block: don't unecessarily clobber bi_error for chained bios
[deliverable/linux.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172 }
173
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176 {
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235 }
236
237 static void __bio_free(struct bio *bio)
238 {
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243 }
244
245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
269 void bio_init(struct bio *bio)
270 {
271 memset(bio, 0, sizeof(*bio));
272 atomic_set(&bio->__bi_remaining, 1);
273 atomic_set(&bio->__bi_cnt, 1);
274 }
275 EXPORT_SYMBOL(bio_init);
276
277 /**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287 void bio_reset(struct bio *bio)
288 {
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
291 __bio_free(bio);
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags;
295 atomic_set(&bio->__bi_remaining, 1);
296 }
297 EXPORT_SYMBOL(bio_reset);
298
299 static void bio_chain_endio(struct bio *bio)
300 {
301 struct bio *parent = bio->bi_private;
302
303 if (!parent->bi_error)
304 parent->bi_error = bio->bi_error;
305 bio_endio(parent);
306 bio_put(bio);
307 }
308
309 /*
310 * Increment chain count for the bio. Make sure the CHAIN flag update
311 * is visible before the raised count.
312 */
313 static inline void bio_inc_remaining(struct bio *bio)
314 {
315 bio_set_flag(bio, BIO_CHAIN);
316 smp_mb__before_atomic();
317 atomic_inc(&bio->__bi_remaining);
318 }
319
320 /**
321 * bio_chain - chain bio completions
322 * @bio: the target bio
323 * @parent: the @bio's parent bio
324 *
325 * The caller won't have a bi_end_io called when @bio completes - instead,
326 * @parent's bi_end_io won't be called until both @parent and @bio have
327 * completed; the chained bio will also be freed when it completes.
328 *
329 * The caller must not set bi_private or bi_end_io in @bio.
330 */
331 void bio_chain(struct bio *bio, struct bio *parent)
332 {
333 BUG_ON(bio->bi_private || bio->bi_end_io);
334
335 bio->bi_private = parent;
336 bio->bi_end_io = bio_chain_endio;
337 bio_inc_remaining(parent);
338 }
339 EXPORT_SYMBOL(bio_chain);
340
341 static void bio_alloc_rescue(struct work_struct *work)
342 {
343 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
344 struct bio *bio;
345
346 while (1) {
347 spin_lock(&bs->rescue_lock);
348 bio = bio_list_pop(&bs->rescue_list);
349 spin_unlock(&bs->rescue_lock);
350
351 if (!bio)
352 break;
353
354 generic_make_request(bio);
355 }
356 }
357
358 static void punt_bios_to_rescuer(struct bio_set *bs)
359 {
360 struct bio_list punt, nopunt;
361 struct bio *bio;
362
363 /*
364 * In order to guarantee forward progress we must punt only bios that
365 * were allocated from this bio_set; otherwise, if there was a bio on
366 * there for a stacking driver higher up in the stack, processing it
367 * could require allocating bios from this bio_set, and doing that from
368 * our own rescuer would be bad.
369 *
370 * Since bio lists are singly linked, pop them all instead of trying to
371 * remove from the middle of the list:
372 */
373
374 bio_list_init(&punt);
375 bio_list_init(&nopunt);
376
377 while ((bio = bio_list_pop(current->bio_list)))
378 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
379
380 *current->bio_list = nopunt;
381
382 spin_lock(&bs->rescue_lock);
383 bio_list_merge(&bs->rescue_list, &punt);
384 spin_unlock(&bs->rescue_lock);
385
386 queue_work(bs->rescue_workqueue, &bs->rescue_work);
387 }
388
389 /**
390 * bio_alloc_bioset - allocate a bio for I/O
391 * @gfp_mask: the GFP_ mask given to the slab allocator
392 * @nr_iovecs: number of iovecs to pre-allocate
393 * @bs: the bio_set to allocate from.
394 *
395 * Description:
396 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
397 * backed by the @bs's mempool.
398 *
399 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
400 * always be able to allocate a bio. This is due to the mempool guarantees.
401 * To make this work, callers must never allocate more than 1 bio at a time
402 * from this pool. Callers that need to allocate more than 1 bio must always
403 * submit the previously allocated bio for IO before attempting to allocate
404 * a new one. Failure to do so can cause deadlocks under memory pressure.
405 *
406 * Note that when running under generic_make_request() (i.e. any block
407 * driver), bios are not submitted until after you return - see the code in
408 * generic_make_request() that converts recursion into iteration, to prevent
409 * stack overflows.
410 *
411 * This would normally mean allocating multiple bios under
412 * generic_make_request() would be susceptible to deadlocks, but we have
413 * deadlock avoidance code that resubmits any blocked bios from a rescuer
414 * thread.
415 *
416 * However, we do not guarantee forward progress for allocations from other
417 * mempools. Doing multiple allocations from the same mempool under
418 * generic_make_request() should be avoided - instead, use bio_set's front_pad
419 * for per bio allocations.
420 *
421 * RETURNS:
422 * Pointer to new bio on success, NULL on failure.
423 */
424 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
425 {
426 gfp_t saved_gfp = gfp_mask;
427 unsigned front_pad;
428 unsigned inline_vecs;
429 unsigned long idx = BIO_POOL_NONE;
430 struct bio_vec *bvl = NULL;
431 struct bio *bio;
432 void *p;
433
434 if (!bs) {
435 if (nr_iovecs > UIO_MAXIOV)
436 return NULL;
437
438 p = kmalloc(sizeof(struct bio) +
439 nr_iovecs * sizeof(struct bio_vec),
440 gfp_mask);
441 front_pad = 0;
442 inline_vecs = nr_iovecs;
443 } else {
444 /* should not use nobvec bioset for nr_iovecs > 0 */
445 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
446 return NULL;
447 /*
448 * generic_make_request() converts recursion to iteration; this
449 * means if we're running beneath it, any bios we allocate and
450 * submit will not be submitted (and thus freed) until after we
451 * return.
452 *
453 * This exposes us to a potential deadlock if we allocate
454 * multiple bios from the same bio_set() while running
455 * underneath generic_make_request(). If we were to allocate
456 * multiple bios (say a stacking block driver that was splitting
457 * bios), we would deadlock if we exhausted the mempool's
458 * reserve.
459 *
460 * We solve this, and guarantee forward progress, with a rescuer
461 * workqueue per bio_set. If we go to allocate and there are
462 * bios on current->bio_list, we first try the allocation
463 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
464 * bios we would be blocking to the rescuer workqueue before
465 * we retry with the original gfp_flags.
466 */
467
468 if (current->bio_list && !bio_list_empty(current->bio_list))
469 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
470
471 p = mempool_alloc(bs->bio_pool, gfp_mask);
472 if (!p && gfp_mask != saved_gfp) {
473 punt_bios_to_rescuer(bs);
474 gfp_mask = saved_gfp;
475 p = mempool_alloc(bs->bio_pool, gfp_mask);
476 }
477
478 front_pad = bs->front_pad;
479 inline_vecs = BIO_INLINE_VECS;
480 }
481
482 if (unlikely(!p))
483 return NULL;
484
485 bio = p + front_pad;
486 bio_init(bio);
487
488 if (nr_iovecs > inline_vecs) {
489 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
490 if (!bvl && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
493 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
494 }
495
496 if (unlikely(!bvl))
497 goto err_free;
498
499 bio_set_flag(bio, BIO_OWNS_VEC);
500 } else if (nr_iovecs) {
501 bvl = bio->bi_inline_vecs;
502 }
503
504 bio->bi_pool = bs;
505 bio->bi_flags |= idx << BIO_POOL_OFFSET;
506 bio->bi_max_vecs = nr_iovecs;
507 bio->bi_io_vec = bvl;
508 return bio;
509
510 err_free:
511 mempool_free(p, bs->bio_pool);
512 return NULL;
513 }
514 EXPORT_SYMBOL(bio_alloc_bioset);
515
516 void zero_fill_bio(struct bio *bio)
517 {
518 unsigned long flags;
519 struct bio_vec bv;
520 struct bvec_iter iter;
521
522 bio_for_each_segment(bv, bio, iter) {
523 char *data = bvec_kmap_irq(&bv, &flags);
524 memset(data, 0, bv.bv_len);
525 flush_dcache_page(bv.bv_page);
526 bvec_kunmap_irq(data, &flags);
527 }
528 }
529 EXPORT_SYMBOL(zero_fill_bio);
530
531 /**
532 * bio_put - release a reference to a bio
533 * @bio: bio to release reference to
534 *
535 * Description:
536 * Put a reference to a &struct bio, either one you have gotten with
537 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
538 **/
539 void bio_put(struct bio *bio)
540 {
541 if (!bio_flagged(bio, BIO_REFFED))
542 bio_free(bio);
543 else {
544 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
545
546 /*
547 * last put frees it
548 */
549 if (atomic_dec_and_test(&bio->__bi_cnt))
550 bio_free(bio);
551 }
552 }
553 EXPORT_SYMBOL(bio_put);
554
555 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
556 {
557 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
558 blk_recount_segments(q, bio);
559
560 return bio->bi_phys_segments;
561 }
562 EXPORT_SYMBOL(bio_phys_segments);
563
564 /**
565 * __bio_clone_fast - clone a bio that shares the original bio's biovec
566 * @bio: destination bio
567 * @bio_src: bio to clone
568 *
569 * Clone a &bio. Caller will own the returned bio, but not
570 * the actual data it points to. Reference count of returned
571 * bio will be one.
572 *
573 * Caller must ensure that @bio_src is not freed before @bio.
574 */
575 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
576 {
577 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
578
579 /*
580 * most users will be overriding ->bi_bdev with a new target,
581 * so we don't set nor calculate new physical/hw segment counts here
582 */
583 bio->bi_bdev = bio_src->bi_bdev;
584 bio_set_flag(bio, BIO_CLONED);
585 bio->bi_rw = bio_src->bi_rw;
586 bio->bi_iter = bio_src->bi_iter;
587 bio->bi_io_vec = bio_src->bi_io_vec;
588 }
589 EXPORT_SYMBOL(__bio_clone_fast);
590
591 /**
592 * bio_clone_fast - clone a bio that shares the original bio's biovec
593 * @bio: bio to clone
594 * @gfp_mask: allocation priority
595 * @bs: bio_set to allocate from
596 *
597 * Like __bio_clone_fast, only also allocates the returned bio
598 */
599 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
600 {
601 struct bio *b;
602
603 b = bio_alloc_bioset(gfp_mask, 0, bs);
604 if (!b)
605 return NULL;
606
607 __bio_clone_fast(b, bio);
608
609 if (bio_integrity(bio)) {
610 int ret;
611
612 ret = bio_integrity_clone(b, bio, gfp_mask);
613
614 if (ret < 0) {
615 bio_put(b);
616 return NULL;
617 }
618 }
619
620 return b;
621 }
622 EXPORT_SYMBOL(bio_clone_fast);
623
624 /**
625 * bio_clone_bioset - clone a bio
626 * @bio_src: bio to clone
627 * @gfp_mask: allocation priority
628 * @bs: bio_set to allocate from
629 *
630 * Clone bio. Caller will own the returned bio, but not the actual data it
631 * points to. Reference count of returned bio will be one.
632 */
633 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
634 struct bio_set *bs)
635 {
636 struct bvec_iter iter;
637 struct bio_vec bv;
638 struct bio *bio;
639
640 /*
641 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
642 * bio_src->bi_io_vec to bio->bi_io_vec.
643 *
644 * We can't do that anymore, because:
645 *
646 * - The point of cloning the biovec is to produce a bio with a biovec
647 * the caller can modify: bi_idx and bi_bvec_done should be 0.
648 *
649 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
650 * we tried to clone the whole thing bio_alloc_bioset() would fail.
651 * But the clone should succeed as long as the number of biovecs we
652 * actually need to allocate is fewer than BIO_MAX_PAGES.
653 *
654 * - Lastly, bi_vcnt should not be looked at or relied upon by code
655 * that does not own the bio - reason being drivers don't use it for
656 * iterating over the biovec anymore, so expecting it to be kept up
657 * to date (i.e. for clones that share the parent biovec) is just
658 * asking for trouble and would force extra work on
659 * __bio_clone_fast() anyways.
660 */
661
662 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
663 if (!bio)
664 return NULL;
665
666 bio->bi_bdev = bio_src->bi_bdev;
667 bio->bi_rw = bio_src->bi_rw;
668 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
669 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
670
671 if (bio->bi_rw & REQ_DISCARD)
672 goto integrity_clone;
673
674 if (bio->bi_rw & REQ_WRITE_SAME) {
675 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
676 goto integrity_clone;
677 }
678
679 bio_for_each_segment(bv, bio_src, iter)
680 bio->bi_io_vec[bio->bi_vcnt++] = bv;
681
682 integrity_clone:
683 if (bio_integrity(bio_src)) {
684 int ret;
685
686 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
687 if (ret < 0) {
688 bio_put(bio);
689 return NULL;
690 }
691 }
692
693 return bio;
694 }
695 EXPORT_SYMBOL(bio_clone_bioset);
696
697 /**
698 * bio_add_pc_page - attempt to add page to bio
699 * @q: the target queue
700 * @bio: destination bio
701 * @page: page to add
702 * @len: vec entry length
703 * @offset: vec entry offset
704 *
705 * Attempt to add a page to the bio_vec maplist. This can fail for a
706 * number of reasons, such as the bio being full or target block device
707 * limitations. The target block device must allow bio's up to PAGE_SIZE,
708 * so it is always possible to add a single page to an empty bio.
709 *
710 * This should only be used by REQ_PC bios.
711 */
712 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
713 *page, unsigned int len, unsigned int offset)
714 {
715 int retried_segments = 0;
716 struct bio_vec *bvec;
717
718 /*
719 * cloned bio must not modify vec list
720 */
721 if (unlikely(bio_flagged(bio, BIO_CLONED)))
722 return 0;
723
724 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
725 return 0;
726
727 /*
728 * For filesystems with a blocksize smaller than the pagesize
729 * we will often be called with the same page as last time and
730 * a consecutive offset. Optimize this special case.
731 */
732 if (bio->bi_vcnt > 0) {
733 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
734
735 if (page == prev->bv_page &&
736 offset == prev->bv_offset + prev->bv_len) {
737 prev->bv_len += len;
738 bio->bi_iter.bi_size += len;
739 goto done;
740 }
741
742 /*
743 * If the queue doesn't support SG gaps and adding this
744 * offset would create a gap, disallow it.
745 */
746 if (bvec_gap_to_prev(q, prev, offset))
747 return 0;
748 }
749
750 if (bio->bi_vcnt >= bio->bi_max_vecs)
751 return 0;
752
753 /*
754 * setup the new entry, we might clear it again later if we
755 * cannot add the page
756 */
757 bvec = &bio->bi_io_vec[bio->bi_vcnt];
758 bvec->bv_page = page;
759 bvec->bv_len = len;
760 bvec->bv_offset = offset;
761 bio->bi_vcnt++;
762 bio->bi_phys_segments++;
763 bio->bi_iter.bi_size += len;
764
765 /*
766 * Perform a recount if the number of segments is greater
767 * than queue_max_segments(q).
768 */
769
770 while (bio->bi_phys_segments > queue_max_segments(q)) {
771
772 if (retried_segments)
773 goto failed;
774
775 retried_segments = 1;
776 blk_recount_segments(q, bio);
777 }
778
779 /* If we may be able to merge these biovecs, force a recount */
780 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
781 bio_clear_flag(bio, BIO_SEG_VALID);
782
783 done:
784 return len;
785
786 failed:
787 bvec->bv_page = NULL;
788 bvec->bv_len = 0;
789 bvec->bv_offset = 0;
790 bio->bi_vcnt--;
791 bio->bi_iter.bi_size -= len;
792 blk_recount_segments(q, bio);
793 return 0;
794 }
795 EXPORT_SYMBOL(bio_add_pc_page);
796
797 /**
798 * bio_add_page - attempt to add page to bio
799 * @bio: destination bio
800 * @page: page to add
801 * @len: vec entry length
802 * @offset: vec entry offset
803 *
804 * Attempt to add a page to the bio_vec maplist. This will only fail
805 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
806 */
807 int bio_add_page(struct bio *bio, struct page *page,
808 unsigned int len, unsigned int offset)
809 {
810 struct bio_vec *bv;
811
812 /*
813 * cloned bio must not modify vec list
814 */
815 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
816 return 0;
817
818 /*
819 * For filesystems with a blocksize smaller than the pagesize
820 * we will often be called with the same page as last time and
821 * a consecutive offset. Optimize this special case.
822 */
823 if (bio->bi_vcnt > 0) {
824 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
825
826 if (page == bv->bv_page &&
827 offset == bv->bv_offset + bv->bv_len) {
828 bv->bv_len += len;
829 goto done;
830 }
831 }
832
833 if (bio->bi_vcnt >= bio->bi_max_vecs)
834 return 0;
835
836 bv = &bio->bi_io_vec[bio->bi_vcnt];
837 bv->bv_page = page;
838 bv->bv_len = len;
839 bv->bv_offset = offset;
840
841 bio->bi_vcnt++;
842 done:
843 bio->bi_iter.bi_size += len;
844 return len;
845 }
846 EXPORT_SYMBOL(bio_add_page);
847
848 struct submit_bio_ret {
849 struct completion event;
850 int error;
851 };
852
853 static void submit_bio_wait_endio(struct bio *bio)
854 {
855 struct submit_bio_ret *ret = bio->bi_private;
856
857 ret->error = bio->bi_error;
858 complete(&ret->event);
859 }
860
861 /**
862 * submit_bio_wait - submit a bio, and wait until it completes
863 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
864 * @bio: The &struct bio which describes the I/O
865 *
866 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
867 * bio_endio() on failure.
868 */
869 int submit_bio_wait(int rw, struct bio *bio)
870 {
871 struct submit_bio_ret ret;
872
873 rw |= REQ_SYNC;
874 init_completion(&ret.event);
875 bio->bi_private = &ret;
876 bio->bi_end_io = submit_bio_wait_endio;
877 submit_bio(rw, bio);
878 wait_for_completion(&ret.event);
879
880 return ret.error;
881 }
882 EXPORT_SYMBOL(submit_bio_wait);
883
884 /**
885 * bio_advance - increment/complete a bio by some number of bytes
886 * @bio: bio to advance
887 * @bytes: number of bytes to complete
888 *
889 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
890 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
891 * be updated on the last bvec as well.
892 *
893 * @bio will then represent the remaining, uncompleted portion of the io.
894 */
895 void bio_advance(struct bio *bio, unsigned bytes)
896 {
897 if (bio_integrity(bio))
898 bio_integrity_advance(bio, bytes);
899
900 bio_advance_iter(bio, &bio->bi_iter, bytes);
901 }
902 EXPORT_SYMBOL(bio_advance);
903
904 /**
905 * bio_alloc_pages - allocates a single page for each bvec in a bio
906 * @bio: bio to allocate pages for
907 * @gfp_mask: flags for allocation
908 *
909 * Allocates pages up to @bio->bi_vcnt.
910 *
911 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
912 * freed.
913 */
914 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
915 {
916 int i;
917 struct bio_vec *bv;
918
919 bio_for_each_segment_all(bv, bio, i) {
920 bv->bv_page = alloc_page(gfp_mask);
921 if (!bv->bv_page) {
922 while (--bv >= bio->bi_io_vec)
923 __free_page(bv->bv_page);
924 return -ENOMEM;
925 }
926 }
927
928 return 0;
929 }
930 EXPORT_SYMBOL(bio_alloc_pages);
931
932 /**
933 * bio_copy_data - copy contents of data buffers from one chain of bios to
934 * another
935 * @src: source bio list
936 * @dst: destination bio list
937 *
938 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
939 * @src and @dst as linked lists of bios.
940 *
941 * Stops when it reaches the end of either @src or @dst - that is, copies
942 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
943 */
944 void bio_copy_data(struct bio *dst, struct bio *src)
945 {
946 struct bvec_iter src_iter, dst_iter;
947 struct bio_vec src_bv, dst_bv;
948 void *src_p, *dst_p;
949 unsigned bytes;
950
951 src_iter = src->bi_iter;
952 dst_iter = dst->bi_iter;
953
954 while (1) {
955 if (!src_iter.bi_size) {
956 src = src->bi_next;
957 if (!src)
958 break;
959
960 src_iter = src->bi_iter;
961 }
962
963 if (!dst_iter.bi_size) {
964 dst = dst->bi_next;
965 if (!dst)
966 break;
967
968 dst_iter = dst->bi_iter;
969 }
970
971 src_bv = bio_iter_iovec(src, src_iter);
972 dst_bv = bio_iter_iovec(dst, dst_iter);
973
974 bytes = min(src_bv.bv_len, dst_bv.bv_len);
975
976 src_p = kmap_atomic(src_bv.bv_page);
977 dst_p = kmap_atomic(dst_bv.bv_page);
978
979 memcpy(dst_p + dst_bv.bv_offset,
980 src_p + src_bv.bv_offset,
981 bytes);
982
983 kunmap_atomic(dst_p);
984 kunmap_atomic(src_p);
985
986 bio_advance_iter(src, &src_iter, bytes);
987 bio_advance_iter(dst, &dst_iter, bytes);
988 }
989 }
990 EXPORT_SYMBOL(bio_copy_data);
991
992 struct bio_map_data {
993 int is_our_pages;
994 struct iov_iter iter;
995 struct iovec iov[];
996 };
997
998 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
999 gfp_t gfp_mask)
1000 {
1001 if (iov_count > UIO_MAXIOV)
1002 return NULL;
1003
1004 return kmalloc(sizeof(struct bio_map_data) +
1005 sizeof(struct iovec) * iov_count, gfp_mask);
1006 }
1007
1008 /**
1009 * bio_copy_from_iter - copy all pages from iov_iter to bio
1010 * @bio: The &struct bio which describes the I/O as destination
1011 * @iter: iov_iter as source
1012 *
1013 * Copy all pages from iov_iter to bio.
1014 * Returns 0 on success, or error on failure.
1015 */
1016 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1017 {
1018 int i;
1019 struct bio_vec *bvec;
1020
1021 bio_for_each_segment_all(bvec, bio, i) {
1022 ssize_t ret;
1023
1024 ret = copy_page_from_iter(bvec->bv_page,
1025 bvec->bv_offset,
1026 bvec->bv_len,
1027 &iter);
1028
1029 if (!iov_iter_count(&iter))
1030 break;
1031
1032 if (ret < bvec->bv_len)
1033 return -EFAULT;
1034 }
1035
1036 return 0;
1037 }
1038
1039 /**
1040 * bio_copy_to_iter - copy all pages from bio to iov_iter
1041 * @bio: The &struct bio which describes the I/O as source
1042 * @iter: iov_iter as destination
1043 *
1044 * Copy all pages from bio to iov_iter.
1045 * Returns 0 on success, or error on failure.
1046 */
1047 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1048 {
1049 int i;
1050 struct bio_vec *bvec;
1051
1052 bio_for_each_segment_all(bvec, bio, i) {
1053 ssize_t ret;
1054
1055 ret = copy_page_to_iter(bvec->bv_page,
1056 bvec->bv_offset,
1057 bvec->bv_len,
1058 &iter);
1059
1060 if (!iov_iter_count(&iter))
1061 break;
1062
1063 if (ret < bvec->bv_len)
1064 return -EFAULT;
1065 }
1066
1067 return 0;
1068 }
1069
1070 static void bio_free_pages(struct bio *bio)
1071 {
1072 struct bio_vec *bvec;
1073 int i;
1074
1075 bio_for_each_segment_all(bvec, bio, i)
1076 __free_page(bvec->bv_page);
1077 }
1078
1079 /**
1080 * bio_uncopy_user - finish previously mapped bio
1081 * @bio: bio being terminated
1082 *
1083 * Free pages allocated from bio_copy_user_iov() and write back data
1084 * to user space in case of a read.
1085 */
1086 int bio_uncopy_user(struct bio *bio)
1087 {
1088 struct bio_map_data *bmd = bio->bi_private;
1089 int ret = 0;
1090
1091 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1092 /*
1093 * if we're in a workqueue, the request is orphaned, so
1094 * don't copy into a random user address space, just free.
1095 */
1096 if (current->mm && bio_data_dir(bio) == READ)
1097 ret = bio_copy_to_iter(bio, bmd->iter);
1098 if (bmd->is_our_pages)
1099 bio_free_pages(bio);
1100 }
1101 kfree(bmd);
1102 bio_put(bio);
1103 return ret;
1104 }
1105 EXPORT_SYMBOL(bio_uncopy_user);
1106
1107 /**
1108 * bio_copy_user_iov - copy user data to bio
1109 * @q: destination block queue
1110 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1111 * @iter: iovec iterator
1112 * @gfp_mask: memory allocation flags
1113 *
1114 * Prepares and returns a bio for indirect user io, bouncing data
1115 * to/from kernel pages as necessary. Must be paired with
1116 * call bio_uncopy_user() on io completion.
1117 */
1118 struct bio *bio_copy_user_iov(struct request_queue *q,
1119 struct rq_map_data *map_data,
1120 const struct iov_iter *iter,
1121 gfp_t gfp_mask)
1122 {
1123 struct bio_map_data *bmd;
1124 struct page *page;
1125 struct bio *bio;
1126 int i, ret;
1127 int nr_pages = 0;
1128 unsigned int len = iter->count;
1129 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1130
1131 for (i = 0; i < iter->nr_segs; i++) {
1132 unsigned long uaddr;
1133 unsigned long end;
1134 unsigned long start;
1135
1136 uaddr = (unsigned long) iter->iov[i].iov_base;
1137 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1138 >> PAGE_SHIFT;
1139 start = uaddr >> PAGE_SHIFT;
1140
1141 /*
1142 * Overflow, abort
1143 */
1144 if (end < start)
1145 return ERR_PTR(-EINVAL);
1146
1147 nr_pages += end - start;
1148 }
1149
1150 if (offset)
1151 nr_pages++;
1152
1153 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1154 if (!bmd)
1155 return ERR_PTR(-ENOMEM);
1156
1157 /*
1158 * We need to do a deep copy of the iov_iter including the iovecs.
1159 * The caller provided iov might point to an on-stack or otherwise
1160 * shortlived one.
1161 */
1162 bmd->is_our_pages = map_data ? 0 : 1;
1163 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1164 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1165 iter->nr_segs, iter->count);
1166
1167 ret = -ENOMEM;
1168 bio = bio_kmalloc(gfp_mask, nr_pages);
1169 if (!bio)
1170 goto out_bmd;
1171
1172 if (iter->type & WRITE)
1173 bio->bi_rw |= REQ_WRITE;
1174
1175 ret = 0;
1176
1177 if (map_data) {
1178 nr_pages = 1 << map_data->page_order;
1179 i = map_data->offset / PAGE_SIZE;
1180 }
1181 while (len) {
1182 unsigned int bytes = PAGE_SIZE;
1183
1184 bytes -= offset;
1185
1186 if (bytes > len)
1187 bytes = len;
1188
1189 if (map_data) {
1190 if (i == map_data->nr_entries * nr_pages) {
1191 ret = -ENOMEM;
1192 break;
1193 }
1194
1195 page = map_data->pages[i / nr_pages];
1196 page += (i % nr_pages);
1197
1198 i++;
1199 } else {
1200 page = alloc_page(q->bounce_gfp | gfp_mask);
1201 if (!page) {
1202 ret = -ENOMEM;
1203 break;
1204 }
1205 }
1206
1207 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1208 break;
1209
1210 len -= bytes;
1211 offset = 0;
1212 }
1213
1214 if (ret)
1215 goto cleanup;
1216
1217 /*
1218 * success
1219 */
1220 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1221 (map_data && map_data->from_user)) {
1222 ret = bio_copy_from_iter(bio, *iter);
1223 if (ret)
1224 goto cleanup;
1225 }
1226
1227 bio->bi_private = bmd;
1228 return bio;
1229 cleanup:
1230 if (!map_data)
1231 bio_free_pages(bio);
1232 bio_put(bio);
1233 out_bmd:
1234 kfree(bmd);
1235 return ERR_PTR(ret);
1236 }
1237
1238 /**
1239 * bio_map_user_iov - map user iovec into bio
1240 * @q: the struct request_queue for the bio
1241 * @iter: iovec iterator
1242 * @gfp_mask: memory allocation flags
1243 *
1244 * Map the user space address into a bio suitable for io to a block
1245 * device. Returns an error pointer in case of error.
1246 */
1247 struct bio *bio_map_user_iov(struct request_queue *q,
1248 const struct iov_iter *iter,
1249 gfp_t gfp_mask)
1250 {
1251 int j;
1252 int nr_pages = 0;
1253 struct page **pages;
1254 struct bio *bio;
1255 int cur_page = 0;
1256 int ret, offset;
1257 struct iov_iter i;
1258 struct iovec iov;
1259
1260 iov_for_each(iov, i, *iter) {
1261 unsigned long uaddr = (unsigned long) iov.iov_base;
1262 unsigned long len = iov.iov_len;
1263 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1264 unsigned long start = uaddr >> PAGE_SHIFT;
1265
1266 /*
1267 * Overflow, abort
1268 */
1269 if (end < start)
1270 return ERR_PTR(-EINVAL);
1271
1272 nr_pages += end - start;
1273 /*
1274 * buffer must be aligned to at least hardsector size for now
1275 */
1276 if (uaddr & queue_dma_alignment(q))
1277 return ERR_PTR(-EINVAL);
1278 }
1279
1280 if (!nr_pages)
1281 return ERR_PTR(-EINVAL);
1282
1283 bio = bio_kmalloc(gfp_mask, nr_pages);
1284 if (!bio)
1285 return ERR_PTR(-ENOMEM);
1286
1287 ret = -ENOMEM;
1288 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1289 if (!pages)
1290 goto out;
1291
1292 iov_for_each(iov, i, *iter) {
1293 unsigned long uaddr = (unsigned long) iov.iov_base;
1294 unsigned long len = iov.iov_len;
1295 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1296 unsigned long start = uaddr >> PAGE_SHIFT;
1297 const int local_nr_pages = end - start;
1298 const int page_limit = cur_page + local_nr_pages;
1299
1300 ret = get_user_pages_fast(uaddr, local_nr_pages,
1301 (iter->type & WRITE) != WRITE,
1302 &pages[cur_page]);
1303 if (ret < local_nr_pages) {
1304 ret = -EFAULT;
1305 goto out_unmap;
1306 }
1307
1308 offset = offset_in_page(uaddr);
1309 for (j = cur_page; j < page_limit; j++) {
1310 unsigned int bytes = PAGE_SIZE - offset;
1311
1312 if (len <= 0)
1313 break;
1314
1315 if (bytes > len)
1316 bytes = len;
1317
1318 /*
1319 * sorry...
1320 */
1321 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1322 bytes)
1323 break;
1324
1325 len -= bytes;
1326 offset = 0;
1327 }
1328
1329 cur_page = j;
1330 /*
1331 * release the pages we didn't map into the bio, if any
1332 */
1333 while (j < page_limit)
1334 page_cache_release(pages[j++]);
1335 }
1336
1337 kfree(pages);
1338
1339 /*
1340 * set data direction, and check if mapped pages need bouncing
1341 */
1342 if (iter->type & WRITE)
1343 bio->bi_rw |= REQ_WRITE;
1344
1345 bio_set_flag(bio, BIO_USER_MAPPED);
1346
1347 /*
1348 * subtle -- if __bio_map_user() ended up bouncing a bio,
1349 * it would normally disappear when its bi_end_io is run.
1350 * however, we need it for the unmap, so grab an extra
1351 * reference to it
1352 */
1353 bio_get(bio);
1354 return bio;
1355
1356 out_unmap:
1357 for (j = 0; j < nr_pages; j++) {
1358 if (!pages[j])
1359 break;
1360 page_cache_release(pages[j]);
1361 }
1362 out:
1363 kfree(pages);
1364 bio_put(bio);
1365 return ERR_PTR(ret);
1366 }
1367
1368 static void __bio_unmap_user(struct bio *bio)
1369 {
1370 struct bio_vec *bvec;
1371 int i;
1372
1373 /*
1374 * make sure we dirty pages we wrote to
1375 */
1376 bio_for_each_segment_all(bvec, bio, i) {
1377 if (bio_data_dir(bio) == READ)
1378 set_page_dirty_lock(bvec->bv_page);
1379
1380 page_cache_release(bvec->bv_page);
1381 }
1382
1383 bio_put(bio);
1384 }
1385
1386 /**
1387 * bio_unmap_user - unmap a bio
1388 * @bio: the bio being unmapped
1389 *
1390 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1391 * a process context.
1392 *
1393 * bio_unmap_user() may sleep.
1394 */
1395 void bio_unmap_user(struct bio *bio)
1396 {
1397 __bio_unmap_user(bio);
1398 bio_put(bio);
1399 }
1400 EXPORT_SYMBOL(bio_unmap_user);
1401
1402 static void bio_map_kern_endio(struct bio *bio)
1403 {
1404 bio_put(bio);
1405 }
1406
1407 /**
1408 * bio_map_kern - map kernel address into bio
1409 * @q: the struct request_queue for the bio
1410 * @data: pointer to buffer to map
1411 * @len: length in bytes
1412 * @gfp_mask: allocation flags for bio allocation
1413 *
1414 * Map the kernel address into a bio suitable for io to a block
1415 * device. Returns an error pointer in case of error.
1416 */
1417 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1418 gfp_t gfp_mask)
1419 {
1420 unsigned long kaddr = (unsigned long)data;
1421 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1422 unsigned long start = kaddr >> PAGE_SHIFT;
1423 const int nr_pages = end - start;
1424 int offset, i;
1425 struct bio *bio;
1426
1427 bio = bio_kmalloc(gfp_mask, nr_pages);
1428 if (!bio)
1429 return ERR_PTR(-ENOMEM);
1430
1431 offset = offset_in_page(kaddr);
1432 for (i = 0; i < nr_pages; i++) {
1433 unsigned int bytes = PAGE_SIZE - offset;
1434
1435 if (len <= 0)
1436 break;
1437
1438 if (bytes > len)
1439 bytes = len;
1440
1441 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1442 offset) < bytes) {
1443 /* we don't support partial mappings */
1444 bio_put(bio);
1445 return ERR_PTR(-EINVAL);
1446 }
1447
1448 data += bytes;
1449 len -= bytes;
1450 offset = 0;
1451 }
1452
1453 bio->bi_end_io = bio_map_kern_endio;
1454 return bio;
1455 }
1456 EXPORT_SYMBOL(bio_map_kern);
1457
1458 static void bio_copy_kern_endio(struct bio *bio)
1459 {
1460 bio_free_pages(bio);
1461 bio_put(bio);
1462 }
1463
1464 static void bio_copy_kern_endio_read(struct bio *bio)
1465 {
1466 char *p = bio->bi_private;
1467 struct bio_vec *bvec;
1468 int i;
1469
1470 bio_for_each_segment_all(bvec, bio, i) {
1471 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1472 p += bvec->bv_len;
1473 }
1474
1475 bio_copy_kern_endio(bio);
1476 }
1477
1478 /**
1479 * bio_copy_kern - copy kernel address into bio
1480 * @q: the struct request_queue for the bio
1481 * @data: pointer to buffer to copy
1482 * @len: length in bytes
1483 * @gfp_mask: allocation flags for bio and page allocation
1484 * @reading: data direction is READ
1485 *
1486 * copy the kernel address into a bio suitable for io to a block
1487 * device. Returns an error pointer in case of error.
1488 */
1489 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1490 gfp_t gfp_mask, int reading)
1491 {
1492 unsigned long kaddr = (unsigned long)data;
1493 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1494 unsigned long start = kaddr >> PAGE_SHIFT;
1495 struct bio *bio;
1496 void *p = data;
1497 int nr_pages = 0;
1498
1499 /*
1500 * Overflow, abort
1501 */
1502 if (end < start)
1503 return ERR_PTR(-EINVAL);
1504
1505 nr_pages = end - start;
1506 bio = bio_kmalloc(gfp_mask, nr_pages);
1507 if (!bio)
1508 return ERR_PTR(-ENOMEM);
1509
1510 while (len) {
1511 struct page *page;
1512 unsigned int bytes = PAGE_SIZE;
1513
1514 if (bytes > len)
1515 bytes = len;
1516
1517 page = alloc_page(q->bounce_gfp | gfp_mask);
1518 if (!page)
1519 goto cleanup;
1520
1521 if (!reading)
1522 memcpy(page_address(page), p, bytes);
1523
1524 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1525 break;
1526
1527 len -= bytes;
1528 p += bytes;
1529 }
1530
1531 if (reading) {
1532 bio->bi_end_io = bio_copy_kern_endio_read;
1533 bio->bi_private = data;
1534 } else {
1535 bio->bi_end_io = bio_copy_kern_endio;
1536 bio->bi_rw |= REQ_WRITE;
1537 }
1538
1539 return bio;
1540
1541 cleanup:
1542 bio_free_pages(bio);
1543 bio_put(bio);
1544 return ERR_PTR(-ENOMEM);
1545 }
1546 EXPORT_SYMBOL(bio_copy_kern);
1547
1548 /*
1549 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1550 * for performing direct-IO in BIOs.
1551 *
1552 * The problem is that we cannot run set_page_dirty() from interrupt context
1553 * because the required locks are not interrupt-safe. So what we can do is to
1554 * mark the pages dirty _before_ performing IO. And in interrupt context,
1555 * check that the pages are still dirty. If so, fine. If not, redirty them
1556 * in process context.
1557 *
1558 * We special-case compound pages here: normally this means reads into hugetlb
1559 * pages. The logic in here doesn't really work right for compound pages
1560 * because the VM does not uniformly chase down the head page in all cases.
1561 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1562 * handle them at all. So we skip compound pages here at an early stage.
1563 *
1564 * Note that this code is very hard to test under normal circumstances because
1565 * direct-io pins the pages with get_user_pages(). This makes
1566 * is_page_cache_freeable return false, and the VM will not clean the pages.
1567 * But other code (eg, flusher threads) could clean the pages if they are mapped
1568 * pagecache.
1569 *
1570 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1571 * deferred bio dirtying paths.
1572 */
1573
1574 /*
1575 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1576 */
1577 void bio_set_pages_dirty(struct bio *bio)
1578 {
1579 struct bio_vec *bvec;
1580 int i;
1581
1582 bio_for_each_segment_all(bvec, bio, i) {
1583 struct page *page = bvec->bv_page;
1584
1585 if (page && !PageCompound(page))
1586 set_page_dirty_lock(page);
1587 }
1588 }
1589
1590 static void bio_release_pages(struct bio *bio)
1591 {
1592 struct bio_vec *bvec;
1593 int i;
1594
1595 bio_for_each_segment_all(bvec, bio, i) {
1596 struct page *page = bvec->bv_page;
1597
1598 if (page)
1599 put_page(page);
1600 }
1601 }
1602
1603 /*
1604 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1605 * If they are, then fine. If, however, some pages are clean then they must
1606 * have been written out during the direct-IO read. So we take another ref on
1607 * the BIO and the offending pages and re-dirty the pages in process context.
1608 *
1609 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1610 * here on. It will run one page_cache_release() against each page and will
1611 * run one bio_put() against the BIO.
1612 */
1613
1614 static void bio_dirty_fn(struct work_struct *work);
1615
1616 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1617 static DEFINE_SPINLOCK(bio_dirty_lock);
1618 static struct bio *bio_dirty_list;
1619
1620 /*
1621 * This runs in process context
1622 */
1623 static void bio_dirty_fn(struct work_struct *work)
1624 {
1625 unsigned long flags;
1626 struct bio *bio;
1627
1628 spin_lock_irqsave(&bio_dirty_lock, flags);
1629 bio = bio_dirty_list;
1630 bio_dirty_list = NULL;
1631 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1632
1633 while (bio) {
1634 struct bio *next = bio->bi_private;
1635
1636 bio_set_pages_dirty(bio);
1637 bio_release_pages(bio);
1638 bio_put(bio);
1639 bio = next;
1640 }
1641 }
1642
1643 void bio_check_pages_dirty(struct bio *bio)
1644 {
1645 struct bio_vec *bvec;
1646 int nr_clean_pages = 0;
1647 int i;
1648
1649 bio_for_each_segment_all(bvec, bio, i) {
1650 struct page *page = bvec->bv_page;
1651
1652 if (PageDirty(page) || PageCompound(page)) {
1653 page_cache_release(page);
1654 bvec->bv_page = NULL;
1655 } else {
1656 nr_clean_pages++;
1657 }
1658 }
1659
1660 if (nr_clean_pages) {
1661 unsigned long flags;
1662
1663 spin_lock_irqsave(&bio_dirty_lock, flags);
1664 bio->bi_private = bio_dirty_list;
1665 bio_dirty_list = bio;
1666 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1667 schedule_work(&bio_dirty_work);
1668 } else {
1669 bio_put(bio);
1670 }
1671 }
1672
1673 void generic_start_io_acct(int rw, unsigned long sectors,
1674 struct hd_struct *part)
1675 {
1676 int cpu = part_stat_lock();
1677
1678 part_round_stats(cpu, part);
1679 part_stat_inc(cpu, part, ios[rw]);
1680 part_stat_add(cpu, part, sectors[rw], sectors);
1681 part_inc_in_flight(part, rw);
1682
1683 part_stat_unlock();
1684 }
1685 EXPORT_SYMBOL(generic_start_io_acct);
1686
1687 void generic_end_io_acct(int rw, struct hd_struct *part,
1688 unsigned long start_time)
1689 {
1690 unsigned long duration = jiffies - start_time;
1691 int cpu = part_stat_lock();
1692
1693 part_stat_add(cpu, part, ticks[rw], duration);
1694 part_round_stats(cpu, part);
1695 part_dec_in_flight(part, rw);
1696
1697 part_stat_unlock();
1698 }
1699 EXPORT_SYMBOL(generic_end_io_acct);
1700
1701 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1702 void bio_flush_dcache_pages(struct bio *bi)
1703 {
1704 struct bio_vec bvec;
1705 struct bvec_iter iter;
1706
1707 bio_for_each_segment(bvec, bi, iter)
1708 flush_dcache_page(bvec.bv_page);
1709 }
1710 EXPORT_SYMBOL(bio_flush_dcache_pages);
1711 #endif
1712
1713 static inline bool bio_remaining_done(struct bio *bio)
1714 {
1715 /*
1716 * If we're not chaining, then ->__bi_remaining is always 1 and
1717 * we always end io on the first invocation.
1718 */
1719 if (!bio_flagged(bio, BIO_CHAIN))
1720 return true;
1721
1722 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1723
1724 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1725 bio_clear_flag(bio, BIO_CHAIN);
1726 return true;
1727 }
1728
1729 return false;
1730 }
1731
1732 /**
1733 * bio_endio - end I/O on a bio
1734 * @bio: bio
1735 *
1736 * Description:
1737 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1738 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1739 * bio unless they own it and thus know that it has an end_io function.
1740 **/
1741 void bio_endio(struct bio *bio)
1742 {
1743 while (bio) {
1744 if (unlikely(!bio_remaining_done(bio)))
1745 break;
1746
1747 /*
1748 * Need to have a real endio function for chained bios,
1749 * otherwise various corner cases will break (like stacking
1750 * block devices that save/restore bi_end_io) - however, we want
1751 * to avoid unbounded recursion and blowing the stack. Tail call
1752 * optimization would handle this, but compiling with frame
1753 * pointers also disables gcc's sibling call optimization.
1754 */
1755 if (bio->bi_end_io == bio_chain_endio) {
1756 struct bio *parent = bio->bi_private;
1757
1758 if (!parent->bi_error)
1759 parent->bi_error = bio->bi_error;
1760 bio_put(bio);
1761 bio = parent;
1762 } else {
1763 if (bio->bi_end_io)
1764 bio->bi_end_io(bio);
1765 bio = NULL;
1766 }
1767 }
1768 }
1769 EXPORT_SYMBOL(bio_endio);
1770
1771 /**
1772 * bio_split - split a bio
1773 * @bio: bio to split
1774 * @sectors: number of sectors to split from the front of @bio
1775 * @gfp: gfp mask
1776 * @bs: bio set to allocate from
1777 *
1778 * Allocates and returns a new bio which represents @sectors from the start of
1779 * @bio, and updates @bio to represent the remaining sectors.
1780 *
1781 * Unless this is a discard request the newly allocated bio will point
1782 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1783 * @bio is not freed before the split.
1784 */
1785 struct bio *bio_split(struct bio *bio, int sectors,
1786 gfp_t gfp, struct bio_set *bs)
1787 {
1788 struct bio *split = NULL;
1789
1790 BUG_ON(sectors <= 0);
1791 BUG_ON(sectors >= bio_sectors(bio));
1792
1793 /*
1794 * Discards need a mutable bio_vec to accommodate the payload
1795 * required by the DSM TRIM and UNMAP commands.
1796 */
1797 if (bio->bi_rw & REQ_DISCARD)
1798 split = bio_clone_bioset(bio, gfp, bs);
1799 else
1800 split = bio_clone_fast(bio, gfp, bs);
1801
1802 if (!split)
1803 return NULL;
1804
1805 split->bi_iter.bi_size = sectors << 9;
1806
1807 if (bio_integrity(split))
1808 bio_integrity_trim(split, 0, sectors);
1809
1810 bio_advance(bio, split->bi_iter.bi_size);
1811
1812 return split;
1813 }
1814 EXPORT_SYMBOL(bio_split);
1815
1816 /**
1817 * bio_trim - trim a bio
1818 * @bio: bio to trim
1819 * @offset: number of sectors to trim from the front of @bio
1820 * @size: size we want to trim @bio to, in sectors
1821 */
1822 void bio_trim(struct bio *bio, int offset, int size)
1823 {
1824 /* 'bio' is a cloned bio which we need to trim to match
1825 * the given offset and size.
1826 */
1827
1828 size <<= 9;
1829 if (offset == 0 && size == bio->bi_iter.bi_size)
1830 return;
1831
1832 bio_clear_flag(bio, BIO_SEG_VALID);
1833
1834 bio_advance(bio, offset << 9);
1835
1836 bio->bi_iter.bi_size = size;
1837 }
1838 EXPORT_SYMBOL_GPL(bio_trim);
1839
1840 /*
1841 * create memory pools for biovec's in a bio_set.
1842 * use the global biovec slabs created for general use.
1843 */
1844 mempool_t *biovec_create_pool(int pool_entries)
1845 {
1846 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1847
1848 return mempool_create_slab_pool(pool_entries, bp->slab);
1849 }
1850
1851 void bioset_free(struct bio_set *bs)
1852 {
1853 if (bs->rescue_workqueue)
1854 destroy_workqueue(bs->rescue_workqueue);
1855
1856 if (bs->bio_pool)
1857 mempool_destroy(bs->bio_pool);
1858
1859 if (bs->bvec_pool)
1860 mempool_destroy(bs->bvec_pool);
1861
1862 bioset_integrity_free(bs);
1863 bio_put_slab(bs);
1864
1865 kfree(bs);
1866 }
1867 EXPORT_SYMBOL(bioset_free);
1868
1869 static struct bio_set *__bioset_create(unsigned int pool_size,
1870 unsigned int front_pad,
1871 bool create_bvec_pool)
1872 {
1873 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1874 struct bio_set *bs;
1875
1876 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1877 if (!bs)
1878 return NULL;
1879
1880 bs->front_pad = front_pad;
1881
1882 spin_lock_init(&bs->rescue_lock);
1883 bio_list_init(&bs->rescue_list);
1884 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1885
1886 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1887 if (!bs->bio_slab) {
1888 kfree(bs);
1889 return NULL;
1890 }
1891
1892 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1893 if (!bs->bio_pool)
1894 goto bad;
1895
1896 if (create_bvec_pool) {
1897 bs->bvec_pool = biovec_create_pool(pool_size);
1898 if (!bs->bvec_pool)
1899 goto bad;
1900 }
1901
1902 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1903 if (!bs->rescue_workqueue)
1904 goto bad;
1905
1906 return bs;
1907 bad:
1908 bioset_free(bs);
1909 return NULL;
1910 }
1911
1912 /**
1913 * bioset_create - Create a bio_set
1914 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1915 * @front_pad: Number of bytes to allocate in front of the returned bio
1916 *
1917 * Description:
1918 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1919 * to ask for a number of bytes to be allocated in front of the bio.
1920 * Front pad allocation is useful for embedding the bio inside
1921 * another structure, to avoid allocating extra data to go with the bio.
1922 * Note that the bio must be embedded at the END of that structure always,
1923 * or things will break badly.
1924 */
1925 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1926 {
1927 return __bioset_create(pool_size, front_pad, true);
1928 }
1929 EXPORT_SYMBOL(bioset_create);
1930
1931 /**
1932 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1933 * @pool_size: Number of bio to cache in the mempool
1934 * @front_pad: Number of bytes to allocate in front of the returned bio
1935 *
1936 * Description:
1937 * Same functionality as bioset_create() except that mempool is not
1938 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1939 */
1940 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1941 {
1942 return __bioset_create(pool_size, front_pad, false);
1943 }
1944 EXPORT_SYMBOL(bioset_create_nobvec);
1945
1946 #ifdef CONFIG_BLK_CGROUP
1947
1948 /**
1949 * bio_associate_blkcg - associate a bio with the specified blkcg
1950 * @bio: target bio
1951 * @blkcg_css: css of the blkcg to associate
1952 *
1953 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1954 * treat @bio as if it were issued by a task which belongs to the blkcg.
1955 *
1956 * This function takes an extra reference of @blkcg_css which will be put
1957 * when @bio is released. The caller must own @bio and is responsible for
1958 * synchronizing calls to this function.
1959 */
1960 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1961 {
1962 if (unlikely(bio->bi_css))
1963 return -EBUSY;
1964 css_get(blkcg_css);
1965 bio->bi_css = blkcg_css;
1966 return 0;
1967 }
1968 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1969
1970 /**
1971 * bio_associate_current - associate a bio with %current
1972 * @bio: target bio
1973 *
1974 * Associate @bio with %current if it hasn't been associated yet. Block
1975 * layer will treat @bio as if it were issued by %current no matter which
1976 * task actually issues it.
1977 *
1978 * This function takes an extra reference of @task's io_context and blkcg
1979 * which will be put when @bio is released. The caller must own @bio,
1980 * ensure %current->io_context exists, and is responsible for synchronizing
1981 * calls to this function.
1982 */
1983 int bio_associate_current(struct bio *bio)
1984 {
1985 struct io_context *ioc;
1986
1987 if (bio->bi_css)
1988 return -EBUSY;
1989
1990 ioc = current->io_context;
1991 if (!ioc)
1992 return -ENOENT;
1993
1994 get_io_context_active(ioc);
1995 bio->bi_ioc = ioc;
1996 bio->bi_css = task_get_css(current, io_cgrp_id);
1997 return 0;
1998 }
1999 EXPORT_SYMBOL_GPL(bio_associate_current);
2000
2001 /**
2002 * bio_disassociate_task - undo bio_associate_current()
2003 * @bio: target bio
2004 */
2005 void bio_disassociate_task(struct bio *bio)
2006 {
2007 if (bio->bi_ioc) {
2008 put_io_context(bio->bi_ioc);
2009 bio->bi_ioc = NULL;
2010 }
2011 if (bio->bi_css) {
2012 css_put(bio->bi_css);
2013 bio->bi_css = NULL;
2014 }
2015 }
2016
2017 #endif /* CONFIG_BLK_CGROUP */
2018
2019 static void __init biovec_init_slabs(void)
2020 {
2021 int i;
2022
2023 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2024 int size;
2025 struct biovec_slab *bvs = bvec_slabs + i;
2026
2027 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2028 bvs->slab = NULL;
2029 continue;
2030 }
2031
2032 size = bvs->nr_vecs * sizeof(struct bio_vec);
2033 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2034 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2035 }
2036 }
2037
2038 static int __init init_bio(void)
2039 {
2040 bio_slab_max = 2;
2041 bio_slab_nr = 0;
2042 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2043 if (!bio_slabs)
2044 panic("bio: can't allocate bios\n");
2045
2046 bio_integrity_init();
2047 biovec_init_slabs();
2048
2049 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2050 if (!fs_bio_set)
2051 panic("bio: can't allocate bios\n");
2052
2053 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2054 panic("bio: can't create integrity pool\n");
2055
2056 return 0;
2057 }
2058 subsys_initcall(init_bio);
This page took 0.089059 seconds and 6 git commands to generate.