Merge remote-tracking branch 'omap_dss2/for-next'
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
36
37 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
38
39 /*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 {
44 unsigned int i;
45
46 for (i = 0; i < hctx->ctx_map.size; i++)
47 if (hctx->ctx_map.map[i].word)
48 return true;
49
50 return false;
51 }
52
53 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55 {
56 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
57 }
58
59 #define CTX_TO_BIT(hctx, ctx) \
60 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61
62 /*
63 * Mark this ctx as having pending work in this hardware queue
64 */
65 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67 {
68 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
69
70 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
71 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
72 }
73
74 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
78
79 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 }
81
82 void blk_mq_freeze_queue_start(struct request_queue *q)
83 {
84 int freeze_depth;
85
86 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
87 if (freeze_depth == 1) {
88 percpu_ref_kill(&q->q_usage_counter);
89 blk_mq_run_hw_queues(q, false);
90 }
91 }
92 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
93
94 static void blk_mq_freeze_queue_wait(struct request_queue *q)
95 {
96 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
97 }
98
99 /*
100 * Guarantee no request is in use, so we can change any data structure of
101 * the queue afterward.
102 */
103 void blk_freeze_queue(struct request_queue *q)
104 {
105 /*
106 * In the !blk_mq case we are only calling this to kill the
107 * q_usage_counter, otherwise this increases the freeze depth
108 * and waits for it to return to zero. For this reason there is
109 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
110 * exported to drivers as the only user for unfreeze is blk_mq.
111 */
112 blk_mq_freeze_queue_start(q);
113 blk_mq_freeze_queue_wait(q);
114 }
115
116 void blk_mq_freeze_queue(struct request_queue *q)
117 {
118 /*
119 * ...just an alias to keep freeze and unfreeze actions balanced
120 * in the blk_mq_* namespace
121 */
122 blk_freeze_queue(q);
123 }
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
125
126 void blk_mq_unfreeze_queue(struct request_queue *q)
127 {
128 int freeze_depth;
129
130 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
131 WARN_ON_ONCE(freeze_depth < 0);
132 if (!freeze_depth) {
133 percpu_ref_reinit(&q->q_usage_counter);
134 wake_up_all(&q->mq_freeze_wq);
135 }
136 }
137 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
138
139 void blk_mq_wake_waiters(struct request_queue *q)
140 {
141 struct blk_mq_hw_ctx *hctx;
142 unsigned int i;
143
144 queue_for_each_hw_ctx(q, hctx, i)
145 if (blk_mq_hw_queue_mapped(hctx))
146 blk_mq_tag_wakeup_all(hctx->tags, true);
147
148 /*
149 * If we are called because the queue has now been marked as
150 * dying, we need to ensure that processes currently waiting on
151 * the queue are notified as well.
152 */
153 wake_up_all(&q->mq_freeze_wq);
154 }
155
156 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
157 {
158 return blk_mq_has_free_tags(hctx->tags);
159 }
160 EXPORT_SYMBOL(blk_mq_can_queue);
161
162 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
163 struct request *rq, int op,
164 unsigned int op_flags)
165 {
166 if (blk_queue_io_stat(q))
167 op_flags |= REQ_IO_STAT;
168
169 INIT_LIST_HEAD(&rq->queuelist);
170 /* csd/requeue_work/fifo_time is initialized before use */
171 rq->q = q;
172 rq->mq_ctx = ctx;
173 req_set_op_attrs(rq, op, op_flags);
174 /* do not touch atomic flags, it needs atomic ops against the timer */
175 rq->cpu = -1;
176 INIT_HLIST_NODE(&rq->hash);
177 RB_CLEAR_NODE(&rq->rb_node);
178 rq->rq_disk = NULL;
179 rq->part = NULL;
180 rq->start_time = jiffies;
181 #ifdef CONFIG_BLK_CGROUP
182 rq->rl = NULL;
183 set_start_time_ns(rq);
184 rq->io_start_time_ns = 0;
185 #endif
186 rq->nr_phys_segments = 0;
187 #if defined(CONFIG_BLK_DEV_INTEGRITY)
188 rq->nr_integrity_segments = 0;
189 #endif
190 rq->special = NULL;
191 /* tag was already set */
192 rq->errors = 0;
193
194 rq->cmd = rq->__cmd;
195
196 rq->extra_len = 0;
197 rq->sense_len = 0;
198 rq->resid_len = 0;
199 rq->sense = NULL;
200
201 INIT_LIST_HEAD(&rq->timeout_list);
202 rq->timeout = 0;
203
204 rq->end_io = NULL;
205 rq->end_io_data = NULL;
206 rq->next_rq = NULL;
207
208 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
209 }
210
211 static struct request *
212 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
213 {
214 struct request *rq;
215 unsigned int tag;
216
217 tag = blk_mq_get_tag(data);
218 if (tag != BLK_MQ_TAG_FAIL) {
219 rq = data->hctx->tags->rqs[tag];
220
221 if (blk_mq_tag_busy(data->hctx)) {
222 rq->cmd_flags = REQ_MQ_INFLIGHT;
223 atomic_inc(&data->hctx->nr_active);
224 }
225
226 rq->tag = tag;
227 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
228 return rq;
229 }
230
231 return NULL;
232 }
233
234 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
235 unsigned int flags)
236 {
237 struct blk_mq_ctx *ctx;
238 struct blk_mq_hw_ctx *hctx;
239 struct request *rq;
240 struct blk_mq_alloc_data alloc_data;
241 int ret;
242
243 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
244 if (ret)
245 return ERR_PTR(ret);
246
247 ctx = blk_mq_get_ctx(q);
248 hctx = q->mq_ops->map_queue(q, ctx->cpu);
249 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
250
251 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
252 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
253 __blk_mq_run_hw_queue(hctx);
254 blk_mq_put_ctx(ctx);
255
256 ctx = blk_mq_get_ctx(q);
257 hctx = q->mq_ops->map_queue(q, ctx->cpu);
258 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
259 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
260 ctx = alloc_data.ctx;
261 }
262 blk_mq_put_ctx(ctx);
263 if (!rq) {
264 blk_queue_exit(q);
265 return ERR_PTR(-EWOULDBLOCK);
266 }
267
268 rq->__data_len = 0;
269 rq->__sector = (sector_t) -1;
270 rq->bio = rq->biotail = NULL;
271 return rq;
272 }
273 EXPORT_SYMBOL(blk_mq_alloc_request);
274
275 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
276 unsigned int flags, unsigned int hctx_idx)
277 {
278 struct blk_mq_hw_ctx *hctx;
279 struct blk_mq_ctx *ctx;
280 struct request *rq;
281 struct blk_mq_alloc_data alloc_data;
282 int ret;
283
284 /*
285 * If the tag allocator sleeps we could get an allocation for a
286 * different hardware context. No need to complicate the low level
287 * allocator for this for the rare use case of a command tied to
288 * a specific queue.
289 */
290 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
291 return ERR_PTR(-EINVAL);
292
293 if (hctx_idx >= q->nr_hw_queues)
294 return ERR_PTR(-EIO);
295
296 ret = blk_queue_enter(q, true);
297 if (ret)
298 return ERR_PTR(ret);
299
300 hctx = q->queue_hw_ctx[hctx_idx];
301 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
302
303 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
304 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
305 if (!rq) {
306 blk_queue_exit(q);
307 return ERR_PTR(-EWOULDBLOCK);
308 }
309
310 return rq;
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
313
314 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
315 struct blk_mq_ctx *ctx, struct request *rq)
316 {
317 const int tag = rq->tag;
318 struct request_queue *q = rq->q;
319
320 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
321 atomic_dec(&hctx->nr_active);
322 rq->cmd_flags = 0;
323
324 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
325 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
326 blk_queue_exit(q);
327 }
328
329 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
330 {
331 struct blk_mq_ctx *ctx = rq->mq_ctx;
332
333 ctx->rq_completed[rq_is_sync(rq)]++;
334 __blk_mq_free_request(hctx, ctx, rq);
335
336 }
337 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
338
339 void blk_mq_free_request(struct request *rq)
340 {
341 struct blk_mq_hw_ctx *hctx;
342 struct request_queue *q = rq->q;
343
344 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
345 blk_mq_free_hctx_request(hctx, rq);
346 }
347 EXPORT_SYMBOL_GPL(blk_mq_free_request);
348
349 inline void __blk_mq_end_request(struct request *rq, int error)
350 {
351 blk_account_io_done(rq);
352
353 if (rq->end_io) {
354 rq->end_io(rq, error);
355 } else {
356 if (unlikely(blk_bidi_rq(rq)))
357 blk_mq_free_request(rq->next_rq);
358 blk_mq_free_request(rq);
359 }
360 }
361 EXPORT_SYMBOL(__blk_mq_end_request);
362
363 void blk_mq_end_request(struct request *rq, int error)
364 {
365 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
366 BUG();
367 __blk_mq_end_request(rq, error);
368 }
369 EXPORT_SYMBOL(blk_mq_end_request);
370
371 static void __blk_mq_complete_request_remote(void *data)
372 {
373 struct request *rq = data;
374
375 rq->q->softirq_done_fn(rq);
376 }
377
378 static void blk_mq_ipi_complete_request(struct request *rq)
379 {
380 struct blk_mq_ctx *ctx = rq->mq_ctx;
381 bool shared = false;
382 int cpu;
383
384 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
385 rq->q->softirq_done_fn(rq);
386 return;
387 }
388
389 cpu = get_cpu();
390 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
391 shared = cpus_share_cache(cpu, ctx->cpu);
392
393 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
394 rq->csd.func = __blk_mq_complete_request_remote;
395 rq->csd.info = rq;
396 rq->csd.flags = 0;
397 smp_call_function_single_async(ctx->cpu, &rq->csd);
398 } else {
399 rq->q->softirq_done_fn(rq);
400 }
401 put_cpu();
402 }
403
404 static void __blk_mq_complete_request(struct request *rq)
405 {
406 struct request_queue *q = rq->q;
407
408 if (!q->softirq_done_fn)
409 blk_mq_end_request(rq, rq->errors);
410 else
411 blk_mq_ipi_complete_request(rq);
412 }
413
414 /**
415 * blk_mq_complete_request - end I/O on a request
416 * @rq: the request being processed
417 *
418 * Description:
419 * Ends all I/O on a request. It does not handle partial completions.
420 * The actual completion happens out-of-order, through a IPI handler.
421 **/
422 void blk_mq_complete_request(struct request *rq, int error)
423 {
424 struct request_queue *q = rq->q;
425
426 if (unlikely(blk_should_fake_timeout(q)))
427 return;
428 if (!blk_mark_rq_complete(rq)) {
429 rq->errors = error;
430 __blk_mq_complete_request(rq);
431 }
432 }
433 EXPORT_SYMBOL(blk_mq_complete_request);
434
435 int blk_mq_request_started(struct request *rq)
436 {
437 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
438 }
439 EXPORT_SYMBOL_GPL(blk_mq_request_started);
440
441 void blk_mq_start_request(struct request *rq)
442 {
443 struct request_queue *q = rq->q;
444
445 trace_block_rq_issue(q, rq);
446
447 rq->resid_len = blk_rq_bytes(rq);
448 if (unlikely(blk_bidi_rq(rq)))
449 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
450
451 blk_add_timer(rq);
452
453 /*
454 * Ensure that ->deadline is visible before set the started
455 * flag and clear the completed flag.
456 */
457 smp_mb__before_atomic();
458
459 /*
460 * Mark us as started and clear complete. Complete might have been
461 * set if requeue raced with timeout, which then marked it as
462 * complete. So be sure to clear complete again when we start
463 * the request, otherwise we'll ignore the completion event.
464 */
465 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
466 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
467 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
468 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
469
470 if (q->dma_drain_size && blk_rq_bytes(rq)) {
471 /*
472 * Make sure space for the drain appears. We know we can do
473 * this because max_hw_segments has been adjusted to be one
474 * fewer than the device can handle.
475 */
476 rq->nr_phys_segments++;
477 }
478 }
479 EXPORT_SYMBOL(blk_mq_start_request);
480
481 static void __blk_mq_requeue_request(struct request *rq)
482 {
483 struct request_queue *q = rq->q;
484
485 trace_block_rq_requeue(q, rq);
486
487 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
488 if (q->dma_drain_size && blk_rq_bytes(rq))
489 rq->nr_phys_segments--;
490 }
491 }
492
493 void blk_mq_requeue_request(struct request *rq)
494 {
495 __blk_mq_requeue_request(rq);
496
497 BUG_ON(blk_queued_rq(rq));
498 blk_mq_add_to_requeue_list(rq, true);
499 }
500 EXPORT_SYMBOL(blk_mq_requeue_request);
501
502 static void blk_mq_requeue_work(struct work_struct *work)
503 {
504 struct request_queue *q =
505 container_of(work, struct request_queue, requeue_work);
506 LIST_HEAD(rq_list);
507 struct request *rq, *next;
508 unsigned long flags;
509
510 spin_lock_irqsave(&q->requeue_lock, flags);
511 list_splice_init(&q->requeue_list, &rq_list);
512 spin_unlock_irqrestore(&q->requeue_lock, flags);
513
514 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
515 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
516 continue;
517
518 rq->cmd_flags &= ~REQ_SOFTBARRIER;
519 list_del_init(&rq->queuelist);
520 blk_mq_insert_request(rq, true, false, false);
521 }
522
523 while (!list_empty(&rq_list)) {
524 rq = list_entry(rq_list.next, struct request, queuelist);
525 list_del_init(&rq->queuelist);
526 blk_mq_insert_request(rq, false, false, false);
527 }
528
529 /*
530 * Use the start variant of queue running here, so that running
531 * the requeue work will kick stopped queues.
532 */
533 blk_mq_start_hw_queues(q);
534 }
535
536 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
537 {
538 struct request_queue *q = rq->q;
539 unsigned long flags;
540
541 /*
542 * We abuse this flag that is otherwise used by the I/O scheduler to
543 * request head insertation from the workqueue.
544 */
545 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
546
547 spin_lock_irqsave(&q->requeue_lock, flags);
548 if (at_head) {
549 rq->cmd_flags |= REQ_SOFTBARRIER;
550 list_add(&rq->queuelist, &q->requeue_list);
551 } else {
552 list_add_tail(&rq->queuelist, &q->requeue_list);
553 }
554 spin_unlock_irqrestore(&q->requeue_lock, flags);
555 }
556 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
557
558 void blk_mq_cancel_requeue_work(struct request_queue *q)
559 {
560 cancel_work_sync(&q->requeue_work);
561 }
562 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
563
564 void blk_mq_kick_requeue_list(struct request_queue *q)
565 {
566 kblockd_schedule_work(&q->requeue_work);
567 }
568 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
569
570 void blk_mq_abort_requeue_list(struct request_queue *q)
571 {
572 unsigned long flags;
573 LIST_HEAD(rq_list);
574
575 spin_lock_irqsave(&q->requeue_lock, flags);
576 list_splice_init(&q->requeue_list, &rq_list);
577 spin_unlock_irqrestore(&q->requeue_lock, flags);
578
579 while (!list_empty(&rq_list)) {
580 struct request *rq;
581
582 rq = list_first_entry(&rq_list, struct request, queuelist);
583 list_del_init(&rq->queuelist);
584 rq->errors = -EIO;
585 blk_mq_end_request(rq, rq->errors);
586 }
587 }
588 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
589
590 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
591 {
592 if (tag < tags->nr_tags) {
593 prefetch(tags->rqs[tag]);
594 return tags->rqs[tag];
595 }
596
597 return NULL;
598 }
599 EXPORT_SYMBOL(blk_mq_tag_to_rq);
600
601 struct blk_mq_timeout_data {
602 unsigned long next;
603 unsigned int next_set;
604 };
605
606 void blk_mq_rq_timed_out(struct request *req, bool reserved)
607 {
608 struct blk_mq_ops *ops = req->q->mq_ops;
609 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
610
611 /*
612 * We know that complete is set at this point. If STARTED isn't set
613 * anymore, then the request isn't active and the "timeout" should
614 * just be ignored. This can happen due to the bitflag ordering.
615 * Timeout first checks if STARTED is set, and if it is, assumes
616 * the request is active. But if we race with completion, then
617 * we both flags will get cleared. So check here again, and ignore
618 * a timeout event with a request that isn't active.
619 */
620 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
621 return;
622
623 if (ops->timeout)
624 ret = ops->timeout(req, reserved);
625
626 switch (ret) {
627 case BLK_EH_HANDLED:
628 __blk_mq_complete_request(req);
629 break;
630 case BLK_EH_RESET_TIMER:
631 blk_add_timer(req);
632 blk_clear_rq_complete(req);
633 break;
634 case BLK_EH_NOT_HANDLED:
635 break;
636 default:
637 printk(KERN_ERR "block: bad eh return: %d\n", ret);
638 break;
639 }
640 }
641
642 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
643 struct request *rq, void *priv, bool reserved)
644 {
645 struct blk_mq_timeout_data *data = priv;
646
647 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
648 /*
649 * If a request wasn't started before the queue was
650 * marked dying, kill it here or it'll go unnoticed.
651 */
652 if (unlikely(blk_queue_dying(rq->q))) {
653 rq->errors = -EIO;
654 blk_mq_end_request(rq, rq->errors);
655 }
656 return;
657 }
658
659 if (time_after_eq(jiffies, rq->deadline)) {
660 if (!blk_mark_rq_complete(rq))
661 blk_mq_rq_timed_out(rq, reserved);
662 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
663 data->next = rq->deadline;
664 data->next_set = 1;
665 }
666 }
667
668 static void blk_mq_timeout_work(struct work_struct *work)
669 {
670 struct request_queue *q =
671 container_of(work, struct request_queue, timeout_work);
672 struct blk_mq_timeout_data data = {
673 .next = 0,
674 .next_set = 0,
675 };
676 int i;
677
678 /* A deadlock might occur if a request is stuck requiring a
679 * timeout at the same time a queue freeze is waiting
680 * completion, since the timeout code would not be able to
681 * acquire the queue reference here.
682 *
683 * That's why we don't use blk_queue_enter here; instead, we use
684 * percpu_ref_tryget directly, because we need to be able to
685 * obtain a reference even in the short window between the queue
686 * starting to freeze, by dropping the first reference in
687 * blk_mq_freeze_queue_start, and the moment the last request is
688 * consumed, marked by the instant q_usage_counter reaches
689 * zero.
690 */
691 if (!percpu_ref_tryget(&q->q_usage_counter))
692 return;
693
694 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
695
696 if (data.next_set) {
697 data.next = blk_rq_timeout(round_jiffies_up(data.next));
698 mod_timer(&q->timeout, data.next);
699 } else {
700 struct blk_mq_hw_ctx *hctx;
701
702 queue_for_each_hw_ctx(q, hctx, i) {
703 /* the hctx may be unmapped, so check it here */
704 if (blk_mq_hw_queue_mapped(hctx))
705 blk_mq_tag_idle(hctx);
706 }
707 }
708 blk_queue_exit(q);
709 }
710
711 /*
712 * Reverse check our software queue for entries that we could potentially
713 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
714 * too much time checking for merges.
715 */
716 static bool blk_mq_attempt_merge(struct request_queue *q,
717 struct blk_mq_ctx *ctx, struct bio *bio)
718 {
719 struct request *rq;
720 int checked = 8;
721
722 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
723 int el_ret;
724
725 if (!checked--)
726 break;
727
728 if (!blk_rq_merge_ok(rq, bio))
729 continue;
730
731 el_ret = blk_try_merge(rq, bio);
732 if (el_ret == ELEVATOR_BACK_MERGE) {
733 if (bio_attempt_back_merge(q, rq, bio)) {
734 ctx->rq_merged++;
735 return true;
736 }
737 break;
738 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
739 if (bio_attempt_front_merge(q, rq, bio)) {
740 ctx->rq_merged++;
741 return true;
742 }
743 break;
744 }
745 }
746
747 return false;
748 }
749
750 /*
751 * Process software queues that have been marked busy, splicing them
752 * to the for-dispatch
753 */
754 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
755 {
756 struct blk_mq_ctx *ctx;
757 int i;
758
759 for (i = 0; i < hctx->ctx_map.size; i++) {
760 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
761 unsigned int off, bit;
762
763 if (!bm->word)
764 continue;
765
766 bit = 0;
767 off = i * hctx->ctx_map.bits_per_word;
768 do {
769 bit = find_next_bit(&bm->word, bm->depth, bit);
770 if (bit >= bm->depth)
771 break;
772
773 ctx = hctx->ctxs[bit + off];
774 clear_bit(bit, &bm->word);
775 spin_lock(&ctx->lock);
776 list_splice_tail_init(&ctx->rq_list, list);
777 spin_unlock(&ctx->lock);
778
779 bit++;
780 } while (1);
781 }
782 }
783
784 /*
785 * Run this hardware queue, pulling any software queues mapped to it in.
786 * Note that this function currently has various problems around ordering
787 * of IO. In particular, we'd like FIFO behaviour on handling existing
788 * items on the hctx->dispatch list. Ignore that for now.
789 */
790 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
791 {
792 struct request_queue *q = hctx->queue;
793 struct request *rq;
794 LIST_HEAD(rq_list);
795 LIST_HEAD(driver_list);
796 struct list_head *dptr;
797 int queued;
798
799 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
800 return;
801
802 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
803 cpu_online(hctx->next_cpu));
804
805 hctx->run++;
806
807 /*
808 * Touch any software queue that has pending entries.
809 */
810 flush_busy_ctxs(hctx, &rq_list);
811
812 /*
813 * If we have previous entries on our dispatch list, grab them
814 * and stuff them at the front for more fair dispatch.
815 */
816 if (!list_empty_careful(&hctx->dispatch)) {
817 spin_lock(&hctx->lock);
818 if (!list_empty(&hctx->dispatch))
819 list_splice_init(&hctx->dispatch, &rq_list);
820 spin_unlock(&hctx->lock);
821 }
822
823 /*
824 * Start off with dptr being NULL, so we start the first request
825 * immediately, even if we have more pending.
826 */
827 dptr = NULL;
828
829 /*
830 * Now process all the entries, sending them to the driver.
831 */
832 queued = 0;
833 while (!list_empty(&rq_list)) {
834 struct blk_mq_queue_data bd;
835 int ret;
836
837 rq = list_first_entry(&rq_list, struct request, queuelist);
838 list_del_init(&rq->queuelist);
839
840 bd.rq = rq;
841 bd.list = dptr;
842 bd.last = list_empty(&rq_list);
843
844 ret = q->mq_ops->queue_rq(hctx, &bd);
845 switch (ret) {
846 case BLK_MQ_RQ_QUEUE_OK:
847 queued++;
848 break;
849 case BLK_MQ_RQ_QUEUE_BUSY:
850 list_add(&rq->queuelist, &rq_list);
851 __blk_mq_requeue_request(rq);
852 break;
853 default:
854 pr_err("blk-mq: bad return on queue: %d\n", ret);
855 case BLK_MQ_RQ_QUEUE_ERROR:
856 rq->errors = -EIO;
857 blk_mq_end_request(rq, rq->errors);
858 break;
859 }
860
861 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
862 break;
863
864 /*
865 * We've done the first request. If we have more than 1
866 * left in the list, set dptr to defer issue.
867 */
868 if (!dptr && rq_list.next != rq_list.prev)
869 dptr = &driver_list;
870 }
871
872 if (!queued)
873 hctx->dispatched[0]++;
874 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
875 hctx->dispatched[ilog2(queued) + 1]++;
876
877 /*
878 * Any items that need requeuing? Stuff them into hctx->dispatch,
879 * that is where we will continue on next queue run.
880 */
881 if (!list_empty(&rq_list)) {
882 spin_lock(&hctx->lock);
883 list_splice(&rq_list, &hctx->dispatch);
884 spin_unlock(&hctx->lock);
885 /*
886 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
887 * it's possible the queue is stopped and restarted again
888 * before this. Queue restart will dispatch requests. And since
889 * requests in rq_list aren't added into hctx->dispatch yet,
890 * the requests in rq_list might get lost.
891 *
892 * blk_mq_run_hw_queue() already checks the STOPPED bit
893 **/
894 blk_mq_run_hw_queue(hctx, true);
895 }
896 }
897
898 /*
899 * It'd be great if the workqueue API had a way to pass
900 * in a mask and had some smarts for more clever placement.
901 * For now we just round-robin here, switching for every
902 * BLK_MQ_CPU_WORK_BATCH queued items.
903 */
904 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
905 {
906 if (hctx->queue->nr_hw_queues == 1)
907 return WORK_CPU_UNBOUND;
908
909 if (--hctx->next_cpu_batch <= 0) {
910 int cpu = hctx->next_cpu, next_cpu;
911
912 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
913 if (next_cpu >= nr_cpu_ids)
914 next_cpu = cpumask_first(hctx->cpumask);
915
916 hctx->next_cpu = next_cpu;
917 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
918
919 return cpu;
920 }
921
922 return hctx->next_cpu;
923 }
924
925 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
926 {
927 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
928 !blk_mq_hw_queue_mapped(hctx)))
929 return;
930
931 if (!async) {
932 int cpu = get_cpu();
933 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
934 __blk_mq_run_hw_queue(hctx);
935 put_cpu();
936 return;
937 }
938
939 put_cpu();
940 }
941
942 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
943 }
944
945 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
946 {
947 struct blk_mq_hw_ctx *hctx;
948 int i;
949
950 queue_for_each_hw_ctx(q, hctx, i) {
951 if ((!blk_mq_hctx_has_pending(hctx) &&
952 list_empty_careful(&hctx->dispatch)) ||
953 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
954 continue;
955
956 blk_mq_run_hw_queue(hctx, async);
957 }
958 }
959 EXPORT_SYMBOL(blk_mq_run_hw_queues);
960
961 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
962 {
963 cancel_work(&hctx->run_work);
964 cancel_delayed_work(&hctx->delay_work);
965 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
966 }
967 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
968
969 void blk_mq_stop_hw_queues(struct request_queue *q)
970 {
971 struct blk_mq_hw_ctx *hctx;
972 int i;
973
974 queue_for_each_hw_ctx(q, hctx, i)
975 blk_mq_stop_hw_queue(hctx);
976 }
977 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
978
979 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
980 {
981 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
982
983 blk_mq_run_hw_queue(hctx, false);
984 }
985 EXPORT_SYMBOL(blk_mq_start_hw_queue);
986
987 void blk_mq_start_hw_queues(struct request_queue *q)
988 {
989 struct blk_mq_hw_ctx *hctx;
990 int i;
991
992 queue_for_each_hw_ctx(q, hctx, i)
993 blk_mq_start_hw_queue(hctx);
994 }
995 EXPORT_SYMBOL(blk_mq_start_hw_queues);
996
997 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
998 {
999 struct blk_mq_hw_ctx *hctx;
1000 int i;
1001
1002 queue_for_each_hw_ctx(q, hctx, i) {
1003 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1004 continue;
1005
1006 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1007 blk_mq_run_hw_queue(hctx, async);
1008 }
1009 }
1010 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1011
1012 static void blk_mq_run_work_fn(struct work_struct *work)
1013 {
1014 struct blk_mq_hw_ctx *hctx;
1015
1016 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1017
1018 __blk_mq_run_hw_queue(hctx);
1019 }
1020
1021 static void blk_mq_delay_work_fn(struct work_struct *work)
1022 {
1023 struct blk_mq_hw_ctx *hctx;
1024
1025 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1026
1027 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1028 __blk_mq_run_hw_queue(hctx);
1029 }
1030
1031 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1032 {
1033 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1034 return;
1035
1036 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1037 &hctx->delay_work, msecs_to_jiffies(msecs));
1038 }
1039 EXPORT_SYMBOL(blk_mq_delay_queue);
1040
1041 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1042 struct request *rq,
1043 bool at_head)
1044 {
1045 struct blk_mq_ctx *ctx = rq->mq_ctx;
1046
1047 trace_block_rq_insert(hctx->queue, rq);
1048
1049 if (at_head)
1050 list_add(&rq->queuelist, &ctx->rq_list);
1051 else
1052 list_add_tail(&rq->queuelist, &ctx->rq_list);
1053 }
1054
1055 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1056 struct request *rq, bool at_head)
1057 {
1058 struct blk_mq_ctx *ctx = rq->mq_ctx;
1059
1060 __blk_mq_insert_req_list(hctx, rq, at_head);
1061 blk_mq_hctx_mark_pending(hctx, ctx);
1062 }
1063
1064 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1065 bool async)
1066 {
1067 struct blk_mq_ctx *ctx = rq->mq_ctx;
1068 struct request_queue *q = rq->q;
1069 struct blk_mq_hw_ctx *hctx;
1070
1071 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1072
1073 spin_lock(&ctx->lock);
1074 __blk_mq_insert_request(hctx, rq, at_head);
1075 spin_unlock(&ctx->lock);
1076
1077 if (run_queue)
1078 blk_mq_run_hw_queue(hctx, async);
1079 }
1080
1081 static void blk_mq_insert_requests(struct request_queue *q,
1082 struct blk_mq_ctx *ctx,
1083 struct list_head *list,
1084 int depth,
1085 bool from_schedule)
1086
1087 {
1088 struct blk_mq_hw_ctx *hctx;
1089
1090 trace_block_unplug(q, depth, !from_schedule);
1091
1092 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1093
1094 /*
1095 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1096 * offline now
1097 */
1098 spin_lock(&ctx->lock);
1099 while (!list_empty(list)) {
1100 struct request *rq;
1101
1102 rq = list_first_entry(list, struct request, queuelist);
1103 BUG_ON(rq->mq_ctx != ctx);
1104 list_del_init(&rq->queuelist);
1105 __blk_mq_insert_req_list(hctx, rq, false);
1106 }
1107 blk_mq_hctx_mark_pending(hctx, ctx);
1108 spin_unlock(&ctx->lock);
1109
1110 blk_mq_run_hw_queue(hctx, from_schedule);
1111 }
1112
1113 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1114 {
1115 struct request *rqa = container_of(a, struct request, queuelist);
1116 struct request *rqb = container_of(b, struct request, queuelist);
1117
1118 return !(rqa->mq_ctx < rqb->mq_ctx ||
1119 (rqa->mq_ctx == rqb->mq_ctx &&
1120 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1121 }
1122
1123 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1124 {
1125 struct blk_mq_ctx *this_ctx;
1126 struct request_queue *this_q;
1127 struct request *rq;
1128 LIST_HEAD(list);
1129 LIST_HEAD(ctx_list);
1130 unsigned int depth;
1131
1132 list_splice_init(&plug->mq_list, &list);
1133
1134 list_sort(NULL, &list, plug_ctx_cmp);
1135
1136 this_q = NULL;
1137 this_ctx = NULL;
1138 depth = 0;
1139
1140 while (!list_empty(&list)) {
1141 rq = list_entry_rq(list.next);
1142 list_del_init(&rq->queuelist);
1143 BUG_ON(!rq->q);
1144 if (rq->mq_ctx != this_ctx) {
1145 if (this_ctx) {
1146 blk_mq_insert_requests(this_q, this_ctx,
1147 &ctx_list, depth,
1148 from_schedule);
1149 }
1150
1151 this_ctx = rq->mq_ctx;
1152 this_q = rq->q;
1153 depth = 0;
1154 }
1155
1156 depth++;
1157 list_add_tail(&rq->queuelist, &ctx_list);
1158 }
1159
1160 /*
1161 * If 'this_ctx' is set, we know we have entries to complete
1162 * on 'ctx_list'. Do those.
1163 */
1164 if (this_ctx) {
1165 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1166 from_schedule);
1167 }
1168 }
1169
1170 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1171 {
1172 init_request_from_bio(rq, bio);
1173
1174 blk_account_io_start(rq, 1);
1175 }
1176
1177 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1178 {
1179 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1180 !blk_queue_nomerges(hctx->queue);
1181 }
1182
1183 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1184 struct blk_mq_ctx *ctx,
1185 struct request *rq, struct bio *bio)
1186 {
1187 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1188 blk_mq_bio_to_request(rq, bio);
1189 spin_lock(&ctx->lock);
1190 insert_rq:
1191 __blk_mq_insert_request(hctx, rq, false);
1192 spin_unlock(&ctx->lock);
1193 return false;
1194 } else {
1195 struct request_queue *q = hctx->queue;
1196
1197 spin_lock(&ctx->lock);
1198 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1199 blk_mq_bio_to_request(rq, bio);
1200 goto insert_rq;
1201 }
1202
1203 spin_unlock(&ctx->lock);
1204 __blk_mq_free_request(hctx, ctx, rq);
1205 return true;
1206 }
1207 }
1208
1209 struct blk_map_ctx {
1210 struct blk_mq_hw_ctx *hctx;
1211 struct blk_mq_ctx *ctx;
1212 };
1213
1214 static struct request *blk_mq_map_request(struct request_queue *q,
1215 struct bio *bio,
1216 struct blk_map_ctx *data)
1217 {
1218 struct blk_mq_hw_ctx *hctx;
1219 struct blk_mq_ctx *ctx;
1220 struct request *rq;
1221 int op = bio_data_dir(bio);
1222 int op_flags = 0;
1223 struct blk_mq_alloc_data alloc_data;
1224
1225 blk_queue_enter_live(q);
1226 ctx = blk_mq_get_ctx(q);
1227 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1228
1229 if (rw_is_sync(bio_op(bio), bio->bi_opf))
1230 op_flags |= REQ_SYNC;
1231
1232 trace_block_getrq(q, bio, op);
1233 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1234 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1235 if (unlikely(!rq)) {
1236 __blk_mq_run_hw_queue(hctx);
1237 blk_mq_put_ctx(ctx);
1238 trace_block_sleeprq(q, bio, op);
1239
1240 ctx = blk_mq_get_ctx(q);
1241 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1242 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1243 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1244 ctx = alloc_data.ctx;
1245 hctx = alloc_data.hctx;
1246 }
1247
1248 hctx->queued++;
1249 data->hctx = hctx;
1250 data->ctx = ctx;
1251 return rq;
1252 }
1253
1254 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1255 {
1256 int ret;
1257 struct request_queue *q = rq->q;
1258 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1259 rq->mq_ctx->cpu);
1260 struct blk_mq_queue_data bd = {
1261 .rq = rq,
1262 .list = NULL,
1263 .last = 1
1264 };
1265 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1266
1267 /*
1268 * For OK queue, we are done. For error, kill it. Any other
1269 * error (busy), just add it to our list as we previously
1270 * would have done
1271 */
1272 ret = q->mq_ops->queue_rq(hctx, &bd);
1273 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1274 *cookie = new_cookie;
1275 return 0;
1276 }
1277
1278 __blk_mq_requeue_request(rq);
1279
1280 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1281 *cookie = BLK_QC_T_NONE;
1282 rq->errors = -EIO;
1283 blk_mq_end_request(rq, rq->errors);
1284 return 0;
1285 }
1286
1287 return -1;
1288 }
1289
1290 /*
1291 * Multiple hardware queue variant. This will not use per-process plugs,
1292 * but will attempt to bypass the hctx queueing if we can go straight to
1293 * hardware for SYNC IO.
1294 */
1295 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1296 {
1297 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1298 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1299 struct blk_map_ctx data;
1300 struct request *rq;
1301 unsigned int request_count = 0;
1302 struct blk_plug *plug;
1303 struct request *same_queue_rq = NULL;
1304 blk_qc_t cookie;
1305
1306 blk_queue_bounce(q, &bio);
1307
1308 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1309 bio_io_error(bio);
1310 return BLK_QC_T_NONE;
1311 }
1312
1313 blk_queue_split(q, &bio, q->bio_split);
1314
1315 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1316 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1317 return BLK_QC_T_NONE;
1318
1319 rq = blk_mq_map_request(q, bio, &data);
1320 if (unlikely(!rq))
1321 return BLK_QC_T_NONE;
1322
1323 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1324
1325 if (unlikely(is_flush_fua)) {
1326 blk_mq_bio_to_request(rq, bio);
1327 blk_insert_flush(rq);
1328 goto run_queue;
1329 }
1330
1331 plug = current->plug;
1332 /*
1333 * If the driver supports defer issued based on 'last', then
1334 * queue it up like normal since we can potentially save some
1335 * CPU this way.
1336 */
1337 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1338 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1339 struct request *old_rq = NULL;
1340
1341 blk_mq_bio_to_request(rq, bio);
1342
1343 /*
1344 * We do limited pluging. If the bio can be merged, do that.
1345 * Otherwise the existing request in the plug list will be
1346 * issued. So the plug list will have one request at most
1347 */
1348 if (plug) {
1349 /*
1350 * The plug list might get flushed before this. If that
1351 * happens, same_queue_rq is invalid and plug list is
1352 * empty
1353 */
1354 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1355 old_rq = same_queue_rq;
1356 list_del_init(&old_rq->queuelist);
1357 }
1358 list_add_tail(&rq->queuelist, &plug->mq_list);
1359 } else /* is_sync */
1360 old_rq = rq;
1361 blk_mq_put_ctx(data.ctx);
1362 if (!old_rq)
1363 goto done;
1364 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1365 goto done;
1366 blk_mq_insert_request(old_rq, false, true, true);
1367 goto done;
1368 }
1369
1370 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1371 /*
1372 * For a SYNC request, send it to the hardware immediately. For
1373 * an ASYNC request, just ensure that we run it later on. The
1374 * latter allows for merging opportunities and more efficient
1375 * dispatching.
1376 */
1377 run_queue:
1378 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1379 }
1380 blk_mq_put_ctx(data.ctx);
1381 done:
1382 return cookie;
1383 }
1384
1385 /*
1386 * Single hardware queue variant. This will attempt to use any per-process
1387 * plug for merging and IO deferral.
1388 */
1389 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1390 {
1391 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1392 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1393 struct blk_plug *plug;
1394 unsigned int request_count = 0;
1395 struct blk_map_ctx data;
1396 struct request *rq;
1397 blk_qc_t cookie;
1398
1399 blk_queue_bounce(q, &bio);
1400
1401 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1402 bio_io_error(bio);
1403 return BLK_QC_T_NONE;
1404 }
1405
1406 blk_queue_split(q, &bio, q->bio_split);
1407
1408 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1409 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1410 return BLK_QC_T_NONE;
1411 } else
1412 request_count = blk_plug_queued_count(q);
1413
1414 rq = blk_mq_map_request(q, bio, &data);
1415 if (unlikely(!rq))
1416 return BLK_QC_T_NONE;
1417
1418 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1419
1420 if (unlikely(is_flush_fua)) {
1421 blk_mq_bio_to_request(rq, bio);
1422 blk_insert_flush(rq);
1423 goto run_queue;
1424 }
1425
1426 /*
1427 * A task plug currently exists. Since this is completely lockless,
1428 * utilize that to temporarily store requests until the task is
1429 * either done or scheduled away.
1430 */
1431 plug = current->plug;
1432 if (plug) {
1433 blk_mq_bio_to_request(rq, bio);
1434 if (!request_count)
1435 trace_block_plug(q);
1436
1437 blk_mq_put_ctx(data.ctx);
1438
1439 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1440 blk_flush_plug_list(plug, false);
1441 trace_block_plug(q);
1442 }
1443
1444 list_add_tail(&rq->queuelist, &plug->mq_list);
1445 return cookie;
1446 }
1447
1448 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1449 /*
1450 * For a SYNC request, send it to the hardware immediately. For
1451 * an ASYNC request, just ensure that we run it later on. The
1452 * latter allows for merging opportunities and more efficient
1453 * dispatching.
1454 */
1455 run_queue:
1456 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1457 }
1458
1459 blk_mq_put_ctx(data.ctx);
1460 return cookie;
1461 }
1462
1463 /*
1464 * Default mapping to a software queue, since we use one per CPU.
1465 */
1466 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1467 {
1468 return q->queue_hw_ctx[q->mq_map[cpu]];
1469 }
1470 EXPORT_SYMBOL(blk_mq_map_queue);
1471
1472 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1473 struct blk_mq_tags *tags, unsigned int hctx_idx)
1474 {
1475 struct page *page;
1476
1477 if (tags->rqs && set->ops->exit_request) {
1478 int i;
1479
1480 for (i = 0; i < tags->nr_tags; i++) {
1481 if (!tags->rqs[i])
1482 continue;
1483 set->ops->exit_request(set->driver_data, tags->rqs[i],
1484 hctx_idx, i);
1485 tags->rqs[i] = NULL;
1486 }
1487 }
1488
1489 while (!list_empty(&tags->page_list)) {
1490 page = list_first_entry(&tags->page_list, struct page, lru);
1491 list_del_init(&page->lru);
1492 /*
1493 * Remove kmemleak object previously allocated in
1494 * blk_mq_init_rq_map().
1495 */
1496 kmemleak_free(page_address(page));
1497 __free_pages(page, page->private);
1498 }
1499
1500 kfree(tags->rqs);
1501
1502 blk_mq_free_tags(tags);
1503 }
1504
1505 static size_t order_to_size(unsigned int order)
1506 {
1507 return (size_t)PAGE_SIZE << order;
1508 }
1509
1510 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1511 unsigned int hctx_idx)
1512 {
1513 struct blk_mq_tags *tags;
1514 unsigned int i, j, entries_per_page, max_order = 4;
1515 size_t rq_size, left;
1516
1517 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1518 set->numa_node,
1519 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1520 if (!tags)
1521 return NULL;
1522
1523 INIT_LIST_HEAD(&tags->page_list);
1524
1525 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1526 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1527 set->numa_node);
1528 if (!tags->rqs) {
1529 blk_mq_free_tags(tags);
1530 return NULL;
1531 }
1532
1533 /*
1534 * rq_size is the size of the request plus driver payload, rounded
1535 * to the cacheline size
1536 */
1537 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1538 cache_line_size());
1539 left = rq_size * set->queue_depth;
1540
1541 for (i = 0; i < set->queue_depth; ) {
1542 int this_order = max_order;
1543 struct page *page;
1544 int to_do;
1545 void *p;
1546
1547 while (this_order && left < order_to_size(this_order - 1))
1548 this_order--;
1549
1550 do {
1551 page = alloc_pages_node(set->numa_node,
1552 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1553 this_order);
1554 if (page)
1555 break;
1556 if (!this_order--)
1557 break;
1558 if (order_to_size(this_order) < rq_size)
1559 break;
1560 } while (1);
1561
1562 if (!page)
1563 goto fail;
1564
1565 page->private = this_order;
1566 list_add_tail(&page->lru, &tags->page_list);
1567
1568 p = page_address(page);
1569 /*
1570 * Allow kmemleak to scan these pages as they contain pointers
1571 * to additional allocations like via ops->init_request().
1572 */
1573 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1574 entries_per_page = order_to_size(this_order) / rq_size;
1575 to_do = min(entries_per_page, set->queue_depth - i);
1576 left -= to_do * rq_size;
1577 for (j = 0; j < to_do; j++) {
1578 tags->rqs[i] = p;
1579 if (set->ops->init_request) {
1580 if (set->ops->init_request(set->driver_data,
1581 tags->rqs[i], hctx_idx, i,
1582 set->numa_node)) {
1583 tags->rqs[i] = NULL;
1584 goto fail;
1585 }
1586 }
1587
1588 p += rq_size;
1589 i++;
1590 }
1591 }
1592 return tags;
1593
1594 fail:
1595 blk_mq_free_rq_map(set, tags, hctx_idx);
1596 return NULL;
1597 }
1598
1599 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1600 {
1601 kfree(bitmap->map);
1602 }
1603
1604 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1605 {
1606 unsigned int bpw = 8, total, num_maps, i;
1607
1608 bitmap->bits_per_word = bpw;
1609
1610 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1611 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1612 GFP_KERNEL, node);
1613 if (!bitmap->map)
1614 return -ENOMEM;
1615
1616 total = nr_cpu_ids;
1617 for (i = 0; i < num_maps; i++) {
1618 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1619 total -= bitmap->map[i].depth;
1620 }
1621
1622 return 0;
1623 }
1624
1625 /*
1626 * 'cpu' is going away. splice any existing rq_list entries from this
1627 * software queue to the hw queue dispatch list, and ensure that it
1628 * gets run.
1629 */
1630 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1631 {
1632 struct blk_mq_ctx *ctx;
1633 LIST_HEAD(tmp);
1634
1635 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1636
1637 spin_lock(&ctx->lock);
1638 if (!list_empty(&ctx->rq_list)) {
1639 list_splice_init(&ctx->rq_list, &tmp);
1640 blk_mq_hctx_clear_pending(hctx, ctx);
1641 }
1642 spin_unlock(&ctx->lock);
1643
1644 if (list_empty(&tmp))
1645 return NOTIFY_OK;
1646
1647 spin_lock(&hctx->lock);
1648 list_splice_tail_init(&tmp, &hctx->dispatch);
1649 spin_unlock(&hctx->lock);
1650
1651 blk_mq_run_hw_queue(hctx, true);
1652 return NOTIFY_OK;
1653 }
1654
1655 static int blk_mq_hctx_notify(void *data, unsigned long action,
1656 unsigned int cpu)
1657 {
1658 struct blk_mq_hw_ctx *hctx = data;
1659
1660 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1661 return blk_mq_hctx_cpu_offline(hctx, cpu);
1662
1663 /*
1664 * In case of CPU online, tags may be reallocated
1665 * in blk_mq_map_swqueue() after mapping is updated.
1666 */
1667
1668 return NOTIFY_OK;
1669 }
1670
1671 /* hctx->ctxs will be freed in queue's release handler */
1672 static void blk_mq_exit_hctx(struct request_queue *q,
1673 struct blk_mq_tag_set *set,
1674 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1675 {
1676 unsigned flush_start_tag = set->queue_depth;
1677
1678 blk_mq_tag_idle(hctx);
1679
1680 if (set->ops->exit_request)
1681 set->ops->exit_request(set->driver_data,
1682 hctx->fq->flush_rq, hctx_idx,
1683 flush_start_tag + hctx_idx);
1684
1685 if (set->ops->exit_hctx)
1686 set->ops->exit_hctx(hctx, hctx_idx);
1687
1688 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1689 blk_free_flush_queue(hctx->fq);
1690 blk_mq_free_bitmap(&hctx->ctx_map);
1691 }
1692
1693 static void blk_mq_exit_hw_queues(struct request_queue *q,
1694 struct blk_mq_tag_set *set, int nr_queue)
1695 {
1696 struct blk_mq_hw_ctx *hctx;
1697 unsigned int i;
1698
1699 queue_for_each_hw_ctx(q, hctx, i) {
1700 if (i == nr_queue)
1701 break;
1702 blk_mq_exit_hctx(q, set, hctx, i);
1703 }
1704 }
1705
1706 static void blk_mq_free_hw_queues(struct request_queue *q,
1707 struct blk_mq_tag_set *set)
1708 {
1709 struct blk_mq_hw_ctx *hctx;
1710 unsigned int i;
1711
1712 queue_for_each_hw_ctx(q, hctx, i)
1713 free_cpumask_var(hctx->cpumask);
1714 }
1715
1716 static int blk_mq_init_hctx(struct request_queue *q,
1717 struct blk_mq_tag_set *set,
1718 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1719 {
1720 int node;
1721 unsigned flush_start_tag = set->queue_depth;
1722
1723 node = hctx->numa_node;
1724 if (node == NUMA_NO_NODE)
1725 node = hctx->numa_node = set->numa_node;
1726
1727 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1728 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1729 spin_lock_init(&hctx->lock);
1730 INIT_LIST_HEAD(&hctx->dispatch);
1731 hctx->queue = q;
1732 hctx->queue_num = hctx_idx;
1733 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1734
1735 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1736 blk_mq_hctx_notify, hctx);
1737 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1738
1739 hctx->tags = set->tags[hctx_idx];
1740
1741 /*
1742 * Allocate space for all possible cpus to avoid allocation at
1743 * runtime
1744 */
1745 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1746 GFP_KERNEL, node);
1747 if (!hctx->ctxs)
1748 goto unregister_cpu_notifier;
1749
1750 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1751 goto free_ctxs;
1752
1753 hctx->nr_ctx = 0;
1754
1755 if (set->ops->init_hctx &&
1756 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1757 goto free_bitmap;
1758
1759 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1760 if (!hctx->fq)
1761 goto exit_hctx;
1762
1763 if (set->ops->init_request &&
1764 set->ops->init_request(set->driver_data,
1765 hctx->fq->flush_rq, hctx_idx,
1766 flush_start_tag + hctx_idx, node))
1767 goto free_fq;
1768
1769 return 0;
1770
1771 free_fq:
1772 kfree(hctx->fq);
1773 exit_hctx:
1774 if (set->ops->exit_hctx)
1775 set->ops->exit_hctx(hctx, hctx_idx);
1776 free_bitmap:
1777 blk_mq_free_bitmap(&hctx->ctx_map);
1778 free_ctxs:
1779 kfree(hctx->ctxs);
1780 unregister_cpu_notifier:
1781 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1782
1783 return -1;
1784 }
1785
1786 static void blk_mq_init_cpu_queues(struct request_queue *q,
1787 unsigned int nr_hw_queues)
1788 {
1789 unsigned int i;
1790
1791 for_each_possible_cpu(i) {
1792 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1793 struct blk_mq_hw_ctx *hctx;
1794
1795 memset(__ctx, 0, sizeof(*__ctx));
1796 __ctx->cpu = i;
1797 spin_lock_init(&__ctx->lock);
1798 INIT_LIST_HEAD(&__ctx->rq_list);
1799 __ctx->queue = q;
1800
1801 /* If the cpu isn't online, the cpu is mapped to first hctx */
1802 if (!cpu_online(i))
1803 continue;
1804
1805 hctx = q->mq_ops->map_queue(q, i);
1806
1807 /*
1808 * Set local node, IFF we have more than one hw queue. If
1809 * not, we remain on the home node of the device
1810 */
1811 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1812 hctx->numa_node = local_memory_node(cpu_to_node(i));
1813 }
1814 }
1815
1816 static void blk_mq_map_swqueue(struct request_queue *q,
1817 const struct cpumask *online_mask)
1818 {
1819 unsigned int i;
1820 struct blk_mq_hw_ctx *hctx;
1821 struct blk_mq_ctx *ctx;
1822 struct blk_mq_tag_set *set = q->tag_set;
1823
1824 /*
1825 * Avoid others reading imcomplete hctx->cpumask through sysfs
1826 */
1827 mutex_lock(&q->sysfs_lock);
1828
1829 queue_for_each_hw_ctx(q, hctx, i) {
1830 cpumask_clear(hctx->cpumask);
1831 hctx->nr_ctx = 0;
1832 }
1833
1834 /*
1835 * Map software to hardware queues
1836 */
1837 for_each_possible_cpu(i) {
1838 /* If the cpu isn't online, the cpu is mapped to first hctx */
1839 if (!cpumask_test_cpu(i, online_mask))
1840 continue;
1841
1842 ctx = per_cpu_ptr(q->queue_ctx, i);
1843 hctx = q->mq_ops->map_queue(q, i);
1844
1845 cpumask_set_cpu(i, hctx->cpumask);
1846 ctx->index_hw = hctx->nr_ctx;
1847 hctx->ctxs[hctx->nr_ctx++] = ctx;
1848 }
1849
1850 mutex_unlock(&q->sysfs_lock);
1851
1852 queue_for_each_hw_ctx(q, hctx, i) {
1853 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1854
1855 /*
1856 * If no software queues are mapped to this hardware queue,
1857 * disable it and free the request entries.
1858 */
1859 if (!hctx->nr_ctx) {
1860 if (set->tags[i]) {
1861 blk_mq_free_rq_map(set, set->tags[i], i);
1862 set->tags[i] = NULL;
1863 }
1864 hctx->tags = NULL;
1865 continue;
1866 }
1867
1868 /* unmapped hw queue can be remapped after CPU topo changed */
1869 if (!set->tags[i])
1870 set->tags[i] = blk_mq_init_rq_map(set, i);
1871 hctx->tags = set->tags[i];
1872 WARN_ON(!hctx->tags);
1873
1874 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1875 /*
1876 * Set the map size to the number of mapped software queues.
1877 * This is more accurate and more efficient than looping
1878 * over all possibly mapped software queues.
1879 */
1880 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1881
1882 /*
1883 * Initialize batch roundrobin counts
1884 */
1885 hctx->next_cpu = cpumask_first(hctx->cpumask);
1886 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1887 }
1888 }
1889
1890 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1891 {
1892 struct blk_mq_hw_ctx *hctx;
1893 int i;
1894
1895 queue_for_each_hw_ctx(q, hctx, i) {
1896 if (shared)
1897 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1898 else
1899 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1900 }
1901 }
1902
1903 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1904 {
1905 struct request_queue *q;
1906
1907 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1908 blk_mq_freeze_queue(q);
1909 queue_set_hctx_shared(q, shared);
1910 blk_mq_unfreeze_queue(q);
1911 }
1912 }
1913
1914 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1915 {
1916 struct blk_mq_tag_set *set = q->tag_set;
1917
1918 mutex_lock(&set->tag_list_lock);
1919 list_del_init(&q->tag_set_list);
1920 if (list_is_singular(&set->tag_list)) {
1921 /* just transitioned to unshared */
1922 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1923 /* update existing queue */
1924 blk_mq_update_tag_set_depth(set, false);
1925 }
1926 mutex_unlock(&set->tag_list_lock);
1927 }
1928
1929 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1930 struct request_queue *q)
1931 {
1932 q->tag_set = set;
1933
1934 mutex_lock(&set->tag_list_lock);
1935
1936 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1937 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1938 set->flags |= BLK_MQ_F_TAG_SHARED;
1939 /* update existing queue */
1940 blk_mq_update_tag_set_depth(set, true);
1941 }
1942 if (set->flags & BLK_MQ_F_TAG_SHARED)
1943 queue_set_hctx_shared(q, true);
1944 list_add_tail(&q->tag_set_list, &set->tag_list);
1945
1946 mutex_unlock(&set->tag_list_lock);
1947 }
1948
1949 /*
1950 * It is the actual release handler for mq, but we do it from
1951 * request queue's release handler for avoiding use-after-free
1952 * and headache because q->mq_kobj shouldn't have been introduced,
1953 * but we can't group ctx/kctx kobj without it.
1954 */
1955 void blk_mq_release(struct request_queue *q)
1956 {
1957 struct blk_mq_hw_ctx *hctx;
1958 unsigned int i;
1959
1960 /* hctx kobj stays in hctx */
1961 queue_for_each_hw_ctx(q, hctx, i) {
1962 if (!hctx)
1963 continue;
1964 kfree(hctx->ctxs);
1965 kfree(hctx);
1966 }
1967
1968 kfree(q->mq_map);
1969 q->mq_map = NULL;
1970
1971 kfree(q->queue_hw_ctx);
1972
1973 /* ctx kobj stays in queue_ctx */
1974 free_percpu(q->queue_ctx);
1975 }
1976
1977 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1978 {
1979 struct request_queue *uninit_q, *q;
1980
1981 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1982 if (!uninit_q)
1983 return ERR_PTR(-ENOMEM);
1984
1985 q = blk_mq_init_allocated_queue(set, uninit_q);
1986 if (IS_ERR(q))
1987 blk_cleanup_queue(uninit_q);
1988
1989 return q;
1990 }
1991 EXPORT_SYMBOL(blk_mq_init_queue);
1992
1993 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1994 struct request_queue *q)
1995 {
1996 int i, j;
1997 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1998
1999 blk_mq_sysfs_unregister(q);
2000 for (i = 0; i < set->nr_hw_queues; i++) {
2001 int node;
2002
2003 if (hctxs[i])
2004 continue;
2005
2006 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2007 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2008 GFP_KERNEL, node);
2009 if (!hctxs[i])
2010 break;
2011
2012 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2013 node)) {
2014 kfree(hctxs[i]);
2015 hctxs[i] = NULL;
2016 break;
2017 }
2018
2019 atomic_set(&hctxs[i]->nr_active, 0);
2020 hctxs[i]->numa_node = node;
2021 hctxs[i]->queue_num = i;
2022
2023 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2024 free_cpumask_var(hctxs[i]->cpumask);
2025 kfree(hctxs[i]);
2026 hctxs[i] = NULL;
2027 break;
2028 }
2029 blk_mq_hctx_kobj_init(hctxs[i]);
2030 }
2031 for (j = i; j < q->nr_hw_queues; j++) {
2032 struct blk_mq_hw_ctx *hctx = hctxs[j];
2033
2034 if (hctx) {
2035 if (hctx->tags) {
2036 blk_mq_free_rq_map(set, hctx->tags, j);
2037 set->tags[j] = NULL;
2038 }
2039 blk_mq_exit_hctx(q, set, hctx, j);
2040 free_cpumask_var(hctx->cpumask);
2041 kobject_put(&hctx->kobj);
2042 kfree(hctx->ctxs);
2043 kfree(hctx);
2044 hctxs[j] = NULL;
2045
2046 }
2047 }
2048 q->nr_hw_queues = i;
2049 blk_mq_sysfs_register(q);
2050 }
2051
2052 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2053 struct request_queue *q)
2054 {
2055 /* mark the queue as mq asap */
2056 q->mq_ops = set->ops;
2057
2058 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2059 if (!q->queue_ctx)
2060 goto err_exit;
2061
2062 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2063 GFP_KERNEL, set->numa_node);
2064 if (!q->queue_hw_ctx)
2065 goto err_percpu;
2066
2067 q->mq_map = blk_mq_make_queue_map(set);
2068 if (!q->mq_map)
2069 goto err_map;
2070
2071 blk_mq_realloc_hw_ctxs(set, q);
2072 if (!q->nr_hw_queues)
2073 goto err_hctxs;
2074
2075 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2076 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2077
2078 q->nr_queues = nr_cpu_ids;
2079
2080 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2081
2082 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2083 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2084
2085 q->sg_reserved_size = INT_MAX;
2086
2087 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2088 INIT_LIST_HEAD(&q->requeue_list);
2089 spin_lock_init(&q->requeue_lock);
2090
2091 if (q->nr_hw_queues > 1)
2092 blk_queue_make_request(q, blk_mq_make_request);
2093 else
2094 blk_queue_make_request(q, blk_sq_make_request);
2095
2096 /*
2097 * Do this after blk_queue_make_request() overrides it...
2098 */
2099 q->nr_requests = set->queue_depth;
2100
2101 if (set->ops->complete)
2102 blk_queue_softirq_done(q, set->ops->complete);
2103
2104 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2105
2106 get_online_cpus();
2107 mutex_lock(&all_q_mutex);
2108
2109 list_add_tail(&q->all_q_node, &all_q_list);
2110 blk_mq_add_queue_tag_set(set, q);
2111 blk_mq_map_swqueue(q, cpu_online_mask);
2112
2113 mutex_unlock(&all_q_mutex);
2114 put_online_cpus();
2115
2116 return q;
2117
2118 err_hctxs:
2119 kfree(q->mq_map);
2120 err_map:
2121 kfree(q->queue_hw_ctx);
2122 err_percpu:
2123 free_percpu(q->queue_ctx);
2124 err_exit:
2125 q->mq_ops = NULL;
2126 return ERR_PTR(-ENOMEM);
2127 }
2128 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2129
2130 void blk_mq_free_queue(struct request_queue *q)
2131 {
2132 struct blk_mq_tag_set *set = q->tag_set;
2133
2134 mutex_lock(&all_q_mutex);
2135 list_del_init(&q->all_q_node);
2136 mutex_unlock(&all_q_mutex);
2137
2138 blk_mq_del_queue_tag_set(q);
2139
2140 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2141 blk_mq_free_hw_queues(q, set);
2142 }
2143
2144 /* Basically redo blk_mq_init_queue with queue frozen */
2145 static void blk_mq_queue_reinit(struct request_queue *q,
2146 const struct cpumask *online_mask)
2147 {
2148 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2149
2150 blk_mq_sysfs_unregister(q);
2151
2152 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2153
2154 /*
2155 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2156 * we should change hctx numa_node according to new topology (this
2157 * involves free and re-allocate memory, worthy doing?)
2158 */
2159
2160 blk_mq_map_swqueue(q, online_mask);
2161
2162 blk_mq_sysfs_register(q);
2163 }
2164
2165 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2166 unsigned long action, void *hcpu)
2167 {
2168 struct request_queue *q;
2169 int cpu = (unsigned long)hcpu;
2170 /*
2171 * New online cpumask which is going to be set in this hotplug event.
2172 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2173 * one-by-one and dynamically allocating this could result in a failure.
2174 */
2175 static struct cpumask online_new;
2176
2177 /*
2178 * Before hotadded cpu starts handling requests, new mappings must
2179 * be established. Otherwise, these requests in hw queue might
2180 * never be dispatched.
2181 *
2182 * For example, there is a single hw queue (hctx) and two CPU queues
2183 * (ctx0 for CPU0, and ctx1 for CPU1).
2184 *
2185 * Now CPU1 is just onlined and a request is inserted into
2186 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2187 * still zero.
2188 *
2189 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2190 * set in pending bitmap and tries to retrieve requests in
2191 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2192 * so the request in ctx1->rq_list is ignored.
2193 */
2194 switch (action & ~CPU_TASKS_FROZEN) {
2195 case CPU_DEAD:
2196 case CPU_UP_CANCELED:
2197 cpumask_copy(&online_new, cpu_online_mask);
2198 break;
2199 case CPU_UP_PREPARE:
2200 cpumask_copy(&online_new, cpu_online_mask);
2201 cpumask_set_cpu(cpu, &online_new);
2202 break;
2203 default:
2204 return NOTIFY_OK;
2205 }
2206
2207 mutex_lock(&all_q_mutex);
2208
2209 /*
2210 * We need to freeze and reinit all existing queues. Freezing
2211 * involves synchronous wait for an RCU grace period and doing it
2212 * one by one may take a long time. Start freezing all queues in
2213 * one swoop and then wait for the completions so that freezing can
2214 * take place in parallel.
2215 */
2216 list_for_each_entry(q, &all_q_list, all_q_node)
2217 blk_mq_freeze_queue_start(q);
2218 list_for_each_entry(q, &all_q_list, all_q_node) {
2219 blk_mq_freeze_queue_wait(q);
2220
2221 /*
2222 * timeout handler can't touch hw queue during the
2223 * reinitialization
2224 */
2225 del_timer_sync(&q->timeout);
2226 }
2227
2228 list_for_each_entry(q, &all_q_list, all_q_node)
2229 blk_mq_queue_reinit(q, &online_new);
2230
2231 list_for_each_entry(q, &all_q_list, all_q_node)
2232 blk_mq_unfreeze_queue(q);
2233
2234 mutex_unlock(&all_q_mutex);
2235 return NOTIFY_OK;
2236 }
2237
2238 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2239 {
2240 int i;
2241
2242 for (i = 0; i < set->nr_hw_queues; i++) {
2243 set->tags[i] = blk_mq_init_rq_map(set, i);
2244 if (!set->tags[i])
2245 goto out_unwind;
2246 }
2247
2248 return 0;
2249
2250 out_unwind:
2251 while (--i >= 0)
2252 blk_mq_free_rq_map(set, set->tags[i], i);
2253
2254 return -ENOMEM;
2255 }
2256
2257 /*
2258 * Allocate the request maps associated with this tag_set. Note that this
2259 * may reduce the depth asked for, if memory is tight. set->queue_depth
2260 * will be updated to reflect the allocated depth.
2261 */
2262 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2263 {
2264 unsigned int depth;
2265 int err;
2266
2267 depth = set->queue_depth;
2268 do {
2269 err = __blk_mq_alloc_rq_maps(set);
2270 if (!err)
2271 break;
2272
2273 set->queue_depth >>= 1;
2274 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2275 err = -ENOMEM;
2276 break;
2277 }
2278 } while (set->queue_depth);
2279
2280 if (!set->queue_depth || err) {
2281 pr_err("blk-mq: failed to allocate request map\n");
2282 return -ENOMEM;
2283 }
2284
2285 if (depth != set->queue_depth)
2286 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2287 depth, set->queue_depth);
2288
2289 return 0;
2290 }
2291
2292 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2293 {
2294 return tags->cpumask;
2295 }
2296 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2297
2298 /*
2299 * Alloc a tag set to be associated with one or more request queues.
2300 * May fail with EINVAL for various error conditions. May adjust the
2301 * requested depth down, if if it too large. In that case, the set
2302 * value will be stored in set->queue_depth.
2303 */
2304 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2305 {
2306 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2307
2308 if (!set->nr_hw_queues)
2309 return -EINVAL;
2310 if (!set->queue_depth)
2311 return -EINVAL;
2312 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2313 return -EINVAL;
2314
2315 if (!set->ops->queue_rq || !set->ops->map_queue)
2316 return -EINVAL;
2317
2318 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2319 pr_info("blk-mq: reduced tag depth to %u\n",
2320 BLK_MQ_MAX_DEPTH);
2321 set->queue_depth = BLK_MQ_MAX_DEPTH;
2322 }
2323
2324 /*
2325 * If a crashdump is active, then we are potentially in a very
2326 * memory constrained environment. Limit us to 1 queue and
2327 * 64 tags to prevent using too much memory.
2328 */
2329 if (is_kdump_kernel()) {
2330 set->nr_hw_queues = 1;
2331 set->queue_depth = min(64U, set->queue_depth);
2332 }
2333 /*
2334 * There is no use for more h/w queues than cpus.
2335 */
2336 if (set->nr_hw_queues > nr_cpu_ids)
2337 set->nr_hw_queues = nr_cpu_ids;
2338
2339 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2340 GFP_KERNEL, set->numa_node);
2341 if (!set->tags)
2342 return -ENOMEM;
2343
2344 if (blk_mq_alloc_rq_maps(set))
2345 goto enomem;
2346
2347 mutex_init(&set->tag_list_lock);
2348 INIT_LIST_HEAD(&set->tag_list);
2349
2350 return 0;
2351 enomem:
2352 kfree(set->tags);
2353 set->tags = NULL;
2354 return -ENOMEM;
2355 }
2356 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2357
2358 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2359 {
2360 int i;
2361
2362 for (i = 0; i < nr_cpu_ids; i++) {
2363 if (set->tags[i])
2364 blk_mq_free_rq_map(set, set->tags[i], i);
2365 }
2366
2367 kfree(set->tags);
2368 set->tags = NULL;
2369 }
2370 EXPORT_SYMBOL(blk_mq_free_tag_set);
2371
2372 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2373 {
2374 struct blk_mq_tag_set *set = q->tag_set;
2375 struct blk_mq_hw_ctx *hctx;
2376 int i, ret;
2377
2378 if (!set || nr > set->queue_depth)
2379 return -EINVAL;
2380
2381 ret = 0;
2382 queue_for_each_hw_ctx(q, hctx, i) {
2383 if (!hctx->tags)
2384 continue;
2385 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2386 if (ret)
2387 break;
2388 }
2389
2390 if (!ret)
2391 q->nr_requests = nr;
2392
2393 return ret;
2394 }
2395
2396 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2397 {
2398 struct request_queue *q;
2399
2400 if (nr_hw_queues > nr_cpu_ids)
2401 nr_hw_queues = nr_cpu_ids;
2402 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2403 return;
2404
2405 list_for_each_entry(q, &set->tag_list, tag_set_list)
2406 blk_mq_freeze_queue(q);
2407
2408 set->nr_hw_queues = nr_hw_queues;
2409 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2410 blk_mq_realloc_hw_ctxs(set, q);
2411
2412 if (q->nr_hw_queues > 1)
2413 blk_queue_make_request(q, blk_mq_make_request);
2414 else
2415 blk_queue_make_request(q, blk_sq_make_request);
2416
2417 blk_mq_queue_reinit(q, cpu_online_mask);
2418 }
2419
2420 list_for_each_entry(q, &set->tag_list, tag_set_list)
2421 blk_mq_unfreeze_queue(q);
2422 }
2423 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2424
2425 void blk_mq_disable_hotplug(void)
2426 {
2427 mutex_lock(&all_q_mutex);
2428 }
2429
2430 void blk_mq_enable_hotplug(void)
2431 {
2432 mutex_unlock(&all_q_mutex);
2433 }
2434
2435 static int __init blk_mq_init(void)
2436 {
2437 blk_mq_cpu_init();
2438
2439 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2440
2441 return 0;
2442 }
2443 subsys_initcall(blk_mq_init);
This page took 0.084605 seconds and 5 git commands to generate.