Merge branch 'stmmac-optimizations'
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25
26 #include <trace/events/block.h>
27
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
38 /*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 unsigned int i;
44
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
48
49 return false;
50 }
51
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54 {
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
61 /*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66 {
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 int freeze_depth;
84
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
87 percpu_ref_kill(&q->q_usage_counter);
88 blk_mq_run_hw_queues(q, false);
89 }
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
153 }
154
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
163 {
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
170 rq->mq_ctx = ctx;
171 rq->cmd_flags |= rw_flags;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
176 rq->rq_disk = NULL;
177 rq->part = NULL;
178 rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
181 set_start_time_ns(rq);
182 rq->io_start_time_ns = 0;
183 #endif
184 rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187 #endif
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
191
192 rq->cmd = rq->__cmd;
193
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
199 INIT_LIST_HEAD(&rq->timeout_list);
200 rq->timeout = 0;
201
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 struct request *rq;
213 unsigned int tag;
214
215 tag = blk_mq_get_tag(data);
216 if (tag != BLK_MQ_TAG_FAIL) {
217 rq = data->hctx->tags->rqs[tag];
218
219 if (blk_mq_tag_busy(data->hctx)) {
220 rq->cmd_flags = REQ_MQ_INFLIGHT;
221 atomic_inc(&data->hctx->nr_active);
222 }
223
224 rq->tag = tag;
225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 return rq;
227 }
228
229 return NULL;
230 }
231
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
233 unsigned int flags)
234 {
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
237 struct request *rq;
238 struct blk_mq_alloc_data alloc_data;
239 int ret;
240
241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 if (ret)
243 return ERR_PTR(ret);
244
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248
249 rq = __blk_mq_alloc_request(&alloc_data, rw);
250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 __blk_mq_run_hw_queue(hctx);
252 blk_mq_put_ctx(ctx);
253
254 ctx = blk_mq_get_ctx(q);
255 hctx = q->mq_ops->map_queue(q, ctx->cpu);
256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
259 }
260 blk_mq_put_ctx(ctx);
261 if (!rq) {
262 blk_queue_exit(q);
263 return ERR_PTR(-EWOULDBLOCK);
264 }
265 return rq;
266 }
267 EXPORT_SYMBOL(blk_mq_alloc_request);
268
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 struct blk_mq_ctx *ctx, struct request *rq)
271 {
272 const int tag = rq->tag;
273 struct request_queue *q = rq->q;
274
275 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 atomic_dec(&hctx->nr_active);
277 rq->cmd_flags = 0;
278
279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281 blk_queue_exit(q);
282 }
283
284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 {
286 struct blk_mq_ctx *ctx = rq->mq_ctx;
287
288 ctx->rq_completed[rq_is_sync(rq)]++;
289 __blk_mq_free_request(hctx, ctx, rq);
290
291 }
292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
293
294 void blk_mq_free_request(struct request *rq)
295 {
296 struct blk_mq_hw_ctx *hctx;
297 struct request_queue *q = rq->q;
298
299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 blk_mq_free_hctx_request(hctx, rq);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_free_request);
303
304 inline void __blk_mq_end_request(struct request *rq, int error)
305 {
306 blk_account_io_done(rq);
307
308 if (rq->end_io) {
309 rq->end_io(rq, error);
310 } else {
311 if (unlikely(blk_bidi_rq(rq)))
312 blk_mq_free_request(rq->next_rq);
313 blk_mq_free_request(rq);
314 }
315 }
316 EXPORT_SYMBOL(__blk_mq_end_request);
317
318 void blk_mq_end_request(struct request *rq, int error)
319 {
320 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 BUG();
322 __blk_mq_end_request(rq, error);
323 }
324 EXPORT_SYMBOL(blk_mq_end_request);
325
326 static void __blk_mq_complete_request_remote(void *data)
327 {
328 struct request *rq = data;
329
330 rq->q->softirq_done_fn(rq);
331 }
332
333 static void blk_mq_ipi_complete_request(struct request *rq)
334 {
335 struct blk_mq_ctx *ctx = rq->mq_ctx;
336 bool shared = false;
337 int cpu;
338
339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 rq->q->softirq_done_fn(rq);
341 return;
342 }
343
344 cpu = get_cpu();
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 shared = cpus_share_cache(cpu, ctx->cpu);
347
348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349 rq->csd.func = __blk_mq_complete_request_remote;
350 rq->csd.info = rq;
351 rq->csd.flags = 0;
352 smp_call_function_single_async(ctx->cpu, &rq->csd);
353 } else {
354 rq->q->softirq_done_fn(rq);
355 }
356 put_cpu();
357 }
358
359 static void __blk_mq_complete_request(struct request *rq)
360 {
361 struct request_queue *q = rq->q;
362
363 if (!q->softirq_done_fn)
364 blk_mq_end_request(rq, rq->errors);
365 else
366 blk_mq_ipi_complete_request(rq);
367 }
368
369 /**
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
372 *
373 * Description:
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
376 **/
377 void blk_mq_complete_request(struct request *rq, int error)
378 {
379 struct request_queue *q = rq->q;
380
381 if (unlikely(blk_should_fake_timeout(q)))
382 return;
383 if (!blk_mark_rq_complete(rq)) {
384 rq->errors = error;
385 __blk_mq_complete_request(rq);
386 }
387 }
388 EXPORT_SYMBOL(blk_mq_complete_request);
389
390 int blk_mq_request_started(struct request *rq)
391 {
392 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393 }
394 EXPORT_SYMBOL_GPL(blk_mq_request_started);
395
396 void blk_mq_start_request(struct request *rq)
397 {
398 struct request_queue *q = rq->q;
399
400 trace_block_rq_issue(q, rq);
401
402 rq->resid_len = blk_rq_bytes(rq);
403 if (unlikely(blk_bidi_rq(rq)))
404 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
405
406 blk_add_timer(rq);
407
408 /*
409 * Ensure that ->deadline is visible before set the started
410 * flag and clear the completed flag.
411 */
412 smp_mb__before_atomic();
413
414 /*
415 * Mark us as started and clear complete. Complete might have been
416 * set if requeue raced with timeout, which then marked it as
417 * complete. So be sure to clear complete again when we start
418 * the request, otherwise we'll ignore the completion event.
419 */
420 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
421 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
423 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424
425 if (q->dma_drain_size && blk_rq_bytes(rq)) {
426 /*
427 * Make sure space for the drain appears. We know we can do
428 * this because max_hw_segments has been adjusted to be one
429 * fewer than the device can handle.
430 */
431 rq->nr_phys_segments++;
432 }
433 }
434 EXPORT_SYMBOL(blk_mq_start_request);
435
436 static void __blk_mq_requeue_request(struct request *rq)
437 {
438 struct request_queue *q = rq->q;
439
440 trace_block_rq_requeue(q, rq);
441
442 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
443 if (q->dma_drain_size && blk_rq_bytes(rq))
444 rq->nr_phys_segments--;
445 }
446 }
447
448 void blk_mq_requeue_request(struct request *rq)
449 {
450 __blk_mq_requeue_request(rq);
451
452 BUG_ON(blk_queued_rq(rq));
453 blk_mq_add_to_requeue_list(rq, true);
454 }
455 EXPORT_SYMBOL(blk_mq_requeue_request);
456
457 static void blk_mq_requeue_work(struct work_struct *work)
458 {
459 struct request_queue *q =
460 container_of(work, struct request_queue, requeue_work);
461 LIST_HEAD(rq_list);
462 struct request *rq, *next;
463 unsigned long flags;
464
465 spin_lock_irqsave(&q->requeue_lock, flags);
466 list_splice_init(&q->requeue_list, &rq_list);
467 spin_unlock_irqrestore(&q->requeue_lock, flags);
468
469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
471 continue;
472
473 rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 list_del_init(&rq->queuelist);
475 blk_mq_insert_request(rq, true, false, false);
476 }
477
478 while (!list_empty(&rq_list)) {
479 rq = list_entry(rq_list.next, struct request, queuelist);
480 list_del_init(&rq->queuelist);
481 blk_mq_insert_request(rq, false, false, false);
482 }
483
484 /*
485 * Use the start variant of queue running here, so that running
486 * the requeue work will kick stopped queues.
487 */
488 blk_mq_start_hw_queues(q);
489 }
490
491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
492 {
493 struct request_queue *q = rq->q;
494 unsigned long flags;
495
496 /*
497 * We abuse this flag that is otherwise used by the I/O scheduler to
498 * request head insertation from the workqueue.
499 */
500 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
501
502 spin_lock_irqsave(&q->requeue_lock, flags);
503 if (at_head) {
504 rq->cmd_flags |= REQ_SOFTBARRIER;
505 list_add(&rq->queuelist, &q->requeue_list);
506 } else {
507 list_add_tail(&rq->queuelist, &q->requeue_list);
508 }
509 spin_unlock_irqrestore(&q->requeue_lock, flags);
510 }
511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
512
513 void blk_mq_cancel_requeue_work(struct request_queue *q)
514 {
515 cancel_work_sync(&q->requeue_work);
516 }
517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
518
519 void blk_mq_kick_requeue_list(struct request_queue *q)
520 {
521 kblockd_schedule_work(&q->requeue_work);
522 }
523 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
524
525 void blk_mq_abort_requeue_list(struct request_queue *q)
526 {
527 unsigned long flags;
528 LIST_HEAD(rq_list);
529
530 spin_lock_irqsave(&q->requeue_lock, flags);
531 list_splice_init(&q->requeue_list, &rq_list);
532 spin_unlock_irqrestore(&q->requeue_lock, flags);
533
534 while (!list_empty(&rq_list)) {
535 struct request *rq;
536
537 rq = list_first_entry(&rq_list, struct request, queuelist);
538 list_del_init(&rq->queuelist);
539 rq->errors = -EIO;
540 blk_mq_end_request(rq, rq->errors);
541 }
542 }
543 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
544
545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
546 {
547 return tags->rqs[tag];
548 }
549 EXPORT_SYMBOL(blk_mq_tag_to_rq);
550
551 struct blk_mq_timeout_data {
552 unsigned long next;
553 unsigned int next_set;
554 };
555
556 void blk_mq_rq_timed_out(struct request *req, bool reserved)
557 {
558 struct blk_mq_ops *ops = req->q->mq_ops;
559 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
560
561 /*
562 * We know that complete is set at this point. If STARTED isn't set
563 * anymore, then the request isn't active and the "timeout" should
564 * just be ignored. This can happen due to the bitflag ordering.
565 * Timeout first checks if STARTED is set, and if it is, assumes
566 * the request is active. But if we race with completion, then
567 * we both flags will get cleared. So check here again, and ignore
568 * a timeout event with a request that isn't active.
569 */
570 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
571 return;
572
573 if (ops->timeout)
574 ret = ops->timeout(req, reserved);
575
576 switch (ret) {
577 case BLK_EH_HANDLED:
578 __blk_mq_complete_request(req);
579 break;
580 case BLK_EH_RESET_TIMER:
581 blk_add_timer(req);
582 blk_clear_rq_complete(req);
583 break;
584 case BLK_EH_NOT_HANDLED:
585 break;
586 default:
587 printk(KERN_ERR "block: bad eh return: %d\n", ret);
588 break;
589 }
590 }
591
592 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
593 struct request *rq, void *priv, bool reserved)
594 {
595 struct blk_mq_timeout_data *data = priv;
596
597 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
598 /*
599 * If a request wasn't started before the queue was
600 * marked dying, kill it here or it'll go unnoticed.
601 */
602 if (unlikely(blk_queue_dying(rq->q))) {
603 rq->errors = -EIO;
604 blk_mq_end_request(rq, rq->errors);
605 }
606 return;
607 }
608
609 if (time_after_eq(jiffies, rq->deadline)) {
610 if (!blk_mark_rq_complete(rq))
611 blk_mq_rq_timed_out(rq, reserved);
612 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
613 data->next = rq->deadline;
614 data->next_set = 1;
615 }
616 }
617
618 static void blk_mq_timeout_work(struct work_struct *work)
619 {
620 struct request_queue *q =
621 container_of(work, struct request_queue, timeout_work);
622 struct blk_mq_timeout_data data = {
623 .next = 0,
624 .next_set = 0,
625 };
626 int i;
627
628 if (blk_queue_enter(q, true))
629 return;
630
631 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
632
633 if (data.next_set) {
634 data.next = blk_rq_timeout(round_jiffies_up(data.next));
635 mod_timer(&q->timeout, data.next);
636 } else {
637 struct blk_mq_hw_ctx *hctx;
638
639 queue_for_each_hw_ctx(q, hctx, i) {
640 /* the hctx may be unmapped, so check it here */
641 if (blk_mq_hw_queue_mapped(hctx))
642 blk_mq_tag_idle(hctx);
643 }
644 }
645 blk_queue_exit(q);
646 }
647
648 /*
649 * Reverse check our software queue for entries that we could potentially
650 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
651 * too much time checking for merges.
652 */
653 static bool blk_mq_attempt_merge(struct request_queue *q,
654 struct blk_mq_ctx *ctx, struct bio *bio)
655 {
656 struct request *rq;
657 int checked = 8;
658
659 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
660 int el_ret;
661
662 if (!checked--)
663 break;
664
665 if (!blk_rq_merge_ok(rq, bio))
666 continue;
667
668 el_ret = blk_try_merge(rq, bio);
669 if (el_ret == ELEVATOR_BACK_MERGE) {
670 if (bio_attempt_back_merge(q, rq, bio)) {
671 ctx->rq_merged++;
672 return true;
673 }
674 break;
675 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
676 if (bio_attempt_front_merge(q, rq, bio)) {
677 ctx->rq_merged++;
678 return true;
679 }
680 break;
681 }
682 }
683
684 return false;
685 }
686
687 /*
688 * Process software queues that have been marked busy, splicing them
689 * to the for-dispatch
690 */
691 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
692 {
693 struct blk_mq_ctx *ctx;
694 int i;
695
696 for (i = 0; i < hctx->ctx_map.size; i++) {
697 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
698 unsigned int off, bit;
699
700 if (!bm->word)
701 continue;
702
703 bit = 0;
704 off = i * hctx->ctx_map.bits_per_word;
705 do {
706 bit = find_next_bit(&bm->word, bm->depth, bit);
707 if (bit >= bm->depth)
708 break;
709
710 ctx = hctx->ctxs[bit + off];
711 clear_bit(bit, &bm->word);
712 spin_lock(&ctx->lock);
713 list_splice_tail_init(&ctx->rq_list, list);
714 spin_unlock(&ctx->lock);
715
716 bit++;
717 } while (1);
718 }
719 }
720
721 /*
722 * Run this hardware queue, pulling any software queues mapped to it in.
723 * Note that this function currently has various problems around ordering
724 * of IO. In particular, we'd like FIFO behaviour on handling existing
725 * items on the hctx->dispatch list. Ignore that for now.
726 */
727 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
728 {
729 struct request_queue *q = hctx->queue;
730 struct request *rq;
731 LIST_HEAD(rq_list);
732 LIST_HEAD(driver_list);
733 struct list_head *dptr;
734 int queued;
735
736 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
737
738 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
739 return;
740
741 hctx->run++;
742
743 /*
744 * Touch any software queue that has pending entries.
745 */
746 flush_busy_ctxs(hctx, &rq_list);
747
748 /*
749 * If we have previous entries on our dispatch list, grab them
750 * and stuff them at the front for more fair dispatch.
751 */
752 if (!list_empty_careful(&hctx->dispatch)) {
753 spin_lock(&hctx->lock);
754 if (!list_empty(&hctx->dispatch))
755 list_splice_init(&hctx->dispatch, &rq_list);
756 spin_unlock(&hctx->lock);
757 }
758
759 /*
760 * Start off with dptr being NULL, so we start the first request
761 * immediately, even if we have more pending.
762 */
763 dptr = NULL;
764
765 /*
766 * Now process all the entries, sending them to the driver.
767 */
768 queued = 0;
769 while (!list_empty(&rq_list)) {
770 struct blk_mq_queue_data bd;
771 int ret;
772
773 rq = list_first_entry(&rq_list, struct request, queuelist);
774 list_del_init(&rq->queuelist);
775
776 bd.rq = rq;
777 bd.list = dptr;
778 bd.last = list_empty(&rq_list);
779
780 ret = q->mq_ops->queue_rq(hctx, &bd);
781 switch (ret) {
782 case BLK_MQ_RQ_QUEUE_OK:
783 queued++;
784 continue;
785 case BLK_MQ_RQ_QUEUE_BUSY:
786 list_add(&rq->queuelist, &rq_list);
787 __blk_mq_requeue_request(rq);
788 break;
789 default:
790 pr_err("blk-mq: bad return on queue: %d\n", ret);
791 case BLK_MQ_RQ_QUEUE_ERROR:
792 rq->errors = -EIO;
793 blk_mq_end_request(rq, rq->errors);
794 break;
795 }
796
797 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
798 break;
799
800 /*
801 * We've done the first request. If we have more than 1
802 * left in the list, set dptr to defer issue.
803 */
804 if (!dptr && rq_list.next != rq_list.prev)
805 dptr = &driver_list;
806 }
807
808 if (!queued)
809 hctx->dispatched[0]++;
810 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
811 hctx->dispatched[ilog2(queued) + 1]++;
812
813 /*
814 * Any items that need requeuing? Stuff them into hctx->dispatch,
815 * that is where we will continue on next queue run.
816 */
817 if (!list_empty(&rq_list)) {
818 spin_lock(&hctx->lock);
819 list_splice(&rq_list, &hctx->dispatch);
820 spin_unlock(&hctx->lock);
821 /*
822 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
823 * it's possible the queue is stopped and restarted again
824 * before this. Queue restart will dispatch requests. And since
825 * requests in rq_list aren't added into hctx->dispatch yet,
826 * the requests in rq_list might get lost.
827 *
828 * blk_mq_run_hw_queue() already checks the STOPPED bit
829 **/
830 blk_mq_run_hw_queue(hctx, true);
831 }
832 }
833
834 /*
835 * It'd be great if the workqueue API had a way to pass
836 * in a mask and had some smarts for more clever placement.
837 * For now we just round-robin here, switching for every
838 * BLK_MQ_CPU_WORK_BATCH queued items.
839 */
840 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
841 {
842 if (hctx->queue->nr_hw_queues == 1)
843 return WORK_CPU_UNBOUND;
844
845 if (--hctx->next_cpu_batch <= 0) {
846 int cpu = hctx->next_cpu, next_cpu;
847
848 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
849 if (next_cpu >= nr_cpu_ids)
850 next_cpu = cpumask_first(hctx->cpumask);
851
852 hctx->next_cpu = next_cpu;
853 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
854
855 return cpu;
856 }
857
858 return hctx->next_cpu;
859 }
860
861 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
862 {
863 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
864 !blk_mq_hw_queue_mapped(hctx)))
865 return;
866
867 if (!async) {
868 int cpu = get_cpu();
869 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
870 __blk_mq_run_hw_queue(hctx);
871 put_cpu();
872 return;
873 }
874
875 put_cpu();
876 }
877
878 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
879 &hctx->run_work, 0);
880 }
881
882 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
883 {
884 struct blk_mq_hw_ctx *hctx;
885 int i;
886
887 queue_for_each_hw_ctx(q, hctx, i) {
888 if ((!blk_mq_hctx_has_pending(hctx) &&
889 list_empty_careful(&hctx->dispatch)) ||
890 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
891 continue;
892
893 blk_mq_run_hw_queue(hctx, async);
894 }
895 }
896 EXPORT_SYMBOL(blk_mq_run_hw_queues);
897
898 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
899 {
900 cancel_delayed_work(&hctx->run_work);
901 cancel_delayed_work(&hctx->delay_work);
902 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
903 }
904 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
905
906 void blk_mq_stop_hw_queues(struct request_queue *q)
907 {
908 struct blk_mq_hw_ctx *hctx;
909 int i;
910
911 queue_for_each_hw_ctx(q, hctx, i)
912 blk_mq_stop_hw_queue(hctx);
913 }
914 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
915
916 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
917 {
918 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
919
920 blk_mq_run_hw_queue(hctx, false);
921 }
922 EXPORT_SYMBOL(blk_mq_start_hw_queue);
923
924 void blk_mq_start_hw_queues(struct request_queue *q)
925 {
926 struct blk_mq_hw_ctx *hctx;
927 int i;
928
929 queue_for_each_hw_ctx(q, hctx, i)
930 blk_mq_start_hw_queue(hctx);
931 }
932 EXPORT_SYMBOL(blk_mq_start_hw_queues);
933
934 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
935 {
936 struct blk_mq_hw_ctx *hctx;
937 int i;
938
939 queue_for_each_hw_ctx(q, hctx, i) {
940 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
941 continue;
942
943 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
944 blk_mq_run_hw_queue(hctx, async);
945 }
946 }
947 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
948
949 static void blk_mq_run_work_fn(struct work_struct *work)
950 {
951 struct blk_mq_hw_ctx *hctx;
952
953 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
954
955 __blk_mq_run_hw_queue(hctx);
956 }
957
958 static void blk_mq_delay_work_fn(struct work_struct *work)
959 {
960 struct blk_mq_hw_ctx *hctx;
961
962 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
963
964 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
965 __blk_mq_run_hw_queue(hctx);
966 }
967
968 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
969 {
970 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
971 return;
972
973 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
974 &hctx->delay_work, msecs_to_jiffies(msecs));
975 }
976 EXPORT_SYMBOL(blk_mq_delay_queue);
977
978 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
979 struct blk_mq_ctx *ctx,
980 struct request *rq,
981 bool at_head)
982 {
983 trace_block_rq_insert(hctx->queue, rq);
984
985 if (at_head)
986 list_add(&rq->queuelist, &ctx->rq_list);
987 else
988 list_add_tail(&rq->queuelist, &ctx->rq_list);
989 }
990
991 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
992 struct request *rq, bool at_head)
993 {
994 struct blk_mq_ctx *ctx = rq->mq_ctx;
995
996 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
997 blk_mq_hctx_mark_pending(hctx, ctx);
998 }
999
1000 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1001 bool async)
1002 {
1003 struct request_queue *q = rq->q;
1004 struct blk_mq_hw_ctx *hctx;
1005 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1006
1007 current_ctx = blk_mq_get_ctx(q);
1008 if (!cpu_online(ctx->cpu))
1009 rq->mq_ctx = ctx = current_ctx;
1010
1011 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1012
1013 spin_lock(&ctx->lock);
1014 __blk_mq_insert_request(hctx, rq, at_head);
1015 spin_unlock(&ctx->lock);
1016
1017 if (run_queue)
1018 blk_mq_run_hw_queue(hctx, async);
1019
1020 blk_mq_put_ctx(current_ctx);
1021 }
1022
1023 static void blk_mq_insert_requests(struct request_queue *q,
1024 struct blk_mq_ctx *ctx,
1025 struct list_head *list,
1026 int depth,
1027 bool from_schedule)
1028
1029 {
1030 struct blk_mq_hw_ctx *hctx;
1031 struct blk_mq_ctx *current_ctx;
1032
1033 trace_block_unplug(q, depth, !from_schedule);
1034
1035 current_ctx = blk_mq_get_ctx(q);
1036
1037 if (!cpu_online(ctx->cpu))
1038 ctx = current_ctx;
1039 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1040
1041 /*
1042 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1043 * offline now
1044 */
1045 spin_lock(&ctx->lock);
1046 while (!list_empty(list)) {
1047 struct request *rq;
1048
1049 rq = list_first_entry(list, struct request, queuelist);
1050 list_del_init(&rq->queuelist);
1051 rq->mq_ctx = ctx;
1052 __blk_mq_insert_req_list(hctx, ctx, rq, false);
1053 }
1054 blk_mq_hctx_mark_pending(hctx, ctx);
1055 spin_unlock(&ctx->lock);
1056
1057 blk_mq_run_hw_queue(hctx, from_schedule);
1058 blk_mq_put_ctx(current_ctx);
1059 }
1060
1061 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1062 {
1063 struct request *rqa = container_of(a, struct request, queuelist);
1064 struct request *rqb = container_of(b, struct request, queuelist);
1065
1066 return !(rqa->mq_ctx < rqb->mq_ctx ||
1067 (rqa->mq_ctx == rqb->mq_ctx &&
1068 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1069 }
1070
1071 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1072 {
1073 struct blk_mq_ctx *this_ctx;
1074 struct request_queue *this_q;
1075 struct request *rq;
1076 LIST_HEAD(list);
1077 LIST_HEAD(ctx_list);
1078 unsigned int depth;
1079
1080 list_splice_init(&plug->mq_list, &list);
1081
1082 list_sort(NULL, &list, plug_ctx_cmp);
1083
1084 this_q = NULL;
1085 this_ctx = NULL;
1086 depth = 0;
1087
1088 while (!list_empty(&list)) {
1089 rq = list_entry_rq(list.next);
1090 list_del_init(&rq->queuelist);
1091 BUG_ON(!rq->q);
1092 if (rq->mq_ctx != this_ctx) {
1093 if (this_ctx) {
1094 blk_mq_insert_requests(this_q, this_ctx,
1095 &ctx_list, depth,
1096 from_schedule);
1097 }
1098
1099 this_ctx = rq->mq_ctx;
1100 this_q = rq->q;
1101 depth = 0;
1102 }
1103
1104 depth++;
1105 list_add_tail(&rq->queuelist, &ctx_list);
1106 }
1107
1108 /*
1109 * If 'this_ctx' is set, we know we have entries to complete
1110 * on 'ctx_list'. Do those.
1111 */
1112 if (this_ctx) {
1113 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1114 from_schedule);
1115 }
1116 }
1117
1118 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1119 {
1120 init_request_from_bio(rq, bio);
1121
1122 if (blk_do_io_stat(rq))
1123 blk_account_io_start(rq, 1);
1124 }
1125
1126 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1127 {
1128 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1129 !blk_queue_nomerges(hctx->queue);
1130 }
1131
1132 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1133 struct blk_mq_ctx *ctx,
1134 struct request *rq, struct bio *bio)
1135 {
1136 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1137 blk_mq_bio_to_request(rq, bio);
1138 spin_lock(&ctx->lock);
1139 insert_rq:
1140 __blk_mq_insert_request(hctx, rq, false);
1141 spin_unlock(&ctx->lock);
1142 return false;
1143 } else {
1144 struct request_queue *q = hctx->queue;
1145
1146 spin_lock(&ctx->lock);
1147 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1148 blk_mq_bio_to_request(rq, bio);
1149 goto insert_rq;
1150 }
1151
1152 spin_unlock(&ctx->lock);
1153 __blk_mq_free_request(hctx, ctx, rq);
1154 return true;
1155 }
1156 }
1157
1158 struct blk_map_ctx {
1159 struct blk_mq_hw_ctx *hctx;
1160 struct blk_mq_ctx *ctx;
1161 };
1162
1163 static struct request *blk_mq_map_request(struct request_queue *q,
1164 struct bio *bio,
1165 struct blk_map_ctx *data)
1166 {
1167 struct blk_mq_hw_ctx *hctx;
1168 struct blk_mq_ctx *ctx;
1169 struct request *rq;
1170 int rw = bio_data_dir(bio);
1171 struct blk_mq_alloc_data alloc_data;
1172
1173 blk_queue_enter_live(q);
1174 ctx = blk_mq_get_ctx(q);
1175 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1176
1177 if (rw_is_sync(bio->bi_rw))
1178 rw |= REQ_SYNC;
1179
1180 trace_block_getrq(q, bio, rw);
1181 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1182 rq = __blk_mq_alloc_request(&alloc_data, rw);
1183 if (unlikely(!rq)) {
1184 __blk_mq_run_hw_queue(hctx);
1185 blk_mq_put_ctx(ctx);
1186 trace_block_sleeprq(q, bio, rw);
1187
1188 ctx = blk_mq_get_ctx(q);
1189 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1190 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1191 rq = __blk_mq_alloc_request(&alloc_data, rw);
1192 ctx = alloc_data.ctx;
1193 hctx = alloc_data.hctx;
1194 }
1195
1196 hctx->queued++;
1197 data->hctx = hctx;
1198 data->ctx = ctx;
1199 return rq;
1200 }
1201
1202 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1203 {
1204 int ret;
1205 struct request_queue *q = rq->q;
1206 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1207 rq->mq_ctx->cpu);
1208 struct blk_mq_queue_data bd = {
1209 .rq = rq,
1210 .list = NULL,
1211 .last = 1
1212 };
1213 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1214
1215 /*
1216 * For OK queue, we are done. For error, kill it. Any other
1217 * error (busy), just add it to our list as we previously
1218 * would have done
1219 */
1220 ret = q->mq_ops->queue_rq(hctx, &bd);
1221 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1222 *cookie = new_cookie;
1223 return 0;
1224 }
1225
1226 __blk_mq_requeue_request(rq);
1227
1228 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1229 *cookie = BLK_QC_T_NONE;
1230 rq->errors = -EIO;
1231 blk_mq_end_request(rq, rq->errors);
1232 return 0;
1233 }
1234
1235 return -1;
1236 }
1237
1238 /*
1239 * Multiple hardware queue variant. This will not use per-process plugs,
1240 * but will attempt to bypass the hctx queueing if we can go straight to
1241 * hardware for SYNC IO.
1242 */
1243 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1244 {
1245 const int is_sync = rw_is_sync(bio->bi_rw);
1246 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1247 struct blk_map_ctx data;
1248 struct request *rq;
1249 unsigned int request_count = 0;
1250 struct blk_plug *plug;
1251 struct request *same_queue_rq = NULL;
1252 blk_qc_t cookie;
1253
1254 blk_queue_bounce(q, &bio);
1255
1256 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1257 bio_io_error(bio);
1258 return BLK_QC_T_NONE;
1259 }
1260
1261 blk_queue_split(q, &bio, q->bio_split);
1262
1263 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1264 if (blk_attempt_plug_merge(q, bio, &request_count,
1265 &same_queue_rq))
1266 return BLK_QC_T_NONE;
1267 } else
1268 request_count = blk_plug_queued_count(q);
1269
1270 rq = blk_mq_map_request(q, bio, &data);
1271 if (unlikely(!rq))
1272 return BLK_QC_T_NONE;
1273
1274 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1275
1276 if (unlikely(is_flush_fua)) {
1277 blk_mq_bio_to_request(rq, bio);
1278 blk_insert_flush(rq);
1279 goto run_queue;
1280 }
1281
1282 plug = current->plug;
1283 /*
1284 * If the driver supports defer issued based on 'last', then
1285 * queue it up like normal since we can potentially save some
1286 * CPU this way.
1287 */
1288 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1289 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1290 struct request *old_rq = NULL;
1291
1292 blk_mq_bio_to_request(rq, bio);
1293
1294 /*
1295 * We do limited pluging. If the bio can be merged, do that.
1296 * Otherwise the existing request in the plug list will be
1297 * issued. So the plug list will have one request at most
1298 */
1299 if (plug) {
1300 /*
1301 * The plug list might get flushed before this. If that
1302 * happens, same_queue_rq is invalid and plug list is
1303 * empty
1304 */
1305 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1306 old_rq = same_queue_rq;
1307 list_del_init(&old_rq->queuelist);
1308 }
1309 list_add_tail(&rq->queuelist, &plug->mq_list);
1310 } else /* is_sync */
1311 old_rq = rq;
1312 blk_mq_put_ctx(data.ctx);
1313 if (!old_rq)
1314 goto done;
1315 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1316 goto done;
1317 blk_mq_insert_request(old_rq, false, true, true);
1318 goto done;
1319 }
1320
1321 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1322 /*
1323 * For a SYNC request, send it to the hardware immediately. For
1324 * an ASYNC request, just ensure that we run it later on. The
1325 * latter allows for merging opportunities and more efficient
1326 * dispatching.
1327 */
1328 run_queue:
1329 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1330 }
1331 blk_mq_put_ctx(data.ctx);
1332 done:
1333 return cookie;
1334 }
1335
1336 /*
1337 * Single hardware queue variant. This will attempt to use any per-process
1338 * plug for merging and IO deferral.
1339 */
1340 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1341 {
1342 const int is_sync = rw_is_sync(bio->bi_rw);
1343 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1344 struct blk_plug *plug;
1345 unsigned int request_count = 0;
1346 struct blk_map_ctx data;
1347 struct request *rq;
1348 blk_qc_t cookie;
1349
1350 blk_queue_bounce(q, &bio);
1351
1352 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1353 bio_io_error(bio);
1354 return BLK_QC_T_NONE;
1355 }
1356
1357 blk_queue_split(q, &bio, q->bio_split);
1358
1359 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1360 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1361 return BLK_QC_T_NONE;
1362
1363 rq = blk_mq_map_request(q, bio, &data);
1364 if (unlikely(!rq))
1365 return BLK_QC_T_NONE;
1366
1367 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1368
1369 if (unlikely(is_flush_fua)) {
1370 blk_mq_bio_to_request(rq, bio);
1371 blk_insert_flush(rq);
1372 goto run_queue;
1373 }
1374
1375 /*
1376 * A task plug currently exists. Since this is completely lockless,
1377 * utilize that to temporarily store requests until the task is
1378 * either done or scheduled away.
1379 */
1380 plug = current->plug;
1381 if (plug) {
1382 blk_mq_bio_to_request(rq, bio);
1383 if (!request_count)
1384 trace_block_plug(q);
1385
1386 blk_mq_put_ctx(data.ctx);
1387
1388 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1389 blk_flush_plug_list(plug, false);
1390 trace_block_plug(q);
1391 }
1392
1393 list_add_tail(&rq->queuelist, &plug->mq_list);
1394 return cookie;
1395 }
1396
1397 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1398 /*
1399 * For a SYNC request, send it to the hardware immediately. For
1400 * an ASYNC request, just ensure that we run it later on. The
1401 * latter allows for merging opportunities and more efficient
1402 * dispatching.
1403 */
1404 run_queue:
1405 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1406 }
1407
1408 blk_mq_put_ctx(data.ctx);
1409 return cookie;
1410 }
1411
1412 /*
1413 * Default mapping to a software queue, since we use one per CPU.
1414 */
1415 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1416 {
1417 return q->queue_hw_ctx[q->mq_map[cpu]];
1418 }
1419 EXPORT_SYMBOL(blk_mq_map_queue);
1420
1421 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1422 struct blk_mq_tags *tags, unsigned int hctx_idx)
1423 {
1424 struct page *page;
1425
1426 if (tags->rqs && set->ops->exit_request) {
1427 int i;
1428
1429 for (i = 0; i < tags->nr_tags; i++) {
1430 if (!tags->rqs[i])
1431 continue;
1432 set->ops->exit_request(set->driver_data, tags->rqs[i],
1433 hctx_idx, i);
1434 tags->rqs[i] = NULL;
1435 }
1436 }
1437
1438 while (!list_empty(&tags->page_list)) {
1439 page = list_first_entry(&tags->page_list, struct page, lru);
1440 list_del_init(&page->lru);
1441 /*
1442 * Remove kmemleak object previously allocated in
1443 * blk_mq_init_rq_map().
1444 */
1445 kmemleak_free(page_address(page));
1446 __free_pages(page, page->private);
1447 }
1448
1449 kfree(tags->rqs);
1450
1451 blk_mq_free_tags(tags);
1452 }
1453
1454 static size_t order_to_size(unsigned int order)
1455 {
1456 return (size_t)PAGE_SIZE << order;
1457 }
1458
1459 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1460 unsigned int hctx_idx)
1461 {
1462 struct blk_mq_tags *tags;
1463 unsigned int i, j, entries_per_page, max_order = 4;
1464 size_t rq_size, left;
1465
1466 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1467 set->numa_node,
1468 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1469 if (!tags)
1470 return NULL;
1471
1472 INIT_LIST_HEAD(&tags->page_list);
1473
1474 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1475 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1476 set->numa_node);
1477 if (!tags->rqs) {
1478 blk_mq_free_tags(tags);
1479 return NULL;
1480 }
1481
1482 /*
1483 * rq_size is the size of the request plus driver payload, rounded
1484 * to the cacheline size
1485 */
1486 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1487 cache_line_size());
1488 left = rq_size * set->queue_depth;
1489
1490 for (i = 0; i < set->queue_depth; ) {
1491 int this_order = max_order;
1492 struct page *page;
1493 int to_do;
1494 void *p;
1495
1496 while (left < order_to_size(this_order - 1) && this_order)
1497 this_order--;
1498
1499 do {
1500 page = alloc_pages_node(set->numa_node,
1501 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1502 this_order);
1503 if (page)
1504 break;
1505 if (!this_order--)
1506 break;
1507 if (order_to_size(this_order) < rq_size)
1508 break;
1509 } while (1);
1510
1511 if (!page)
1512 goto fail;
1513
1514 page->private = this_order;
1515 list_add_tail(&page->lru, &tags->page_list);
1516
1517 p = page_address(page);
1518 /*
1519 * Allow kmemleak to scan these pages as they contain pointers
1520 * to additional allocations like via ops->init_request().
1521 */
1522 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1523 entries_per_page = order_to_size(this_order) / rq_size;
1524 to_do = min(entries_per_page, set->queue_depth - i);
1525 left -= to_do * rq_size;
1526 for (j = 0; j < to_do; j++) {
1527 tags->rqs[i] = p;
1528 if (set->ops->init_request) {
1529 if (set->ops->init_request(set->driver_data,
1530 tags->rqs[i], hctx_idx, i,
1531 set->numa_node)) {
1532 tags->rqs[i] = NULL;
1533 goto fail;
1534 }
1535 }
1536
1537 p += rq_size;
1538 i++;
1539 }
1540 }
1541 return tags;
1542
1543 fail:
1544 blk_mq_free_rq_map(set, tags, hctx_idx);
1545 return NULL;
1546 }
1547
1548 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1549 {
1550 kfree(bitmap->map);
1551 }
1552
1553 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1554 {
1555 unsigned int bpw = 8, total, num_maps, i;
1556
1557 bitmap->bits_per_word = bpw;
1558
1559 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1560 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1561 GFP_KERNEL, node);
1562 if (!bitmap->map)
1563 return -ENOMEM;
1564
1565 total = nr_cpu_ids;
1566 for (i = 0; i < num_maps; i++) {
1567 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1568 total -= bitmap->map[i].depth;
1569 }
1570
1571 return 0;
1572 }
1573
1574 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1575 {
1576 struct request_queue *q = hctx->queue;
1577 struct blk_mq_ctx *ctx;
1578 LIST_HEAD(tmp);
1579
1580 /*
1581 * Move ctx entries to new CPU, if this one is going away.
1582 */
1583 ctx = __blk_mq_get_ctx(q, cpu);
1584
1585 spin_lock(&ctx->lock);
1586 if (!list_empty(&ctx->rq_list)) {
1587 list_splice_init(&ctx->rq_list, &tmp);
1588 blk_mq_hctx_clear_pending(hctx, ctx);
1589 }
1590 spin_unlock(&ctx->lock);
1591
1592 if (list_empty(&tmp))
1593 return NOTIFY_OK;
1594
1595 ctx = blk_mq_get_ctx(q);
1596 spin_lock(&ctx->lock);
1597
1598 while (!list_empty(&tmp)) {
1599 struct request *rq;
1600
1601 rq = list_first_entry(&tmp, struct request, queuelist);
1602 rq->mq_ctx = ctx;
1603 list_move_tail(&rq->queuelist, &ctx->rq_list);
1604 }
1605
1606 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1607 blk_mq_hctx_mark_pending(hctx, ctx);
1608
1609 spin_unlock(&ctx->lock);
1610
1611 blk_mq_run_hw_queue(hctx, true);
1612 blk_mq_put_ctx(ctx);
1613 return NOTIFY_OK;
1614 }
1615
1616 static int blk_mq_hctx_notify(void *data, unsigned long action,
1617 unsigned int cpu)
1618 {
1619 struct blk_mq_hw_ctx *hctx = data;
1620
1621 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1622 return blk_mq_hctx_cpu_offline(hctx, cpu);
1623
1624 /*
1625 * In case of CPU online, tags may be reallocated
1626 * in blk_mq_map_swqueue() after mapping is updated.
1627 */
1628
1629 return NOTIFY_OK;
1630 }
1631
1632 /* hctx->ctxs will be freed in queue's release handler */
1633 static void blk_mq_exit_hctx(struct request_queue *q,
1634 struct blk_mq_tag_set *set,
1635 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1636 {
1637 unsigned flush_start_tag = set->queue_depth;
1638
1639 blk_mq_tag_idle(hctx);
1640
1641 if (set->ops->exit_request)
1642 set->ops->exit_request(set->driver_data,
1643 hctx->fq->flush_rq, hctx_idx,
1644 flush_start_tag + hctx_idx);
1645
1646 if (set->ops->exit_hctx)
1647 set->ops->exit_hctx(hctx, hctx_idx);
1648
1649 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1650 blk_free_flush_queue(hctx->fq);
1651 blk_mq_free_bitmap(&hctx->ctx_map);
1652 }
1653
1654 static void blk_mq_exit_hw_queues(struct request_queue *q,
1655 struct blk_mq_tag_set *set, int nr_queue)
1656 {
1657 struct blk_mq_hw_ctx *hctx;
1658 unsigned int i;
1659
1660 queue_for_each_hw_ctx(q, hctx, i) {
1661 if (i == nr_queue)
1662 break;
1663 blk_mq_exit_hctx(q, set, hctx, i);
1664 }
1665 }
1666
1667 static void blk_mq_free_hw_queues(struct request_queue *q,
1668 struct blk_mq_tag_set *set)
1669 {
1670 struct blk_mq_hw_ctx *hctx;
1671 unsigned int i;
1672
1673 queue_for_each_hw_ctx(q, hctx, i)
1674 free_cpumask_var(hctx->cpumask);
1675 }
1676
1677 static int blk_mq_init_hctx(struct request_queue *q,
1678 struct blk_mq_tag_set *set,
1679 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1680 {
1681 int node;
1682 unsigned flush_start_tag = set->queue_depth;
1683
1684 node = hctx->numa_node;
1685 if (node == NUMA_NO_NODE)
1686 node = hctx->numa_node = set->numa_node;
1687
1688 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1689 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1690 spin_lock_init(&hctx->lock);
1691 INIT_LIST_HEAD(&hctx->dispatch);
1692 hctx->queue = q;
1693 hctx->queue_num = hctx_idx;
1694 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1695
1696 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1697 blk_mq_hctx_notify, hctx);
1698 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1699
1700 hctx->tags = set->tags[hctx_idx];
1701
1702 /*
1703 * Allocate space for all possible cpus to avoid allocation at
1704 * runtime
1705 */
1706 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1707 GFP_KERNEL, node);
1708 if (!hctx->ctxs)
1709 goto unregister_cpu_notifier;
1710
1711 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1712 goto free_ctxs;
1713
1714 hctx->nr_ctx = 0;
1715
1716 if (set->ops->init_hctx &&
1717 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1718 goto free_bitmap;
1719
1720 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1721 if (!hctx->fq)
1722 goto exit_hctx;
1723
1724 if (set->ops->init_request &&
1725 set->ops->init_request(set->driver_data,
1726 hctx->fq->flush_rq, hctx_idx,
1727 flush_start_tag + hctx_idx, node))
1728 goto free_fq;
1729
1730 return 0;
1731
1732 free_fq:
1733 kfree(hctx->fq);
1734 exit_hctx:
1735 if (set->ops->exit_hctx)
1736 set->ops->exit_hctx(hctx, hctx_idx);
1737 free_bitmap:
1738 blk_mq_free_bitmap(&hctx->ctx_map);
1739 free_ctxs:
1740 kfree(hctx->ctxs);
1741 unregister_cpu_notifier:
1742 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1743
1744 return -1;
1745 }
1746
1747 static int blk_mq_init_hw_queues(struct request_queue *q,
1748 struct blk_mq_tag_set *set)
1749 {
1750 struct blk_mq_hw_ctx *hctx;
1751 unsigned int i;
1752
1753 /*
1754 * Initialize hardware queues
1755 */
1756 queue_for_each_hw_ctx(q, hctx, i) {
1757 if (blk_mq_init_hctx(q, set, hctx, i))
1758 break;
1759 }
1760
1761 if (i == q->nr_hw_queues)
1762 return 0;
1763
1764 /*
1765 * Init failed
1766 */
1767 blk_mq_exit_hw_queues(q, set, i);
1768
1769 return 1;
1770 }
1771
1772 static void blk_mq_init_cpu_queues(struct request_queue *q,
1773 unsigned int nr_hw_queues)
1774 {
1775 unsigned int i;
1776
1777 for_each_possible_cpu(i) {
1778 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1779 struct blk_mq_hw_ctx *hctx;
1780
1781 memset(__ctx, 0, sizeof(*__ctx));
1782 __ctx->cpu = i;
1783 spin_lock_init(&__ctx->lock);
1784 INIT_LIST_HEAD(&__ctx->rq_list);
1785 __ctx->queue = q;
1786
1787 /* If the cpu isn't online, the cpu is mapped to first hctx */
1788 if (!cpu_online(i))
1789 continue;
1790
1791 hctx = q->mq_ops->map_queue(q, i);
1792
1793 /*
1794 * Set local node, IFF we have more than one hw queue. If
1795 * not, we remain on the home node of the device
1796 */
1797 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1798 hctx->numa_node = local_memory_node(cpu_to_node(i));
1799 }
1800 }
1801
1802 static void blk_mq_map_swqueue(struct request_queue *q,
1803 const struct cpumask *online_mask)
1804 {
1805 unsigned int i;
1806 struct blk_mq_hw_ctx *hctx;
1807 struct blk_mq_ctx *ctx;
1808 struct blk_mq_tag_set *set = q->tag_set;
1809
1810 /*
1811 * Avoid others reading imcomplete hctx->cpumask through sysfs
1812 */
1813 mutex_lock(&q->sysfs_lock);
1814
1815 queue_for_each_hw_ctx(q, hctx, i) {
1816 cpumask_clear(hctx->cpumask);
1817 hctx->nr_ctx = 0;
1818 }
1819
1820 /*
1821 * Map software to hardware queues
1822 */
1823 queue_for_each_ctx(q, ctx, i) {
1824 /* If the cpu isn't online, the cpu is mapped to first hctx */
1825 if (!cpumask_test_cpu(i, online_mask))
1826 continue;
1827
1828 hctx = q->mq_ops->map_queue(q, i);
1829 cpumask_set_cpu(i, hctx->cpumask);
1830 ctx->index_hw = hctx->nr_ctx;
1831 hctx->ctxs[hctx->nr_ctx++] = ctx;
1832 }
1833
1834 mutex_unlock(&q->sysfs_lock);
1835
1836 queue_for_each_hw_ctx(q, hctx, i) {
1837 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1838
1839 /*
1840 * If no software queues are mapped to this hardware queue,
1841 * disable it and free the request entries.
1842 */
1843 if (!hctx->nr_ctx) {
1844 if (set->tags[i]) {
1845 blk_mq_free_rq_map(set, set->tags[i], i);
1846 set->tags[i] = NULL;
1847 }
1848 hctx->tags = NULL;
1849 continue;
1850 }
1851
1852 /* unmapped hw queue can be remapped after CPU topo changed */
1853 if (!set->tags[i])
1854 set->tags[i] = blk_mq_init_rq_map(set, i);
1855 hctx->tags = set->tags[i];
1856 WARN_ON(!hctx->tags);
1857
1858 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1859 /*
1860 * Set the map size to the number of mapped software queues.
1861 * This is more accurate and more efficient than looping
1862 * over all possibly mapped software queues.
1863 */
1864 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1865
1866 /*
1867 * Initialize batch roundrobin counts
1868 */
1869 hctx->next_cpu = cpumask_first(hctx->cpumask);
1870 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1871 }
1872 }
1873
1874 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1875 {
1876 struct blk_mq_hw_ctx *hctx;
1877 int i;
1878
1879 queue_for_each_hw_ctx(q, hctx, i) {
1880 if (shared)
1881 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1882 else
1883 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1884 }
1885 }
1886
1887 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1888 {
1889 struct request_queue *q;
1890
1891 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1892 blk_mq_freeze_queue(q);
1893 queue_set_hctx_shared(q, shared);
1894 blk_mq_unfreeze_queue(q);
1895 }
1896 }
1897
1898 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1899 {
1900 struct blk_mq_tag_set *set = q->tag_set;
1901
1902 mutex_lock(&set->tag_list_lock);
1903 list_del_init(&q->tag_set_list);
1904 if (list_is_singular(&set->tag_list)) {
1905 /* just transitioned to unshared */
1906 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1907 /* update existing queue */
1908 blk_mq_update_tag_set_depth(set, false);
1909 }
1910 mutex_unlock(&set->tag_list_lock);
1911 }
1912
1913 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1914 struct request_queue *q)
1915 {
1916 q->tag_set = set;
1917
1918 mutex_lock(&set->tag_list_lock);
1919
1920 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1921 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1922 set->flags |= BLK_MQ_F_TAG_SHARED;
1923 /* update existing queue */
1924 blk_mq_update_tag_set_depth(set, true);
1925 }
1926 if (set->flags & BLK_MQ_F_TAG_SHARED)
1927 queue_set_hctx_shared(q, true);
1928 list_add_tail(&q->tag_set_list, &set->tag_list);
1929
1930 mutex_unlock(&set->tag_list_lock);
1931 }
1932
1933 /*
1934 * It is the actual release handler for mq, but we do it from
1935 * request queue's release handler for avoiding use-after-free
1936 * and headache because q->mq_kobj shouldn't have been introduced,
1937 * but we can't group ctx/kctx kobj without it.
1938 */
1939 void blk_mq_release(struct request_queue *q)
1940 {
1941 struct blk_mq_hw_ctx *hctx;
1942 unsigned int i;
1943
1944 /* hctx kobj stays in hctx */
1945 queue_for_each_hw_ctx(q, hctx, i) {
1946 if (!hctx)
1947 continue;
1948 kfree(hctx->ctxs);
1949 kfree(hctx);
1950 }
1951
1952 kfree(q->mq_map);
1953 q->mq_map = NULL;
1954
1955 kfree(q->queue_hw_ctx);
1956
1957 /* ctx kobj stays in queue_ctx */
1958 free_percpu(q->queue_ctx);
1959 }
1960
1961 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1962 {
1963 struct request_queue *uninit_q, *q;
1964
1965 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1966 if (!uninit_q)
1967 return ERR_PTR(-ENOMEM);
1968
1969 q = blk_mq_init_allocated_queue(set, uninit_q);
1970 if (IS_ERR(q))
1971 blk_cleanup_queue(uninit_q);
1972
1973 return q;
1974 }
1975 EXPORT_SYMBOL(blk_mq_init_queue);
1976
1977 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1978 struct request_queue *q)
1979 {
1980 struct blk_mq_hw_ctx **hctxs;
1981 struct blk_mq_ctx __percpu *ctx;
1982 unsigned int *map;
1983 int i;
1984
1985 ctx = alloc_percpu(struct blk_mq_ctx);
1986 if (!ctx)
1987 return ERR_PTR(-ENOMEM);
1988
1989 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1990 set->numa_node);
1991
1992 if (!hctxs)
1993 goto err_percpu;
1994
1995 map = blk_mq_make_queue_map(set);
1996 if (!map)
1997 goto err_map;
1998
1999 for (i = 0; i < set->nr_hw_queues; i++) {
2000 int node = blk_mq_hw_queue_to_node(map, i);
2001
2002 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2003 GFP_KERNEL, node);
2004 if (!hctxs[i])
2005 goto err_hctxs;
2006
2007 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2008 node))
2009 goto err_hctxs;
2010
2011 atomic_set(&hctxs[i]->nr_active, 0);
2012 hctxs[i]->numa_node = node;
2013 hctxs[i]->queue_num = i;
2014 }
2015
2016 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2017 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2018
2019 q->nr_queues = nr_cpu_ids;
2020 q->nr_hw_queues = set->nr_hw_queues;
2021 q->mq_map = map;
2022
2023 q->queue_ctx = ctx;
2024 q->queue_hw_ctx = hctxs;
2025
2026 q->mq_ops = set->ops;
2027 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2028
2029 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2030 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2031
2032 q->sg_reserved_size = INT_MAX;
2033
2034 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2035 INIT_LIST_HEAD(&q->requeue_list);
2036 spin_lock_init(&q->requeue_lock);
2037
2038 if (q->nr_hw_queues > 1)
2039 blk_queue_make_request(q, blk_mq_make_request);
2040 else
2041 blk_queue_make_request(q, blk_sq_make_request);
2042
2043 /*
2044 * Do this after blk_queue_make_request() overrides it...
2045 */
2046 q->nr_requests = set->queue_depth;
2047
2048 if (set->ops->complete)
2049 blk_queue_softirq_done(q, set->ops->complete);
2050
2051 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2052
2053 if (blk_mq_init_hw_queues(q, set))
2054 goto err_hctxs;
2055
2056 get_online_cpus();
2057 mutex_lock(&all_q_mutex);
2058
2059 list_add_tail(&q->all_q_node, &all_q_list);
2060 blk_mq_add_queue_tag_set(set, q);
2061 blk_mq_map_swqueue(q, cpu_online_mask);
2062
2063 mutex_unlock(&all_q_mutex);
2064 put_online_cpus();
2065
2066 return q;
2067
2068 err_hctxs:
2069 kfree(map);
2070 for (i = 0; i < set->nr_hw_queues; i++) {
2071 if (!hctxs[i])
2072 break;
2073 free_cpumask_var(hctxs[i]->cpumask);
2074 kfree(hctxs[i]);
2075 }
2076 err_map:
2077 kfree(hctxs);
2078 err_percpu:
2079 free_percpu(ctx);
2080 return ERR_PTR(-ENOMEM);
2081 }
2082 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2083
2084 void blk_mq_free_queue(struct request_queue *q)
2085 {
2086 struct blk_mq_tag_set *set = q->tag_set;
2087
2088 mutex_lock(&all_q_mutex);
2089 list_del_init(&q->all_q_node);
2090 mutex_unlock(&all_q_mutex);
2091
2092 blk_mq_del_queue_tag_set(q);
2093
2094 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2095 blk_mq_free_hw_queues(q, set);
2096 }
2097
2098 /* Basically redo blk_mq_init_queue with queue frozen */
2099 static void blk_mq_queue_reinit(struct request_queue *q,
2100 const struct cpumask *online_mask)
2101 {
2102 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2103
2104 blk_mq_sysfs_unregister(q);
2105
2106 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2107
2108 /*
2109 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2110 * we should change hctx numa_node according to new topology (this
2111 * involves free and re-allocate memory, worthy doing?)
2112 */
2113
2114 blk_mq_map_swqueue(q, online_mask);
2115
2116 blk_mq_sysfs_register(q);
2117 }
2118
2119 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2120 unsigned long action, void *hcpu)
2121 {
2122 struct request_queue *q;
2123 int cpu = (unsigned long)hcpu;
2124 /*
2125 * New online cpumask which is going to be set in this hotplug event.
2126 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2127 * one-by-one and dynamically allocating this could result in a failure.
2128 */
2129 static struct cpumask online_new;
2130
2131 /*
2132 * Before hotadded cpu starts handling requests, new mappings must
2133 * be established. Otherwise, these requests in hw queue might
2134 * never be dispatched.
2135 *
2136 * For example, there is a single hw queue (hctx) and two CPU queues
2137 * (ctx0 for CPU0, and ctx1 for CPU1).
2138 *
2139 * Now CPU1 is just onlined and a request is inserted into
2140 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2141 * still zero.
2142 *
2143 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2144 * set in pending bitmap and tries to retrieve requests in
2145 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2146 * so the request in ctx1->rq_list is ignored.
2147 */
2148 switch (action & ~CPU_TASKS_FROZEN) {
2149 case CPU_DEAD:
2150 case CPU_UP_CANCELED:
2151 cpumask_copy(&online_new, cpu_online_mask);
2152 break;
2153 case CPU_UP_PREPARE:
2154 cpumask_copy(&online_new, cpu_online_mask);
2155 cpumask_set_cpu(cpu, &online_new);
2156 break;
2157 default:
2158 return NOTIFY_OK;
2159 }
2160
2161 mutex_lock(&all_q_mutex);
2162
2163 /*
2164 * We need to freeze and reinit all existing queues. Freezing
2165 * involves synchronous wait for an RCU grace period and doing it
2166 * one by one may take a long time. Start freezing all queues in
2167 * one swoop and then wait for the completions so that freezing can
2168 * take place in parallel.
2169 */
2170 list_for_each_entry(q, &all_q_list, all_q_node)
2171 blk_mq_freeze_queue_start(q);
2172 list_for_each_entry(q, &all_q_list, all_q_node) {
2173 blk_mq_freeze_queue_wait(q);
2174
2175 /*
2176 * timeout handler can't touch hw queue during the
2177 * reinitialization
2178 */
2179 del_timer_sync(&q->timeout);
2180 }
2181
2182 list_for_each_entry(q, &all_q_list, all_q_node)
2183 blk_mq_queue_reinit(q, &online_new);
2184
2185 list_for_each_entry(q, &all_q_list, all_q_node)
2186 blk_mq_unfreeze_queue(q);
2187
2188 mutex_unlock(&all_q_mutex);
2189 return NOTIFY_OK;
2190 }
2191
2192 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2193 {
2194 int i;
2195
2196 for (i = 0; i < set->nr_hw_queues; i++) {
2197 set->tags[i] = blk_mq_init_rq_map(set, i);
2198 if (!set->tags[i])
2199 goto out_unwind;
2200 }
2201
2202 return 0;
2203
2204 out_unwind:
2205 while (--i >= 0)
2206 blk_mq_free_rq_map(set, set->tags[i], i);
2207
2208 return -ENOMEM;
2209 }
2210
2211 /*
2212 * Allocate the request maps associated with this tag_set. Note that this
2213 * may reduce the depth asked for, if memory is tight. set->queue_depth
2214 * will be updated to reflect the allocated depth.
2215 */
2216 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2217 {
2218 unsigned int depth;
2219 int err;
2220
2221 depth = set->queue_depth;
2222 do {
2223 err = __blk_mq_alloc_rq_maps(set);
2224 if (!err)
2225 break;
2226
2227 set->queue_depth >>= 1;
2228 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2229 err = -ENOMEM;
2230 break;
2231 }
2232 } while (set->queue_depth);
2233
2234 if (!set->queue_depth || err) {
2235 pr_err("blk-mq: failed to allocate request map\n");
2236 return -ENOMEM;
2237 }
2238
2239 if (depth != set->queue_depth)
2240 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2241 depth, set->queue_depth);
2242
2243 return 0;
2244 }
2245
2246 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2247 {
2248 return tags->cpumask;
2249 }
2250 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2251
2252 /*
2253 * Alloc a tag set to be associated with one or more request queues.
2254 * May fail with EINVAL for various error conditions. May adjust the
2255 * requested depth down, if if it too large. In that case, the set
2256 * value will be stored in set->queue_depth.
2257 */
2258 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2259 {
2260 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2261
2262 if (!set->nr_hw_queues)
2263 return -EINVAL;
2264 if (!set->queue_depth)
2265 return -EINVAL;
2266 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2267 return -EINVAL;
2268
2269 if (!set->ops->queue_rq || !set->ops->map_queue)
2270 return -EINVAL;
2271
2272 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2273 pr_info("blk-mq: reduced tag depth to %u\n",
2274 BLK_MQ_MAX_DEPTH);
2275 set->queue_depth = BLK_MQ_MAX_DEPTH;
2276 }
2277
2278 /*
2279 * If a crashdump is active, then we are potentially in a very
2280 * memory constrained environment. Limit us to 1 queue and
2281 * 64 tags to prevent using too much memory.
2282 */
2283 if (is_kdump_kernel()) {
2284 set->nr_hw_queues = 1;
2285 set->queue_depth = min(64U, set->queue_depth);
2286 }
2287
2288 set->tags = kmalloc_node(set->nr_hw_queues *
2289 sizeof(struct blk_mq_tags *),
2290 GFP_KERNEL, set->numa_node);
2291 if (!set->tags)
2292 return -ENOMEM;
2293
2294 if (blk_mq_alloc_rq_maps(set))
2295 goto enomem;
2296
2297 mutex_init(&set->tag_list_lock);
2298 INIT_LIST_HEAD(&set->tag_list);
2299
2300 return 0;
2301 enomem:
2302 kfree(set->tags);
2303 set->tags = NULL;
2304 return -ENOMEM;
2305 }
2306 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2307
2308 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2309 {
2310 int i;
2311
2312 for (i = 0; i < set->nr_hw_queues; i++) {
2313 if (set->tags[i])
2314 blk_mq_free_rq_map(set, set->tags[i], i);
2315 }
2316
2317 kfree(set->tags);
2318 set->tags = NULL;
2319 }
2320 EXPORT_SYMBOL(blk_mq_free_tag_set);
2321
2322 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2323 {
2324 struct blk_mq_tag_set *set = q->tag_set;
2325 struct blk_mq_hw_ctx *hctx;
2326 int i, ret;
2327
2328 if (!set || nr > set->queue_depth)
2329 return -EINVAL;
2330
2331 ret = 0;
2332 queue_for_each_hw_ctx(q, hctx, i) {
2333 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2334 if (ret)
2335 break;
2336 }
2337
2338 if (!ret)
2339 q->nr_requests = nr;
2340
2341 return ret;
2342 }
2343
2344 void blk_mq_disable_hotplug(void)
2345 {
2346 mutex_lock(&all_q_mutex);
2347 }
2348
2349 void blk_mq_enable_hotplug(void)
2350 {
2351 mutex_unlock(&all_q_mutex);
2352 }
2353
2354 static int __init blk_mq_init(void)
2355 {
2356 blk_mq_cpu_init();
2357
2358 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2359
2360 return 0;
2361 }
2362 subsys_initcall(blk_mq_init);
This page took 0.079013 seconds and 5 git commands to generate.