MIPS: KVM: Fix gfn range check in kseg0 tlb faults
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224
225 /**
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242
243 /**
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263
264 /**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
280 *
281 */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 del_timer_sync(&q->timeout);
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299
300 /**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
324 q->request_fn(q);
325 q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328
329 /**
330 * __blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
335 * held and interrupts disabled.
336 */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
342 __blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345
346 /**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352 * of us. The caller must hold the queue lock.
353 */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360
361 /**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
367 * May be used to restart queueing when a request has completed.
368 */
369 void blk_run_queue(struct request_queue *q)
370 {
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
374 __blk_run_queue(q);
375 spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378
379 void blk_put_queue(struct request_queue *q)
380 {
381 kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384
385 /**
386 * __blk_drain_queue - drain requests from request_queue
387 * @q: queue to drain
388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389 *
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
393 */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
397 {
398 int i;
399
400 lockdep_assert_held(q->queue_lock);
401
402 while (true) {
403 bool drain = false;
404
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
412 blkcg_drain_queue(q);
413
414 /*
415 * This function might be called on a queue which failed
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
420 */
421 if (!list_empty(&q->queue_head) && q->request_fn)
422 __blk_run_queue(q);
423
424 drain |= q->nr_rqs_elvpriv;
425 drain |= q->request_fn_active;
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
436 drain |= q->nr_rqs[i];
437 drain |= q->in_flight[i];
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
440 }
441 }
442
443 if (!drain)
444 break;
445
446 spin_unlock_irq(q->queue_lock);
447
448 msleep(10);
449
450 spin_lock_irq(q->queue_lock);
451 }
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
459 struct request_list *rl;
460
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
464 }
465 }
466
467 /**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
473 * throttled or issued before. On return, it's guaranteed that no request
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
476 */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 spin_lock_irq(q->queue_lock);
480 q->bypass_depth++;
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500 /**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
535 /**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
541 */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 spinlock_t *lock = q->queue_lock;
545
546 /* mark @q DYING, no new request or merges will be allowed afterwards */
547 mutex_lock(&q->sysfs_lock);
548 blk_set_queue_dying(q);
549 spin_lock_irq(lock);
550
551 /*
552 * A dying queue is permanently in bypass mode till released. Note
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 queue_flag_set(QUEUE_FLAG_DYING, q);
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
576 __blk_drain_queue(q, true);
577 queue_flag_set(QUEUE_FLAG_DEAD, q);
578 spin_unlock_irq(lock);
579
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
589 percpu_ref_exit(&q->q_usage_counter);
590
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
596 bdi_unregister(&q->backing_dev_info);
597
598 /* @q is and will stay empty, shutdown and put */
599 blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609
610 static void free_request_struct(void *element, void *unused)
611 {
612 kmem_cache_free(request_cachep, element);
613 }
614
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
617 {
618 if (unlikely(rl->rq_pool))
619 return 0;
620
621 rl->q = q;
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635 }
636
637 void blk_exit_rl(struct request_list *rl)
638 {
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641 }
642
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648
649 int blk_queue_enter(struct request_queue *q, bool nowait)
650 {
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
657 if (nowait)
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668 }
669
670 void blk_queue_exit(struct request_queue *q)
671 {
672 percpu_ref_put(&q->q_usage_counter);
673 }
674
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681 }
682
683 static void blk_rq_timed_out_timer(unsigned long data)
684 {
685 struct request_queue *q = (struct request_queue *)data;
686
687 kblockd_schedule_work(&q->timeout_work);
688 }
689
690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
691 {
692 struct request_queue *q;
693 int err;
694
695 q = kmem_cache_alloc_node(blk_requestq_cachep,
696 gfp_mask | __GFP_ZERO, node_id);
697 if (!q)
698 return NULL;
699
700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
701 if (q->id < 0)
702 goto fail_q;
703
704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 if (!q->bio_split)
706 goto fail_id;
707
708 q->backing_dev_info.ra_pages =
709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
711 q->backing_dev_info.name = "block";
712 q->node = node_id;
713
714 err = bdi_init(&q->backing_dev_info);
715 if (err)
716 goto fail_split;
717
718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 laptop_mode_timer_fn, (unsigned long) q);
720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
721 INIT_LIST_HEAD(&q->queue_head);
722 INIT_LIST_HEAD(&q->timeout_list);
723 INIT_LIST_HEAD(&q->icq_list);
724 #ifdef CONFIG_BLK_CGROUP
725 INIT_LIST_HEAD(&q->blkg_list);
726 #endif
727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
728
729 kobject_init(&q->kobj, &blk_queue_ktype);
730
731 mutex_init(&q->sysfs_lock);
732 spin_lock_init(&q->__queue_lock);
733
734 /*
735 * By default initialize queue_lock to internal lock and driver can
736 * override it later if need be.
737 */
738 q->queue_lock = &q->__queue_lock;
739
740 /*
741 * A queue starts its life with bypass turned on to avoid
742 * unnecessary bypass on/off overhead and nasty surprises during
743 * init. The initial bypass will be finished when the queue is
744 * registered by blk_register_queue().
745 */
746 q->bypass_depth = 1;
747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748
749 init_waitqueue_head(&q->mq_freeze_wq);
750
751 /*
752 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 * See blk_register_queue() for details.
754 */
755 if (percpu_ref_init(&q->q_usage_counter,
756 blk_queue_usage_counter_release,
757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
758 goto fail_bdi;
759
760 if (blkcg_init_queue(q))
761 goto fail_ref;
762
763 return q;
764
765 fail_ref:
766 percpu_ref_exit(&q->q_usage_counter);
767 fail_bdi:
768 bdi_destroy(&q->backing_dev_info);
769 fail_split:
770 bioset_free(q->bio_split);
771 fail_id:
772 ida_simple_remove(&blk_queue_ida, q->id);
773 fail_q:
774 kmem_cache_free(blk_requestq_cachep, q);
775 return NULL;
776 }
777 EXPORT_SYMBOL(blk_alloc_queue_node);
778
779 /**
780 * blk_init_queue - prepare a request queue for use with a block device
781 * @rfn: The function to be called to process requests that have been
782 * placed on the queue.
783 * @lock: Request queue spin lock
784 *
785 * Description:
786 * If a block device wishes to use the standard request handling procedures,
787 * which sorts requests and coalesces adjacent requests, then it must
788 * call blk_init_queue(). The function @rfn will be called when there
789 * are requests on the queue that need to be processed. If the device
790 * supports plugging, then @rfn may not be called immediately when requests
791 * are available on the queue, but may be called at some time later instead.
792 * Plugged queues are generally unplugged when a buffer belonging to one
793 * of the requests on the queue is needed, or due to memory pressure.
794 *
795 * @rfn is not required, or even expected, to remove all requests off the
796 * queue, but only as many as it can handle at a time. If it does leave
797 * requests on the queue, it is responsible for arranging that the requests
798 * get dealt with eventually.
799 *
800 * The queue spin lock must be held while manipulating the requests on the
801 * request queue; this lock will be taken also from interrupt context, so irq
802 * disabling is needed for it.
803 *
804 * Function returns a pointer to the initialized request queue, or %NULL if
805 * it didn't succeed.
806 *
807 * Note:
808 * blk_init_queue() must be paired with a blk_cleanup_queue() call
809 * when the block device is deactivated (such as at module unload).
810 **/
811
812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
813 {
814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
815 }
816 EXPORT_SYMBOL(blk_init_queue);
817
818 struct request_queue *
819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820 {
821 struct request_queue *uninit_q, *q;
822
823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 if (!uninit_q)
825 return NULL;
826
827 q = blk_init_allocated_queue(uninit_q, rfn, lock);
828 if (!q)
829 blk_cleanup_queue(uninit_q);
830
831 return q;
832 }
833 EXPORT_SYMBOL(blk_init_queue_node);
834
835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
836
837 struct request_queue *
838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 spinlock_t *lock)
840 {
841 if (!q)
842 return NULL;
843
844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
845 if (!q->fq)
846 return NULL;
847
848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
849 goto fail;
850
851 INIT_WORK(&q->timeout_work, blk_timeout_work);
852 q->request_fn = rfn;
853 q->prep_rq_fn = NULL;
854 q->unprep_rq_fn = NULL;
855 q->queue_flags |= QUEUE_FLAG_DEFAULT;
856
857 /* Override internal queue lock with supplied lock pointer */
858 if (lock)
859 q->queue_lock = lock;
860
861 /*
862 * This also sets hw/phys segments, boundary and size
863 */
864 blk_queue_make_request(q, blk_queue_bio);
865
866 q->sg_reserved_size = INT_MAX;
867
868 /* Protect q->elevator from elevator_change */
869 mutex_lock(&q->sysfs_lock);
870
871 /* init elevator */
872 if (elevator_init(q, NULL)) {
873 mutex_unlock(&q->sysfs_lock);
874 goto fail;
875 }
876
877 mutex_unlock(&q->sysfs_lock);
878
879 return q;
880
881 fail:
882 blk_free_flush_queue(q->fq);
883 return NULL;
884 }
885 EXPORT_SYMBOL(blk_init_allocated_queue);
886
887 bool blk_get_queue(struct request_queue *q)
888 {
889 if (likely(!blk_queue_dying(q))) {
890 __blk_get_queue(q);
891 return true;
892 }
893
894 return false;
895 }
896 EXPORT_SYMBOL(blk_get_queue);
897
898 static inline void blk_free_request(struct request_list *rl, struct request *rq)
899 {
900 if (rq->cmd_flags & REQ_ELVPRIV) {
901 elv_put_request(rl->q, rq);
902 if (rq->elv.icq)
903 put_io_context(rq->elv.icq->ioc);
904 }
905
906 mempool_free(rq, rl->rq_pool);
907 }
908
909 /*
910 * ioc_batching returns true if the ioc is a valid batching request and
911 * should be given priority access to a request.
912 */
913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
914 {
915 if (!ioc)
916 return 0;
917
918 /*
919 * Make sure the process is able to allocate at least 1 request
920 * even if the batch times out, otherwise we could theoretically
921 * lose wakeups.
922 */
923 return ioc->nr_batch_requests == q->nr_batching ||
924 (ioc->nr_batch_requests > 0
925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926 }
927
928 /*
929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930 * will cause the process to be a "batcher" on all queues in the system. This
931 * is the behaviour we want though - once it gets a wakeup it should be given
932 * a nice run.
933 */
934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
935 {
936 if (!ioc || ioc_batching(q, ioc))
937 return;
938
939 ioc->nr_batch_requests = q->nr_batching;
940 ioc->last_waited = jiffies;
941 }
942
943 static void __freed_request(struct request_list *rl, int sync)
944 {
945 struct request_queue *q = rl->q;
946
947 if (rl->count[sync] < queue_congestion_off_threshold(q))
948 blk_clear_congested(rl, sync);
949
950 if (rl->count[sync] + 1 <= q->nr_requests) {
951 if (waitqueue_active(&rl->wait[sync]))
952 wake_up(&rl->wait[sync]);
953
954 blk_clear_rl_full(rl, sync);
955 }
956 }
957
958 /*
959 * A request has just been released. Account for it, update the full and
960 * congestion status, wake up any waiters. Called under q->queue_lock.
961 */
962 static void freed_request(struct request_list *rl, int op, unsigned int flags)
963 {
964 struct request_queue *q = rl->q;
965 int sync = rw_is_sync(op, flags);
966
967 q->nr_rqs[sync]--;
968 rl->count[sync]--;
969 if (flags & REQ_ELVPRIV)
970 q->nr_rqs_elvpriv--;
971
972 __freed_request(rl, sync);
973
974 if (unlikely(rl->starved[sync ^ 1]))
975 __freed_request(rl, sync ^ 1);
976 }
977
978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979 {
980 struct request_list *rl;
981 int on_thresh, off_thresh;
982
983 spin_lock_irq(q->queue_lock);
984 q->nr_requests = nr;
985 blk_queue_congestion_threshold(q);
986 on_thresh = queue_congestion_on_threshold(q);
987 off_thresh = queue_congestion_off_threshold(q);
988
989 blk_queue_for_each_rl(rl, q) {
990 if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 blk_set_congested(rl, BLK_RW_SYNC);
992 else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 blk_clear_congested(rl, BLK_RW_SYNC);
994
995 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 blk_set_congested(rl, BLK_RW_ASYNC);
997 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 blk_clear_congested(rl, BLK_RW_ASYNC);
999
1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 blk_set_rl_full(rl, BLK_RW_SYNC);
1002 } else {
1003 blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 wake_up(&rl->wait[BLK_RW_SYNC]);
1005 }
1006
1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 } else {
1010 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 }
1013 }
1014
1015 spin_unlock_irq(q->queue_lock);
1016 return 0;
1017 }
1018
1019 /*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023 static bool blk_rq_should_init_elevator(struct bio *bio)
1024 {
1025 if (!bio)
1026 return true;
1027
1028 /*
1029 * Flush requests do not use the elevator so skip initialization.
1030 * This allows a request to share the flush and elevator data.
1031 */
1032 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1033 return false;
1034
1035 return true;
1036 }
1037
1038 /**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio. May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045 static struct io_context *rq_ioc(struct bio *bio)
1046 {
1047 #ifdef CONFIG_BLK_CGROUP
1048 if (bio && bio->bi_ioc)
1049 return bio->bi_ioc;
1050 #endif
1051 return current->io_context;
1052 }
1053
1054 /**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @op: REQ_OP_READ/REQ_OP_WRITE
1058 * @op_flags: rq_flag_bits
1059 * @bio: bio to allocate request for (can be %NULL)
1060 * @gfp_mask: allocation mask
1061 *
1062 * Get a free request from @q. This function may fail under memory
1063 * pressure or if @q is dead.
1064 *
1065 * Must be called with @q->queue_lock held and,
1066 * Returns ERR_PTR on failure, with @q->queue_lock held.
1067 * Returns request pointer on success, with @q->queue_lock *not held*.
1068 */
1069 static struct request *__get_request(struct request_list *rl, int op,
1070 int op_flags, struct bio *bio,
1071 gfp_t gfp_mask)
1072 {
1073 struct request_queue *q = rl->q;
1074 struct request *rq;
1075 struct elevator_type *et = q->elevator->type;
1076 struct io_context *ioc = rq_ioc(bio);
1077 struct io_cq *icq = NULL;
1078 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1079 int may_queue;
1080
1081 if (unlikely(blk_queue_dying(q)))
1082 return ERR_PTR(-ENODEV);
1083
1084 may_queue = elv_may_queue(q, op, op_flags);
1085 if (may_queue == ELV_MQUEUE_NO)
1086 goto rq_starved;
1087
1088 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1089 if (rl->count[is_sync]+1 >= q->nr_requests) {
1090 /*
1091 * The queue will fill after this allocation, so set
1092 * it as full, and mark this process as "batching".
1093 * This process will be allowed to complete a batch of
1094 * requests, others will be blocked.
1095 */
1096 if (!blk_rl_full(rl, is_sync)) {
1097 ioc_set_batching(q, ioc);
1098 blk_set_rl_full(rl, is_sync);
1099 } else {
1100 if (may_queue != ELV_MQUEUE_MUST
1101 && !ioc_batching(q, ioc)) {
1102 /*
1103 * The queue is full and the allocating
1104 * process is not a "batcher", and not
1105 * exempted by the IO scheduler
1106 */
1107 return ERR_PTR(-ENOMEM);
1108 }
1109 }
1110 }
1111 blk_set_congested(rl, is_sync);
1112 }
1113
1114 /*
1115 * Only allow batching queuers to allocate up to 50% over the defined
1116 * limit of requests, otherwise we could have thousands of requests
1117 * allocated with any setting of ->nr_requests
1118 */
1119 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1120 return ERR_PTR(-ENOMEM);
1121
1122 q->nr_rqs[is_sync]++;
1123 rl->count[is_sync]++;
1124 rl->starved[is_sync] = 0;
1125
1126 /*
1127 * Decide whether the new request will be managed by elevator. If
1128 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will
1129 * prevent the current elevator from being destroyed until the new
1130 * request is freed. This guarantees icq's won't be destroyed and
1131 * makes creating new ones safe.
1132 *
1133 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1134 * it will be created after releasing queue_lock.
1135 */
1136 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1137 op_flags |= REQ_ELVPRIV;
1138 q->nr_rqs_elvpriv++;
1139 if (et->icq_cache && ioc)
1140 icq = ioc_lookup_icq(ioc, q);
1141 }
1142
1143 if (blk_queue_io_stat(q))
1144 op_flags |= REQ_IO_STAT;
1145 spin_unlock_irq(q->queue_lock);
1146
1147 /* allocate and init request */
1148 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1149 if (!rq)
1150 goto fail_alloc;
1151
1152 blk_rq_init(q, rq);
1153 blk_rq_set_rl(rq, rl);
1154 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
1155
1156 /* init elvpriv */
1157 if (op_flags & REQ_ELVPRIV) {
1158 if (unlikely(et->icq_cache && !icq)) {
1159 if (ioc)
1160 icq = ioc_create_icq(ioc, q, gfp_mask);
1161 if (!icq)
1162 goto fail_elvpriv;
1163 }
1164
1165 rq->elv.icq = icq;
1166 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1167 goto fail_elvpriv;
1168
1169 /* @rq->elv.icq holds io_context until @rq is freed */
1170 if (icq)
1171 get_io_context(icq->ioc);
1172 }
1173 out:
1174 /*
1175 * ioc may be NULL here, and ioc_batching will be false. That's
1176 * OK, if the queue is under the request limit then requests need
1177 * not count toward the nr_batch_requests limit. There will always
1178 * be some limit enforced by BLK_BATCH_TIME.
1179 */
1180 if (ioc_batching(q, ioc))
1181 ioc->nr_batch_requests--;
1182
1183 trace_block_getrq(q, bio, op);
1184 return rq;
1185
1186 fail_elvpriv:
1187 /*
1188 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1189 * and may fail indefinitely under memory pressure and thus
1190 * shouldn't stall IO. Treat this request as !elvpriv. This will
1191 * disturb iosched and blkcg but weird is bettern than dead.
1192 */
1193 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1194 __func__, dev_name(q->backing_dev_info.dev));
1195
1196 rq->cmd_flags &= ~REQ_ELVPRIV;
1197 rq->elv.icq = NULL;
1198
1199 spin_lock_irq(q->queue_lock);
1200 q->nr_rqs_elvpriv--;
1201 spin_unlock_irq(q->queue_lock);
1202 goto out;
1203
1204 fail_alloc:
1205 /*
1206 * Allocation failed presumably due to memory. Undo anything we
1207 * might have messed up.
1208 *
1209 * Allocating task should really be put onto the front of the wait
1210 * queue, but this is pretty rare.
1211 */
1212 spin_lock_irq(q->queue_lock);
1213 freed_request(rl, op, op_flags);
1214
1215 /*
1216 * in the very unlikely event that allocation failed and no
1217 * requests for this direction was pending, mark us starved so that
1218 * freeing of a request in the other direction will notice
1219 * us. another possible fix would be to split the rq mempool into
1220 * READ and WRITE
1221 */
1222 rq_starved:
1223 if (unlikely(rl->count[is_sync] == 0))
1224 rl->starved[is_sync] = 1;
1225 return ERR_PTR(-ENOMEM);
1226 }
1227
1228 /**
1229 * get_request - get a free request
1230 * @q: request_queue to allocate request from
1231 * @op: REQ_OP_READ/REQ_OP_WRITE
1232 * @op_flags: rq_flag_bits
1233 * @bio: bio to allocate request for (can be %NULL)
1234 * @gfp_mask: allocation mask
1235 *
1236 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1237 * this function keeps retrying under memory pressure and fails iff @q is dead.
1238 *
1239 * Must be called with @q->queue_lock held and,
1240 * Returns ERR_PTR on failure, with @q->queue_lock held.
1241 * Returns request pointer on success, with @q->queue_lock *not held*.
1242 */
1243 static struct request *get_request(struct request_queue *q, int op,
1244 int op_flags, struct bio *bio,
1245 gfp_t gfp_mask)
1246 {
1247 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1248 DEFINE_WAIT(wait);
1249 struct request_list *rl;
1250 struct request *rq;
1251
1252 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1253 retry:
1254 rq = __get_request(rl, op, op_flags, bio, gfp_mask);
1255 if (!IS_ERR(rq))
1256 return rq;
1257
1258 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1259 blk_put_rl(rl);
1260 return rq;
1261 }
1262
1263 /* wait on @rl and retry */
1264 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1265 TASK_UNINTERRUPTIBLE);
1266
1267 trace_block_sleeprq(q, bio, op);
1268
1269 spin_unlock_irq(q->queue_lock);
1270 io_schedule();
1271
1272 /*
1273 * After sleeping, we become a "batching" process and will be able
1274 * to allocate at least one request, and up to a big batch of them
1275 * for a small period time. See ioc_batching, ioc_set_batching
1276 */
1277 ioc_set_batching(q, current->io_context);
1278
1279 spin_lock_irq(q->queue_lock);
1280 finish_wait(&rl->wait[is_sync], &wait);
1281
1282 goto retry;
1283 }
1284
1285 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1286 gfp_t gfp_mask)
1287 {
1288 struct request *rq;
1289
1290 BUG_ON(rw != READ && rw != WRITE);
1291
1292 /* create ioc upfront */
1293 create_io_context(gfp_mask, q->node);
1294
1295 spin_lock_irq(q->queue_lock);
1296 rq = get_request(q, rw, 0, NULL, gfp_mask);
1297 if (IS_ERR(rq)) {
1298 spin_unlock_irq(q->queue_lock);
1299 return rq;
1300 }
1301
1302 /* q->queue_lock is unlocked at this point */
1303 rq->__data_len = 0;
1304 rq->__sector = (sector_t) -1;
1305 rq->bio = rq->biotail = NULL;
1306 return rq;
1307 }
1308
1309 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1310 {
1311 if (q->mq_ops)
1312 return blk_mq_alloc_request(q, rw,
1313 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1314 0 : BLK_MQ_REQ_NOWAIT);
1315 else
1316 return blk_old_get_request(q, rw, gfp_mask);
1317 }
1318 EXPORT_SYMBOL(blk_get_request);
1319
1320 /**
1321 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1322 * @rq: request to be initialized
1323 *
1324 */
1325 void blk_rq_set_block_pc(struct request *rq)
1326 {
1327 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1328 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1329 }
1330 EXPORT_SYMBOL(blk_rq_set_block_pc);
1331
1332 /**
1333 * blk_requeue_request - put a request back on queue
1334 * @q: request queue where request should be inserted
1335 * @rq: request to be inserted
1336 *
1337 * Description:
1338 * Drivers often keep queueing requests until the hardware cannot accept
1339 * more, when that condition happens we need to put the request back
1340 * on the queue. Must be called with queue lock held.
1341 */
1342 void blk_requeue_request(struct request_queue *q, struct request *rq)
1343 {
1344 blk_delete_timer(rq);
1345 blk_clear_rq_complete(rq);
1346 trace_block_rq_requeue(q, rq);
1347
1348 if (rq->cmd_flags & REQ_QUEUED)
1349 blk_queue_end_tag(q, rq);
1350
1351 BUG_ON(blk_queued_rq(rq));
1352
1353 elv_requeue_request(q, rq);
1354 }
1355 EXPORT_SYMBOL(blk_requeue_request);
1356
1357 static void add_acct_request(struct request_queue *q, struct request *rq,
1358 int where)
1359 {
1360 blk_account_io_start(rq, true);
1361 __elv_add_request(q, rq, where);
1362 }
1363
1364 static void part_round_stats_single(int cpu, struct hd_struct *part,
1365 unsigned long now)
1366 {
1367 int inflight;
1368
1369 if (now == part->stamp)
1370 return;
1371
1372 inflight = part_in_flight(part);
1373 if (inflight) {
1374 __part_stat_add(cpu, part, time_in_queue,
1375 inflight * (now - part->stamp));
1376 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1377 }
1378 part->stamp = now;
1379 }
1380
1381 /**
1382 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1383 * @cpu: cpu number for stats access
1384 * @part: target partition
1385 *
1386 * The average IO queue length and utilisation statistics are maintained
1387 * by observing the current state of the queue length and the amount of
1388 * time it has been in this state for.
1389 *
1390 * Normally, that accounting is done on IO completion, but that can result
1391 * in more than a second's worth of IO being accounted for within any one
1392 * second, leading to >100% utilisation. To deal with that, we call this
1393 * function to do a round-off before returning the results when reading
1394 * /proc/diskstats. This accounts immediately for all queue usage up to
1395 * the current jiffies and restarts the counters again.
1396 */
1397 void part_round_stats(int cpu, struct hd_struct *part)
1398 {
1399 unsigned long now = jiffies;
1400
1401 if (part->partno)
1402 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1403 part_round_stats_single(cpu, part, now);
1404 }
1405 EXPORT_SYMBOL_GPL(part_round_stats);
1406
1407 #ifdef CONFIG_PM
1408 static void blk_pm_put_request(struct request *rq)
1409 {
1410 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1411 pm_runtime_mark_last_busy(rq->q->dev);
1412 }
1413 #else
1414 static inline void blk_pm_put_request(struct request *rq) {}
1415 #endif
1416
1417 /*
1418 * queue lock must be held
1419 */
1420 void __blk_put_request(struct request_queue *q, struct request *req)
1421 {
1422 if (unlikely(!q))
1423 return;
1424
1425 if (q->mq_ops) {
1426 blk_mq_free_request(req);
1427 return;
1428 }
1429
1430 blk_pm_put_request(req);
1431
1432 elv_completed_request(q, req);
1433
1434 /* this is a bio leak */
1435 WARN_ON(req->bio != NULL);
1436
1437 /*
1438 * Request may not have originated from ll_rw_blk. if not,
1439 * it didn't come out of our reserved rq pools
1440 */
1441 if (req->cmd_flags & REQ_ALLOCED) {
1442 unsigned int flags = req->cmd_flags;
1443 int op = req_op(req);
1444 struct request_list *rl = blk_rq_rl(req);
1445
1446 BUG_ON(!list_empty(&req->queuelist));
1447 BUG_ON(ELV_ON_HASH(req));
1448
1449 blk_free_request(rl, req);
1450 freed_request(rl, op, flags);
1451 blk_put_rl(rl);
1452 }
1453 }
1454 EXPORT_SYMBOL_GPL(__blk_put_request);
1455
1456 void blk_put_request(struct request *req)
1457 {
1458 struct request_queue *q = req->q;
1459
1460 if (q->mq_ops)
1461 blk_mq_free_request(req);
1462 else {
1463 unsigned long flags;
1464
1465 spin_lock_irqsave(q->queue_lock, flags);
1466 __blk_put_request(q, req);
1467 spin_unlock_irqrestore(q->queue_lock, flags);
1468 }
1469 }
1470 EXPORT_SYMBOL(blk_put_request);
1471
1472 /**
1473 * blk_add_request_payload - add a payload to a request
1474 * @rq: request to update
1475 * @page: page backing the payload
1476 * @offset: offset in page
1477 * @len: length of the payload.
1478 *
1479 * This allows to later add a payload to an already submitted request by
1480 * a block driver. The driver needs to take care of freeing the payload
1481 * itself.
1482 *
1483 * Note that this is a quite horrible hack and nothing but handling of
1484 * discard requests should ever use it.
1485 */
1486 void blk_add_request_payload(struct request *rq, struct page *page,
1487 int offset, unsigned int len)
1488 {
1489 struct bio *bio = rq->bio;
1490
1491 bio->bi_io_vec->bv_page = page;
1492 bio->bi_io_vec->bv_offset = offset;
1493 bio->bi_io_vec->bv_len = len;
1494
1495 bio->bi_iter.bi_size = len;
1496 bio->bi_vcnt = 1;
1497 bio->bi_phys_segments = 1;
1498
1499 rq->__data_len = rq->resid_len = len;
1500 rq->nr_phys_segments = 1;
1501 }
1502 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1503
1504 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1505 struct bio *bio)
1506 {
1507 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1508
1509 if (!ll_back_merge_fn(q, req, bio))
1510 return false;
1511
1512 trace_block_bio_backmerge(q, req, bio);
1513
1514 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1515 blk_rq_set_mixed_merge(req);
1516
1517 req->biotail->bi_next = bio;
1518 req->biotail = bio;
1519 req->__data_len += bio->bi_iter.bi_size;
1520 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1521
1522 blk_account_io_start(req, false);
1523 return true;
1524 }
1525
1526 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1527 struct bio *bio)
1528 {
1529 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1530
1531 if (!ll_front_merge_fn(q, req, bio))
1532 return false;
1533
1534 trace_block_bio_frontmerge(q, req, bio);
1535
1536 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1537 blk_rq_set_mixed_merge(req);
1538
1539 bio->bi_next = req->bio;
1540 req->bio = bio;
1541
1542 req->__sector = bio->bi_iter.bi_sector;
1543 req->__data_len += bio->bi_iter.bi_size;
1544 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1545
1546 blk_account_io_start(req, false);
1547 return true;
1548 }
1549
1550 /**
1551 * blk_attempt_plug_merge - try to merge with %current's plugged list
1552 * @q: request_queue new bio is being queued at
1553 * @bio: new bio being queued
1554 * @request_count: out parameter for number of traversed plugged requests
1555 * @same_queue_rq: pointer to &struct request that gets filled in when
1556 * another request associated with @q is found on the plug list
1557 * (optional, may be %NULL)
1558 *
1559 * Determine whether @bio being queued on @q can be merged with a request
1560 * on %current's plugged list. Returns %true if merge was successful,
1561 * otherwise %false.
1562 *
1563 * Plugging coalesces IOs from the same issuer for the same purpose without
1564 * going through @q->queue_lock. As such it's more of an issuing mechanism
1565 * than scheduling, and the request, while may have elvpriv data, is not
1566 * added on the elevator at this point. In addition, we don't have
1567 * reliable access to the elevator outside queue lock. Only check basic
1568 * merging parameters without querying the elevator.
1569 *
1570 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1571 */
1572 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1573 unsigned int *request_count,
1574 struct request **same_queue_rq)
1575 {
1576 struct blk_plug *plug;
1577 struct request *rq;
1578 bool ret = false;
1579 struct list_head *plug_list;
1580
1581 plug = current->plug;
1582 if (!plug)
1583 goto out;
1584 *request_count = 0;
1585
1586 if (q->mq_ops)
1587 plug_list = &plug->mq_list;
1588 else
1589 plug_list = &plug->list;
1590
1591 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1592 int el_ret;
1593
1594 if (rq->q == q) {
1595 (*request_count)++;
1596 /*
1597 * Only blk-mq multiple hardware queues case checks the
1598 * rq in the same queue, there should be only one such
1599 * rq in a queue
1600 **/
1601 if (same_queue_rq)
1602 *same_queue_rq = rq;
1603 }
1604
1605 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1606 continue;
1607
1608 el_ret = blk_try_merge(rq, bio);
1609 if (el_ret == ELEVATOR_BACK_MERGE) {
1610 ret = bio_attempt_back_merge(q, rq, bio);
1611 if (ret)
1612 break;
1613 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1614 ret = bio_attempt_front_merge(q, rq, bio);
1615 if (ret)
1616 break;
1617 }
1618 }
1619 out:
1620 return ret;
1621 }
1622
1623 unsigned int blk_plug_queued_count(struct request_queue *q)
1624 {
1625 struct blk_plug *plug;
1626 struct request *rq;
1627 struct list_head *plug_list;
1628 unsigned int ret = 0;
1629
1630 plug = current->plug;
1631 if (!plug)
1632 goto out;
1633
1634 if (q->mq_ops)
1635 plug_list = &plug->mq_list;
1636 else
1637 plug_list = &plug->list;
1638
1639 list_for_each_entry(rq, plug_list, queuelist) {
1640 if (rq->q == q)
1641 ret++;
1642 }
1643 out:
1644 return ret;
1645 }
1646
1647 void init_request_from_bio(struct request *req, struct bio *bio)
1648 {
1649 req->cmd_type = REQ_TYPE_FS;
1650
1651 req->cmd_flags |= bio->bi_opf & REQ_COMMON_MASK;
1652 if (bio->bi_opf & REQ_RAHEAD)
1653 req->cmd_flags |= REQ_FAILFAST_MASK;
1654
1655 req->errors = 0;
1656 req->__sector = bio->bi_iter.bi_sector;
1657 req->ioprio = bio_prio(bio);
1658 blk_rq_bio_prep(req->q, req, bio);
1659 }
1660
1661 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1662 {
1663 const bool sync = !!(bio->bi_opf & REQ_SYNC);
1664 struct blk_plug *plug;
1665 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
1666 struct request *req;
1667 unsigned int request_count = 0;
1668
1669 /*
1670 * low level driver can indicate that it wants pages above a
1671 * certain limit bounced to low memory (ie for highmem, or even
1672 * ISA dma in theory)
1673 */
1674 blk_queue_bounce(q, &bio);
1675
1676 blk_queue_split(q, &bio, q->bio_split);
1677
1678 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1679 bio->bi_error = -EIO;
1680 bio_endio(bio);
1681 return BLK_QC_T_NONE;
1682 }
1683
1684 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1685 spin_lock_irq(q->queue_lock);
1686 where = ELEVATOR_INSERT_FLUSH;
1687 goto get_rq;
1688 }
1689
1690 /*
1691 * Check if we can merge with the plugged list before grabbing
1692 * any locks.
1693 */
1694 if (!blk_queue_nomerges(q)) {
1695 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1696 return BLK_QC_T_NONE;
1697 } else
1698 request_count = blk_plug_queued_count(q);
1699
1700 spin_lock_irq(q->queue_lock);
1701
1702 el_ret = elv_merge(q, &req, bio);
1703 if (el_ret == ELEVATOR_BACK_MERGE) {
1704 if (bio_attempt_back_merge(q, req, bio)) {
1705 elv_bio_merged(q, req, bio);
1706 if (!attempt_back_merge(q, req))
1707 elv_merged_request(q, req, el_ret);
1708 goto out_unlock;
1709 }
1710 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1711 if (bio_attempt_front_merge(q, req, bio)) {
1712 elv_bio_merged(q, req, bio);
1713 if (!attempt_front_merge(q, req))
1714 elv_merged_request(q, req, el_ret);
1715 goto out_unlock;
1716 }
1717 }
1718
1719 get_rq:
1720 /*
1721 * This sync check and mask will be re-done in init_request_from_bio(),
1722 * but we need to set it earlier to expose the sync flag to the
1723 * rq allocator and io schedulers.
1724 */
1725 if (sync)
1726 rw_flags |= REQ_SYNC;
1727
1728 /*
1729 * Add in META/PRIO flags, if set, before we get to the IO scheduler
1730 */
1731 rw_flags |= (bio->bi_opf & (REQ_META | REQ_PRIO));
1732
1733 /*
1734 * Grab a free request. This is might sleep but can not fail.
1735 * Returns with the queue unlocked.
1736 */
1737 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
1738 if (IS_ERR(req)) {
1739 bio->bi_error = PTR_ERR(req);
1740 bio_endio(bio);
1741 goto out_unlock;
1742 }
1743
1744 /*
1745 * After dropping the lock and possibly sleeping here, our request
1746 * may now be mergeable after it had proven unmergeable (above).
1747 * We don't worry about that case for efficiency. It won't happen
1748 * often, and the elevators are able to handle it.
1749 */
1750 init_request_from_bio(req, bio);
1751
1752 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1753 req->cpu = raw_smp_processor_id();
1754
1755 plug = current->plug;
1756 if (plug) {
1757 /*
1758 * If this is the first request added after a plug, fire
1759 * of a plug trace.
1760 */
1761 if (!request_count)
1762 trace_block_plug(q);
1763 else {
1764 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1765 blk_flush_plug_list(plug, false);
1766 trace_block_plug(q);
1767 }
1768 }
1769 list_add_tail(&req->queuelist, &plug->list);
1770 blk_account_io_start(req, true);
1771 } else {
1772 spin_lock_irq(q->queue_lock);
1773 add_acct_request(q, req, where);
1774 __blk_run_queue(q);
1775 out_unlock:
1776 spin_unlock_irq(q->queue_lock);
1777 }
1778
1779 return BLK_QC_T_NONE;
1780 }
1781
1782 /*
1783 * If bio->bi_dev is a partition, remap the location
1784 */
1785 static inline void blk_partition_remap(struct bio *bio)
1786 {
1787 struct block_device *bdev = bio->bi_bdev;
1788
1789 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1790 struct hd_struct *p = bdev->bd_part;
1791
1792 bio->bi_iter.bi_sector += p->start_sect;
1793 bio->bi_bdev = bdev->bd_contains;
1794
1795 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1796 bdev->bd_dev,
1797 bio->bi_iter.bi_sector - p->start_sect);
1798 }
1799 }
1800
1801 static void handle_bad_sector(struct bio *bio)
1802 {
1803 char b[BDEVNAME_SIZE];
1804
1805 printk(KERN_INFO "attempt to access beyond end of device\n");
1806 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1807 bdevname(bio->bi_bdev, b),
1808 bio->bi_opf,
1809 (unsigned long long)bio_end_sector(bio),
1810 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1811 }
1812
1813 #ifdef CONFIG_FAIL_MAKE_REQUEST
1814
1815 static DECLARE_FAULT_ATTR(fail_make_request);
1816
1817 static int __init setup_fail_make_request(char *str)
1818 {
1819 return setup_fault_attr(&fail_make_request, str);
1820 }
1821 __setup("fail_make_request=", setup_fail_make_request);
1822
1823 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1824 {
1825 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1826 }
1827
1828 static int __init fail_make_request_debugfs(void)
1829 {
1830 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1831 NULL, &fail_make_request);
1832
1833 return PTR_ERR_OR_ZERO(dir);
1834 }
1835
1836 late_initcall(fail_make_request_debugfs);
1837
1838 #else /* CONFIG_FAIL_MAKE_REQUEST */
1839
1840 static inline bool should_fail_request(struct hd_struct *part,
1841 unsigned int bytes)
1842 {
1843 return false;
1844 }
1845
1846 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1847
1848 /*
1849 * Check whether this bio extends beyond the end of the device.
1850 */
1851 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1852 {
1853 sector_t maxsector;
1854
1855 if (!nr_sectors)
1856 return 0;
1857
1858 /* Test device or partition size, when known. */
1859 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1860 if (maxsector) {
1861 sector_t sector = bio->bi_iter.bi_sector;
1862
1863 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1864 /*
1865 * This may well happen - the kernel calls bread()
1866 * without checking the size of the device, e.g., when
1867 * mounting a device.
1868 */
1869 handle_bad_sector(bio);
1870 return 1;
1871 }
1872 }
1873
1874 return 0;
1875 }
1876
1877 static noinline_for_stack bool
1878 generic_make_request_checks(struct bio *bio)
1879 {
1880 struct request_queue *q;
1881 int nr_sectors = bio_sectors(bio);
1882 int err = -EIO;
1883 char b[BDEVNAME_SIZE];
1884 struct hd_struct *part;
1885
1886 might_sleep();
1887
1888 if (bio_check_eod(bio, nr_sectors))
1889 goto end_io;
1890
1891 q = bdev_get_queue(bio->bi_bdev);
1892 if (unlikely(!q)) {
1893 printk(KERN_ERR
1894 "generic_make_request: Trying to access "
1895 "nonexistent block-device %s (%Lu)\n",
1896 bdevname(bio->bi_bdev, b),
1897 (long long) bio->bi_iter.bi_sector);
1898 goto end_io;
1899 }
1900
1901 part = bio->bi_bdev->bd_part;
1902 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1903 should_fail_request(&part_to_disk(part)->part0,
1904 bio->bi_iter.bi_size))
1905 goto end_io;
1906
1907 /*
1908 * If this device has partitions, remap block n
1909 * of partition p to block n+start(p) of the disk.
1910 */
1911 blk_partition_remap(bio);
1912
1913 if (bio_check_eod(bio, nr_sectors))
1914 goto end_io;
1915
1916 /*
1917 * Filter flush bio's early so that make_request based
1918 * drivers without flush support don't have to worry
1919 * about them.
1920 */
1921 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1922 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1923 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1924 if (!nr_sectors) {
1925 err = 0;
1926 goto end_io;
1927 }
1928 }
1929
1930 switch (bio_op(bio)) {
1931 case REQ_OP_DISCARD:
1932 if (!blk_queue_discard(q))
1933 goto not_supported;
1934 break;
1935 case REQ_OP_SECURE_ERASE:
1936 if (!blk_queue_secure_erase(q))
1937 goto not_supported;
1938 break;
1939 case REQ_OP_WRITE_SAME:
1940 if (!bdev_write_same(bio->bi_bdev))
1941 goto not_supported;
1942 break;
1943 default:
1944 break;
1945 }
1946
1947 /*
1948 * Various block parts want %current->io_context and lazy ioc
1949 * allocation ends up trading a lot of pain for a small amount of
1950 * memory. Just allocate it upfront. This may fail and block
1951 * layer knows how to live with it.
1952 */
1953 create_io_context(GFP_ATOMIC, q->node);
1954
1955 if (!blkcg_bio_issue_check(q, bio))
1956 return false;
1957
1958 trace_block_bio_queue(q, bio);
1959 return true;
1960
1961 not_supported:
1962 err = -EOPNOTSUPP;
1963 end_io:
1964 bio->bi_error = err;
1965 bio_endio(bio);
1966 return false;
1967 }
1968
1969 /**
1970 * generic_make_request - hand a buffer to its device driver for I/O
1971 * @bio: The bio describing the location in memory and on the device.
1972 *
1973 * generic_make_request() is used to make I/O requests of block
1974 * devices. It is passed a &struct bio, which describes the I/O that needs
1975 * to be done.
1976 *
1977 * generic_make_request() does not return any status. The
1978 * success/failure status of the request, along with notification of
1979 * completion, is delivered asynchronously through the bio->bi_end_io
1980 * function described (one day) else where.
1981 *
1982 * The caller of generic_make_request must make sure that bi_io_vec
1983 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1984 * set to describe the device address, and the
1985 * bi_end_io and optionally bi_private are set to describe how
1986 * completion notification should be signaled.
1987 *
1988 * generic_make_request and the drivers it calls may use bi_next if this
1989 * bio happens to be merged with someone else, and may resubmit the bio to
1990 * a lower device by calling into generic_make_request recursively, which
1991 * means the bio should NOT be touched after the call to ->make_request_fn.
1992 */
1993 blk_qc_t generic_make_request(struct bio *bio)
1994 {
1995 struct bio_list bio_list_on_stack;
1996 blk_qc_t ret = BLK_QC_T_NONE;
1997
1998 if (!generic_make_request_checks(bio))
1999 goto out;
2000
2001 /*
2002 * We only want one ->make_request_fn to be active at a time, else
2003 * stack usage with stacked devices could be a problem. So use
2004 * current->bio_list to keep a list of requests submited by a
2005 * make_request_fn function. current->bio_list is also used as a
2006 * flag to say if generic_make_request is currently active in this
2007 * task or not. If it is NULL, then no make_request is active. If
2008 * it is non-NULL, then a make_request is active, and new requests
2009 * should be added at the tail
2010 */
2011 if (current->bio_list) {
2012 bio_list_add(current->bio_list, bio);
2013 goto out;
2014 }
2015
2016 /* following loop may be a bit non-obvious, and so deserves some
2017 * explanation.
2018 * Before entering the loop, bio->bi_next is NULL (as all callers
2019 * ensure that) so we have a list with a single bio.
2020 * We pretend that we have just taken it off a longer list, so
2021 * we assign bio_list to a pointer to the bio_list_on_stack,
2022 * thus initialising the bio_list of new bios to be
2023 * added. ->make_request() may indeed add some more bios
2024 * through a recursive call to generic_make_request. If it
2025 * did, we find a non-NULL value in bio_list and re-enter the loop
2026 * from the top. In this case we really did just take the bio
2027 * of the top of the list (no pretending) and so remove it from
2028 * bio_list, and call into ->make_request() again.
2029 */
2030 BUG_ON(bio->bi_next);
2031 bio_list_init(&bio_list_on_stack);
2032 current->bio_list = &bio_list_on_stack;
2033 do {
2034 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2035
2036 if (likely(blk_queue_enter(q, false) == 0)) {
2037 ret = q->make_request_fn(q, bio);
2038
2039 blk_queue_exit(q);
2040
2041 bio = bio_list_pop(current->bio_list);
2042 } else {
2043 struct bio *bio_next = bio_list_pop(current->bio_list);
2044
2045 bio_io_error(bio);
2046 bio = bio_next;
2047 }
2048 } while (bio);
2049 current->bio_list = NULL; /* deactivate */
2050
2051 out:
2052 return ret;
2053 }
2054 EXPORT_SYMBOL(generic_make_request);
2055
2056 /**
2057 * submit_bio - submit a bio to the block device layer for I/O
2058 * @bio: The &struct bio which describes the I/O
2059 *
2060 * submit_bio() is very similar in purpose to generic_make_request(), and
2061 * uses that function to do most of the work. Both are fairly rough
2062 * interfaces; @bio must be presetup and ready for I/O.
2063 *
2064 */
2065 blk_qc_t submit_bio(struct bio *bio)
2066 {
2067 /*
2068 * If it's a regular read/write or a barrier with data attached,
2069 * go through the normal accounting stuff before submission.
2070 */
2071 if (bio_has_data(bio)) {
2072 unsigned int count;
2073
2074 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2075 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2076 else
2077 count = bio_sectors(bio);
2078
2079 if (op_is_write(bio_op(bio))) {
2080 count_vm_events(PGPGOUT, count);
2081 } else {
2082 task_io_account_read(bio->bi_iter.bi_size);
2083 count_vm_events(PGPGIN, count);
2084 }
2085
2086 if (unlikely(block_dump)) {
2087 char b[BDEVNAME_SIZE];
2088 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2089 current->comm, task_pid_nr(current),
2090 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2091 (unsigned long long)bio->bi_iter.bi_sector,
2092 bdevname(bio->bi_bdev, b),
2093 count);
2094 }
2095 }
2096
2097 return generic_make_request(bio);
2098 }
2099 EXPORT_SYMBOL(submit_bio);
2100
2101 /**
2102 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2103 * for new the queue limits
2104 * @q: the queue
2105 * @rq: the request being checked
2106 *
2107 * Description:
2108 * @rq may have been made based on weaker limitations of upper-level queues
2109 * in request stacking drivers, and it may violate the limitation of @q.
2110 * Since the block layer and the underlying device driver trust @rq
2111 * after it is inserted to @q, it should be checked against @q before
2112 * the insertion using this generic function.
2113 *
2114 * Request stacking drivers like request-based dm may change the queue
2115 * limits when retrying requests on other queues. Those requests need
2116 * to be checked against the new queue limits again during dispatch.
2117 */
2118 static int blk_cloned_rq_check_limits(struct request_queue *q,
2119 struct request *rq)
2120 {
2121 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2122 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2123 return -EIO;
2124 }
2125
2126 /*
2127 * queue's settings related to segment counting like q->bounce_pfn
2128 * may differ from that of other stacking queues.
2129 * Recalculate it to check the request correctly on this queue's
2130 * limitation.
2131 */
2132 blk_recalc_rq_segments(rq);
2133 if (rq->nr_phys_segments > queue_max_segments(q)) {
2134 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2135 return -EIO;
2136 }
2137
2138 return 0;
2139 }
2140
2141 /**
2142 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2143 * @q: the queue to submit the request
2144 * @rq: the request being queued
2145 */
2146 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2147 {
2148 unsigned long flags;
2149 int where = ELEVATOR_INSERT_BACK;
2150
2151 if (blk_cloned_rq_check_limits(q, rq))
2152 return -EIO;
2153
2154 if (rq->rq_disk &&
2155 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2156 return -EIO;
2157
2158 if (q->mq_ops) {
2159 if (blk_queue_io_stat(q))
2160 blk_account_io_start(rq, true);
2161 blk_mq_insert_request(rq, false, true, false);
2162 return 0;
2163 }
2164
2165 spin_lock_irqsave(q->queue_lock, flags);
2166 if (unlikely(blk_queue_dying(q))) {
2167 spin_unlock_irqrestore(q->queue_lock, flags);
2168 return -ENODEV;
2169 }
2170
2171 /*
2172 * Submitting request must be dequeued before calling this function
2173 * because it will be linked to another request_queue
2174 */
2175 BUG_ON(blk_queued_rq(rq));
2176
2177 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2178 where = ELEVATOR_INSERT_FLUSH;
2179
2180 add_acct_request(q, rq, where);
2181 if (where == ELEVATOR_INSERT_FLUSH)
2182 __blk_run_queue(q);
2183 spin_unlock_irqrestore(q->queue_lock, flags);
2184
2185 return 0;
2186 }
2187 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2188
2189 /**
2190 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2191 * @rq: request to examine
2192 *
2193 * Description:
2194 * A request could be merge of IOs which require different failure
2195 * handling. This function determines the number of bytes which
2196 * can be failed from the beginning of the request without
2197 * crossing into area which need to be retried further.
2198 *
2199 * Return:
2200 * The number of bytes to fail.
2201 *
2202 * Context:
2203 * queue_lock must be held.
2204 */
2205 unsigned int blk_rq_err_bytes(const struct request *rq)
2206 {
2207 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2208 unsigned int bytes = 0;
2209 struct bio *bio;
2210
2211 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2212 return blk_rq_bytes(rq);
2213
2214 /*
2215 * Currently the only 'mixing' which can happen is between
2216 * different fastfail types. We can safely fail portions
2217 * which have all the failfast bits that the first one has -
2218 * the ones which are at least as eager to fail as the first
2219 * one.
2220 */
2221 for (bio = rq->bio; bio; bio = bio->bi_next) {
2222 if ((bio->bi_opf & ff) != ff)
2223 break;
2224 bytes += bio->bi_iter.bi_size;
2225 }
2226
2227 /* this could lead to infinite loop */
2228 BUG_ON(blk_rq_bytes(rq) && !bytes);
2229 return bytes;
2230 }
2231 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2232
2233 void blk_account_io_completion(struct request *req, unsigned int bytes)
2234 {
2235 if (blk_do_io_stat(req)) {
2236 const int rw = rq_data_dir(req);
2237 struct hd_struct *part;
2238 int cpu;
2239
2240 cpu = part_stat_lock();
2241 part = req->part;
2242 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2243 part_stat_unlock();
2244 }
2245 }
2246
2247 void blk_account_io_done(struct request *req)
2248 {
2249 /*
2250 * Account IO completion. flush_rq isn't accounted as a
2251 * normal IO on queueing nor completion. Accounting the
2252 * containing request is enough.
2253 */
2254 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2255 unsigned long duration = jiffies - req->start_time;
2256 const int rw = rq_data_dir(req);
2257 struct hd_struct *part;
2258 int cpu;
2259
2260 cpu = part_stat_lock();
2261 part = req->part;
2262
2263 part_stat_inc(cpu, part, ios[rw]);
2264 part_stat_add(cpu, part, ticks[rw], duration);
2265 part_round_stats(cpu, part);
2266 part_dec_in_flight(part, rw);
2267
2268 hd_struct_put(part);
2269 part_stat_unlock();
2270 }
2271 }
2272
2273 #ifdef CONFIG_PM
2274 /*
2275 * Don't process normal requests when queue is suspended
2276 * or in the process of suspending/resuming
2277 */
2278 static struct request *blk_pm_peek_request(struct request_queue *q,
2279 struct request *rq)
2280 {
2281 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2282 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2283 return NULL;
2284 else
2285 return rq;
2286 }
2287 #else
2288 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2289 struct request *rq)
2290 {
2291 return rq;
2292 }
2293 #endif
2294
2295 void blk_account_io_start(struct request *rq, bool new_io)
2296 {
2297 struct hd_struct *part;
2298 int rw = rq_data_dir(rq);
2299 int cpu;
2300
2301 if (!blk_do_io_stat(rq))
2302 return;
2303
2304 cpu = part_stat_lock();
2305
2306 if (!new_io) {
2307 part = rq->part;
2308 part_stat_inc(cpu, part, merges[rw]);
2309 } else {
2310 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2311 if (!hd_struct_try_get(part)) {
2312 /*
2313 * The partition is already being removed,
2314 * the request will be accounted on the disk only
2315 *
2316 * We take a reference on disk->part0 although that
2317 * partition will never be deleted, so we can treat
2318 * it as any other partition.
2319 */
2320 part = &rq->rq_disk->part0;
2321 hd_struct_get(part);
2322 }
2323 part_round_stats(cpu, part);
2324 part_inc_in_flight(part, rw);
2325 rq->part = part;
2326 }
2327
2328 part_stat_unlock();
2329 }
2330
2331 /**
2332 * blk_peek_request - peek at the top of a request queue
2333 * @q: request queue to peek at
2334 *
2335 * Description:
2336 * Return the request at the top of @q. The returned request
2337 * should be started using blk_start_request() before LLD starts
2338 * processing it.
2339 *
2340 * Return:
2341 * Pointer to the request at the top of @q if available. Null
2342 * otherwise.
2343 *
2344 * Context:
2345 * queue_lock must be held.
2346 */
2347 struct request *blk_peek_request(struct request_queue *q)
2348 {
2349 struct request *rq;
2350 int ret;
2351
2352 while ((rq = __elv_next_request(q)) != NULL) {
2353
2354 rq = blk_pm_peek_request(q, rq);
2355 if (!rq)
2356 break;
2357
2358 if (!(rq->cmd_flags & REQ_STARTED)) {
2359 /*
2360 * This is the first time the device driver
2361 * sees this request (possibly after
2362 * requeueing). Notify IO scheduler.
2363 */
2364 if (rq->cmd_flags & REQ_SORTED)
2365 elv_activate_rq(q, rq);
2366
2367 /*
2368 * just mark as started even if we don't start
2369 * it, a request that has been delayed should
2370 * not be passed by new incoming requests
2371 */
2372 rq->cmd_flags |= REQ_STARTED;
2373 trace_block_rq_issue(q, rq);
2374 }
2375
2376 if (!q->boundary_rq || q->boundary_rq == rq) {
2377 q->end_sector = rq_end_sector(rq);
2378 q->boundary_rq = NULL;
2379 }
2380
2381 if (rq->cmd_flags & REQ_DONTPREP)
2382 break;
2383
2384 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2385 /*
2386 * make sure space for the drain appears we
2387 * know we can do this because max_hw_segments
2388 * has been adjusted to be one fewer than the
2389 * device can handle
2390 */
2391 rq->nr_phys_segments++;
2392 }
2393
2394 if (!q->prep_rq_fn)
2395 break;
2396
2397 ret = q->prep_rq_fn(q, rq);
2398 if (ret == BLKPREP_OK) {
2399 break;
2400 } else if (ret == BLKPREP_DEFER) {
2401 /*
2402 * the request may have been (partially) prepped.
2403 * we need to keep this request in the front to
2404 * avoid resource deadlock. REQ_STARTED will
2405 * prevent other fs requests from passing this one.
2406 */
2407 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2408 !(rq->cmd_flags & REQ_DONTPREP)) {
2409 /*
2410 * remove the space for the drain we added
2411 * so that we don't add it again
2412 */
2413 --rq->nr_phys_segments;
2414 }
2415
2416 rq = NULL;
2417 break;
2418 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2419 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2420
2421 rq->cmd_flags |= REQ_QUIET;
2422 /*
2423 * Mark this request as started so we don't trigger
2424 * any debug logic in the end I/O path.
2425 */
2426 blk_start_request(rq);
2427 __blk_end_request_all(rq, err);
2428 } else {
2429 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2430 break;
2431 }
2432 }
2433
2434 return rq;
2435 }
2436 EXPORT_SYMBOL(blk_peek_request);
2437
2438 void blk_dequeue_request(struct request *rq)
2439 {
2440 struct request_queue *q = rq->q;
2441
2442 BUG_ON(list_empty(&rq->queuelist));
2443 BUG_ON(ELV_ON_HASH(rq));
2444
2445 list_del_init(&rq->queuelist);
2446
2447 /*
2448 * the time frame between a request being removed from the lists
2449 * and to it is freed is accounted as io that is in progress at
2450 * the driver side.
2451 */
2452 if (blk_account_rq(rq)) {
2453 q->in_flight[rq_is_sync(rq)]++;
2454 set_io_start_time_ns(rq);
2455 }
2456 }
2457
2458 /**
2459 * blk_start_request - start request processing on the driver
2460 * @req: request to dequeue
2461 *
2462 * Description:
2463 * Dequeue @req and start timeout timer on it. This hands off the
2464 * request to the driver.
2465 *
2466 * Block internal functions which don't want to start timer should
2467 * call blk_dequeue_request().
2468 *
2469 * Context:
2470 * queue_lock must be held.
2471 */
2472 void blk_start_request(struct request *req)
2473 {
2474 blk_dequeue_request(req);
2475
2476 /*
2477 * We are now handing the request to the hardware, initialize
2478 * resid_len to full count and add the timeout handler.
2479 */
2480 req->resid_len = blk_rq_bytes(req);
2481 if (unlikely(blk_bidi_rq(req)))
2482 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2483
2484 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2485 blk_add_timer(req);
2486 }
2487 EXPORT_SYMBOL(blk_start_request);
2488
2489 /**
2490 * blk_fetch_request - fetch a request from a request queue
2491 * @q: request queue to fetch a request from
2492 *
2493 * Description:
2494 * Return the request at the top of @q. The request is started on
2495 * return and LLD can start processing it immediately.
2496 *
2497 * Return:
2498 * Pointer to the request at the top of @q if available. Null
2499 * otherwise.
2500 *
2501 * Context:
2502 * queue_lock must be held.
2503 */
2504 struct request *blk_fetch_request(struct request_queue *q)
2505 {
2506 struct request *rq;
2507
2508 rq = blk_peek_request(q);
2509 if (rq)
2510 blk_start_request(rq);
2511 return rq;
2512 }
2513 EXPORT_SYMBOL(blk_fetch_request);
2514
2515 /**
2516 * blk_update_request - Special helper function for request stacking drivers
2517 * @req: the request being processed
2518 * @error: %0 for success, < %0 for error
2519 * @nr_bytes: number of bytes to complete @req
2520 *
2521 * Description:
2522 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2523 * the request structure even if @req doesn't have leftover.
2524 * If @req has leftover, sets it up for the next range of segments.
2525 *
2526 * This special helper function is only for request stacking drivers
2527 * (e.g. request-based dm) so that they can handle partial completion.
2528 * Actual device drivers should use blk_end_request instead.
2529 *
2530 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2531 * %false return from this function.
2532 *
2533 * Return:
2534 * %false - this request doesn't have any more data
2535 * %true - this request has more data
2536 **/
2537 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2538 {
2539 int total_bytes;
2540
2541 trace_block_rq_complete(req->q, req, nr_bytes);
2542
2543 if (!req->bio)
2544 return false;
2545
2546 /*
2547 * For fs requests, rq is just carrier of independent bio's
2548 * and each partial completion should be handled separately.
2549 * Reset per-request error on each partial completion.
2550 *
2551 * TODO: tj: This is too subtle. It would be better to let
2552 * low level drivers do what they see fit.
2553 */
2554 if (req->cmd_type == REQ_TYPE_FS)
2555 req->errors = 0;
2556
2557 if (error && req->cmd_type == REQ_TYPE_FS &&
2558 !(req->cmd_flags & REQ_QUIET)) {
2559 char *error_type;
2560
2561 switch (error) {
2562 case -ENOLINK:
2563 error_type = "recoverable transport";
2564 break;
2565 case -EREMOTEIO:
2566 error_type = "critical target";
2567 break;
2568 case -EBADE:
2569 error_type = "critical nexus";
2570 break;
2571 case -ETIMEDOUT:
2572 error_type = "timeout";
2573 break;
2574 case -ENOSPC:
2575 error_type = "critical space allocation";
2576 break;
2577 case -ENODATA:
2578 error_type = "critical medium";
2579 break;
2580 case -EIO:
2581 default:
2582 error_type = "I/O";
2583 break;
2584 }
2585 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2586 __func__, error_type, req->rq_disk ?
2587 req->rq_disk->disk_name : "?",
2588 (unsigned long long)blk_rq_pos(req));
2589
2590 }
2591
2592 blk_account_io_completion(req, nr_bytes);
2593
2594 total_bytes = 0;
2595 while (req->bio) {
2596 struct bio *bio = req->bio;
2597 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2598
2599 if (bio_bytes == bio->bi_iter.bi_size)
2600 req->bio = bio->bi_next;
2601
2602 req_bio_endio(req, bio, bio_bytes, error);
2603
2604 total_bytes += bio_bytes;
2605 nr_bytes -= bio_bytes;
2606
2607 if (!nr_bytes)
2608 break;
2609 }
2610
2611 /*
2612 * completely done
2613 */
2614 if (!req->bio) {
2615 /*
2616 * Reset counters so that the request stacking driver
2617 * can find how many bytes remain in the request
2618 * later.
2619 */
2620 req->__data_len = 0;
2621 return false;
2622 }
2623
2624 req->__data_len -= total_bytes;
2625
2626 /* update sector only for requests with clear definition of sector */
2627 if (req->cmd_type == REQ_TYPE_FS)
2628 req->__sector += total_bytes >> 9;
2629
2630 /* mixed attributes always follow the first bio */
2631 if (req->cmd_flags & REQ_MIXED_MERGE) {
2632 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2633 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2634 }
2635
2636 /*
2637 * If total number of sectors is less than the first segment
2638 * size, something has gone terribly wrong.
2639 */
2640 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2641 blk_dump_rq_flags(req, "request botched");
2642 req->__data_len = blk_rq_cur_bytes(req);
2643 }
2644
2645 /* recalculate the number of segments */
2646 blk_recalc_rq_segments(req);
2647
2648 return true;
2649 }
2650 EXPORT_SYMBOL_GPL(blk_update_request);
2651
2652 static bool blk_update_bidi_request(struct request *rq, int error,
2653 unsigned int nr_bytes,
2654 unsigned int bidi_bytes)
2655 {
2656 if (blk_update_request(rq, error, nr_bytes))
2657 return true;
2658
2659 /* Bidi request must be completed as a whole */
2660 if (unlikely(blk_bidi_rq(rq)) &&
2661 blk_update_request(rq->next_rq, error, bidi_bytes))
2662 return true;
2663
2664 if (blk_queue_add_random(rq->q))
2665 add_disk_randomness(rq->rq_disk);
2666
2667 return false;
2668 }
2669
2670 /**
2671 * blk_unprep_request - unprepare a request
2672 * @req: the request
2673 *
2674 * This function makes a request ready for complete resubmission (or
2675 * completion). It happens only after all error handling is complete,
2676 * so represents the appropriate moment to deallocate any resources
2677 * that were allocated to the request in the prep_rq_fn. The queue
2678 * lock is held when calling this.
2679 */
2680 void blk_unprep_request(struct request *req)
2681 {
2682 struct request_queue *q = req->q;
2683
2684 req->cmd_flags &= ~REQ_DONTPREP;
2685 if (q->unprep_rq_fn)
2686 q->unprep_rq_fn(q, req);
2687 }
2688 EXPORT_SYMBOL_GPL(blk_unprep_request);
2689
2690 /*
2691 * queue lock must be held
2692 */
2693 void blk_finish_request(struct request *req, int error)
2694 {
2695 if (req->cmd_flags & REQ_QUEUED)
2696 blk_queue_end_tag(req->q, req);
2697
2698 BUG_ON(blk_queued_rq(req));
2699
2700 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2701 laptop_io_completion(&req->q->backing_dev_info);
2702
2703 blk_delete_timer(req);
2704
2705 if (req->cmd_flags & REQ_DONTPREP)
2706 blk_unprep_request(req);
2707
2708 blk_account_io_done(req);
2709
2710 if (req->end_io)
2711 req->end_io(req, error);
2712 else {
2713 if (blk_bidi_rq(req))
2714 __blk_put_request(req->next_rq->q, req->next_rq);
2715
2716 __blk_put_request(req->q, req);
2717 }
2718 }
2719 EXPORT_SYMBOL(blk_finish_request);
2720
2721 /**
2722 * blk_end_bidi_request - Complete a bidi request
2723 * @rq: the request to complete
2724 * @error: %0 for success, < %0 for error
2725 * @nr_bytes: number of bytes to complete @rq
2726 * @bidi_bytes: number of bytes to complete @rq->next_rq
2727 *
2728 * Description:
2729 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2730 * Drivers that supports bidi can safely call this member for any
2731 * type of request, bidi or uni. In the later case @bidi_bytes is
2732 * just ignored.
2733 *
2734 * Return:
2735 * %false - we are done with this request
2736 * %true - still buffers pending for this request
2737 **/
2738 static bool blk_end_bidi_request(struct request *rq, int error,
2739 unsigned int nr_bytes, unsigned int bidi_bytes)
2740 {
2741 struct request_queue *q = rq->q;
2742 unsigned long flags;
2743
2744 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2745 return true;
2746
2747 spin_lock_irqsave(q->queue_lock, flags);
2748 blk_finish_request(rq, error);
2749 spin_unlock_irqrestore(q->queue_lock, flags);
2750
2751 return false;
2752 }
2753
2754 /**
2755 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2756 * @rq: the request to complete
2757 * @error: %0 for success, < %0 for error
2758 * @nr_bytes: number of bytes to complete @rq
2759 * @bidi_bytes: number of bytes to complete @rq->next_rq
2760 *
2761 * Description:
2762 * Identical to blk_end_bidi_request() except that queue lock is
2763 * assumed to be locked on entry and remains so on return.
2764 *
2765 * Return:
2766 * %false - we are done with this request
2767 * %true - still buffers pending for this request
2768 **/
2769 bool __blk_end_bidi_request(struct request *rq, int error,
2770 unsigned int nr_bytes, unsigned int bidi_bytes)
2771 {
2772 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2773 return true;
2774
2775 blk_finish_request(rq, error);
2776
2777 return false;
2778 }
2779
2780 /**
2781 * blk_end_request - Helper function for drivers to complete the request.
2782 * @rq: the request being processed
2783 * @error: %0 for success, < %0 for error
2784 * @nr_bytes: number of bytes to complete
2785 *
2786 * Description:
2787 * Ends I/O on a number of bytes attached to @rq.
2788 * If @rq has leftover, sets it up for the next range of segments.
2789 *
2790 * Return:
2791 * %false - we are done with this request
2792 * %true - still buffers pending for this request
2793 **/
2794 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2795 {
2796 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2797 }
2798 EXPORT_SYMBOL(blk_end_request);
2799
2800 /**
2801 * blk_end_request_all - Helper function for drives to finish the request.
2802 * @rq: the request to finish
2803 * @error: %0 for success, < %0 for error
2804 *
2805 * Description:
2806 * Completely finish @rq.
2807 */
2808 void blk_end_request_all(struct request *rq, int error)
2809 {
2810 bool pending;
2811 unsigned int bidi_bytes = 0;
2812
2813 if (unlikely(blk_bidi_rq(rq)))
2814 bidi_bytes = blk_rq_bytes(rq->next_rq);
2815
2816 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2817 BUG_ON(pending);
2818 }
2819 EXPORT_SYMBOL(blk_end_request_all);
2820
2821 /**
2822 * blk_end_request_cur - Helper function to finish the current request chunk.
2823 * @rq: the request to finish the current chunk for
2824 * @error: %0 for success, < %0 for error
2825 *
2826 * Description:
2827 * Complete the current consecutively mapped chunk from @rq.
2828 *
2829 * Return:
2830 * %false - we are done with this request
2831 * %true - still buffers pending for this request
2832 */
2833 bool blk_end_request_cur(struct request *rq, int error)
2834 {
2835 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2836 }
2837 EXPORT_SYMBOL(blk_end_request_cur);
2838
2839 /**
2840 * blk_end_request_err - Finish a request till the next failure boundary.
2841 * @rq: the request to finish till the next failure boundary for
2842 * @error: must be negative errno
2843 *
2844 * Description:
2845 * Complete @rq till the next failure boundary.
2846 *
2847 * Return:
2848 * %false - we are done with this request
2849 * %true - still buffers pending for this request
2850 */
2851 bool blk_end_request_err(struct request *rq, int error)
2852 {
2853 WARN_ON(error >= 0);
2854 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2855 }
2856 EXPORT_SYMBOL_GPL(blk_end_request_err);
2857
2858 /**
2859 * __blk_end_request - Helper function for drivers to complete the request.
2860 * @rq: the request being processed
2861 * @error: %0 for success, < %0 for error
2862 * @nr_bytes: number of bytes to complete
2863 *
2864 * Description:
2865 * Must be called with queue lock held unlike blk_end_request().
2866 *
2867 * Return:
2868 * %false - we are done with this request
2869 * %true - still buffers pending for this request
2870 **/
2871 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2872 {
2873 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2874 }
2875 EXPORT_SYMBOL(__blk_end_request);
2876
2877 /**
2878 * __blk_end_request_all - Helper function for drives to finish the request.
2879 * @rq: the request to finish
2880 * @error: %0 for success, < %0 for error
2881 *
2882 * Description:
2883 * Completely finish @rq. Must be called with queue lock held.
2884 */
2885 void __blk_end_request_all(struct request *rq, int error)
2886 {
2887 bool pending;
2888 unsigned int bidi_bytes = 0;
2889
2890 if (unlikely(blk_bidi_rq(rq)))
2891 bidi_bytes = blk_rq_bytes(rq->next_rq);
2892
2893 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2894 BUG_ON(pending);
2895 }
2896 EXPORT_SYMBOL(__blk_end_request_all);
2897
2898 /**
2899 * __blk_end_request_cur - Helper function to finish the current request chunk.
2900 * @rq: the request to finish the current chunk for
2901 * @error: %0 for success, < %0 for error
2902 *
2903 * Description:
2904 * Complete the current consecutively mapped chunk from @rq. Must
2905 * be called with queue lock held.
2906 *
2907 * Return:
2908 * %false - we are done with this request
2909 * %true - still buffers pending for this request
2910 */
2911 bool __blk_end_request_cur(struct request *rq, int error)
2912 {
2913 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2914 }
2915 EXPORT_SYMBOL(__blk_end_request_cur);
2916
2917 /**
2918 * __blk_end_request_err - Finish a request till the next failure boundary.
2919 * @rq: the request to finish till the next failure boundary for
2920 * @error: must be negative errno
2921 *
2922 * Description:
2923 * Complete @rq till the next failure boundary. Must be called
2924 * with queue lock held.
2925 *
2926 * Return:
2927 * %false - we are done with this request
2928 * %true - still buffers pending for this request
2929 */
2930 bool __blk_end_request_err(struct request *rq, int error)
2931 {
2932 WARN_ON(error >= 0);
2933 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2934 }
2935 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2936
2937 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2938 struct bio *bio)
2939 {
2940 req_set_op(rq, bio_op(bio));
2941
2942 if (bio_has_data(bio))
2943 rq->nr_phys_segments = bio_phys_segments(q, bio);
2944
2945 rq->__data_len = bio->bi_iter.bi_size;
2946 rq->bio = rq->biotail = bio;
2947
2948 if (bio->bi_bdev)
2949 rq->rq_disk = bio->bi_bdev->bd_disk;
2950 }
2951
2952 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2953 /**
2954 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2955 * @rq: the request to be flushed
2956 *
2957 * Description:
2958 * Flush all pages in @rq.
2959 */
2960 void rq_flush_dcache_pages(struct request *rq)
2961 {
2962 struct req_iterator iter;
2963 struct bio_vec bvec;
2964
2965 rq_for_each_segment(bvec, rq, iter)
2966 flush_dcache_page(bvec.bv_page);
2967 }
2968 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2969 #endif
2970
2971 /**
2972 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2973 * @q : the queue of the device being checked
2974 *
2975 * Description:
2976 * Check if underlying low-level drivers of a device are busy.
2977 * If the drivers want to export their busy state, they must set own
2978 * exporting function using blk_queue_lld_busy() first.
2979 *
2980 * Basically, this function is used only by request stacking drivers
2981 * to stop dispatching requests to underlying devices when underlying
2982 * devices are busy. This behavior helps more I/O merging on the queue
2983 * of the request stacking driver and prevents I/O throughput regression
2984 * on burst I/O load.
2985 *
2986 * Return:
2987 * 0 - Not busy (The request stacking driver should dispatch request)
2988 * 1 - Busy (The request stacking driver should stop dispatching request)
2989 */
2990 int blk_lld_busy(struct request_queue *q)
2991 {
2992 if (q->lld_busy_fn)
2993 return q->lld_busy_fn(q);
2994
2995 return 0;
2996 }
2997 EXPORT_SYMBOL_GPL(blk_lld_busy);
2998
2999 /**
3000 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3001 * @rq: the clone request to be cleaned up
3002 *
3003 * Description:
3004 * Free all bios in @rq for a cloned request.
3005 */
3006 void blk_rq_unprep_clone(struct request *rq)
3007 {
3008 struct bio *bio;
3009
3010 while ((bio = rq->bio) != NULL) {
3011 rq->bio = bio->bi_next;
3012
3013 bio_put(bio);
3014 }
3015 }
3016 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3017
3018 /*
3019 * Copy attributes of the original request to the clone request.
3020 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3021 */
3022 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3023 {
3024 dst->cpu = src->cpu;
3025 req_set_op_attrs(dst, req_op(src),
3026 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
3027 dst->cmd_type = src->cmd_type;
3028 dst->__sector = blk_rq_pos(src);
3029 dst->__data_len = blk_rq_bytes(src);
3030 dst->nr_phys_segments = src->nr_phys_segments;
3031 dst->ioprio = src->ioprio;
3032 dst->extra_len = src->extra_len;
3033 }
3034
3035 /**
3036 * blk_rq_prep_clone - Helper function to setup clone request
3037 * @rq: the request to be setup
3038 * @rq_src: original request to be cloned
3039 * @bs: bio_set that bios for clone are allocated from
3040 * @gfp_mask: memory allocation mask for bio
3041 * @bio_ctr: setup function to be called for each clone bio.
3042 * Returns %0 for success, non %0 for failure.
3043 * @data: private data to be passed to @bio_ctr
3044 *
3045 * Description:
3046 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3047 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3048 * are not copied, and copying such parts is the caller's responsibility.
3049 * Also, pages which the original bios are pointing to are not copied
3050 * and the cloned bios just point same pages.
3051 * So cloned bios must be completed before original bios, which means
3052 * the caller must complete @rq before @rq_src.
3053 */
3054 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3055 struct bio_set *bs, gfp_t gfp_mask,
3056 int (*bio_ctr)(struct bio *, struct bio *, void *),
3057 void *data)
3058 {
3059 struct bio *bio, *bio_src;
3060
3061 if (!bs)
3062 bs = fs_bio_set;
3063
3064 __rq_for_each_bio(bio_src, rq_src) {
3065 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3066 if (!bio)
3067 goto free_and_out;
3068
3069 if (bio_ctr && bio_ctr(bio, bio_src, data))
3070 goto free_and_out;
3071
3072 if (rq->bio) {
3073 rq->biotail->bi_next = bio;
3074 rq->biotail = bio;
3075 } else
3076 rq->bio = rq->biotail = bio;
3077 }
3078
3079 __blk_rq_prep_clone(rq, rq_src);
3080
3081 return 0;
3082
3083 free_and_out:
3084 if (bio)
3085 bio_put(bio);
3086 blk_rq_unprep_clone(rq);
3087
3088 return -ENOMEM;
3089 }
3090 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3091
3092 int kblockd_schedule_work(struct work_struct *work)
3093 {
3094 return queue_work(kblockd_workqueue, work);
3095 }
3096 EXPORT_SYMBOL(kblockd_schedule_work);
3097
3098 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3099 unsigned long delay)
3100 {
3101 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3102 }
3103 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3104
3105 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3106 unsigned long delay)
3107 {
3108 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3109 }
3110 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3111
3112 /**
3113 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3114 * @plug: The &struct blk_plug that needs to be initialized
3115 *
3116 * Description:
3117 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3118 * pending I/O should the task end up blocking between blk_start_plug() and
3119 * blk_finish_plug(). This is important from a performance perspective, but
3120 * also ensures that we don't deadlock. For instance, if the task is blocking
3121 * for a memory allocation, memory reclaim could end up wanting to free a
3122 * page belonging to that request that is currently residing in our private
3123 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3124 * this kind of deadlock.
3125 */
3126 void blk_start_plug(struct blk_plug *plug)
3127 {
3128 struct task_struct *tsk = current;
3129
3130 /*
3131 * If this is a nested plug, don't actually assign it.
3132 */
3133 if (tsk->plug)
3134 return;
3135
3136 INIT_LIST_HEAD(&plug->list);
3137 INIT_LIST_HEAD(&plug->mq_list);
3138 INIT_LIST_HEAD(&plug->cb_list);
3139 /*
3140 * Store ordering should not be needed here, since a potential
3141 * preempt will imply a full memory barrier
3142 */
3143 tsk->plug = plug;
3144 }
3145 EXPORT_SYMBOL(blk_start_plug);
3146
3147 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3148 {
3149 struct request *rqa = container_of(a, struct request, queuelist);
3150 struct request *rqb = container_of(b, struct request, queuelist);
3151
3152 return !(rqa->q < rqb->q ||
3153 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3154 }
3155
3156 /*
3157 * If 'from_schedule' is true, then postpone the dispatch of requests
3158 * until a safe kblockd context. We due this to avoid accidental big
3159 * additional stack usage in driver dispatch, in places where the originally
3160 * plugger did not intend it.
3161 */
3162 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3163 bool from_schedule)
3164 __releases(q->queue_lock)
3165 {
3166 trace_block_unplug(q, depth, !from_schedule);
3167
3168 if (from_schedule)
3169 blk_run_queue_async(q);
3170 else
3171 __blk_run_queue(q);
3172 spin_unlock(q->queue_lock);
3173 }
3174
3175 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3176 {
3177 LIST_HEAD(callbacks);
3178
3179 while (!list_empty(&plug->cb_list)) {
3180 list_splice_init(&plug->cb_list, &callbacks);
3181
3182 while (!list_empty(&callbacks)) {
3183 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3184 struct blk_plug_cb,
3185 list);
3186 list_del(&cb->list);
3187 cb->callback(cb, from_schedule);
3188 }
3189 }
3190 }
3191
3192 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3193 int size)
3194 {
3195 struct blk_plug *plug = current->plug;
3196 struct blk_plug_cb *cb;
3197
3198 if (!plug)
3199 return NULL;
3200
3201 list_for_each_entry(cb, &plug->cb_list, list)
3202 if (cb->callback == unplug && cb->data == data)
3203 return cb;
3204
3205 /* Not currently on the callback list */
3206 BUG_ON(size < sizeof(*cb));
3207 cb = kzalloc(size, GFP_ATOMIC);
3208 if (cb) {
3209 cb->data = data;
3210 cb->callback = unplug;
3211 list_add(&cb->list, &plug->cb_list);
3212 }
3213 return cb;
3214 }
3215 EXPORT_SYMBOL(blk_check_plugged);
3216
3217 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3218 {
3219 struct request_queue *q;
3220 unsigned long flags;
3221 struct request *rq;
3222 LIST_HEAD(list);
3223 unsigned int depth;
3224
3225 flush_plug_callbacks(plug, from_schedule);
3226
3227 if (!list_empty(&plug->mq_list))
3228 blk_mq_flush_plug_list(plug, from_schedule);
3229
3230 if (list_empty(&plug->list))
3231 return;
3232
3233 list_splice_init(&plug->list, &list);
3234
3235 list_sort(NULL, &list, plug_rq_cmp);
3236
3237 q = NULL;
3238 depth = 0;
3239
3240 /*
3241 * Save and disable interrupts here, to avoid doing it for every
3242 * queue lock we have to take.
3243 */
3244 local_irq_save(flags);
3245 while (!list_empty(&list)) {
3246 rq = list_entry_rq(list.next);
3247 list_del_init(&rq->queuelist);
3248 BUG_ON(!rq->q);
3249 if (rq->q != q) {
3250 /*
3251 * This drops the queue lock
3252 */
3253 if (q)
3254 queue_unplugged(q, depth, from_schedule);
3255 q = rq->q;
3256 depth = 0;
3257 spin_lock(q->queue_lock);
3258 }
3259
3260 /*
3261 * Short-circuit if @q is dead
3262 */
3263 if (unlikely(blk_queue_dying(q))) {
3264 __blk_end_request_all(rq, -ENODEV);
3265 continue;
3266 }
3267
3268 /*
3269 * rq is already accounted, so use raw insert
3270 */
3271 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3272 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3273 else
3274 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3275
3276 depth++;
3277 }
3278
3279 /*
3280 * This drops the queue lock
3281 */
3282 if (q)
3283 queue_unplugged(q, depth, from_schedule);
3284
3285 local_irq_restore(flags);
3286 }
3287
3288 void blk_finish_plug(struct blk_plug *plug)
3289 {
3290 if (plug != current->plug)
3291 return;
3292 blk_flush_plug_list(plug, false);
3293
3294 current->plug = NULL;
3295 }
3296 EXPORT_SYMBOL(blk_finish_plug);
3297
3298 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3299 {
3300 struct blk_plug *plug;
3301 long state;
3302
3303 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3304 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3305 return false;
3306
3307 plug = current->plug;
3308 if (plug)
3309 blk_flush_plug_list(plug, false);
3310
3311 state = current->state;
3312 while (!need_resched()) {
3313 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3314 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3315 int ret;
3316
3317 hctx->poll_invoked++;
3318
3319 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3320 if (ret > 0) {
3321 hctx->poll_success++;
3322 set_current_state(TASK_RUNNING);
3323 return true;
3324 }
3325
3326 if (signal_pending_state(state, current))
3327 set_current_state(TASK_RUNNING);
3328
3329 if (current->state == TASK_RUNNING)
3330 return true;
3331 if (ret < 0)
3332 break;
3333 cpu_relax();
3334 }
3335
3336 return false;
3337 }
3338 EXPORT_SYMBOL_GPL(blk_poll);
3339
3340 #ifdef CONFIG_PM
3341 /**
3342 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3343 * @q: the queue of the device
3344 * @dev: the device the queue belongs to
3345 *
3346 * Description:
3347 * Initialize runtime-PM-related fields for @q and start auto suspend for
3348 * @dev. Drivers that want to take advantage of request-based runtime PM
3349 * should call this function after @dev has been initialized, and its
3350 * request queue @q has been allocated, and runtime PM for it can not happen
3351 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3352 * cases, driver should call this function before any I/O has taken place.
3353 *
3354 * This function takes care of setting up using auto suspend for the device,
3355 * the autosuspend delay is set to -1 to make runtime suspend impossible
3356 * until an updated value is either set by user or by driver. Drivers do
3357 * not need to touch other autosuspend settings.
3358 *
3359 * The block layer runtime PM is request based, so only works for drivers
3360 * that use request as their IO unit instead of those directly use bio's.
3361 */
3362 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3363 {
3364 q->dev = dev;
3365 q->rpm_status = RPM_ACTIVE;
3366 pm_runtime_set_autosuspend_delay(q->dev, -1);
3367 pm_runtime_use_autosuspend(q->dev);
3368 }
3369 EXPORT_SYMBOL(blk_pm_runtime_init);
3370
3371 /**
3372 * blk_pre_runtime_suspend - Pre runtime suspend check
3373 * @q: the queue of the device
3374 *
3375 * Description:
3376 * This function will check if runtime suspend is allowed for the device
3377 * by examining if there are any requests pending in the queue. If there
3378 * are requests pending, the device can not be runtime suspended; otherwise,
3379 * the queue's status will be updated to SUSPENDING and the driver can
3380 * proceed to suspend the device.
3381 *
3382 * For the not allowed case, we mark last busy for the device so that
3383 * runtime PM core will try to autosuspend it some time later.
3384 *
3385 * This function should be called near the start of the device's
3386 * runtime_suspend callback.
3387 *
3388 * Return:
3389 * 0 - OK to runtime suspend the device
3390 * -EBUSY - Device should not be runtime suspended
3391 */
3392 int blk_pre_runtime_suspend(struct request_queue *q)
3393 {
3394 int ret = 0;
3395
3396 if (!q->dev)
3397 return ret;
3398
3399 spin_lock_irq(q->queue_lock);
3400 if (q->nr_pending) {
3401 ret = -EBUSY;
3402 pm_runtime_mark_last_busy(q->dev);
3403 } else {
3404 q->rpm_status = RPM_SUSPENDING;
3405 }
3406 spin_unlock_irq(q->queue_lock);
3407 return ret;
3408 }
3409 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3410
3411 /**
3412 * blk_post_runtime_suspend - Post runtime suspend processing
3413 * @q: the queue of the device
3414 * @err: return value of the device's runtime_suspend function
3415 *
3416 * Description:
3417 * Update the queue's runtime status according to the return value of the
3418 * device's runtime suspend function and mark last busy for the device so
3419 * that PM core will try to auto suspend the device at a later time.
3420 *
3421 * This function should be called near the end of the device's
3422 * runtime_suspend callback.
3423 */
3424 void blk_post_runtime_suspend(struct request_queue *q, int err)
3425 {
3426 if (!q->dev)
3427 return;
3428
3429 spin_lock_irq(q->queue_lock);
3430 if (!err) {
3431 q->rpm_status = RPM_SUSPENDED;
3432 } else {
3433 q->rpm_status = RPM_ACTIVE;
3434 pm_runtime_mark_last_busy(q->dev);
3435 }
3436 spin_unlock_irq(q->queue_lock);
3437 }
3438 EXPORT_SYMBOL(blk_post_runtime_suspend);
3439
3440 /**
3441 * blk_pre_runtime_resume - Pre runtime resume processing
3442 * @q: the queue of the device
3443 *
3444 * Description:
3445 * Update the queue's runtime status to RESUMING in preparation for the
3446 * runtime resume of the device.
3447 *
3448 * This function should be called near the start of the device's
3449 * runtime_resume callback.
3450 */
3451 void blk_pre_runtime_resume(struct request_queue *q)
3452 {
3453 if (!q->dev)
3454 return;
3455
3456 spin_lock_irq(q->queue_lock);
3457 q->rpm_status = RPM_RESUMING;
3458 spin_unlock_irq(q->queue_lock);
3459 }
3460 EXPORT_SYMBOL(blk_pre_runtime_resume);
3461
3462 /**
3463 * blk_post_runtime_resume - Post runtime resume processing
3464 * @q: the queue of the device
3465 * @err: return value of the device's runtime_resume function
3466 *
3467 * Description:
3468 * Update the queue's runtime status according to the return value of the
3469 * device's runtime_resume function. If it is successfully resumed, process
3470 * the requests that are queued into the device's queue when it is resuming
3471 * and then mark last busy and initiate autosuspend for it.
3472 *
3473 * This function should be called near the end of the device's
3474 * runtime_resume callback.
3475 */
3476 void blk_post_runtime_resume(struct request_queue *q, int err)
3477 {
3478 if (!q->dev)
3479 return;
3480
3481 spin_lock_irq(q->queue_lock);
3482 if (!err) {
3483 q->rpm_status = RPM_ACTIVE;
3484 __blk_run_queue(q);
3485 pm_runtime_mark_last_busy(q->dev);
3486 pm_request_autosuspend(q->dev);
3487 } else {
3488 q->rpm_status = RPM_SUSPENDED;
3489 }
3490 spin_unlock_irq(q->queue_lock);
3491 }
3492 EXPORT_SYMBOL(blk_post_runtime_resume);
3493
3494 /**
3495 * blk_set_runtime_active - Force runtime status of the queue to be active
3496 * @q: the queue of the device
3497 *
3498 * If the device is left runtime suspended during system suspend the resume
3499 * hook typically resumes the device and corrects runtime status
3500 * accordingly. However, that does not affect the queue runtime PM status
3501 * which is still "suspended". This prevents processing requests from the
3502 * queue.
3503 *
3504 * This function can be used in driver's resume hook to correct queue
3505 * runtime PM status and re-enable peeking requests from the queue. It
3506 * should be called before first request is added to the queue.
3507 */
3508 void blk_set_runtime_active(struct request_queue *q)
3509 {
3510 spin_lock_irq(q->queue_lock);
3511 q->rpm_status = RPM_ACTIVE;
3512 pm_runtime_mark_last_busy(q->dev);
3513 pm_request_autosuspend(q->dev);
3514 spin_unlock_irq(q->queue_lock);
3515 }
3516 EXPORT_SYMBOL(blk_set_runtime_active);
3517 #endif
3518
3519 int __init blk_dev_init(void)
3520 {
3521 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3522 FIELD_SIZEOF(struct request, cmd_flags));
3523
3524 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3525 kblockd_workqueue = alloc_workqueue("kblockd",
3526 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3527 if (!kblockd_workqueue)
3528 panic("Failed to create kblockd\n");
3529
3530 request_cachep = kmem_cache_create("blkdev_requests",
3531 sizeof(struct request), 0, SLAB_PANIC, NULL);
3532
3533 blk_requestq_cachep = kmem_cache_create("request_queue",
3534 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3535
3536 return 0;
3537 }
This page took 0.119449 seconds and 5 git commands to generate.