned long num_liblist;
16796 unsigned i;
16797 bfd_boolean res = TRUE;
16798
16799 if (! do_arch)
16800 return TRUE;
16801
16802 for (i = 0, section = filedata->section_headers;
16803 i < filedata->file_header.e_shnum;
16804 i++, section++)
16805 {
16806 switch (section->sh_type)
16807 {
16808 case SHT_GNU_LIBLIST:
16809 if (section->sh_link >= filedata->file_header.e_shnum)
16810 break;
16811
16812 elib = (Elf32_External_Lib *)
16813 get_data (NULL, filedata, section->sh_offset, 1, section->sh_size,
16814 _("liblist section data"));
16815
16816 if (elib == NULL)
16817 {
16818 res = FALSE;
16819 break;
16820 }
16821
16822 string_sec = filedata->section_headers + section->sh_link;
16823 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1,
16824 string_sec->sh_size,
16825 _("liblist string table"));
16826 if (strtab == NULL
16827 || section->sh_entsize != sizeof (Elf32_External_Lib))
16828 {
16829 free (elib);
16830 free (strtab);
16831 res = FALSE;
16832 break;
16833 }
16834 strtab_size = string_sec->sh_size;
16835
16836 num_liblist = section->sh_size / sizeof (Elf32_External_Lib);
16837 printf (ngettext ("\nLibrary list section '%s' contains %lu entries:\n",
16838 "\nLibrary list section '%s' contains %lu entries:\n",
16839 num_liblist),
16840 printable_section_name (filedata, section),
16841 num_liblist);
16842
16843 puts (_(" Library Time Stamp Checksum Version Flags"));
16844
16845 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
16846 ++cnt)
16847 {
16848 Elf32_Lib liblist;
16849 time_t atime;
16850 char timebuf[128];
16851 struct tm * tmp;
16852
16853 liblist.l_name = BYTE_GET (elib[cnt].l_name);
16854 atime = BYTE_GET (elib[cnt].l_time_stamp);
16855 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
16856 liblist.l_version = BYTE_GET (elib[cnt].l_version);
16857 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
16858
16859 tmp = gmtime (&atime);
16860 snprintf (timebuf, sizeof (timebuf),
16861 "%04u-%02u-%02uT%02u:%02u:%02u",
16862 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
16863 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
16864
16865 printf ("%3lu: ", (unsigned long) cnt);
16866 if (do_wide)
16867 printf ("%-20s", liblist.l_name < strtab_size
16868 ? strtab + liblist.l_name : _("<corrupt>"));
16869 else
16870 printf ("%-20.20s", liblist.l_name < strtab_size
16871 ? strtab + liblist.l_name : _("<corrupt>"));
16872 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
16873 liblist.l_version, liblist.l_flags);
16874 }
16875
16876 free (elib);
16877 free (strtab);
16878 }
16879 }
16880
16881 return res;
16882 }
16883
16884 static const char *
16885 get_note_type (Filedata * filedata, unsigned e_type)
16886 {
16887 static char buff[64];
16888
16889 if (filedata->file_header.e_type == ET_CORE)
16890 switch (e_type)
16891 {
16892 case NT_AUXV:
16893 return _("NT_AUXV (auxiliary vector)");
16894 case NT_PRSTATUS:
16895 return _("NT_PRSTATUS (prstatus structure)");
16896 case NT_FPREGSET:
16897 return _("NT_FPREGSET (floating point registers)");
16898 case NT_PRPSINFO:
16899 return _("NT_PRPSINFO (prpsinfo structure)");
16900 case NT_TASKSTRUCT:
16901 return _("NT_TASKSTRUCT (task structure)");
16902 case NT_PRXFPREG:
16903 return _("NT_PRXFPREG (user_xfpregs structure)");
16904 case NT_PPC_VMX:
16905 return _("NT_PPC_VMX (ppc Altivec registers)");
16906 case NT_PPC_VSX:
16907 return _("NT_PPC_VSX (ppc VSX registers)");
16908 case NT_PPC_TAR:
16909 return _("NT_PPC_TAR (ppc TAR register)");
16910 case NT_PPC_PPR:
16911 return _("NT_PPC_PPR (ppc PPR register)");
16912 case NT_PPC_DSCR:
16913 return _("NT_PPC_DSCR (ppc DSCR register)");
16914 case NT_PPC_EBB:
16915 return _("NT_PPC_EBB (ppc EBB registers)");
16916 case NT_PPC_PMU:
16917 return _("NT_PPC_PMU (ppc PMU registers)");
16918 case NT_PPC_TM_CGPR:
16919 return _("NT_PPC_TM_CGPR (ppc checkpointed GPR registers)");
16920 case NT_PPC_TM_CFPR:
16921 return _("NT_PPC_TM_CFPR (ppc checkpointed floating point registers)");
16922 case NT_PPC_TM_CVMX:
16923 return _("NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)");
16924 case NT_PPC_TM_CVSX:
16925 return _("NT_PPC_TM_CVSX (ppc checkpointed VSX registers)");
16926 case NT_PPC_TM_SPR:
16927 return _("NT_PPC_TM_SPR (ppc TM special purpose registers)");
16928 case NT_PPC_TM_CTAR:
16929 return _("NT_PPC_TM_CTAR (ppc checkpointed TAR register)");
16930 case NT_PPC_TM_CPPR:
16931 return _("NT_PPC_TM_CPPR (ppc checkpointed PPR register)");
16932 case NT_PPC_TM_CDSCR:
16933 return _("NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)");
16934 case NT_386_TLS:
16935 return _("NT_386_TLS (x86 TLS information)");
16936 case NT_386_IOPERM:
16937 return _("NT_386_IOPERM (x86 I/O permissions)");
16938 case NT_X86_XSTATE:
16939 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
16940 case NT_S390_HIGH_GPRS:
16941 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
16942 case NT_S390_TIMER:
16943 return _("NT_S390_TIMER (s390 timer register)");
16944 case NT_S390_TODCMP:
16945 return _("NT_S390_TODCMP (s390 TOD comparator register)");
16946 case NT_S390_TODPREG:
16947 return _("NT_S390_TODPREG (s390 TOD programmable register)");
16948 case NT_S390_CTRS:
16949 return _("NT_S390_CTRS (s390 control registers)");
16950 case NT_S390_PREFIX:
16951 return _("NT_S390_PREFIX (s390 prefix register)");
16952 case NT_S390_LAST_BREAK:
16953 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
16954 case NT_S390_SYSTEM_CALL:
16955 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
16956 case NT_S390_TDB:
16957 return _("NT_S390_TDB (s390 transaction diagnostic block)");
16958 case NT_S390_VXRS_LOW:
16959 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
16960 case NT_S390_VXRS_HIGH:
16961 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
16962 case NT_S390_GS_CB:
16963 return _("NT_S390_GS_CB (s390 guarded-storage registers)");
16964 case NT_S390_GS_BC:
16965 return _("NT_S390_GS_BC (s390 guarded-storage broadcast control)");
16966 case NT_ARM_VFP:
16967 return _("NT_ARM_VFP (arm VFP registers)");
16968 case NT_ARM_TLS:
16969 return _("NT_ARM_TLS (AArch TLS registers)");
16970 case NT_ARM_HW_BREAK:
16971 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
16972 case NT_ARM_HW_WATCH:
16973 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
16974 case NT_PSTATUS:
16975 return _("NT_PSTATUS (pstatus structure)");
16976 case NT_FPREGS:
16977 return _("NT_FPREGS (floating point registers)");
16978 case NT_PSINFO:
16979 return _("NT_PSINFO (psinfo structure)");
16980 case NT_LWPSTATUS:
16981 return _("NT_LWPSTATUS (lwpstatus_t structure)");
16982 case NT_LWPSINFO:
16983 return _("NT_LWPSINFO (lwpsinfo_t structure)");
16984 case NT_WIN32PSTATUS:
16985 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
16986 case NT_SIGINFO:
16987 return _("NT_SIGINFO (siginfo_t data)");
16988 case NT_FILE:
16989 return _("NT_FILE (mapped files)");
16990 default:
16991 break;
16992 }
16993 else
16994 switch (e_type)
16995 {
16996 case NT_VERSION:
16997 return _("NT_VERSION (version)");
16998 case NT_ARCH:
16999 return _("NT_ARCH (architecture)");
17000 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
17001 return _("OPEN");
17002 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
17003 return _("func");
17004 default:
17005 break;
17006 }
17007
17008 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17009 return buff;
17010 }
17011
17012 static bfd_boolean
17013 print_core_note (Elf_Internal_Note *pnote)
17014 {
17015 unsigned int addr_size = is_32bit_elf ? 4 : 8;
17016 bfd_vma count, page_size;
17017 unsigned char *descdata, *filenames, *descend;
17018
17019 if (pnote->type != NT_FILE)
17020 {
17021 if (do_wide)
17022 printf ("\n");
17023 return TRUE;
17024 }
17025
17026 #ifndef BFD64
17027 if (!is_32bit_elf)
17028 {
17029 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
17030 /* Still "successful". */
17031 return TRUE;
17032 }
17033 #endif
17034
17035 if (pnote->descsz < 2 * addr_size)
17036 {
17037 error (_(" Malformed note - too short for header\n"));
17038 return FALSE;
17039 }
17040
17041 descdata = (unsigned char *) pnote->descdata;
17042 descend = descdata + pnote->descsz;
17043
17044 if (descdata[pnote->descsz - 1] != '\0')
17045 {
17046 error (_(" Malformed note - does not end with \\0\n"));
17047 return FALSE;
17048 }
17049
17050 count = byte_get (descdata, addr_size);
17051 descdata += addr_size;
17052
17053 page_size = byte_get (descdata, addr_size);
17054 descdata += addr_size;
17055
17056 if (count > ((bfd_vma) -1 - 2 * addr_size) / (3 * addr_size)
17057 || pnote->descsz < 2 * addr_size + count * 3 * addr_size)
17058 {
17059 error (_(" Malformed note - too short for supplied file count\n"));
17060 return FALSE;
17061 }
17062
17063 printf (_(" Page size: "));
17064 print_vma (page_size, DEC);
17065 printf ("\n");
17066
17067 printf (_(" %*s%*s%*s\n"),
17068 (int) (2 + 2 * addr_size), _("Start"),
17069 (int) (4 + 2 * addr_size), _("End"),
17070 (int) (4 + 2 * addr_size), _("Page Offset"));
17071 filenames = descdata + count * 3 * addr_size;
17072 while (count-- > 0)
17073 {
17074 bfd_vma start, end, file_ofs;
17075
17076 if (filenames == descend)
17077 {
17078 error (_(" Malformed note - filenames end too early\n"));
17079 return FALSE;
17080 }
17081
17082 start = byte_get (descdata, addr_size);
17083 descdata += addr_size;
17084 end = byte_get (descdata, addr_size);
17085 descdata += addr_size;
17086 file_ofs = byte_get (descdata, addr_size);
17087 descdata += addr_size;
17088
17089 printf (" ");
17090 print_vma (start, FULL_HEX);
17091 printf (" ");
17092 print_vma (end, FULL_HEX);
17093 printf (" ");
17094 print_vma (file_ofs, FULL_HEX);
17095 printf ("\n %s\n", filenames);
17096
17097 filenames += 1 + strlen ((char *) filenames);
17098 }
17099
17100 return TRUE;
17101 }
17102
17103 static const char *
17104 get_gnu_elf_note_type (unsigned e_type)
17105 {
17106 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
17107 switch (e_type)
17108 {
17109 case NT_GNU_ABI_TAG:
17110 return _("NT_GNU_ABI_TAG (ABI version tag)");
17111 case NT_GNU_HWCAP:
17112 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
17113 case NT_GNU_BUILD_ID:
17114 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
17115 case NT_GNU_GOLD_VERSION:
17116 return _("NT_GNU_GOLD_VERSION (gold version)");
17117 case NT_GNU_PROPERTY_TYPE_0:
17118 return _("NT_GNU_PROPERTY_TYPE_0");
17119 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
17120 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
17121 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
17122 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
17123 default:
17124 {
17125 static char buff[64];
17126
17127 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17128 return buff;
17129 }
17130 }
17131 }
17132
17133 static void
17134 decode_x86_compat_isa (unsigned int bitmask)
17135 {
17136 while (bitmask)
17137 {
17138 unsigned int bit = bitmask & (- bitmask);
17139
17140 bitmask &= ~ bit;
17141 switch (bit)
17142 {
17143 case GNU_PROPERTY_X86_COMPAT_ISA_1_486:
17144 printf ("i486");
17145 break;
17146 case GNU_PROPERTY_X86_COMPAT_ISA_1_586:
17147 printf ("586");
17148 break;
17149 case GNU_PROPERTY_X86_COMPAT_ISA_1_686:
17150 printf ("686");
17151 break;
17152 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE:
17153 printf ("SSE");
17154 break;
17155 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE2:
17156 printf ("SSE2");
17157 break;
17158 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE3:
17159 printf ("SSE3");
17160 break;
17161 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSSE3:
17162 printf ("SSSE3");
17163 break;
17164 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_1:
17165 printf ("SSE4_1");
17166 break;
17167 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_2:
17168 printf ("SSE4_2");
17169 break;
17170 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX:
17171 printf ("AVX");
17172 break;
17173 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX2:
17174 printf ("AVX2");
17175 break;
17176 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512F:
17177 printf ("AVX512F");
17178 break;
17179 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512CD:
17180 printf ("AVX512CD");
17181 break;
17182 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512ER:
17183 printf ("AVX512ER");
17184 break;
17185 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512PF:
17186 printf ("AVX512PF");
17187 break;
17188 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512VL:
17189 printf ("AVX512VL");
17190 break;
17191 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512DQ:
17192 printf ("AVX512DQ");
17193 break;
17194 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512BW:
17195 printf ("AVX512BW");
17196 break;
17197 default:
17198 printf (_("<unknown: %x>"), bit);
17199 break;
17200 }
17201 if (bitmask)
17202 printf (", ");
17203 }
17204 }
17205
17206 static void
17207 decode_x86_isa (unsigned int bitmask)
17208 {
17209 if (!bitmask)
17210 {
17211 printf (_("<None>"));
17212 return;
17213 }
17214
17215 while (bitmask)
17216 {
17217 unsigned int bit = bitmask & (- bitmask);
17218
17219 bitmask &= ~ bit;
17220 switch (bit)
17221 {
17222 case GNU_PROPERTY_X86_ISA_1_CMOV:
17223 printf ("CMOV");
17224 break;
17225 case GNU_PROPERTY_X86_ISA_1_SSE:
17226 printf ("SSE");
17227 break;
17228 case GNU_PROPERTY_X86_ISA_1_SSE2:
17229 printf ("SSE2");
17230 break;
17231 case GNU_PROPERTY_X86_ISA_1_SSE3:
17232 printf ("SSE3");
17233 break;
17234 case GNU_PROPERTY_X86_ISA_1_SSSE3:
17235 printf ("SSSE3");
17236 break;
17237 case GNU_PROPERTY_X86_ISA_1_SSE4_1:
17238 printf ("SSE4_1");
17239 break;
17240 case GNU_PROPERTY_X86_ISA_1_SSE4_2:
17241 printf ("SSE4_2");
17242 break;
17243 case GNU_PROPERTY_X86_ISA_1_AVX:
17244 printf ("AVX");
17245 break;
17246 case GNU_PROPERTY_X86_ISA_1_AVX2:
17247 printf ("AVX2");
17248 break;
17249 case GNU_PROPERTY_X86_ISA_1_FMA:
17250 printf ("FMA");
17251 break;
17252 case GNU_PROPERTY_X86_ISA_1_AVX512F:
17253 printf ("AVX512F");
17254 break;
17255 case GNU_PROPERTY_X86_ISA_1_AVX512CD:
17256 printf ("AVX512CD");
17257 break;
17258 case GNU_PROPERTY_X86_ISA_1_AVX512ER:
17259 printf ("AVX512ER");
17260 break;
17261 case GNU_PROPERTY_X86_ISA_1_AVX512PF:
17262 printf ("AVX512PF");
17263 break;
17264 case GNU_PROPERTY_X86_ISA_1_AVX512VL:
17265 printf ("AVX512VL");
17266 break;
17267 case GNU_PROPERTY_X86_ISA_1_AVX512DQ:
17268 printf ("AVX512DQ");
17269 break;
17270 case GNU_PROPERTY_X86_ISA_1_AVX512BW:
17271 printf ("AVX512BW");
17272 break;
17273 case GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS:
17274 printf ("AVX512_4FMAPS");
17275 break;
17276 case GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW:
17277 printf ("AVX512_4VNNIW");
17278 break;
17279 case GNU_PROPERTY_X86_ISA_1_AVX512_BITALG:
17280 printf ("AVX512_BITALG");
17281 break;
17282 case GNU_PROPERTY_X86_ISA_1_AVX512_IFMA:
17283 printf ("AVX512_IFMA");
17284 break;
17285 case GNU_PROPERTY_X86_ISA_1_AVX512_VBMI:
17286 printf ("AVX512_VBMI");
17287 break;
17288 case GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2:
17289 printf ("AVX512_VBMI2");
17290 break;
17291 case GNU_PROPERTY_X86_ISA_1_AVX512_VNNI:
17292 printf ("AVX512_VNNI");
17293 break;
17294 case GNU_PROPERTY_X86_ISA_1_AVX512_BF16:
17295 printf ("AVX512_BF16");
17296 break;
17297 default:
17298 printf (_("<unknown: %x>"), bit);
17299 break;
17300 }
17301 if (bitmask)
17302 printf (", ");
17303 }
17304 }
17305
17306 static void
17307 decode_x86_feature_1 (unsigned int bitmask)
17308 {
17309 if (!bitmask)
17310 {
17311 printf (_("<None>"));
17312 return;
17313 }
17314
17315 while (bitmask)
17316 {
17317 unsigned int bit = bitmask & (- bitmask);
17318
17319 bitmask &= ~ bit;
17320 switch (bit)
17321 {
17322 case GNU_PROPERTY_X86_FEATURE_1_IBT:
17323 printf ("IBT");
17324 break;
17325 case GNU_PROPERTY_X86_FEATURE_1_SHSTK:
17326 printf ("SHSTK");
17327 break;
17328 default:
17329 printf (_("<unknown: %x>"), bit);
17330 break;
17331 }
17332 if (bitmask)
17333 printf (", ");
17334 }
17335 }
17336
17337 static void
17338 decode_x86_feature_2 (unsigned int bitmask)
17339 {
17340 if (!bitmask)
17341 {
17342 printf (_("<None>"));
17343 return;
17344 }
17345
17346 while (bitmask)
17347 {
17348 unsigned int bit = bitmask & (- bitmask);
17349
17350 bitmask &= ~ bit;
17351 switch (bit)
17352 {
17353 case GNU_PROPERTY_X86_FEATURE_2_X86:
17354 printf ("x86");
17355 break;
17356 case GNU_PROPERTY_X86_FEATURE_2_X87:
17357 printf ("x87");
17358 break;
17359 case GNU_PROPERTY_X86_FEATURE_2_MMX:
17360 printf ("MMX");
17361 break;
17362 case GNU_PROPERTY_X86_FEATURE_2_XMM:
17363 printf ("XMM");
17364 break;
17365 case GNU_PROPERTY_X86_FEATURE_2_YMM:
17366 printf ("YMM");
17367 break;
17368 case GNU_PROPERTY_X86_FEATURE_2_ZMM:
17369 printf ("ZMM");
17370 break;
17371 case GNU_PROPERTY_X86_FEATURE_2_FXSR:
17372 printf ("FXSR");
17373 break;
17374 case GNU_PROPERTY_X86_FEATURE_2_XSAVE:
17375 printf ("XSAVE");
17376 break;
17377 case GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT:
17378 printf ("XSAVEOPT");
17379 break;
17380 case GNU_PROPERTY_X86_FEATURE_2_XSAVEC:
17381 printf ("XSAVEC");
17382 break;
17383 default:
17384 printf (_("<unknown: %x>"), bit);
17385 break;
17386 }
17387 if (bitmask)
17388 printf (", ");
17389 }
17390 }
17391
17392 static void
17393 decode_aarch64_feature_1_and (unsigned int bitmask)
17394 {
17395 while (bitmask)
17396 {
17397 unsigned int bit = bitmask & (- bitmask);
17398
17399 bitmask &= ~ bit;
17400 switch (bit)
17401 {
17402 case GNU_PROPERTY_AARCH64_FEATURE_1_BTI:
17403 printf ("BTI");
17404 break;
17405
17406 case GNU_PROPERTY_AARCH64_FEATURE_1_PAC:
17407 printf ("PAC");
17408 break;
17409
17410 default:
17411 printf (_("<unknown: %x>"), bit);
17412 break;
17413 }
17414 if (bitmask)
17415 printf (", ");
17416 }
17417 }
17418
17419 static void
17420 print_gnu_property_note (Filedata * filedata, Elf_Internal_Note * pnote)
17421 {
17422 unsigned char * ptr = (unsigned char *) pnote->descdata;
17423 unsigned char * ptr_end = ptr + pnote->descsz;
17424 unsigned int size = is_32bit_elf ? 4 : 8;
17425
17426 printf (_(" Properties: "));
17427
17428 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
17429 {
17430 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
17431 return;
17432 }
17433
17434 while (ptr < ptr_end)
17435 {
17436 unsigned int j;
17437 unsigned int type;
17438 unsigned int datasz;
17439
17440 if ((size_t) (ptr_end - ptr) < 8)
17441 {
17442 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
17443 break;
17444 }
17445
17446 type = byte_get (ptr, 4);
17447 datasz = byte_get (ptr + 4, 4);
17448
17449 ptr += 8;
17450
17451 if (datasz > (size_t) (ptr_end - ptr))
17452 {
17453 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
17454 type, datasz);
17455 break;
17456 }
17457
17458 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
17459 {
17460 if (filedata->file_header.e_machine == EM_X86_64
17461 || filedata->file_header.e_machine == EM_IAMCU
17462 || filedata->file_header.e_machine == EM_386)
17463 {
17464 unsigned int bitmask;
17465
17466 if (datasz == 4)
17467 bitmask = byte_get (ptr, 4);
17468 else
17469 bitmask = 0;
17470
17471 switch (type)
17472 {
17473 case GNU_PROPERTY_X86_ISA_1_USED:
17474 if (datasz != 4)
17475 printf (_("x86 ISA used: <corrupt length: %#x> "),
17476 datasz);
17477 else
17478 {
17479 printf ("x86 ISA used: ");
17480 decode_x86_isa (bitmask);
17481 }
17482 goto next;
17483
17484 case GNU_PROPERTY_X86_ISA_1_NEEDED:
17485 if (datasz != 4)
17486 printf (_("x86 ISA needed: <corrupt length: %#x> "),
17487 datasz);
17488 else
17489 {
17490 printf ("x86 ISA needed: ");
17491 decode_x86_isa (bitmask);
17492 }
17493 goto next;
17494
17495 case GNU_PROPERTY_X86_FEATURE_1_AND:
17496 if (datasz != 4)
17497 printf (_("x86 feature: <corrupt length: %#x> "),
17498 datasz);
17499 else
17500 {
17501 printf ("x86 feature: ");
17502 decode_x86_feature_1 (bitmask);
17503 }
17504 goto next;
17505
17506 case GNU_PROPERTY_X86_FEATURE_2_USED:
17507 if (datasz != 4)
17508 printf (_("x86 feature used: <corrupt length: %#x> "),
17509 datasz);
17510 else
17511 {
17512 printf ("x86 feature used: ");
17513 decode_x86_feature_2 (bitmask);
17514 }
17515 goto next;
17516
17517 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
17518 if (datasz != 4)
17519 printf (_("x86 feature needed: <corrupt length: %#x> "), datasz);
17520 else
17521 {
17522 printf ("x86 feature needed: ");
17523 decode_x86_feature_2 (bitmask);
17524 }
17525 goto next;
17526
17527 case GNU_PROPERTY_X86_COMPAT_ISA_1_USED:
17528 if (datasz != 4)
17529 printf (_("x86 ISA used: <corrupt length: %#x> "),
17530 datasz);
17531 else
17532 {
17533 printf ("x86 ISA used: ");
17534 decode_x86_compat_isa (bitmask);
17535 }
17536 goto next;
17537
17538 case GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED:
17539 if (datasz != 4)
17540 printf (_("x86 ISA needed: <corrupt length: %#x> "),
17541 datasz);
17542 else
17543 {
17544 printf ("x86 ISA needed: ");
17545 decode_x86_compat_isa (bitmask);
17546 }
17547 goto next;
17548
17549 default:
17550 break;
17551 }
17552 }
17553 else if (filedata->file_header.e_machine == EM_AARCH64)
17554 {
17555 if (type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
17556 {
17557 printf ("AArch64 feature: ");
17558 if (datasz != 4)
17559 printf (_("<corrupt length: %#x> "), datasz);
17560 else
17561 decode_aarch64_feature_1_and (byte_get (ptr, 4));
17562 goto next;
17563 }
17564 }
17565 }
17566 else
17567 {
17568 switch (type)
17569 {
17570 case GNU_PROPERTY_STACK_SIZE:
17571 printf (_("stack size: "));
17572 if (datasz != size)
17573 printf (_("<corrupt length: %#x> "), datasz);
17574 else
17575 printf ("%#lx", (unsigned long) byte_get (ptr, size));
17576 goto next;
17577
17578 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
17579 printf ("no copy on protected ");
17580 if (datasz)
17581 printf (_("<corrupt length: %#x> "), datasz);
17582 goto next;
17583
17584 default:
17585 break;
17586 }
17587 }
17588
17589 if (type < GNU_PROPERTY_LOPROC)
17590 printf (_("<unknown type %#x data: "), type);
17591 else if (type < GNU_PROPERTY_LOUSER)
17592 printf (_("<procesor-specific type %#x data: "), type);
17593 else
17594 printf (_("<application-specific type %#x data: "), type);
17595 for (j = 0; j < datasz; ++j)
17596 printf ("%02x ", ptr[j] & 0xff);
17597 printf (">");
17598
17599 next:
17600 ptr += ((datasz + (size - 1)) & ~ (size - 1));
17601 if (ptr == ptr_end)
17602 break;
17603
17604 if (do_wide)
17605 printf (", ");
17606 else
17607 printf ("\n\t");
17608 }
17609
17610 printf ("\n");
17611 }
17612
17613 static bfd_boolean
17614 print_gnu_note (Filedata * filedata, Elf_Internal_Note *pnote)
17615 {
17616 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
17617 switch (pnote->type)
17618 {
17619 case NT_GNU_BUILD_ID:
17620 {
17621 unsigned long i;
17622
17623 printf (_(" Build ID: "));
17624 for (i = 0; i < pnote->descsz; ++i)
17625 printf ("%02x", pnote->descdata[i] & 0xff);
17626 printf ("\n");
17627 }
17628 break;
17629
17630 case NT_GNU_ABI_TAG:
17631 {
17632 unsigned long os, major, minor, subminor;
17633 const char *osname;
17634
17635 /* PR 17531: file: 030-599401-0.004. */
17636 if (pnote->descsz < 16)
17637 {
17638 printf (_(" <corrupt GNU_ABI_TAG>\n"));
17639 break;
17640 }
17641
17642 os = byte_get ((unsigned char *) pnote->descdata, 4);
17643 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
17644 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
17645 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
17646
17647 switch (os)
17648 {
17649 case GNU_ABI_TAG_LINUX:
17650 osname = "Linux";
17651 break;
17652 case GNU_ABI_TAG_HURD:
17653 osname = "Hurd";
17654 break;
17655 case GNU_ABI_TAG_SOLARIS:
17656 osname = "Solaris";
17657 break;
17658 case GNU_ABI_TAG_FREEBSD:
17659 osname = "FreeBSD";
17660 break;
17661 case GNU_ABI_TAG_NETBSD:
17662 osname = "NetBSD";
17663 break;
17664 case GNU_ABI_TAG_SYLLABLE:
17665 osname = "Syllable";
17666 break;
17667 case GNU_ABI_TAG_NACL:
17668 osname = "NaCl";
17669 break;
17670 default:
17671 osname = "Unknown";
17672 break;
17673 }
17674
17675 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
17676 major, minor, subminor);
17677 }
17678 break;
17679
17680 case NT_GNU_GOLD_VERSION:
17681 {
17682 unsigned long i;
17683
17684 printf (_(" Version: "));
17685 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
17686 printf ("%c", pnote->descdata[i]);
17687 printf ("\n");
17688 }
17689 break;
17690
17691 case NT_GNU_HWCAP:
17692 {
17693 unsigned long num_entries, mask;
17694
17695 /* Hardware capabilities information. Word 0 is the number of entries.
17696 Word 1 is a bitmask of enabled entries. The rest of the descriptor
17697 is a series of entries, where each entry is a single byte followed
17698 by a nul terminated string. The byte gives the bit number to test
17699 if enabled in the bitmask. */
17700 printf (_(" Hardware Capabilities: "));
17701 if (pnote->descsz < 8)
17702 {
17703 error (_("<corrupt GNU_HWCAP>\n"));
17704 return FALSE;
17705 }
17706 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
17707 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
17708 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
17709 /* FIXME: Add code to display the entries... */
17710 }
17711 break;
17712
17713 case NT_GNU_PROPERTY_TYPE_0:
17714 print_gnu_property_note (filedata, pnote);
17715 break;
17716
17717 default:
17718 /* Handle unrecognised types. An error message should have already been
17719 created by get_gnu_elf_note_type(), so all that we need to do is to
17720 display the data. */
17721 {
17722 unsigned long i;
17723
17724 printf (_(" Description data: "));
17725 for (i = 0; i < pnote->descsz; ++i)
17726 printf ("%02x ", pnote->descdata[i] & 0xff);
17727 printf ("\n");
17728 }
17729 break;
17730 }
17731
17732 return TRUE;
17733 }
17734
17735 static const char *
17736 get_v850_elf_note_type (enum v850_notes n_type)
17737 {
17738 static char buff[64];
17739
17740 switch (n_type)
17741 {
17742 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
17743 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
17744 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
17745 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
17746 case V850_NOTE_CACHE_INFO: return _("Use of cache");
17747 case V850_NOTE_MMU_INFO: return _("Use of MMU");
17748 default:
17749 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
17750 return buff;
17751 }
17752 }
17753
17754 static bfd_boolean
17755 print_v850_note (Elf_Internal_Note * pnote)
17756 {
17757 unsigned int val;
17758
17759 if (pnote->descsz != 4)
17760 return FALSE;
17761
17762 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
17763
17764 if (val == 0)
17765 {
17766 printf (_("not set\n"));
17767 return TRUE;
17768 }
17769
17770 switch (pnote->type)
17771 {
17772 case V850_NOTE_ALIGNMENT:
17773 switch (val)
17774 {
17775 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
17776 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
17777 }
17778 break;
17779
17780 case V850_NOTE_DATA_SIZE:
17781 switch (val)
17782 {
17783 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
17784 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
17785 }
17786 break;
17787
17788 case V850_NOTE_FPU_INFO:
17789 switch (val)
17790 {
17791 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
17792 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
17793 }
17794 break;
17795
17796 case V850_NOTE_MMU_INFO:
17797 case V850_NOTE_CACHE_INFO:
17798 case V850_NOTE_SIMD_INFO:
17799 if (val == EF_RH850_SIMD)
17800 {
17801 printf (_("yes\n"));
17802 return TRUE;
17803 }
17804 break;
17805
17806 default:
17807 /* An 'unknown note type' message will already have been displayed. */
17808 break;
17809 }
17810
17811 printf (_("unknown value: %x\n"), val);
17812 return FALSE;
17813 }
17814
17815 static bfd_boolean
17816 process_netbsd_elf_note (Elf_Internal_Note * pnote)
17817 {
17818 unsigned int version;
17819
17820 switch (pnote->type)
17821 {
17822 case NT_NETBSD_IDENT:
17823 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
17824 if ((version / 10000) % 100)
17825 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
17826 version, version / 100000000, (version / 1000000) % 100,
17827 (version / 10000) % 100 > 26 ? "Z" : "",
17828 'A' + (version / 10000) % 26);
17829 else
17830 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
17831 version, version / 100000000, (version / 1000000) % 100,
17832 (version / 100) % 100);
17833 return TRUE;
17834
17835 case NT_NETBSD_MARCH:
17836 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
17837 pnote->descdata);
17838 return TRUE;
17839
17840 default:
17841 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
17842 pnote->type);
17843 return FALSE;
17844 }
17845 }
17846
17847 static const char *
17848 get_freebsd_elfcore_note_type (Filedata * filedata, unsigned e_type)
17849 {
17850 switch (e_type)
17851 {
17852 case NT_FREEBSD_THRMISC:
17853 return _("NT_THRMISC (thrmisc structure)");
17854 case NT_FREEBSD_PROCSTAT_PROC:
17855 return _("NT_PROCSTAT_PROC (proc data)");
17856 case NT_FREEBSD_PROCSTAT_FILES:
17857 return _("NT_PROCSTAT_FILES (files data)");
17858 case NT_FREEBSD_PROCSTAT_VMMAP:
17859 return _("NT_PROCSTAT_VMMAP (vmmap data)");
17860 case NT_FREEBSD_PROCSTAT_GROUPS:
17861 return _("NT_PROCSTAT_GROUPS (groups data)");
17862 case NT_FREEBSD_PROCSTAT_UMASK:
17863 return _("NT_PROCSTAT_UMASK (umask data)");
17864 case NT_FREEBSD_PROCSTAT_RLIMIT:
17865 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
17866 case NT_FREEBSD_PROCSTAT_OSREL:
17867 return _("NT_PROCSTAT_OSREL (osreldate data)");
17868 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
17869 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
17870 case NT_FREEBSD_PROCSTAT_AUXV:
17871 return _("NT_PROCSTAT_AUXV (auxv data)");
17872 case NT_FREEBSD_PTLWPINFO:
17873 return _("NT_PTLWPINFO (ptrace_lwpinfo structure)");
17874 }
17875 return get_note_type (filedata, e_type);
17876 }
17877
17878 static const char *
17879 get_netbsd_elfcore_note_type (Filedata * filedata, unsigned e_type)
17880 {
17881 static char buff[64];
17882
17883 if (e_type == NT_NETBSDCORE_PROCINFO)
17884 return _("NetBSD procinfo structure");
17885
17886 /* As of Jan 2002 there are no other machine-independent notes
17887 defined for NetBSD core files. If the note type is less
17888 than the start of the machine-dependent note types, we don't
17889 understand it. */
17890
17891 if (e_type < NT_NETBSDCORE_FIRSTMACH)
17892 {
17893 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17894 return buff;
17895 }
17896
17897 switch (filedata->file_header.e_machine)
17898 {
17899 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
17900 and PT_GETFPREGS == mach+2. */
17901
17902 case EM_OLD_ALPHA:
17903 case EM_ALPHA:
17904 case EM_SPARC:
17905 case EM_SPARC32PLUS:
17906 case EM_SPARCV9:
17907 switch (e_type)
17908 {
17909 case NT_NETBSDCORE_FIRSTMACH + 0:
17910 return _("PT_GETREGS (reg structure)");
17911 case NT_NETBSDCORE_FIRSTMACH + 2:
17912 return _("PT_GETFPREGS (fpreg structure)");
17913 default:
17914 break;
17915 }
17916 break;
17917
17918 /* On all other arch's, PT_GETREGS == mach+1 and
17919 PT_GETFPREGS == mach+3. */
17920 default:
17921 switch (e_type)
17922 {
17923 case NT_NETBSDCORE_FIRSTMACH + 1:
17924 return _("PT_GETREGS (reg structure)");
17925 case NT_NETBSDCORE_FIRSTMACH + 3:
17926 return _("PT_GETFPREGS (fpreg structure)");
17927 default:
17928 break;
17929 }
17930 }
17931
17932 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
17933 e_type - NT_NETBSDCORE_FIRSTMACH);
17934 return buff;
17935 }
17936
17937 static const char *
17938 get_stapsdt_note_type (unsigned e_type)
17939 {
17940 static char buff[64];
17941
17942 switch (e_type)
17943 {
17944 case NT_STAPSDT:
17945 return _("NT_STAPSDT (SystemTap probe descriptors)");
17946
17947 default:
17948 break;
17949 }
17950
17951 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17952 return buff;
17953 }
17954
17955 static bfd_boolean
17956 print_stapsdt_note (Elf_Internal_Note *pnote)
17957 {
17958 size_t len, maxlen;
17959 unsigned long addr_size = is_32bit_elf ? 4 : 8;
17960 char *data = pnote->descdata;
17961 char *data_end = pnote->descdata + pnote->descsz;
17962 bfd_vma pc, base_addr, semaphore;
17963 char *provider, *probe, *arg_fmt;
17964
17965 if (pnote->descsz < (addr_size * 3))
17966 goto stapdt_note_too_small;
17967
17968 pc = byte_get ((unsigned char *) data, addr_size);
17969 data += addr_size;
17970
17971 base_addr = byte_get ((unsigned char *) data, addr_size);
17972 data += addr_size;
17973
17974 semaphore = byte_get ((unsigned char *) data, addr_size);
17975 data += addr_size;
17976
17977 if (data >= data_end)
17978 goto stapdt_note_too_small;
17979 maxlen = data_end - data;
17980 len = strnlen (data, maxlen);
17981 if (len < maxlen)
17982 {
17983 provider = data;
17984 data += len + 1;
17985 }
17986 else
17987 goto stapdt_note_too_small;
17988
17989 if (data >= data_end)
17990 goto stapdt_note_too_small;
17991 maxlen = data_end - data;
17992 len = strnlen (data, maxlen);
17993 if (len < maxlen)
17994 {
17995 probe = data;
17996 data += len + 1;
17997 }
17998 else
17999 goto stapdt_note_too_small;
18000
18001 if (data >= data_end)
18002 goto stapdt_note_too_small;
18003 maxlen = data_end - data;
18004 len = strnlen (data, maxlen);
18005 if (len < maxlen)
18006 {
18007 arg_fmt = data;
18008 data += len + 1;
18009 }
18010 else
18011 goto stapdt_note_too_small;
18012
18013 printf (_(" Provider: %s\n"), provider);
18014 printf (_(" Name: %s\n"), probe);
18015 printf (_(" Location: "));
18016 print_vma (pc, FULL_HEX);
18017 printf (_(", Base: "));
18018 print_vma (base_addr, FULL_HEX);
18019 printf (_(", Semaphore: "));
18020 print_vma (semaphore, FULL_HEX);
18021 printf ("\n");
18022 printf (_(" Arguments: %s\n"), arg_fmt);
18023
18024 return data == data_end;
18025
18026 stapdt_note_too_small:
18027 printf (_(" <corrupt - note is too small>\n"));
18028 error (_("corrupt stapdt note - the data size is too small\n"));
18029 return FALSE;
18030 }
18031
18032 static const char *
18033 get_ia64_vms_note_type (unsigned e_type)
18034 {
18035 static char buff[64];
18036
18037 switch (e_type)
18038 {
18039 case NT_VMS_MHD:
18040 return _("NT_VMS_MHD (module header)");
18041 case NT_VMS_LNM:
18042 return _("NT_VMS_LNM (language name)");
18043 case NT_VMS_SRC:
18044 return _("NT_VMS_SRC (source files)");
18045 case NT_VMS_TITLE:
18046 return "NT_VMS_TITLE";
18047 case NT_VMS_EIDC:
18048 return _("NT_VMS_EIDC (consistency check)");
18049 case NT_VMS_FPMODE:
18050 return _("NT_VMS_FPMODE (FP mode)");
18051 case NT_VMS_LINKTIME:
18052 return "NT_VMS_LINKTIME";
18053 case NT_VMS_IMGNAM:
18054 return _("NT_VMS_IMGNAM (image name)");
18055 case NT_VMS_IMGID:
18056 return _("NT_VMS_IMGID (image id)");
18057 case NT_VMS_LINKID:
18058 return _("NT_VMS_LINKID (link id)");
18059 case NT_VMS_IMGBID:
18060 return _("NT_VMS_IMGBID (build id)");
18061 case NT_VMS_GSTNAM:
18062 return _("NT_VMS_GSTNAM (sym table name)");
18063 case NT_VMS_ORIG_DYN:
18064 return "NT_VMS_ORIG_DYN";
18065 case NT_VMS_PATCHTIME:
18066 return "NT_VMS_PATCHTIME";
18067 default:
18068 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18069 return buff;
18070 }
18071 }
18072
18073 static bfd_boolean
18074 print_ia64_vms_note (Elf_Internal_Note * pnote)
18075 {
18076 int maxlen = pnote->descsz;
18077
18078 if (maxlen < 2 || (unsigned long) maxlen != pnote->descsz)
18079 goto desc_size_fail;
18080
18081 switch (pnote->type)
18082 {
18083 case NT_VMS_MHD:
18084 if (maxlen <= 36)
18085 goto desc_size_fail;
18086
18087 int l = (int) strnlen (pnote->descdata + 34, maxlen - 34);
18088
18089 printf (_(" Creation date : %.17s\n"), pnote->descdata);
18090 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
18091 if (l + 34 < maxlen)
18092 {
18093 printf (_(" Module name : %s\n"), pnote->descdata + 34);
18094 if (l + 35 < maxlen)
18095 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
18096 else
18097 printf (_(" Module version : <missing>\n"));
18098 }
18099 else
18100 {
18101 printf (_(" Module name : <missing>\n"));
18102 printf (_(" Module version : <missing>\n"));
18103 }
18104 break;
18105
18106 case NT_VMS_LNM:
18107 printf (_(" Language: %.*s\n"), maxlen, pnote->descdata);
18108 break;
18109
18110 #ifdef BFD64
18111 case NT_VMS_FPMODE:
18112 printf (_(" Floating Point mode: "));
18113 if (maxlen < 8)
18114 goto desc_size_fail;
18115 /* FIXME: Generate an error if descsz > 8 ? */
18116
18117 printf ("0x%016" BFD_VMA_FMT "x\n",
18118 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
18119 break;
18120
18121 case NT_VMS_LINKTIME:
18122 printf (_(" Link time: "));
18123 if (maxlen < 8)
18124 goto desc_size_fail;
18125 /* FIXME: Generate an error if descsz > 8 ? */
18126
18127 print_vms_time
18128 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
18129 printf ("\n");
18130 break;
18131
18132 case NT_VMS_PATCHTIME:
18133 printf (_(" Patch time: "));
18134 if (maxlen < 8)
18135 goto desc_size_fail;
18136 /* FIXME: Generate an error if descsz > 8 ? */
18137
18138 print_vms_time
18139 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
18140 printf ("\n");
18141 break;
18142
18143 case NT_VMS_ORIG_DYN:
18144 if (maxlen < 34)
18145 goto desc_size_fail;
18146
18147 printf (_(" Major id: %u, minor id: %u\n"),
18148 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
18149 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
18150 printf (_(" Last modified : "));
18151 print_vms_time
18152 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
18153 printf (_("\n Link flags : "));
18154 printf ("0x%016" BFD_VMA_FMT "x\n",
18155 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
18156 printf (_(" Header flags: 0x%08x\n"),
18157 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
18158 printf (_(" Image id : %.*s\n"), maxlen - 32, pnote->descdata + 32);
18159 break;
18160 #endif
18161
18162 case NT_VMS_IMGNAM:
18163 printf (_(" Image name: %.*s\n"), maxlen, pnote->descdata);
18164 break;
18165
18166 case NT_VMS_GSTNAM:
18167 printf (_(" Global symbol table name: %.*s\n"), maxlen, pnote->descdata);
18168 break;
18169
18170 case NT_VMS_IMGID:
18171 printf (_(" Image id: %.*s\n"), maxlen, pnote->descdata);
18172 break;
18173
18174 case NT_VMS_LINKID:
18175 printf (_(" Linker id: %.*s\n"), maxlen, pnote->descdata);
18176 break;
18177
18178 default:
18179 return FALSE;
18180 }
18181
18182 return TRUE;
18183
18184 desc_size_fail:
18185 printf (_(" <corrupt - data size is too small>\n"));
18186 error (_("corrupt IA64 note: data size is too small\n"));
18187 return FALSE;
18188 }
18189
18190 /* Find the symbol associated with a build attribute that is attached
18191 to address OFFSET. If PNAME is non-NULL then store the name of
18192 the symbol (if found) in the provided pointer, Returns NULL if a
18193 symbol could not be found. */
18194
18195 static Elf_Internal_Sym *
18196 get_symbol_for_build_attribute (Filedata * filedata,
18197 unsigned long offset,
18198 bfd_boolean is_open_attr,
18199 const char ** pname)
18200 {
18201 static Filedata * saved_filedata = NULL;
18202 static char * strtab;
18203 static unsigned long strtablen;
18204 static Elf_Internal_Sym * symtab;
18205 static unsigned long nsyms;
18206 Elf_Internal_Sym * saved_sym = NULL;
18207 Elf_Internal_Sym * sym;
18208
18209 if (filedata->section_headers != NULL
18210 && (saved_filedata == NULL || filedata != saved_filedata))
18211 {
18212 Elf_Internal_Shdr * symsec;
18213
18214 /* Load the symbol and string sections. */
18215 for (symsec = filedata->section_headers;
18216 symsec < filedata->section_headers + filedata->file_header.e_shnum;
18217 symsec ++)
18218 {
18219 if (symsec->sh_type == SHT_SYMTAB)
18220 {
18221 symtab = GET_ELF_SYMBOLS (filedata, symsec, & nsyms);
18222
18223 if (symsec->sh_link < filedata->file_header.e_shnum)
18224 {
18225 Elf_Internal_Shdr * strtab_sec = filedata->section_headers + symsec->sh_link;
18226
18227 strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset,
18228 1, strtab_sec->sh_size,
18229 _("string table"));
18230 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
18231 }
18232 }
18233 }
18234 saved_filedata = filedata;
18235 }
18236
18237 if (symtab == NULL || strtab == NULL)
18238 return NULL;
18239
18240 /* Find a symbol whose value matches offset. */
18241 for (sym = symtab; sym < symtab + nsyms; sym ++)
18242 if (sym->st_value == offset)
18243 {
18244 if (sym->st_name >= strtablen)
18245 /* Huh ? This should not happen. */
18246 continue;
18247
18248 if (strtab[sym->st_name] == 0)
18249 continue;
18250
18251 /* The AArch64 and ARM architectures define mapping symbols
18252 (eg $d, $x, $t) which we want to ignore. */
18253 if (strtab[sym->st_name] == '$'
18254 && strtab[sym->st_name + 1] != 0
18255 && strtab[sym->st_name + 2] == 0)
18256 continue;
18257
18258 if (is_open_attr)
18259 {
18260 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
18261 and FILE or OBJECT symbols over NOTYPE symbols. We skip
18262 FUNC symbols entirely. */
18263 switch (ELF_ST_TYPE (sym->st_info))
18264 {
18265 case STT_OBJECT:
18266 case STT_FILE:
18267 saved_sym = sym;
18268 if (sym->st_size)
18269 {
18270 /* If the symbol has a size associated
18271 with it then we can stop searching. */
18272 sym = symtab + nsyms;
18273 }
18274 continue;
18275
18276 case STT_FUNC:
18277 /* Ignore function symbols. */
18278 continue;
18279
18280 default:
18281 break;
18282 }
18283
18284 switch (ELF_ST_BIND (sym->st_info))
18285 {
18286 case STB_GLOBAL:
18287 if (saved_sym == NULL
18288 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
18289 saved_sym = sym;
18290 break;
18291
18292 case STB_LOCAL:
18293 if (saved_sym == NULL)
18294 saved_sym = sym;
18295 break;
18296
18297 default:
18298 break;
18299 }
18300 }
18301 else
18302 {
18303 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
18304 continue;
18305
18306 saved_sym = sym;
18307 break;
18308 }
18309 }
18310
18311 if (saved_sym && pname)
18312 * pname = strtab + saved_sym->st_name;
18313
18314 return saved_sym;
18315 }
18316
18317 /* Returns true iff addr1 and addr2 are in the same section. */
18318
18319 static bfd_boolean
18320 same_section (Filedata * filedata, unsigned long addr1, unsigned long addr2)
18321 {
18322 Elf_Internal_Shdr * a1;
18323 Elf_Internal_Shdr * a2;
18324
18325 a1 = find_section_by_address (filedata, addr1);
18326 a2 = find_section_by_address (filedata, addr2);
18327
18328 return a1 == a2 && a1 != NULL;
18329 }
18330
18331 static bfd_boolean
18332 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
18333 Filedata * filedata)
18334 {
18335 static unsigned long global_offset = 0;
18336 static unsigned long global_end = 0;
18337 static unsigned long func_offset = 0;
18338 static unsigned long func_end = 0;
18339
18340 Elf_Internal_Sym * sym;
18341 const char * name;
18342 unsigned long start;
18343 unsigned long end;
18344 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
18345
18346 switch (pnote->descsz)
18347 {
18348 case 0:
18349 /* A zero-length description means that the range of
18350 the previous note of the same type should be used. */
18351 if (is_open_attr)
18352 {
18353 if (global_end > global_offset)
18354 printf (_(" Applies to region from %#lx to %#lx\n"),
18355 global_offset, global_end);
18356 else
18357 printf (_(" Applies to region from %#lx\n"), global_offset);
18358 }
18359 else
18360 {
18361 if (func_end > func_offset)
18362 printf (_(" Applies to region from %#lx to %#lx\n"), func_offset, func_end);
18363 else
18364 printf (_(" Applies to region from %#lx\n"), func_offset);
18365 }
18366 return TRUE;
18367
18368 case 4:
18369 start = byte_get ((unsigned char *) pnote->descdata, 4);
18370 end = 0;
18371 break;
18372
18373 case 8:
18374 if (is_32bit_elf)
18375 {
18376 /* FIXME: We should check that version 3+ notes are being used here... */
18377 start = byte_get ((unsigned char *) pnote->descdata, 4);
18378 end = byte_get ((unsigned char *) pnote->descdata + 4, 4);
18379 }
18380 else
18381 {
18382 start = byte_get ((unsigned char *) pnote->descdata, 8);
18383 end = 0;
18384 }
18385 break;
18386
18387 case 16:
18388 start = byte_get ((unsigned char *) pnote->descdata, 8);
18389 end = byte_get ((unsigned char *) pnote->descdata + 8, 8);
18390 break;
18391
18392 default:
18393 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
18394 printf (_(" <invalid descsz>"));
18395 return FALSE;
18396 }
18397
18398 name = NULL;
18399 sym = get_symbol_for_build_attribute (filedata, start, is_open_attr, & name);
18400 /* As of version 5 of the annobin plugin, filename symbols are biased by 2
18401 in order to avoid them being confused with the start address of the
18402 first function in the file... */
18403 if (sym == NULL && is_open_attr)
18404 sym = get_symbol_for_build_attribute (filedata, start + 2, is_open_attr,
18405 & name);
18406
18407 if (end == 0 && sym != NULL && sym->st_size > 0)
18408 end = start + sym->st_size;
18409
18410 if (is_open_attr)
18411 {
18412 /* FIXME: Need to properly allow for section alignment.
18413 16 is just the alignment used on x86_64. */
18414 if (global_end > 0
18415 && start > BFD_ALIGN (global_end, 16)
18416 /* Build notes are not guaranteed to be organised in order of
18417 increasing address, but we should find the all of the notes
18418 for one section in the same place. */
18419 && same_section (filedata, start, global_end))
18420 warn (_("Gap in build notes detected from %#lx to %#lx\n"),
18421 global_end + 1, start - 1);
18422
18423 printf (_(" Applies to region from %#lx"), start);
18424 global_offset = start;
18425
18426 if (end)
18427 {
18428 printf (_(" to %#lx"), end);
18429 global_end = end;
18430 }
18431 }
18432 else
18433 {
18434 printf (_(" Applies to region from %#lx"), start);
18435 func_offset = start;
18436
18437 if (end)
18438 {
18439 printf (_(" to %#lx"), end);
18440 func_end = end;
18441 }
18442 }
18443
18444 if (sym && name)
18445 printf (_(" (%s)"), name);
18446
18447 printf ("\n");
18448 return TRUE;
18449 }
18450
18451 static bfd_boolean
18452 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
18453 {
18454 static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 };
18455 static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 };
18456 static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 };
18457 char name_type;
18458 char name_attribute;
18459 const char * expected_types;
18460 const char * name = pnote->namedata;
18461 const char * text;
18462 signed int left;
18463
18464 if (name == NULL || pnote->namesz < 2)
18465 {
18466 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
18467 print_symbol (-20, _(" <corrupt name>"));
18468 return FALSE;
18469 }
18470
18471 if (do_wide)
18472 left = 28;
18473 else
18474 left = 20;
18475
18476 /* Version 2 of the spec adds a "GA" prefix to the name field. */
18477 if (name[0] == 'G' && name[1] == 'A')
18478 {
18479 if (pnote->namesz < 4)
18480 {
18481 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
18482 print_symbol (-20, _(" <corrupt name>"));
18483 return FALSE;
18484 }
18485
18486 printf ("GA");
18487 name += 2;
18488 left -= 2;
18489 }
18490
18491 switch ((name_type = * name))
18492 {
18493 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
18494 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
18495 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
18496 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
18497 printf ("%c", * name);
18498 left --;
18499 break;
18500 default:
18501 error (_("unrecognised attribute type in name field: %d\n"), name_type);
18502 print_symbol (-20, _("<unknown name type>"));
18503 return FALSE;
18504 }
18505
18506 ++ name;
18507 text = NULL;
18508
18509 switch ((name_attribute = * name))
18510 {
18511 case GNU_BUILD_ATTRIBUTE_VERSION:
18512 text = _("<version>");
18513 expected_types = string_expected;
18514 ++ name;
18515 break;
18516 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
18517 text = _("<stack prot>");
18518 expected_types = "!+*";
18519 ++ name;
18520 break;
18521 case GNU_BUILD_ATTRIBUTE_RELRO:
18522 text = _("<relro>");
18523 expected_types = bool_expected;
18524 ++ name;
18525 break;
18526 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
18527 text = _("<stack size>");
18528 expected_types = number_expected;
18529 ++ name;
18530 break;
18531 case GNU_BUILD_ATTRIBUTE_TOOL:
18532 text = _("<tool>");
18533 expected_types = string_expected;
18534 ++ name;
18535 break;
18536 case GNU_BUILD_ATTRIBUTE_ABI:
18537 text = _("<ABI>");
18538 expected_types = "$*";
18539 ++ name;
18540 break;
18541 case GNU_BUILD_ATTRIBUTE_PIC:
18542 text = _("<PIC>");
18543 expected_types = number_expected;
18544 ++ name;
18545 break;
18546 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
18547 text = _("<short enum>");
18548 expected_types = bool_expected;
18549 ++ name;
18550 break;
18551 default:
18552 if (ISPRINT (* name))
18553 {
18554 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
18555
18556 if (len > left && ! do_wide)
18557 len = left;
18558 printf ("%.*s:", len, name);
18559 left -= len;
18560 name += len;
18561 }
18562 else
18563 {
18564 static char tmpbuf [128];
18565
18566 error (_("unrecognised byte in name field: %d\n"), * name);
18567 sprintf (tmpbuf, _("<unknown:_%d>"), * name);
18568 text = tmpbuf;
18569 name ++;
18570 }
18571 expected_types = "*$!+";
18572 break;
18573 }
18574
18575 if (text)
18576 left -= printf ("%s", text);
18577
18578 if (strchr (expected_types, name_type) == NULL)
18579 warn (_("attribute does not have an expected type (%c)\n"), name_type);
18580
18581 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
18582 {
18583 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
18584 (unsigned long) pnote->namesz,
18585 (long) (name - pnote->namedata));
18586 return FALSE;
18587 }
18588
18589 if (left < 1 && ! do_wide)
18590 return TRUE;
18591
18592 switch (name_type)
18593 {
18594 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
18595 {
18596 unsigned int bytes;
18597 unsigned long long val = 0;
18598 unsigned int shift = 0;
18599 char * decoded = NULL;
18600
18601 bytes = pnote->namesz - (name - pnote->namedata);
18602 if (bytes > 0)
18603 /* The -1 is because the name field is always 0 terminated, and we
18604 want to be able to ensure that the shift in the while loop below
18605 will not overflow. */
18606 -- bytes;
18607
18608 if (bytes > sizeof (val))
18609 {
18610 error (_("corrupt numeric name field: too many bytes in the value: %x\n"),
18611 bytes);
18612 bytes = sizeof (val);
18613 }
18614 /* We do not bother to warn if bytes == 0 as this can
18615 happen with some early versions of the gcc plugin. */
18616
18617 while (bytes --)
18618 {
18619 unsigned long byte = (* name ++) & 0xff;
18620
18621 val |= byte << shift;
18622 shift += 8;
18623 }
18624
18625 switch (name_attribute)
18626 {
18627 case GNU_BUILD_ATTRIBUTE_PIC:
18628 switch (val)
18629 {
18630 case 0: decoded = "static"; break;
18631 case 1: decoded = "pic"; break;
18632 case 2: decoded = "PIC"; break;
18633 case 3: decoded = "pie"; break;
18634 case 4: decoded = "PIE"; break;
18635 default: break;
18636 }
18637 break;
18638 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
18639 switch (val)
18640 {
18641 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
18642 case 0: decoded = "off"; break;
18643 case 1: decoded = "on"; break;
18644 case 2: decoded = "all"; break;
18645 case 3: decoded = "strong"; break;
18646 case 4: decoded = "explicit"; break;
18647 default: break;
18648 }
18649 break;
18650 default:
18651 break;
18652 }
18653
18654 if (decoded != NULL)
18655 {
18656 print_symbol (-left, decoded);
18657 left = 0;
18658 }
18659 else if (val == 0)
18660 {
18661 printf ("0x0");
18662 left -= 3;
18663 }
18664 else
18665 {
18666 if (do_wide)
18667 left -= printf ("0x%llx", val);
18668 else
18669 left -= printf ("0x%-.*llx", left, val);
18670 }
18671 }
18672 break;
18673 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
18674 left -= print_symbol (- left, name);
18675 break;
18676 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
18677 left -= print_symbol (- left, "true");
18678 break;
18679 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
18680 left -= print_symbol (- left, "false");
18681 break;
18682 }
18683
18684 if (do_wide && left > 0)
18685 printf ("%-*s", left, " ");
18686
18687 return TRUE;
18688 }
18689
18690 /* Note that by the ELF standard, the name field is already null byte
18691 terminated, and namesz includes the terminating null byte.
18692 I.E. the value of namesz for the name "FSF" is 4.
18693
18694 If the value of namesz is zero, there is no name present. */
18695
18696 static bfd_boolean
18697 process_note (Elf_Internal_Note * pnote,
18698 Filedata * filedata)
18699 {
18700 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
18701 const char * nt;
18702
18703 if (pnote->namesz == 0)
18704 /* If there is no note name, then use the default set of
18705 note type strings. */
18706 nt = get_note_type (filedata, pnote->type);
18707
18708 else if (const_strneq (pnote->namedata, "GNU"))
18709 /* GNU-specific object file notes. */
18710 nt = get_gnu_elf_note_type (pnote->type);
18711
18712 else if (const_strneq (pnote->namedata, "FreeBSD"))
18713 /* FreeBSD-specific core file notes. */
18714 nt = get_freebsd_elfcore_note_type (filedata, pnote->type);
18715
18716 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
18717 /* NetBSD-specific core file notes. */
18718 nt = get_netbsd_elfcore_note_type (filedata, pnote->type);
18719
18720 else if (const_strneq (pnote->namedata, "NetBSD"))
18721 /* NetBSD-specific core file notes. */
18722 return process_netbsd_elf_note (pnote);
18723
18724 else if (strneq (pnote->namedata, "SPU/", 4))
18725 {
18726 /* SPU-specific core file notes. */
18727 nt = pnote->namedata + 4;
18728 name = "SPU";
18729 }
18730
18731 else if (const_strneq (pnote->namedata, "IPF/VMS"))
18732 /* VMS/ia64-specific file notes. */
18733 nt = get_ia64_vms_note_type (pnote->type);
18734
18735 else if (const_strneq (pnote->namedata, "stapsdt"))
18736 nt = get_stapsdt_note_type (pnote->type);
18737
18738 else
18739 /* Don't recognize this note name; just use the default set of
18740 note type strings. */
18741 nt = get_note_type (filedata, pnote->type);
18742
18743 printf (" ");
18744
18745 if (((const_strneq (pnote->namedata, "GA")
18746 && strchr ("*$!+", pnote->namedata[2]) != NULL)
18747 || strchr ("*$!+", pnote->namedata[0]) != NULL)
18748 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
18749 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
18750 print_gnu_build_attribute_name (pnote);
18751 else
18752 print_symbol (-20, name);
18753
18754 if (do_wide)
18755 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
18756 else
18757 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
18758
18759 if (const_strneq (pnote->namedata, "IPF/VMS"))
18760 return print_ia64_vms_note (pnote);
18761 else if (const_strneq (pnote->namedata, "GNU"))
18762 return print_gnu_note (filedata, pnote);
18763 else if (const_strneq (pnote->namedata, "stapsdt"))
18764 return print_stapsdt_note (pnote);
18765 else if (const_strneq (pnote->namedata, "CORE"))
18766 return print_core_note (pnote);
18767 else if (((const_strneq (pnote->namedata, "GA")
18768 && strchr ("*$!+", pnote->namedata[2]) != NULL)
18769 || strchr ("*$!+", pnote->namedata[0]) != NULL)
18770 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
18771 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
18772 return print_gnu_build_attribute_description (pnote, filedata);
18773
18774 if (pnote->descsz)
18775 {
18776 unsigned long i;
18777
18778 printf (_(" description data: "));
18779 for (i = 0; i < pnote->descsz; i++)
18780 printf ("%02x ", pnote->descdata[i]);
18781 if (!do_wide)
18782 printf ("\n");
18783 }
18784
18785 if (do_wide)
18786 printf ("\n");
18787
18788 return TRUE;
18789 }
18790
18791 static bfd_boolean
18792 process_notes_at (Filedata * filedata,
18793 Elf_Internal_Shdr * section,
18794 bfd_vma offset,
18795 bfd_vma length,
18796 bfd_vma align)
18797 {
18798 Elf_External_Note * pnotes;
18799 Elf_External_Note * external;
18800 char * end;
18801 bfd_boolean res = TRUE;
18802
18803 if (length <= 0)
18804 return FALSE;
18805
18806 if (section)
18807 {
18808 pnotes = (Elf_External_Note *) get_section_contents (section, filedata);
18809 if (pnotes)
18810 {
18811 if (! apply_relocations (filedata, section, (unsigned char *) pnotes, length, NULL, NULL))
18812 return FALSE;
18813 }
18814 }
18815 else
18816 pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length,
18817 _("notes"));
18818
18819 if (pnotes == NULL)
18820 return FALSE;
18821
18822 external = pnotes;
18823
18824 if (section)
18825 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (filedata, section));
18826 else
18827 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
18828 (unsigned long) offset, (unsigned long) length);
18829
18830 /* NB: Some note sections may have alignment value of 0 or 1. gABI
18831 specifies that notes should be aligned to 4 bytes in 32-bit
18832 objects and to 8 bytes in 64-bit objects. As a Linux extension,
18833 we also support 4 byte alignment in 64-bit objects. If section
18834 alignment is less than 4, we treate alignment as 4 bytes. */
18835 if (align < 4)
18836 align = 4;
18837 else if (align != 4 && align != 8)
18838 {
18839 warn (_("Corrupt note: alignment %ld, expecting 4 or 8\n"),
18840 (long) align);
18841 return FALSE;
18842 }
18843
18844 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
18845
18846 end = (char *) pnotes + length;
18847 while ((char *) external < end)
18848 {
18849 Elf_Internal_Note inote;
18850 size_t min_notesz;
18851 char * next;
18852 char * temp = NULL;
18853 size_t data_remaining = end - (char *) external;
18854
18855 if (!is_ia64_vms (filedata))
18856 {
18857 /* PR binutils/15191
18858 Make sure that there is enough data to read. */
18859 min_notesz = offsetof (Elf_External_Note, name);
18860 if (data_remaining < min_notesz)
18861 {
18862 warn (ngettext ("Corrupt note: only %ld byte remains, "
18863 "not enough for a full note\n",
18864 "Corrupt note: only %ld bytes remain, "
18865 "not enough for a full note\n",
18866 data_remaining),
18867 (long) data_remaining);
18868 break;
18869 }
18870 data_remaining -= min_notesz;
18871
18872 inote.type = BYTE_GET (external->type);
18873 inote.namesz = BYTE_GET (external->namesz);
18874 inote.namedata = external->name;
18875 inote.descsz = BYTE_GET (external->descsz);
18876 inote.descdata = ((char *) external
18877 + ELF_NOTE_DESC_OFFSET (inote.namesz, align));
18878 inote.descpos = offset + (inote.descdata - (char *) pnotes);
18879 next = ((char *) external
18880 + ELF_NOTE_NEXT_OFFSET (inote.namesz, inote.descsz, align));
18881 }
18882 else
18883 {
18884 Elf64_External_VMS_Note *vms_external;
18885
18886 /* PR binutils/15191
18887 Make sure that there is enough data to read. */
18888 min_notesz = offsetof (Elf64_External_VMS_Note, name);
18889 if (data_remaining < min_notesz)
18890 {
18891 warn (ngettext ("Corrupt note: only %ld byte remains, "
18892 "not enough for a full note\n",
18893 "Corrupt note: only %ld bytes remain, "
18894 "not enough for a full note\n",
18895 data_remaining),
18896 (long) data_remaining);
18897 break;
18898 }
18899 data_remaining -= min_notesz;
18900
18901 vms_external = (Elf64_External_VMS_Note *) external;
18902 inote.type = BYTE_GET (vms_external->type);
18903 inote.namesz = BYTE_GET (vms_external->namesz);
18904 inote.namedata = vms_external->name;
18905 inote.descsz = BYTE_GET (vms_external->descsz);
18906 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
18907 inote.descpos = offset + (inote.descdata - (char *) pnotes);
18908 next = inote.descdata + align_power (inote.descsz, 3);
18909 }
18910
18911 /* PR 17531: file: 3443835e. */
18912 /* PR 17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
18913 if ((size_t) (inote.descdata - inote.namedata) < inote.namesz
18914 || (size_t) (inote.descdata - inote.namedata) > data_remaining
18915 || (size_t) (next - inote.descdata) < inote.descsz
18916 || ((size_t) (next - inote.descdata)
18917 > data_remaining - (size_t) (inote.descdata - inote.namedata)))
18918 {
18919 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
18920 (unsigned long) ((char *) external - (char *) pnotes));
18921 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx, alignment: %u\n"),
18922 inote.type, inote.namesz, inote.descsz, (int) align);
18923 break;
18924 }
18925
18926 external = (Elf_External_Note *) next;
18927
18928 /* Verify that name is null terminated. It appears that at least
18929 one version of Linux (RedHat 6.0) generates corefiles that don't
18930 comply with the ELF spec by failing to include the null byte in
18931 namesz. */
18932 if (inote.namesz > 0 && inote.namedata[inote.namesz - 1] != '\0')
18933 {
18934 if ((size_t) (inote.descdata - inote.namedata) == inote.namesz)
18935 {
18936 temp = (char *) malloc (inote.namesz + 1);
18937 if (temp == NULL)
18938 {
18939 error (_("Out of memory allocating space for inote name\n"));
18940 res = FALSE;
18941 break;
18942 }
18943
18944 memcpy (temp, inote.namedata, inote.namesz);
18945 inote.namedata = temp;
18946 }
18947 inote.namedata[inote.namesz] = 0;
18948 }
18949
18950 if (! process_note (& inote, filedata))
18951 res = FALSE;
18952
18953 if (temp != NULL)
18954 {
18955 free (temp);
18956 temp = NULL;
18957 }
18958 }
18959
18960 free (pnotes);
18961
18962 return res;
18963 }
18964
18965 static bfd_boolean
18966 process_corefile_note_segments (Filedata * filedata)
18967 {
18968 Elf_Internal_Phdr * segment;
18969 unsigned int i;
18970 bfd_boolean res = TRUE;
18971
18972 if (! get_program_headers (filedata))
18973 return TRUE;
18974
18975 for (i = 0, segment = filedata->program_headers;
18976 i < filedata->file_header.e_phnum;
18977 i++, segment++)
18978 {
18979 if (segment->p_type == PT_NOTE)
18980 if (! process_notes_at (filedata, NULL,
18981 (bfd_vma) segment->p_offset,
18982 (bfd_vma) segment->p_filesz,
18983 (bfd_vma) segment->p_align))
18984 res = FALSE;
18985 }
18986
18987 return res;
18988 }
18989
18990 static bfd_boolean
18991 process_v850_notes (Filedata * filedata, bfd_vma offset, bfd_vma length)
18992 {
18993 Elf_External_Note * pnotes;
18994 Elf_External_Note * external;
18995 char * end;
18996 bfd_boolean res = TRUE;
18997
18998 if (length <= 0)
18999 return FALSE;
19000
19001 pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length,
19002 _("v850 notes"));
19003 if (pnotes == NULL)
19004 return FALSE;
19005
19006 external = pnotes;
19007 end = (char*) pnotes + length;
19008
19009 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
19010 (unsigned long) offset, (unsigned long) length);
19011
19012 while ((char *) external + sizeof (Elf_External_Note) < end)
19013 {
19014 Elf_External_Note * next;
19015 Elf_Internal_Note inote;
19016
19017 inote.type = BYTE_GET (external->type);
19018 inote.namesz = BYTE_GET (external->namesz);
19019 inote.namedata = external->name;
19020 inote.descsz = BYTE_GET (external->descsz);
19021 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
19022 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19023
19024 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
19025 {
19026 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
19027 inote.descdata = inote.namedata;
19028 inote.namesz = 0;
19029 }
19030
19031 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
19032
19033 if ( ((char *) next > end)
19034 || ((char *) next < (char *) pnotes))
19035 {
19036 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
19037 (unsigned long) ((char *) external - (char *) pnotes));
19038 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
19039 inote.type, inote.namesz, inote.descsz);
19040 break;
19041 }
19042
19043 external = next;
19044
19045 /* Prevent out-of-bounds indexing. */
19046 if ( inote.namedata + inote.namesz > end
19047 || inote.namedata + inote.namesz < inote.namedata)
19048 {
19049 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
19050 (unsigned long) ((char *) external - (char *) pnotes));
19051 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
19052 inote.type, inote.namesz, inote.descsz);
19053 break;
19054 }
19055
19056 printf (" %s: ", get_v850_elf_note_type (inote.type));
19057
19058 if (! print_v850_note (& inote))
19059 {
19060 res = FALSE;
19061 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
19062 inote.namesz, inote.descsz);
19063 }
19064 }
19065
19066 free (pnotes);
19067
19068 return res;
19069 }
19070
19071 static bfd_boolean
19072 process_note_sections (Filedata * filedata)
19073 {
19074 Elf_Internal_Shdr * section;
19075 unsigned long i;
19076 unsigned int n = 0;
19077 bfd_boolean res = TRUE;
19078
19079 for (i = 0, section = filedata->section_headers;
19080 i < filedata->file_header.e_shnum && section != NULL;
19081 i++, section++)
19082 {
19083 if (section->sh_type == SHT_NOTE)
19084 {
19085 if (! process_notes_at (filedata, section,
19086 (bfd_vma) section->sh_offset,
19087 (bfd_vma) section->sh_size,
19088 (bfd_vma) section->sh_addralign))
19089 res = FALSE;
19090 n++;
19091 }
19092
19093 if (( filedata->file_header.e_machine == EM_V800
19094 || filedata->file_header.e_machine == EM_V850
19095 || filedata->file_header.e_machine == EM_CYGNUS_V850)
19096 && section->sh_type == SHT_RENESAS_INFO)
19097 {
19098 if (! process_v850_notes (filedata,
19099 (bfd_vma) section->sh_offset,
19100 (bfd_vma) section->sh_size))
19101 res = FALSE;
19102 n++;
19103 }
19104 }
19105
19106 if (n == 0)
19107 /* Try processing NOTE segments instead. */
19108 return process_corefile_note_segments (filedata);
19109
19110 return res;
19111 }
19112
19113 static bfd_boolean
19114 process_notes (Filedata * filedata)
19115 {
19116 /* If we have not been asked to display the notes then do nothing. */
19117 if (! do_notes)
19118 return TRUE;
19119
19120 if (filedata->file_header.e_type != ET_CORE)
19121 return process_note_sections (filedata);
19122
19123 /* No program headers means no NOTE segment. */
19124 if (filedata->file_header.e_phnum > 0)
19125 return process_corefile_note_segments (filedata);
19126
19127 printf (_("No note segments present in the core file.\n"));
19128 return TRUE;
19129 }
19130
19131 static unsigned char *
19132 display_public_gnu_attributes (unsigned char * start,
19133 const unsigned char * const end)
19134 {
19135 printf (_(" Unknown GNU attribute: %s\n"), start);
19136
19137 start += strnlen ((char *) start, end - start);
19138 display_raw_attribute (start, end);
19139
19140 return (unsigned char *) end;
19141 }
19142
19143 static unsigned char *
19144 display_generic_attribute (unsigned char * start,
19145 unsigned int tag,
19146 const unsigned char * const end)
19147 {
19148 if (tag == 0)
19149 return (unsigned char *) end;
19150
19151 return display_tag_value (tag, start, end);
19152 }
19153
19154 static bfd_boolean
19155 process_arch_specific (Filedata * filedata)
19156 {
19157 if (! do_arch)
19158 return TRUE;
19159
19160 switch (filedata->file_header.e_machine)
19161 {
19162 case EM_ARC:
19163 case EM_ARC_COMPACT:
19164 case EM_ARC_COMPACT2:
19165 return process_attributes (filedata, "ARC", SHT_ARC_ATTRIBUTES,
19166 display_arc_attribute,
19167 display_generic_attribute);
19168 case EM_ARM:
19169 return process_attributes (filedata, "aeabi", SHT_ARM_ATTRIBUTES,
19170 display_arm_attribute,
19171 display_generic_attribute);
19172
19173 case EM_MIPS:
19174 case EM_MIPS_RS3_LE:
19175 return process_mips_specific (filedata);
19176
19177 case EM_MSP430:
19178 return process_attributes (filedata, "mspabi", SHT_MSP430_ATTRIBUTES,
19179 display_msp430x_attribute,
19180 display_generic_attribute);
19181
19182 case EM_RISCV:
19183 return process_attributes (filedata, "riscv", SHT_RISCV_ATTRIBUTES,
19184 display_riscv_attribute,
19185 display_generic_attribute);
19186
19187 case EM_NDS32:
19188 return process_nds32_specific (filedata);
19189
19190 case EM_PPC:
19191 case EM_PPC64:
19192 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19193 display_power_gnu_attribute);
19194
19195 case EM_S390:
19196 case EM_S390_OLD:
19197 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19198 display_s390_gnu_attribute);
19199
19200 case EM_SPARC:
19201 case EM_SPARC32PLUS:
19202 case EM_SPARCV9:
19203 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19204 display_sparc_gnu_attribute);
19205
19206 case EM_TI_C6000:
19207 return process_attributes (filedata, "c6xabi", SHT_C6000_ATTRIBUTES,
19208 display_tic6x_attribute,
19209 display_generic_attribute);
19210
19211 default:
19212 return process_attributes (filedata, "gnu", SHT_GNU_ATTRIBUTES,
19213 display_public_gnu_attributes,
19214 display_generic_attribute);
19215 }
19216 }
19217
19218 static bfd_boolean
19219 get_file_header (Filedata * filedata)
19220 {
19221 /* Read in the identity array. */
19222 if (fread (filedata->file_header.e_ident, EI_NIDENT, 1, filedata->handle) != 1)
19223 return FALSE;
19224
19225 /* Determine how to read the rest of the header. */
19226 switch (filedata->file_header.e_ident[EI_DATA])
19227 {
19228 default:
19229 case ELFDATANONE:
19230 case ELFDATA2LSB:
19231 byte_get = byte_get_little_endian;
19232 byte_put = byte_put_little_endian;
19233 break;
19234 case ELFDATA2MSB:
19235 byte_get = byte_get_big_endian;
19236 byte_put = byte_put_big_endian;
19237 break;
19238 }
19239
19240 /* For now we only support 32 bit and 64 bit ELF files. */
19241 is_32bit_elf = (filedata->file_header.e_ident[EI_CLASS] != ELFCLASS64);
19242
19243 /* Read in the rest of the header. */
19244 if (is_32bit_elf)
19245 {
19246 Elf32_External_Ehdr ehdr32;
19247
19248 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, filedata->handle) != 1)
19249 return FALSE;
19250
19251 filedata->file_header.e_type = BYTE_GET (ehdr32.e_type);
19252 filedata->file_header.e_machine = BYTE_GET (ehdr32.e_machine);
19253 filedata->file_header.e_version = BYTE_GET (ehdr32.e_version);
19254 filedata->file_header.e_entry = BYTE_GET (ehdr32.e_entry);
19255 filedata->file_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
19256 filedata->file_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
19257 filedata->file_header.e_flags = BYTE_GET (ehdr32.e_flags);
19258 filedata->file_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
19259 filedata->file_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
19260 filedata->file_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
19261 filedata->file_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
19262 filedata->file_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
19263 filedata->file_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
19264 }
19265 else
19266 {
19267 Elf64_External_Ehdr ehdr64;
19268
19269 /* If we have been compiled with sizeof (bfd_vma) == 4, then
19270 we will not be able to cope with the 64bit data found in
19271 64 ELF files. Detect this now and abort before we start
19272 overwriting things. */
19273 if (sizeof (bfd_vma) < 8)
19274 {
19275 error (_("This instance of readelf has been built without support for a\n\
19276 64 bit data type and so it cannot read 64 bit ELF files.\n"));
19277 return FALSE;
19278 }
19279
19280 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, filedata->handle) != 1)
19281 return FALSE;
19282
19283 filedata->file_header.e_type = BYTE_GET (ehdr64.e_type);
19284 filedata->file_header.e_machine = BYTE_GET (ehdr64.e_machine);
19285 filedata->file_header.e_version = BYTE_GET (ehdr64.e_version);
19286 filedata->file_header.e_entry = BYTE_GET (ehdr64.e_entry);
19287 filedata->file_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
19288 filedata->file_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
19289 filedata->file_header.e_flags = BYTE_GET (ehdr64.e_flags);
19290 filedata->file_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
19291 filedata->file_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
19292 filedata->file_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
19293 filedata->file_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
19294 filedata->file_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
19295 filedata->file_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
19296 }
19297
19298 if (filedata->file_header.e_shoff)
19299 {
19300 /* There may be some extensions in the first section header. Don't
19301 bomb if we can't read it. */
19302 if (is_32bit_elf)
19303 get_32bit_section_headers (filedata, TRUE);
19304 else
19305 get_64bit_section_headers (filedata, TRUE);
19306 }
19307
19308 return TRUE;
19309 }
19310
19311 static void
19312 close_file (Filedata * filedata)
19313 {
19314 if (filedata)
19315 {
19316 if (filedata->handle)
19317 fclose (filedata->handle);
19318 free (filedata);
19319 }
19320 }
19321
19322 void
19323 close_debug_file (void * data)
19324 {
19325 close_file ((Filedata *) data);
19326 }
19327
19328 static Filedata *
19329 open_file (const char * pathname)
19330 {
19331 struct stat statbuf;
19332 Filedata * filedata = NULL;
19333
19334 if (stat (pathname, & statbuf) < 0
19335 || ! S_ISREG (statbuf.st_mode))
19336 goto fail;
19337
19338 filedata = calloc (1, sizeof * filedata);
19339 if (filedata == NULL)
19340 goto fail;
19341
19342 filedata->handle = fopen (pathname, "rb");
19343 if (filedata->handle == NULL)
19344 goto fail;
19345
19346 filedata->file_size = (bfd_size_type) statbuf.st_size;
19347 filedata->file_name = pathname;
19348
19349 if (! get_file_header (filedata))
19350 goto fail;
19351
19352 if (filedata->file_header.e_shoff)
19353 {
19354 bfd_boolean res;
19355
19356 /* Read the section headers again, this time for real. */
19357 if (is_32bit_elf)
19358 res = get_32bit_section_headers (filedata, FALSE);
19359 else
19360 res = get_64bit_section_headers (filedata, FALSE);
19361
19362 if (!res)
19363 goto fail;
19364 }
19365
19366 return filedata;
19367
19368 fail:
19369 if (filedata)
19370 {
19371 if (filedata->handle)
19372 fclose (filedata->handle);
19373 free (filedata);
19374 }
19375 return NULL;
19376 }
19377
19378 void *
19379 open_debug_file (const char * pathname)
19380 {
19381 return open_file (pathname);
19382 }
19383
19384 /* Process one ELF object file according to the command line options.
19385 This file may actually be stored in an archive. The file is
19386 positioned at the start of the ELF object. Returns TRUE if no
19387 problems were encountered, FALSE otherwise. */
19388
19389 static bfd_boolean
19390 process_object (Filedata * filedata)
19391 {
19392 bfd_boolean have_separate_files;
19393 unsigned int i;
19394 bfd_boolean res = TRUE;
19395
19396 if (! get_file_header (filedata))
19397 {
19398 error (_("%s: Failed to read file header\n"), filedata->file_name);
19399 return FALSE;
19400 }
19401
19402 /* Initialise per file variables. */
19403 for (i = ARRAY_SIZE (version_info); i--;)
19404 version_info[i] = 0;
19405
19406 for (i = ARRAY_SIZE (dynamic_info); i--;)
19407 dynamic_info[i] = 0;
19408 dynamic_info_DT_GNU_HASH = 0;
19409
19410 /* Process the file. */
19411 if (show_name)
19412 printf (_("\nFile: %s\n"), filedata->file_name);
19413
19414 /* Initialise the dump_sects array from the cmdline_dump_sects array.
19415 Note we do this even if cmdline_dump_sects is empty because we
19416 must make sure that the dump_sets array is zeroed out before each
19417 object file is processed. */
19418 if (filedata->num_dump_sects > cmdline.num_dump_sects)
19419 memset (filedata->dump_sects, 0, filedata->num_dump_sects * sizeof (* filedata->dump_sects));
19420
19421 if (cmdline.num_dump_sects > 0)
19422 {
19423 if (filedata->num_dump_sects == 0)
19424 /* A sneaky way of allocating the dump_sects array. */
19425 request_dump_bynumber (filedata, cmdline.num_dump_sects, 0);
19426
19427 assert (filedata->num_dump_sects >= cmdline.num_dump_sects);
19428 memcpy (filedata->dump_sects, cmdline.dump_sects,
19429 cmdline.num_dump_sects * sizeof (* filedata->dump_sects));
19430 }
19431
19432 if (! process_file_header (filedata))
19433 return FALSE;
19434
19435 if (! process_section_headers (filedata))
19436 {
19437 /* Without loaded section headers we cannot process lots of things. */
19438 do_unwind = do_version = do_dump = do_arch = FALSE;
19439
19440 if (! do_using_dynamic)
19441 do_syms = do_dyn_syms = do_reloc = FALSE;
19442 }
19443
19444 if (! process_section_groups (filedata))
19445 /* Without loaded section groups we cannot process unwind. */
19446 do_unwind = FALSE;
19447
19448 if (process_program_headers (filedata))
19449 process_dynamic_section (filedata);
19450 else
19451 res = FALSE;
19452
19453 if (! process_relocs (filedata))
19454 res = FALSE;
19455
19456 if (! process_unwind (filedata))
19457 res = FALSE;
19458
19459 if (! process_symbol_table (filedata))
19460 res = FALSE;
19461
19462 if (! process_syminfo (filedata))
19463 res = FALSE;
19464
19465 if (! process_version_sections (filedata))
19466 res = FALSE;
19467
19468 if (filedata->file_header.e_shstrndx != SHN_UNDEF)
19469 have_separate_files = load_separate_debug_files (filedata, filedata->file_name);
19470 else
19471 have_separate_files = FALSE;
19472
19473 if (! process_section_contents (filedata))
19474 res = FALSE;
19475
19476 if (have_separate_files)
19477 {
19478 separate_info * d;
19479
19480 for (d = first_separate_info; d != NULL; d = d->next)
19481 {
19482 if (! process_section_headers (d->handle))
19483 res = FALSE;
19484 else if (! process_section_contents (d->handle))
19485 res = FALSE;
19486 }
19487
19488 /* The file handles are closed by the call to free_debug_memory() below. */
19489 }
19490
19491 if (! process_notes (filedata))
19492 res = FALSE;
19493
19494 if (! process_gnu_liblist (filedata))
19495 res = FALSE;
19496
19497 if (! process_arch_specific (filedata))
19498 res = FALSE;
19499
19500 free (filedata->program_headers);
19501 filedata->program_headers = NULL;
19502
19503 free (filedata->section_headers);
19504 filedata->section_headers = NULL;
19505
19506 free (filedata->string_table);
19507 filedata->string_table = NULL;
19508 filedata->string_table_length = 0;
19509
19510 if (dynamic_strings)
19511 {
19512 free (dynamic_strings);
19513 dynamic_strings = NULL;
19514 dynamic_strings_length = 0;
19515 }
19516
19517 if (dynamic_symbols)
19518 {
19519 free (dynamic_symbols);
19520 dynamic_symbols = NULL;
19521 num_dynamic_syms = 0;
19522 }
19523
19524 if (dynamic_syminfo)
19525 {
19526 free (dynamic_syminfo);
19527 dynamic_syminfo = NULL;
19528 }
19529
19530 if (dynamic_section)
19531 {
19532 free (dynamic_section);
19533 dynamic_section = NULL;
19534 }
19535
19536 if (section_headers_groups)
19537 {
19538 free (section_headers_groups);
19539 section_headers_groups = NULL;
19540 }
19541
19542 if (section_groups)
19543 {
19544 struct group_list * g;
19545 struct group_list * next;
19546
19547 for (i = 0; i < group_count; i++)
19548 {
19549 for (g = section_groups [i].root; g != NULL; g = next)
19550 {
19551 next = g->next;
19552 free (g);
19553 }
19554 }
19555
19556 free (section_groups);
19557 section_groups = NULL;
19558 }
19559
19560 free_debug_memory ();
19561
19562 return res;
19563 }
19564
19565 /* Process an ELF archive.
19566 On entry the file is positioned just after the ARMAG string.
19567 Returns TRUE upon success, FALSE otherwise. */
19568
19569 static bfd_boolean
19570 process_archive (Filedata * filedata, bfd_boolean is_thin_archive)
19571 {
19572 struct archive_info arch;
19573 struct archive_info nested_arch;
19574 size_t got;
19575 bfd_boolean ret = TRUE;
19576
19577 show_name = TRUE;
19578
19579 /* The ARCH structure is used to hold information about this archive. */
19580 arch.file_name = NULL;
19581 arch.file = NULL;
19582 arch.index_array = NULL;
19583 arch.sym_table = NULL;
19584 arch.longnames = NULL;
19585
19586 /* The NESTED_ARCH structure is used as a single-item cache of information
19587 about a nested archive (when members of a thin archive reside within
19588 another regular archive file). */
19589 nested_arch.file_name = NULL;
19590 nested_arch.file = NULL;
19591 nested_arch.index_array = NULL;
19592 nested_arch.sym_table = NULL;
19593 nested_arch.longnames = NULL;
19594
19595 if (setup_archive (&arch, filedata->file_name, filedata->handle,
19596 is_thin_archive, do_archive_index) != 0)
19597 {
19598 ret = FALSE;
19599 goto out;
19600 }
19601
19602 if (do_archive_index)
19603 {
19604 if (arch.sym_table == NULL)
19605 error (_("%s: unable to dump the index as none was found\n"), filedata->file_name);
19606 else
19607 {
19608 unsigned long i, l;
19609 unsigned long current_pos;
19610
19611 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
19612 filedata->file_name, (unsigned long) arch.index_num, arch.sym_size);
19613
19614 current_pos = ftell (filedata->handle);
19615
19616 for (i = l = 0; i < arch.index_num; i++)
19617 {
19618 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
19619 {
19620 char * member_name;
19621
19622 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
19623
19624 if (member_name != NULL)
19625 {
19626 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
19627
19628 if (qualified_name != NULL)
19629 {
19630 printf (_("Contents of binary %s at offset "), qualified_name);
19631 (void) print_vma (arch.index_array[i], PREFIX_HEX);
19632 putchar ('\n');
19633 free (qualified_name);
19634 }
19635 }
19636 }
19637
19638 if (l >= arch.sym_size)
19639 {
19640 error (_("%s: end of the symbol table reached before the end of the index\n"),
19641 filedata->file_name);
19642 ret = FALSE;
19643 break;
19644 }
19645 /* PR 17531: file: 0b6630b2. */
19646 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
19647 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
19648 }
19649
19650 if (arch.uses_64bit_indices)
19651 l = (l + 7) & ~ 7;
19652 else
19653 l += l & 1;
19654
19655 if (l < arch.sym_size)
19656 {
19657 error (ngettext ("%s: %ld byte remains in the symbol table, "
19658 "but without corresponding entries in "
19659 "the index table\n",
19660 "%s: %ld bytes remain in the symbol table, "
19661 "but without corresponding entries in "
19662 "the index table\n",
19663 arch.sym_size - l),
19664 filedata->file_name, arch.sym_size - l);
19665 ret = FALSE;
19666 }
19667
19668 if (fseek (filedata->handle, current_pos, SEEK_SET) != 0)
19669 {
19670 error (_("%s: failed to seek back to start of object files in the archive\n"),
19671 filedata->file_name);
19672 ret = FALSE;
19673 goto out;
19674 }
19675 }
19676
19677 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
19678 && !do_segments && !do_header && !do_dump && !do_version
19679 && !do_histogram && !do_debugging && !do_arch && !do_notes
19680 && !do_section_groups && !do_dyn_syms)
19681 {
19682 ret = TRUE; /* Archive index only. */
19683 goto out;
19684 }
19685 }
19686
19687 while (1)
19688 {
19689 char * name;
19690 size_t namelen;
19691 char * qualified_name;
19692
19693 /* Read the next archive header. */
19694 if (fseek (filedata->handle, arch.next_arhdr_offset, SEEK_SET) != 0)
19695 {
19696 error (_("%s: failed to seek to next archive header\n"), arch.file_name);
19697 return FALSE;
19698 }
19699 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, filedata->handle);
19700 if (got != sizeof arch.arhdr)
19701 {
19702 if (got == 0)
19703 break;
19704 /* PR 24049 - we cannot use filedata->file_name as this will
19705 have already been freed. */
19706 error (_("%s: failed to read archive header\n"), arch.file_name);
19707
19708 ret = FALSE;
19709 break;
19710 }
19711 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
19712 {
19713 error (_("%s: did not find a valid archive header\n"), arch.file_name);
19714 ret = FALSE;
19715 break;
19716 }
19717
19718 arch.next_arhdr_offset += sizeof arch.arhdr;
19719
19720 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
19721 if (archive_file_size & 01)
19722 ++archive_file_size;
19723
19724 name = get_archive_member_name (&arch, &nested_arch);
19725 if (name == NULL)
19726 {
19727 error (_("%s: bad archive file name\n"), arch.file_name);
19728 ret = FALSE;
19729 break;
19730 }
19731 namelen = strlen (name);
19732
19733 qualified_name = make_qualified_name (&arch, &nested_arch, name);
19734 if (qualified_name == NULL)
19735 {
19736 error (_("%s: bad archive file name\n"), arch.file_name);
19737 ret = FALSE;
19738 break;
19739 }
19740
19741 if (is_thin_archive && arch.nested_member_origin == 0)
19742 {
19743 /* This is a proxy for an external member of a thin archive. */
19744 Filedata * member_filedata;
19745 char * member_file_name = adjust_relative_path
19746 (filedata->file_name, name, namelen);
19747
19748 if (member_file_name == NULL)
19749 {
19750 ret = FALSE;
19751 break;
19752 }
19753
19754 member_filedata = open_file (member_file_name);
19755 if (member_filedata == NULL)
19756 {
19757 error (_("Input file '%s' is not readable.\n"), member_file_name);
19758 free (member_file_name);
19759 ret = FALSE;
19760 break;
19761 }
19762
19763 archive_file_offset = arch.nested_member_origin;
19764 member_filedata->file_name = qualified_name;
19765
19766 if (! process_object (member_filedata))
19767 ret = FALSE;
19768
19769 close_file (member_filedata);
19770 free (member_file_name);
19771 }
19772 else if (is_thin_archive)
19773 {
19774 Filedata thin_filedata;
19775
19776 memset (&thin_filedata, 0, sizeof (thin_filedata));
19777
19778 /* PR 15140: Allow for corrupt thin archives. */
19779 if (nested_arch.file == NULL)
19780 {
19781 error (_("%s: contains corrupt thin archive: %s\n"),
19782 qualified_name, name);
19783 ret = FALSE;
19784 break;
19785 }
19786
19787 /* This is a proxy for a member of a nested archive. */
19788 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
19789
19790 /* The nested archive file will have been opened and setup by
19791 get_archive_member_name. */
19792 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
19793 {
19794 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
19795 ret = FALSE;
19796 break;
19797 }
19798
19799 thin_filedata.handle = nested_arch.file;
19800 thin_filedata.file_name = qualified_name;
19801
19802 if (! process_object (& thin_filedata))
19803 ret = FALSE;
19804 }
19805 else
19806 {
19807 archive_file_offset = arch.next_arhdr_offset;
19808 arch.next_arhdr_offset += archive_file_size;
19809
19810 filedata->file_name = qualified_name;
19811 if (! process_object (filedata))
19812 ret = FALSE;
19813 }
19814
19815 if (filedata->dump_sects != NULL)
19816 {
19817 free (filedata->dump_sects);
19818 filedata->dump_sects = NULL;
19819 filedata->num_dump_sects = 0;
19820 }
19821
19822 free (qualified_name);
19823 }
19824
19825 out:
19826 if (nested_arch.file != NULL)
19827 fclose (nested_arch.file);
19828 release_archive (&nested_arch);
19829 release_archive (&arch);
19830
19831 return ret;
19832 }
19833
19834 static bfd_boolean
19835 process_file (char * file_name)
19836 {
19837 Filedata * filedata = NULL;
19838 struct stat statbuf;
19839 char armag[SARMAG];
19840 bfd_boolean ret = TRUE;
19841
19842 if (stat (file_name, &statbuf) < 0)
19843 {
19844 if (errno == ENOENT)
19845 error (_("'%s': No such file\n"), file_name);
19846 else
19847 error (_("Could not locate '%s'. System error message: %s\n"),
19848 file_name, strerror (errno));
19849 return FALSE;
19850 }
19851
19852 if (! S_ISREG (statbuf.st_mode))
19853 {
19854 error (_("'%s' is not an ordinary file\n"), file_name);
19855 return FALSE;
19856 }
19857
19858 filedata = calloc (1, sizeof * filedata);
19859 if (filedata == NULL)
19860 {
19861 error (_("Out of memory allocating file data structure\n"));
19862 return FALSE;
19863 }
19864
19865 filedata->file_name = file_name;
19866 filedata->handle = fopen (file_name, "rb");
19867 if (filedata->handle == NULL)
19868 {
19869 error (_("Input file '%s' is not readable.\n"), file_name);
19870 free (filedata);
19871 return FALSE;
19872 }
19873
19874 if (fread (armag, SARMAG, 1, filedata->handle) != 1)
19875 {
19876 error (_("%s: Failed to read file's magic number\n"), file_name);
19877 fclose (filedata->handle);
19878 free (filedata);
19879 return FALSE;
19880 }
19881
19882 filedata->file_size = (bfd_size_type) statbuf.st_size;
19883
19884 if (memcmp (armag, ARMAG, SARMAG) == 0)
19885 {
19886 if (! process_archive (filedata, FALSE))
19887 ret = FALSE;
19888 }
19889 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
19890 {
19891 if ( ! process_archive (filedata, TRUE))
19892 ret = FALSE;
19893 }
19894 else
19895 {
19896 if (do_archive_index)
19897 error (_("File %s is not an archive so its index cannot be displayed.\n"),
19898 file_name);
19899
19900 rewind (filedata->handle);
19901 archive_file_size = archive_file_offset = 0;
19902
19903 if (! process_object (filedata))
19904 ret = FALSE;
19905 }
19906
19907 fclose (filedata->handle);
19908 free (filedata);
19909
19910 return ret;
19911 }
19912
19913 #ifdef SUPPORT_DISASSEMBLY
19914 /* Needed by the i386 disassembler. For extra credit, someone could
19915 fix this so that we insert symbolic addresses here, esp for GOT/PLT
19916 symbols. */
19917
19918 void
19919 print_address (unsigned int addr, FILE * outfile)
19920 {
19921 fprintf (outfile,"0x%8.8x", addr);
19922 }
19923
19924 /* Needed by the i386 disassembler. */
19925
19926 void
19927 db_task_printsym (unsigned int addr)
19928 {
19929 print_address (addr, stderr);
19930 }
19931 #endif
19932
19933 int
19934 main (int argc, char ** argv)
19935 {
19936 int err;
19937
19938 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
19939 setlocale (LC_MESSAGES, "");
19940 #endif
19941 #if defined (HAVE_SETLOCALE)
19942 setlocale (LC_CTYPE, "");
19943 #endif
19944 bindtextdomain (PACKAGE, LOCALEDIR);
19945 textdomain (PACKAGE);
19946
19947 expandargv (&argc, &argv);
19948
19949 cmdline.file_name = "<cmdline>";
19950 parse_args (& cmdline, argc, argv);
19951
19952 if (optind < (argc - 1))
19953 show_name = TRUE;
19954 else if (optind >= argc)
19955 {
19956 warn (_("Nothing to do.\n"));
19957 usage (stderr);
19958 }
19959
19960 err = FALSE;
19961 while (optind < argc)
19962 if (! process_file (argv[optind++]))
19963 err = TRUE;
19964
19965 if (cmdline.dump_sects != NULL)
19966 free (cmdline.dump_sects);
19967
19968 return err ? EXIT_FAILURE : EXIT_SUCCESS;
19969 }
This page took 0.479348 seconds and 5 git commands to generate.