Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172 }
173
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176 {
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235 }
236
237 static void __bio_free(struct bio *bio)
238 {
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243 }
244
245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
269 void bio_init(struct bio *bio)
270 {
271 memset(bio, 0, sizeof(*bio));
272 atomic_set(&bio->__bi_remaining, 1);
273 atomic_set(&bio->__bi_cnt, 1);
274 }
275 EXPORT_SYMBOL(bio_init);
276
277 /**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287 void bio_reset(struct bio *bio)
288 {
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
291 __bio_free(bio);
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags;
295 atomic_set(&bio->__bi_remaining, 1);
296 }
297 EXPORT_SYMBOL(bio_reset);
298
299 static struct bio *__bio_chain_endio(struct bio *bio)
300 {
301 struct bio *parent = bio->bi_private;
302
303 if (!parent->bi_error)
304 parent->bi_error = bio->bi_error;
305 bio_put(bio);
306 return parent;
307 }
308
309 static void bio_chain_endio(struct bio *bio)
310 {
311 bio_endio(__bio_chain_endio(bio));
312 }
313
314 /**
315 * bio_chain - chain bio completions
316 * @bio: the target bio
317 * @parent: the @bio's parent bio
318 *
319 * The caller won't have a bi_end_io called when @bio completes - instead,
320 * @parent's bi_end_io won't be called until both @parent and @bio have
321 * completed; the chained bio will also be freed when it completes.
322 *
323 * The caller must not set bi_private or bi_end_io in @bio.
324 */
325 void bio_chain(struct bio *bio, struct bio *parent)
326 {
327 BUG_ON(bio->bi_private || bio->bi_end_io);
328
329 bio->bi_private = parent;
330 bio->bi_end_io = bio_chain_endio;
331 bio_inc_remaining(parent);
332 }
333 EXPORT_SYMBOL(bio_chain);
334
335 static void bio_alloc_rescue(struct work_struct *work)
336 {
337 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
338 struct bio *bio;
339
340 while (1) {
341 spin_lock(&bs->rescue_lock);
342 bio = bio_list_pop(&bs->rescue_list);
343 spin_unlock(&bs->rescue_lock);
344
345 if (!bio)
346 break;
347
348 generic_make_request(bio);
349 }
350 }
351
352 static void punt_bios_to_rescuer(struct bio_set *bs)
353 {
354 struct bio_list punt, nopunt;
355 struct bio *bio;
356
357 /*
358 * In order to guarantee forward progress we must punt only bios that
359 * were allocated from this bio_set; otherwise, if there was a bio on
360 * there for a stacking driver higher up in the stack, processing it
361 * could require allocating bios from this bio_set, and doing that from
362 * our own rescuer would be bad.
363 *
364 * Since bio lists are singly linked, pop them all instead of trying to
365 * remove from the middle of the list:
366 */
367
368 bio_list_init(&punt);
369 bio_list_init(&nopunt);
370
371 while ((bio = bio_list_pop(current->bio_list)))
372 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
373
374 *current->bio_list = nopunt;
375
376 spin_lock(&bs->rescue_lock);
377 bio_list_merge(&bs->rescue_list, &punt);
378 spin_unlock(&bs->rescue_lock);
379
380 queue_work(bs->rescue_workqueue, &bs->rescue_work);
381 }
382
383 /**
384 * bio_alloc_bioset - allocate a bio for I/O
385 * @gfp_mask: the GFP_ mask given to the slab allocator
386 * @nr_iovecs: number of iovecs to pre-allocate
387 * @bs: the bio_set to allocate from.
388 *
389 * Description:
390 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
391 * backed by the @bs's mempool.
392 *
393 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
394 * always be able to allocate a bio. This is due to the mempool guarantees.
395 * To make this work, callers must never allocate more than 1 bio at a time
396 * from this pool. Callers that need to allocate more than 1 bio must always
397 * submit the previously allocated bio for IO before attempting to allocate
398 * a new one. Failure to do so can cause deadlocks under memory pressure.
399 *
400 * Note that when running under generic_make_request() (i.e. any block
401 * driver), bios are not submitted until after you return - see the code in
402 * generic_make_request() that converts recursion into iteration, to prevent
403 * stack overflows.
404 *
405 * This would normally mean allocating multiple bios under
406 * generic_make_request() would be susceptible to deadlocks, but we have
407 * deadlock avoidance code that resubmits any blocked bios from a rescuer
408 * thread.
409 *
410 * However, we do not guarantee forward progress for allocations from other
411 * mempools. Doing multiple allocations from the same mempool under
412 * generic_make_request() should be avoided - instead, use bio_set's front_pad
413 * for per bio allocations.
414 *
415 * RETURNS:
416 * Pointer to new bio on success, NULL on failure.
417 */
418 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
419 {
420 gfp_t saved_gfp = gfp_mask;
421 unsigned front_pad;
422 unsigned inline_vecs;
423 unsigned long idx = BIO_POOL_NONE;
424 struct bio_vec *bvl = NULL;
425 struct bio *bio;
426 void *p;
427
428 if (!bs) {
429 if (nr_iovecs > UIO_MAXIOV)
430 return NULL;
431
432 p = kmalloc(sizeof(struct bio) +
433 nr_iovecs * sizeof(struct bio_vec),
434 gfp_mask);
435 front_pad = 0;
436 inline_vecs = nr_iovecs;
437 } else {
438 /* should not use nobvec bioset for nr_iovecs > 0 */
439 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
440 return NULL;
441 /*
442 * generic_make_request() converts recursion to iteration; this
443 * means if we're running beneath it, any bios we allocate and
444 * submit will not be submitted (and thus freed) until after we
445 * return.
446 *
447 * This exposes us to a potential deadlock if we allocate
448 * multiple bios from the same bio_set() while running
449 * underneath generic_make_request(). If we were to allocate
450 * multiple bios (say a stacking block driver that was splitting
451 * bios), we would deadlock if we exhausted the mempool's
452 * reserve.
453 *
454 * We solve this, and guarantee forward progress, with a rescuer
455 * workqueue per bio_set. If we go to allocate and there are
456 * bios on current->bio_list, we first try the allocation
457 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
458 * bios we would be blocking to the rescuer workqueue before
459 * we retry with the original gfp_flags.
460 */
461
462 if (current->bio_list && !bio_list_empty(current->bio_list))
463 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
464
465 p = mempool_alloc(bs->bio_pool, gfp_mask);
466 if (!p && gfp_mask != saved_gfp) {
467 punt_bios_to_rescuer(bs);
468 gfp_mask = saved_gfp;
469 p = mempool_alloc(bs->bio_pool, gfp_mask);
470 }
471
472 front_pad = bs->front_pad;
473 inline_vecs = BIO_INLINE_VECS;
474 }
475
476 if (unlikely(!p))
477 return NULL;
478
479 bio = p + front_pad;
480 bio_init(bio);
481
482 if (nr_iovecs > inline_vecs) {
483 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
484 if (!bvl && gfp_mask != saved_gfp) {
485 punt_bios_to_rescuer(bs);
486 gfp_mask = saved_gfp;
487 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
488 }
489
490 if (unlikely(!bvl))
491 goto err_free;
492
493 bio_set_flag(bio, BIO_OWNS_VEC);
494 } else if (nr_iovecs) {
495 bvl = bio->bi_inline_vecs;
496 }
497
498 bio->bi_pool = bs;
499 bio->bi_flags |= idx << BIO_POOL_OFFSET;
500 bio->bi_max_vecs = nr_iovecs;
501 bio->bi_io_vec = bvl;
502 return bio;
503
504 err_free:
505 mempool_free(p, bs->bio_pool);
506 return NULL;
507 }
508 EXPORT_SYMBOL(bio_alloc_bioset);
509
510 void zero_fill_bio(struct bio *bio)
511 {
512 unsigned long flags;
513 struct bio_vec bv;
514 struct bvec_iter iter;
515
516 bio_for_each_segment(bv, bio, iter) {
517 char *data = bvec_kmap_irq(&bv, &flags);
518 memset(data, 0, bv.bv_len);
519 flush_dcache_page(bv.bv_page);
520 bvec_kunmap_irq(data, &flags);
521 }
522 }
523 EXPORT_SYMBOL(zero_fill_bio);
524
525 /**
526 * bio_put - release a reference to a bio
527 * @bio: bio to release reference to
528 *
529 * Description:
530 * Put a reference to a &struct bio, either one you have gotten with
531 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
532 **/
533 void bio_put(struct bio *bio)
534 {
535 if (!bio_flagged(bio, BIO_REFFED))
536 bio_free(bio);
537 else {
538 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
539
540 /*
541 * last put frees it
542 */
543 if (atomic_dec_and_test(&bio->__bi_cnt))
544 bio_free(bio);
545 }
546 }
547 EXPORT_SYMBOL(bio_put);
548
549 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
550 {
551 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
552 blk_recount_segments(q, bio);
553
554 return bio->bi_phys_segments;
555 }
556 EXPORT_SYMBOL(bio_phys_segments);
557
558 /**
559 * __bio_clone_fast - clone a bio that shares the original bio's biovec
560 * @bio: destination bio
561 * @bio_src: bio to clone
562 *
563 * Clone a &bio. Caller will own the returned bio, but not
564 * the actual data it points to. Reference count of returned
565 * bio will be one.
566 *
567 * Caller must ensure that @bio_src is not freed before @bio.
568 */
569 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
570 {
571 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
572
573 /*
574 * most users will be overriding ->bi_bdev with a new target,
575 * so we don't set nor calculate new physical/hw segment counts here
576 */
577 bio->bi_bdev = bio_src->bi_bdev;
578 bio_set_flag(bio, BIO_CLONED);
579 bio->bi_rw = bio_src->bi_rw;
580 bio->bi_iter = bio_src->bi_iter;
581 bio->bi_io_vec = bio_src->bi_io_vec;
582 }
583 EXPORT_SYMBOL(__bio_clone_fast);
584
585 /**
586 * bio_clone_fast - clone a bio that shares the original bio's biovec
587 * @bio: bio to clone
588 * @gfp_mask: allocation priority
589 * @bs: bio_set to allocate from
590 *
591 * Like __bio_clone_fast, only also allocates the returned bio
592 */
593 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
594 {
595 struct bio *b;
596
597 b = bio_alloc_bioset(gfp_mask, 0, bs);
598 if (!b)
599 return NULL;
600
601 __bio_clone_fast(b, bio);
602
603 if (bio_integrity(bio)) {
604 int ret;
605
606 ret = bio_integrity_clone(b, bio, gfp_mask);
607
608 if (ret < 0) {
609 bio_put(b);
610 return NULL;
611 }
612 }
613
614 return b;
615 }
616 EXPORT_SYMBOL(bio_clone_fast);
617
618 /**
619 * bio_clone_bioset - clone a bio
620 * @bio_src: bio to clone
621 * @gfp_mask: allocation priority
622 * @bs: bio_set to allocate from
623 *
624 * Clone bio. Caller will own the returned bio, but not the actual data it
625 * points to. Reference count of returned bio will be one.
626 */
627 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
628 struct bio_set *bs)
629 {
630 struct bvec_iter iter;
631 struct bio_vec bv;
632 struct bio *bio;
633
634 /*
635 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
636 * bio_src->bi_io_vec to bio->bi_io_vec.
637 *
638 * We can't do that anymore, because:
639 *
640 * - The point of cloning the biovec is to produce a bio with a biovec
641 * the caller can modify: bi_idx and bi_bvec_done should be 0.
642 *
643 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
644 * we tried to clone the whole thing bio_alloc_bioset() would fail.
645 * But the clone should succeed as long as the number of biovecs we
646 * actually need to allocate is fewer than BIO_MAX_PAGES.
647 *
648 * - Lastly, bi_vcnt should not be looked at or relied upon by code
649 * that does not own the bio - reason being drivers don't use it for
650 * iterating over the biovec anymore, so expecting it to be kept up
651 * to date (i.e. for clones that share the parent biovec) is just
652 * asking for trouble and would force extra work on
653 * __bio_clone_fast() anyways.
654 */
655
656 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
657 if (!bio)
658 return NULL;
659
660 bio->bi_bdev = bio_src->bi_bdev;
661 bio->bi_rw = bio_src->bi_rw;
662 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
663 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
664
665 if (bio->bi_rw & REQ_DISCARD)
666 goto integrity_clone;
667
668 if (bio->bi_rw & REQ_WRITE_SAME) {
669 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
670 goto integrity_clone;
671 }
672
673 bio_for_each_segment(bv, bio_src, iter)
674 bio->bi_io_vec[bio->bi_vcnt++] = bv;
675
676 integrity_clone:
677 if (bio_integrity(bio_src)) {
678 int ret;
679
680 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
681 if (ret < 0) {
682 bio_put(bio);
683 return NULL;
684 }
685 }
686
687 return bio;
688 }
689 EXPORT_SYMBOL(bio_clone_bioset);
690
691 /**
692 * bio_add_pc_page - attempt to add page to bio
693 * @q: the target queue
694 * @bio: destination bio
695 * @page: page to add
696 * @len: vec entry length
697 * @offset: vec entry offset
698 *
699 * Attempt to add a page to the bio_vec maplist. This can fail for a
700 * number of reasons, such as the bio being full or target block device
701 * limitations. The target block device must allow bio's up to PAGE_SIZE,
702 * so it is always possible to add a single page to an empty bio.
703 *
704 * This should only be used by REQ_PC bios.
705 */
706 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
707 *page, unsigned int len, unsigned int offset)
708 {
709 int retried_segments = 0;
710 struct bio_vec *bvec;
711
712 /*
713 * cloned bio must not modify vec list
714 */
715 if (unlikely(bio_flagged(bio, BIO_CLONED)))
716 return 0;
717
718 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
719 return 0;
720
721 /*
722 * For filesystems with a blocksize smaller than the pagesize
723 * we will often be called with the same page as last time and
724 * a consecutive offset. Optimize this special case.
725 */
726 if (bio->bi_vcnt > 0) {
727 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
728
729 if (page == prev->bv_page &&
730 offset == prev->bv_offset + prev->bv_len) {
731 prev->bv_len += len;
732 bio->bi_iter.bi_size += len;
733 goto done;
734 }
735
736 /*
737 * If the queue doesn't support SG gaps and adding this
738 * offset would create a gap, disallow it.
739 */
740 if (bvec_gap_to_prev(q, prev, offset))
741 return 0;
742 }
743
744 if (bio->bi_vcnt >= bio->bi_max_vecs)
745 return 0;
746
747 /*
748 * setup the new entry, we might clear it again later if we
749 * cannot add the page
750 */
751 bvec = &bio->bi_io_vec[bio->bi_vcnt];
752 bvec->bv_page = page;
753 bvec->bv_len = len;
754 bvec->bv_offset = offset;
755 bio->bi_vcnt++;
756 bio->bi_phys_segments++;
757 bio->bi_iter.bi_size += len;
758
759 /*
760 * Perform a recount if the number of segments is greater
761 * than queue_max_segments(q).
762 */
763
764 while (bio->bi_phys_segments > queue_max_segments(q)) {
765
766 if (retried_segments)
767 goto failed;
768
769 retried_segments = 1;
770 blk_recount_segments(q, bio);
771 }
772
773 /* If we may be able to merge these biovecs, force a recount */
774 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
775 bio_clear_flag(bio, BIO_SEG_VALID);
776
777 done:
778 return len;
779
780 failed:
781 bvec->bv_page = NULL;
782 bvec->bv_len = 0;
783 bvec->bv_offset = 0;
784 bio->bi_vcnt--;
785 bio->bi_iter.bi_size -= len;
786 blk_recount_segments(q, bio);
787 return 0;
788 }
789 EXPORT_SYMBOL(bio_add_pc_page);
790
791 /**
792 * bio_add_page - attempt to add page to bio
793 * @bio: destination bio
794 * @page: page to add
795 * @len: vec entry length
796 * @offset: vec entry offset
797 *
798 * Attempt to add a page to the bio_vec maplist. This will only fail
799 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
800 */
801 int bio_add_page(struct bio *bio, struct page *page,
802 unsigned int len, unsigned int offset)
803 {
804 struct bio_vec *bv;
805
806 /*
807 * cloned bio must not modify vec list
808 */
809 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
810 return 0;
811
812 /*
813 * For filesystems with a blocksize smaller than the pagesize
814 * we will often be called with the same page as last time and
815 * a consecutive offset. Optimize this special case.
816 */
817 if (bio->bi_vcnt > 0) {
818 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
819
820 if (page == bv->bv_page &&
821 offset == bv->bv_offset + bv->bv_len) {
822 bv->bv_len += len;
823 goto done;
824 }
825 }
826
827 if (bio->bi_vcnt >= bio->bi_max_vecs)
828 return 0;
829
830 bv = &bio->bi_io_vec[bio->bi_vcnt];
831 bv->bv_page = page;
832 bv->bv_len = len;
833 bv->bv_offset = offset;
834
835 bio->bi_vcnt++;
836 done:
837 bio->bi_iter.bi_size += len;
838 return len;
839 }
840 EXPORT_SYMBOL(bio_add_page);
841
842 struct submit_bio_ret {
843 struct completion event;
844 int error;
845 };
846
847 static void submit_bio_wait_endio(struct bio *bio)
848 {
849 struct submit_bio_ret *ret = bio->bi_private;
850
851 ret->error = bio->bi_error;
852 complete(&ret->event);
853 }
854
855 /**
856 * submit_bio_wait - submit a bio, and wait until it completes
857 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
858 * @bio: The &struct bio which describes the I/O
859 *
860 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
861 * bio_endio() on failure.
862 */
863 int submit_bio_wait(int rw, struct bio *bio)
864 {
865 struct submit_bio_ret ret;
866
867 rw |= REQ_SYNC;
868 init_completion(&ret.event);
869 bio->bi_private = &ret;
870 bio->bi_end_io = submit_bio_wait_endio;
871 submit_bio(rw, bio);
872 wait_for_completion_io(&ret.event);
873
874 return ret.error;
875 }
876 EXPORT_SYMBOL(submit_bio_wait);
877
878 /**
879 * bio_advance - increment/complete a bio by some number of bytes
880 * @bio: bio to advance
881 * @bytes: number of bytes to complete
882 *
883 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
884 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
885 * be updated on the last bvec as well.
886 *
887 * @bio will then represent the remaining, uncompleted portion of the io.
888 */
889 void bio_advance(struct bio *bio, unsigned bytes)
890 {
891 if (bio_integrity(bio))
892 bio_integrity_advance(bio, bytes);
893
894 bio_advance_iter(bio, &bio->bi_iter, bytes);
895 }
896 EXPORT_SYMBOL(bio_advance);
897
898 /**
899 * bio_alloc_pages - allocates a single page for each bvec in a bio
900 * @bio: bio to allocate pages for
901 * @gfp_mask: flags for allocation
902 *
903 * Allocates pages up to @bio->bi_vcnt.
904 *
905 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
906 * freed.
907 */
908 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
909 {
910 int i;
911 struct bio_vec *bv;
912
913 bio_for_each_segment_all(bv, bio, i) {
914 bv->bv_page = alloc_page(gfp_mask);
915 if (!bv->bv_page) {
916 while (--bv >= bio->bi_io_vec)
917 __free_page(bv->bv_page);
918 return -ENOMEM;
919 }
920 }
921
922 return 0;
923 }
924 EXPORT_SYMBOL(bio_alloc_pages);
925
926 /**
927 * bio_copy_data - copy contents of data buffers from one chain of bios to
928 * another
929 * @src: source bio list
930 * @dst: destination bio list
931 *
932 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
933 * @src and @dst as linked lists of bios.
934 *
935 * Stops when it reaches the end of either @src or @dst - that is, copies
936 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
937 */
938 void bio_copy_data(struct bio *dst, struct bio *src)
939 {
940 struct bvec_iter src_iter, dst_iter;
941 struct bio_vec src_bv, dst_bv;
942 void *src_p, *dst_p;
943 unsigned bytes;
944
945 src_iter = src->bi_iter;
946 dst_iter = dst->bi_iter;
947
948 while (1) {
949 if (!src_iter.bi_size) {
950 src = src->bi_next;
951 if (!src)
952 break;
953
954 src_iter = src->bi_iter;
955 }
956
957 if (!dst_iter.bi_size) {
958 dst = dst->bi_next;
959 if (!dst)
960 break;
961
962 dst_iter = dst->bi_iter;
963 }
964
965 src_bv = bio_iter_iovec(src, src_iter);
966 dst_bv = bio_iter_iovec(dst, dst_iter);
967
968 bytes = min(src_bv.bv_len, dst_bv.bv_len);
969
970 src_p = kmap_atomic(src_bv.bv_page);
971 dst_p = kmap_atomic(dst_bv.bv_page);
972
973 memcpy(dst_p + dst_bv.bv_offset,
974 src_p + src_bv.bv_offset,
975 bytes);
976
977 kunmap_atomic(dst_p);
978 kunmap_atomic(src_p);
979
980 bio_advance_iter(src, &src_iter, bytes);
981 bio_advance_iter(dst, &dst_iter, bytes);
982 }
983 }
984 EXPORT_SYMBOL(bio_copy_data);
985
986 struct bio_map_data {
987 int is_our_pages;
988 struct iov_iter iter;
989 struct iovec iov[];
990 };
991
992 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
993 gfp_t gfp_mask)
994 {
995 if (iov_count > UIO_MAXIOV)
996 return NULL;
997
998 return kmalloc(sizeof(struct bio_map_data) +
999 sizeof(struct iovec) * iov_count, gfp_mask);
1000 }
1001
1002 /**
1003 * bio_copy_from_iter - copy all pages from iov_iter to bio
1004 * @bio: The &struct bio which describes the I/O as destination
1005 * @iter: iov_iter as source
1006 *
1007 * Copy all pages from iov_iter to bio.
1008 * Returns 0 on success, or error on failure.
1009 */
1010 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1011 {
1012 int i;
1013 struct bio_vec *bvec;
1014
1015 bio_for_each_segment_all(bvec, bio, i) {
1016 ssize_t ret;
1017
1018 ret = copy_page_from_iter(bvec->bv_page,
1019 bvec->bv_offset,
1020 bvec->bv_len,
1021 &iter);
1022
1023 if (!iov_iter_count(&iter))
1024 break;
1025
1026 if (ret < bvec->bv_len)
1027 return -EFAULT;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * bio_copy_to_iter - copy all pages from bio to iov_iter
1035 * @bio: The &struct bio which describes the I/O as source
1036 * @iter: iov_iter as destination
1037 *
1038 * Copy all pages from bio to iov_iter.
1039 * Returns 0 on success, or error on failure.
1040 */
1041 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1042 {
1043 int i;
1044 struct bio_vec *bvec;
1045
1046 bio_for_each_segment_all(bvec, bio, i) {
1047 ssize_t ret;
1048
1049 ret = copy_page_to_iter(bvec->bv_page,
1050 bvec->bv_offset,
1051 bvec->bv_len,
1052 &iter);
1053
1054 if (!iov_iter_count(&iter))
1055 break;
1056
1057 if (ret < bvec->bv_len)
1058 return -EFAULT;
1059 }
1060
1061 return 0;
1062 }
1063
1064 static void bio_free_pages(struct bio *bio)
1065 {
1066 struct bio_vec *bvec;
1067 int i;
1068
1069 bio_for_each_segment_all(bvec, bio, i)
1070 __free_page(bvec->bv_page);
1071 }
1072
1073 /**
1074 * bio_uncopy_user - finish previously mapped bio
1075 * @bio: bio being terminated
1076 *
1077 * Free pages allocated from bio_copy_user_iov() and write back data
1078 * to user space in case of a read.
1079 */
1080 int bio_uncopy_user(struct bio *bio)
1081 {
1082 struct bio_map_data *bmd = bio->bi_private;
1083 int ret = 0;
1084
1085 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1086 /*
1087 * if we're in a workqueue, the request is orphaned, so
1088 * don't copy into a random user address space, just free
1089 * and return -EINTR so user space doesn't expect any data.
1090 */
1091 if (!current->mm)
1092 ret = -EINTR;
1093 else if (bio_data_dir(bio) == READ)
1094 ret = bio_copy_to_iter(bio, bmd->iter);
1095 if (bmd->is_our_pages)
1096 bio_free_pages(bio);
1097 }
1098 kfree(bmd);
1099 bio_put(bio);
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(bio_uncopy_user);
1103
1104 /**
1105 * bio_copy_user_iov - copy user data to bio
1106 * @q: destination block queue
1107 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1108 * @iter: iovec iterator
1109 * @gfp_mask: memory allocation flags
1110 *
1111 * Prepares and returns a bio for indirect user io, bouncing data
1112 * to/from kernel pages as necessary. Must be paired with
1113 * call bio_uncopy_user() on io completion.
1114 */
1115 struct bio *bio_copy_user_iov(struct request_queue *q,
1116 struct rq_map_data *map_data,
1117 const struct iov_iter *iter,
1118 gfp_t gfp_mask)
1119 {
1120 struct bio_map_data *bmd;
1121 struct page *page;
1122 struct bio *bio;
1123 int i, ret;
1124 int nr_pages = 0;
1125 unsigned int len = iter->count;
1126 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1127
1128 for (i = 0; i < iter->nr_segs; i++) {
1129 unsigned long uaddr;
1130 unsigned long end;
1131 unsigned long start;
1132
1133 uaddr = (unsigned long) iter->iov[i].iov_base;
1134 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1135 >> PAGE_SHIFT;
1136 start = uaddr >> PAGE_SHIFT;
1137
1138 /*
1139 * Overflow, abort
1140 */
1141 if (end < start)
1142 return ERR_PTR(-EINVAL);
1143
1144 nr_pages += end - start;
1145 }
1146
1147 if (offset)
1148 nr_pages++;
1149
1150 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1151 if (!bmd)
1152 return ERR_PTR(-ENOMEM);
1153
1154 /*
1155 * We need to do a deep copy of the iov_iter including the iovecs.
1156 * The caller provided iov might point to an on-stack or otherwise
1157 * shortlived one.
1158 */
1159 bmd->is_our_pages = map_data ? 0 : 1;
1160 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1161 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1162 iter->nr_segs, iter->count);
1163
1164 ret = -ENOMEM;
1165 bio = bio_kmalloc(gfp_mask, nr_pages);
1166 if (!bio)
1167 goto out_bmd;
1168
1169 if (iter->type & WRITE)
1170 bio->bi_rw |= REQ_WRITE;
1171
1172 ret = 0;
1173
1174 if (map_data) {
1175 nr_pages = 1 << map_data->page_order;
1176 i = map_data->offset / PAGE_SIZE;
1177 }
1178 while (len) {
1179 unsigned int bytes = PAGE_SIZE;
1180
1181 bytes -= offset;
1182
1183 if (bytes > len)
1184 bytes = len;
1185
1186 if (map_data) {
1187 if (i == map_data->nr_entries * nr_pages) {
1188 ret = -ENOMEM;
1189 break;
1190 }
1191
1192 page = map_data->pages[i / nr_pages];
1193 page += (i % nr_pages);
1194
1195 i++;
1196 } else {
1197 page = alloc_page(q->bounce_gfp | gfp_mask);
1198 if (!page) {
1199 ret = -ENOMEM;
1200 break;
1201 }
1202 }
1203
1204 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1205 break;
1206
1207 len -= bytes;
1208 offset = 0;
1209 }
1210
1211 if (ret)
1212 goto cleanup;
1213
1214 /*
1215 * success
1216 */
1217 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1218 (map_data && map_data->from_user)) {
1219 ret = bio_copy_from_iter(bio, *iter);
1220 if (ret)
1221 goto cleanup;
1222 }
1223
1224 bio->bi_private = bmd;
1225 return bio;
1226 cleanup:
1227 if (!map_data)
1228 bio_free_pages(bio);
1229 bio_put(bio);
1230 out_bmd:
1231 kfree(bmd);
1232 return ERR_PTR(ret);
1233 }
1234
1235 /**
1236 * bio_map_user_iov - map user iovec into bio
1237 * @q: the struct request_queue for the bio
1238 * @iter: iovec iterator
1239 * @gfp_mask: memory allocation flags
1240 *
1241 * Map the user space address into a bio suitable for io to a block
1242 * device. Returns an error pointer in case of error.
1243 */
1244 struct bio *bio_map_user_iov(struct request_queue *q,
1245 const struct iov_iter *iter,
1246 gfp_t gfp_mask)
1247 {
1248 int j;
1249 int nr_pages = 0;
1250 struct page **pages;
1251 struct bio *bio;
1252 int cur_page = 0;
1253 int ret, offset;
1254 struct iov_iter i;
1255 struct iovec iov;
1256
1257 iov_for_each(iov, i, *iter) {
1258 unsigned long uaddr = (unsigned long) iov.iov_base;
1259 unsigned long len = iov.iov_len;
1260 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1261 unsigned long start = uaddr >> PAGE_SHIFT;
1262
1263 /*
1264 * Overflow, abort
1265 */
1266 if (end < start)
1267 return ERR_PTR(-EINVAL);
1268
1269 nr_pages += end - start;
1270 /*
1271 * buffer must be aligned to at least hardsector size for now
1272 */
1273 if (uaddr & queue_dma_alignment(q))
1274 return ERR_PTR(-EINVAL);
1275 }
1276
1277 if (!nr_pages)
1278 return ERR_PTR(-EINVAL);
1279
1280 bio = bio_kmalloc(gfp_mask, nr_pages);
1281 if (!bio)
1282 return ERR_PTR(-ENOMEM);
1283
1284 ret = -ENOMEM;
1285 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1286 if (!pages)
1287 goto out;
1288
1289 iov_for_each(iov, i, *iter) {
1290 unsigned long uaddr = (unsigned long) iov.iov_base;
1291 unsigned long len = iov.iov_len;
1292 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1293 unsigned long start = uaddr >> PAGE_SHIFT;
1294 const int local_nr_pages = end - start;
1295 const int page_limit = cur_page + local_nr_pages;
1296
1297 ret = get_user_pages_fast(uaddr, local_nr_pages,
1298 (iter->type & WRITE) != WRITE,
1299 &pages[cur_page]);
1300 if (ret < local_nr_pages) {
1301 ret = -EFAULT;
1302 goto out_unmap;
1303 }
1304
1305 offset = offset_in_page(uaddr);
1306 for (j = cur_page; j < page_limit; j++) {
1307 unsigned int bytes = PAGE_SIZE - offset;
1308
1309 if (len <= 0)
1310 break;
1311
1312 if (bytes > len)
1313 bytes = len;
1314
1315 /*
1316 * sorry...
1317 */
1318 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1319 bytes)
1320 break;
1321
1322 len -= bytes;
1323 offset = 0;
1324 }
1325
1326 cur_page = j;
1327 /*
1328 * release the pages we didn't map into the bio, if any
1329 */
1330 while (j < page_limit)
1331 put_page(pages[j++]);
1332 }
1333
1334 kfree(pages);
1335
1336 /*
1337 * set data direction, and check if mapped pages need bouncing
1338 */
1339 if (iter->type & WRITE)
1340 bio->bi_rw |= REQ_WRITE;
1341
1342 bio_set_flag(bio, BIO_USER_MAPPED);
1343
1344 /*
1345 * subtle -- if __bio_map_user() ended up bouncing a bio,
1346 * it would normally disappear when its bi_end_io is run.
1347 * however, we need it for the unmap, so grab an extra
1348 * reference to it
1349 */
1350 bio_get(bio);
1351 return bio;
1352
1353 out_unmap:
1354 for (j = 0; j < nr_pages; j++) {
1355 if (!pages[j])
1356 break;
1357 put_page(pages[j]);
1358 }
1359 out:
1360 kfree(pages);
1361 bio_put(bio);
1362 return ERR_PTR(ret);
1363 }
1364
1365 static void __bio_unmap_user(struct bio *bio)
1366 {
1367 struct bio_vec *bvec;
1368 int i;
1369
1370 /*
1371 * make sure we dirty pages we wrote to
1372 */
1373 bio_for_each_segment_all(bvec, bio, i) {
1374 if (bio_data_dir(bio) == READ)
1375 set_page_dirty_lock(bvec->bv_page);
1376
1377 put_page(bvec->bv_page);
1378 }
1379
1380 bio_put(bio);
1381 }
1382
1383 /**
1384 * bio_unmap_user - unmap a bio
1385 * @bio: the bio being unmapped
1386 *
1387 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1388 * a process context.
1389 *
1390 * bio_unmap_user() may sleep.
1391 */
1392 void bio_unmap_user(struct bio *bio)
1393 {
1394 __bio_unmap_user(bio);
1395 bio_put(bio);
1396 }
1397 EXPORT_SYMBOL(bio_unmap_user);
1398
1399 static void bio_map_kern_endio(struct bio *bio)
1400 {
1401 bio_put(bio);
1402 }
1403
1404 /**
1405 * bio_map_kern - map kernel address into bio
1406 * @q: the struct request_queue for the bio
1407 * @data: pointer to buffer to map
1408 * @len: length in bytes
1409 * @gfp_mask: allocation flags for bio allocation
1410 *
1411 * Map the kernel address into a bio suitable for io to a block
1412 * device. Returns an error pointer in case of error.
1413 */
1414 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1415 gfp_t gfp_mask)
1416 {
1417 unsigned long kaddr = (unsigned long)data;
1418 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1419 unsigned long start = kaddr >> PAGE_SHIFT;
1420 const int nr_pages = end - start;
1421 int offset, i;
1422 struct bio *bio;
1423
1424 bio = bio_kmalloc(gfp_mask, nr_pages);
1425 if (!bio)
1426 return ERR_PTR(-ENOMEM);
1427
1428 offset = offset_in_page(kaddr);
1429 for (i = 0; i < nr_pages; i++) {
1430 unsigned int bytes = PAGE_SIZE - offset;
1431
1432 if (len <= 0)
1433 break;
1434
1435 if (bytes > len)
1436 bytes = len;
1437
1438 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1439 offset) < bytes) {
1440 /* we don't support partial mappings */
1441 bio_put(bio);
1442 return ERR_PTR(-EINVAL);
1443 }
1444
1445 data += bytes;
1446 len -= bytes;
1447 offset = 0;
1448 }
1449
1450 bio->bi_end_io = bio_map_kern_endio;
1451 return bio;
1452 }
1453 EXPORT_SYMBOL(bio_map_kern);
1454
1455 static void bio_copy_kern_endio(struct bio *bio)
1456 {
1457 bio_free_pages(bio);
1458 bio_put(bio);
1459 }
1460
1461 static void bio_copy_kern_endio_read(struct bio *bio)
1462 {
1463 char *p = bio->bi_private;
1464 struct bio_vec *bvec;
1465 int i;
1466
1467 bio_for_each_segment_all(bvec, bio, i) {
1468 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1469 p += bvec->bv_len;
1470 }
1471
1472 bio_copy_kern_endio(bio);
1473 }
1474
1475 /**
1476 * bio_copy_kern - copy kernel address into bio
1477 * @q: the struct request_queue for the bio
1478 * @data: pointer to buffer to copy
1479 * @len: length in bytes
1480 * @gfp_mask: allocation flags for bio and page allocation
1481 * @reading: data direction is READ
1482 *
1483 * copy the kernel address into a bio suitable for io to a block
1484 * device. Returns an error pointer in case of error.
1485 */
1486 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1487 gfp_t gfp_mask, int reading)
1488 {
1489 unsigned long kaddr = (unsigned long)data;
1490 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1491 unsigned long start = kaddr >> PAGE_SHIFT;
1492 struct bio *bio;
1493 void *p = data;
1494 int nr_pages = 0;
1495
1496 /*
1497 * Overflow, abort
1498 */
1499 if (end < start)
1500 return ERR_PTR(-EINVAL);
1501
1502 nr_pages = end - start;
1503 bio = bio_kmalloc(gfp_mask, nr_pages);
1504 if (!bio)
1505 return ERR_PTR(-ENOMEM);
1506
1507 while (len) {
1508 struct page *page;
1509 unsigned int bytes = PAGE_SIZE;
1510
1511 if (bytes > len)
1512 bytes = len;
1513
1514 page = alloc_page(q->bounce_gfp | gfp_mask);
1515 if (!page)
1516 goto cleanup;
1517
1518 if (!reading)
1519 memcpy(page_address(page), p, bytes);
1520
1521 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1522 break;
1523
1524 len -= bytes;
1525 p += bytes;
1526 }
1527
1528 if (reading) {
1529 bio->bi_end_io = bio_copy_kern_endio_read;
1530 bio->bi_private = data;
1531 } else {
1532 bio->bi_end_io = bio_copy_kern_endio;
1533 bio->bi_rw |= REQ_WRITE;
1534 }
1535
1536 return bio;
1537
1538 cleanup:
1539 bio_free_pages(bio);
1540 bio_put(bio);
1541 return ERR_PTR(-ENOMEM);
1542 }
1543 EXPORT_SYMBOL(bio_copy_kern);
1544
1545 /*
1546 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1547 * for performing direct-IO in BIOs.
1548 *
1549 * The problem is that we cannot run set_page_dirty() from interrupt context
1550 * because the required locks are not interrupt-safe. So what we can do is to
1551 * mark the pages dirty _before_ performing IO. And in interrupt context,
1552 * check that the pages are still dirty. If so, fine. If not, redirty them
1553 * in process context.
1554 *
1555 * We special-case compound pages here: normally this means reads into hugetlb
1556 * pages. The logic in here doesn't really work right for compound pages
1557 * because the VM does not uniformly chase down the head page in all cases.
1558 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1559 * handle them at all. So we skip compound pages here at an early stage.
1560 *
1561 * Note that this code is very hard to test under normal circumstances because
1562 * direct-io pins the pages with get_user_pages(). This makes
1563 * is_page_cache_freeable return false, and the VM will not clean the pages.
1564 * But other code (eg, flusher threads) could clean the pages if they are mapped
1565 * pagecache.
1566 *
1567 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1568 * deferred bio dirtying paths.
1569 */
1570
1571 /*
1572 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1573 */
1574 void bio_set_pages_dirty(struct bio *bio)
1575 {
1576 struct bio_vec *bvec;
1577 int i;
1578
1579 bio_for_each_segment_all(bvec, bio, i) {
1580 struct page *page = bvec->bv_page;
1581
1582 if (page && !PageCompound(page))
1583 set_page_dirty_lock(page);
1584 }
1585 }
1586
1587 static void bio_release_pages(struct bio *bio)
1588 {
1589 struct bio_vec *bvec;
1590 int i;
1591
1592 bio_for_each_segment_all(bvec, bio, i) {
1593 struct page *page = bvec->bv_page;
1594
1595 if (page)
1596 put_page(page);
1597 }
1598 }
1599
1600 /*
1601 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1602 * If they are, then fine. If, however, some pages are clean then they must
1603 * have been written out during the direct-IO read. So we take another ref on
1604 * the BIO and the offending pages and re-dirty the pages in process context.
1605 *
1606 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1607 * here on. It will run one put_page() against each page and will run one
1608 * bio_put() against the BIO.
1609 */
1610
1611 static void bio_dirty_fn(struct work_struct *work);
1612
1613 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1614 static DEFINE_SPINLOCK(bio_dirty_lock);
1615 static struct bio *bio_dirty_list;
1616
1617 /*
1618 * This runs in process context
1619 */
1620 static void bio_dirty_fn(struct work_struct *work)
1621 {
1622 unsigned long flags;
1623 struct bio *bio;
1624
1625 spin_lock_irqsave(&bio_dirty_lock, flags);
1626 bio = bio_dirty_list;
1627 bio_dirty_list = NULL;
1628 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1629
1630 while (bio) {
1631 struct bio *next = bio->bi_private;
1632
1633 bio_set_pages_dirty(bio);
1634 bio_release_pages(bio);
1635 bio_put(bio);
1636 bio = next;
1637 }
1638 }
1639
1640 void bio_check_pages_dirty(struct bio *bio)
1641 {
1642 struct bio_vec *bvec;
1643 int nr_clean_pages = 0;
1644 int i;
1645
1646 bio_for_each_segment_all(bvec, bio, i) {
1647 struct page *page = bvec->bv_page;
1648
1649 if (PageDirty(page) || PageCompound(page)) {
1650 put_page(page);
1651 bvec->bv_page = NULL;
1652 } else {
1653 nr_clean_pages++;
1654 }
1655 }
1656
1657 if (nr_clean_pages) {
1658 unsigned long flags;
1659
1660 spin_lock_irqsave(&bio_dirty_lock, flags);
1661 bio->bi_private = bio_dirty_list;
1662 bio_dirty_list = bio;
1663 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1664 schedule_work(&bio_dirty_work);
1665 } else {
1666 bio_put(bio);
1667 }
1668 }
1669
1670 void generic_start_io_acct(int rw, unsigned long sectors,
1671 struct hd_struct *part)
1672 {
1673 int cpu = part_stat_lock();
1674
1675 part_round_stats(cpu, part);
1676 part_stat_inc(cpu, part, ios[rw]);
1677 part_stat_add(cpu, part, sectors[rw], sectors);
1678 part_inc_in_flight(part, rw);
1679
1680 part_stat_unlock();
1681 }
1682 EXPORT_SYMBOL(generic_start_io_acct);
1683
1684 void generic_end_io_acct(int rw, struct hd_struct *part,
1685 unsigned long start_time)
1686 {
1687 unsigned long duration = jiffies - start_time;
1688 int cpu = part_stat_lock();
1689
1690 part_stat_add(cpu, part, ticks[rw], duration);
1691 part_round_stats(cpu, part);
1692 part_dec_in_flight(part, rw);
1693
1694 part_stat_unlock();
1695 }
1696 EXPORT_SYMBOL(generic_end_io_acct);
1697
1698 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1699 void bio_flush_dcache_pages(struct bio *bi)
1700 {
1701 struct bio_vec bvec;
1702 struct bvec_iter iter;
1703
1704 bio_for_each_segment(bvec, bi, iter)
1705 flush_dcache_page(bvec.bv_page);
1706 }
1707 EXPORT_SYMBOL(bio_flush_dcache_pages);
1708 #endif
1709
1710 static inline bool bio_remaining_done(struct bio *bio)
1711 {
1712 /*
1713 * If we're not chaining, then ->__bi_remaining is always 1 and
1714 * we always end io on the first invocation.
1715 */
1716 if (!bio_flagged(bio, BIO_CHAIN))
1717 return true;
1718
1719 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1720
1721 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1722 bio_clear_flag(bio, BIO_CHAIN);
1723 return true;
1724 }
1725
1726 return false;
1727 }
1728
1729 /**
1730 * bio_endio - end I/O on a bio
1731 * @bio: bio
1732 *
1733 * Description:
1734 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1735 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1736 * bio unless they own it and thus know that it has an end_io function.
1737 **/
1738 void bio_endio(struct bio *bio)
1739 {
1740 again:
1741 if (!bio_remaining_done(bio))
1742 return;
1743
1744 /*
1745 * Need to have a real endio function for chained bios, otherwise
1746 * various corner cases will break (like stacking block devices that
1747 * save/restore bi_end_io) - however, we want to avoid unbounded
1748 * recursion and blowing the stack. Tail call optimization would
1749 * handle this, but compiling with frame pointers also disables
1750 * gcc's sibling call optimization.
1751 */
1752 if (bio->bi_end_io == bio_chain_endio) {
1753 bio = __bio_chain_endio(bio);
1754 goto again;
1755 }
1756
1757 if (bio->bi_end_io)
1758 bio->bi_end_io(bio);
1759 }
1760 EXPORT_SYMBOL(bio_endio);
1761
1762 /**
1763 * bio_split - split a bio
1764 * @bio: bio to split
1765 * @sectors: number of sectors to split from the front of @bio
1766 * @gfp: gfp mask
1767 * @bs: bio set to allocate from
1768 *
1769 * Allocates and returns a new bio which represents @sectors from the start of
1770 * @bio, and updates @bio to represent the remaining sectors.
1771 *
1772 * Unless this is a discard request the newly allocated bio will point
1773 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1774 * @bio is not freed before the split.
1775 */
1776 struct bio *bio_split(struct bio *bio, int sectors,
1777 gfp_t gfp, struct bio_set *bs)
1778 {
1779 struct bio *split = NULL;
1780
1781 BUG_ON(sectors <= 0);
1782 BUG_ON(sectors >= bio_sectors(bio));
1783
1784 /*
1785 * Discards need a mutable bio_vec to accommodate the payload
1786 * required by the DSM TRIM and UNMAP commands.
1787 */
1788 if (bio->bi_rw & REQ_DISCARD)
1789 split = bio_clone_bioset(bio, gfp, bs);
1790 else
1791 split = bio_clone_fast(bio, gfp, bs);
1792
1793 if (!split)
1794 return NULL;
1795
1796 split->bi_iter.bi_size = sectors << 9;
1797
1798 if (bio_integrity(split))
1799 bio_integrity_trim(split, 0, sectors);
1800
1801 bio_advance(bio, split->bi_iter.bi_size);
1802
1803 return split;
1804 }
1805 EXPORT_SYMBOL(bio_split);
1806
1807 /**
1808 * bio_trim - trim a bio
1809 * @bio: bio to trim
1810 * @offset: number of sectors to trim from the front of @bio
1811 * @size: size we want to trim @bio to, in sectors
1812 */
1813 void bio_trim(struct bio *bio, int offset, int size)
1814 {
1815 /* 'bio' is a cloned bio which we need to trim to match
1816 * the given offset and size.
1817 */
1818
1819 size <<= 9;
1820 if (offset == 0 && size == bio->bi_iter.bi_size)
1821 return;
1822
1823 bio_clear_flag(bio, BIO_SEG_VALID);
1824
1825 bio_advance(bio, offset << 9);
1826
1827 bio->bi_iter.bi_size = size;
1828 }
1829 EXPORT_SYMBOL_GPL(bio_trim);
1830
1831 /*
1832 * create memory pools for biovec's in a bio_set.
1833 * use the global biovec slabs created for general use.
1834 */
1835 mempool_t *biovec_create_pool(int pool_entries)
1836 {
1837 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1838
1839 return mempool_create_slab_pool(pool_entries, bp->slab);
1840 }
1841
1842 void bioset_free(struct bio_set *bs)
1843 {
1844 if (bs->rescue_workqueue)
1845 destroy_workqueue(bs->rescue_workqueue);
1846
1847 if (bs->bio_pool)
1848 mempool_destroy(bs->bio_pool);
1849
1850 if (bs->bvec_pool)
1851 mempool_destroy(bs->bvec_pool);
1852
1853 bioset_integrity_free(bs);
1854 bio_put_slab(bs);
1855
1856 kfree(bs);
1857 }
1858 EXPORT_SYMBOL(bioset_free);
1859
1860 static struct bio_set *__bioset_create(unsigned int pool_size,
1861 unsigned int front_pad,
1862 bool create_bvec_pool)
1863 {
1864 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1865 struct bio_set *bs;
1866
1867 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1868 if (!bs)
1869 return NULL;
1870
1871 bs->front_pad = front_pad;
1872
1873 spin_lock_init(&bs->rescue_lock);
1874 bio_list_init(&bs->rescue_list);
1875 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1876
1877 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1878 if (!bs->bio_slab) {
1879 kfree(bs);
1880 return NULL;
1881 }
1882
1883 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1884 if (!bs->bio_pool)
1885 goto bad;
1886
1887 if (create_bvec_pool) {
1888 bs->bvec_pool = biovec_create_pool(pool_size);
1889 if (!bs->bvec_pool)
1890 goto bad;
1891 }
1892
1893 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1894 if (!bs->rescue_workqueue)
1895 goto bad;
1896
1897 return bs;
1898 bad:
1899 bioset_free(bs);
1900 return NULL;
1901 }
1902
1903 /**
1904 * bioset_create - Create a bio_set
1905 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1906 * @front_pad: Number of bytes to allocate in front of the returned bio
1907 *
1908 * Description:
1909 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1910 * to ask for a number of bytes to be allocated in front of the bio.
1911 * Front pad allocation is useful for embedding the bio inside
1912 * another structure, to avoid allocating extra data to go with the bio.
1913 * Note that the bio must be embedded at the END of that structure always,
1914 * or things will break badly.
1915 */
1916 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1917 {
1918 return __bioset_create(pool_size, front_pad, true);
1919 }
1920 EXPORT_SYMBOL(bioset_create);
1921
1922 /**
1923 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1924 * @pool_size: Number of bio to cache in the mempool
1925 * @front_pad: Number of bytes to allocate in front of the returned bio
1926 *
1927 * Description:
1928 * Same functionality as bioset_create() except that mempool is not
1929 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1930 */
1931 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1932 {
1933 return __bioset_create(pool_size, front_pad, false);
1934 }
1935 EXPORT_SYMBOL(bioset_create_nobvec);
1936
1937 #ifdef CONFIG_BLK_CGROUP
1938
1939 /**
1940 * bio_associate_blkcg - associate a bio with the specified blkcg
1941 * @bio: target bio
1942 * @blkcg_css: css of the blkcg to associate
1943 *
1944 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1945 * treat @bio as if it were issued by a task which belongs to the blkcg.
1946 *
1947 * This function takes an extra reference of @blkcg_css which will be put
1948 * when @bio is released. The caller must own @bio and is responsible for
1949 * synchronizing calls to this function.
1950 */
1951 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1952 {
1953 if (unlikely(bio->bi_css))
1954 return -EBUSY;
1955 css_get(blkcg_css);
1956 bio->bi_css = blkcg_css;
1957 return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1960
1961 /**
1962 * bio_associate_current - associate a bio with %current
1963 * @bio: target bio
1964 *
1965 * Associate @bio with %current if it hasn't been associated yet. Block
1966 * layer will treat @bio as if it were issued by %current no matter which
1967 * task actually issues it.
1968 *
1969 * This function takes an extra reference of @task's io_context and blkcg
1970 * which will be put when @bio is released. The caller must own @bio,
1971 * ensure %current->io_context exists, and is responsible for synchronizing
1972 * calls to this function.
1973 */
1974 int bio_associate_current(struct bio *bio)
1975 {
1976 struct io_context *ioc;
1977
1978 if (bio->bi_css)
1979 return -EBUSY;
1980
1981 ioc = current->io_context;
1982 if (!ioc)
1983 return -ENOENT;
1984
1985 get_io_context_active(ioc);
1986 bio->bi_ioc = ioc;
1987 bio->bi_css = task_get_css(current, io_cgrp_id);
1988 return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(bio_associate_current);
1991
1992 /**
1993 * bio_disassociate_task - undo bio_associate_current()
1994 * @bio: target bio
1995 */
1996 void bio_disassociate_task(struct bio *bio)
1997 {
1998 if (bio->bi_ioc) {
1999 put_io_context(bio->bi_ioc);
2000 bio->bi_ioc = NULL;
2001 }
2002 if (bio->bi_css) {
2003 css_put(bio->bi_css);
2004 bio->bi_css = NULL;
2005 }
2006 }
2007
2008 #endif /* CONFIG_BLK_CGROUP */
2009
2010 static void __init biovec_init_slabs(void)
2011 {
2012 int i;
2013
2014 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2015 int size;
2016 struct biovec_slab *bvs = bvec_slabs + i;
2017
2018 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2019 bvs->slab = NULL;
2020 continue;
2021 }
2022
2023 size = bvs->nr_vecs * sizeof(struct bio_vec);
2024 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2025 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2026 }
2027 }
2028
2029 static int __init init_bio(void)
2030 {
2031 bio_slab_max = 2;
2032 bio_slab_nr = 0;
2033 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2034 if (!bio_slabs)
2035 panic("bio: can't allocate bios\n");
2036
2037 bio_integrity_init();
2038 biovec_init_slabs();
2039
2040 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2041 if (!fs_bio_set)
2042 panic("bio: can't allocate bios\n");
2043
2044 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2045 panic("bio: can't create integrity pool\n");
2046
2047 return 0;
2048 }
2049 subsys_initcall(init_bio);
This page took 0.097998 seconds and 5 git commands to generate.