mm, rmap: fix false positive VM_BUG() in page_add_file_rmap()
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25
26 #include <trace/events/block.h>
27
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
38 /*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 unsigned int i;
44
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
48
49 return false;
50 }
51
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54 {
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
61 /*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66 {
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 int freeze_depth;
84
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
87 percpu_ref_kill(&q->q_usage_counter);
88 blk_mq_run_hw_queues(q, false);
89 }
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
153 }
154
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, int op,
163 unsigned int op_flags)
164 {
165 if (blk_queue_io_stat(q))
166 op_flags |= REQ_IO_STAT;
167
168 INIT_LIST_HEAD(&rq->queuelist);
169 /* csd/requeue_work/fifo_time is initialized before use */
170 rq->q = q;
171 rq->mq_ctx = ctx;
172 req_set_op_attrs(rq, op, op_flags);
173 /* do not touch atomic flags, it needs atomic ops against the timer */
174 rq->cpu = -1;
175 INIT_HLIST_NODE(&rq->hash);
176 RB_CLEAR_NODE(&rq->rb_node);
177 rq->rq_disk = NULL;
178 rq->part = NULL;
179 rq->start_time = jiffies;
180 #ifdef CONFIG_BLK_CGROUP
181 rq->rl = NULL;
182 set_start_time_ns(rq);
183 rq->io_start_time_ns = 0;
184 #endif
185 rq->nr_phys_segments = 0;
186 #if defined(CONFIG_BLK_DEV_INTEGRITY)
187 rq->nr_integrity_segments = 0;
188 #endif
189 rq->special = NULL;
190 /* tag was already set */
191 rq->errors = 0;
192
193 rq->cmd = rq->__cmd;
194
195 rq->extra_len = 0;
196 rq->sense_len = 0;
197 rq->resid_len = 0;
198 rq->sense = NULL;
199
200 INIT_LIST_HEAD(&rq->timeout_list);
201 rq->timeout = 0;
202
203 rq->end_io = NULL;
204 rq->end_io_data = NULL;
205 rq->next_rq = NULL;
206
207 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
208 }
209
210 static struct request *
211 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
212 {
213 struct request *rq;
214 unsigned int tag;
215
216 tag = blk_mq_get_tag(data);
217 if (tag != BLK_MQ_TAG_FAIL) {
218 rq = data->hctx->tags->rqs[tag];
219
220 if (blk_mq_tag_busy(data->hctx)) {
221 rq->cmd_flags = REQ_MQ_INFLIGHT;
222 atomic_inc(&data->hctx->nr_active);
223 }
224
225 rq->tag = tag;
226 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 return rq;
228 }
229
230 return NULL;
231 }
232
233 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
234 unsigned int flags)
235 {
236 struct blk_mq_ctx *ctx;
237 struct blk_mq_hw_ctx *hctx;
238 struct request *rq;
239 struct blk_mq_alloc_data alloc_data;
240 int ret;
241
242 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 if (ret)
244 return ERR_PTR(ret);
245
246 ctx = blk_mq_get_ctx(q);
247 hctx = q->mq_ops->map_queue(q, ctx->cpu);
248 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249
250 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 __blk_mq_run_hw_queue(hctx);
253 blk_mq_put_ctx(ctx);
254
255 ctx = blk_mq_get_ctx(q);
256 hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
259 ctx = alloc_data.ctx;
260 }
261 blk_mq_put_ctx(ctx);
262 if (!rq) {
263 blk_queue_exit(q);
264 return ERR_PTR(-EWOULDBLOCK);
265 }
266
267 rq->__data_len = 0;
268 rq->__sector = (sector_t) -1;
269 rq->bio = rq->biotail = NULL;
270 return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273
274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 unsigned int flags, unsigned int hctx_idx)
276 {
277 struct blk_mq_hw_ctx *hctx;
278 struct blk_mq_ctx *ctx;
279 struct request *rq;
280 struct blk_mq_alloc_data alloc_data;
281 int ret;
282
283 /*
284 * If the tag allocator sleeps we could get an allocation for a
285 * different hardware context. No need to complicate the low level
286 * allocator for this for the rare use case of a command tied to
287 * a specific queue.
288 */
289 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 return ERR_PTR(-EINVAL);
291
292 if (hctx_idx >= q->nr_hw_queues)
293 return ERR_PTR(-EIO);
294
295 ret = blk_queue_enter(q, true);
296 if (ret)
297 return ERR_PTR(ret);
298
299 hctx = q->queue_hw_ctx[hctx_idx];
300 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
301
302 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
303 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
304 if (!rq) {
305 blk_queue_exit(q);
306 return ERR_PTR(-EWOULDBLOCK);
307 }
308
309 return rq;
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
312
313 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
314 struct blk_mq_ctx *ctx, struct request *rq)
315 {
316 const int tag = rq->tag;
317 struct request_queue *q = rq->q;
318
319 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
320 atomic_dec(&hctx->nr_active);
321 rq->cmd_flags = 0;
322
323 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
324 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
325 blk_queue_exit(q);
326 }
327
328 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
329 {
330 struct blk_mq_ctx *ctx = rq->mq_ctx;
331
332 ctx->rq_completed[rq_is_sync(rq)]++;
333 __blk_mq_free_request(hctx, ctx, rq);
334
335 }
336 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
337
338 void blk_mq_free_request(struct request *rq)
339 {
340 struct blk_mq_hw_ctx *hctx;
341 struct request_queue *q = rq->q;
342
343 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
344 blk_mq_free_hctx_request(hctx, rq);
345 }
346 EXPORT_SYMBOL_GPL(blk_mq_free_request);
347
348 inline void __blk_mq_end_request(struct request *rq, int error)
349 {
350 blk_account_io_done(rq);
351
352 if (rq->end_io) {
353 rq->end_io(rq, error);
354 } else {
355 if (unlikely(blk_bidi_rq(rq)))
356 blk_mq_free_request(rq->next_rq);
357 blk_mq_free_request(rq);
358 }
359 }
360 EXPORT_SYMBOL(__blk_mq_end_request);
361
362 void blk_mq_end_request(struct request *rq, int error)
363 {
364 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
365 BUG();
366 __blk_mq_end_request(rq, error);
367 }
368 EXPORT_SYMBOL(blk_mq_end_request);
369
370 static void __blk_mq_complete_request_remote(void *data)
371 {
372 struct request *rq = data;
373
374 rq->q->softirq_done_fn(rq);
375 }
376
377 static void blk_mq_ipi_complete_request(struct request *rq)
378 {
379 struct blk_mq_ctx *ctx = rq->mq_ctx;
380 bool shared = false;
381 int cpu;
382
383 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
384 rq->q->softirq_done_fn(rq);
385 return;
386 }
387
388 cpu = get_cpu();
389 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
390 shared = cpus_share_cache(cpu, ctx->cpu);
391
392 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
393 rq->csd.func = __blk_mq_complete_request_remote;
394 rq->csd.info = rq;
395 rq->csd.flags = 0;
396 smp_call_function_single_async(ctx->cpu, &rq->csd);
397 } else {
398 rq->q->softirq_done_fn(rq);
399 }
400 put_cpu();
401 }
402
403 static void __blk_mq_complete_request(struct request *rq)
404 {
405 struct request_queue *q = rq->q;
406
407 if (!q->softirq_done_fn)
408 blk_mq_end_request(rq, rq->errors);
409 else
410 blk_mq_ipi_complete_request(rq);
411 }
412
413 /**
414 * blk_mq_complete_request - end I/O on a request
415 * @rq: the request being processed
416 *
417 * Description:
418 * Ends all I/O on a request. It does not handle partial completions.
419 * The actual completion happens out-of-order, through a IPI handler.
420 **/
421 void blk_mq_complete_request(struct request *rq, int error)
422 {
423 struct request_queue *q = rq->q;
424
425 if (unlikely(blk_should_fake_timeout(q)))
426 return;
427 if (!blk_mark_rq_complete(rq)) {
428 rq->errors = error;
429 __blk_mq_complete_request(rq);
430 }
431 }
432 EXPORT_SYMBOL(blk_mq_complete_request);
433
434 int blk_mq_request_started(struct request *rq)
435 {
436 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
437 }
438 EXPORT_SYMBOL_GPL(blk_mq_request_started);
439
440 void blk_mq_start_request(struct request *rq)
441 {
442 struct request_queue *q = rq->q;
443
444 trace_block_rq_issue(q, rq);
445
446 rq->resid_len = blk_rq_bytes(rq);
447 if (unlikely(blk_bidi_rq(rq)))
448 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
449
450 blk_add_timer(rq);
451
452 /*
453 * Ensure that ->deadline is visible before set the started
454 * flag and clear the completed flag.
455 */
456 smp_mb__before_atomic();
457
458 /*
459 * Mark us as started and clear complete. Complete might have been
460 * set if requeue raced with timeout, which then marked it as
461 * complete. So be sure to clear complete again when we start
462 * the request, otherwise we'll ignore the completion event.
463 */
464 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
465 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
466 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
467 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
468
469 if (q->dma_drain_size && blk_rq_bytes(rq)) {
470 /*
471 * Make sure space for the drain appears. We know we can do
472 * this because max_hw_segments has been adjusted to be one
473 * fewer than the device can handle.
474 */
475 rq->nr_phys_segments++;
476 }
477 }
478 EXPORT_SYMBOL(blk_mq_start_request);
479
480 static void __blk_mq_requeue_request(struct request *rq)
481 {
482 struct request_queue *q = rq->q;
483
484 trace_block_rq_requeue(q, rq);
485
486 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
487 if (q->dma_drain_size && blk_rq_bytes(rq))
488 rq->nr_phys_segments--;
489 }
490 }
491
492 void blk_mq_requeue_request(struct request *rq)
493 {
494 __blk_mq_requeue_request(rq);
495
496 BUG_ON(blk_queued_rq(rq));
497 blk_mq_add_to_requeue_list(rq, true);
498 }
499 EXPORT_SYMBOL(blk_mq_requeue_request);
500
501 static void blk_mq_requeue_work(struct work_struct *work)
502 {
503 struct request_queue *q =
504 container_of(work, struct request_queue, requeue_work);
505 LIST_HEAD(rq_list);
506 struct request *rq, *next;
507 unsigned long flags;
508
509 spin_lock_irqsave(&q->requeue_lock, flags);
510 list_splice_init(&q->requeue_list, &rq_list);
511 spin_unlock_irqrestore(&q->requeue_lock, flags);
512
513 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
514 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
515 continue;
516
517 rq->cmd_flags &= ~REQ_SOFTBARRIER;
518 list_del_init(&rq->queuelist);
519 blk_mq_insert_request(rq, true, false, false);
520 }
521
522 while (!list_empty(&rq_list)) {
523 rq = list_entry(rq_list.next, struct request, queuelist);
524 list_del_init(&rq->queuelist);
525 blk_mq_insert_request(rq, false, false, false);
526 }
527
528 /*
529 * Use the start variant of queue running here, so that running
530 * the requeue work will kick stopped queues.
531 */
532 blk_mq_start_hw_queues(q);
533 }
534
535 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
536 {
537 struct request_queue *q = rq->q;
538 unsigned long flags;
539
540 /*
541 * We abuse this flag that is otherwise used by the I/O scheduler to
542 * request head insertation from the workqueue.
543 */
544 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
545
546 spin_lock_irqsave(&q->requeue_lock, flags);
547 if (at_head) {
548 rq->cmd_flags |= REQ_SOFTBARRIER;
549 list_add(&rq->queuelist, &q->requeue_list);
550 } else {
551 list_add_tail(&rq->queuelist, &q->requeue_list);
552 }
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
554 }
555 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
556
557 void blk_mq_cancel_requeue_work(struct request_queue *q)
558 {
559 cancel_work_sync(&q->requeue_work);
560 }
561 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
562
563 void blk_mq_kick_requeue_list(struct request_queue *q)
564 {
565 kblockd_schedule_work(&q->requeue_work);
566 }
567 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
568
569 void blk_mq_abort_requeue_list(struct request_queue *q)
570 {
571 unsigned long flags;
572 LIST_HEAD(rq_list);
573
574 spin_lock_irqsave(&q->requeue_lock, flags);
575 list_splice_init(&q->requeue_list, &rq_list);
576 spin_unlock_irqrestore(&q->requeue_lock, flags);
577
578 while (!list_empty(&rq_list)) {
579 struct request *rq;
580
581 rq = list_first_entry(&rq_list, struct request, queuelist);
582 list_del_init(&rq->queuelist);
583 rq->errors = -EIO;
584 blk_mq_end_request(rq, rq->errors);
585 }
586 }
587 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
588
589 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
590 {
591 if (tag < tags->nr_tags)
592 return tags->rqs[tag];
593
594 return NULL;
595 }
596 EXPORT_SYMBOL(blk_mq_tag_to_rq);
597
598 struct blk_mq_timeout_data {
599 unsigned long next;
600 unsigned int next_set;
601 };
602
603 void blk_mq_rq_timed_out(struct request *req, bool reserved)
604 {
605 struct blk_mq_ops *ops = req->q->mq_ops;
606 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
607
608 /*
609 * We know that complete is set at this point. If STARTED isn't set
610 * anymore, then the request isn't active and the "timeout" should
611 * just be ignored. This can happen due to the bitflag ordering.
612 * Timeout first checks if STARTED is set, and if it is, assumes
613 * the request is active. But if we race with completion, then
614 * we both flags will get cleared. So check here again, and ignore
615 * a timeout event with a request that isn't active.
616 */
617 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
618 return;
619
620 if (ops->timeout)
621 ret = ops->timeout(req, reserved);
622
623 switch (ret) {
624 case BLK_EH_HANDLED:
625 __blk_mq_complete_request(req);
626 break;
627 case BLK_EH_RESET_TIMER:
628 blk_add_timer(req);
629 blk_clear_rq_complete(req);
630 break;
631 case BLK_EH_NOT_HANDLED:
632 break;
633 default:
634 printk(KERN_ERR "block: bad eh return: %d\n", ret);
635 break;
636 }
637 }
638
639 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
640 struct request *rq, void *priv, bool reserved)
641 {
642 struct blk_mq_timeout_data *data = priv;
643
644 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
645 /*
646 * If a request wasn't started before the queue was
647 * marked dying, kill it here or it'll go unnoticed.
648 */
649 if (unlikely(blk_queue_dying(rq->q))) {
650 rq->errors = -EIO;
651 blk_mq_end_request(rq, rq->errors);
652 }
653 return;
654 }
655
656 if (time_after_eq(jiffies, rq->deadline)) {
657 if (!blk_mark_rq_complete(rq))
658 blk_mq_rq_timed_out(rq, reserved);
659 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
660 data->next = rq->deadline;
661 data->next_set = 1;
662 }
663 }
664
665 static void blk_mq_timeout_work(struct work_struct *work)
666 {
667 struct request_queue *q =
668 container_of(work, struct request_queue, timeout_work);
669 struct blk_mq_timeout_data data = {
670 .next = 0,
671 .next_set = 0,
672 };
673 int i;
674
675 /* A deadlock might occur if a request is stuck requiring a
676 * timeout at the same time a queue freeze is waiting
677 * completion, since the timeout code would not be able to
678 * acquire the queue reference here.
679 *
680 * That's why we don't use blk_queue_enter here; instead, we use
681 * percpu_ref_tryget directly, because we need to be able to
682 * obtain a reference even in the short window between the queue
683 * starting to freeze, by dropping the first reference in
684 * blk_mq_freeze_queue_start, and the moment the last request is
685 * consumed, marked by the instant q_usage_counter reaches
686 * zero.
687 */
688 if (!percpu_ref_tryget(&q->q_usage_counter))
689 return;
690
691 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
692
693 if (data.next_set) {
694 data.next = blk_rq_timeout(round_jiffies_up(data.next));
695 mod_timer(&q->timeout, data.next);
696 } else {
697 struct blk_mq_hw_ctx *hctx;
698
699 queue_for_each_hw_ctx(q, hctx, i) {
700 /* the hctx may be unmapped, so check it here */
701 if (blk_mq_hw_queue_mapped(hctx))
702 blk_mq_tag_idle(hctx);
703 }
704 }
705 blk_queue_exit(q);
706 }
707
708 /*
709 * Reverse check our software queue for entries that we could potentially
710 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
711 * too much time checking for merges.
712 */
713 static bool blk_mq_attempt_merge(struct request_queue *q,
714 struct blk_mq_ctx *ctx, struct bio *bio)
715 {
716 struct request *rq;
717 int checked = 8;
718
719 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
720 int el_ret;
721
722 if (!checked--)
723 break;
724
725 if (!blk_rq_merge_ok(rq, bio))
726 continue;
727
728 el_ret = blk_try_merge(rq, bio);
729 if (el_ret == ELEVATOR_BACK_MERGE) {
730 if (bio_attempt_back_merge(q, rq, bio)) {
731 ctx->rq_merged++;
732 return true;
733 }
734 break;
735 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
736 if (bio_attempt_front_merge(q, rq, bio)) {
737 ctx->rq_merged++;
738 return true;
739 }
740 break;
741 }
742 }
743
744 return false;
745 }
746
747 /*
748 * Process software queues that have been marked busy, splicing them
749 * to the for-dispatch
750 */
751 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
752 {
753 struct blk_mq_ctx *ctx;
754 int i;
755
756 for (i = 0; i < hctx->ctx_map.size; i++) {
757 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
758 unsigned int off, bit;
759
760 if (!bm->word)
761 continue;
762
763 bit = 0;
764 off = i * hctx->ctx_map.bits_per_word;
765 do {
766 bit = find_next_bit(&bm->word, bm->depth, bit);
767 if (bit >= bm->depth)
768 break;
769
770 ctx = hctx->ctxs[bit + off];
771 clear_bit(bit, &bm->word);
772 spin_lock(&ctx->lock);
773 list_splice_tail_init(&ctx->rq_list, list);
774 spin_unlock(&ctx->lock);
775
776 bit++;
777 } while (1);
778 }
779 }
780
781 /*
782 * Run this hardware queue, pulling any software queues mapped to it in.
783 * Note that this function currently has various problems around ordering
784 * of IO. In particular, we'd like FIFO behaviour on handling existing
785 * items on the hctx->dispatch list. Ignore that for now.
786 */
787 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
788 {
789 struct request_queue *q = hctx->queue;
790 struct request *rq;
791 LIST_HEAD(rq_list);
792 LIST_HEAD(driver_list);
793 struct list_head *dptr;
794 int queued;
795
796 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
797
798 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
799 return;
800
801 hctx->run++;
802
803 /*
804 * Touch any software queue that has pending entries.
805 */
806 flush_busy_ctxs(hctx, &rq_list);
807
808 /*
809 * If we have previous entries on our dispatch list, grab them
810 * and stuff them at the front for more fair dispatch.
811 */
812 if (!list_empty_careful(&hctx->dispatch)) {
813 spin_lock(&hctx->lock);
814 if (!list_empty(&hctx->dispatch))
815 list_splice_init(&hctx->dispatch, &rq_list);
816 spin_unlock(&hctx->lock);
817 }
818
819 /*
820 * Start off with dptr being NULL, so we start the first request
821 * immediately, even if we have more pending.
822 */
823 dptr = NULL;
824
825 /*
826 * Now process all the entries, sending them to the driver.
827 */
828 queued = 0;
829 while (!list_empty(&rq_list)) {
830 struct blk_mq_queue_data bd;
831 int ret;
832
833 rq = list_first_entry(&rq_list, struct request, queuelist);
834 list_del_init(&rq->queuelist);
835
836 bd.rq = rq;
837 bd.list = dptr;
838 bd.last = list_empty(&rq_list);
839
840 ret = q->mq_ops->queue_rq(hctx, &bd);
841 switch (ret) {
842 case BLK_MQ_RQ_QUEUE_OK:
843 queued++;
844 break;
845 case BLK_MQ_RQ_QUEUE_BUSY:
846 list_add(&rq->queuelist, &rq_list);
847 __blk_mq_requeue_request(rq);
848 break;
849 default:
850 pr_err("blk-mq: bad return on queue: %d\n", ret);
851 case BLK_MQ_RQ_QUEUE_ERROR:
852 rq->errors = -EIO;
853 blk_mq_end_request(rq, rq->errors);
854 break;
855 }
856
857 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
858 break;
859
860 /*
861 * We've done the first request. If we have more than 1
862 * left in the list, set dptr to defer issue.
863 */
864 if (!dptr && rq_list.next != rq_list.prev)
865 dptr = &driver_list;
866 }
867
868 if (!queued)
869 hctx->dispatched[0]++;
870 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
871 hctx->dispatched[ilog2(queued) + 1]++;
872
873 /*
874 * Any items that need requeuing? Stuff them into hctx->dispatch,
875 * that is where we will continue on next queue run.
876 */
877 if (!list_empty(&rq_list)) {
878 spin_lock(&hctx->lock);
879 list_splice(&rq_list, &hctx->dispatch);
880 spin_unlock(&hctx->lock);
881 /*
882 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
883 * it's possible the queue is stopped and restarted again
884 * before this. Queue restart will dispatch requests. And since
885 * requests in rq_list aren't added into hctx->dispatch yet,
886 * the requests in rq_list might get lost.
887 *
888 * blk_mq_run_hw_queue() already checks the STOPPED bit
889 **/
890 blk_mq_run_hw_queue(hctx, true);
891 }
892 }
893
894 /*
895 * It'd be great if the workqueue API had a way to pass
896 * in a mask and had some smarts for more clever placement.
897 * For now we just round-robin here, switching for every
898 * BLK_MQ_CPU_WORK_BATCH queued items.
899 */
900 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
901 {
902 if (hctx->queue->nr_hw_queues == 1)
903 return WORK_CPU_UNBOUND;
904
905 if (--hctx->next_cpu_batch <= 0) {
906 int cpu = hctx->next_cpu, next_cpu;
907
908 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
909 if (next_cpu >= nr_cpu_ids)
910 next_cpu = cpumask_first(hctx->cpumask);
911
912 hctx->next_cpu = next_cpu;
913 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
914
915 return cpu;
916 }
917
918 return hctx->next_cpu;
919 }
920
921 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
922 {
923 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
924 !blk_mq_hw_queue_mapped(hctx)))
925 return;
926
927 if (!async) {
928 int cpu = get_cpu();
929 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
930 __blk_mq_run_hw_queue(hctx);
931 put_cpu();
932 return;
933 }
934
935 put_cpu();
936 }
937
938 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
939 &hctx->run_work, 0);
940 }
941
942 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
943 {
944 struct blk_mq_hw_ctx *hctx;
945 int i;
946
947 queue_for_each_hw_ctx(q, hctx, i) {
948 if ((!blk_mq_hctx_has_pending(hctx) &&
949 list_empty_careful(&hctx->dispatch)) ||
950 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
951 continue;
952
953 blk_mq_run_hw_queue(hctx, async);
954 }
955 }
956 EXPORT_SYMBOL(blk_mq_run_hw_queues);
957
958 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
959 {
960 cancel_delayed_work(&hctx->run_work);
961 cancel_delayed_work(&hctx->delay_work);
962 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
963 }
964 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
965
966 void blk_mq_stop_hw_queues(struct request_queue *q)
967 {
968 struct blk_mq_hw_ctx *hctx;
969 int i;
970
971 queue_for_each_hw_ctx(q, hctx, i)
972 blk_mq_stop_hw_queue(hctx);
973 }
974 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
975
976 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
977 {
978 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
979
980 blk_mq_run_hw_queue(hctx, false);
981 }
982 EXPORT_SYMBOL(blk_mq_start_hw_queue);
983
984 void blk_mq_start_hw_queues(struct request_queue *q)
985 {
986 struct blk_mq_hw_ctx *hctx;
987 int i;
988
989 queue_for_each_hw_ctx(q, hctx, i)
990 blk_mq_start_hw_queue(hctx);
991 }
992 EXPORT_SYMBOL(blk_mq_start_hw_queues);
993
994 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
995 {
996 struct blk_mq_hw_ctx *hctx;
997 int i;
998
999 queue_for_each_hw_ctx(q, hctx, i) {
1000 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1001 continue;
1002
1003 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1004 blk_mq_run_hw_queue(hctx, async);
1005 }
1006 }
1007 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1008
1009 static void blk_mq_run_work_fn(struct work_struct *work)
1010 {
1011 struct blk_mq_hw_ctx *hctx;
1012
1013 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1014
1015 __blk_mq_run_hw_queue(hctx);
1016 }
1017
1018 static void blk_mq_delay_work_fn(struct work_struct *work)
1019 {
1020 struct blk_mq_hw_ctx *hctx;
1021
1022 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1023
1024 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1025 __blk_mq_run_hw_queue(hctx);
1026 }
1027
1028 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1029 {
1030 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1031 return;
1032
1033 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1034 &hctx->delay_work, msecs_to_jiffies(msecs));
1035 }
1036 EXPORT_SYMBOL(blk_mq_delay_queue);
1037
1038 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1039 struct blk_mq_ctx *ctx,
1040 struct request *rq,
1041 bool at_head)
1042 {
1043 trace_block_rq_insert(hctx->queue, rq);
1044
1045 if (at_head)
1046 list_add(&rq->queuelist, &ctx->rq_list);
1047 else
1048 list_add_tail(&rq->queuelist, &ctx->rq_list);
1049 }
1050
1051 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1052 struct request *rq, bool at_head)
1053 {
1054 struct blk_mq_ctx *ctx = rq->mq_ctx;
1055
1056 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1057 blk_mq_hctx_mark_pending(hctx, ctx);
1058 }
1059
1060 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1061 bool async)
1062 {
1063 struct request_queue *q = rq->q;
1064 struct blk_mq_hw_ctx *hctx;
1065 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1066
1067 current_ctx = blk_mq_get_ctx(q);
1068 if (!cpu_online(ctx->cpu))
1069 rq->mq_ctx = ctx = current_ctx;
1070
1071 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1072
1073 spin_lock(&ctx->lock);
1074 __blk_mq_insert_request(hctx, rq, at_head);
1075 spin_unlock(&ctx->lock);
1076
1077 if (run_queue)
1078 blk_mq_run_hw_queue(hctx, async);
1079
1080 blk_mq_put_ctx(current_ctx);
1081 }
1082
1083 static void blk_mq_insert_requests(struct request_queue *q,
1084 struct blk_mq_ctx *ctx,
1085 struct list_head *list,
1086 int depth,
1087 bool from_schedule)
1088
1089 {
1090 struct blk_mq_hw_ctx *hctx;
1091 struct blk_mq_ctx *current_ctx;
1092
1093 trace_block_unplug(q, depth, !from_schedule);
1094
1095 current_ctx = blk_mq_get_ctx(q);
1096
1097 if (!cpu_online(ctx->cpu))
1098 ctx = current_ctx;
1099 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1100
1101 /*
1102 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1103 * offline now
1104 */
1105 spin_lock(&ctx->lock);
1106 while (!list_empty(list)) {
1107 struct request *rq;
1108
1109 rq = list_first_entry(list, struct request, queuelist);
1110 list_del_init(&rq->queuelist);
1111 rq->mq_ctx = ctx;
1112 __blk_mq_insert_req_list(hctx, ctx, rq, false);
1113 }
1114 blk_mq_hctx_mark_pending(hctx, ctx);
1115 spin_unlock(&ctx->lock);
1116
1117 blk_mq_run_hw_queue(hctx, from_schedule);
1118 blk_mq_put_ctx(current_ctx);
1119 }
1120
1121 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1122 {
1123 struct request *rqa = container_of(a, struct request, queuelist);
1124 struct request *rqb = container_of(b, struct request, queuelist);
1125
1126 return !(rqa->mq_ctx < rqb->mq_ctx ||
1127 (rqa->mq_ctx == rqb->mq_ctx &&
1128 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1129 }
1130
1131 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1132 {
1133 struct blk_mq_ctx *this_ctx;
1134 struct request_queue *this_q;
1135 struct request *rq;
1136 LIST_HEAD(list);
1137 LIST_HEAD(ctx_list);
1138 unsigned int depth;
1139
1140 list_splice_init(&plug->mq_list, &list);
1141
1142 list_sort(NULL, &list, plug_ctx_cmp);
1143
1144 this_q = NULL;
1145 this_ctx = NULL;
1146 depth = 0;
1147
1148 while (!list_empty(&list)) {
1149 rq = list_entry_rq(list.next);
1150 list_del_init(&rq->queuelist);
1151 BUG_ON(!rq->q);
1152 if (rq->mq_ctx != this_ctx) {
1153 if (this_ctx) {
1154 blk_mq_insert_requests(this_q, this_ctx,
1155 &ctx_list, depth,
1156 from_schedule);
1157 }
1158
1159 this_ctx = rq->mq_ctx;
1160 this_q = rq->q;
1161 depth = 0;
1162 }
1163
1164 depth++;
1165 list_add_tail(&rq->queuelist, &ctx_list);
1166 }
1167
1168 /*
1169 * If 'this_ctx' is set, we know we have entries to complete
1170 * on 'ctx_list'. Do those.
1171 */
1172 if (this_ctx) {
1173 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1174 from_schedule);
1175 }
1176 }
1177
1178 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1179 {
1180 init_request_from_bio(rq, bio);
1181
1182 blk_account_io_start(rq, 1);
1183 }
1184
1185 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1186 {
1187 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1188 !blk_queue_nomerges(hctx->queue);
1189 }
1190
1191 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1192 struct blk_mq_ctx *ctx,
1193 struct request *rq, struct bio *bio)
1194 {
1195 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1196 blk_mq_bio_to_request(rq, bio);
1197 spin_lock(&ctx->lock);
1198 insert_rq:
1199 __blk_mq_insert_request(hctx, rq, false);
1200 spin_unlock(&ctx->lock);
1201 return false;
1202 } else {
1203 struct request_queue *q = hctx->queue;
1204
1205 spin_lock(&ctx->lock);
1206 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1207 blk_mq_bio_to_request(rq, bio);
1208 goto insert_rq;
1209 }
1210
1211 spin_unlock(&ctx->lock);
1212 __blk_mq_free_request(hctx, ctx, rq);
1213 return true;
1214 }
1215 }
1216
1217 struct blk_map_ctx {
1218 struct blk_mq_hw_ctx *hctx;
1219 struct blk_mq_ctx *ctx;
1220 };
1221
1222 static struct request *blk_mq_map_request(struct request_queue *q,
1223 struct bio *bio,
1224 struct blk_map_ctx *data)
1225 {
1226 struct blk_mq_hw_ctx *hctx;
1227 struct blk_mq_ctx *ctx;
1228 struct request *rq;
1229 int op = bio_data_dir(bio);
1230 int op_flags = 0;
1231 struct blk_mq_alloc_data alloc_data;
1232
1233 blk_queue_enter_live(q);
1234 ctx = blk_mq_get_ctx(q);
1235 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1236
1237 if (rw_is_sync(bio_op(bio), bio->bi_opf))
1238 op_flags |= REQ_SYNC;
1239
1240 trace_block_getrq(q, bio, op);
1241 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1242 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1243 if (unlikely(!rq)) {
1244 __blk_mq_run_hw_queue(hctx);
1245 blk_mq_put_ctx(ctx);
1246 trace_block_sleeprq(q, bio, op);
1247
1248 ctx = blk_mq_get_ctx(q);
1249 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1250 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1251 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1252 ctx = alloc_data.ctx;
1253 hctx = alloc_data.hctx;
1254 }
1255
1256 hctx->queued++;
1257 data->hctx = hctx;
1258 data->ctx = ctx;
1259 return rq;
1260 }
1261
1262 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1263 {
1264 int ret;
1265 struct request_queue *q = rq->q;
1266 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1267 rq->mq_ctx->cpu);
1268 struct blk_mq_queue_data bd = {
1269 .rq = rq,
1270 .list = NULL,
1271 .last = 1
1272 };
1273 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1274
1275 /*
1276 * For OK queue, we are done. For error, kill it. Any other
1277 * error (busy), just add it to our list as we previously
1278 * would have done
1279 */
1280 ret = q->mq_ops->queue_rq(hctx, &bd);
1281 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1282 *cookie = new_cookie;
1283 return 0;
1284 }
1285
1286 __blk_mq_requeue_request(rq);
1287
1288 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1289 *cookie = BLK_QC_T_NONE;
1290 rq->errors = -EIO;
1291 blk_mq_end_request(rq, rq->errors);
1292 return 0;
1293 }
1294
1295 return -1;
1296 }
1297
1298 /*
1299 * Multiple hardware queue variant. This will not use per-process plugs,
1300 * but will attempt to bypass the hctx queueing if we can go straight to
1301 * hardware for SYNC IO.
1302 */
1303 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1304 {
1305 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1306 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1307 struct blk_map_ctx data;
1308 struct request *rq;
1309 unsigned int request_count = 0;
1310 struct blk_plug *plug;
1311 struct request *same_queue_rq = NULL;
1312 blk_qc_t cookie;
1313
1314 blk_queue_bounce(q, &bio);
1315
1316 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1317 bio_io_error(bio);
1318 return BLK_QC_T_NONE;
1319 }
1320
1321 blk_queue_split(q, &bio, q->bio_split);
1322
1323 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1324 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1325 return BLK_QC_T_NONE;
1326
1327 rq = blk_mq_map_request(q, bio, &data);
1328 if (unlikely(!rq))
1329 return BLK_QC_T_NONE;
1330
1331 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1332
1333 if (unlikely(is_flush_fua)) {
1334 blk_mq_bio_to_request(rq, bio);
1335 blk_insert_flush(rq);
1336 goto run_queue;
1337 }
1338
1339 plug = current->plug;
1340 /*
1341 * If the driver supports defer issued based on 'last', then
1342 * queue it up like normal since we can potentially save some
1343 * CPU this way.
1344 */
1345 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1346 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1347 struct request *old_rq = NULL;
1348
1349 blk_mq_bio_to_request(rq, bio);
1350
1351 /*
1352 * We do limited pluging. If the bio can be merged, do that.
1353 * Otherwise the existing request in the plug list will be
1354 * issued. So the plug list will have one request at most
1355 */
1356 if (plug) {
1357 /*
1358 * The plug list might get flushed before this. If that
1359 * happens, same_queue_rq is invalid and plug list is
1360 * empty
1361 */
1362 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1363 old_rq = same_queue_rq;
1364 list_del_init(&old_rq->queuelist);
1365 }
1366 list_add_tail(&rq->queuelist, &plug->mq_list);
1367 } else /* is_sync */
1368 old_rq = rq;
1369 blk_mq_put_ctx(data.ctx);
1370 if (!old_rq)
1371 goto done;
1372 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1373 goto done;
1374 blk_mq_insert_request(old_rq, false, true, true);
1375 goto done;
1376 }
1377
1378 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1379 /*
1380 * For a SYNC request, send it to the hardware immediately. For
1381 * an ASYNC request, just ensure that we run it later on. The
1382 * latter allows for merging opportunities and more efficient
1383 * dispatching.
1384 */
1385 run_queue:
1386 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1387 }
1388 blk_mq_put_ctx(data.ctx);
1389 done:
1390 return cookie;
1391 }
1392
1393 /*
1394 * Single hardware queue variant. This will attempt to use any per-process
1395 * plug for merging and IO deferral.
1396 */
1397 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1398 {
1399 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1400 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1401 struct blk_plug *plug;
1402 unsigned int request_count = 0;
1403 struct blk_map_ctx data;
1404 struct request *rq;
1405 blk_qc_t cookie;
1406
1407 blk_queue_bounce(q, &bio);
1408
1409 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1410 bio_io_error(bio);
1411 return BLK_QC_T_NONE;
1412 }
1413
1414 blk_queue_split(q, &bio, q->bio_split);
1415
1416 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1417 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1418 return BLK_QC_T_NONE;
1419 } else
1420 request_count = blk_plug_queued_count(q);
1421
1422 rq = blk_mq_map_request(q, bio, &data);
1423 if (unlikely(!rq))
1424 return BLK_QC_T_NONE;
1425
1426 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1427
1428 if (unlikely(is_flush_fua)) {
1429 blk_mq_bio_to_request(rq, bio);
1430 blk_insert_flush(rq);
1431 goto run_queue;
1432 }
1433
1434 /*
1435 * A task plug currently exists. Since this is completely lockless,
1436 * utilize that to temporarily store requests until the task is
1437 * either done or scheduled away.
1438 */
1439 plug = current->plug;
1440 if (plug) {
1441 blk_mq_bio_to_request(rq, bio);
1442 if (!request_count)
1443 trace_block_plug(q);
1444
1445 blk_mq_put_ctx(data.ctx);
1446
1447 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1448 blk_flush_plug_list(plug, false);
1449 trace_block_plug(q);
1450 }
1451
1452 list_add_tail(&rq->queuelist, &plug->mq_list);
1453 return cookie;
1454 }
1455
1456 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1457 /*
1458 * For a SYNC request, send it to the hardware immediately. For
1459 * an ASYNC request, just ensure that we run it later on. The
1460 * latter allows for merging opportunities and more efficient
1461 * dispatching.
1462 */
1463 run_queue:
1464 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1465 }
1466
1467 blk_mq_put_ctx(data.ctx);
1468 return cookie;
1469 }
1470
1471 /*
1472 * Default mapping to a software queue, since we use one per CPU.
1473 */
1474 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1475 {
1476 return q->queue_hw_ctx[q->mq_map[cpu]];
1477 }
1478 EXPORT_SYMBOL(blk_mq_map_queue);
1479
1480 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1481 struct blk_mq_tags *tags, unsigned int hctx_idx)
1482 {
1483 struct page *page;
1484
1485 if (tags->rqs && set->ops->exit_request) {
1486 int i;
1487
1488 for (i = 0; i < tags->nr_tags; i++) {
1489 if (!tags->rqs[i])
1490 continue;
1491 set->ops->exit_request(set->driver_data, tags->rqs[i],
1492 hctx_idx, i);
1493 tags->rqs[i] = NULL;
1494 }
1495 }
1496
1497 while (!list_empty(&tags->page_list)) {
1498 page = list_first_entry(&tags->page_list, struct page, lru);
1499 list_del_init(&page->lru);
1500 /*
1501 * Remove kmemleak object previously allocated in
1502 * blk_mq_init_rq_map().
1503 */
1504 kmemleak_free(page_address(page));
1505 __free_pages(page, page->private);
1506 }
1507
1508 kfree(tags->rqs);
1509
1510 blk_mq_free_tags(tags);
1511 }
1512
1513 static size_t order_to_size(unsigned int order)
1514 {
1515 return (size_t)PAGE_SIZE << order;
1516 }
1517
1518 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1519 unsigned int hctx_idx)
1520 {
1521 struct blk_mq_tags *tags;
1522 unsigned int i, j, entries_per_page, max_order = 4;
1523 size_t rq_size, left;
1524
1525 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1526 set->numa_node,
1527 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1528 if (!tags)
1529 return NULL;
1530
1531 INIT_LIST_HEAD(&tags->page_list);
1532
1533 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1534 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1535 set->numa_node);
1536 if (!tags->rqs) {
1537 blk_mq_free_tags(tags);
1538 return NULL;
1539 }
1540
1541 /*
1542 * rq_size is the size of the request plus driver payload, rounded
1543 * to the cacheline size
1544 */
1545 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1546 cache_line_size());
1547 left = rq_size * set->queue_depth;
1548
1549 for (i = 0; i < set->queue_depth; ) {
1550 int this_order = max_order;
1551 struct page *page;
1552 int to_do;
1553 void *p;
1554
1555 while (this_order && left < order_to_size(this_order - 1))
1556 this_order--;
1557
1558 do {
1559 page = alloc_pages_node(set->numa_node,
1560 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1561 this_order);
1562 if (page)
1563 break;
1564 if (!this_order--)
1565 break;
1566 if (order_to_size(this_order) < rq_size)
1567 break;
1568 } while (1);
1569
1570 if (!page)
1571 goto fail;
1572
1573 page->private = this_order;
1574 list_add_tail(&page->lru, &tags->page_list);
1575
1576 p = page_address(page);
1577 /*
1578 * Allow kmemleak to scan these pages as they contain pointers
1579 * to additional allocations like via ops->init_request().
1580 */
1581 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1582 entries_per_page = order_to_size(this_order) / rq_size;
1583 to_do = min(entries_per_page, set->queue_depth - i);
1584 left -= to_do * rq_size;
1585 for (j = 0; j < to_do; j++) {
1586 tags->rqs[i] = p;
1587 if (set->ops->init_request) {
1588 if (set->ops->init_request(set->driver_data,
1589 tags->rqs[i], hctx_idx, i,
1590 set->numa_node)) {
1591 tags->rqs[i] = NULL;
1592 goto fail;
1593 }
1594 }
1595
1596 p += rq_size;
1597 i++;
1598 }
1599 }
1600 return tags;
1601
1602 fail:
1603 blk_mq_free_rq_map(set, tags, hctx_idx);
1604 return NULL;
1605 }
1606
1607 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1608 {
1609 kfree(bitmap->map);
1610 }
1611
1612 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1613 {
1614 unsigned int bpw = 8, total, num_maps, i;
1615
1616 bitmap->bits_per_word = bpw;
1617
1618 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1619 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1620 GFP_KERNEL, node);
1621 if (!bitmap->map)
1622 return -ENOMEM;
1623
1624 total = nr_cpu_ids;
1625 for (i = 0; i < num_maps; i++) {
1626 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1627 total -= bitmap->map[i].depth;
1628 }
1629
1630 return 0;
1631 }
1632
1633 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1634 {
1635 struct request_queue *q = hctx->queue;
1636 struct blk_mq_ctx *ctx;
1637 LIST_HEAD(tmp);
1638
1639 /*
1640 * Move ctx entries to new CPU, if this one is going away.
1641 */
1642 ctx = __blk_mq_get_ctx(q, cpu);
1643
1644 spin_lock(&ctx->lock);
1645 if (!list_empty(&ctx->rq_list)) {
1646 list_splice_init(&ctx->rq_list, &tmp);
1647 blk_mq_hctx_clear_pending(hctx, ctx);
1648 }
1649 spin_unlock(&ctx->lock);
1650
1651 if (list_empty(&tmp))
1652 return NOTIFY_OK;
1653
1654 ctx = blk_mq_get_ctx(q);
1655 spin_lock(&ctx->lock);
1656
1657 while (!list_empty(&tmp)) {
1658 struct request *rq;
1659
1660 rq = list_first_entry(&tmp, struct request, queuelist);
1661 rq->mq_ctx = ctx;
1662 list_move_tail(&rq->queuelist, &ctx->rq_list);
1663 }
1664
1665 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1666 blk_mq_hctx_mark_pending(hctx, ctx);
1667
1668 spin_unlock(&ctx->lock);
1669
1670 blk_mq_run_hw_queue(hctx, true);
1671 blk_mq_put_ctx(ctx);
1672 return NOTIFY_OK;
1673 }
1674
1675 static int blk_mq_hctx_notify(void *data, unsigned long action,
1676 unsigned int cpu)
1677 {
1678 struct blk_mq_hw_ctx *hctx = data;
1679
1680 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1681 return blk_mq_hctx_cpu_offline(hctx, cpu);
1682
1683 /*
1684 * In case of CPU online, tags may be reallocated
1685 * in blk_mq_map_swqueue() after mapping is updated.
1686 */
1687
1688 return NOTIFY_OK;
1689 }
1690
1691 /* hctx->ctxs will be freed in queue's release handler */
1692 static void blk_mq_exit_hctx(struct request_queue *q,
1693 struct blk_mq_tag_set *set,
1694 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1695 {
1696 unsigned flush_start_tag = set->queue_depth;
1697
1698 blk_mq_tag_idle(hctx);
1699
1700 if (set->ops->exit_request)
1701 set->ops->exit_request(set->driver_data,
1702 hctx->fq->flush_rq, hctx_idx,
1703 flush_start_tag + hctx_idx);
1704
1705 if (set->ops->exit_hctx)
1706 set->ops->exit_hctx(hctx, hctx_idx);
1707
1708 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1709 blk_free_flush_queue(hctx->fq);
1710 blk_mq_free_bitmap(&hctx->ctx_map);
1711 }
1712
1713 static void blk_mq_exit_hw_queues(struct request_queue *q,
1714 struct blk_mq_tag_set *set, int nr_queue)
1715 {
1716 struct blk_mq_hw_ctx *hctx;
1717 unsigned int i;
1718
1719 queue_for_each_hw_ctx(q, hctx, i) {
1720 if (i == nr_queue)
1721 break;
1722 blk_mq_exit_hctx(q, set, hctx, i);
1723 }
1724 }
1725
1726 static void blk_mq_free_hw_queues(struct request_queue *q,
1727 struct blk_mq_tag_set *set)
1728 {
1729 struct blk_mq_hw_ctx *hctx;
1730 unsigned int i;
1731
1732 queue_for_each_hw_ctx(q, hctx, i)
1733 free_cpumask_var(hctx->cpumask);
1734 }
1735
1736 static int blk_mq_init_hctx(struct request_queue *q,
1737 struct blk_mq_tag_set *set,
1738 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1739 {
1740 int node;
1741 unsigned flush_start_tag = set->queue_depth;
1742
1743 node = hctx->numa_node;
1744 if (node == NUMA_NO_NODE)
1745 node = hctx->numa_node = set->numa_node;
1746
1747 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1748 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1749 spin_lock_init(&hctx->lock);
1750 INIT_LIST_HEAD(&hctx->dispatch);
1751 hctx->queue = q;
1752 hctx->queue_num = hctx_idx;
1753 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1754
1755 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1756 blk_mq_hctx_notify, hctx);
1757 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1758
1759 hctx->tags = set->tags[hctx_idx];
1760
1761 /*
1762 * Allocate space for all possible cpus to avoid allocation at
1763 * runtime
1764 */
1765 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1766 GFP_KERNEL, node);
1767 if (!hctx->ctxs)
1768 goto unregister_cpu_notifier;
1769
1770 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1771 goto free_ctxs;
1772
1773 hctx->nr_ctx = 0;
1774
1775 if (set->ops->init_hctx &&
1776 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1777 goto free_bitmap;
1778
1779 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1780 if (!hctx->fq)
1781 goto exit_hctx;
1782
1783 if (set->ops->init_request &&
1784 set->ops->init_request(set->driver_data,
1785 hctx->fq->flush_rq, hctx_idx,
1786 flush_start_tag + hctx_idx, node))
1787 goto free_fq;
1788
1789 return 0;
1790
1791 free_fq:
1792 kfree(hctx->fq);
1793 exit_hctx:
1794 if (set->ops->exit_hctx)
1795 set->ops->exit_hctx(hctx, hctx_idx);
1796 free_bitmap:
1797 blk_mq_free_bitmap(&hctx->ctx_map);
1798 free_ctxs:
1799 kfree(hctx->ctxs);
1800 unregister_cpu_notifier:
1801 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1802
1803 return -1;
1804 }
1805
1806 static void blk_mq_init_cpu_queues(struct request_queue *q,
1807 unsigned int nr_hw_queues)
1808 {
1809 unsigned int i;
1810
1811 for_each_possible_cpu(i) {
1812 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1813 struct blk_mq_hw_ctx *hctx;
1814
1815 memset(__ctx, 0, sizeof(*__ctx));
1816 __ctx->cpu = i;
1817 spin_lock_init(&__ctx->lock);
1818 INIT_LIST_HEAD(&__ctx->rq_list);
1819 __ctx->queue = q;
1820
1821 /* If the cpu isn't online, the cpu is mapped to first hctx */
1822 if (!cpu_online(i))
1823 continue;
1824
1825 hctx = q->mq_ops->map_queue(q, i);
1826
1827 /*
1828 * Set local node, IFF we have more than one hw queue. If
1829 * not, we remain on the home node of the device
1830 */
1831 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1832 hctx->numa_node = local_memory_node(cpu_to_node(i));
1833 }
1834 }
1835
1836 static void blk_mq_map_swqueue(struct request_queue *q,
1837 const struct cpumask *online_mask)
1838 {
1839 unsigned int i;
1840 struct blk_mq_hw_ctx *hctx;
1841 struct blk_mq_ctx *ctx;
1842 struct blk_mq_tag_set *set = q->tag_set;
1843
1844 /*
1845 * Avoid others reading imcomplete hctx->cpumask through sysfs
1846 */
1847 mutex_lock(&q->sysfs_lock);
1848
1849 queue_for_each_hw_ctx(q, hctx, i) {
1850 cpumask_clear(hctx->cpumask);
1851 hctx->nr_ctx = 0;
1852 }
1853
1854 /*
1855 * Map software to hardware queues
1856 */
1857 for_each_possible_cpu(i) {
1858 /* If the cpu isn't online, the cpu is mapped to first hctx */
1859 if (!cpumask_test_cpu(i, online_mask))
1860 continue;
1861
1862 ctx = per_cpu_ptr(q->queue_ctx, i);
1863 hctx = q->mq_ops->map_queue(q, i);
1864
1865 cpumask_set_cpu(i, hctx->cpumask);
1866 ctx->index_hw = hctx->nr_ctx;
1867 hctx->ctxs[hctx->nr_ctx++] = ctx;
1868 }
1869
1870 mutex_unlock(&q->sysfs_lock);
1871
1872 queue_for_each_hw_ctx(q, hctx, i) {
1873 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1874
1875 /*
1876 * If no software queues are mapped to this hardware queue,
1877 * disable it and free the request entries.
1878 */
1879 if (!hctx->nr_ctx) {
1880 if (set->tags[i]) {
1881 blk_mq_free_rq_map(set, set->tags[i], i);
1882 set->tags[i] = NULL;
1883 }
1884 hctx->tags = NULL;
1885 continue;
1886 }
1887
1888 /* unmapped hw queue can be remapped after CPU topo changed */
1889 if (!set->tags[i])
1890 set->tags[i] = blk_mq_init_rq_map(set, i);
1891 hctx->tags = set->tags[i];
1892 WARN_ON(!hctx->tags);
1893
1894 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1895 /*
1896 * Set the map size to the number of mapped software queues.
1897 * This is more accurate and more efficient than looping
1898 * over all possibly mapped software queues.
1899 */
1900 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1901
1902 /*
1903 * Initialize batch roundrobin counts
1904 */
1905 hctx->next_cpu = cpumask_first(hctx->cpumask);
1906 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1907 }
1908 }
1909
1910 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1911 {
1912 struct blk_mq_hw_ctx *hctx;
1913 int i;
1914
1915 queue_for_each_hw_ctx(q, hctx, i) {
1916 if (shared)
1917 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1918 else
1919 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1920 }
1921 }
1922
1923 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1924 {
1925 struct request_queue *q;
1926
1927 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1928 blk_mq_freeze_queue(q);
1929 queue_set_hctx_shared(q, shared);
1930 blk_mq_unfreeze_queue(q);
1931 }
1932 }
1933
1934 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1935 {
1936 struct blk_mq_tag_set *set = q->tag_set;
1937
1938 mutex_lock(&set->tag_list_lock);
1939 list_del_init(&q->tag_set_list);
1940 if (list_is_singular(&set->tag_list)) {
1941 /* just transitioned to unshared */
1942 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1943 /* update existing queue */
1944 blk_mq_update_tag_set_depth(set, false);
1945 }
1946 mutex_unlock(&set->tag_list_lock);
1947 }
1948
1949 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1950 struct request_queue *q)
1951 {
1952 q->tag_set = set;
1953
1954 mutex_lock(&set->tag_list_lock);
1955
1956 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1957 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1958 set->flags |= BLK_MQ_F_TAG_SHARED;
1959 /* update existing queue */
1960 blk_mq_update_tag_set_depth(set, true);
1961 }
1962 if (set->flags & BLK_MQ_F_TAG_SHARED)
1963 queue_set_hctx_shared(q, true);
1964 list_add_tail(&q->tag_set_list, &set->tag_list);
1965
1966 mutex_unlock(&set->tag_list_lock);
1967 }
1968
1969 /*
1970 * It is the actual release handler for mq, but we do it from
1971 * request queue's release handler for avoiding use-after-free
1972 * and headache because q->mq_kobj shouldn't have been introduced,
1973 * but we can't group ctx/kctx kobj without it.
1974 */
1975 void blk_mq_release(struct request_queue *q)
1976 {
1977 struct blk_mq_hw_ctx *hctx;
1978 unsigned int i;
1979
1980 /* hctx kobj stays in hctx */
1981 queue_for_each_hw_ctx(q, hctx, i) {
1982 if (!hctx)
1983 continue;
1984 kfree(hctx->ctxs);
1985 kfree(hctx);
1986 }
1987
1988 kfree(q->mq_map);
1989 q->mq_map = NULL;
1990
1991 kfree(q->queue_hw_ctx);
1992
1993 /* ctx kobj stays in queue_ctx */
1994 free_percpu(q->queue_ctx);
1995 }
1996
1997 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1998 {
1999 struct request_queue *uninit_q, *q;
2000
2001 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2002 if (!uninit_q)
2003 return ERR_PTR(-ENOMEM);
2004
2005 q = blk_mq_init_allocated_queue(set, uninit_q);
2006 if (IS_ERR(q))
2007 blk_cleanup_queue(uninit_q);
2008
2009 return q;
2010 }
2011 EXPORT_SYMBOL(blk_mq_init_queue);
2012
2013 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2014 struct request_queue *q)
2015 {
2016 int i, j;
2017 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2018
2019 blk_mq_sysfs_unregister(q);
2020 for (i = 0; i < set->nr_hw_queues; i++) {
2021 int node;
2022
2023 if (hctxs[i])
2024 continue;
2025
2026 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2027 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2028 GFP_KERNEL, node);
2029 if (!hctxs[i])
2030 break;
2031
2032 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2033 node)) {
2034 kfree(hctxs[i]);
2035 hctxs[i] = NULL;
2036 break;
2037 }
2038
2039 atomic_set(&hctxs[i]->nr_active, 0);
2040 hctxs[i]->numa_node = node;
2041 hctxs[i]->queue_num = i;
2042
2043 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2044 free_cpumask_var(hctxs[i]->cpumask);
2045 kfree(hctxs[i]);
2046 hctxs[i] = NULL;
2047 break;
2048 }
2049 blk_mq_hctx_kobj_init(hctxs[i]);
2050 }
2051 for (j = i; j < q->nr_hw_queues; j++) {
2052 struct blk_mq_hw_ctx *hctx = hctxs[j];
2053
2054 if (hctx) {
2055 if (hctx->tags) {
2056 blk_mq_free_rq_map(set, hctx->tags, j);
2057 set->tags[j] = NULL;
2058 }
2059 blk_mq_exit_hctx(q, set, hctx, j);
2060 free_cpumask_var(hctx->cpumask);
2061 kobject_put(&hctx->kobj);
2062 kfree(hctx->ctxs);
2063 kfree(hctx);
2064 hctxs[j] = NULL;
2065
2066 }
2067 }
2068 q->nr_hw_queues = i;
2069 blk_mq_sysfs_register(q);
2070 }
2071
2072 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2073 struct request_queue *q)
2074 {
2075 /* mark the queue as mq asap */
2076 q->mq_ops = set->ops;
2077
2078 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2079 if (!q->queue_ctx)
2080 goto err_exit;
2081
2082 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2083 GFP_KERNEL, set->numa_node);
2084 if (!q->queue_hw_ctx)
2085 goto err_percpu;
2086
2087 q->mq_map = blk_mq_make_queue_map(set);
2088 if (!q->mq_map)
2089 goto err_map;
2090
2091 blk_mq_realloc_hw_ctxs(set, q);
2092 if (!q->nr_hw_queues)
2093 goto err_hctxs;
2094
2095 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2096 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2097
2098 q->nr_queues = nr_cpu_ids;
2099
2100 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2101
2102 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2103 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2104
2105 q->sg_reserved_size = INT_MAX;
2106
2107 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2108 INIT_LIST_HEAD(&q->requeue_list);
2109 spin_lock_init(&q->requeue_lock);
2110
2111 if (q->nr_hw_queues > 1)
2112 blk_queue_make_request(q, blk_mq_make_request);
2113 else
2114 blk_queue_make_request(q, blk_sq_make_request);
2115
2116 /*
2117 * Do this after blk_queue_make_request() overrides it...
2118 */
2119 q->nr_requests = set->queue_depth;
2120
2121 if (set->ops->complete)
2122 blk_queue_softirq_done(q, set->ops->complete);
2123
2124 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2125
2126 get_online_cpus();
2127 mutex_lock(&all_q_mutex);
2128
2129 list_add_tail(&q->all_q_node, &all_q_list);
2130 blk_mq_add_queue_tag_set(set, q);
2131 blk_mq_map_swqueue(q, cpu_online_mask);
2132
2133 mutex_unlock(&all_q_mutex);
2134 put_online_cpus();
2135
2136 return q;
2137
2138 err_hctxs:
2139 kfree(q->mq_map);
2140 err_map:
2141 kfree(q->queue_hw_ctx);
2142 err_percpu:
2143 free_percpu(q->queue_ctx);
2144 err_exit:
2145 q->mq_ops = NULL;
2146 return ERR_PTR(-ENOMEM);
2147 }
2148 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2149
2150 void blk_mq_free_queue(struct request_queue *q)
2151 {
2152 struct blk_mq_tag_set *set = q->tag_set;
2153
2154 mutex_lock(&all_q_mutex);
2155 list_del_init(&q->all_q_node);
2156 mutex_unlock(&all_q_mutex);
2157
2158 blk_mq_del_queue_tag_set(q);
2159
2160 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2161 blk_mq_free_hw_queues(q, set);
2162 }
2163
2164 /* Basically redo blk_mq_init_queue with queue frozen */
2165 static void blk_mq_queue_reinit(struct request_queue *q,
2166 const struct cpumask *online_mask)
2167 {
2168 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2169
2170 blk_mq_sysfs_unregister(q);
2171
2172 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2173
2174 /*
2175 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2176 * we should change hctx numa_node according to new topology (this
2177 * involves free and re-allocate memory, worthy doing?)
2178 */
2179
2180 blk_mq_map_swqueue(q, online_mask);
2181
2182 blk_mq_sysfs_register(q);
2183 }
2184
2185 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2186 unsigned long action, void *hcpu)
2187 {
2188 struct request_queue *q;
2189 int cpu = (unsigned long)hcpu;
2190 /*
2191 * New online cpumask which is going to be set in this hotplug event.
2192 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2193 * one-by-one and dynamically allocating this could result in a failure.
2194 */
2195 static struct cpumask online_new;
2196
2197 /*
2198 * Before hotadded cpu starts handling requests, new mappings must
2199 * be established. Otherwise, these requests in hw queue might
2200 * never be dispatched.
2201 *
2202 * For example, there is a single hw queue (hctx) and two CPU queues
2203 * (ctx0 for CPU0, and ctx1 for CPU1).
2204 *
2205 * Now CPU1 is just onlined and a request is inserted into
2206 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2207 * still zero.
2208 *
2209 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2210 * set in pending bitmap and tries to retrieve requests in
2211 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2212 * so the request in ctx1->rq_list is ignored.
2213 */
2214 switch (action & ~CPU_TASKS_FROZEN) {
2215 case CPU_DEAD:
2216 case CPU_UP_CANCELED:
2217 cpumask_copy(&online_new, cpu_online_mask);
2218 break;
2219 case CPU_UP_PREPARE:
2220 cpumask_copy(&online_new, cpu_online_mask);
2221 cpumask_set_cpu(cpu, &online_new);
2222 break;
2223 default:
2224 return NOTIFY_OK;
2225 }
2226
2227 mutex_lock(&all_q_mutex);
2228
2229 /*
2230 * We need to freeze and reinit all existing queues. Freezing
2231 * involves synchronous wait for an RCU grace period and doing it
2232 * one by one may take a long time. Start freezing all queues in
2233 * one swoop and then wait for the completions so that freezing can
2234 * take place in parallel.
2235 */
2236 list_for_each_entry(q, &all_q_list, all_q_node)
2237 blk_mq_freeze_queue_start(q);
2238 list_for_each_entry(q, &all_q_list, all_q_node) {
2239 blk_mq_freeze_queue_wait(q);
2240
2241 /*
2242 * timeout handler can't touch hw queue during the
2243 * reinitialization
2244 */
2245 del_timer_sync(&q->timeout);
2246 }
2247
2248 list_for_each_entry(q, &all_q_list, all_q_node)
2249 blk_mq_queue_reinit(q, &online_new);
2250
2251 list_for_each_entry(q, &all_q_list, all_q_node)
2252 blk_mq_unfreeze_queue(q);
2253
2254 mutex_unlock(&all_q_mutex);
2255 return NOTIFY_OK;
2256 }
2257
2258 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2259 {
2260 int i;
2261
2262 for (i = 0; i < set->nr_hw_queues; i++) {
2263 set->tags[i] = blk_mq_init_rq_map(set, i);
2264 if (!set->tags[i])
2265 goto out_unwind;
2266 }
2267
2268 return 0;
2269
2270 out_unwind:
2271 while (--i >= 0)
2272 blk_mq_free_rq_map(set, set->tags[i], i);
2273
2274 return -ENOMEM;
2275 }
2276
2277 /*
2278 * Allocate the request maps associated with this tag_set. Note that this
2279 * may reduce the depth asked for, if memory is tight. set->queue_depth
2280 * will be updated to reflect the allocated depth.
2281 */
2282 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2283 {
2284 unsigned int depth;
2285 int err;
2286
2287 depth = set->queue_depth;
2288 do {
2289 err = __blk_mq_alloc_rq_maps(set);
2290 if (!err)
2291 break;
2292
2293 set->queue_depth >>= 1;
2294 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2295 err = -ENOMEM;
2296 break;
2297 }
2298 } while (set->queue_depth);
2299
2300 if (!set->queue_depth || err) {
2301 pr_err("blk-mq: failed to allocate request map\n");
2302 return -ENOMEM;
2303 }
2304
2305 if (depth != set->queue_depth)
2306 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2307 depth, set->queue_depth);
2308
2309 return 0;
2310 }
2311
2312 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2313 {
2314 return tags->cpumask;
2315 }
2316 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2317
2318 /*
2319 * Alloc a tag set to be associated with one or more request queues.
2320 * May fail with EINVAL for various error conditions. May adjust the
2321 * requested depth down, if if it too large. In that case, the set
2322 * value will be stored in set->queue_depth.
2323 */
2324 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2325 {
2326 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2327
2328 if (!set->nr_hw_queues)
2329 return -EINVAL;
2330 if (!set->queue_depth)
2331 return -EINVAL;
2332 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2333 return -EINVAL;
2334
2335 if (!set->ops->queue_rq || !set->ops->map_queue)
2336 return -EINVAL;
2337
2338 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2339 pr_info("blk-mq: reduced tag depth to %u\n",
2340 BLK_MQ_MAX_DEPTH);
2341 set->queue_depth = BLK_MQ_MAX_DEPTH;
2342 }
2343
2344 /*
2345 * If a crashdump is active, then we are potentially in a very
2346 * memory constrained environment. Limit us to 1 queue and
2347 * 64 tags to prevent using too much memory.
2348 */
2349 if (is_kdump_kernel()) {
2350 set->nr_hw_queues = 1;
2351 set->queue_depth = min(64U, set->queue_depth);
2352 }
2353 /*
2354 * There is no use for more h/w queues than cpus.
2355 */
2356 if (set->nr_hw_queues > nr_cpu_ids)
2357 set->nr_hw_queues = nr_cpu_ids;
2358
2359 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2360 GFP_KERNEL, set->numa_node);
2361 if (!set->tags)
2362 return -ENOMEM;
2363
2364 if (blk_mq_alloc_rq_maps(set))
2365 goto enomem;
2366
2367 mutex_init(&set->tag_list_lock);
2368 INIT_LIST_HEAD(&set->tag_list);
2369
2370 return 0;
2371 enomem:
2372 kfree(set->tags);
2373 set->tags = NULL;
2374 return -ENOMEM;
2375 }
2376 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2377
2378 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2379 {
2380 int i;
2381
2382 for (i = 0; i < nr_cpu_ids; i++) {
2383 if (set->tags[i])
2384 blk_mq_free_rq_map(set, set->tags[i], i);
2385 }
2386
2387 kfree(set->tags);
2388 set->tags = NULL;
2389 }
2390 EXPORT_SYMBOL(blk_mq_free_tag_set);
2391
2392 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2393 {
2394 struct blk_mq_tag_set *set = q->tag_set;
2395 struct blk_mq_hw_ctx *hctx;
2396 int i, ret;
2397
2398 if (!set || nr > set->queue_depth)
2399 return -EINVAL;
2400
2401 ret = 0;
2402 queue_for_each_hw_ctx(q, hctx, i) {
2403 if (!hctx->tags)
2404 continue;
2405 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2406 if (ret)
2407 break;
2408 }
2409
2410 if (!ret)
2411 q->nr_requests = nr;
2412
2413 return ret;
2414 }
2415
2416 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2417 {
2418 struct request_queue *q;
2419
2420 if (nr_hw_queues > nr_cpu_ids)
2421 nr_hw_queues = nr_cpu_ids;
2422 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2423 return;
2424
2425 list_for_each_entry(q, &set->tag_list, tag_set_list)
2426 blk_mq_freeze_queue(q);
2427
2428 set->nr_hw_queues = nr_hw_queues;
2429 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2430 blk_mq_realloc_hw_ctxs(set, q);
2431
2432 if (q->nr_hw_queues > 1)
2433 blk_queue_make_request(q, blk_mq_make_request);
2434 else
2435 blk_queue_make_request(q, blk_sq_make_request);
2436
2437 blk_mq_queue_reinit(q, cpu_online_mask);
2438 }
2439
2440 list_for_each_entry(q, &set->tag_list, tag_set_list)
2441 blk_mq_unfreeze_queue(q);
2442 }
2443 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2444
2445 void blk_mq_disable_hotplug(void)
2446 {
2447 mutex_lock(&all_q_mutex);
2448 }
2449
2450 void blk_mq_enable_hotplug(void)
2451 {
2452 mutex_unlock(&all_q_mutex);
2453 }
2454
2455 static int __init blk_mq_init(void)
2456 {
2457 blk_mq_cpu_init();
2458
2459 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2460
2461 return 0;
2462 }
2463 subsys_initcall(blk_mq_init);
This page took 0.080483 seconds and 5 git commands to generate.