mm: putback_lru_page: remove unnecessary call to page_lru_base_type()
[deliverable/linux.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28
29 /*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52 struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56 };
57
58 struct throtl_service_queue {
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
76 struct timer_list pending_timer; /* fires on first_pending_disptime */
77 };
78
79 enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
82 };
83
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
86 /* Per-cpu group stats */
87 struct tg_stats_cpu {
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced;
92 };
93
94 struct throtl_grp {
95 /* must be the first member */
96 struct blkg_policy_data pd;
97
98 /* active throtl group service_queue member */
99 struct rb_node rb_node;
100
101 /* throtl_data this group belongs to */
102 struct throtl_data *td;
103
104 /* this group's service queue */
105 struct throtl_service_queue service_queue;
106
107 /*
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
113 * qnode_on_self.
114 */
115 struct throtl_qnode qnode_on_self[2];
116 struct throtl_qnode qnode_on_parent[2];
117
118 /*
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
122 */
123 unsigned long disptime;
124
125 unsigned int flags;
126
127 /* are there any throtl rules between this group and td? */
128 bool has_rules[2];
129
130 /* bytes per second rate limits */
131 uint64_t bps[2];
132
133 /* IOPS limits */
134 unsigned int iops[2];
135
136 /* Number of bytes disptached in current slice */
137 uint64_t bytes_disp[2];
138 /* Number of bio's dispatched in current slice */
139 unsigned int io_disp[2];
140
141 /* When did we start a new slice */
142 unsigned long slice_start[2];
143 unsigned long slice_end[2];
144
145 /* Per cpu stats pointer */
146 struct tg_stats_cpu __percpu *stats_cpu;
147
148 /* List of tgs waiting for per cpu stats memory to be allocated */
149 struct list_head stats_alloc_node;
150 };
151
152 struct throtl_data
153 {
154 /* service tree for active throtl groups */
155 struct throtl_service_queue service_queue;
156
157 struct request_queue *queue;
158
159 /* Total Number of queued bios on READ and WRITE lists */
160 unsigned int nr_queued[2];
161
162 /*
163 * number of total undestroyed groups
164 */
165 unsigned int nr_undestroyed_grps;
166
167 /* Work for dispatching throttled bios */
168 struct work_struct dispatch_work;
169 };
170
171 /* list and work item to allocate percpu group stats */
172 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
173 static LIST_HEAD(tg_stats_alloc_list);
174
175 static void tg_stats_alloc_fn(struct work_struct *);
176 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
177
178 static void throtl_pending_timer_fn(unsigned long arg);
179
180 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
181 {
182 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
183 }
184
185 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
186 {
187 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
188 }
189
190 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
191 {
192 return pd_to_blkg(&tg->pd);
193 }
194
195 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
196 {
197 return blkg_to_tg(td->queue->root_blkg);
198 }
199
200 /**
201 * sq_to_tg - return the throl_grp the specified service queue belongs to
202 * @sq: the throtl_service_queue of interest
203 *
204 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
205 * embedded in throtl_data, %NULL is returned.
206 */
207 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
208 {
209 if (sq && sq->parent_sq)
210 return container_of(sq, struct throtl_grp, service_queue);
211 else
212 return NULL;
213 }
214
215 /**
216 * sq_to_td - return throtl_data the specified service queue belongs to
217 * @sq: the throtl_service_queue of interest
218 *
219 * A service_queue can be embeded in either a throtl_grp or throtl_data.
220 * Determine the associated throtl_data accordingly and return it.
221 */
222 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
223 {
224 struct throtl_grp *tg = sq_to_tg(sq);
225
226 if (tg)
227 return tg->td;
228 else
229 return container_of(sq, struct throtl_data, service_queue);
230 }
231
232 /**
233 * throtl_log - log debug message via blktrace
234 * @sq: the service_queue being reported
235 * @fmt: printf format string
236 * @args: printf args
237 *
238 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
239 * throtl_grp; otherwise, just "throtl".
240 *
241 * TODO: this should be made a function and name formatting should happen
242 * after testing whether blktrace is enabled.
243 */
244 #define throtl_log(sq, fmt, args...) do { \
245 struct throtl_grp *__tg = sq_to_tg((sq)); \
246 struct throtl_data *__td = sq_to_td((sq)); \
247 \
248 (void)__td; \
249 if ((__tg)) { \
250 char __pbuf[128]; \
251 \
252 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
253 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
254 } else { \
255 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
256 } \
257 } while (0)
258
259 /*
260 * Worker for allocating per cpu stat for tgs. This is scheduled on the
261 * system_wq once there are some groups on the alloc_list waiting for
262 * allocation.
263 */
264 static void tg_stats_alloc_fn(struct work_struct *work)
265 {
266 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
267 struct delayed_work *dwork = to_delayed_work(work);
268 bool empty = false;
269
270 alloc_stats:
271 if (!stats_cpu) {
272 stats_cpu = alloc_percpu(struct tg_stats_cpu);
273 if (!stats_cpu) {
274 /* allocation failed, try again after some time */
275 schedule_delayed_work(dwork, msecs_to_jiffies(10));
276 return;
277 }
278 }
279
280 spin_lock_irq(&tg_stats_alloc_lock);
281
282 if (!list_empty(&tg_stats_alloc_list)) {
283 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
284 struct throtl_grp,
285 stats_alloc_node);
286 swap(tg->stats_cpu, stats_cpu);
287 list_del_init(&tg->stats_alloc_node);
288 }
289
290 empty = list_empty(&tg_stats_alloc_list);
291 spin_unlock_irq(&tg_stats_alloc_lock);
292 if (!empty)
293 goto alloc_stats;
294 }
295
296 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
297 {
298 INIT_LIST_HEAD(&qn->node);
299 bio_list_init(&qn->bios);
300 qn->tg = tg;
301 }
302
303 /**
304 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
305 * @bio: bio being added
306 * @qn: qnode to add bio to
307 * @queued: the service_queue->queued[] list @qn belongs to
308 *
309 * Add @bio to @qn and put @qn on @queued if it's not already on.
310 * @qn->tg's reference count is bumped when @qn is activated. See the
311 * comment on top of throtl_qnode definition for details.
312 */
313 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
314 struct list_head *queued)
315 {
316 bio_list_add(&qn->bios, bio);
317 if (list_empty(&qn->node)) {
318 list_add_tail(&qn->node, queued);
319 blkg_get(tg_to_blkg(qn->tg));
320 }
321 }
322
323 /**
324 * throtl_peek_queued - peek the first bio on a qnode list
325 * @queued: the qnode list to peek
326 */
327 static struct bio *throtl_peek_queued(struct list_head *queued)
328 {
329 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
330 struct bio *bio;
331
332 if (list_empty(queued))
333 return NULL;
334
335 bio = bio_list_peek(&qn->bios);
336 WARN_ON_ONCE(!bio);
337 return bio;
338 }
339
340 /**
341 * throtl_pop_queued - pop the first bio form a qnode list
342 * @queued: the qnode list to pop a bio from
343 * @tg_to_put: optional out argument for throtl_grp to put
344 *
345 * Pop the first bio from the qnode list @queued. After popping, the first
346 * qnode is removed from @queued if empty or moved to the end of @queued so
347 * that the popping order is round-robin.
348 *
349 * When the first qnode is removed, its associated throtl_grp should be put
350 * too. If @tg_to_put is NULL, this function automatically puts it;
351 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
352 * responsible for putting it.
353 */
354 static struct bio *throtl_pop_queued(struct list_head *queued,
355 struct throtl_grp **tg_to_put)
356 {
357 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
358 struct bio *bio;
359
360 if (list_empty(queued))
361 return NULL;
362
363 bio = bio_list_pop(&qn->bios);
364 WARN_ON_ONCE(!bio);
365
366 if (bio_list_empty(&qn->bios)) {
367 list_del_init(&qn->node);
368 if (tg_to_put)
369 *tg_to_put = qn->tg;
370 else
371 blkg_put(tg_to_blkg(qn->tg));
372 } else {
373 list_move_tail(&qn->node, queued);
374 }
375
376 return bio;
377 }
378
379 /* init a service_queue, assumes the caller zeroed it */
380 static void throtl_service_queue_init(struct throtl_service_queue *sq,
381 struct throtl_service_queue *parent_sq)
382 {
383 INIT_LIST_HEAD(&sq->queued[0]);
384 INIT_LIST_HEAD(&sq->queued[1]);
385 sq->pending_tree = RB_ROOT;
386 sq->parent_sq = parent_sq;
387 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
388 (unsigned long)sq);
389 }
390
391 static void throtl_service_queue_exit(struct throtl_service_queue *sq)
392 {
393 del_timer_sync(&sq->pending_timer);
394 }
395
396 static void throtl_pd_init(struct blkcg_gq *blkg)
397 {
398 struct throtl_grp *tg = blkg_to_tg(blkg);
399 struct throtl_data *td = blkg->q->td;
400 struct throtl_service_queue *parent_sq;
401 unsigned long flags;
402 int rw;
403
404 /*
405 * If sane_hierarchy is enabled, we switch to properly hierarchical
406 * behavior where limits on a given throtl_grp are applied to the
407 * whole subtree rather than just the group itself. e.g. If 16M
408 * read_bps limit is set on the root group, the whole system can't
409 * exceed 16M for the device.
410 *
411 * If sane_hierarchy is not enabled, the broken flat hierarchy
412 * behavior is retained where all throtl_grps are treated as if
413 * they're all separate root groups right below throtl_data.
414 * Limits of a group don't interact with limits of other groups
415 * regardless of the position of the group in the hierarchy.
416 */
417 parent_sq = &td->service_queue;
418
419 if (cgroup_sane_behavior(blkg->blkcg->css.cgroup) && blkg->parent)
420 parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
421
422 throtl_service_queue_init(&tg->service_queue, parent_sq);
423
424 for (rw = READ; rw <= WRITE; rw++) {
425 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
426 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
427 }
428
429 RB_CLEAR_NODE(&tg->rb_node);
430 tg->td = td;
431
432 tg->bps[READ] = -1;
433 tg->bps[WRITE] = -1;
434 tg->iops[READ] = -1;
435 tg->iops[WRITE] = -1;
436
437 /*
438 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
439 * but percpu allocator can't be called from IO path. Queue tg on
440 * tg_stats_alloc_list and allocate from work item.
441 */
442 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
443 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
444 schedule_delayed_work(&tg_stats_alloc_work, 0);
445 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
446 }
447
448 /*
449 * Set has_rules[] if @tg or any of its parents have limits configured.
450 * This doesn't require walking up to the top of the hierarchy as the
451 * parent's has_rules[] is guaranteed to be correct.
452 */
453 static void tg_update_has_rules(struct throtl_grp *tg)
454 {
455 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
456 int rw;
457
458 for (rw = READ; rw <= WRITE; rw++)
459 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
460 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
461 }
462
463 static void throtl_pd_online(struct blkcg_gq *blkg)
464 {
465 /*
466 * We don't want new groups to escape the limits of its ancestors.
467 * Update has_rules[] after a new group is brought online.
468 */
469 tg_update_has_rules(blkg_to_tg(blkg));
470 }
471
472 static void throtl_pd_exit(struct blkcg_gq *blkg)
473 {
474 struct throtl_grp *tg = blkg_to_tg(blkg);
475 unsigned long flags;
476
477 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
478 list_del_init(&tg->stats_alloc_node);
479 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
480
481 free_percpu(tg->stats_cpu);
482
483 throtl_service_queue_exit(&tg->service_queue);
484 }
485
486 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
487 {
488 struct throtl_grp *tg = blkg_to_tg(blkg);
489 int cpu;
490
491 if (tg->stats_cpu == NULL)
492 return;
493
494 for_each_possible_cpu(cpu) {
495 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
496
497 blkg_rwstat_reset(&sc->service_bytes);
498 blkg_rwstat_reset(&sc->serviced);
499 }
500 }
501
502 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
503 struct blkcg *blkcg)
504 {
505 /*
506 * This is the common case when there are no blkcgs. Avoid lookup
507 * in this case
508 */
509 if (blkcg == &blkcg_root)
510 return td_root_tg(td);
511
512 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
513 }
514
515 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
516 struct blkcg *blkcg)
517 {
518 struct request_queue *q = td->queue;
519 struct throtl_grp *tg = NULL;
520
521 /*
522 * This is the common case when there are no blkcgs. Avoid lookup
523 * in this case
524 */
525 if (blkcg == &blkcg_root) {
526 tg = td_root_tg(td);
527 } else {
528 struct blkcg_gq *blkg;
529
530 blkg = blkg_lookup_create(blkcg, q);
531
532 /* if %NULL and @q is alive, fall back to root_tg */
533 if (!IS_ERR(blkg))
534 tg = blkg_to_tg(blkg);
535 else if (!blk_queue_dying(q))
536 tg = td_root_tg(td);
537 }
538
539 return tg;
540 }
541
542 static struct throtl_grp *
543 throtl_rb_first(struct throtl_service_queue *parent_sq)
544 {
545 /* Service tree is empty */
546 if (!parent_sq->nr_pending)
547 return NULL;
548
549 if (!parent_sq->first_pending)
550 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
551
552 if (parent_sq->first_pending)
553 return rb_entry_tg(parent_sq->first_pending);
554
555 return NULL;
556 }
557
558 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
559 {
560 rb_erase(n, root);
561 RB_CLEAR_NODE(n);
562 }
563
564 static void throtl_rb_erase(struct rb_node *n,
565 struct throtl_service_queue *parent_sq)
566 {
567 if (parent_sq->first_pending == n)
568 parent_sq->first_pending = NULL;
569 rb_erase_init(n, &parent_sq->pending_tree);
570 --parent_sq->nr_pending;
571 }
572
573 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
574 {
575 struct throtl_grp *tg;
576
577 tg = throtl_rb_first(parent_sq);
578 if (!tg)
579 return;
580
581 parent_sq->first_pending_disptime = tg->disptime;
582 }
583
584 static void tg_service_queue_add(struct throtl_grp *tg)
585 {
586 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
587 struct rb_node **node = &parent_sq->pending_tree.rb_node;
588 struct rb_node *parent = NULL;
589 struct throtl_grp *__tg;
590 unsigned long key = tg->disptime;
591 int left = 1;
592
593 while (*node != NULL) {
594 parent = *node;
595 __tg = rb_entry_tg(parent);
596
597 if (time_before(key, __tg->disptime))
598 node = &parent->rb_left;
599 else {
600 node = &parent->rb_right;
601 left = 0;
602 }
603 }
604
605 if (left)
606 parent_sq->first_pending = &tg->rb_node;
607
608 rb_link_node(&tg->rb_node, parent, node);
609 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
610 }
611
612 static void __throtl_enqueue_tg(struct throtl_grp *tg)
613 {
614 tg_service_queue_add(tg);
615 tg->flags |= THROTL_TG_PENDING;
616 tg->service_queue.parent_sq->nr_pending++;
617 }
618
619 static void throtl_enqueue_tg(struct throtl_grp *tg)
620 {
621 if (!(tg->flags & THROTL_TG_PENDING))
622 __throtl_enqueue_tg(tg);
623 }
624
625 static void __throtl_dequeue_tg(struct throtl_grp *tg)
626 {
627 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
628 tg->flags &= ~THROTL_TG_PENDING;
629 }
630
631 static void throtl_dequeue_tg(struct throtl_grp *tg)
632 {
633 if (tg->flags & THROTL_TG_PENDING)
634 __throtl_dequeue_tg(tg);
635 }
636
637 /* Call with queue lock held */
638 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
639 unsigned long expires)
640 {
641 mod_timer(&sq->pending_timer, expires);
642 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
643 expires - jiffies, jiffies);
644 }
645
646 /**
647 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
648 * @sq: the service_queue to schedule dispatch for
649 * @force: force scheduling
650 *
651 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
652 * dispatch time of the first pending child. Returns %true if either timer
653 * is armed or there's no pending child left. %false if the current
654 * dispatch window is still open and the caller should continue
655 * dispatching.
656 *
657 * If @force is %true, the dispatch timer is always scheduled and this
658 * function is guaranteed to return %true. This is to be used when the
659 * caller can't dispatch itself and needs to invoke pending_timer
660 * unconditionally. Note that forced scheduling is likely to induce short
661 * delay before dispatch starts even if @sq->first_pending_disptime is not
662 * in the future and thus shouldn't be used in hot paths.
663 */
664 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
665 bool force)
666 {
667 /* any pending children left? */
668 if (!sq->nr_pending)
669 return true;
670
671 update_min_dispatch_time(sq);
672
673 /* is the next dispatch time in the future? */
674 if (force || time_after(sq->first_pending_disptime, jiffies)) {
675 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
676 return true;
677 }
678
679 /* tell the caller to continue dispatching */
680 return false;
681 }
682
683 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
684 bool rw, unsigned long start)
685 {
686 tg->bytes_disp[rw] = 0;
687 tg->io_disp[rw] = 0;
688
689 /*
690 * Previous slice has expired. We must have trimmed it after last
691 * bio dispatch. That means since start of last slice, we never used
692 * that bandwidth. Do try to make use of that bandwidth while giving
693 * credit.
694 */
695 if (time_after_eq(start, tg->slice_start[rw]))
696 tg->slice_start[rw] = start;
697
698 tg->slice_end[rw] = jiffies + throtl_slice;
699 throtl_log(&tg->service_queue,
700 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
701 rw == READ ? 'R' : 'W', tg->slice_start[rw],
702 tg->slice_end[rw], jiffies);
703 }
704
705 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
706 {
707 tg->bytes_disp[rw] = 0;
708 tg->io_disp[rw] = 0;
709 tg->slice_start[rw] = jiffies;
710 tg->slice_end[rw] = jiffies + throtl_slice;
711 throtl_log(&tg->service_queue,
712 "[%c] new slice start=%lu end=%lu jiffies=%lu",
713 rw == READ ? 'R' : 'W', tg->slice_start[rw],
714 tg->slice_end[rw], jiffies);
715 }
716
717 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
718 unsigned long jiffy_end)
719 {
720 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
721 }
722
723 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
724 unsigned long jiffy_end)
725 {
726 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
727 throtl_log(&tg->service_queue,
728 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
729 rw == READ ? 'R' : 'W', tg->slice_start[rw],
730 tg->slice_end[rw], jiffies);
731 }
732
733 /* Determine if previously allocated or extended slice is complete or not */
734 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
735 {
736 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
737 return 0;
738
739 return 1;
740 }
741
742 /* Trim the used slices and adjust slice start accordingly */
743 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
744 {
745 unsigned long nr_slices, time_elapsed, io_trim;
746 u64 bytes_trim, tmp;
747
748 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
749
750 /*
751 * If bps are unlimited (-1), then time slice don't get
752 * renewed. Don't try to trim the slice if slice is used. A new
753 * slice will start when appropriate.
754 */
755 if (throtl_slice_used(tg, rw))
756 return;
757
758 /*
759 * A bio has been dispatched. Also adjust slice_end. It might happen
760 * that initially cgroup limit was very low resulting in high
761 * slice_end, but later limit was bumped up and bio was dispached
762 * sooner, then we need to reduce slice_end. A high bogus slice_end
763 * is bad because it does not allow new slice to start.
764 */
765
766 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
767
768 time_elapsed = jiffies - tg->slice_start[rw];
769
770 nr_slices = time_elapsed / throtl_slice;
771
772 if (!nr_slices)
773 return;
774 tmp = tg->bps[rw] * throtl_slice * nr_slices;
775 do_div(tmp, HZ);
776 bytes_trim = tmp;
777
778 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
779
780 if (!bytes_trim && !io_trim)
781 return;
782
783 if (tg->bytes_disp[rw] >= bytes_trim)
784 tg->bytes_disp[rw] -= bytes_trim;
785 else
786 tg->bytes_disp[rw] = 0;
787
788 if (tg->io_disp[rw] >= io_trim)
789 tg->io_disp[rw] -= io_trim;
790 else
791 tg->io_disp[rw] = 0;
792
793 tg->slice_start[rw] += nr_slices * throtl_slice;
794
795 throtl_log(&tg->service_queue,
796 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
797 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
798 tg->slice_start[rw], tg->slice_end[rw], jiffies);
799 }
800
801 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
802 unsigned long *wait)
803 {
804 bool rw = bio_data_dir(bio);
805 unsigned int io_allowed;
806 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
807 u64 tmp;
808
809 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
810
811 /* Slice has just started. Consider one slice interval */
812 if (!jiffy_elapsed)
813 jiffy_elapsed_rnd = throtl_slice;
814
815 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
816
817 /*
818 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
819 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
820 * will allow dispatch after 1 second and after that slice should
821 * have been trimmed.
822 */
823
824 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
825 do_div(tmp, HZ);
826
827 if (tmp > UINT_MAX)
828 io_allowed = UINT_MAX;
829 else
830 io_allowed = tmp;
831
832 if (tg->io_disp[rw] + 1 <= io_allowed) {
833 if (wait)
834 *wait = 0;
835 return 1;
836 }
837
838 /* Calc approx time to dispatch */
839 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
840
841 if (jiffy_wait > jiffy_elapsed)
842 jiffy_wait = jiffy_wait - jiffy_elapsed;
843 else
844 jiffy_wait = 1;
845
846 if (wait)
847 *wait = jiffy_wait;
848 return 0;
849 }
850
851 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
852 unsigned long *wait)
853 {
854 bool rw = bio_data_dir(bio);
855 u64 bytes_allowed, extra_bytes, tmp;
856 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
857
858 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
859
860 /* Slice has just started. Consider one slice interval */
861 if (!jiffy_elapsed)
862 jiffy_elapsed_rnd = throtl_slice;
863
864 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
865
866 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
867 do_div(tmp, HZ);
868 bytes_allowed = tmp;
869
870 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
871 if (wait)
872 *wait = 0;
873 return 1;
874 }
875
876 /* Calc approx time to dispatch */
877 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
878 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
879
880 if (!jiffy_wait)
881 jiffy_wait = 1;
882
883 /*
884 * This wait time is without taking into consideration the rounding
885 * up we did. Add that time also.
886 */
887 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
888 if (wait)
889 *wait = jiffy_wait;
890 return 0;
891 }
892
893 /*
894 * Returns whether one can dispatch a bio or not. Also returns approx number
895 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
896 */
897 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
898 unsigned long *wait)
899 {
900 bool rw = bio_data_dir(bio);
901 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
902
903 /*
904 * Currently whole state machine of group depends on first bio
905 * queued in the group bio list. So one should not be calling
906 * this function with a different bio if there are other bios
907 * queued.
908 */
909 BUG_ON(tg->service_queue.nr_queued[rw] &&
910 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
911
912 /* If tg->bps = -1, then BW is unlimited */
913 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
914 if (wait)
915 *wait = 0;
916 return 1;
917 }
918
919 /*
920 * If previous slice expired, start a new one otherwise renew/extend
921 * existing slice to make sure it is at least throtl_slice interval
922 * long since now.
923 */
924 if (throtl_slice_used(tg, rw))
925 throtl_start_new_slice(tg, rw);
926 else {
927 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
928 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
929 }
930
931 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
932 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
933 if (wait)
934 *wait = 0;
935 return 1;
936 }
937
938 max_wait = max(bps_wait, iops_wait);
939
940 if (wait)
941 *wait = max_wait;
942
943 if (time_before(tg->slice_end[rw], jiffies + max_wait))
944 throtl_extend_slice(tg, rw, jiffies + max_wait);
945
946 return 0;
947 }
948
949 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
950 int rw)
951 {
952 struct throtl_grp *tg = blkg_to_tg(blkg);
953 struct tg_stats_cpu *stats_cpu;
954 unsigned long flags;
955
956 /* If per cpu stats are not allocated yet, don't do any accounting. */
957 if (tg->stats_cpu == NULL)
958 return;
959
960 /*
961 * Disabling interrupts to provide mutual exclusion between two
962 * writes on same cpu. It probably is not needed for 64bit. Not
963 * optimizing that case yet.
964 */
965 local_irq_save(flags);
966
967 stats_cpu = this_cpu_ptr(tg->stats_cpu);
968
969 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
970 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
971
972 local_irq_restore(flags);
973 }
974
975 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
976 {
977 bool rw = bio_data_dir(bio);
978
979 /* Charge the bio to the group */
980 tg->bytes_disp[rw] += bio->bi_size;
981 tg->io_disp[rw]++;
982
983 /*
984 * REQ_THROTTLED is used to prevent the same bio to be throttled
985 * more than once as a throttled bio will go through blk-throtl the
986 * second time when it eventually gets issued. Set it when a bio
987 * is being charged to a tg.
988 *
989 * Dispatch stats aren't recursive and each @bio should only be
990 * accounted by the @tg it was originally associated with. Let's
991 * update the stats when setting REQ_THROTTLED for the first time
992 * which is guaranteed to be for the @bio's original tg.
993 */
994 if (!(bio->bi_rw & REQ_THROTTLED)) {
995 bio->bi_rw |= REQ_THROTTLED;
996 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
997 bio->bi_rw);
998 }
999 }
1000
1001 /**
1002 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1003 * @bio: bio to add
1004 * @qn: qnode to use
1005 * @tg: the target throtl_grp
1006 *
1007 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1008 * tg->qnode_on_self[] is used.
1009 */
1010 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1011 struct throtl_grp *tg)
1012 {
1013 struct throtl_service_queue *sq = &tg->service_queue;
1014 bool rw = bio_data_dir(bio);
1015
1016 if (!qn)
1017 qn = &tg->qnode_on_self[rw];
1018
1019 /*
1020 * If @tg doesn't currently have any bios queued in the same
1021 * direction, queueing @bio can change when @tg should be
1022 * dispatched. Mark that @tg was empty. This is automatically
1023 * cleaered on the next tg_update_disptime().
1024 */
1025 if (!sq->nr_queued[rw])
1026 tg->flags |= THROTL_TG_WAS_EMPTY;
1027
1028 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1029
1030 sq->nr_queued[rw]++;
1031 throtl_enqueue_tg(tg);
1032 }
1033
1034 static void tg_update_disptime(struct throtl_grp *tg)
1035 {
1036 struct throtl_service_queue *sq = &tg->service_queue;
1037 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1038 struct bio *bio;
1039
1040 if ((bio = throtl_peek_queued(&sq->queued[READ])))
1041 tg_may_dispatch(tg, bio, &read_wait);
1042
1043 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1044 tg_may_dispatch(tg, bio, &write_wait);
1045
1046 min_wait = min(read_wait, write_wait);
1047 disptime = jiffies + min_wait;
1048
1049 /* Update dispatch time */
1050 throtl_dequeue_tg(tg);
1051 tg->disptime = disptime;
1052 throtl_enqueue_tg(tg);
1053
1054 /* see throtl_add_bio_tg() */
1055 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1056 }
1057
1058 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1059 struct throtl_grp *parent_tg, bool rw)
1060 {
1061 if (throtl_slice_used(parent_tg, rw)) {
1062 throtl_start_new_slice_with_credit(parent_tg, rw,
1063 child_tg->slice_start[rw]);
1064 }
1065
1066 }
1067
1068 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1069 {
1070 struct throtl_service_queue *sq = &tg->service_queue;
1071 struct throtl_service_queue *parent_sq = sq->parent_sq;
1072 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1073 struct throtl_grp *tg_to_put = NULL;
1074 struct bio *bio;
1075
1076 /*
1077 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1078 * from @tg may put its reference and @parent_sq might end up
1079 * getting released prematurely. Remember the tg to put and put it
1080 * after @bio is transferred to @parent_sq.
1081 */
1082 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1083 sq->nr_queued[rw]--;
1084
1085 throtl_charge_bio(tg, bio);
1086
1087 /*
1088 * If our parent is another tg, we just need to transfer @bio to
1089 * the parent using throtl_add_bio_tg(). If our parent is
1090 * @td->service_queue, @bio is ready to be issued. Put it on its
1091 * bio_lists[] and decrease total number queued. The caller is
1092 * responsible for issuing these bios.
1093 */
1094 if (parent_tg) {
1095 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1096 start_parent_slice_with_credit(tg, parent_tg, rw);
1097 } else {
1098 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1099 &parent_sq->queued[rw]);
1100 BUG_ON(tg->td->nr_queued[rw] <= 0);
1101 tg->td->nr_queued[rw]--;
1102 }
1103
1104 throtl_trim_slice(tg, rw);
1105
1106 if (tg_to_put)
1107 blkg_put(tg_to_blkg(tg_to_put));
1108 }
1109
1110 static int throtl_dispatch_tg(struct throtl_grp *tg)
1111 {
1112 struct throtl_service_queue *sq = &tg->service_queue;
1113 unsigned int nr_reads = 0, nr_writes = 0;
1114 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1115 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1116 struct bio *bio;
1117
1118 /* Try to dispatch 75% READS and 25% WRITES */
1119
1120 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1121 tg_may_dispatch(tg, bio, NULL)) {
1122
1123 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1124 nr_reads++;
1125
1126 if (nr_reads >= max_nr_reads)
1127 break;
1128 }
1129
1130 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1131 tg_may_dispatch(tg, bio, NULL)) {
1132
1133 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1134 nr_writes++;
1135
1136 if (nr_writes >= max_nr_writes)
1137 break;
1138 }
1139
1140 return nr_reads + nr_writes;
1141 }
1142
1143 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1144 {
1145 unsigned int nr_disp = 0;
1146
1147 while (1) {
1148 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1149 struct throtl_service_queue *sq = &tg->service_queue;
1150
1151 if (!tg)
1152 break;
1153
1154 if (time_before(jiffies, tg->disptime))
1155 break;
1156
1157 throtl_dequeue_tg(tg);
1158
1159 nr_disp += throtl_dispatch_tg(tg);
1160
1161 if (sq->nr_queued[0] || sq->nr_queued[1])
1162 tg_update_disptime(tg);
1163
1164 if (nr_disp >= throtl_quantum)
1165 break;
1166 }
1167
1168 return nr_disp;
1169 }
1170
1171 /**
1172 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1173 * @arg: the throtl_service_queue being serviced
1174 *
1175 * This timer is armed when a child throtl_grp with active bio's become
1176 * pending and queued on the service_queue's pending_tree and expires when
1177 * the first child throtl_grp should be dispatched. This function
1178 * dispatches bio's from the children throtl_grps to the parent
1179 * service_queue.
1180 *
1181 * If the parent's parent is another throtl_grp, dispatching is propagated
1182 * by either arming its pending_timer or repeating dispatch directly. If
1183 * the top-level service_tree is reached, throtl_data->dispatch_work is
1184 * kicked so that the ready bio's are issued.
1185 */
1186 static void throtl_pending_timer_fn(unsigned long arg)
1187 {
1188 struct throtl_service_queue *sq = (void *)arg;
1189 struct throtl_grp *tg = sq_to_tg(sq);
1190 struct throtl_data *td = sq_to_td(sq);
1191 struct request_queue *q = td->queue;
1192 struct throtl_service_queue *parent_sq;
1193 bool dispatched;
1194 int ret;
1195
1196 spin_lock_irq(q->queue_lock);
1197 again:
1198 parent_sq = sq->parent_sq;
1199 dispatched = false;
1200
1201 while (true) {
1202 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1203 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1204 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1205
1206 ret = throtl_select_dispatch(sq);
1207 if (ret) {
1208 throtl_log(sq, "bios disp=%u", ret);
1209 dispatched = true;
1210 }
1211
1212 if (throtl_schedule_next_dispatch(sq, false))
1213 break;
1214
1215 /* this dispatch windows is still open, relax and repeat */
1216 spin_unlock_irq(q->queue_lock);
1217 cpu_relax();
1218 spin_lock_irq(q->queue_lock);
1219 }
1220
1221 if (!dispatched)
1222 goto out_unlock;
1223
1224 if (parent_sq) {
1225 /* @parent_sq is another throl_grp, propagate dispatch */
1226 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1227 tg_update_disptime(tg);
1228 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1229 /* window is already open, repeat dispatching */
1230 sq = parent_sq;
1231 tg = sq_to_tg(sq);
1232 goto again;
1233 }
1234 }
1235 } else {
1236 /* reached the top-level, queue issueing */
1237 queue_work(kthrotld_workqueue, &td->dispatch_work);
1238 }
1239 out_unlock:
1240 spin_unlock_irq(q->queue_lock);
1241 }
1242
1243 /**
1244 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1245 * @work: work item being executed
1246 *
1247 * This function is queued for execution when bio's reach the bio_lists[]
1248 * of throtl_data->service_queue. Those bio's are ready and issued by this
1249 * function.
1250 */
1251 void blk_throtl_dispatch_work_fn(struct work_struct *work)
1252 {
1253 struct throtl_data *td = container_of(work, struct throtl_data,
1254 dispatch_work);
1255 struct throtl_service_queue *td_sq = &td->service_queue;
1256 struct request_queue *q = td->queue;
1257 struct bio_list bio_list_on_stack;
1258 struct bio *bio;
1259 struct blk_plug plug;
1260 int rw;
1261
1262 bio_list_init(&bio_list_on_stack);
1263
1264 spin_lock_irq(q->queue_lock);
1265 for (rw = READ; rw <= WRITE; rw++)
1266 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1267 bio_list_add(&bio_list_on_stack, bio);
1268 spin_unlock_irq(q->queue_lock);
1269
1270 if (!bio_list_empty(&bio_list_on_stack)) {
1271 blk_start_plug(&plug);
1272 while((bio = bio_list_pop(&bio_list_on_stack)))
1273 generic_make_request(bio);
1274 blk_finish_plug(&plug);
1275 }
1276 }
1277
1278 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1279 struct blkg_policy_data *pd, int off)
1280 {
1281 struct throtl_grp *tg = pd_to_tg(pd);
1282 struct blkg_rwstat rwstat = { }, tmp;
1283 int i, cpu;
1284
1285 for_each_possible_cpu(cpu) {
1286 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1287
1288 tmp = blkg_rwstat_read((void *)sc + off);
1289 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1290 rwstat.cnt[i] += tmp.cnt[i];
1291 }
1292
1293 return __blkg_prfill_rwstat(sf, pd, &rwstat);
1294 }
1295
1296 static int tg_print_cpu_rwstat(struct cgroup_subsys_state *css,
1297 struct cftype *cft, struct seq_file *sf)
1298 {
1299 struct blkcg *blkcg = css_to_blkcg(css);
1300
1301 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
1302 cft->private, true);
1303 return 0;
1304 }
1305
1306 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1307 int off)
1308 {
1309 struct throtl_grp *tg = pd_to_tg(pd);
1310 u64 v = *(u64 *)((void *)tg + off);
1311
1312 if (v == -1)
1313 return 0;
1314 return __blkg_prfill_u64(sf, pd, v);
1315 }
1316
1317 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1318 int off)
1319 {
1320 struct throtl_grp *tg = pd_to_tg(pd);
1321 unsigned int v = *(unsigned int *)((void *)tg + off);
1322
1323 if (v == -1)
1324 return 0;
1325 return __blkg_prfill_u64(sf, pd, v);
1326 }
1327
1328 static int tg_print_conf_u64(struct cgroup_subsys_state *css,
1329 struct cftype *cft, struct seq_file *sf)
1330 {
1331 blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_u64,
1332 &blkcg_policy_throtl, cft->private, false);
1333 return 0;
1334 }
1335
1336 static int tg_print_conf_uint(struct cgroup_subsys_state *css,
1337 struct cftype *cft, struct seq_file *sf)
1338 {
1339 blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_uint,
1340 &blkcg_policy_throtl, cft->private, false);
1341 return 0;
1342 }
1343
1344 static int tg_set_conf(struct cgroup_subsys_state *css, struct cftype *cft,
1345 const char *buf, bool is_u64)
1346 {
1347 struct blkcg *blkcg = css_to_blkcg(css);
1348 struct blkg_conf_ctx ctx;
1349 struct throtl_grp *tg;
1350 struct throtl_service_queue *sq;
1351 struct blkcg_gq *blkg;
1352 struct cgroup_subsys_state *pos_css;
1353 int ret;
1354
1355 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1356 if (ret)
1357 return ret;
1358
1359 tg = blkg_to_tg(ctx.blkg);
1360 sq = &tg->service_queue;
1361
1362 if (!ctx.v)
1363 ctx.v = -1;
1364
1365 if (is_u64)
1366 *(u64 *)((void *)tg + cft->private) = ctx.v;
1367 else
1368 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
1369
1370 throtl_log(&tg->service_queue,
1371 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1372 tg->bps[READ], tg->bps[WRITE],
1373 tg->iops[READ], tg->iops[WRITE]);
1374
1375 /*
1376 * Update has_rules[] flags for the updated tg's subtree. A tg is
1377 * considered to have rules if either the tg itself or any of its
1378 * ancestors has rules. This identifies groups without any
1379 * restrictions in the whole hierarchy and allows them to bypass
1380 * blk-throttle.
1381 */
1382 blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1383 tg_update_has_rules(blkg_to_tg(blkg));
1384
1385 /*
1386 * We're already holding queue_lock and know @tg is valid. Let's
1387 * apply the new config directly.
1388 *
1389 * Restart the slices for both READ and WRITES. It might happen
1390 * that a group's limit are dropped suddenly and we don't want to
1391 * account recently dispatched IO with new low rate.
1392 */
1393 throtl_start_new_slice(tg, 0);
1394 throtl_start_new_slice(tg, 1);
1395
1396 if (tg->flags & THROTL_TG_PENDING) {
1397 tg_update_disptime(tg);
1398 throtl_schedule_next_dispatch(sq->parent_sq, true);
1399 }
1400
1401 blkg_conf_finish(&ctx);
1402 return 0;
1403 }
1404
1405 static int tg_set_conf_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1406 const char *buf)
1407 {
1408 return tg_set_conf(css, cft, buf, true);
1409 }
1410
1411 static int tg_set_conf_uint(struct cgroup_subsys_state *css, struct cftype *cft,
1412 const char *buf)
1413 {
1414 return tg_set_conf(css, cft, buf, false);
1415 }
1416
1417 static struct cftype throtl_files[] = {
1418 {
1419 .name = "throttle.read_bps_device",
1420 .private = offsetof(struct throtl_grp, bps[READ]),
1421 .read_seq_string = tg_print_conf_u64,
1422 .write_string = tg_set_conf_u64,
1423 .max_write_len = 256,
1424 },
1425 {
1426 .name = "throttle.write_bps_device",
1427 .private = offsetof(struct throtl_grp, bps[WRITE]),
1428 .read_seq_string = tg_print_conf_u64,
1429 .write_string = tg_set_conf_u64,
1430 .max_write_len = 256,
1431 },
1432 {
1433 .name = "throttle.read_iops_device",
1434 .private = offsetof(struct throtl_grp, iops[READ]),
1435 .read_seq_string = tg_print_conf_uint,
1436 .write_string = tg_set_conf_uint,
1437 .max_write_len = 256,
1438 },
1439 {
1440 .name = "throttle.write_iops_device",
1441 .private = offsetof(struct throtl_grp, iops[WRITE]),
1442 .read_seq_string = tg_print_conf_uint,
1443 .write_string = tg_set_conf_uint,
1444 .max_write_len = 256,
1445 },
1446 {
1447 .name = "throttle.io_service_bytes",
1448 .private = offsetof(struct tg_stats_cpu, service_bytes),
1449 .read_seq_string = tg_print_cpu_rwstat,
1450 },
1451 {
1452 .name = "throttle.io_serviced",
1453 .private = offsetof(struct tg_stats_cpu, serviced),
1454 .read_seq_string = tg_print_cpu_rwstat,
1455 },
1456 { } /* terminate */
1457 };
1458
1459 static void throtl_shutdown_wq(struct request_queue *q)
1460 {
1461 struct throtl_data *td = q->td;
1462
1463 cancel_work_sync(&td->dispatch_work);
1464 }
1465
1466 static struct blkcg_policy blkcg_policy_throtl = {
1467 .pd_size = sizeof(struct throtl_grp),
1468 .cftypes = throtl_files,
1469
1470 .pd_init_fn = throtl_pd_init,
1471 .pd_online_fn = throtl_pd_online,
1472 .pd_exit_fn = throtl_pd_exit,
1473 .pd_reset_stats_fn = throtl_pd_reset_stats,
1474 };
1475
1476 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1477 {
1478 struct throtl_data *td = q->td;
1479 struct throtl_qnode *qn = NULL;
1480 struct throtl_grp *tg;
1481 struct throtl_service_queue *sq;
1482 bool rw = bio_data_dir(bio);
1483 struct blkcg *blkcg;
1484 bool throttled = false;
1485
1486 /* see throtl_charge_bio() */
1487 if (bio->bi_rw & REQ_THROTTLED)
1488 goto out;
1489
1490 /*
1491 * A throtl_grp pointer retrieved under rcu can be used to access
1492 * basic fields like stats and io rates. If a group has no rules,
1493 * just update the dispatch stats in lockless manner and return.
1494 */
1495 rcu_read_lock();
1496 blkcg = bio_blkcg(bio);
1497 tg = throtl_lookup_tg(td, blkcg);
1498 if (tg) {
1499 if (!tg->has_rules[rw]) {
1500 throtl_update_dispatch_stats(tg_to_blkg(tg),
1501 bio->bi_size, bio->bi_rw);
1502 goto out_unlock_rcu;
1503 }
1504 }
1505
1506 /*
1507 * Either group has not been allocated yet or it is not an unlimited
1508 * IO group
1509 */
1510 spin_lock_irq(q->queue_lock);
1511 tg = throtl_lookup_create_tg(td, blkcg);
1512 if (unlikely(!tg))
1513 goto out_unlock;
1514
1515 sq = &tg->service_queue;
1516
1517 while (true) {
1518 /* throtl is FIFO - if bios are already queued, should queue */
1519 if (sq->nr_queued[rw])
1520 break;
1521
1522 /* if above limits, break to queue */
1523 if (!tg_may_dispatch(tg, bio, NULL))
1524 break;
1525
1526 /* within limits, let's charge and dispatch directly */
1527 throtl_charge_bio(tg, bio);
1528
1529 /*
1530 * We need to trim slice even when bios are not being queued
1531 * otherwise it might happen that a bio is not queued for
1532 * a long time and slice keeps on extending and trim is not
1533 * called for a long time. Now if limits are reduced suddenly
1534 * we take into account all the IO dispatched so far at new
1535 * low rate and * newly queued IO gets a really long dispatch
1536 * time.
1537 *
1538 * So keep on trimming slice even if bio is not queued.
1539 */
1540 throtl_trim_slice(tg, rw);
1541
1542 /*
1543 * @bio passed through this layer without being throttled.
1544 * Climb up the ladder. If we''re already at the top, it
1545 * can be executed directly.
1546 */
1547 qn = &tg->qnode_on_parent[rw];
1548 sq = sq->parent_sq;
1549 tg = sq_to_tg(sq);
1550 if (!tg)
1551 goto out_unlock;
1552 }
1553
1554 /* out-of-limit, queue to @tg */
1555 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1556 rw == READ ? 'R' : 'W',
1557 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1558 tg->io_disp[rw], tg->iops[rw],
1559 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1560
1561 bio_associate_current(bio);
1562 tg->td->nr_queued[rw]++;
1563 throtl_add_bio_tg(bio, qn, tg);
1564 throttled = true;
1565
1566 /*
1567 * Update @tg's dispatch time and force schedule dispatch if @tg
1568 * was empty before @bio. The forced scheduling isn't likely to
1569 * cause undue delay as @bio is likely to be dispatched directly if
1570 * its @tg's disptime is not in the future.
1571 */
1572 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1573 tg_update_disptime(tg);
1574 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1575 }
1576
1577 out_unlock:
1578 spin_unlock_irq(q->queue_lock);
1579 out_unlock_rcu:
1580 rcu_read_unlock();
1581 out:
1582 /*
1583 * As multiple blk-throtls may stack in the same issue path, we
1584 * don't want bios to leave with the flag set. Clear the flag if
1585 * being issued.
1586 */
1587 if (!throttled)
1588 bio->bi_rw &= ~REQ_THROTTLED;
1589 return throttled;
1590 }
1591
1592 /*
1593 * Dispatch all bios from all children tg's queued on @parent_sq. On
1594 * return, @parent_sq is guaranteed to not have any active children tg's
1595 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1596 */
1597 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1598 {
1599 struct throtl_grp *tg;
1600
1601 while ((tg = throtl_rb_first(parent_sq))) {
1602 struct throtl_service_queue *sq = &tg->service_queue;
1603 struct bio *bio;
1604
1605 throtl_dequeue_tg(tg);
1606
1607 while ((bio = throtl_peek_queued(&sq->queued[READ])))
1608 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1609 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1610 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1611 }
1612 }
1613
1614 /**
1615 * blk_throtl_drain - drain throttled bios
1616 * @q: request_queue to drain throttled bios for
1617 *
1618 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1619 */
1620 void blk_throtl_drain(struct request_queue *q)
1621 __releases(q->queue_lock) __acquires(q->queue_lock)
1622 {
1623 struct throtl_data *td = q->td;
1624 struct blkcg_gq *blkg;
1625 struct cgroup_subsys_state *pos_css;
1626 struct bio *bio;
1627 int rw;
1628
1629 queue_lockdep_assert_held(q);
1630 rcu_read_lock();
1631
1632 /*
1633 * Drain each tg while doing post-order walk on the blkg tree, so
1634 * that all bios are propagated to td->service_queue. It'd be
1635 * better to walk service_queue tree directly but blkg walk is
1636 * easier.
1637 */
1638 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1639 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1640
1641 /* finally, transfer bios from top-level tg's into the td */
1642 tg_drain_bios(&td->service_queue);
1643
1644 rcu_read_unlock();
1645 spin_unlock_irq(q->queue_lock);
1646
1647 /* all bios now should be in td->service_queue, issue them */
1648 for (rw = READ; rw <= WRITE; rw++)
1649 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1650 NULL)))
1651 generic_make_request(bio);
1652
1653 spin_lock_irq(q->queue_lock);
1654 }
1655
1656 int blk_throtl_init(struct request_queue *q)
1657 {
1658 struct throtl_data *td;
1659 int ret;
1660
1661 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1662 if (!td)
1663 return -ENOMEM;
1664
1665 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1666 throtl_service_queue_init(&td->service_queue, NULL);
1667
1668 q->td = td;
1669 td->queue = q;
1670
1671 /* activate policy */
1672 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1673 if (ret)
1674 kfree(td);
1675 return ret;
1676 }
1677
1678 void blk_throtl_exit(struct request_queue *q)
1679 {
1680 BUG_ON(!q->td);
1681 throtl_shutdown_wq(q);
1682 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1683 kfree(q->td);
1684 }
1685
1686 static int __init throtl_init(void)
1687 {
1688 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1689 if (!kthrotld_workqueue)
1690 panic("Failed to create kthrotld\n");
1691
1692 return blkcg_policy_register(&blkcg_policy_throtl);
1693 }
1694
1695 module_init(throtl_init);
This page took 0.0889529999999999 seconds and 5 git commands to generate.