Merge branch 'for-4.5/nvme' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224
225 /**
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242
243 /**
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263
264 /**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
280 *
281 */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 del_timer_sync(&q->timeout);
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299
300 /**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
324 q->request_fn(q);
325 q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328
329 /**
330 * __blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
335 * held and interrupts disabled.
336 */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
342 __blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345
346 /**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352 * of us. The caller must hold the queue lock.
353 */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360
361 /**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
367 * May be used to restart queueing when a request has completed.
368 */
369 void blk_run_queue(struct request_queue *q)
370 {
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
374 __blk_run_queue(q);
375 spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378
379 void blk_put_queue(struct request_queue *q)
380 {
381 kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384
385 /**
386 * __blk_drain_queue - drain requests from request_queue
387 * @q: queue to drain
388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389 *
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
393 */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
397 {
398 int i;
399
400 lockdep_assert_held(q->queue_lock);
401
402 while (true) {
403 bool drain = false;
404
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
412 blkcg_drain_queue(q);
413
414 /*
415 * This function might be called on a queue which failed
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
420 */
421 if (!list_empty(&q->queue_head) && q->request_fn)
422 __blk_run_queue(q);
423
424 drain |= q->nr_rqs_elvpriv;
425 drain |= q->request_fn_active;
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
436 drain |= q->nr_rqs[i];
437 drain |= q->in_flight[i];
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
440 }
441 }
442
443 if (!drain)
444 break;
445
446 spin_unlock_irq(q->queue_lock);
447
448 msleep(10);
449
450 spin_lock_irq(q->queue_lock);
451 }
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
459 struct request_list *rl;
460
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
464 }
465 }
466
467 /**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
473 * throttled or issued before. On return, it's guaranteed that no request
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
476 */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 spin_lock_irq(q->queue_lock);
480 q->bypass_depth++;
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500 /**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
535 /**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
541 */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 spinlock_t *lock = q->queue_lock;
545
546 /* mark @q DYING, no new request or merges will be allowed afterwards */
547 mutex_lock(&q->sysfs_lock);
548 blk_set_queue_dying(q);
549 spin_lock_irq(lock);
550
551 /*
552 * A dying queue is permanently in bypass mode till released. Note
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 queue_flag_set(QUEUE_FLAG_DYING, q);
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
576 __blk_drain_queue(q, true);
577 queue_flag_set(QUEUE_FLAG_DEAD, q);
578 spin_unlock_irq(lock);
579
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
589 percpu_ref_exit(&q->q_usage_counter);
590
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
596 bdi_unregister(&q->backing_dev_info);
597
598 /* @q is and will stay empty, shutdown and put */
599 blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609
610 static void free_request_struct(void *element, void *unused)
611 {
612 kmem_cache_free(request_cachep, element);
613 }
614
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
617 {
618 if (unlikely(rl->rq_pool))
619 return 0;
620
621 rl->q = q;
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635 }
636
637 void blk_exit_rl(struct request_list *rl)
638 {
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641 }
642
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648
649 int blk_queue_enter(struct request_queue *q, bool nowait)
650 {
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
657 if (nowait)
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668 }
669
670 void blk_queue_exit(struct request_queue *q)
671 {
672 percpu_ref_put(&q->q_usage_counter);
673 }
674
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681 }
682
683 static void blk_rq_timed_out_timer(unsigned long data)
684 {
685 struct request_queue *q = (struct request_queue *)data;
686
687 kblockd_schedule_work(&q->timeout_work);
688 }
689
690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
691 {
692 struct request_queue *q;
693 int err;
694
695 q = kmem_cache_alloc_node(blk_requestq_cachep,
696 gfp_mask | __GFP_ZERO, node_id);
697 if (!q)
698 return NULL;
699
700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
701 if (q->id < 0)
702 goto fail_q;
703
704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 if (!q->bio_split)
706 goto fail_id;
707
708 q->backing_dev_info.ra_pages =
709 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
711 q->backing_dev_info.name = "block";
712 q->node = node_id;
713
714 err = bdi_init(&q->backing_dev_info);
715 if (err)
716 goto fail_split;
717
718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 laptop_mode_timer_fn, (unsigned long) q);
720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
721 INIT_LIST_HEAD(&q->queue_head);
722 INIT_LIST_HEAD(&q->timeout_list);
723 INIT_LIST_HEAD(&q->icq_list);
724 #ifdef CONFIG_BLK_CGROUP
725 INIT_LIST_HEAD(&q->blkg_list);
726 #endif
727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
728
729 kobject_init(&q->kobj, &blk_queue_ktype);
730
731 mutex_init(&q->sysfs_lock);
732 spin_lock_init(&q->__queue_lock);
733
734 /*
735 * By default initialize queue_lock to internal lock and driver can
736 * override it later if need be.
737 */
738 q->queue_lock = &q->__queue_lock;
739
740 /*
741 * A queue starts its life with bypass turned on to avoid
742 * unnecessary bypass on/off overhead and nasty surprises during
743 * init. The initial bypass will be finished when the queue is
744 * registered by blk_register_queue().
745 */
746 q->bypass_depth = 1;
747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748
749 init_waitqueue_head(&q->mq_freeze_wq);
750
751 /*
752 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 * See blk_register_queue() for details.
754 */
755 if (percpu_ref_init(&q->q_usage_counter,
756 blk_queue_usage_counter_release,
757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
758 goto fail_bdi;
759
760 if (blkcg_init_queue(q))
761 goto fail_ref;
762
763 return q;
764
765 fail_ref:
766 percpu_ref_exit(&q->q_usage_counter);
767 fail_bdi:
768 bdi_destroy(&q->backing_dev_info);
769 fail_split:
770 bioset_free(q->bio_split);
771 fail_id:
772 ida_simple_remove(&blk_queue_ida, q->id);
773 fail_q:
774 kmem_cache_free(blk_requestq_cachep, q);
775 return NULL;
776 }
777 EXPORT_SYMBOL(blk_alloc_queue_node);
778
779 /**
780 * blk_init_queue - prepare a request queue for use with a block device
781 * @rfn: The function to be called to process requests that have been
782 * placed on the queue.
783 * @lock: Request queue spin lock
784 *
785 * Description:
786 * If a block device wishes to use the standard request handling procedures,
787 * which sorts requests and coalesces adjacent requests, then it must
788 * call blk_init_queue(). The function @rfn will be called when there
789 * are requests on the queue that need to be processed. If the device
790 * supports plugging, then @rfn may not be called immediately when requests
791 * are available on the queue, but may be called at some time later instead.
792 * Plugged queues are generally unplugged when a buffer belonging to one
793 * of the requests on the queue is needed, or due to memory pressure.
794 *
795 * @rfn is not required, or even expected, to remove all requests off the
796 * queue, but only as many as it can handle at a time. If it does leave
797 * requests on the queue, it is responsible for arranging that the requests
798 * get dealt with eventually.
799 *
800 * The queue spin lock must be held while manipulating the requests on the
801 * request queue; this lock will be taken also from interrupt context, so irq
802 * disabling is needed for it.
803 *
804 * Function returns a pointer to the initialized request queue, or %NULL if
805 * it didn't succeed.
806 *
807 * Note:
808 * blk_init_queue() must be paired with a blk_cleanup_queue() call
809 * when the block device is deactivated (such as at module unload).
810 **/
811
812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
813 {
814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
815 }
816 EXPORT_SYMBOL(blk_init_queue);
817
818 struct request_queue *
819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820 {
821 struct request_queue *uninit_q, *q;
822
823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 if (!uninit_q)
825 return NULL;
826
827 q = blk_init_allocated_queue(uninit_q, rfn, lock);
828 if (!q)
829 blk_cleanup_queue(uninit_q);
830
831 return q;
832 }
833 EXPORT_SYMBOL(blk_init_queue_node);
834
835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
836
837 struct request_queue *
838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 spinlock_t *lock)
840 {
841 if (!q)
842 return NULL;
843
844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
845 if (!q->fq)
846 return NULL;
847
848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
849 goto fail;
850
851 INIT_WORK(&q->timeout_work, blk_timeout_work);
852 q->request_fn = rfn;
853 q->prep_rq_fn = NULL;
854 q->unprep_rq_fn = NULL;
855 q->queue_flags |= QUEUE_FLAG_DEFAULT;
856
857 /* Override internal queue lock with supplied lock pointer */
858 if (lock)
859 q->queue_lock = lock;
860
861 /*
862 * This also sets hw/phys segments, boundary and size
863 */
864 blk_queue_make_request(q, blk_queue_bio);
865
866 q->sg_reserved_size = INT_MAX;
867
868 /* Protect q->elevator from elevator_change */
869 mutex_lock(&q->sysfs_lock);
870
871 /* init elevator */
872 if (elevator_init(q, NULL)) {
873 mutex_unlock(&q->sysfs_lock);
874 goto fail;
875 }
876
877 mutex_unlock(&q->sysfs_lock);
878
879 return q;
880
881 fail:
882 blk_free_flush_queue(q->fq);
883 return NULL;
884 }
885 EXPORT_SYMBOL(blk_init_allocated_queue);
886
887 bool blk_get_queue(struct request_queue *q)
888 {
889 if (likely(!blk_queue_dying(q))) {
890 __blk_get_queue(q);
891 return true;
892 }
893
894 return false;
895 }
896 EXPORT_SYMBOL(blk_get_queue);
897
898 static inline void blk_free_request(struct request_list *rl, struct request *rq)
899 {
900 if (rq->cmd_flags & REQ_ELVPRIV) {
901 elv_put_request(rl->q, rq);
902 if (rq->elv.icq)
903 put_io_context(rq->elv.icq->ioc);
904 }
905
906 mempool_free(rq, rl->rq_pool);
907 }
908
909 /*
910 * ioc_batching returns true if the ioc is a valid batching request and
911 * should be given priority access to a request.
912 */
913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
914 {
915 if (!ioc)
916 return 0;
917
918 /*
919 * Make sure the process is able to allocate at least 1 request
920 * even if the batch times out, otherwise we could theoretically
921 * lose wakeups.
922 */
923 return ioc->nr_batch_requests == q->nr_batching ||
924 (ioc->nr_batch_requests > 0
925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926 }
927
928 /*
929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930 * will cause the process to be a "batcher" on all queues in the system. This
931 * is the behaviour we want though - once it gets a wakeup it should be given
932 * a nice run.
933 */
934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
935 {
936 if (!ioc || ioc_batching(q, ioc))
937 return;
938
939 ioc->nr_batch_requests = q->nr_batching;
940 ioc->last_waited = jiffies;
941 }
942
943 static void __freed_request(struct request_list *rl, int sync)
944 {
945 struct request_queue *q = rl->q;
946
947 if (rl->count[sync] < queue_congestion_off_threshold(q))
948 blk_clear_congested(rl, sync);
949
950 if (rl->count[sync] + 1 <= q->nr_requests) {
951 if (waitqueue_active(&rl->wait[sync]))
952 wake_up(&rl->wait[sync]);
953
954 blk_clear_rl_full(rl, sync);
955 }
956 }
957
958 /*
959 * A request has just been released. Account for it, update the full and
960 * congestion status, wake up any waiters. Called under q->queue_lock.
961 */
962 static void freed_request(struct request_list *rl, unsigned int flags)
963 {
964 struct request_queue *q = rl->q;
965 int sync = rw_is_sync(flags);
966
967 q->nr_rqs[sync]--;
968 rl->count[sync]--;
969 if (flags & REQ_ELVPRIV)
970 q->nr_rqs_elvpriv--;
971
972 __freed_request(rl, sync);
973
974 if (unlikely(rl->starved[sync ^ 1]))
975 __freed_request(rl, sync ^ 1);
976 }
977
978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979 {
980 struct request_list *rl;
981 int on_thresh, off_thresh;
982
983 spin_lock_irq(q->queue_lock);
984 q->nr_requests = nr;
985 blk_queue_congestion_threshold(q);
986 on_thresh = queue_congestion_on_threshold(q);
987 off_thresh = queue_congestion_off_threshold(q);
988
989 blk_queue_for_each_rl(rl, q) {
990 if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 blk_set_congested(rl, BLK_RW_SYNC);
992 else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 blk_clear_congested(rl, BLK_RW_SYNC);
994
995 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 blk_set_congested(rl, BLK_RW_ASYNC);
997 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 blk_clear_congested(rl, BLK_RW_ASYNC);
999
1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 blk_set_rl_full(rl, BLK_RW_SYNC);
1002 } else {
1003 blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 wake_up(&rl->wait[BLK_RW_SYNC]);
1005 }
1006
1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 } else {
1010 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 }
1013 }
1014
1015 spin_unlock_irq(q->queue_lock);
1016 return 0;
1017 }
1018
1019 /*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023 static bool blk_rq_should_init_elevator(struct bio *bio)
1024 {
1025 if (!bio)
1026 return true;
1027
1028 /*
1029 * Flush requests do not use the elevator so skip initialization.
1030 * This allows a request to share the flush and elevator data.
1031 */
1032 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033 return false;
1034
1035 return true;
1036 }
1037
1038 /**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio. May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045 static struct io_context *rq_ioc(struct bio *bio)
1046 {
1047 #ifdef CONFIG_BLK_CGROUP
1048 if (bio && bio->bi_ioc)
1049 return bio->bi_ioc;
1050 #endif
1051 return current->io_context;
1052 }
1053
1054 /**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @rw_flags: RW and SYNC flags
1058 * @bio: bio to allocate request for (can be %NULL)
1059 * @gfp_mask: allocation mask
1060 *
1061 * Get a free request from @q. This function may fail under memory
1062 * pressure or if @q is dead.
1063 *
1064 * Must be called with @q->queue_lock held and,
1065 * Returns ERR_PTR on failure, with @q->queue_lock held.
1066 * Returns request pointer on success, with @q->queue_lock *not held*.
1067 */
1068 static struct request *__get_request(struct request_list *rl, int rw_flags,
1069 struct bio *bio, gfp_t gfp_mask)
1070 {
1071 struct request_queue *q = rl->q;
1072 struct request *rq;
1073 struct elevator_type *et = q->elevator->type;
1074 struct io_context *ioc = rq_ioc(bio);
1075 struct io_cq *icq = NULL;
1076 const bool is_sync = rw_is_sync(rw_flags) != 0;
1077 int may_queue;
1078
1079 if (unlikely(blk_queue_dying(q)))
1080 return ERR_PTR(-ENODEV);
1081
1082 may_queue = elv_may_queue(q, rw_flags);
1083 if (may_queue == ELV_MQUEUE_NO)
1084 goto rq_starved;
1085
1086 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087 if (rl->count[is_sync]+1 >= q->nr_requests) {
1088 /*
1089 * The queue will fill after this allocation, so set
1090 * it as full, and mark this process as "batching".
1091 * This process will be allowed to complete a batch of
1092 * requests, others will be blocked.
1093 */
1094 if (!blk_rl_full(rl, is_sync)) {
1095 ioc_set_batching(q, ioc);
1096 blk_set_rl_full(rl, is_sync);
1097 } else {
1098 if (may_queue != ELV_MQUEUE_MUST
1099 && !ioc_batching(q, ioc)) {
1100 /*
1101 * The queue is full and the allocating
1102 * process is not a "batcher", and not
1103 * exempted by the IO scheduler
1104 */
1105 return ERR_PTR(-ENOMEM);
1106 }
1107 }
1108 }
1109 blk_set_congested(rl, is_sync);
1110 }
1111
1112 /*
1113 * Only allow batching queuers to allocate up to 50% over the defined
1114 * limit of requests, otherwise we could have thousands of requests
1115 * allocated with any setting of ->nr_requests
1116 */
1117 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1118 return ERR_PTR(-ENOMEM);
1119
1120 q->nr_rqs[is_sync]++;
1121 rl->count[is_sync]++;
1122 rl->starved[is_sync] = 0;
1123
1124 /*
1125 * Decide whether the new request will be managed by elevator. If
1126 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1127 * prevent the current elevator from being destroyed until the new
1128 * request is freed. This guarantees icq's won't be destroyed and
1129 * makes creating new ones safe.
1130 *
1131 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1132 * it will be created after releasing queue_lock.
1133 */
1134 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1135 rw_flags |= REQ_ELVPRIV;
1136 q->nr_rqs_elvpriv++;
1137 if (et->icq_cache && ioc)
1138 icq = ioc_lookup_icq(ioc, q);
1139 }
1140
1141 if (blk_queue_io_stat(q))
1142 rw_flags |= REQ_IO_STAT;
1143 spin_unlock_irq(q->queue_lock);
1144
1145 /* allocate and init request */
1146 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1147 if (!rq)
1148 goto fail_alloc;
1149
1150 blk_rq_init(q, rq);
1151 blk_rq_set_rl(rq, rl);
1152 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1153
1154 /* init elvpriv */
1155 if (rw_flags & REQ_ELVPRIV) {
1156 if (unlikely(et->icq_cache && !icq)) {
1157 if (ioc)
1158 icq = ioc_create_icq(ioc, q, gfp_mask);
1159 if (!icq)
1160 goto fail_elvpriv;
1161 }
1162
1163 rq->elv.icq = icq;
1164 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165 goto fail_elvpriv;
1166
1167 /* @rq->elv.icq holds io_context until @rq is freed */
1168 if (icq)
1169 get_io_context(icq->ioc);
1170 }
1171 out:
1172 /*
1173 * ioc may be NULL here, and ioc_batching will be false. That's
1174 * OK, if the queue is under the request limit then requests need
1175 * not count toward the nr_batch_requests limit. There will always
1176 * be some limit enforced by BLK_BATCH_TIME.
1177 */
1178 if (ioc_batching(q, ioc))
1179 ioc->nr_batch_requests--;
1180
1181 trace_block_getrq(q, bio, rw_flags & 1);
1182 return rq;
1183
1184 fail_elvpriv:
1185 /*
1186 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1187 * and may fail indefinitely under memory pressure and thus
1188 * shouldn't stall IO. Treat this request as !elvpriv. This will
1189 * disturb iosched and blkcg but weird is bettern than dead.
1190 */
1191 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192 __func__, dev_name(q->backing_dev_info.dev));
1193
1194 rq->cmd_flags &= ~REQ_ELVPRIV;
1195 rq->elv.icq = NULL;
1196
1197 spin_lock_irq(q->queue_lock);
1198 q->nr_rqs_elvpriv--;
1199 spin_unlock_irq(q->queue_lock);
1200 goto out;
1201
1202 fail_alloc:
1203 /*
1204 * Allocation failed presumably due to memory. Undo anything we
1205 * might have messed up.
1206 *
1207 * Allocating task should really be put onto the front of the wait
1208 * queue, but this is pretty rare.
1209 */
1210 spin_lock_irq(q->queue_lock);
1211 freed_request(rl, rw_flags);
1212
1213 /*
1214 * in the very unlikely event that allocation failed and no
1215 * requests for this direction was pending, mark us starved so that
1216 * freeing of a request in the other direction will notice
1217 * us. another possible fix would be to split the rq mempool into
1218 * READ and WRITE
1219 */
1220 rq_starved:
1221 if (unlikely(rl->count[is_sync] == 0))
1222 rl->starved[is_sync] = 1;
1223 return ERR_PTR(-ENOMEM);
1224 }
1225
1226 /**
1227 * get_request - get a free request
1228 * @q: request_queue to allocate request from
1229 * @rw_flags: RW and SYNC flags
1230 * @bio: bio to allocate request for (can be %NULL)
1231 * @gfp_mask: allocation mask
1232 *
1233 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234 * this function keeps retrying under memory pressure and fails iff @q is dead.
1235 *
1236 * Must be called with @q->queue_lock held and,
1237 * Returns ERR_PTR on failure, with @q->queue_lock held.
1238 * Returns request pointer on success, with @q->queue_lock *not held*.
1239 */
1240 static struct request *get_request(struct request_queue *q, int rw_flags,
1241 struct bio *bio, gfp_t gfp_mask)
1242 {
1243 const bool is_sync = rw_is_sync(rw_flags) != 0;
1244 DEFINE_WAIT(wait);
1245 struct request_list *rl;
1246 struct request *rq;
1247
1248 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1249 retry:
1250 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1251 if (!IS_ERR(rq))
1252 return rq;
1253
1254 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1255 blk_put_rl(rl);
1256 return rq;
1257 }
1258
1259 /* wait on @rl and retry */
1260 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261 TASK_UNINTERRUPTIBLE);
1262
1263 trace_block_sleeprq(q, bio, rw_flags & 1);
1264
1265 spin_unlock_irq(q->queue_lock);
1266 io_schedule();
1267
1268 /*
1269 * After sleeping, we become a "batching" process and will be able
1270 * to allocate at least one request, and up to a big batch of them
1271 * for a small period time. See ioc_batching, ioc_set_batching
1272 */
1273 ioc_set_batching(q, current->io_context);
1274
1275 spin_lock_irq(q->queue_lock);
1276 finish_wait(&rl->wait[is_sync], &wait);
1277
1278 goto retry;
1279 }
1280
1281 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282 gfp_t gfp_mask)
1283 {
1284 struct request *rq;
1285
1286 BUG_ON(rw != READ && rw != WRITE);
1287
1288 /* create ioc upfront */
1289 create_io_context(gfp_mask, q->node);
1290
1291 spin_lock_irq(q->queue_lock);
1292 rq = get_request(q, rw, NULL, gfp_mask);
1293 if (IS_ERR(rq))
1294 spin_unlock_irq(q->queue_lock);
1295 /* q->queue_lock is unlocked at this point */
1296
1297 return rq;
1298 }
1299
1300 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301 {
1302 if (q->mq_ops)
1303 return blk_mq_alloc_request(q, rw,
1304 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305 0 : BLK_MQ_REQ_NOWAIT);
1306 else
1307 return blk_old_get_request(q, rw, gfp_mask);
1308 }
1309 EXPORT_SYMBOL(blk_get_request);
1310
1311 /**
1312 * blk_make_request - given a bio, allocate a corresponding struct request.
1313 * @q: target request queue
1314 * @bio: The bio describing the memory mappings that will be submitted for IO.
1315 * It may be a chained-bio properly constructed by block/bio layer.
1316 * @gfp_mask: gfp flags to be used for memory allocation
1317 *
1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319 * type commands. Where the struct request needs to be farther initialized by
1320 * the caller. It is passed a &struct bio, which describes the memory info of
1321 * the I/O transfer.
1322 *
1323 * The caller of blk_make_request must make sure that bi_io_vec
1324 * are set to describe the memory buffers. That bio_data_dir() will return
1325 * the needed direction of the request. (And all bio's in the passed bio-chain
1326 * are properly set accordingly)
1327 *
1328 * If called under none-sleepable conditions, mapped bio buffers must not
1329 * need bouncing, by calling the appropriate masked or flagged allocator,
1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331 * BUG.
1332 *
1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1334 * given to how you allocate bios. In particular, you cannot use
1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337 * thus resulting in a deadlock. Alternatively bios should be allocated using
1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1339 * If possible a big IO should be split into smaller parts when allocation
1340 * fails. Partial allocation should not be an error, or you risk a live-lock.
1341 */
1342 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343 gfp_t gfp_mask)
1344 {
1345 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346
1347 if (IS_ERR(rq))
1348 return rq;
1349
1350 blk_rq_set_block_pc(rq);
1351
1352 for_each_bio(bio) {
1353 struct bio *bounce_bio = bio;
1354 int ret;
1355
1356 blk_queue_bounce(q, &bounce_bio);
1357 ret = blk_rq_append_bio(q, rq, bounce_bio);
1358 if (unlikely(ret)) {
1359 blk_put_request(rq);
1360 return ERR_PTR(ret);
1361 }
1362 }
1363
1364 return rq;
1365 }
1366 EXPORT_SYMBOL(blk_make_request);
1367
1368 /**
1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1370 * @rq: request to be initialized
1371 *
1372 */
1373 void blk_rq_set_block_pc(struct request *rq)
1374 {
1375 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376 rq->__data_len = 0;
1377 rq->__sector = (sector_t) -1;
1378 rq->bio = rq->biotail = NULL;
1379 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1380 }
1381 EXPORT_SYMBOL(blk_rq_set_block_pc);
1382
1383 /**
1384 * blk_requeue_request - put a request back on queue
1385 * @q: request queue where request should be inserted
1386 * @rq: request to be inserted
1387 *
1388 * Description:
1389 * Drivers often keep queueing requests until the hardware cannot accept
1390 * more, when that condition happens we need to put the request back
1391 * on the queue. Must be called with queue lock held.
1392 */
1393 void blk_requeue_request(struct request_queue *q, struct request *rq)
1394 {
1395 blk_delete_timer(rq);
1396 blk_clear_rq_complete(rq);
1397 trace_block_rq_requeue(q, rq);
1398
1399 if (rq->cmd_flags & REQ_QUEUED)
1400 blk_queue_end_tag(q, rq);
1401
1402 BUG_ON(blk_queued_rq(rq));
1403
1404 elv_requeue_request(q, rq);
1405 }
1406 EXPORT_SYMBOL(blk_requeue_request);
1407
1408 static void add_acct_request(struct request_queue *q, struct request *rq,
1409 int where)
1410 {
1411 blk_account_io_start(rq, true);
1412 __elv_add_request(q, rq, where);
1413 }
1414
1415 static void part_round_stats_single(int cpu, struct hd_struct *part,
1416 unsigned long now)
1417 {
1418 int inflight;
1419
1420 if (now == part->stamp)
1421 return;
1422
1423 inflight = part_in_flight(part);
1424 if (inflight) {
1425 __part_stat_add(cpu, part, time_in_queue,
1426 inflight * (now - part->stamp));
1427 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428 }
1429 part->stamp = now;
1430 }
1431
1432 /**
1433 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434 * @cpu: cpu number for stats access
1435 * @part: target partition
1436 *
1437 * The average IO queue length and utilisation statistics are maintained
1438 * by observing the current state of the queue length and the amount of
1439 * time it has been in this state for.
1440 *
1441 * Normally, that accounting is done on IO completion, but that can result
1442 * in more than a second's worth of IO being accounted for within any one
1443 * second, leading to >100% utilisation. To deal with that, we call this
1444 * function to do a round-off before returning the results when reading
1445 * /proc/diskstats. This accounts immediately for all queue usage up to
1446 * the current jiffies and restarts the counters again.
1447 */
1448 void part_round_stats(int cpu, struct hd_struct *part)
1449 {
1450 unsigned long now = jiffies;
1451
1452 if (part->partno)
1453 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454 part_round_stats_single(cpu, part, now);
1455 }
1456 EXPORT_SYMBOL_GPL(part_round_stats);
1457
1458 #ifdef CONFIG_PM
1459 static void blk_pm_put_request(struct request *rq)
1460 {
1461 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462 pm_runtime_mark_last_busy(rq->q->dev);
1463 }
1464 #else
1465 static inline void blk_pm_put_request(struct request *rq) {}
1466 #endif
1467
1468 /*
1469 * queue lock must be held
1470 */
1471 void __blk_put_request(struct request_queue *q, struct request *req)
1472 {
1473 if (unlikely(!q))
1474 return;
1475
1476 if (q->mq_ops) {
1477 blk_mq_free_request(req);
1478 return;
1479 }
1480
1481 blk_pm_put_request(req);
1482
1483 elv_completed_request(q, req);
1484
1485 /* this is a bio leak */
1486 WARN_ON(req->bio != NULL);
1487
1488 /*
1489 * Request may not have originated from ll_rw_blk. if not,
1490 * it didn't come out of our reserved rq pools
1491 */
1492 if (req->cmd_flags & REQ_ALLOCED) {
1493 unsigned int flags = req->cmd_flags;
1494 struct request_list *rl = blk_rq_rl(req);
1495
1496 BUG_ON(!list_empty(&req->queuelist));
1497 BUG_ON(ELV_ON_HASH(req));
1498
1499 blk_free_request(rl, req);
1500 freed_request(rl, flags);
1501 blk_put_rl(rl);
1502 }
1503 }
1504 EXPORT_SYMBOL_GPL(__blk_put_request);
1505
1506 void blk_put_request(struct request *req)
1507 {
1508 struct request_queue *q = req->q;
1509
1510 if (q->mq_ops)
1511 blk_mq_free_request(req);
1512 else {
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(q->queue_lock, flags);
1516 __blk_put_request(q, req);
1517 spin_unlock_irqrestore(q->queue_lock, flags);
1518 }
1519 }
1520 EXPORT_SYMBOL(blk_put_request);
1521
1522 /**
1523 * blk_add_request_payload - add a payload to a request
1524 * @rq: request to update
1525 * @page: page backing the payload
1526 * @len: length of the payload.
1527 *
1528 * This allows to later add a payload to an already submitted request by
1529 * a block driver. The driver needs to take care of freeing the payload
1530 * itself.
1531 *
1532 * Note that this is a quite horrible hack and nothing but handling of
1533 * discard requests should ever use it.
1534 */
1535 void blk_add_request_payload(struct request *rq, struct page *page,
1536 unsigned int len)
1537 {
1538 struct bio *bio = rq->bio;
1539
1540 bio->bi_io_vec->bv_page = page;
1541 bio->bi_io_vec->bv_offset = 0;
1542 bio->bi_io_vec->bv_len = len;
1543
1544 bio->bi_iter.bi_size = len;
1545 bio->bi_vcnt = 1;
1546 bio->bi_phys_segments = 1;
1547
1548 rq->__data_len = rq->resid_len = len;
1549 rq->nr_phys_segments = 1;
1550 }
1551 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1552
1553 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1554 struct bio *bio)
1555 {
1556 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1557
1558 if (!ll_back_merge_fn(q, req, bio))
1559 return false;
1560
1561 trace_block_bio_backmerge(q, req, bio);
1562
1563 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1564 blk_rq_set_mixed_merge(req);
1565
1566 req->biotail->bi_next = bio;
1567 req->biotail = bio;
1568 req->__data_len += bio->bi_iter.bi_size;
1569 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1570
1571 blk_account_io_start(req, false);
1572 return true;
1573 }
1574
1575 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1576 struct bio *bio)
1577 {
1578 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1579
1580 if (!ll_front_merge_fn(q, req, bio))
1581 return false;
1582
1583 trace_block_bio_frontmerge(q, req, bio);
1584
1585 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1586 blk_rq_set_mixed_merge(req);
1587
1588 bio->bi_next = req->bio;
1589 req->bio = bio;
1590
1591 req->__sector = bio->bi_iter.bi_sector;
1592 req->__data_len += bio->bi_iter.bi_size;
1593 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1594
1595 blk_account_io_start(req, false);
1596 return true;
1597 }
1598
1599 /**
1600 * blk_attempt_plug_merge - try to merge with %current's plugged list
1601 * @q: request_queue new bio is being queued at
1602 * @bio: new bio being queued
1603 * @request_count: out parameter for number of traversed plugged requests
1604 * @same_queue_rq: pointer to &struct request that gets filled in when
1605 * another request associated with @q is found on the plug list
1606 * (optional, may be %NULL)
1607 *
1608 * Determine whether @bio being queued on @q can be merged with a request
1609 * on %current's plugged list. Returns %true if merge was successful,
1610 * otherwise %false.
1611 *
1612 * Plugging coalesces IOs from the same issuer for the same purpose without
1613 * going through @q->queue_lock. As such it's more of an issuing mechanism
1614 * than scheduling, and the request, while may have elvpriv data, is not
1615 * added on the elevator at this point. In addition, we don't have
1616 * reliable access to the elevator outside queue lock. Only check basic
1617 * merging parameters without querying the elevator.
1618 *
1619 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1620 */
1621 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1622 unsigned int *request_count,
1623 struct request **same_queue_rq)
1624 {
1625 struct blk_plug *plug;
1626 struct request *rq;
1627 bool ret = false;
1628 struct list_head *plug_list;
1629
1630 plug = current->plug;
1631 if (!plug)
1632 goto out;
1633 *request_count = 0;
1634
1635 if (q->mq_ops)
1636 plug_list = &plug->mq_list;
1637 else
1638 plug_list = &plug->list;
1639
1640 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1641 int el_ret;
1642
1643 if (rq->q == q) {
1644 (*request_count)++;
1645 /*
1646 * Only blk-mq multiple hardware queues case checks the
1647 * rq in the same queue, there should be only one such
1648 * rq in a queue
1649 **/
1650 if (same_queue_rq)
1651 *same_queue_rq = rq;
1652 }
1653
1654 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1655 continue;
1656
1657 el_ret = blk_try_merge(rq, bio);
1658 if (el_ret == ELEVATOR_BACK_MERGE) {
1659 ret = bio_attempt_back_merge(q, rq, bio);
1660 if (ret)
1661 break;
1662 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1663 ret = bio_attempt_front_merge(q, rq, bio);
1664 if (ret)
1665 break;
1666 }
1667 }
1668 out:
1669 return ret;
1670 }
1671
1672 unsigned int blk_plug_queued_count(struct request_queue *q)
1673 {
1674 struct blk_plug *plug;
1675 struct request *rq;
1676 struct list_head *plug_list;
1677 unsigned int ret = 0;
1678
1679 plug = current->plug;
1680 if (!plug)
1681 goto out;
1682
1683 if (q->mq_ops)
1684 plug_list = &plug->mq_list;
1685 else
1686 plug_list = &plug->list;
1687
1688 list_for_each_entry(rq, plug_list, queuelist) {
1689 if (rq->q == q)
1690 ret++;
1691 }
1692 out:
1693 return ret;
1694 }
1695
1696 void init_request_from_bio(struct request *req, struct bio *bio)
1697 {
1698 req->cmd_type = REQ_TYPE_FS;
1699
1700 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1701 if (bio->bi_rw & REQ_RAHEAD)
1702 req->cmd_flags |= REQ_FAILFAST_MASK;
1703
1704 req->errors = 0;
1705 req->__sector = bio->bi_iter.bi_sector;
1706 req->ioprio = bio_prio(bio);
1707 blk_rq_bio_prep(req->q, req, bio);
1708 }
1709
1710 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1711 {
1712 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1713 struct blk_plug *plug;
1714 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1715 struct request *req;
1716 unsigned int request_count = 0;
1717
1718 /*
1719 * low level driver can indicate that it wants pages above a
1720 * certain limit bounced to low memory (ie for highmem, or even
1721 * ISA dma in theory)
1722 */
1723 blk_queue_bounce(q, &bio);
1724
1725 blk_queue_split(q, &bio, q->bio_split);
1726
1727 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1728 bio->bi_error = -EIO;
1729 bio_endio(bio);
1730 return BLK_QC_T_NONE;
1731 }
1732
1733 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1734 spin_lock_irq(q->queue_lock);
1735 where = ELEVATOR_INSERT_FLUSH;
1736 goto get_rq;
1737 }
1738
1739 /*
1740 * Check if we can merge with the plugged list before grabbing
1741 * any locks.
1742 */
1743 if (!blk_queue_nomerges(q)) {
1744 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1745 return BLK_QC_T_NONE;
1746 } else
1747 request_count = blk_plug_queued_count(q);
1748
1749 spin_lock_irq(q->queue_lock);
1750
1751 el_ret = elv_merge(q, &req, bio);
1752 if (el_ret == ELEVATOR_BACK_MERGE) {
1753 if (bio_attempt_back_merge(q, req, bio)) {
1754 elv_bio_merged(q, req, bio);
1755 if (!attempt_back_merge(q, req))
1756 elv_merged_request(q, req, el_ret);
1757 goto out_unlock;
1758 }
1759 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1760 if (bio_attempt_front_merge(q, req, bio)) {
1761 elv_bio_merged(q, req, bio);
1762 if (!attempt_front_merge(q, req))
1763 elv_merged_request(q, req, el_ret);
1764 goto out_unlock;
1765 }
1766 }
1767
1768 get_rq:
1769 /*
1770 * This sync check and mask will be re-done in init_request_from_bio(),
1771 * but we need to set it earlier to expose the sync flag to the
1772 * rq allocator and io schedulers.
1773 */
1774 rw_flags = bio_data_dir(bio);
1775 if (sync)
1776 rw_flags |= REQ_SYNC;
1777
1778 /*
1779 * Grab a free request. This is might sleep but can not fail.
1780 * Returns with the queue unlocked.
1781 */
1782 req = get_request(q, rw_flags, bio, GFP_NOIO);
1783 if (IS_ERR(req)) {
1784 bio->bi_error = PTR_ERR(req);
1785 bio_endio(bio);
1786 goto out_unlock;
1787 }
1788
1789 /*
1790 * After dropping the lock and possibly sleeping here, our request
1791 * may now be mergeable after it had proven unmergeable (above).
1792 * We don't worry about that case for efficiency. It won't happen
1793 * often, and the elevators are able to handle it.
1794 */
1795 init_request_from_bio(req, bio);
1796
1797 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1798 req->cpu = raw_smp_processor_id();
1799
1800 plug = current->plug;
1801 if (plug) {
1802 /*
1803 * If this is the first request added after a plug, fire
1804 * of a plug trace.
1805 */
1806 if (!request_count)
1807 trace_block_plug(q);
1808 else {
1809 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1810 blk_flush_plug_list(plug, false);
1811 trace_block_plug(q);
1812 }
1813 }
1814 list_add_tail(&req->queuelist, &plug->list);
1815 blk_account_io_start(req, true);
1816 } else {
1817 spin_lock_irq(q->queue_lock);
1818 add_acct_request(q, req, where);
1819 __blk_run_queue(q);
1820 out_unlock:
1821 spin_unlock_irq(q->queue_lock);
1822 }
1823
1824 return BLK_QC_T_NONE;
1825 }
1826
1827 /*
1828 * If bio->bi_dev is a partition, remap the location
1829 */
1830 static inline void blk_partition_remap(struct bio *bio)
1831 {
1832 struct block_device *bdev = bio->bi_bdev;
1833
1834 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1835 struct hd_struct *p = bdev->bd_part;
1836
1837 bio->bi_iter.bi_sector += p->start_sect;
1838 bio->bi_bdev = bdev->bd_contains;
1839
1840 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1841 bdev->bd_dev,
1842 bio->bi_iter.bi_sector - p->start_sect);
1843 }
1844 }
1845
1846 static void handle_bad_sector(struct bio *bio)
1847 {
1848 char b[BDEVNAME_SIZE];
1849
1850 printk(KERN_INFO "attempt to access beyond end of device\n");
1851 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1852 bdevname(bio->bi_bdev, b),
1853 bio->bi_rw,
1854 (unsigned long long)bio_end_sector(bio),
1855 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1856 }
1857
1858 #ifdef CONFIG_FAIL_MAKE_REQUEST
1859
1860 static DECLARE_FAULT_ATTR(fail_make_request);
1861
1862 static int __init setup_fail_make_request(char *str)
1863 {
1864 return setup_fault_attr(&fail_make_request, str);
1865 }
1866 __setup("fail_make_request=", setup_fail_make_request);
1867
1868 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1869 {
1870 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1871 }
1872
1873 static int __init fail_make_request_debugfs(void)
1874 {
1875 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1876 NULL, &fail_make_request);
1877
1878 return PTR_ERR_OR_ZERO(dir);
1879 }
1880
1881 late_initcall(fail_make_request_debugfs);
1882
1883 #else /* CONFIG_FAIL_MAKE_REQUEST */
1884
1885 static inline bool should_fail_request(struct hd_struct *part,
1886 unsigned int bytes)
1887 {
1888 return false;
1889 }
1890
1891 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1892
1893 /*
1894 * Check whether this bio extends beyond the end of the device.
1895 */
1896 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1897 {
1898 sector_t maxsector;
1899
1900 if (!nr_sectors)
1901 return 0;
1902
1903 /* Test device or partition size, when known. */
1904 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1905 if (maxsector) {
1906 sector_t sector = bio->bi_iter.bi_sector;
1907
1908 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1909 /*
1910 * This may well happen - the kernel calls bread()
1911 * without checking the size of the device, e.g., when
1912 * mounting a device.
1913 */
1914 handle_bad_sector(bio);
1915 return 1;
1916 }
1917 }
1918
1919 return 0;
1920 }
1921
1922 static noinline_for_stack bool
1923 generic_make_request_checks(struct bio *bio)
1924 {
1925 struct request_queue *q;
1926 int nr_sectors = bio_sectors(bio);
1927 int err = -EIO;
1928 char b[BDEVNAME_SIZE];
1929 struct hd_struct *part;
1930
1931 might_sleep();
1932
1933 if (bio_check_eod(bio, nr_sectors))
1934 goto end_io;
1935
1936 q = bdev_get_queue(bio->bi_bdev);
1937 if (unlikely(!q)) {
1938 printk(KERN_ERR
1939 "generic_make_request: Trying to access "
1940 "nonexistent block-device %s (%Lu)\n",
1941 bdevname(bio->bi_bdev, b),
1942 (long long) bio->bi_iter.bi_sector);
1943 goto end_io;
1944 }
1945
1946 part = bio->bi_bdev->bd_part;
1947 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1948 should_fail_request(&part_to_disk(part)->part0,
1949 bio->bi_iter.bi_size))
1950 goto end_io;
1951
1952 /*
1953 * If this device has partitions, remap block n
1954 * of partition p to block n+start(p) of the disk.
1955 */
1956 blk_partition_remap(bio);
1957
1958 if (bio_check_eod(bio, nr_sectors))
1959 goto end_io;
1960
1961 /*
1962 * Filter flush bio's early so that make_request based
1963 * drivers without flush support don't have to worry
1964 * about them.
1965 */
1966 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1967 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1968 if (!nr_sectors) {
1969 err = 0;
1970 goto end_io;
1971 }
1972 }
1973
1974 if ((bio->bi_rw & REQ_DISCARD) &&
1975 (!blk_queue_discard(q) ||
1976 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1977 err = -EOPNOTSUPP;
1978 goto end_io;
1979 }
1980
1981 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1982 err = -EOPNOTSUPP;
1983 goto end_io;
1984 }
1985
1986 /*
1987 * Various block parts want %current->io_context and lazy ioc
1988 * allocation ends up trading a lot of pain for a small amount of
1989 * memory. Just allocate it upfront. This may fail and block
1990 * layer knows how to live with it.
1991 */
1992 create_io_context(GFP_ATOMIC, q->node);
1993
1994 if (!blkcg_bio_issue_check(q, bio))
1995 return false;
1996
1997 trace_block_bio_queue(q, bio);
1998 return true;
1999
2000 end_io:
2001 bio->bi_error = err;
2002 bio_endio(bio);
2003 return false;
2004 }
2005
2006 /**
2007 * generic_make_request - hand a buffer to its device driver for I/O
2008 * @bio: The bio describing the location in memory and on the device.
2009 *
2010 * generic_make_request() is used to make I/O requests of block
2011 * devices. It is passed a &struct bio, which describes the I/O that needs
2012 * to be done.
2013 *
2014 * generic_make_request() does not return any status. The
2015 * success/failure status of the request, along with notification of
2016 * completion, is delivered asynchronously through the bio->bi_end_io
2017 * function described (one day) else where.
2018 *
2019 * The caller of generic_make_request must make sure that bi_io_vec
2020 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2021 * set to describe the device address, and the
2022 * bi_end_io and optionally bi_private are set to describe how
2023 * completion notification should be signaled.
2024 *
2025 * generic_make_request and the drivers it calls may use bi_next if this
2026 * bio happens to be merged with someone else, and may resubmit the bio to
2027 * a lower device by calling into generic_make_request recursively, which
2028 * means the bio should NOT be touched after the call to ->make_request_fn.
2029 */
2030 blk_qc_t generic_make_request(struct bio *bio)
2031 {
2032 struct bio_list bio_list_on_stack;
2033 blk_qc_t ret = BLK_QC_T_NONE;
2034
2035 if (!generic_make_request_checks(bio))
2036 goto out;
2037
2038 /*
2039 * We only want one ->make_request_fn to be active at a time, else
2040 * stack usage with stacked devices could be a problem. So use
2041 * current->bio_list to keep a list of requests submited by a
2042 * make_request_fn function. current->bio_list is also used as a
2043 * flag to say if generic_make_request is currently active in this
2044 * task or not. If it is NULL, then no make_request is active. If
2045 * it is non-NULL, then a make_request is active, and new requests
2046 * should be added at the tail
2047 */
2048 if (current->bio_list) {
2049 bio_list_add(current->bio_list, bio);
2050 goto out;
2051 }
2052
2053 /* following loop may be a bit non-obvious, and so deserves some
2054 * explanation.
2055 * Before entering the loop, bio->bi_next is NULL (as all callers
2056 * ensure that) so we have a list with a single bio.
2057 * We pretend that we have just taken it off a longer list, so
2058 * we assign bio_list to a pointer to the bio_list_on_stack,
2059 * thus initialising the bio_list of new bios to be
2060 * added. ->make_request() may indeed add some more bios
2061 * through a recursive call to generic_make_request. If it
2062 * did, we find a non-NULL value in bio_list and re-enter the loop
2063 * from the top. In this case we really did just take the bio
2064 * of the top of the list (no pretending) and so remove it from
2065 * bio_list, and call into ->make_request() again.
2066 */
2067 BUG_ON(bio->bi_next);
2068 bio_list_init(&bio_list_on_stack);
2069 current->bio_list = &bio_list_on_stack;
2070 do {
2071 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2072
2073 if (likely(blk_queue_enter(q, false) == 0)) {
2074 ret = q->make_request_fn(q, bio);
2075
2076 blk_queue_exit(q);
2077
2078 bio = bio_list_pop(current->bio_list);
2079 } else {
2080 struct bio *bio_next = bio_list_pop(current->bio_list);
2081
2082 bio_io_error(bio);
2083 bio = bio_next;
2084 }
2085 } while (bio);
2086 current->bio_list = NULL; /* deactivate */
2087
2088 out:
2089 return ret;
2090 }
2091 EXPORT_SYMBOL(generic_make_request);
2092
2093 /**
2094 * submit_bio - submit a bio to the block device layer for I/O
2095 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2096 * @bio: The &struct bio which describes the I/O
2097 *
2098 * submit_bio() is very similar in purpose to generic_make_request(), and
2099 * uses that function to do most of the work. Both are fairly rough
2100 * interfaces; @bio must be presetup and ready for I/O.
2101 *
2102 */
2103 blk_qc_t submit_bio(int rw, struct bio *bio)
2104 {
2105 bio->bi_rw |= rw;
2106
2107 /*
2108 * If it's a regular read/write or a barrier with data attached,
2109 * go through the normal accounting stuff before submission.
2110 */
2111 if (bio_has_data(bio)) {
2112 unsigned int count;
2113
2114 if (unlikely(rw & REQ_WRITE_SAME))
2115 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2116 else
2117 count = bio_sectors(bio);
2118
2119 if (rw & WRITE) {
2120 count_vm_events(PGPGOUT, count);
2121 } else {
2122 task_io_account_read(bio->bi_iter.bi_size);
2123 count_vm_events(PGPGIN, count);
2124 }
2125
2126 if (unlikely(block_dump)) {
2127 char b[BDEVNAME_SIZE];
2128 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2129 current->comm, task_pid_nr(current),
2130 (rw & WRITE) ? "WRITE" : "READ",
2131 (unsigned long long)bio->bi_iter.bi_sector,
2132 bdevname(bio->bi_bdev, b),
2133 count);
2134 }
2135 }
2136
2137 return generic_make_request(bio);
2138 }
2139 EXPORT_SYMBOL(submit_bio);
2140
2141 /**
2142 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2143 * for new the queue limits
2144 * @q: the queue
2145 * @rq: the request being checked
2146 *
2147 * Description:
2148 * @rq may have been made based on weaker limitations of upper-level queues
2149 * in request stacking drivers, and it may violate the limitation of @q.
2150 * Since the block layer and the underlying device driver trust @rq
2151 * after it is inserted to @q, it should be checked against @q before
2152 * the insertion using this generic function.
2153 *
2154 * Request stacking drivers like request-based dm may change the queue
2155 * limits when retrying requests on other queues. Those requests need
2156 * to be checked against the new queue limits again during dispatch.
2157 */
2158 static int blk_cloned_rq_check_limits(struct request_queue *q,
2159 struct request *rq)
2160 {
2161 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2162 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2163 return -EIO;
2164 }
2165
2166 /*
2167 * queue's settings related to segment counting like q->bounce_pfn
2168 * may differ from that of other stacking queues.
2169 * Recalculate it to check the request correctly on this queue's
2170 * limitation.
2171 */
2172 blk_recalc_rq_segments(rq);
2173 if (rq->nr_phys_segments > queue_max_segments(q)) {
2174 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2175 return -EIO;
2176 }
2177
2178 return 0;
2179 }
2180
2181 /**
2182 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2183 * @q: the queue to submit the request
2184 * @rq: the request being queued
2185 */
2186 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2187 {
2188 unsigned long flags;
2189 int where = ELEVATOR_INSERT_BACK;
2190
2191 if (blk_cloned_rq_check_limits(q, rq))
2192 return -EIO;
2193
2194 if (rq->rq_disk &&
2195 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2196 return -EIO;
2197
2198 if (q->mq_ops) {
2199 if (blk_queue_io_stat(q))
2200 blk_account_io_start(rq, true);
2201 blk_mq_insert_request(rq, false, true, true);
2202 return 0;
2203 }
2204
2205 spin_lock_irqsave(q->queue_lock, flags);
2206 if (unlikely(blk_queue_dying(q))) {
2207 spin_unlock_irqrestore(q->queue_lock, flags);
2208 return -ENODEV;
2209 }
2210
2211 /*
2212 * Submitting request must be dequeued before calling this function
2213 * because it will be linked to another request_queue
2214 */
2215 BUG_ON(blk_queued_rq(rq));
2216
2217 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2218 where = ELEVATOR_INSERT_FLUSH;
2219
2220 add_acct_request(q, rq, where);
2221 if (where == ELEVATOR_INSERT_FLUSH)
2222 __blk_run_queue(q);
2223 spin_unlock_irqrestore(q->queue_lock, flags);
2224
2225 return 0;
2226 }
2227 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2228
2229 /**
2230 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2231 * @rq: request to examine
2232 *
2233 * Description:
2234 * A request could be merge of IOs which require different failure
2235 * handling. This function determines the number of bytes which
2236 * can be failed from the beginning of the request without
2237 * crossing into area which need to be retried further.
2238 *
2239 * Return:
2240 * The number of bytes to fail.
2241 *
2242 * Context:
2243 * queue_lock must be held.
2244 */
2245 unsigned int blk_rq_err_bytes(const struct request *rq)
2246 {
2247 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2248 unsigned int bytes = 0;
2249 struct bio *bio;
2250
2251 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2252 return blk_rq_bytes(rq);
2253
2254 /*
2255 * Currently the only 'mixing' which can happen is between
2256 * different fastfail types. We can safely fail portions
2257 * which have all the failfast bits that the first one has -
2258 * the ones which are at least as eager to fail as the first
2259 * one.
2260 */
2261 for (bio = rq->bio; bio; bio = bio->bi_next) {
2262 if ((bio->bi_rw & ff) != ff)
2263 break;
2264 bytes += bio->bi_iter.bi_size;
2265 }
2266
2267 /* this could lead to infinite loop */
2268 BUG_ON(blk_rq_bytes(rq) && !bytes);
2269 return bytes;
2270 }
2271 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2272
2273 void blk_account_io_completion(struct request *req, unsigned int bytes)
2274 {
2275 if (blk_do_io_stat(req)) {
2276 const int rw = rq_data_dir(req);
2277 struct hd_struct *part;
2278 int cpu;
2279
2280 cpu = part_stat_lock();
2281 part = req->part;
2282 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2283 part_stat_unlock();
2284 }
2285 }
2286
2287 void blk_account_io_done(struct request *req)
2288 {
2289 /*
2290 * Account IO completion. flush_rq isn't accounted as a
2291 * normal IO on queueing nor completion. Accounting the
2292 * containing request is enough.
2293 */
2294 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2295 unsigned long duration = jiffies - req->start_time;
2296 const int rw = rq_data_dir(req);
2297 struct hd_struct *part;
2298 int cpu;
2299
2300 cpu = part_stat_lock();
2301 part = req->part;
2302
2303 part_stat_inc(cpu, part, ios[rw]);
2304 part_stat_add(cpu, part, ticks[rw], duration);
2305 part_round_stats(cpu, part);
2306 part_dec_in_flight(part, rw);
2307
2308 hd_struct_put(part);
2309 part_stat_unlock();
2310 }
2311 }
2312
2313 #ifdef CONFIG_PM
2314 /*
2315 * Don't process normal requests when queue is suspended
2316 * or in the process of suspending/resuming
2317 */
2318 static struct request *blk_pm_peek_request(struct request_queue *q,
2319 struct request *rq)
2320 {
2321 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2322 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2323 return NULL;
2324 else
2325 return rq;
2326 }
2327 #else
2328 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2329 struct request *rq)
2330 {
2331 return rq;
2332 }
2333 #endif
2334
2335 void blk_account_io_start(struct request *rq, bool new_io)
2336 {
2337 struct hd_struct *part;
2338 int rw = rq_data_dir(rq);
2339 int cpu;
2340
2341 if (!blk_do_io_stat(rq))
2342 return;
2343
2344 cpu = part_stat_lock();
2345
2346 if (!new_io) {
2347 part = rq->part;
2348 part_stat_inc(cpu, part, merges[rw]);
2349 } else {
2350 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2351 if (!hd_struct_try_get(part)) {
2352 /*
2353 * The partition is already being removed,
2354 * the request will be accounted on the disk only
2355 *
2356 * We take a reference on disk->part0 although that
2357 * partition will never be deleted, so we can treat
2358 * it as any other partition.
2359 */
2360 part = &rq->rq_disk->part0;
2361 hd_struct_get(part);
2362 }
2363 part_round_stats(cpu, part);
2364 part_inc_in_flight(part, rw);
2365 rq->part = part;
2366 }
2367
2368 part_stat_unlock();
2369 }
2370
2371 /**
2372 * blk_peek_request - peek at the top of a request queue
2373 * @q: request queue to peek at
2374 *
2375 * Description:
2376 * Return the request at the top of @q. The returned request
2377 * should be started using blk_start_request() before LLD starts
2378 * processing it.
2379 *
2380 * Return:
2381 * Pointer to the request at the top of @q if available. Null
2382 * otherwise.
2383 *
2384 * Context:
2385 * queue_lock must be held.
2386 */
2387 struct request *blk_peek_request(struct request_queue *q)
2388 {
2389 struct request *rq;
2390 int ret;
2391
2392 while ((rq = __elv_next_request(q)) != NULL) {
2393
2394 rq = blk_pm_peek_request(q, rq);
2395 if (!rq)
2396 break;
2397
2398 if (!(rq->cmd_flags & REQ_STARTED)) {
2399 /*
2400 * This is the first time the device driver
2401 * sees this request (possibly after
2402 * requeueing). Notify IO scheduler.
2403 */
2404 if (rq->cmd_flags & REQ_SORTED)
2405 elv_activate_rq(q, rq);
2406
2407 /*
2408 * just mark as started even if we don't start
2409 * it, a request that has been delayed should
2410 * not be passed by new incoming requests
2411 */
2412 rq->cmd_flags |= REQ_STARTED;
2413 trace_block_rq_issue(q, rq);
2414 }
2415
2416 if (!q->boundary_rq || q->boundary_rq == rq) {
2417 q->end_sector = rq_end_sector(rq);
2418 q->boundary_rq = NULL;
2419 }
2420
2421 if (rq->cmd_flags & REQ_DONTPREP)
2422 break;
2423
2424 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2425 /*
2426 * make sure space for the drain appears we
2427 * know we can do this because max_hw_segments
2428 * has been adjusted to be one fewer than the
2429 * device can handle
2430 */
2431 rq->nr_phys_segments++;
2432 }
2433
2434 if (!q->prep_rq_fn)
2435 break;
2436
2437 ret = q->prep_rq_fn(q, rq);
2438 if (ret == BLKPREP_OK) {
2439 break;
2440 } else if (ret == BLKPREP_DEFER) {
2441 /*
2442 * the request may have been (partially) prepped.
2443 * we need to keep this request in the front to
2444 * avoid resource deadlock. REQ_STARTED will
2445 * prevent other fs requests from passing this one.
2446 */
2447 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2448 !(rq->cmd_flags & REQ_DONTPREP)) {
2449 /*
2450 * remove the space for the drain we added
2451 * so that we don't add it again
2452 */
2453 --rq->nr_phys_segments;
2454 }
2455
2456 rq = NULL;
2457 break;
2458 } else if (ret == BLKPREP_KILL) {
2459 rq->cmd_flags |= REQ_QUIET;
2460 /*
2461 * Mark this request as started so we don't trigger
2462 * any debug logic in the end I/O path.
2463 */
2464 blk_start_request(rq);
2465 __blk_end_request_all(rq, -EIO);
2466 } else {
2467 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2468 break;
2469 }
2470 }
2471
2472 return rq;
2473 }
2474 EXPORT_SYMBOL(blk_peek_request);
2475
2476 void blk_dequeue_request(struct request *rq)
2477 {
2478 struct request_queue *q = rq->q;
2479
2480 BUG_ON(list_empty(&rq->queuelist));
2481 BUG_ON(ELV_ON_HASH(rq));
2482
2483 list_del_init(&rq->queuelist);
2484
2485 /*
2486 * the time frame between a request being removed from the lists
2487 * and to it is freed is accounted as io that is in progress at
2488 * the driver side.
2489 */
2490 if (blk_account_rq(rq)) {
2491 q->in_flight[rq_is_sync(rq)]++;
2492 set_io_start_time_ns(rq);
2493 }
2494 }
2495
2496 /**
2497 * blk_start_request - start request processing on the driver
2498 * @req: request to dequeue
2499 *
2500 * Description:
2501 * Dequeue @req and start timeout timer on it. This hands off the
2502 * request to the driver.
2503 *
2504 * Block internal functions which don't want to start timer should
2505 * call blk_dequeue_request().
2506 *
2507 * Context:
2508 * queue_lock must be held.
2509 */
2510 void blk_start_request(struct request *req)
2511 {
2512 blk_dequeue_request(req);
2513
2514 /*
2515 * We are now handing the request to the hardware, initialize
2516 * resid_len to full count and add the timeout handler.
2517 */
2518 req->resid_len = blk_rq_bytes(req);
2519 if (unlikely(blk_bidi_rq(req)))
2520 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2521
2522 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2523 blk_add_timer(req);
2524 }
2525 EXPORT_SYMBOL(blk_start_request);
2526
2527 /**
2528 * blk_fetch_request - fetch a request from a request queue
2529 * @q: request queue to fetch a request from
2530 *
2531 * Description:
2532 * Return the request at the top of @q. The request is started on
2533 * return and LLD can start processing it immediately.
2534 *
2535 * Return:
2536 * Pointer to the request at the top of @q if available. Null
2537 * otherwise.
2538 *
2539 * Context:
2540 * queue_lock must be held.
2541 */
2542 struct request *blk_fetch_request(struct request_queue *q)
2543 {
2544 struct request *rq;
2545
2546 rq = blk_peek_request(q);
2547 if (rq)
2548 blk_start_request(rq);
2549 return rq;
2550 }
2551 EXPORT_SYMBOL(blk_fetch_request);
2552
2553 /**
2554 * blk_update_request - Special helper function for request stacking drivers
2555 * @req: the request being processed
2556 * @error: %0 for success, < %0 for error
2557 * @nr_bytes: number of bytes to complete @req
2558 *
2559 * Description:
2560 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2561 * the request structure even if @req doesn't have leftover.
2562 * If @req has leftover, sets it up for the next range of segments.
2563 *
2564 * This special helper function is only for request stacking drivers
2565 * (e.g. request-based dm) so that they can handle partial completion.
2566 * Actual device drivers should use blk_end_request instead.
2567 *
2568 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2569 * %false return from this function.
2570 *
2571 * Return:
2572 * %false - this request doesn't have any more data
2573 * %true - this request has more data
2574 **/
2575 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2576 {
2577 int total_bytes;
2578
2579 trace_block_rq_complete(req->q, req, nr_bytes);
2580
2581 if (!req->bio)
2582 return false;
2583
2584 /*
2585 * For fs requests, rq is just carrier of independent bio's
2586 * and each partial completion should be handled separately.
2587 * Reset per-request error on each partial completion.
2588 *
2589 * TODO: tj: This is too subtle. It would be better to let
2590 * low level drivers do what they see fit.
2591 */
2592 if (req->cmd_type == REQ_TYPE_FS)
2593 req->errors = 0;
2594
2595 if (error && req->cmd_type == REQ_TYPE_FS &&
2596 !(req->cmd_flags & REQ_QUIET)) {
2597 char *error_type;
2598
2599 switch (error) {
2600 case -ENOLINK:
2601 error_type = "recoverable transport";
2602 break;
2603 case -EREMOTEIO:
2604 error_type = "critical target";
2605 break;
2606 case -EBADE:
2607 error_type = "critical nexus";
2608 break;
2609 case -ETIMEDOUT:
2610 error_type = "timeout";
2611 break;
2612 case -ENOSPC:
2613 error_type = "critical space allocation";
2614 break;
2615 case -ENODATA:
2616 error_type = "critical medium";
2617 break;
2618 case -EIO:
2619 default:
2620 error_type = "I/O";
2621 break;
2622 }
2623 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2624 __func__, error_type, req->rq_disk ?
2625 req->rq_disk->disk_name : "?",
2626 (unsigned long long)blk_rq_pos(req));
2627
2628 }
2629
2630 blk_account_io_completion(req, nr_bytes);
2631
2632 total_bytes = 0;
2633 while (req->bio) {
2634 struct bio *bio = req->bio;
2635 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2636
2637 if (bio_bytes == bio->bi_iter.bi_size)
2638 req->bio = bio->bi_next;
2639
2640 req_bio_endio(req, bio, bio_bytes, error);
2641
2642 total_bytes += bio_bytes;
2643 nr_bytes -= bio_bytes;
2644
2645 if (!nr_bytes)
2646 break;
2647 }
2648
2649 /*
2650 * completely done
2651 */
2652 if (!req->bio) {
2653 /*
2654 * Reset counters so that the request stacking driver
2655 * can find how many bytes remain in the request
2656 * later.
2657 */
2658 req->__data_len = 0;
2659 return false;
2660 }
2661
2662 req->__data_len -= total_bytes;
2663
2664 /* update sector only for requests with clear definition of sector */
2665 if (req->cmd_type == REQ_TYPE_FS)
2666 req->__sector += total_bytes >> 9;
2667
2668 /* mixed attributes always follow the first bio */
2669 if (req->cmd_flags & REQ_MIXED_MERGE) {
2670 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2671 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2672 }
2673
2674 /*
2675 * If total number of sectors is less than the first segment
2676 * size, something has gone terribly wrong.
2677 */
2678 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2679 blk_dump_rq_flags(req, "request botched");
2680 req->__data_len = blk_rq_cur_bytes(req);
2681 }
2682
2683 /* recalculate the number of segments */
2684 blk_recalc_rq_segments(req);
2685
2686 return true;
2687 }
2688 EXPORT_SYMBOL_GPL(blk_update_request);
2689
2690 static bool blk_update_bidi_request(struct request *rq, int error,
2691 unsigned int nr_bytes,
2692 unsigned int bidi_bytes)
2693 {
2694 if (blk_update_request(rq, error, nr_bytes))
2695 return true;
2696
2697 /* Bidi request must be completed as a whole */
2698 if (unlikely(blk_bidi_rq(rq)) &&
2699 blk_update_request(rq->next_rq, error, bidi_bytes))
2700 return true;
2701
2702 if (blk_queue_add_random(rq->q))
2703 add_disk_randomness(rq->rq_disk);
2704
2705 return false;
2706 }
2707
2708 /**
2709 * blk_unprep_request - unprepare a request
2710 * @req: the request
2711 *
2712 * This function makes a request ready for complete resubmission (or
2713 * completion). It happens only after all error handling is complete,
2714 * so represents the appropriate moment to deallocate any resources
2715 * that were allocated to the request in the prep_rq_fn. The queue
2716 * lock is held when calling this.
2717 */
2718 void blk_unprep_request(struct request *req)
2719 {
2720 struct request_queue *q = req->q;
2721
2722 req->cmd_flags &= ~REQ_DONTPREP;
2723 if (q->unprep_rq_fn)
2724 q->unprep_rq_fn(q, req);
2725 }
2726 EXPORT_SYMBOL_GPL(blk_unprep_request);
2727
2728 /*
2729 * queue lock must be held
2730 */
2731 void blk_finish_request(struct request *req, int error)
2732 {
2733 if (req->cmd_flags & REQ_QUEUED)
2734 blk_queue_end_tag(req->q, req);
2735
2736 BUG_ON(blk_queued_rq(req));
2737
2738 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2739 laptop_io_completion(&req->q->backing_dev_info);
2740
2741 blk_delete_timer(req);
2742
2743 if (req->cmd_flags & REQ_DONTPREP)
2744 blk_unprep_request(req);
2745
2746 blk_account_io_done(req);
2747
2748 if (req->end_io)
2749 req->end_io(req, error);
2750 else {
2751 if (blk_bidi_rq(req))
2752 __blk_put_request(req->next_rq->q, req->next_rq);
2753
2754 __blk_put_request(req->q, req);
2755 }
2756 }
2757 EXPORT_SYMBOL(blk_finish_request);
2758
2759 /**
2760 * blk_end_bidi_request - Complete a bidi request
2761 * @rq: the request to complete
2762 * @error: %0 for success, < %0 for error
2763 * @nr_bytes: number of bytes to complete @rq
2764 * @bidi_bytes: number of bytes to complete @rq->next_rq
2765 *
2766 * Description:
2767 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2768 * Drivers that supports bidi can safely call this member for any
2769 * type of request, bidi or uni. In the later case @bidi_bytes is
2770 * just ignored.
2771 *
2772 * Return:
2773 * %false - we are done with this request
2774 * %true - still buffers pending for this request
2775 **/
2776 static bool blk_end_bidi_request(struct request *rq, int error,
2777 unsigned int nr_bytes, unsigned int bidi_bytes)
2778 {
2779 struct request_queue *q = rq->q;
2780 unsigned long flags;
2781
2782 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2783 return true;
2784
2785 spin_lock_irqsave(q->queue_lock, flags);
2786 blk_finish_request(rq, error);
2787 spin_unlock_irqrestore(q->queue_lock, flags);
2788
2789 return false;
2790 }
2791
2792 /**
2793 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2794 * @rq: the request to complete
2795 * @error: %0 for success, < %0 for error
2796 * @nr_bytes: number of bytes to complete @rq
2797 * @bidi_bytes: number of bytes to complete @rq->next_rq
2798 *
2799 * Description:
2800 * Identical to blk_end_bidi_request() except that queue lock is
2801 * assumed to be locked on entry and remains so on return.
2802 *
2803 * Return:
2804 * %false - we are done with this request
2805 * %true - still buffers pending for this request
2806 **/
2807 bool __blk_end_bidi_request(struct request *rq, int error,
2808 unsigned int nr_bytes, unsigned int bidi_bytes)
2809 {
2810 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2811 return true;
2812
2813 blk_finish_request(rq, error);
2814
2815 return false;
2816 }
2817
2818 /**
2819 * blk_end_request - Helper function for drivers to complete the request.
2820 * @rq: the request being processed
2821 * @error: %0 for success, < %0 for error
2822 * @nr_bytes: number of bytes to complete
2823 *
2824 * Description:
2825 * Ends I/O on a number of bytes attached to @rq.
2826 * If @rq has leftover, sets it up for the next range of segments.
2827 *
2828 * Return:
2829 * %false - we are done with this request
2830 * %true - still buffers pending for this request
2831 **/
2832 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2833 {
2834 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2835 }
2836 EXPORT_SYMBOL(blk_end_request);
2837
2838 /**
2839 * blk_end_request_all - Helper function for drives to finish the request.
2840 * @rq: the request to finish
2841 * @error: %0 for success, < %0 for error
2842 *
2843 * Description:
2844 * Completely finish @rq.
2845 */
2846 void blk_end_request_all(struct request *rq, int error)
2847 {
2848 bool pending;
2849 unsigned int bidi_bytes = 0;
2850
2851 if (unlikely(blk_bidi_rq(rq)))
2852 bidi_bytes = blk_rq_bytes(rq->next_rq);
2853
2854 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2855 BUG_ON(pending);
2856 }
2857 EXPORT_SYMBOL(blk_end_request_all);
2858
2859 /**
2860 * blk_end_request_cur - Helper function to finish the current request chunk.
2861 * @rq: the request to finish the current chunk for
2862 * @error: %0 for success, < %0 for error
2863 *
2864 * Description:
2865 * Complete the current consecutively mapped chunk from @rq.
2866 *
2867 * Return:
2868 * %false - we are done with this request
2869 * %true - still buffers pending for this request
2870 */
2871 bool blk_end_request_cur(struct request *rq, int error)
2872 {
2873 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2874 }
2875 EXPORT_SYMBOL(blk_end_request_cur);
2876
2877 /**
2878 * blk_end_request_err - Finish a request till the next failure boundary.
2879 * @rq: the request to finish till the next failure boundary for
2880 * @error: must be negative errno
2881 *
2882 * Description:
2883 * Complete @rq till the next failure boundary.
2884 *
2885 * Return:
2886 * %false - we are done with this request
2887 * %true - still buffers pending for this request
2888 */
2889 bool blk_end_request_err(struct request *rq, int error)
2890 {
2891 WARN_ON(error >= 0);
2892 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2893 }
2894 EXPORT_SYMBOL_GPL(blk_end_request_err);
2895
2896 /**
2897 * __blk_end_request - Helper function for drivers to complete the request.
2898 * @rq: the request being processed
2899 * @error: %0 for success, < %0 for error
2900 * @nr_bytes: number of bytes to complete
2901 *
2902 * Description:
2903 * Must be called with queue lock held unlike blk_end_request().
2904 *
2905 * Return:
2906 * %false - we are done with this request
2907 * %true - still buffers pending for this request
2908 **/
2909 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2910 {
2911 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2912 }
2913 EXPORT_SYMBOL(__blk_end_request);
2914
2915 /**
2916 * __blk_end_request_all - Helper function for drives to finish the request.
2917 * @rq: the request to finish
2918 * @error: %0 for success, < %0 for error
2919 *
2920 * Description:
2921 * Completely finish @rq. Must be called with queue lock held.
2922 */
2923 void __blk_end_request_all(struct request *rq, int error)
2924 {
2925 bool pending;
2926 unsigned int bidi_bytes = 0;
2927
2928 if (unlikely(blk_bidi_rq(rq)))
2929 bidi_bytes = blk_rq_bytes(rq->next_rq);
2930
2931 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2932 BUG_ON(pending);
2933 }
2934 EXPORT_SYMBOL(__blk_end_request_all);
2935
2936 /**
2937 * __blk_end_request_cur - Helper function to finish the current request chunk.
2938 * @rq: the request to finish the current chunk for
2939 * @error: %0 for success, < %0 for error
2940 *
2941 * Description:
2942 * Complete the current consecutively mapped chunk from @rq. Must
2943 * be called with queue lock held.
2944 *
2945 * Return:
2946 * %false - we are done with this request
2947 * %true - still buffers pending for this request
2948 */
2949 bool __blk_end_request_cur(struct request *rq, int error)
2950 {
2951 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2952 }
2953 EXPORT_SYMBOL(__blk_end_request_cur);
2954
2955 /**
2956 * __blk_end_request_err - Finish a request till the next failure boundary.
2957 * @rq: the request to finish till the next failure boundary for
2958 * @error: must be negative errno
2959 *
2960 * Description:
2961 * Complete @rq till the next failure boundary. Must be called
2962 * with queue lock held.
2963 *
2964 * Return:
2965 * %false - we are done with this request
2966 * %true - still buffers pending for this request
2967 */
2968 bool __blk_end_request_err(struct request *rq, int error)
2969 {
2970 WARN_ON(error >= 0);
2971 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2972 }
2973 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2974
2975 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2976 struct bio *bio)
2977 {
2978 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2979 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2980
2981 if (bio_has_data(bio))
2982 rq->nr_phys_segments = bio_phys_segments(q, bio);
2983
2984 rq->__data_len = bio->bi_iter.bi_size;
2985 rq->bio = rq->biotail = bio;
2986
2987 if (bio->bi_bdev)
2988 rq->rq_disk = bio->bi_bdev->bd_disk;
2989 }
2990
2991 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2992 /**
2993 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2994 * @rq: the request to be flushed
2995 *
2996 * Description:
2997 * Flush all pages in @rq.
2998 */
2999 void rq_flush_dcache_pages(struct request *rq)
3000 {
3001 struct req_iterator iter;
3002 struct bio_vec bvec;
3003
3004 rq_for_each_segment(bvec, rq, iter)
3005 flush_dcache_page(bvec.bv_page);
3006 }
3007 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3008 #endif
3009
3010 /**
3011 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3012 * @q : the queue of the device being checked
3013 *
3014 * Description:
3015 * Check if underlying low-level drivers of a device are busy.
3016 * If the drivers want to export their busy state, they must set own
3017 * exporting function using blk_queue_lld_busy() first.
3018 *
3019 * Basically, this function is used only by request stacking drivers
3020 * to stop dispatching requests to underlying devices when underlying
3021 * devices are busy. This behavior helps more I/O merging on the queue
3022 * of the request stacking driver and prevents I/O throughput regression
3023 * on burst I/O load.
3024 *
3025 * Return:
3026 * 0 - Not busy (The request stacking driver should dispatch request)
3027 * 1 - Busy (The request stacking driver should stop dispatching request)
3028 */
3029 int blk_lld_busy(struct request_queue *q)
3030 {
3031 if (q->lld_busy_fn)
3032 return q->lld_busy_fn(q);
3033
3034 return 0;
3035 }
3036 EXPORT_SYMBOL_GPL(blk_lld_busy);
3037
3038 /**
3039 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3040 * @rq: the clone request to be cleaned up
3041 *
3042 * Description:
3043 * Free all bios in @rq for a cloned request.
3044 */
3045 void blk_rq_unprep_clone(struct request *rq)
3046 {
3047 struct bio *bio;
3048
3049 while ((bio = rq->bio) != NULL) {
3050 rq->bio = bio->bi_next;
3051
3052 bio_put(bio);
3053 }
3054 }
3055 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3056
3057 /*
3058 * Copy attributes of the original request to the clone request.
3059 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3060 */
3061 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3062 {
3063 dst->cpu = src->cpu;
3064 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3065 dst->cmd_type = src->cmd_type;
3066 dst->__sector = blk_rq_pos(src);
3067 dst->__data_len = blk_rq_bytes(src);
3068 dst->nr_phys_segments = src->nr_phys_segments;
3069 dst->ioprio = src->ioprio;
3070 dst->extra_len = src->extra_len;
3071 }
3072
3073 /**
3074 * blk_rq_prep_clone - Helper function to setup clone request
3075 * @rq: the request to be setup
3076 * @rq_src: original request to be cloned
3077 * @bs: bio_set that bios for clone are allocated from
3078 * @gfp_mask: memory allocation mask for bio
3079 * @bio_ctr: setup function to be called for each clone bio.
3080 * Returns %0 for success, non %0 for failure.
3081 * @data: private data to be passed to @bio_ctr
3082 *
3083 * Description:
3084 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3085 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3086 * are not copied, and copying such parts is the caller's responsibility.
3087 * Also, pages which the original bios are pointing to are not copied
3088 * and the cloned bios just point same pages.
3089 * So cloned bios must be completed before original bios, which means
3090 * the caller must complete @rq before @rq_src.
3091 */
3092 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3093 struct bio_set *bs, gfp_t gfp_mask,
3094 int (*bio_ctr)(struct bio *, struct bio *, void *),
3095 void *data)
3096 {
3097 struct bio *bio, *bio_src;
3098
3099 if (!bs)
3100 bs = fs_bio_set;
3101
3102 __rq_for_each_bio(bio_src, rq_src) {
3103 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3104 if (!bio)
3105 goto free_and_out;
3106
3107 if (bio_ctr && bio_ctr(bio, bio_src, data))
3108 goto free_and_out;
3109
3110 if (rq->bio) {
3111 rq->biotail->bi_next = bio;
3112 rq->biotail = bio;
3113 } else
3114 rq->bio = rq->biotail = bio;
3115 }
3116
3117 __blk_rq_prep_clone(rq, rq_src);
3118
3119 return 0;
3120
3121 free_and_out:
3122 if (bio)
3123 bio_put(bio);
3124 blk_rq_unprep_clone(rq);
3125
3126 return -ENOMEM;
3127 }
3128 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3129
3130 int kblockd_schedule_work(struct work_struct *work)
3131 {
3132 return queue_work(kblockd_workqueue, work);
3133 }
3134 EXPORT_SYMBOL(kblockd_schedule_work);
3135
3136 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3137 unsigned long delay)
3138 {
3139 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3140 }
3141 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3142
3143 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3144 unsigned long delay)
3145 {
3146 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3147 }
3148 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3149
3150 /**
3151 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3152 * @plug: The &struct blk_plug that needs to be initialized
3153 *
3154 * Description:
3155 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3156 * pending I/O should the task end up blocking between blk_start_plug() and
3157 * blk_finish_plug(). This is important from a performance perspective, but
3158 * also ensures that we don't deadlock. For instance, if the task is blocking
3159 * for a memory allocation, memory reclaim could end up wanting to free a
3160 * page belonging to that request that is currently residing in our private
3161 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3162 * this kind of deadlock.
3163 */
3164 void blk_start_plug(struct blk_plug *plug)
3165 {
3166 struct task_struct *tsk = current;
3167
3168 /*
3169 * If this is a nested plug, don't actually assign it.
3170 */
3171 if (tsk->plug)
3172 return;
3173
3174 INIT_LIST_HEAD(&plug->list);
3175 INIT_LIST_HEAD(&plug->mq_list);
3176 INIT_LIST_HEAD(&plug->cb_list);
3177 /*
3178 * Store ordering should not be needed here, since a potential
3179 * preempt will imply a full memory barrier
3180 */
3181 tsk->plug = plug;
3182 }
3183 EXPORT_SYMBOL(blk_start_plug);
3184
3185 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3186 {
3187 struct request *rqa = container_of(a, struct request, queuelist);
3188 struct request *rqb = container_of(b, struct request, queuelist);
3189
3190 return !(rqa->q < rqb->q ||
3191 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3192 }
3193
3194 /*
3195 * If 'from_schedule' is true, then postpone the dispatch of requests
3196 * until a safe kblockd context. We due this to avoid accidental big
3197 * additional stack usage in driver dispatch, in places where the originally
3198 * plugger did not intend it.
3199 */
3200 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3201 bool from_schedule)
3202 __releases(q->queue_lock)
3203 {
3204 trace_block_unplug(q, depth, !from_schedule);
3205
3206 if (from_schedule)
3207 blk_run_queue_async(q);
3208 else
3209 __blk_run_queue(q);
3210 spin_unlock(q->queue_lock);
3211 }
3212
3213 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3214 {
3215 LIST_HEAD(callbacks);
3216
3217 while (!list_empty(&plug->cb_list)) {
3218 list_splice_init(&plug->cb_list, &callbacks);
3219
3220 while (!list_empty(&callbacks)) {
3221 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3222 struct blk_plug_cb,
3223 list);
3224 list_del(&cb->list);
3225 cb->callback(cb, from_schedule);
3226 }
3227 }
3228 }
3229
3230 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3231 int size)
3232 {
3233 struct blk_plug *plug = current->plug;
3234 struct blk_plug_cb *cb;
3235
3236 if (!plug)
3237 return NULL;
3238
3239 list_for_each_entry(cb, &plug->cb_list, list)
3240 if (cb->callback == unplug && cb->data == data)
3241 return cb;
3242
3243 /* Not currently on the callback list */
3244 BUG_ON(size < sizeof(*cb));
3245 cb = kzalloc(size, GFP_ATOMIC);
3246 if (cb) {
3247 cb->data = data;
3248 cb->callback = unplug;
3249 list_add(&cb->list, &plug->cb_list);
3250 }
3251 return cb;
3252 }
3253 EXPORT_SYMBOL(blk_check_plugged);
3254
3255 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3256 {
3257 struct request_queue *q;
3258 unsigned long flags;
3259 struct request *rq;
3260 LIST_HEAD(list);
3261 unsigned int depth;
3262
3263 flush_plug_callbacks(plug, from_schedule);
3264
3265 if (!list_empty(&plug->mq_list))
3266 blk_mq_flush_plug_list(plug, from_schedule);
3267
3268 if (list_empty(&plug->list))
3269 return;
3270
3271 list_splice_init(&plug->list, &list);
3272
3273 list_sort(NULL, &list, plug_rq_cmp);
3274
3275 q = NULL;
3276 depth = 0;
3277
3278 /*
3279 * Save and disable interrupts here, to avoid doing it for every
3280 * queue lock we have to take.
3281 */
3282 local_irq_save(flags);
3283 while (!list_empty(&list)) {
3284 rq = list_entry_rq(list.next);
3285 list_del_init(&rq->queuelist);
3286 BUG_ON(!rq->q);
3287 if (rq->q != q) {
3288 /*
3289 * This drops the queue lock
3290 */
3291 if (q)
3292 queue_unplugged(q, depth, from_schedule);
3293 q = rq->q;
3294 depth = 0;
3295 spin_lock(q->queue_lock);
3296 }
3297
3298 /*
3299 * Short-circuit if @q is dead
3300 */
3301 if (unlikely(blk_queue_dying(q))) {
3302 __blk_end_request_all(rq, -ENODEV);
3303 continue;
3304 }
3305
3306 /*
3307 * rq is already accounted, so use raw insert
3308 */
3309 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3310 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3311 else
3312 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3313
3314 depth++;
3315 }
3316
3317 /*
3318 * This drops the queue lock
3319 */
3320 if (q)
3321 queue_unplugged(q, depth, from_schedule);
3322
3323 local_irq_restore(flags);
3324 }
3325
3326 void blk_finish_plug(struct blk_plug *plug)
3327 {
3328 if (plug != current->plug)
3329 return;
3330 blk_flush_plug_list(plug, false);
3331
3332 current->plug = NULL;
3333 }
3334 EXPORT_SYMBOL(blk_finish_plug);
3335
3336 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3337 {
3338 struct blk_plug *plug;
3339 long state;
3340
3341 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3342 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3343 return false;
3344
3345 plug = current->plug;
3346 if (plug)
3347 blk_flush_plug_list(plug, false);
3348
3349 state = current->state;
3350 while (!need_resched()) {
3351 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3352 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3353 int ret;
3354
3355 hctx->poll_invoked++;
3356
3357 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3358 if (ret > 0) {
3359 hctx->poll_success++;
3360 set_current_state(TASK_RUNNING);
3361 return true;
3362 }
3363
3364 if (signal_pending_state(state, current))
3365 set_current_state(TASK_RUNNING);
3366
3367 if (current->state == TASK_RUNNING)
3368 return true;
3369 if (ret < 0)
3370 break;
3371 cpu_relax();
3372 }
3373
3374 return false;
3375 }
3376
3377 #ifdef CONFIG_PM
3378 /**
3379 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3380 * @q: the queue of the device
3381 * @dev: the device the queue belongs to
3382 *
3383 * Description:
3384 * Initialize runtime-PM-related fields for @q and start auto suspend for
3385 * @dev. Drivers that want to take advantage of request-based runtime PM
3386 * should call this function after @dev has been initialized, and its
3387 * request queue @q has been allocated, and runtime PM for it can not happen
3388 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3389 * cases, driver should call this function before any I/O has taken place.
3390 *
3391 * This function takes care of setting up using auto suspend for the device,
3392 * the autosuspend delay is set to -1 to make runtime suspend impossible
3393 * until an updated value is either set by user or by driver. Drivers do
3394 * not need to touch other autosuspend settings.
3395 *
3396 * The block layer runtime PM is request based, so only works for drivers
3397 * that use request as their IO unit instead of those directly use bio's.
3398 */
3399 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3400 {
3401 q->dev = dev;
3402 q->rpm_status = RPM_ACTIVE;
3403 pm_runtime_set_autosuspend_delay(q->dev, -1);
3404 pm_runtime_use_autosuspend(q->dev);
3405 }
3406 EXPORT_SYMBOL(blk_pm_runtime_init);
3407
3408 /**
3409 * blk_pre_runtime_suspend - Pre runtime suspend check
3410 * @q: the queue of the device
3411 *
3412 * Description:
3413 * This function will check if runtime suspend is allowed for the device
3414 * by examining if there are any requests pending in the queue. If there
3415 * are requests pending, the device can not be runtime suspended; otherwise,
3416 * the queue's status will be updated to SUSPENDING and the driver can
3417 * proceed to suspend the device.
3418 *
3419 * For the not allowed case, we mark last busy for the device so that
3420 * runtime PM core will try to autosuspend it some time later.
3421 *
3422 * This function should be called near the start of the device's
3423 * runtime_suspend callback.
3424 *
3425 * Return:
3426 * 0 - OK to runtime suspend the device
3427 * -EBUSY - Device should not be runtime suspended
3428 */
3429 int blk_pre_runtime_suspend(struct request_queue *q)
3430 {
3431 int ret = 0;
3432
3433 if (!q->dev)
3434 return ret;
3435
3436 spin_lock_irq(q->queue_lock);
3437 if (q->nr_pending) {
3438 ret = -EBUSY;
3439 pm_runtime_mark_last_busy(q->dev);
3440 } else {
3441 q->rpm_status = RPM_SUSPENDING;
3442 }
3443 spin_unlock_irq(q->queue_lock);
3444 return ret;
3445 }
3446 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3447
3448 /**
3449 * blk_post_runtime_suspend - Post runtime suspend processing
3450 * @q: the queue of the device
3451 * @err: return value of the device's runtime_suspend function
3452 *
3453 * Description:
3454 * Update the queue's runtime status according to the return value of the
3455 * device's runtime suspend function and mark last busy for the device so
3456 * that PM core will try to auto suspend the device at a later time.
3457 *
3458 * This function should be called near the end of the device's
3459 * runtime_suspend callback.
3460 */
3461 void blk_post_runtime_suspend(struct request_queue *q, int err)
3462 {
3463 if (!q->dev)
3464 return;
3465
3466 spin_lock_irq(q->queue_lock);
3467 if (!err) {
3468 q->rpm_status = RPM_SUSPENDED;
3469 } else {
3470 q->rpm_status = RPM_ACTIVE;
3471 pm_runtime_mark_last_busy(q->dev);
3472 }
3473 spin_unlock_irq(q->queue_lock);
3474 }
3475 EXPORT_SYMBOL(blk_post_runtime_suspend);
3476
3477 /**
3478 * blk_pre_runtime_resume - Pre runtime resume processing
3479 * @q: the queue of the device
3480 *
3481 * Description:
3482 * Update the queue's runtime status to RESUMING in preparation for the
3483 * runtime resume of the device.
3484 *
3485 * This function should be called near the start of the device's
3486 * runtime_resume callback.
3487 */
3488 void blk_pre_runtime_resume(struct request_queue *q)
3489 {
3490 if (!q->dev)
3491 return;
3492
3493 spin_lock_irq(q->queue_lock);
3494 q->rpm_status = RPM_RESUMING;
3495 spin_unlock_irq(q->queue_lock);
3496 }
3497 EXPORT_SYMBOL(blk_pre_runtime_resume);
3498
3499 /**
3500 * blk_post_runtime_resume - Post runtime resume processing
3501 * @q: the queue of the device
3502 * @err: return value of the device's runtime_resume function
3503 *
3504 * Description:
3505 * Update the queue's runtime status according to the return value of the
3506 * device's runtime_resume function. If it is successfully resumed, process
3507 * the requests that are queued into the device's queue when it is resuming
3508 * and then mark last busy and initiate autosuspend for it.
3509 *
3510 * This function should be called near the end of the device's
3511 * runtime_resume callback.
3512 */
3513 void blk_post_runtime_resume(struct request_queue *q, int err)
3514 {
3515 if (!q->dev)
3516 return;
3517
3518 spin_lock_irq(q->queue_lock);
3519 if (!err) {
3520 q->rpm_status = RPM_ACTIVE;
3521 __blk_run_queue(q);
3522 pm_runtime_mark_last_busy(q->dev);
3523 pm_request_autosuspend(q->dev);
3524 } else {
3525 q->rpm_status = RPM_SUSPENDED;
3526 }
3527 spin_unlock_irq(q->queue_lock);
3528 }
3529 EXPORT_SYMBOL(blk_post_runtime_resume);
3530 #endif
3531
3532 int __init blk_dev_init(void)
3533 {
3534 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3535 FIELD_SIZEOF(struct request, cmd_flags));
3536
3537 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3538 kblockd_workqueue = alloc_workqueue("kblockd",
3539 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3540 if (!kblockd_workqueue)
3541 panic("Failed to create kblockd\n");
3542
3543 request_cachep = kmem_cache_create("blkdev_requests",
3544 sizeof(struct request), 0, SLAB_PANIC, NULL);
3545
3546 blk_requestq_cachep = kmem_cache_create("request_queue",
3547 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3548
3549 return 0;
3550 }
This page took 0.104669 seconds and 5 git commands to generate.