mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and...
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue - restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue() will clear the stop flag on the queue, and call
215 * the request_fn for the queue if it was in a stopped state when
216 * entered. Also see blk_stop_queue(). Queue lock must be held.
217 **/
218 void blk_start_queue(struct request_queue *q)
219 {
220 WARN_ON(!irqs_disabled());
221
222 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
223 __blk_run_queue(q);
224 }
225 EXPORT_SYMBOL(blk_start_queue);
226
227 /**
228 * blk_stop_queue - stop a queue
229 * @q: The &struct request_queue in question
230 *
231 * Description:
232 * The Linux block layer assumes that a block driver will consume all
233 * entries on the request queue when the request_fn strategy is called.
234 * Often this will not happen, because of hardware limitations (queue
235 * depth settings). If a device driver gets a 'queue full' response,
236 * or if it simply chooses not to queue more I/O at one point, it can
237 * call this function to prevent the request_fn from being called until
238 * the driver has signalled it's ready to go again. This happens by calling
239 * blk_start_queue() to restart queue operations. Queue lock must be held.
240 **/
241 void blk_stop_queue(struct request_queue *q)
242 {
243 cancel_delayed_work(&q->delay_work);
244 queue_flag_set(QUEUE_FLAG_STOPPED, q);
245 }
246 EXPORT_SYMBOL(blk_stop_queue);
247
248 /**
249 * blk_sync_queue - cancel any pending callbacks on a queue
250 * @q: the queue
251 *
252 * Description:
253 * The block layer may perform asynchronous callback activity
254 * on a queue, such as calling the unplug function after a timeout.
255 * A block device may call blk_sync_queue to ensure that any
256 * such activity is cancelled, thus allowing it to release resources
257 * that the callbacks might use. The caller must already have made sure
258 * that its ->make_request_fn will not re-add plugging prior to calling
259 * this function.
260 *
261 * This function does not cancel any asynchronous activity arising
262 * out of elevator or throttling code. That would require elevator_exit()
263 * and blkcg_exit_queue() to be called with queue lock initialized.
264 *
265 */
266 void blk_sync_queue(struct request_queue *q)
267 {
268 del_timer_sync(&q->timeout);
269
270 if (q->mq_ops) {
271 struct blk_mq_hw_ctx *hctx;
272 int i;
273
274 queue_for_each_hw_ctx(q, hctx, i) {
275 cancel_delayed_work_sync(&hctx->run_work);
276 cancel_delayed_work_sync(&hctx->delay_work);
277 }
278 } else {
279 cancel_delayed_work_sync(&q->delay_work);
280 }
281 }
282 EXPORT_SYMBOL(blk_sync_queue);
283
284 /**
285 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
286 * @q: The queue to run
287 *
288 * Description:
289 * Invoke request handling on a queue if there are any pending requests.
290 * May be used to restart request handling after a request has completed.
291 * This variant runs the queue whether or not the queue has been
292 * stopped. Must be called with the queue lock held and interrupts
293 * disabled. See also @blk_run_queue.
294 */
295 inline void __blk_run_queue_uncond(struct request_queue *q)
296 {
297 if (unlikely(blk_queue_dead(q)))
298 return;
299
300 /*
301 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
302 * the queue lock internally. As a result multiple threads may be
303 * running such a request function concurrently. Keep track of the
304 * number of active request_fn invocations such that blk_drain_queue()
305 * can wait until all these request_fn calls have finished.
306 */
307 q->request_fn_active++;
308 q->request_fn(q);
309 q->request_fn_active--;
310 }
311 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
312
313 /**
314 * __blk_run_queue - run a single device queue
315 * @q: The queue to run
316 *
317 * Description:
318 * See @blk_run_queue. This variant must be called with the queue lock
319 * held and interrupts disabled.
320 */
321 void __blk_run_queue(struct request_queue *q)
322 {
323 if (unlikely(blk_queue_stopped(q)))
324 return;
325
326 __blk_run_queue_uncond(q);
327 }
328 EXPORT_SYMBOL(__blk_run_queue);
329
330 /**
331 * blk_run_queue_async - run a single device queue in workqueue context
332 * @q: The queue to run
333 *
334 * Description:
335 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
336 * of us. The caller must hold the queue lock.
337 */
338 void blk_run_queue_async(struct request_queue *q)
339 {
340 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
341 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
342 }
343 EXPORT_SYMBOL(blk_run_queue_async);
344
345 /**
346 * blk_run_queue - run a single device queue
347 * @q: The queue to run
348 *
349 * Description:
350 * Invoke request handling on this queue, if it has pending work to do.
351 * May be used to restart queueing when a request has completed.
352 */
353 void blk_run_queue(struct request_queue *q)
354 {
355 unsigned long flags;
356
357 spin_lock_irqsave(q->queue_lock, flags);
358 __blk_run_queue(q);
359 spin_unlock_irqrestore(q->queue_lock, flags);
360 }
361 EXPORT_SYMBOL(blk_run_queue);
362
363 void blk_put_queue(struct request_queue *q)
364 {
365 kobject_put(&q->kobj);
366 }
367 EXPORT_SYMBOL(blk_put_queue);
368
369 /**
370 * __blk_drain_queue - drain requests from request_queue
371 * @q: queue to drain
372 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
373 *
374 * Drain requests from @q. If @drain_all is set, all requests are drained.
375 * If not, only ELVPRIV requests are drained. The caller is responsible
376 * for ensuring that no new requests which need to be drained are queued.
377 */
378 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
379 __releases(q->queue_lock)
380 __acquires(q->queue_lock)
381 {
382 int i;
383
384 lockdep_assert_held(q->queue_lock);
385
386 while (true) {
387 bool drain = false;
388
389 /*
390 * The caller might be trying to drain @q before its
391 * elevator is initialized.
392 */
393 if (q->elevator)
394 elv_drain_elevator(q);
395
396 blkcg_drain_queue(q);
397
398 /*
399 * This function might be called on a queue which failed
400 * driver init after queue creation or is not yet fully
401 * active yet. Some drivers (e.g. fd and loop) get unhappy
402 * in such cases. Kick queue iff dispatch queue has
403 * something on it and @q has request_fn set.
404 */
405 if (!list_empty(&q->queue_head) && q->request_fn)
406 __blk_run_queue(q);
407
408 drain |= q->nr_rqs_elvpriv;
409 drain |= q->request_fn_active;
410
411 /*
412 * Unfortunately, requests are queued at and tracked from
413 * multiple places and there's no single counter which can
414 * be drained. Check all the queues and counters.
415 */
416 if (drain_all) {
417 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
418 drain |= !list_empty(&q->queue_head);
419 for (i = 0; i < 2; i++) {
420 drain |= q->nr_rqs[i];
421 drain |= q->in_flight[i];
422 if (fq)
423 drain |= !list_empty(&fq->flush_queue[i]);
424 }
425 }
426
427 if (!drain)
428 break;
429
430 spin_unlock_irq(q->queue_lock);
431
432 msleep(10);
433
434 spin_lock_irq(q->queue_lock);
435 }
436
437 /*
438 * With queue marked dead, any woken up waiter will fail the
439 * allocation path, so the wakeup chaining is lost and we're
440 * left with hung waiters. We need to wake up those waiters.
441 */
442 if (q->request_fn) {
443 struct request_list *rl;
444
445 blk_queue_for_each_rl(rl, q)
446 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
447 wake_up_all(&rl->wait[i]);
448 }
449 }
450
451 /**
452 * blk_queue_bypass_start - enter queue bypass mode
453 * @q: queue of interest
454 *
455 * In bypass mode, only the dispatch FIFO queue of @q is used. This
456 * function makes @q enter bypass mode and drains all requests which were
457 * throttled or issued before. On return, it's guaranteed that no request
458 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
459 * inside queue or RCU read lock.
460 */
461 void blk_queue_bypass_start(struct request_queue *q)
462 {
463 spin_lock_irq(q->queue_lock);
464 q->bypass_depth++;
465 queue_flag_set(QUEUE_FLAG_BYPASS, q);
466 spin_unlock_irq(q->queue_lock);
467
468 /*
469 * Queues start drained. Skip actual draining till init is
470 * complete. This avoids lenghty delays during queue init which
471 * can happen many times during boot.
472 */
473 if (blk_queue_init_done(q)) {
474 spin_lock_irq(q->queue_lock);
475 __blk_drain_queue(q, false);
476 spin_unlock_irq(q->queue_lock);
477
478 /* ensure blk_queue_bypass() is %true inside RCU read lock */
479 synchronize_rcu();
480 }
481 }
482 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
483
484 /**
485 * blk_queue_bypass_end - leave queue bypass mode
486 * @q: queue of interest
487 *
488 * Leave bypass mode and restore the normal queueing behavior.
489 */
490 void blk_queue_bypass_end(struct request_queue *q)
491 {
492 spin_lock_irq(q->queue_lock);
493 if (!--q->bypass_depth)
494 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
495 WARN_ON_ONCE(q->bypass_depth < 0);
496 spin_unlock_irq(q->queue_lock);
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
499
500 void blk_set_queue_dying(struct request_queue *q)
501 {
502 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
503
504 if (q->mq_ops)
505 blk_mq_wake_waiters(q);
506 else {
507 struct request_list *rl;
508
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 }
516 }
517 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
518
519 /**
520 * blk_cleanup_queue - shutdown a request queue
521 * @q: request queue to shutdown
522 *
523 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
524 * put it. All future requests will be failed immediately with -ENODEV.
525 */
526 void blk_cleanup_queue(struct request_queue *q)
527 {
528 spinlock_t *lock = q->queue_lock;
529
530 /* mark @q DYING, no new request or merges will be allowed afterwards */
531 mutex_lock(&q->sysfs_lock);
532 blk_set_queue_dying(q);
533 spin_lock_irq(lock);
534
535 /*
536 * A dying queue is permanently in bypass mode till released. Note
537 * that, unlike blk_queue_bypass_start(), we aren't performing
538 * synchronize_rcu() after entering bypass mode to avoid the delay
539 * as some drivers create and destroy a lot of queues while
540 * probing. This is still safe because blk_release_queue() will be
541 * called only after the queue refcnt drops to zero and nothing,
542 * RCU or not, would be traversing the queue by then.
543 */
544 q->bypass_depth++;
545 queue_flag_set(QUEUE_FLAG_BYPASS, q);
546
547 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
548 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
549 queue_flag_set(QUEUE_FLAG_DYING, q);
550 spin_unlock_irq(lock);
551 mutex_unlock(&q->sysfs_lock);
552
553 /*
554 * Drain all requests queued before DYING marking. Set DEAD flag to
555 * prevent that q->request_fn() gets invoked after draining finished.
556 */
557 blk_freeze_queue(q);
558 spin_lock_irq(lock);
559 if (!q->mq_ops)
560 __blk_drain_queue(q, true);
561 queue_flag_set(QUEUE_FLAG_DEAD, q);
562 spin_unlock_irq(lock);
563
564 /* for synchronous bio-based driver finish in-flight integrity i/o */
565 blk_flush_integrity();
566
567 /* @q won't process any more request, flush async actions */
568 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
569 blk_sync_queue(q);
570
571 if (q->mq_ops)
572 blk_mq_free_queue(q);
573 percpu_ref_exit(&q->q_usage_counter);
574
575 spin_lock_irq(lock);
576 if (q->queue_lock != &q->__queue_lock)
577 q->queue_lock = &q->__queue_lock;
578 spin_unlock_irq(lock);
579
580 bdi_unregister(&q->backing_dev_info);
581
582 /* @q is and will stay empty, shutdown and put */
583 blk_put_queue(q);
584 }
585 EXPORT_SYMBOL(blk_cleanup_queue);
586
587 /* Allocate memory local to the request queue */
588 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
589 {
590 int nid = (int)(long)data;
591 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
592 }
593
594 static void free_request_struct(void *element, void *unused)
595 {
596 kmem_cache_free(request_cachep, element);
597 }
598
599 int blk_init_rl(struct request_list *rl, struct request_queue *q,
600 gfp_t gfp_mask)
601 {
602 if (unlikely(rl->rq_pool))
603 return 0;
604
605 rl->q = q;
606 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
607 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
608 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
609 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
610
611 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
612 free_request_struct,
613 (void *)(long)q->node, gfp_mask,
614 q->node);
615 if (!rl->rq_pool)
616 return -ENOMEM;
617
618 return 0;
619 }
620
621 void blk_exit_rl(struct request_list *rl)
622 {
623 if (rl->rq_pool)
624 mempool_destroy(rl->rq_pool);
625 }
626
627 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
628 {
629 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
630 }
631 EXPORT_SYMBOL(blk_alloc_queue);
632
633 int blk_queue_enter(struct request_queue *q, gfp_t gfp)
634 {
635 while (true) {
636 int ret;
637
638 if (percpu_ref_tryget_live(&q->q_usage_counter))
639 return 0;
640
641 if (!(gfp & __GFP_WAIT))
642 return -EBUSY;
643
644 ret = wait_event_interruptible(q->mq_freeze_wq,
645 !atomic_read(&q->mq_freeze_depth) ||
646 blk_queue_dying(q));
647 if (blk_queue_dying(q))
648 return -ENODEV;
649 if (ret)
650 return ret;
651 }
652 }
653
654 void blk_queue_exit(struct request_queue *q)
655 {
656 percpu_ref_put(&q->q_usage_counter);
657 }
658
659 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
660 {
661 struct request_queue *q =
662 container_of(ref, struct request_queue, q_usage_counter);
663
664 wake_up_all(&q->mq_freeze_wq);
665 }
666
667 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
668 {
669 struct request_queue *q;
670 int err;
671
672 q = kmem_cache_alloc_node(blk_requestq_cachep,
673 gfp_mask | __GFP_ZERO, node_id);
674 if (!q)
675 return NULL;
676
677 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
678 if (q->id < 0)
679 goto fail_q;
680
681 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
682 if (!q->bio_split)
683 goto fail_id;
684
685 q->backing_dev_info.ra_pages =
686 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
687 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
688 q->backing_dev_info.name = "block";
689 q->node = node_id;
690
691 err = bdi_init(&q->backing_dev_info);
692 if (err)
693 goto fail_split;
694
695 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
696 laptop_mode_timer_fn, (unsigned long) q);
697 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
698 INIT_LIST_HEAD(&q->queue_head);
699 INIT_LIST_HEAD(&q->timeout_list);
700 INIT_LIST_HEAD(&q->icq_list);
701 #ifdef CONFIG_BLK_CGROUP
702 INIT_LIST_HEAD(&q->blkg_list);
703 #endif
704 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
705
706 kobject_init(&q->kobj, &blk_queue_ktype);
707
708 mutex_init(&q->sysfs_lock);
709 spin_lock_init(&q->__queue_lock);
710
711 /*
712 * By default initialize queue_lock to internal lock and driver can
713 * override it later if need be.
714 */
715 q->queue_lock = &q->__queue_lock;
716
717 /*
718 * A queue starts its life with bypass turned on to avoid
719 * unnecessary bypass on/off overhead and nasty surprises during
720 * init. The initial bypass will be finished when the queue is
721 * registered by blk_register_queue().
722 */
723 q->bypass_depth = 1;
724 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
725
726 init_waitqueue_head(&q->mq_freeze_wq);
727
728 /*
729 * Init percpu_ref in atomic mode so that it's faster to shutdown.
730 * See blk_register_queue() for details.
731 */
732 if (percpu_ref_init(&q->q_usage_counter,
733 blk_queue_usage_counter_release,
734 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
735 goto fail_bdi;
736
737 if (blkcg_init_queue(q))
738 goto fail_ref;
739
740 return q;
741
742 fail_ref:
743 percpu_ref_exit(&q->q_usage_counter);
744 fail_bdi:
745 bdi_destroy(&q->backing_dev_info);
746 fail_split:
747 bioset_free(q->bio_split);
748 fail_id:
749 ida_simple_remove(&blk_queue_ida, q->id);
750 fail_q:
751 kmem_cache_free(blk_requestq_cachep, q);
752 return NULL;
753 }
754 EXPORT_SYMBOL(blk_alloc_queue_node);
755
756 /**
757 * blk_init_queue - prepare a request queue for use with a block device
758 * @rfn: The function to be called to process requests that have been
759 * placed on the queue.
760 * @lock: Request queue spin lock
761 *
762 * Description:
763 * If a block device wishes to use the standard request handling procedures,
764 * which sorts requests and coalesces adjacent requests, then it must
765 * call blk_init_queue(). The function @rfn will be called when there
766 * are requests on the queue that need to be processed. If the device
767 * supports plugging, then @rfn may not be called immediately when requests
768 * are available on the queue, but may be called at some time later instead.
769 * Plugged queues are generally unplugged when a buffer belonging to one
770 * of the requests on the queue is needed, or due to memory pressure.
771 *
772 * @rfn is not required, or even expected, to remove all requests off the
773 * queue, but only as many as it can handle at a time. If it does leave
774 * requests on the queue, it is responsible for arranging that the requests
775 * get dealt with eventually.
776 *
777 * The queue spin lock must be held while manipulating the requests on the
778 * request queue; this lock will be taken also from interrupt context, so irq
779 * disabling is needed for it.
780 *
781 * Function returns a pointer to the initialized request queue, or %NULL if
782 * it didn't succeed.
783 *
784 * Note:
785 * blk_init_queue() must be paired with a blk_cleanup_queue() call
786 * when the block device is deactivated (such as at module unload).
787 **/
788
789 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
790 {
791 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
792 }
793 EXPORT_SYMBOL(blk_init_queue);
794
795 struct request_queue *
796 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
797 {
798 struct request_queue *uninit_q, *q;
799
800 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
801 if (!uninit_q)
802 return NULL;
803
804 q = blk_init_allocated_queue(uninit_q, rfn, lock);
805 if (!q)
806 blk_cleanup_queue(uninit_q);
807
808 return q;
809 }
810 EXPORT_SYMBOL(blk_init_queue_node);
811
812 static void blk_queue_bio(struct request_queue *q, struct bio *bio);
813
814 struct request_queue *
815 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
816 spinlock_t *lock)
817 {
818 if (!q)
819 return NULL;
820
821 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
822 if (!q->fq)
823 return NULL;
824
825 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
826 goto fail;
827
828 q->request_fn = rfn;
829 q->prep_rq_fn = NULL;
830 q->unprep_rq_fn = NULL;
831 q->queue_flags |= QUEUE_FLAG_DEFAULT;
832
833 /* Override internal queue lock with supplied lock pointer */
834 if (lock)
835 q->queue_lock = lock;
836
837 /*
838 * This also sets hw/phys segments, boundary and size
839 */
840 blk_queue_make_request(q, blk_queue_bio);
841
842 q->sg_reserved_size = INT_MAX;
843
844 /* Protect q->elevator from elevator_change */
845 mutex_lock(&q->sysfs_lock);
846
847 /* init elevator */
848 if (elevator_init(q, NULL)) {
849 mutex_unlock(&q->sysfs_lock);
850 goto fail;
851 }
852
853 mutex_unlock(&q->sysfs_lock);
854
855 return q;
856
857 fail:
858 blk_free_flush_queue(q->fq);
859 return NULL;
860 }
861 EXPORT_SYMBOL(blk_init_allocated_queue);
862
863 bool blk_get_queue(struct request_queue *q)
864 {
865 if (likely(!blk_queue_dying(q))) {
866 __blk_get_queue(q);
867 return true;
868 }
869
870 return false;
871 }
872 EXPORT_SYMBOL(blk_get_queue);
873
874 static inline void blk_free_request(struct request_list *rl, struct request *rq)
875 {
876 if (rq->cmd_flags & REQ_ELVPRIV) {
877 elv_put_request(rl->q, rq);
878 if (rq->elv.icq)
879 put_io_context(rq->elv.icq->ioc);
880 }
881
882 mempool_free(rq, rl->rq_pool);
883 }
884
885 /*
886 * ioc_batching returns true if the ioc is a valid batching request and
887 * should be given priority access to a request.
888 */
889 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
890 {
891 if (!ioc)
892 return 0;
893
894 /*
895 * Make sure the process is able to allocate at least 1 request
896 * even if the batch times out, otherwise we could theoretically
897 * lose wakeups.
898 */
899 return ioc->nr_batch_requests == q->nr_batching ||
900 (ioc->nr_batch_requests > 0
901 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
902 }
903
904 /*
905 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
906 * will cause the process to be a "batcher" on all queues in the system. This
907 * is the behaviour we want though - once it gets a wakeup it should be given
908 * a nice run.
909 */
910 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
911 {
912 if (!ioc || ioc_batching(q, ioc))
913 return;
914
915 ioc->nr_batch_requests = q->nr_batching;
916 ioc->last_waited = jiffies;
917 }
918
919 static void __freed_request(struct request_list *rl, int sync)
920 {
921 struct request_queue *q = rl->q;
922
923 if (rl->count[sync] < queue_congestion_off_threshold(q))
924 blk_clear_congested(rl, sync);
925
926 if (rl->count[sync] + 1 <= q->nr_requests) {
927 if (waitqueue_active(&rl->wait[sync]))
928 wake_up(&rl->wait[sync]);
929
930 blk_clear_rl_full(rl, sync);
931 }
932 }
933
934 /*
935 * A request has just been released. Account for it, update the full and
936 * congestion status, wake up any waiters. Called under q->queue_lock.
937 */
938 static void freed_request(struct request_list *rl, unsigned int flags)
939 {
940 struct request_queue *q = rl->q;
941 int sync = rw_is_sync(flags);
942
943 q->nr_rqs[sync]--;
944 rl->count[sync]--;
945 if (flags & REQ_ELVPRIV)
946 q->nr_rqs_elvpriv--;
947
948 __freed_request(rl, sync);
949
950 if (unlikely(rl->starved[sync ^ 1]))
951 __freed_request(rl, sync ^ 1);
952 }
953
954 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
955 {
956 struct request_list *rl;
957 int on_thresh, off_thresh;
958
959 spin_lock_irq(q->queue_lock);
960 q->nr_requests = nr;
961 blk_queue_congestion_threshold(q);
962 on_thresh = queue_congestion_on_threshold(q);
963 off_thresh = queue_congestion_off_threshold(q);
964
965 blk_queue_for_each_rl(rl, q) {
966 if (rl->count[BLK_RW_SYNC] >= on_thresh)
967 blk_set_congested(rl, BLK_RW_SYNC);
968 else if (rl->count[BLK_RW_SYNC] < off_thresh)
969 blk_clear_congested(rl, BLK_RW_SYNC);
970
971 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
972 blk_set_congested(rl, BLK_RW_ASYNC);
973 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
974 blk_clear_congested(rl, BLK_RW_ASYNC);
975
976 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
977 blk_set_rl_full(rl, BLK_RW_SYNC);
978 } else {
979 blk_clear_rl_full(rl, BLK_RW_SYNC);
980 wake_up(&rl->wait[BLK_RW_SYNC]);
981 }
982
983 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
984 blk_set_rl_full(rl, BLK_RW_ASYNC);
985 } else {
986 blk_clear_rl_full(rl, BLK_RW_ASYNC);
987 wake_up(&rl->wait[BLK_RW_ASYNC]);
988 }
989 }
990
991 spin_unlock_irq(q->queue_lock);
992 return 0;
993 }
994
995 /*
996 * Determine if elevator data should be initialized when allocating the
997 * request associated with @bio.
998 */
999 static bool blk_rq_should_init_elevator(struct bio *bio)
1000 {
1001 if (!bio)
1002 return true;
1003
1004 /*
1005 * Flush requests do not use the elevator so skip initialization.
1006 * This allows a request to share the flush and elevator data.
1007 */
1008 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1009 return false;
1010
1011 return true;
1012 }
1013
1014 /**
1015 * rq_ioc - determine io_context for request allocation
1016 * @bio: request being allocated is for this bio (can be %NULL)
1017 *
1018 * Determine io_context to use for request allocation for @bio. May return
1019 * %NULL if %current->io_context doesn't exist.
1020 */
1021 static struct io_context *rq_ioc(struct bio *bio)
1022 {
1023 #ifdef CONFIG_BLK_CGROUP
1024 if (bio && bio->bi_ioc)
1025 return bio->bi_ioc;
1026 #endif
1027 return current->io_context;
1028 }
1029
1030 /**
1031 * __get_request - get a free request
1032 * @rl: request list to allocate from
1033 * @rw_flags: RW and SYNC flags
1034 * @bio: bio to allocate request for (can be %NULL)
1035 * @gfp_mask: allocation mask
1036 *
1037 * Get a free request from @q. This function may fail under memory
1038 * pressure or if @q is dead.
1039 *
1040 * Must be called with @q->queue_lock held and,
1041 * Returns ERR_PTR on failure, with @q->queue_lock held.
1042 * Returns request pointer on success, with @q->queue_lock *not held*.
1043 */
1044 static struct request *__get_request(struct request_list *rl, int rw_flags,
1045 struct bio *bio, gfp_t gfp_mask)
1046 {
1047 struct request_queue *q = rl->q;
1048 struct request *rq;
1049 struct elevator_type *et = q->elevator->type;
1050 struct io_context *ioc = rq_ioc(bio);
1051 struct io_cq *icq = NULL;
1052 const bool is_sync = rw_is_sync(rw_flags) != 0;
1053 int may_queue;
1054
1055 if (unlikely(blk_queue_dying(q)))
1056 return ERR_PTR(-ENODEV);
1057
1058 may_queue = elv_may_queue(q, rw_flags);
1059 if (may_queue == ELV_MQUEUE_NO)
1060 goto rq_starved;
1061
1062 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1063 if (rl->count[is_sync]+1 >= q->nr_requests) {
1064 /*
1065 * The queue will fill after this allocation, so set
1066 * it as full, and mark this process as "batching".
1067 * This process will be allowed to complete a batch of
1068 * requests, others will be blocked.
1069 */
1070 if (!blk_rl_full(rl, is_sync)) {
1071 ioc_set_batching(q, ioc);
1072 blk_set_rl_full(rl, is_sync);
1073 } else {
1074 if (may_queue != ELV_MQUEUE_MUST
1075 && !ioc_batching(q, ioc)) {
1076 /*
1077 * The queue is full and the allocating
1078 * process is not a "batcher", and not
1079 * exempted by the IO scheduler
1080 */
1081 return ERR_PTR(-ENOMEM);
1082 }
1083 }
1084 }
1085 blk_set_congested(rl, is_sync);
1086 }
1087
1088 /*
1089 * Only allow batching queuers to allocate up to 50% over the defined
1090 * limit of requests, otherwise we could have thousands of requests
1091 * allocated with any setting of ->nr_requests
1092 */
1093 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1094 return ERR_PTR(-ENOMEM);
1095
1096 q->nr_rqs[is_sync]++;
1097 rl->count[is_sync]++;
1098 rl->starved[is_sync] = 0;
1099
1100 /*
1101 * Decide whether the new request will be managed by elevator. If
1102 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1103 * prevent the current elevator from being destroyed until the new
1104 * request is freed. This guarantees icq's won't be destroyed and
1105 * makes creating new ones safe.
1106 *
1107 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1108 * it will be created after releasing queue_lock.
1109 */
1110 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1111 rw_flags |= REQ_ELVPRIV;
1112 q->nr_rqs_elvpriv++;
1113 if (et->icq_cache && ioc)
1114 icq = ioc_lookup_icq(ioc, q);
1115 }
1116
1117 if (blk_queue_io_stat(q))
1118 rw_flags |= REQ_IO_STAT;
1119 spin_unlock_irq(q->queue_lock);
1120
1121 /* allocate and init request */
1122 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1123 if (!rq)
1124 goto fail_alloc;
1125
1126 blk_rq_init(q, rq);
1127 blk_rq_set_rl(rq, rl);
1128 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1129
1130 /* init elvpriv */
1131 if (rw_flags & REQ_ELVPRIV) {
1132 if (unlikely(et->icq_cache && !icq)) {
1133 if (ioc)
1134 icq = ioc_create_icq(ioc, q, gfp_mask);
1135 if (!icq)
1136 goto fail_elvpriv;
1137 }
1138
1139 rq->elv.icq = icq;
1140 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1141 goto fail_elvpriv;
1142
1143 /* @rq->elv.icq holds io_context until @rq is freed */
1144 if (icq)
1145 get_io_context(icq->ioc);
1146 }
1147 out:
1148 /*
1149 * ioc may be NULL here, and ioc_batching will be false. That's
1150 * OK, if the queue is under the request limit then requests need
1151 * not count toward the nr_batch_requests limit. There will always
1152 * be some limit enforced by BLK_BATCH_TIME.
1153 */
1154 if (ioc_batching(q, ioc))
1155 ioc->nr_batch_requests--;
1156
1157 trace_block_getrq(q, bio, rw_flags & 1);
1158 return rq;
1159
1160 fail_elvpriv:
1161 /*
1162 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1163 * and may fail indefinitely under memory pressure and thus
1164 * shouldn't stall IO. Treat this request as !elvpriv. This will
1165 * disturb iosched and blkcg but weird is bettern than dead.
1166 */
1167 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1168 __func__, dev_name(q->backing_dev_info.dev));
1169
1170 rq->cmd_flags &= ~REQ_ELVPRIV;
1171 rq->elv.icq = NULL;
1172
1173 spin_lock_irq(q->queue_lock);
1174 q->nr_rqs_elvpriv--;
1175 spin_unlock_irq(q->queue_lock);
1176 goto out;
1177
1178 fail_alloc:
1179 /*
1180 * Allocation failed presumably due to memory. Undo anything we
1181 * might have messed up.
1182 *
1183 * Allocating task should really be put onto the front of the wait
1184 * queue, but this is pretty rare.
1185 */
1186 spin_lock_irq(q->queue_lock);
1187 freed_request(rl, rw_flags);
1188
1189 /*
1190 * in the very unlikely event that allocation failed and no
1191 * requests for this direction was pending, mark us starved so that
1192 * freeing of a request in the other direction will notice
1193 * us. another possible fix would be to split the rq mempool into
1194 * READ and WRITE
1195 */
1196 rq_starved:
1197 if (unlikely(rl->count[is_sync] == 0))
1198 rl->starved[is_sync] = 1;
1199 return ERR_PTR(-ENOMEM);
1200 }
1201
1202 /**
1203 * get_request - get a free request
1204 * @q: request_queue to allocate request from
1205 * @rw_flags: RW and SYNC flags
1206 * @bio: bio to allocate request for (can be %NULL)
1207 * @gfp_mask: allocation mask
1208 *
1209 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1210 * this function keeps retrying under memory pressure and fails iff @q is dead.
1211 *
1212 * Must be called with @q->queue_lock held and,
1213 * Returns ERR_PTR on failure, with @q->queue_lock held.
1214 * Returns request pointer on success, with @q->queue_lock *not held*.
1215 */
1216 static struct request *get_request(struct request_queue *q, int rw_flags,
1217 struct bio *bio, gfp_t gfp_mask)
1218 {
1219 const bool is_sync = rw_is_sync(rw_flags) != 0;
1220 DEFINE_WAIT(wait);
1221 struct request_list *rl;
1222 struct request *rq;
1223
1224 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1225 retry:
1226 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1227 if (!IS_ERR(rq))
1228 return rq;
1229
1230 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1231 blk_put_rl(rl);
1232 return rq;
1233 }
1234
1235 /* wait on @rl and retry */
1236 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1237 TASK_UNINTERRUPTIBLE);
1238
1239 trace_block_sleeprq(q, bio, rw_flags & 1);
1240
1241 spin_unlock_irq(q->queue_lock);
1242 io_schedule();
1243
1244 /*
1245 * After sleeping, we become a "batching" process and will be able
1246 * to allocate at least one request, and up to a big batch of them
1247 * for a small period time. See ioc_batching, ioc_set_batching
1248 */
1249 ioc_set_batching(q, current->io_context);
1250
1251 spin_lock_irq(q->queue_lock);
1252 finish_wait(&rl->wait[is_sync], &wait);
1253
1254 goto retry;
1255 }
1256
1257 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1258 gfp_t gfp_mask)
1259 {
1260 struct request *rq;
1261
1262 BUG_ON(rw != READ && rw != WRITE);
1263
1264 /* create ioc upfront */
1265 create_io_context(gfp_mask, q->node);
1266
1267 spin_lock_irq(q->queue_lock);
1268 rq = get_request(q, rw, NULL, gfp_mask);
1269 if (IS_ERR(rq))
1270 spin_unlock_irq(q->queue_lock);
1271 /* q->queue_lock is unlocked at this point */
1272
1273 return rq;
1274 }
1275
1276 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1277 {
1278 if (q->mq_ops)
1279 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1280 else
1281 return blk_old_get_request(q, rw, gfp_mask);
1282 }
1283 EXPORT_SYMBOL(blk_get_request);
1284
1285 /**
1286 * blk_make_request - given a bio, allocate a corresponding struct request.
1287 * @q: target request queue
1288 * @bio: The bio describing the memory mappings that will be submitted for IO.
1289 * It may be a chained-bio properly constructed by block/bio layer.
1290 * @gfp_mask: gfp flags to be used for memory allocation
1291 *
1292 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1293 * type commands. Where the struct request needs to be farther initialized by
1294 * the caller. It is passed a &struct bio, which describes the memory info of
1295 * the I/O transfer.
1296 *
1297 * The caller of blk_make_request must make sure that bi_io_vec
1298 * are set to describe the memory buffers. That bio_data_dir() will return
1299 * the needed direction of the request. (And all bio's in the passed bio-chain
1300 * are properly set accordingly)
1301 *
1302 * If called under none-sleepable conditions, mapped bio buffers must not
1303 * need bouncing, by calling the appropriate masked or flagged allocator,
1304 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1305 * BUG.
1306 *
1307 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1308 * given to how you allocate bios. In particular, you cannot use
1309 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1310 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1311 * thus resulting in a deadlock. Alternatively bios should be allocated using
1312 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1313 * If possible a big IO should be split into smaller parts when allocation
1314 * fails. Partial allocation should not be an error, or you risk a live-lock.
1315 */
1316 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1317 gfp_t gfp_mask)
1318 {
1319 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1320
1321 if (IS_ERR(rq))
1322 return rq;
1323
1324 blk_rq_set_block_pc(rq);
1325
1326 for_each_bio(bio) {
1327 struct bio *bounce_bio = bio;
1328 int ret;
1329
1330 blk_queue_bounce(q, &bounce_bio);
1331 ret = blk_rq_append_bio(q, rq, bounce_bio);
1332 if (unlikely(ret)) {
1333 blk_put_request(rq);
1334 return ERR_PTR(ret);
1335 }
1336 }
1337
1338 return rq;
1339 }
1340 EXPORT_SYMBOL(blk_make_request);
1341
1342 /**
1343 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1344 * @rq: request to be initialized
1345 *
1346 */
1347 void blk_rq_set_block_pc(struct request *rq)
1348 {
1349 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1350 rq->__data_len = 0;
1351 rq->__sector = (sector_t) -1;
1352 rq->bio = rq->biotail = NULL;
1353 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1354 }
1355 EXPORT_SYMBOL(blk_rq_set_block_pc);
1356
1357 /**
1358 * blk_requeue_request - put a request back on queue
1359 * @q: request queue where request should be inserted
1360 * @rq: request to be inserted
1361 *
1362 * Description:
1363 * Drivers often keep queueing requests until the hardware cannot accept
1364 * more, when that condition happens we need to put the request back
1365 * on the queue. Must be called with queue lock held.
1366 */
1367 void blk_requeue_request(struct request_queue *q, struct request *rq)
1368 {
1369 blk_delete_timer(rq);
1370 blk_clear_rq_complete(rq);
1371 trace_block_rq_requeue(q, rq);
1372
1373 if (rq->cmd_flags & REQ_QUEUED)
1374 blk_queue_end_tag(q, rq);
1375
1376 BUG_ON(blk_queued_rq(rq));
1377
1378 elv_requeue_request(q, rq);
1379 }
1380 EXPORT_SYMBOL(blk_requeue_request);
1381
1382 static void add_acct_request(struct request_queue *q, struct request *rq,
1383 int where)
1384 {
1385 blk_account_io_start(rq, true);
1386 __elv_add_request(q, rq, where);
1387 }
1388
1389 static void part_round_stats_single(int cpu, struct hd_struct *part,
1390 unsigned long now)
1391 {
1392 int inflight;
1393
1394 if (now == part->stamp)
1395 return;
1396
1397 inflight = part_in_flight(part);
1398 if (inflight) {
1399 __part_stat_add(cpu, part, time_in_queue,
1400 inflight * (now - part->stamp));
1401 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1402 }
1403 part->stamp = now;
1404 }
1405
1406 /**
1407 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1408 * @cpu: cpu number for stats access
1409 * @part: target partition
1410 *
1411 * The average IO queue length and utilisation statistics are maintained
1412 * by observing the current state of the queue length and the amount of
1413 * time it has been in this state for.
1414 *
1415 * Normally, that accounting is done on IO completion, but that can result
1416 * in more than a second's worth of IO being accounted for within any one
1417 * second, leading to >100% utilisation. To deal with that, we call this
1418 * function to do a round-off before returning the results when reading
1419 * /proc/diskstats. This accounts immediately for all queue usage up to
1420 * the current jiffies and restarts the counters again.
1421 */
1422 void part_round_stats(int cpu, struct hd_struct *part)
1423 {
1424 unsigned long now = jiffies;
1425
1426 if (part->partno)
1427 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1428 part_round_stats_single(cpu, part, now);
1429 }
1430 EXPORT_SYMBOL_GPL(part_round_stats);
1431
1432 #ifdef CONFIG_PM
1433 static void blk_pm_put_request(struct request *rq)
1434 {
1435 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1436 pm_runtime_mark_last_busy(rq->q->dev);
1437 }
1438 #else
1439 static inline void blk_pm_put_request(struct request *rq) {}
1440 #endif
1441
1442 /*
1443 * queue lock must be held
1444 */
1445 void __blk_put_request(struct request_queue *q, struct request *req)
1446 {
1447 if (unlikely(!q))
1448 return;
1449
1450 if (q->mq_ops) {
1451 blk_mq_free_request(req);
1452 return;
1453 }
1454
1455 blk_pm_put_request(req);
1456
1457 elv_completed_request(q, req);
1458
1459 /* this is a bio leak */
1460 WARN_ON(req->bio != NULL);
1461
1462 /*
1463 * Request may not have originated from ll_rw_blk. if not,
1464 * it didn't come out of our reserved rq pools
1465 */
1466 if (req->cmd_flags & REQ_ALLOCED) {
1467 unsigned int flags = req->cmd_flags;
1468 struct request_list *rl = blk_rq_rl(req);
1469
1470 BUG_ON(!list_empty(&req->queuelist));
1471 BUG_ON(ELV_ON_HASH(req));
1472
1473 blk_free_request(rl, req);
1474 freed_request(rl, flags);
1475 blk_put_rl(rl);
1476 }
1477 }
1478 EXPORT_SYMBOL_GPL(__blk_put_request);
1479
1480 void blk_put_request(struct request *req)
1481 {
1482 struct request_queue *q = req->q;
1483
1484 if (q->mq_ops)
1485 blk_mq_free_request(req);
1486 else {
1487 unsigned long flags;
1488
1489 spin_lock_irqsave(q->queue_lock, flags);
1490 __blk_put_request(q, req);
1491 spin_unlock_irqrestore(q->queue_lock, flags);
1492 }
1493 }
1494 EXPORT_SYMBOL(blk_put_request);
1495
1496 /**
1497 * blk_add_request_payload - add a payload to a request
1498 * @rq: request to update
1499 * @page: page backing the payload
1500 * @len: length of the payload.
1501 *
1502 * This allows to later add a payload to an already submitted request by
1503 * a block driver. The driver needs to take care of freeing the payload
1504 * itself.
1505 *
1506 * Note that this is a quite horrible hack and nothing but handling of
1507 * discard requests should ever use it.
1508 */
1509 void blk_add_request_payload(struct request *rq, struct page *page,
1510 unsigned int len)
1511 {
1512 struct bio *bio = rq->bio;
1513
1514 bio->bi_io_vec->bv_page = page;
1515 bio->bi_io_vec->bv_offset = 0;
1516 bio->bi_io_vec->bv_len = len;
1517
1518 bio->bi_iter.bi_size = len;
1519 bio->bi_vcnt = 1;
1520 bio->bi_phys_segments = 1;
1521
1522 rq->__data_len = rq->resid_len = len;
1523 rq->nr_phys_segments = 1;
1524 }
1525 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1526
1527 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1528 struct bio *bio)
1529 {
1530 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1531
1532 if (!ll_back_merge_fn(q, req, bio))
1533 return false;
1534
1535 trace_block_bio_backmerge(q, req, bio);
1536
1537 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1538 blk_rq_set_mixed_merge(req);
1539
1540 req->biotail->bi_next = bio;
1541 req->biotail = bio;
1542 req->__data_len += bio->bi_iter.bi_size;
1543 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1544
1545 blk_account_io_start(req, false);
1546 return true;
1547 }
1548
1549 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1550 struct bio *bio)
1551 {
1552 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1553
1554 if (!ll_front_merge_fn(q, req, bio))
1555 return false;
1556
1557 trace_block_bio_frontmerge(q, req, bio);
1558
1559 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1560 blk_rq_set_mixed_merge(req);
1561
1562 bio->bi_next = req->bio;
1563 req->bio = bio;
1564
1565 req->__sector = bio->bi_iter.bi_sector;
1566 req->__data_len += bio->bi_iter.bi_size;
1567 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1568
1569 blk_account_io_start(req, false);
1570 return true;
1571 }
1572
1573 /**
1574 * blk_attempt_plug_merge - try to merge with %current's plugged list
1575 * @q: request_queue new bio is being queued at
1576 * @bio: new bio being queued
1577 * @request_count: out parameter for number of traversed plugged requests
1578 *
1579 * Determine whether @bio being queued on @q can be merged with a request
1580 * on %current's plugged list. Returns %true if merge was successful,
1581 * otherwise %false.
1582 *
1583 * Plugging coalesces IOs from the same issuer for the same purpose without
1584 * going through @q->queue_lock. As such it's more of an issuing mechanism
1585 * than scheduling, and the request, while may have elvpriv data, is not
1586 * added on the elevator at this point. In addition, we don't have
1587 * reliable access to the elevator outside queue lock. Only check basic
1588 * merging parameters without querying the elevator.
1589 *
1590 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1591 */
1592 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1593 unsigned int *request_count,
1594 struct request **same_queue_rq)
1595 {
1596 struct blk_plug *plug;
1597 struct request *rq;
1598 bool ret = false;
1599 struct list_head *plug_list;
1600
1601 plug = current->plug;
1602 if (!plug)
1603 goto out;
1604 *request_count = 0;
1605
1606 if (q->mq_ops)
1607 plug_list = &plug->mq_list;
1608 else
1609 plug_list = &plug->list;
1610
1611 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1612 int el_ret;
1613
1614 if (rq->q == q) {
1615 (*request_count)++;
1616 /*
1617 * Only blk-mq multiple hardware queues case checks the
1618 * rq in the same queue, there should be only one such
1619 * rq in a queue
1620 **/
1621 if (same_queue_rq)
1622 *same_queue_rq = rq;
1623 }
1624
1625 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1626 continue;
1627
1628 el_ret = blk_try_merge(rq, bio);
1629 if (el_ret == ELEVATOR_BACK_MERGE) {
1630 ret = bio_attempt_back_merge(q, rq, bio);
1631 if (ret)
1632 break;
1633 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1634 ret = bio_attempt_front_merge(q, rq, bio);
1635 if (ret)
1636 break;
1637 }
1638 }
1639 out:
1640 return ret;
1641 }
1642
1643 unsigned int blk_plug_queued_count(struct request_queue *q)
1644 {
1645 struct blk_plug *plug;
1646 struct request *rq;
1647 struct list_head *plug_list;
1648 unsigned int ret = 0;
1649
1650 plug = current->plug;
1651 if (!plug)
1652 goto out;
1653
1654 if (q->mq_ops)
1655 plug_list = &plug->mq_list;
1656 else
1657 plug_list = &plug->list;
1658
1659 list_for_each_entry(rq, plug_list, queuelist) {
1660 if (rq->q == q)
1661 ret++;
1662 }
1663 out:
1664 return ret;
1665 }
1666
1667 void init_request_from_bio(struct request *req, struct bio *bio)
1668 {
1669 req->cmd_type = REQ_TYPE_FS;
1670
1671 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1672 if (bio->bi_rw & REQ_RAHEAD)
1673 req->cmd_flags |= REQ_FAILFAST_MASK;
1674
1675 req->errors = 0;
1676 req->__sector = bio->bi_iter.bi_sector;
1677 req->ioprio = bio_prio(bio);
1678 blk_rq_bio_prep(req->q, req, bio);
1679 }
1680
1681 static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1682 {
1683 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1684 struct blk_plug *plug;
1685 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1686 struct request *req;
1687 unsigned int request_count = 0;
1688
1689 blk_queue_split(q, &bio, q->bio_split);
1690
1691 /*
1692 * low level driver can indicate that it wants pages above a
1693 * certain limit bounced to low memory (ie for highmem, or even
1694 * ISA dma in theory)
1695 */
1696 blk_queue_bounce(q, &bio);
1697
1698 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1699 bio->bi_error = -EIO;
1700 bio_endio(bio);
1701 return;
1702 }
1703
1704 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1705 spin_lock_irq(q->queue_lock);
1706 where = ELEVATOR_INSERT_FLUSH;
1707 goto get_rq;
1708 }
1709
1710 /*
1711 * Check if we can merge with the plugged list before grabbing
1712 * any locks.
1713 */
1714 if (!blk_queue_nomerges(q)) {
1715 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1716 return;
1717 } else
1718 request_count = blk_plug_queued_count(q);
1719
1720 spin_lock_irq(q->queue_lock);
1721
1722 el_ret = elv_merge(q, &req, bio);
1723 if (el_ret == ELEVATOR_BACK_MERGE) {
1724 if (bio_attempt_back_merge(q, req, bio)) {
1725 elv_bio_merged(q, req, bio);
1726 if (!attempt_back_merge(q, req))
1727 elv_merged_request(q, req, el_ret);
1728 goto out_unlock;
1729 }
1730 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1731 if (bio_attempt_front_merge(q, req, bio)) {
1732 elv_bio_merged(q, req, bio);
1733 if (!attempt_front_merge(q, req))
1734 elv_merged_request(q, req, el_ret);
1735 goto out_unlock;
1736 }
1737 }
1738
1739 get_rq:
1740 /*
1741 * This sync check and mask will be re-done in init_request_from_bio(),
1742 * but we need to set it earlier to expose the sync flag to the
1743 * rq allocator and io schedulers.
1744 */
1745 rw_flags = bio_data_dir(bio);
1746 if (sync)
1747 rw_flags |= REQ_SYNC;
1748
1749 /*
1750 * Grab a free request. This is might sleep but can not fail.
1751 * Returns with the queue unlocked.
1752 */
1753 req = get_request(q, rw_flags, bio, GFP_NOIO);
1754 if (IS_ERR(req)) {
1755 bio->bi_error = PTR_ERR(req);
1756 bio_endio(bio);
1757 goto out_unlock;
1758 }
1759
1760 /*
1761 * After dropping the lock and possibly sleeping here, our request
1762 * may now be mergeable after it had proven unmergeable (above).
1763 * We don't worry about that case for efficiency. It won't happen
1764 * often, and the elevators are able to handle it.
1765 */
1766 init_request_from_bio(req, bio);
1767
1768 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1769 req->cpu = raw_smp_processor_id();
1770
1771 plug = current->plug;
1772 if (plug) {
1773 /*
1774 * If this is the first request added after a plug, fire
1775 * of a plug trace.
1776 */
1777 if (!request_count)
1778 trace_block_plug(q);
1779 else {
1780 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1781 blk_flush_plug_list(plug, false);
1782 trace_block_plug(q);
1783 }
1784 }
1785 list_add_tail(&req->queuelist, &plug->list);
1786 blk_account_io_start(req, true);
1787 } else {
1788 spin_lock_irq(q->queue_lock);
1789 add_acct_request(q, req, where);
1790 __blk_run_queue(q);
1791 out_unlock:
1792 spin_unlock_irq(q->queue_lock);
1793 }
1794 }
1795
1796 /*
1797 * If bio->bi_dev is a partition, remap the location
1798 */
1799 static inline void blk_partition_remap(struct bio *bio)
1800 {
1801 struct block_device *bdev = bio->bi_bdev;
1802
1803 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1804 struct hd_struct *p = bdev->bd_part;
1805
1806 bio->bi_iter.bi_sector += p->start_sect;
1807 bio->bi_bdev = bdev->bd_contains;
1808
1809 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1810 bdev->bd_dev,
1811 bio->bi_iter.bi_sector - p->start_sect);
1812 }
1813 }
1814
1815 static void handle_bad_sector(struct bio *bio)
1816 {
1817 char b[BDEVNAME_SIZE];
1818
1819 printk(KERN_INFO "attempt to access beyond end of device\n");
1820 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1821 bdevname(bio->bi_bdev, b),
1822 bio->bi_rw,
1823 (unsigned long long)bio_end_sector(bio),
1824 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1825 }
1826
1827 #ifdef CONFIG_FAIL_MAKE_REQUEST
1828
1829 static DECLARE_FAULT_ATTR(fail_make_request);
1830
1831 static int __init setup_fail_make_request(char *str)
1832 {
1833 return setup_fault_attr(&fail_make_request, str);
1834 }
1835 __setup("fail_make_request=", setup_fail_make_request);
1836
1837 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1838 {
1839 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1840 }
1841
1842 static int __init fail_make_request_debugfs(void)
1843 {
1844 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1845 NULL, &fail_make_request);
1846
1847 return PTR_ERR_OR_ZERO(dir);
1848 }
1849
1850 late_initcall(fail_make_request_debugfs);
1851
1852 #else /* CONFIG_FAIL_MAKE_REQUEST */
1853
1854 static inline bool should_fail_request(struct hd_struct *part,
1855 unsigned int bytes)
1856 {
1857 return false;
1858 }
1859
1860 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1861
1862 /*
1863 * Check whether this bio extends beyond the end of the device.
1864 */
1865 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1866 {
1867 sector_t maxsector;
1868
1869 if (!nr_sectors)
1870 return 0;
1871
1872 /* Test device or partition size, when known. */
1873 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1874 if (maxsector) {
1875 sector_t sector = bio->bi_iter.bi_sector;
1876
1877 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1878 /*
1879 * This may well happen - the kernel calls bread()
1880 * without checking the size of the device, e.g., when
1881 * mounting a device.
1882 */
1883 handle_bad_sector(bio);
1884 return 1;
1885 }
1886 }
1887
1888 return 0;
1889 }
1890
1891 static noinline_for_stack bool
1892 generic_make_request_checks(struct bio *bio)
1893 {
1894 struct request_queue *q;
1895 int nr_sectors = bio_sectors(bio);
1896 int err = -EIO;
1897 char b[BDEVNAME_SIZE];
1898 struct hd_struct *part;
1899
1900 might_sleep();
1901
1902 if (bio_check_eod(bio, nr_sectors))
1903 goto end_io;
1904
1905 q = bdev_get_queue(bio->bi_bdev);
1906 if (unlikely(!q)) {
1907 printk(KERN_ERR
1908 "generic_make_request: Trying to access "
1909 "nonexistent block-device %s (%Lu)\n",
1910 bdevname(bio->bi_bdev, b),
1911 (long long) bio->bi_iter.bi_sector);
1912 goto end_io;
1913 }
1914
1915 part = bio->bi_bdev->bd_part;
1916 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1917 should_fail_request(&part_to_disk(part)->part0,
1918 bio->bi_iter.bi_size))
1919 goto end_io;
1920
1921 /*
1922 * If this device has partitions, remap block n
1923 * of partition p to block n+start(p) of the disk.
1924 */
1925 blk_partition_remap(bio);
1926
1927 if (bio_check_eod(bio, nr_sectors))
1928 goto end_io;
1929
1930 /*
1931 * Filter flush bio's early so that make_request based
1932 * drivers without flush support don't have to worry
1933 * about them.
1934 */
1935 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1936 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1937 if (!nr_sectors) {
1938 err = 0;
1939 goto end_io;
1940 }
1941 }
1942
1943 if ((bio->bi_rw & REQ_DISCARD) &&
1944 (!blk_queue_discard(q) ||
1945 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1946 err = -EOPNOTSUPP;
1947 goto end_io;
1948 }
1949
1950 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1951 err = -EOPNOTSUPP;
1952 goto end_io;
1953 }
1954
1955 /*
1956 * Various block parts want %current->io_context and lazy ioc
1957 * allocation ends up trading a lot of pain for a small amount of
1958 * memory. Just allocate it upfront. This may fail and block
1959 * layer knows how to live with it.
1960 */
1961 create_io_context(GFP_ATOMIC, q->node);
1962
1963 if (!blkcg_bio_issue_check(q, bio))
1964 return false;
1965
1966 trace_block_bio_queue(q, bio);
1967 return true;
1968
1969 end_io:
1970 bio->bi_error = err;
1971 bio_endio(bio);
1972 return false;
1973 }
1974
1975 /**
1976 * generic_make_request - hand a buffer to its device driver for I/O
1977 * @bio: The bio describing the location in memory and on the device.
1978 *
1979 * generic_make_request() is used to make I/O requests of block
1980 * devices. It is passed a &struct bio, which describes the I/O that needs
1981 * to be done.
1982 *
1983 * generic_make_request() does not return any status. The
1984 * success/failure status of the request, along with notification of
1985 * completion, is delivered asynchronously through the bio->bi_end_io
1986 * function described (one day) else where.
1987 *
1988 * The caller of generic_make_request must make sure that bi_io_vec
1989 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1990 * set to describe the device address, and the
1991 * bi_end_io and optionally bi_private are set to describe how
1992 * completion notification should be signaled.
1993 *
1994 * generic_make_request and the drivers it calls may use bi_next if this
1995 * bio happens to be merged with someone else, and may resubmit the bio to
1996 * a lower device by calling into generic_make_request recursively, which
1997 * means the bio should NOT be touched after the call to ->make_request_fn.
1998 */
1999 void generic_make_request(struct bio *bio)
2000 {
2001 struct bio_list bio_list_on_stack;
2002
2003 if (!generic_make_request_checks(bio))
2004 return;
2005
2006 /*
2007 * We only want one ->make_request_fn to be active at a time, else
2008 * stack usage with stacked devices could be a problem. So use
2009 * current->bio_list to keep a list of requests submited by a
2010 * make_request_fn function. current->bio_list is also used as a
2011 * flag to say if generic_make_request is currently active in this
2012 * task or not. If it is NULL, then no make_request is active. If
2013 * it is non-NULL, then a make_request is active, and new requests
2014 * should be added at the tail
2015 */
2016 if (current->bio_list) {
2017 bio_list_add(current->bio_list, bio);
2018 return;
2019 }
2020
2021 /* following loop may be a bit non-obvious, and so deserves some
2022 * explanation.
2023 * Before entering the loop, bio->bi_next is NULL (as all callers
2024 * ensure that) so we have a list with a single bio.
2025 * We pretend that we have just taken it off a longer list, so
2026 * we assign bio_list to a pointer to the bio_list_on_stack,
2027 * thus initialising the bio_list of new bios to be
2028 * added. ->make_request() may indeed add some more bios
2029 * through a recursive call to generic_make_request. If it
2030 * did, we find a non-NULL value in bio_list and re-enter the loop
2031 * from the top. In this case we really did just take the bio
2032 * of the top of the list (no pretending) and so remove it from
2033 * bio_list, and call into ->make_request() again.
2034 */
2035 BUG_ON(bio->bi_next);
2036 bio_list_init(&bio_list_on_stack);
2037 current->bio_list = &bio_list_on_stack;
2038 do {
2039 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2040
2041 if (likely(blk_queue_enter(q, __GFP_WAIT) == 0)) {
2042
2043 q->make_request_fn(q, bio);
2044
2045 blk_queue_exit(q);
2046
2047 bio = bio_list_pop(current->bio_list);
2048 } else {
2049 struct bio *bio_next = bio_list_pop(current->bio_list);
2050
2051 bio_io_error(bio);
2052 bio = bio_next;
2053 }
2054 } while (bio);
2055 current->bio_list = NULL; /* deactivate */
2056 }
2057 EXPORT_SYMBOL(generic_make_request);
2058
2059 /**
2060 * submit_bio - submit a bio to the block device layer for I/O
2061 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2062 * @bio: The &struct bio which describes the I/O
2063 *
2064 * submit_bio() is very similar in purpose to generic_make_request(), and
2065 * uses that function to do most of the work. Both are fairly rough
2066 * interfaces; @bio must be presetup and ready for I/O.
2067 *
2068 */
2069 void submit_bio(int rw, struct bio *bio)
2070 {
2071 bio->bi_rw |= rw;
2072
2073 /*
2074 * If it's a regular read/write or a barrier with data attached,
2075 * go through the normal accounting stuff before submission.
2076 */
2077 if (bio_has_data(bio)) {
2078 unsigned int count;
2079
2080 if (unlikely(rw & REQ_WRITE_SAME))
2081 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2082 else
2083 count = bio_sectors(bio);
2084
2085 if (rw & WRITE) {
2086 count_vm_events(PGPGOUT, count);
2087 } else {
2088 task_io_account_read(bio->bi_iter.bi_size);
2089 count_vm_events(PGPGIN, count);
2090 }
2091
2092 if (unlikely(block_dump)) {
2093 char b[BDEVNAME_SIZE];
2094 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2095 current->comm, task_pid_nr(current),
2096 (rw & WRITE) ? "WRITE" : "READ",
2097 (unsigned long long)bio->bi_iter.bi_sector,
2098 bdevname(bio->bi_bdev, b),
2099 count);
2100 }
2101 }
2102
2103 generic_make_request(bio);
2104 }
2105 EXPORT_SYMBOL(submit_bio);
2106
2107 /**
2108 * blk_rq_check_limits - Helper function to check a request for the queue limit
2109 * @q: the queue
2110 * @rq: the request being checked
2111 *
2112 * Description:
2113 * @rq may have been made based on weaker limitations of upper-level queues
2114 * in request stacking drivers, and it may violate the limitation of @q.
2115 * Since the block layer and the underlying device driver trust @rq
2116 * after it is inserted to @q, it should be checked against @q before
2117 * the insertion using this generic function.
2118 *
2119 * This function should also be useful for request stacking drivers
2120 * in some cases below, so export this function.
2121 * Request stacking drivers like request-based dm may change the queue
2122 * limits while requests are in the queue (e.g. dm's table swapping).
2123 * Such request stacking drivers should check those requests against
2124 * the new queue limits again when they dispatch those requests,
2125 * although such checkings are also done against the old queue limits
2126 * when submitting requests.
2127 */
2128 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2129 {
2130 if (!rq_mergeable(rq))
2131 return 0;
2132
2133 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2134 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2135 return -EIO;
2136 }
2137
2138 /*
2139 * queue's settings related to segment counting like q->bounce_pfn
2140 * may differ from that of other stacking queues.
2141 * Recalculate it to check the request correctly on this queue's
2142 * limitation.
2143 */
2144 blk_recalc_rq_segments(rq);
2145 if (rq->nr_phys_segments > queue_max_segments(q)) {
2146 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2147 return -EIO;
2148 }
2149
2150 return 0;
2151 }
2152 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2153
2154 /**
2155 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2156 * @q: the queue to submit the request
2157 * @rq: the request being queued
2158 */
2159 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2160 {
2161 unsigned long flags;
2162 int where = ELEVATOR_INSERT_BACK;
2163
2164 if (blk_rq_check_limits(q, rq))
2165 return -EIO;
2166
2167 if (rq->rq_disk &&
2168 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2169 return -EIO;
2170
2171 if (q->mq_ops) {
2172 if (blk_queue_io_stat(q))
2173 blk_account_io_start(rq, true);
2174 blk_mq_insert_request(rq, false, true, true);
2175 return 0;
2176 }
2177
2178 spin_lock_irqsave(q->queue_lock, flags);
2179 if (unlikely(blk_queue_dying(q))) {
2180 spin_unlock_irqrestore(q->queue_lock, flags);
2181 return -ENODEV;
2182 }
2183
2184 /*
2185 * Submitting request must be dequeued before calling this function
2186 * because it will be linked to another request_queue
2187 */
2188 BUG_ON(blk_queued_rq(rq));
2189
2190 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2191 where = ELEVATOR_INSERT_FLUSH;
2192
2193 add_acct_request(q, rq, where);
2194 if (where == ELEVATOR_INSERT_FLUSH)
2195 __blk_run_queue(q);
2196 spin_unlock_irqrestore(q->queue_lock, flags);
2197
2198 return 0;
2199 }
2200 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2201
2202 /**
2203 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2204 * @rq: request to examine
2205 *
2206 * Description:
2207 * A request could be merge of IOs which require different failure
2208 * handling. This function determines the number of bytes which
2209 * can be failed from the beginning of the request without
2210 * crossing into area which need to be retried further.
2211 *
2212 * Return:
2213 * The number of bytes to fail.
2214 *
2215 * Context:
2216 * queue_lock must be held.
2217 */
2218 unsigned int blk_rq_err_bytes(const struct request *rq)
2219 {
2220 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2221 unsigned int bytes = 0;
2222 struct bio *bio;
2223
2224 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2225 return blk_rq_bytes(rq);
2226
2227 /*
2228 * Currently the only 'mixing' which can happen is between
2229 * different fastfail types. We can safely fail portions
2230 * which have all the failfast bits that the first one has -
2231 * the ones which are at least as eager to fail as the first
2232 * one.
2233 */
2234 for (bio = rq->bio; bio; bio = bio->bi_next) {
2235 if ((bio->bi_rw & ff) != ff)
2236 break;
2237 bytes += bio->bi_iter.bi_size;
2238 }
2239
2240 /* this could lead to infinite loop */
2241 BUG_ON(blk_rq_bytes(rq) && !bytes);
2242 return bytes;
2243 }
2244 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2245
2246 void blk_account_io_completion(struct request *req, unsigned int bytes)
2247 {
2248 if (blk_do_io_stat(req)) {
2249 const int rw = rq_data_dir(req);
2250 struct hd_struct *part;
2251 int cpu;
2252
2253 cpu = part_stat_lock();
2254 part = req->part;
2255 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2256 part_stat_unlock();
2257 }
2258 }
2259
2260 void blk_account_io_done(struct request *req)
2261 {
2262 /*
2263 * Account IO completion. flush_rq isn't accounted as a
2264 * normal IO on queueing nor completion. Accounting the
2265 * containing request is enough.
2266 */
2267 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2268 unsigned long duration = jiffies - req->start_time;
2269 const int rw = rq_data_dir(req);
2270 struct hd_struct *part;
2271 int cpu;
2272
2273 cpu = part_stat_lock();
2274 part = req->part;
2275
2276 part_stat_inc(cpu, part, ios[rw]);
2277 part_stat_add(cpu, part, ticks[rw], duration);
2278 part_round_stats(cpu, part);
2279 part_dec_in_flight(part, rw);
2280
2281 hd_struct_put(part);
2282 part_stat_unlock();
2283 }
2284 }
2285
2286 #ifdef CONFIG_PM
2287 /*
2288 * Don't process normal requests when queue is suspended
2289 * or in the process of suspending/resuming
2290 */
2291 static struct request *blk_pm_peek_request(struct request_queue *q,
2292 struct request *rq)
2293 {
2294 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2295 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2296 return NULL;
2297 else
2298 return rq;
2299 }
2300 #else
2301 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2302 struct request *rq)
2303 {
2304 return rq;
2305 }
2306 #endif
2307
2308 void blk_account_io_start(struct request *rq, bool new_io)
2309 {
2310 struct hd_struct *part;
2311 int rw = rq_data_dir(rq);
2312 int cpu;
2313
2314 if (!blk_do_io_stat(rq))
2315 return;
2316
2317 cpu = part_stat_lock();
2318
2319 if (!new_io) {
2320 part = rq->part;
2321 part_stat_inc(cpu, part, merges[rw]);
2322 } else {
2323 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2324 if (!hd_struct_try_get(part)) {
2325 /*
2326 * The partition is already being removed,
2327 * the request will be accounted on the disk only
2328 *
2329 * We take a reference on disk->part0 although that
2330 * partition will never be deleted, so we can treat
2331 * it as any other partition.
2332 */
2333 part = &rq->rq_disk->part0;
2334 hd_struct_get(part);
2335 }
2336 part_round_stats(cpu, part);
2337 part_inc_in_flight(part, rw);
2338 rq->part = part;
2339 }
2340
2341 part_stat_unlock();
2342 }
2343
2344 /**
2345 * blk_peek_request - peek at the top of a request queue
2346 * @q: request queue to peek at
2347 *
2348 * Description:
2349 * Return the request at the top of @q. The returned request
2350 * should be started using blk_start_request() before LLD starts
2351 * processing it.
2352 *
2353 * Return:
2354 * Pointer to the request at the top of @q if available. Null
2355 * otherwise.
2356 *
2357 * Context:
2358 * queue_lock must be held.
2359 */
2360 struct request *blk_peek_request(struct request_queue *q)
2361 {
2362 struct request *rq;
2363 int ret;
2364
2365 while ((rq = __elv_next_request(q)) != NULL) {
2366
2367 rq = blk_pm_peek_request(q, rq);
2368 if (!rq)
2369 break;
2370
2371 if (!(rq->cmd_flags & REQ_STARTED)) {
2372 /*
2373 * This is the first time the device driver
2374 * sees this request (possibly after
2375 * requeueing). Notify IO scheduler.
2376 */
2377 if (rq->cmd_flags & REQ_SORTED)
2378 elv_activate_rq(q, rq);
2379
2380 /*
2381 * just mark as started even if we don't start
2382 * it, a request that has been delayed should
2383 * not be passed by new incoming requests
2384 */
2385 rq->cmd_flags |= REQ_STARTED;
2386 trace_block_rq_issue(q, rq);
2387 }
2388
2389 if (!q->boundary_rq || q->boundary_rq == rq) {
2390 q->end_sector = rq_end_sector(rq);
2391 q->boundary_rq = NULL;
2392 }
2393
2394 if (rq->cmd_flags & REQ_DONTPREP)
2395 break;
2396
2397 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2398 /*
2399 * make sure space for the drain appears we
2400 * know we can do this because max_hw_segments
2401 * has been adjusted to be one fewer than the
2402 * device can handle
2403 */
2404 rq->nr_phys_segments++;
2405 }
2406
2407 if (!q->prep_rq_fn)
2408 break;
2409
2410 ret = q->prep_rq_fn(q, rq);
2411 if (ret == BLKPREP_OK) {
2412 break;
2413 } else if (ret == BLKPREP_DEFER) {
2414 /*
2415 * the request may have been (partially) prepped.
2416 * we need to keep this request in the front to
2417 * avoid resource deadlock. REQ_STARTED will
2418 * prevent other fs requests from passing this one.
2419 */
2420 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2421 !(rq->cmd_flags & REQ_DONTPREP)) {
2422 /*
2423 * remove the space for the drain we added
2424 * so that we don't add it again
2425 */
2426 --rq->nr_phys_segments;
2427 }
2428
2429 rq = NULL;
2430 break;
2431 } else if (ret == BLKPREP_KILL) {
2432 rq->cmd_flags |= REQ_QUIET;
2433 /*
2434 * Mark this request as started so we don't trigger
2435 * any debug logic in the end I/O path.
2436 */
2437 blk_start_request(rq);
2438 __blk_end_request_all(rq, -EIO);
2439 } else {
2440 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2441 break;
2442 }
2443 }
2444
2445 return rq;
2446 }
2447 EXPORT_SYMBOL(blk_peek_request);
2448
2449 void blk_dequeue_request(struct request *rq)
2450 {
2451 struct request_queue *q = rq->q;
2452
2453 BUG_ON(list_empty(&rq->queuelist));
2454 BUG_ON(ELV_ON_HASH(rq));
2455
2456 list_del_init(&rq->queuelist);
2457
2458 /*
2459 * the time frame between a request being removed from the lists
2460 * and to it is freed is accounted as io that is in progress at
2461 * the driver side.
2462 */
2463 if (blk_account_rq(rq)) {
2464 q->in_flight[rq_is_sync(rq)]++;
2465 set_io_start_time_ns(rq);
2466 }
2467 }
2468
2469 /**
2470 * blk_start_request - start request processing on the driver
2471 * @req: request to dequeue
2472 *
2473 * Description:
2474 * Dequeue @req and start timeout timer on it. This hands off the
2475 * request to the driver.
2476 *
2477 * Block internal functions which don't want to start timer should
2478 * call blk_dequeue_request().
2479 *
2480 * Context:
2481 * queue_lock must be held.
2482 */
2483 void blk_start_request(struct request *req)
2484 {
2485 blk_dequeue_request(req);
2486
2487 /*
2488 * We are now handing the request to the hardware, initialize
2489 * resid_len to full count and add the timeout handler.
2490 */
2491 req->resid_len = blk_rq_bytes(req);
2492 if (unlikely(blk_bidi_rq(req)))
2493 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2494
2495 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2496 blk_add_timer(req);
2497 }
2498 EXPORT_SYMBOL(blk_start_request);
2499
2500 /**
2501 * blk_fetch_request - fetch a request from a request queue
2502 * @q: request queue to fetch a request from
2503 *
2504 * Description:
2505 * Return the request at the top of @q. The request is started on
2506 * return and LLD can start processing it immediately.
2507 *
2508 * Return:
2509 * Pointer to the request at the top of @q if available. Null
2510 * otherwise.
2511 *
2512 * Context:
2513 * queue_lock must be held.
2514 */
2515 struct request *blk_fetch_request(struct request_queue *q)
2516 {
2517 struct request *rq;
2518
2519 rq = blk_peek_request(q);
2520 if (rq)
2521 blk_start_request(rq);
2522 return rq;
2523 }
2524 EXPORT_SYMBOL(blk_fetch_request);
2525
2526 /**
2527 * blk_update_request - Special helper function for request stacking drivers
2528 * @req: the request being processed
2529 * @error: %0 for success, < %0 for error
2530 * @nr_bytes: number of bytes to complete @req
2531 *
2532 * Description:
2533 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2534 * the request structure even if @req doesn't have leftover.
2535 * If @req has leftover, sets it up for the next range of segments.
2536 *
2537 * This special helper function is only for request stacking drivers
2538 * (e.g. request-based dm) so that they can handle partial completion.
2539 * Actual device drivers should use blk_end_request instead.
2540 *
2541 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2542 * %false return from this function.
2543 *
2544 * Return:
2545 * %false - this request doesn't have any more data
2546 * %true - this request has more data
2547 **/
2548 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2549 {
2550 int total_bytes;
2551
2552 trace_block_rq_complete(req->q, req, nr_bytes);
2553
2554 if (!req->bio)
2555 return false;
2556
2557 /*
2558 * For fs requests, rq is just carrier of independent bio's
2559 * and each partial completion should be handled separately.
2560 * Reset per-request error on each partial completion.
2561 *
2562 * TODO: tj: This is too subtle. It would be better to let
2563 * low level drivers do what they see fit.
2564 */
2565 if (req->cmd_type == REQ_TYPE_FS)
2566 req->errors = 0;
2567
2568 if (error && req->cmd_type == REQ_TYPE_FS &&
2569 !(req->cmd_flags & REQ_QUIET)) {
2570 char *error_type;
2571
2572 switch (error) {
2573 case -ENOLINK:
2574 error_type = "recoverable transport";
2575 break;
2576 case -EREMOTEIO:
2577 error_type = "critical target";
2578 break;
2579 case -EBADE:
2580 error_type = "critical nexus";
2581 break;
2582 case -ETIMEDOUT:
2583 error_type = "timeout";
2584 break;
2585 case -ENOSPC:
2586 error_type = "critical space allocation";
2587 break;
2588 case -ENODATA:
2589 error_type = "critical medium";
2590 break;
2591 case -EIO:
2592 default:
2593 error_type = "I/O";
2594 break;
2595 }
2596 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2597 __func__, error_type, req->rq_disk ?
2598 req->rq_disk->disk_name : "?",
2599 (unsigned long long)blk_rq_pos(req));
2600
2601 }
2602
2603 blk_account_io_completion(req, nr_bytes);
2604
2605 total_bytes = 0;
2606 while (req->bio) {
2607 struct bio *bio = req->bio;
2608 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2609
2610 if (bio_bytes == bio->bi_iter.bi_size)
2611 req->bio = bio->bi_next;
2612
2613 req_bio_endio(req, bio, bio_bytes, error);
2614
2615 total_bytes += bio_bytes;
2616 nr_bytes -= bio_bytes;
2617
2618 if (!nr_bytes)
2619 break;
2620 }
2621
2622 /*
2623 * completely done
2624 */
2625 if (!req->bio) {
2626 /*
2627 * Reset counters so that the request stacking driver
2628 * can find how many bytes remain in the request
2629 * later.
2630 */
2631 req->__data_len = 0;
2632 return false;
2633 }
2634
2635 req->__data_len -= total_bytes;
2636
2637 /* update sector only for requests with clear definition of sector */
2638 if (req->cmd_type == REQ_TYPE_FS)
2639 req->__sector += total_bytes >> 9;
2640
2641 /* mixed attributes always follow the first bio */
2642 if (req->cmd_flags & REQ_MIXED_MERGE) {
2643 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2644 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2645 }
2646
2647 /*
2648 * If total number of sectors is less than the first segment
2649 * size, something has gone terribly wrong.
2650 */
2651 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2652 blk_dump_rq_flags(req, "request botched");
2653 req->__data_len = blk_rq_cur_bytes(req);
2654 }
2655
2656 /* recalculate the number of segments */
2657 blk_recalc_rq_segments(req);
2658
2659 return true;
2660 }
2661 EXPORT_SYMBOL_GPL(blk_update_request);
2662
2663 static bool blk_update_bidi_request(struct request *rq, int error,
2664 unsigned int nr_bytes,
2665 unsigned int bidi_bytes)
2666 {
2667 if (blk_update_request(rq, error, nr_bytes))
2668 return true;
2669
2670 /* Bidi request must be completed as a whole */
2671 if (unlikely(blk_bidi_rq(rq)) &&
2672 blk_update_request(rq->next_rq, error, bidi_bytes))
2673 return true;
2674
2675 if (blk_queue_add_random(rq->q))
2676 add_disk_randomness(rq->rq_disk);
2677
2678 return false;
2679 }
2680
2681 /**
2682 * blk_unprep_request - unprepare a request
2683 * @req: the request
2684 *
2685 * This function makes a request ready for complete resubmission (or
2686 * completion). It happens only after all error handling is complete,
2687 * so represents the appropriate moment to deallocate any resources
2688 * that were allocated to the request in the prep_rq_fn. The queue
2689 * lock is held when calling this.
2690 */
2691 void blk_unprep_request(struct request *req)
2692 {
2693 struct request_queue *q = req->q;
2694
2695 req->cmd_flags &= ~REQ_DONTPREP;
2696 if (q->unprep_rq_fn)
2697 q->unprep_rq_fn(q, req);
2698 }
2699 EXPORT_SYMBOL_GPL(blk_unprep_request);
2700
2701 /*
2702 * queue lock must be held
2703 */
2704 void blk_finish_request(struct request *req, int error)
2705 {
2706 if (req->cmd_flags & REQ_QUEUED)
2707 blk_queue_end_tag(req->q, req);
2708
2709 BUG_ON(blk_queued_rq(req));
2710
2711 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2712 laptop_io_completion(&req->q->backing_dev_info);
2713
2714 blk_delete_timer(req);
2715
2716 if (req->cmd_flags & REQ_DONTPREP)
2717 blk_unprep_request(req);
2718
2719 blk_account_io_done(req);
2720
2721 if (req->end_io)
2722 req->end_io(req, error);
2723 else {
2724 if (blk_bidi_rq(req))
2725 __blk_put_request(req->next_rq->q, req->next_rq);
2726
2727 __blk_put_request(req->q, req);
2728 }
2729 }
2730 EXPORT_SYMBOL(blk_finish_request);
2731
2732 /**
2733 * blk_end_bidi_request - Complete a bidi request
2734 * @rq: the request to complete
2735 * @error: %0 for success, < %0 for error
2736 * @nr_bytes: number of bytes to complete @rq
2737 * @bidi_bytes: number of bytes to complete @rq->next_rq
2738 *
2739 * Description:
2740 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2741 * Drivers that supports bidi can safely call this member for any
2742 * type of request, bidi or uni. In the later case @bidi_bytes is
2743 * just ignored.
2744 *
2745 * Return:
2746 * %false - we are done with this request
2747 * %true - still buffers pending for this request
2748 **/
2749 static bool blk_end_bidi_request(struct request *rq, int error,
2750 unsigned int nr_bytes, unsigned int bidi_bytes)
2751 {
2752 struct request_queue *q = rq->q;
2753 unsigned long flags;
2754
2755 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2756 return true;
2757
2758 spin_lock_irqsave(q->queue_lock, flags);
2759 blk_finish_request(rq, error);
2760 spin_unlock_irqrestore(q->queue_lock, flags);
2761
2762 return false;
2763 }
2764
2765 /**
2766 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2767 * @rq: the request to complete
2768 * @error: %0 for success, < %0 for error
2769 * @nr_bytes: number of bytes to complete @rq
2770 * @bidi_bytes: number of bytes to complete @rq->next_rq
2771 *
2772 * Description:
2773 * Identical to blk_end_bidi_request() except that queue lock is
2774 * assumed to be locked on entry and remains so on return.
2775 *
2776 * Return:
2777 * %false - we are done with this request
2778 * %true - still buffers pending for this request
2779 **/
2780 bool __blk_end_bidi_request(struct request *rq, int error,
2781 unsigned int nr_bytes, unsigned int bidi_bytes)
2782 {
2783 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2784 return true;
2785
2786 blk_finish_request(rq, error);
2787
2788 return false;
2789 }
2790
2791 /**
2792 * blk_end_request - Helper function for drivers to complete the request.
2793 * @rq: the request being processed
2794 * @error: %0 for success, < %0 for error
2795 * @nr_bytes: number of bytes to complete
2796 *
2797 * Description:
2798 * Ends I/O on a number of bytes attached to @rq.
2799 * If @rq has leftover, sets it up for the next range of segments.
2800 *
2801 * Return:
2802 * %false - we are done with this request
2803 * %true - still buffers pending for this request
2804 **/
2805 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2806 {
2807 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2808 }
2809 EXPORT_SYMBOL(blk_end_request);
2810
2811 /**
2812 * blk_end_request_all - Helper function for drives to finish the request.
2813 * @rq: the request to finish
2814 * @error: %0 for success, < %0 for error
2815 *
2816 * Description:
2817 * Completely finish @rq.
2818 */
2819 void blk_end_request_all(struct request *rq, int error)
2820 {
2821 bool pending;
2822 unsigned int bidi_bytes = 0;
2823
2824 if (unlikely(blk_bidi_rq(rq)))
2825 bidi_bytes = blk_rq_bytes(rq->next_rq);
2826
2827 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2828 BUG_ON(pending);
2829 }
2830 EXPORT_SYMBOL(blk_end_request_all);
2831
2832 /**
2833 * blk_end_request_cur - Helper function to finish the current request chunk.
2834 * @rq: the request to finish the current chunk for
2835 * @error: %0 for success, < %0 for error
2836 *
2837 * Description:
2838 * Complete the current consecutively mapped chunk from @rq.
2839 *
2840 * Return:
2841 * %false - we are done with this request
2842 * %true - still buffers pending for this request
2843 */
2844 bool blk_end_request_cur(struct request *rq, int error)
2845 {
2846 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2847 }
2848 EXPORT_SYMBOL(blk_end_request_cur);
2849
2850 /**
2851 * blk_end_request_err - Finish a request till the next failure boundary.
2852 * @rq: the request to finish till the next failure boundary for
2853 * @error: must be negative errno
2854 *
2855 * Description:
2856 * Complete @rq till the next failure boundary.
2857 *
2858 * Return:
2859 * %false - we are done with this request
2860 * %true - still buffers pending for this request
2861 */
2862 bool blk_end_request_err(struct request *rq, int error)
2863 {
2864 WARN_ON(error >= 0);
2865 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2866 }
2867 EXPORT_SYMBOL_GPL(blk_end_request_err);
2868
2869 /**
2870 * __blk_end_request - Helper function for drivers to complete the request.
2871 * @rq: the request being processed
2872 * @error: %0 for success, < %0 for error
2873 * @nr_bytes: number of bytes to complete
2874 *
2875 * Description:
2876 * Must be called with queue lock held unlike blk_end_request().
2877 *
2878 * Return:
2879 * %false - we are done with this request
2880 * %true - still buffers pending for this request
2881 **/
2882 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2883 {
2884 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2885 }
2886 EXPORT_SYMBOL(__blk_end_request);
2887
2888 /**
2889 * __blk_end_request_all - Helper function for drives to finish the request.
2890 * @rq: the request to finish
2891 * @error: %0 for success, < %0 for error
2892 *
2893 * Description:
2894 * Completely finish @rq. Must be called with queue lock held.
2895 */
2896 void __blk_end_request_all(struct request *rq, int error)
2897 {
2898 bool pending;
2899 unsigned int bidi_bytes = 0;
2900
2901 if (unlikely(blk_bidi_rq(rq)))
2902 bidi_bytes = blk_rq_bytes(rq->next_rq);
2903
2904 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2905 BUG_ON(pending);
2906 }
2907 EXPORT_SYMBOL(__blk_end_request_all);
2908
2909 /**
2910 * __blk_end_request_cur - Helper function to finish the current request chunk.
2911 * @rq: the request to finish the current chunk for
2912 * @error: %0 for success, < %0 for error
2913 *
2914 * Description:
2915 * Complete the current consecutively mapped chunk from @rq. Must
2916 * be called with queue lock held.
2917 *
2918 * Return:
2919 * %false - we are done with this request
2920 * %true - still buffers pending for this request
2921 */
2922 bool __blk_end_request_cur(struct request *rq, int error)
2923 {
2924 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2925 }
2926 EXPORT_SYMBOL(__blk_end_request_cur);
2927
2928 /**
2929 * __blk_end_request_err - Finish a request till the next failure boundary.
2930 * @rq: the request to finish till the next failure boundary for
2931 * @error: must be negative errno
2932 *
2933 * Description:
2934 * Complete @rq till the next failure boundary. Must be called
2935 * with queue lock held.
2936 *
2937 * Return:
2938 * %false - we are done with this request
2939 * %true - still buffers pending for this request
2940 */
2941 bool __blk_end_request_err(struct request *rq, int error)
2942 {
2943 WARN_ON(error >= 0);
2944 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2945 }
2946 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2947
2948 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2949 struct bio *bio)
2950 {
2951 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2952 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2953
2954 if (bio_has_data(bio))
2955 rq->nr_phys_segments = bio_phys_segments(q, bio);
2956
2957 rq->__data_len = bio->bi_iter.bi_size;
2958 rq->bio = rq->biotail = bio;
2959
2960 if (bio->bi_bdev)
2961 rq->rq_disk = bio->bi_bdev->bd_disk;
2962 }
2963
2964 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2965 /**
2966 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2967 * @rq: the request to be flushed
2968 *
2969 * Description:
2970 * Flush all pages in @rq.
2971 */
2972 void rq_flush_dcache_pages(struct request *rq)
2973 {
2974 struct req_iterator iter;
2975 struct bio_vec bvec;
2976
2977 rq_for_each_segment(bvec, rq, iter)
2978 flush_dcache_page(bvec.bv_page);
2979 }
2980 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2981 #endif
2982
2983 /**
2984 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2985 * @q : the queue of the device being checked
2986 *
2987 * Description:
2988 * Check if underlying low-level drivers of a device are busy.
2989 * If the drivers want to export their busy state, they must set own
2990 * exporting function using blk_queue_lld_busy() first.
2991 *
2992 * Basically, this function is used only by request stacking drivers
2993 * to stop dispatching requests to underlying devices when underlying
2994 * devices are busy. This behavior helps more I/O merging on the queue
2995 * of the request stacking driver and prevents I/O throughput regression
2996 * on burst I/O load.
2997 *
2998 * Return:
2999 * 0 - Not busy (The request stacking driver should dispatch request)
3000 * 1 - Busy (The request stacking driver should stop dispatching request)
3001 */
3002 int blk_lld_busy(struct request_queue *q)
3003 {
3004 if (q->lld_busy_fn)
3005 return q->lld_busy_fn(q);
3006
3007 return 0;
3008 }
3009 EXPORT_SYMBOL_GPL(blk_lld_busy);
3010
3011 /**
3012 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3013 * @rq: the clone request to be cleaned up
3014 *
3015 * Description:
3016 * Free all bios in @rq for a cloned request.
3017 */
3018 void blk_rq_unprep_clone(struct request *rq)
3019 {
3020 struct bio *bio;
3021
3022 while ((bio = rq->bio) != NULL) {
3023 rq->bio = bio->bi_next;
3024
3025 bio_put(bio);
3026 }
3027 }
3028 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3029
3030 /*
3031 * Copy attributes of the original request to the clone request.
3032 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3033 */
3034 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3035 {
3036 dst->cpu = src->cpu;
3037 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3038 dst->cmd_type = src->cmd_type;
3039 dst->__sector = blk_rq_pos(src);
3040 dst->__data_len = blk_rq_bytes(src);
3041 dst->nr_phys_segments = src->nr_phys_segments;
3042 dst->ioprio = src->ioprio;
3043 dst->extra_len = src->extra_len;
3044 }
3045
3046 /**
3047 * blk_rq_prep_clone - Helper function to setup clone request
3048 * @rq: the request to be setup
3049 * @rq_src: original request to be cloned
3050 * @bs: bio_set that bios for clone are allocated from
3051 * @gfp_mask: memory allocation mask for bio
3052 * @bio_ctr: setup function to be called for each clone bio.
3053 * Returns %0 for success, non %0 for failure.
3054 * @data: private data to be passed to @bio_ctr
3055 *
3056 * Description:
3057 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3058 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3059 * are not copied, and copying such parts is the caller's responsibility.
3060 * Also, pages which the original bios are pointing to are not copied
3061 * and the cloned bios just point same pages.
3062 * So cloned bios must be completed before original bios, which means
3063 * the caller must complete @rq before @rq_src.
3064 */
3065 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3066 struct bio_set *bs, gfp_t gfp_mask,
3067 int (*bio_ctr)(struct bio *, struct bio *, void *),
3068 void *data)
3069 {
3070 struct bio *bio, *bio_src;
3071
3072 if (!bs)
3073 bs = fs_bio_set;
3074
3075 __rq_for_each_bio(bio_src, rq_src) {
3076 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3077 if (!bio)
3078 goto free_and_out;
3079
3080 if (bio_ctr && bio_ctr(bio, bio_src, data))
3081 goto free_and_out;
3082
3083 if (rq->bio) {
3084 rq->biotail->bi_next = bio;
3085 rq->biotail = bio;
3086 } else
3087 rq->bio = rq->biotail = bio;
3088 }
3089
3090 __blk_rq_prep_clone(rq, rq_src);
3091
3092 return 0;
3093
3094 free_and_out:
3095 if (bio)
3096 bio_put(bio);
3097 blk_rq_unprep_clone(rq);
3098
3099 return -ENOMEM;
3100 }
3101 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3102
3103 int kblockd_schedule_work(struct work_struct *work)
3104 {
3105 return queue_work(kblockd_workqueue, work);
3106 }
3107 EXPORT_SYMBOL(kblockd_schedule_work);
3108
3109 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3110 unsigned long delay)
3111 {
3112 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3113 }
3114 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3115
3116 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3117 unsigned long delay)
3118 {
3119 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3120 }
3121 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3122
3123 /**
3124 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3125 * @plug: The &struct blk_plug that needs to be initialized
3126 *
3127 * Description:
3128 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3129 * pending I/O should the task end up blocking between blk_start_plug() and
3130 * blk_finish_plug(). This is important from a performance perspective, but
3131 * also ensures that we don't deadlock. For instance, if the task is blocking
3132 * for a memory allocation, memory reclaim could end up wanting to free a
3133 * page belonging to that request that is currently residing in our private
3134 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3135 * this kind of deadlock.
3136 */
3137 void blk_start_plug(struct blk_plug *plug)
3138 {
3139 struct task_struct *tsk = current;
3140
3141 /*
3142 * If this is a nested plug, don't actually assign it.
3143 */
3144 if (tsk->plug)
3145 return;
3146
3147 INIT_LIST_HEAD(&plug->list);
3148 INIT_LIST_HEAD(&plug->mq_list);
3149 INIT_LIST_HEAD(&plug->cb_list);
3150 /*
3151 * Store ordering should not be needed here, since a potential
3152 * preempt will imply a full memory barrier
3153 */
3154 tsk->plug = plug;
3155 }
3156 EXPORT_SYMBOL(blk_start_plug);
3157
3158 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3159 {
3160 struct request *rqa = container_of(a, struct request, queuelist);
3161 struct request *rqb = container_of(b, struct request, queuelist);
3162
3163 return !(rqa->q < rqb->q ||
3164 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3165 }
3166
3167 /*
3168 * If 'from_schedule' is true, then postpone the dispatch of requests
3169 * until a safe kblockd context. We due this to avoid accidental big
3170 * additional stack usage in driver dispatch, in places where the originally
3171 * plugger did not intend it.
3172 */
3173 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3174 bool from_schedule)
3175 __releases(q->queue_lock)
3176 {
3177 trace_block_unplug(q, depth, !from_schedule);
3178
3179 if (from_schedule)
3180 blk_run_queue_async(q);
3181 else
3182 __blk_run_queue(q);
3183 spin_unlock(q->queue_lock);
3184 }
3185
3186 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3187 {
3188 LIST_HEAD(callbacks);
3189
3190 while (!list_empty(&plug->cb_list)) {
3191 list_splice_init(&plug->cb_list, &callbacks);
3192
3193 while (!list_empty(&callbacks)) {
3194 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3195 struct blk_plug_cb,
3196 list);
3197 list_del(&cb->list);
3198 cb->callback(cb, from_schedule);
3199 }
3200 }
3201 }
3202
3203 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3204 int size)
3205 {
3206 struct blk_plug *plug = current->plug;
3207 struct blk_plug_cb *cb;
3208
3209 if (!plug)
3210 return NULL;
3211
3212 list_for_each_entry(cb, &plug->cb_list, list)
3213 if (cb->callback == unplug && cb->data == data)
3214 return cb;
3215
3216 /* Not currently on the callback list */
3217 BUG_ON(size < sizeof(*cb));
3218 cb = kzalloc(size, GFP_ATOMIC);
3219 if (cb) {
3220 cb->data = data;
3221 cb->callback = unplug;
3222 list_add(&cb->list, &plug->cb_list);
3223 }
3224 return cb;
3225 }
3226 EXPORT_SYMBOL(blk_check_plugged);
3227
3228 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3229 {
3230 struct request_queue *q;
3231 unsigned long flags;
3232 struct request *rq;
3233 LIST_HEAD(list);
3234 unsigned int depth;
3235
3236 flush_plug_callbacks(plug, from_schedule);
3237
3238 if (!list_empty(&plug->mq_list))
3239 blk_mq_flush_plug_list(plug, from_schedule);
3240
3241 if (list_empty(&plug->list))
3242 return;
3243
3244 list_splice_init(&plug->list, &list);
3245
3246 list_sort(NULL, &list, plug_rq_cmp);
3247
3248 q = NULL;
3249 depth = 0;
3250
3251 /*
3252 * Save and disable interrupts here, to avoid doing it for every
3253 * queue lock we have to take.
3254 */
3255 local_irq_save(flags);
3256 while (!list_empty(&list)) {
3257 rq = list_entry_rq(list.next);
3258 list_del_init(&rq->queuelist);
3259 BUG_ON(!rq->q);
3260 if (rq->q != q) {
3261 /*
3262 * This drops the queue lock
3263 */
3264 if (q)
3265 queue_unplugged(q, depth, from_schedule);
3266 q = rq->q;
3267 depth = 0;
3268 spin_lock(q->queue_lock);
3269 }
3270
3271 /*
3272 * Short-circuit if @q is dead
3273 */
3274 if (unlikely(blk_queue_dying(q))) {
3275 __blk_end_request_all(rq, -ENODEV);
3276 continue;
3277 }
3278
3279 /*
3280 * rq is already accounted, so use raw insert
3281 */
3282 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3283 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3284 else
3285 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3286
3287 depth++;
3288 }
3289
3290 /*
3291 * This drops the queue lock
3292 */
3293 if (q)
3294 queue_unplugged(q, depth, from_schedule);
3295
3296 local_irq_restore(flags);
3297 }
3298
3299 void blk_finish_plug(struct blk_plug *plug)
3300 {
3301 if (plug != current->plug)
3302 return;
3303 blk_flush_plug_list(plug, false);
3304
3305 current->plug = NULL;
3306 }
3307 EXPORT_SYMBOL(blk_finish_plug);
3308
3309 #ifdef CONFIG_PM
3310 /**
3311 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3312 * @q: the queue of the device
3313 * @dev: the device the queue belongs to
3314 *
3315 * Description:
3316 * Initialize runtime-PM-related fields for @q and start auto suspend for
3317 * @dev. Drivers that want to take advantage of request-based runtime PM
3318 * should call this function after @dev has been initialized, and its
3319 * request queue @q has been allocated, and runtime PM for it can not happen
3320 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3321 * cases, driver should call this function before any I/O has taken place.
3322 *
3323 * This function takes care of setting up using auto suspend for the device,
3324 * the autosuspend delay is set to -1 to make runtime suspend impossible
3325 * until an updated value is either set by user or by driver. Drivers do
3326 * not need to touch other autosuspend settings.
3327 *
3328 * The block layer runtime PM is request based, so only works for drivers
3329 * that use request as their IO unit instead of those directly use bio's.
3330 */
3331 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3332 {
3333 q->dev = dev;
3334 q->rpm_status = RPM_ACTIVE;
3335 pm_runtime_set_autosuspend_delay(q->dev, -1);
3336 pm_runtime_use_autosuspend(q->dev);
3337 }
3338 EXPORT_SYMBOL(blk_pm_runtime_init);
3339
3340 /**
3341 * blk_pre_runtime_suspend - Pre runtime suspend check
3342 * @q: the queue of the device
3343 *
3344 * Description:
3345 * This function will check if runtime suspend is allowed for the device
3346 * by examining if there are any requests pending in the queue. If there
3347 * are requests pending, the device can not be runtime suspended; otherwise,
3348 * the queue's status will be updated to SUSPENDING and the driver can
3349 * proceed to suspend the device.
3350 *
3351 * For the not allowed case, we mark last busy for the device so that
3352 * runtime PM core will try to autosuspend it some time later.
3353 *
3354 * This function should be called near the start of the device's
3355 * runtime_suspend callback.
3356 *
3357 * Return:
3358 * 0 - OK to runtime suspend the device
3359 * -EBUSY - Device should not be runtime suspended
3360 */
3361 int blk_pre_runtime_suspend(struct request_queue *q)
3362 {
3363 int ret = 0;
3364
3365 spin_lock_irq(q->queue_lock);
3366 if (q->nr_pending) {
3367 ret = -EBUSY;
3368 pm_runtime_mark_last_busy(q->dev);
3369 } else {
3370 q->rpm_status = RPM_SUSPENDING;
3371 }
3372 spin_unlock_irq(q->queue_lock);
3373 return ret;
3374 }
3375 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3376
3377 /**
3378 * blk_post_runtime_suspend - Post runtime suspend processing
3379 * @q: the queue of the device
3380 * @err: return value of the device's runtime_suspend function
3381 *
3382 * Description:
3383 * Update the queue's runtime status according to the return value of the
3384 * device's runtime suspend function and mark last busy for the device so
3385 * that PM core will try to auto suspend the device at a later time.
3386 *
3387 * This function should be called near the end of the device's
3388 * runtime_suspend callback.
3389 */
3390 void blk_post_runtime_suspend(struct request_queue *q, int err)
3391 {
3392 spin_lock_irq(q->queue_lock);
3393 if (!err) {
3394 q->rpm_status = RPM_SUSPENDED;
3395 } else {
3396 q->rpm_status = RPM_ACTIVE;
3397 pm_runtime_mark_last_busy(q->dev);
3398 }
3399 spin_unlock_irq(q->queue_lock);
3400 }
3401 EXPORT_SYMBOL(blk_post_runtime_suspend);
3402
3403 /**
3404 * blk_pre_runtime_resume - Pre runtime resume processing
3405 * @q: the queue of the device
3406 *
3407 * Description:
3408 * Update the queue's runtime status to RESUMING in preparation for the
3409 * runtime resume of the device.
3410 *
3411 * This function should be called near the start of the device's
3412 * runtime_resume callback.
3413 */
3414 void blk_pre_runtime_resume(struct request_queue *q)
3415 {
3416 spin_lock_irq(q->queue_lock);
3417 q->rpm_status = RPM_RESUMING;
3418 spin_unlock_irq(q->queue_lock);
3419 }
3420 EXPORT_SYMBOL(blk_pre_runtime_resume);
3421
3422 /**
3423 * blk_post_runtime_resume - Post runtime resume processing
3424 * @q: the queue of the device
3425 * @err: return value of the device's runtime_resume function
3426 *
3427 * Description:
3428 * Update the queue's runtime status according to the return value of the
3429 * device's runtime_resume function. If it is successfully resumed, process
3430 * the requests that are queued into the device's queue when it is resuming
3431 * and then mark last busy and initiate autosuspend for it.
3432 *
3433 * This function should be called near the end of the device's
3434 * runtime_resume callback.
3435 */
3436 void blk_post_runtime_resume(struct request_queue *q, int err)
3437 {
3438 spin_lock_irq(q->queue_lock);
3439 if (!err) {
3440 q->rpm_status = RPM_ACTIVE;
3441 __blk_run_queue(q);
3442 pm_runtime_mark_last_busy(q->dev);
3443 pm_request_autosuspend(q->dev);
3444 } else {
3445 q->rpm_status = RPM_SUSPENDED;
3446 }
3447 spin_unlock_irq(q->queue_lock);
3448 }
3449 EXPORT_SYMBOL(blk_post_runtime_resume);
3450 #endif
3451
3452 int __init blk_dev_init(void)
3453 {
3454 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3455 FIELD_SIZEOF(struct request, cmd_flags));
3456
3457 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3458 kblockd_workqueue = alloc_workqueue("kblockd",
3459 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3460 if (!kblockd_workqueue)
3461 panic("Failed to create kblockd\n");
3462
3463 request_cachep = kmem_cache_create("blkdev_requests",
3464 sizeof(struct request), 0, SLAB_PANIC, NULL);
3465
3466 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3467 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3468
3469 return 0;
3470 }
This page took 0.160878 seconds and 5 git commands to generate.