thp: mremap support and TLB optimization
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38 * offset from end of service tree
39 */
40 #define CFQ_IDLE_DELAY (HZ / 5)
41
42 /*
43 * below this threshold, we consider thinktime immediate
44 */
45 #define CFQ_MIN_TT (2)
46
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
50
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 struct cfq_ttime ttime;
91 };
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
94
95 /*
96 * Per process-grouping structure
97 */
98 struct cfq_queue {
99 /* reference count */
100 int ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
126 unsigned int allocated_slice;
127 unsigned int slice_dispatch;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
130 unsigned long slice_end;
131 long slice_resid;
132
133 /* pending priority requests */
134 int prio_pending;
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
140 unsigned short ioprio_class;
141
142 pid_t pid;
143
144 u32 seek_history;
145 sector_t last_request_pos;
146
147 struct cfq_rb_root *service_tree;
148 struct cfq_queue *new_cfqq;
149 struct cfq_group *cfqg;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
152 };
153
154 /*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158 enum wl_prio_t {
159 BE_WORKLOAD = 0,
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
162 CFQ_PRIO_NR,
163 };
164
165 /*
166 * Second index in the service_trees.
167 */
168 enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172 };
173
174 /* This is per cgroup per device grouping structure */
175 struct cfq_group {
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
181 unsigned int weight;
182 unsigned int new_weight;
183 bool needs_update;
184
185 /* number of cfqq currently on this group */
186 int nr_cfqq;
187
188 /*
189 * Per group busy queues average. Useful for workload slice calc. We
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
193 */
194 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 /*
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
201 * Counts are embedded in the cfq_rb_root
202 */
203 struct cfq_rb_root service_trees[2][3];
204 struct cfq_rb_root service_tree_idle;
205
206 unsigned long saved_workload_slice;
207 enum wl_type_t saved_workload;
208 enum wl_prio_t saved_serving_prio;
209 struct blkio_group blkg;
210 #ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node;
212 int ref;
213 #endif
214 /* number of requests that are on the dispatch list or inside driver */
215 int dispatched;
216 struct cfq_ttime ttime;
217 };
218
219 /*
220 * Per block device queue structure
221 */
222 struct cfq_data {
223 struct request_queue *queue;
224 /* Root service tree for cfq_groups */
225 struct cfq_rb_root grp_service_tree;
226 struct cfq_group root_group;
227
228 /*
229 * The priority currently being served
230 */
231 enum wl_prio_t serving_prio;
232 enum wl_type_t serving_type;
233 unsigned long workload_expires;
234 struct cfq_group *serving_group;
235
236 /*
237 * Each priority tree is sorted by next_request position. These
238 * trees are used when determining if two or more queues are
239 * interleaving requests (see cfq_close_cooperator).
240 */
241 struct rb_root prio_trees[CFQ_PRIO_LISTS];
242
243 unsigned int busy_queues;
244 unsigned int busy_sync_queues;
245
246 int rq_in_driver;
247 int rq_in_flight[2];
248
249 /*
250 * queue-depth detection
251 */
252 int rq_queued;
253 int hw_tag;
254 /*
255 * hw_tag can be
256 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
257 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
258 * 0 => no NCQ
259 */
260 int hw_tag_est_depth;
261 unsigned int hw_tag_samples;
262
263 /*
264 * idle window management
265 */
266 struct timer_list idle_slice_timer;
267 struct work_struct unplug_work;
268
269 struct cfq_queue *active_queue;
270 struct cfq_io_context *active_cic;
271
272 /*
273 * async queue for each priority case
274 */
275 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
276 struct cfq_queue *async_idle_cfqq;
277
278 sector_t last_position;
279
280 /*
281 * tunables, see top of file
282 */
283 unsigned int cfq_quantum;
284 unsigned int cfq_fifo_expire[2];
285 unsigned int cfq_back_penalty;
286 unsigned int cfq_back_max;
287 unsigned int cfq_slice[2];
288 unsigned int cfq_slice_async_rq;
289 unsigned int cfq_slice_idle;
290 unsigned int cfq_group_idle;
291 unsigned int cfq_latency;
292
293 unsigned int cic_index;
294 struct list_head cic_list;
295
296 /*
297 * Fallback dummy cfqq for extreme OOM conditions
298 */
299 struct cfq_queue oom_cfqq;
300
301 unsigned long last_delayed_sync;
302
303 /* List of cfq groups being managed on this device*/
304 struct hlist_head cfqg_list;
305
306 /* Number of groups which are on blkcg->blkg_list */
307 unsigned int nr_blkcg_linked_grps;
308 };
309
310 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
311
312 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
313 enum wl_prio_t prio,
314 enum wl_type_t type)
315 {
316 if (!cfqg)
317 return NULL;
318
319 if (prio == IDLE_WORKLOAD)
320 return &cfqg->service_tree_idle;
321
322 return &cfqg->service_trees[prio][type];
323 }
324
325 enum cfqq_state_flags {
326 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
327 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
328 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
329 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
330 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
331 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
332 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
333 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
334 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
335 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
336 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
337 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
338 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
339 };
340
341 #define CFQ_CFQQ_FNS(name) \
342 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
343 { \
344 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
345 } \
346 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
347 { \
348 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
349 } \
350 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
351 { \
352 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
353 }
354
355 CFQ_CFQQ_FNS(on_rr);
356 CFQ_CFQQ_FNS(wait_request);
357 CFQ_CFQQ_FNS(must_dispatch);
358 CFQ_CFQQ_FNS(must_alloc_slice);
359 CFQ_CFQQ_FNS(fifo_expire);
360 CFQ_CFQQ_FNS(idle_window);
361 CFQ_CFQQ_FNS(prio_changed);
362 CFQ_CFQQ_FNS(slice_new);
363 CFQ_CFQQ_FNS(sync);
364 CFQ_CFQQ_FNS(coop);
365 CFQ_CFQQ_FNS(split_coop);
366 CFQ_CFQQ_FNS(deep);
367 CFQ_CFQQ_FNS(wait_busy);
368 #undef CFQ_CFQQ_FNS
369
370 #ifdef CONFIG_CFQ_GROUP_IOSCHED
371 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
372 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
373 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
374 blkg_path(&(cfqq)->cfqg->blkg), ##args)
375
376 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
377 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
378 blkg_path(&(cfqg)->blkg), ##args) \
379
380 #else
381 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
382 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
383 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
384 #endif
385 #define cfq_log(cfqd, fmt, args...) \
386 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
387
388 /* Traverses through cfq group service trees */
389 #define for_each_cfqg_st(cfqg, i, j, st) \
390 for (i = 0; i <= IDLE_WORKLOAD; i++) \
391 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
392 : &cfqg->service_tree_idle; \
393 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
394 (i == IDLE_WORKLOAD && j == 0); \
395 j++, st = i < IDLE_WORKLOAD ? \
396 &cfqg->service_trees[i][j]: NULL) \
397
398 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
399 struct cfq_ttime *ttime, bool group_idle)
400 {
401 unsigned long slice;
402 if (!sample_valid(ttime->ttime_samples))
403 return false;
404 if (group_idle)
405 slice = cfqd->cfq_group_idle;
406 else
407 slice = cfqd->cfq_slice_idle;
408 return ttime->ttime_mean > slice;
409 }
410
411 static inline bool iops_mode(struct cfq_data *cfqd)
412 {
413 /*
414 * If we are not idling on queues and it is a NCQ drive, parallel
415 * execution of requests is on and measuring time is not possible
416 * in most of the cases until and unless we drive shallower queue
417 * depths and that becomes a performance bottleneck. In such cases
418 * switch to start providing fairness in terms of number of IOs.
419 */
420 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
421 return true;
422 else
423 return false;
424 }
425
426 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
427 {
428 if (cfq_class_idle(cfqq))
429 return IDLE_WORKLOAD;
430 if (cfq_class_rt(cfqq))
431 return RT_WORKLOAD;
432 return BE_WORKLOAD;
433 }
434
435
436 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
437 {
438 if (!cfq_cfqq_sync(cfqq))
439 return ASYNC_WORKLOAD;
440 if (!cfq_cfqq_idle_window(cfqq))
441 return SYNC_NOIDLE_WORKLOAD;
442 return SYNC_WORKLOAD;
443 }
444
445 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
446 struct cfq_data *cfqd,
447 struct cfq_group *cfqg)
448 {
449 if (wl == IDLE_WORKLOAD)
450 return cfqg->service_tree_idle.count;
451
452 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
453 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
454 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
455 }
456
457 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
458 struct cfq_group *cfqg)
459 {
460 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
461 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
462 }
463
464 static void cfq_dispatch_insert(struct request_queue *, struct request *);
465 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
466 struct io_context *, gfp_t);
467 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
468 struct io_context *);
469
470 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
471 bool is_sync)
472 {
473 return cic->cfqq[is_sync];
474 }
475
476 static inline void cic_set_cfqq(struct cfq_io_context *cic,
477 struct cfq_queue *cfqq, bool is_sync)
478 {
479 cic->cfqq[is_sync] = cfqq;
480 }
481
482 #define CIC_DEAD_KEY 1ul
483 #define CIC_DEAD_INDEX_SHIFT 1
484
485 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
486 {
487 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
488 }
489
490 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
491 {
492 struct cfq_data *cfqd = cic->key;
493
494 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
495 return NULL;
496
497 return cfqd;
498 }
499
500 /*
501 * We regard a request as SYNC, if it's either a read or has the SYNC bit
502 * set (in which case it could also be direct WRITE).
503 */
504 static inline bool cfq_bio_sync(struct bio *bio)
505 {
506 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
507 }
508
509 /*
510 * scheduler run of queue, if there are requests pending and no one in the
511 * driver that will restart queueing
512 */
513 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
514 {
515 if (cfqd->busy_queues) {
516 cfq_log(cfqd, "schedule dispatch");
517 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
518 }
519 }
520
521 /*
522 * Scale schedule slice based on io priority. Use the sync time slice only
523 * if a queue is marked sync and has sync io queued. A sync queue with async
524 * io only, should not get full sync slice length.
525 */
526 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
527 unsigned short prio)
528 {
529 const int base_slice = cfqd->cfq_slice[sync];
530
531 WARN_ON(prio >= IOPRIO_BE_NR);
532
533 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
534 }
535
536 static inline int
537 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
538 {
539 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
540 }
541
542 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
543 {
544 u64 d = delta << CFQ_SERVICE_SHIFT;
545
546 d = d * BLKIO_WEIGHT_DEFAULT;
547 do_div(d, cfqg->weight);
548 return d;
549 }
550
551 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
552 {
553 s64 delta = (s64)(vdisktime - min_vdisktime);
554 if (delta > 0)
555 min_vdisktime = vdisktime;
556
557 return min_vdisktime;
558 }
559
560 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
561 {
562 s64 delta = (s64)(vdisktime - min_vdisktime);
563 if (delta < 0)
564 min_vdisktime = vdisktime;
565
566 return min_vdisktime;
567 }
568
569 static void update_min_vdisktime(struct cfq_rb_root *st)
570 {
571 struct cfq_group *cfqg;
572
573 if (st->left) {
574 cfqg = rb_entry_cfqg(st->left);
575 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
576 cfqg->vdisktime);
577 }
578 }
579
580 /*
581 * get averaged number of queues of RT/BE priority.
582 * average is updated, with a formula that gives more weight to higher numbers,
583 * to quickly follows sudden increases and decrease slowly
584 */
585
586 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
587 struct cfq_group *cfqg, bool rt)
588 {
589 unsigned min_q, max_q;
590 unsigned mult = cfq_hist_divisor - 1;
591 unsigned round = cfq_hist_divisor / 2;
592 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
593
594 min_q = min(cfqg->busy_queues_avg[rt], busy);
595 max_q = max(cfqg->busy_queues_avg[rt], busy);
596 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
597 cfq_hist_divisor;
598 return cfqg->busy_queues_avg[rt];
599 }
600
601 static inline unsigned
602 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
603 {
604 struct cfq_rb_root *st = &cfqd->grp_service_tree;
605
606 return cfq_target_latency * cfqg->weight / st->total_weight;
607 }
608
609 static inline unsigned
610 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
611 {
612 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
613 if (cfqd->cfq_latency) {
614 /*
615 * interested queues (we consider only the ones with the same
616 * priority class in the cfq group)
617 */
618 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
619 cfq_class_rt(cfqq));
620 unsigned sync_slice = cfqd->cfq_slice[1];
621 unsigned expect_latency = sync_slice * iq;
622 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
623
624 if (expect_latency > group_slice) {
625 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
626 /* scale low_slice according to IO priority
627 * and sync vs async */
628 unsigned low_slice =
629 min(slice, base_low_slice * slice / sync_slice);
630 /* the adapted slice value is scaled to fit all iqs
631 * into the target latency */
632 slice = max(slice * group_slice / expect_latency,
633 low_slice);
634 }
635 }
636 return slice;
637 }
638
639 static inline void
640 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
641 {
642 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
643
644 cfqq->slice_start = jiffies;
645 cfqq->slice_end = jiffies + slice;
646 cfqq->allocated_slice = slice;
647 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
648 }
649
650 /*
651 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
652 * isn't valid until the first request from the dispatch is activated
653 * and the slice time set.
654 */
655 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
656 {
657 if (cfq_cfqq_slice_new(cfqq))
658 return false;
659 if (time_before(jiffies, cfqq->slice_end))
660 return false;
661
662 return true;
663 }
664
665 /*
666 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
667 * We choose the request that is closest to the head right now. Distance
668 * behind the head is penalized and only allowed to a certain extent.
669 */
670 static struct request *
671 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
672 {
673 sector_t s1, s2, d1 = 0, d2 = 0;
674 unsigned long back_max;
675 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
676 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
677 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
678
679 if (rq1 == NULL || rq1 == rq2)
680 return rq2;
681 if (rq2 == NULL)
682 return rq1;
683
684 if (rq_is_sync(rq1) != rq_is_sync(rq2))
685 return rq_is_sync(rq1) ? rq1 : rq2;
686
687 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
688 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
689
690 s1 = blk_rq_pos(rq1);
691 s2 = blk_rq_pos(rq2);
692
693 /*
694 * by definition, 1KiB is 2 sectors
695 */
696 back_max = cfqd->cfq_back_max * 2;
697
698 /*
699 * Strict one way elevator _except_ in the case where we allow
700 * short backward seeks which are biased as twice the cost of a
701 * similar forward seek.
702 */
703 if (s1 >= last)
704 d1 = s1 - last;
705 else if (s1 + back_max >= last)
706 d1 = (last - s1) * cfqd->cfq_back_penalty;
707 else
708 wrap |= CFQ_RQ1_WRAP;
709
710 if (s2 >= last)
711 d2 = s2 - last;
712 else if (s2 + back_max >= last)
713 d2 = (last - s2) * cfqd->cfq_back_penalty;
714 else
715 wrap |= CFQ_RQ2_WRAP;
716
717 /* Found required data */
718
719 /*
720 * By doing switch() on the bit mask "wrap" we avoid having to
721 * check two variables for all permutations: --> faster!
722 */
723 switch (wrap) {
724 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
725 if (d1 < d2)
726 return rq1;
727 else if (d2 < d1)
728 return rq2;
729 else {
730 if (s1 >= s2)
731 return rq1;
732 else
733 return rq2;
734 }
735
736 case CFQ_RQ2_WRAP:
737 return rq1;
738 case CFQ_RQ1_WRAP:
739 return rq2;
740 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
741 default:
742 /*
743 * Since both rqs are wrapped,
744 * start with the one that's further behind head
745 * (--> only *one* back seek required),
746 * since back seek takes more time than forward.
747 */
748 if (s1 <= s2)
749 return rq1;
750 else
751 return rq2;
752 }
753 }
754
755 /*
756 * The below is leftmost cache rbtree addon
757 */
758 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
759 {
760 /* Service tree is empty */
761 if (!root->count)
762 return NULL;
763
764 if (!root->left)
765 root->left = rb_first(&root->rb);
766
767 if (root->left)
768 return rb_entry(root->left, struct cfq_queue, rb_node);
769
770 return NULL;
771 }
772
773 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
774 {
775 if (!root->left)
776 root->left = rb_first(&root->rb);
777
778 if (root->left)
779 return rb_entry_cfqg(root->left);
780
781 return NULL;
782 }
783
784 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
785 {
786 rb_erase(n, root);
787 RB_CLEAR_NODE(n);
788 }
789
790 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
791 {
792 if (root->left == n)
793 root->left = NULL;
794 rb_erase_init(n, &root->rb);
795 --root->count;
796 }
797
798 /*
799 * would be nice to take fifo expire time into account as well
800 */
801 static struct request *
802 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
803 struct request *last)
804 {
805 struct rb_node *rbnext = rb_next(&last->rb_node);
806 struct rb_node *rbprev = rb_prev(&last->rb_node);
807 struct request *next = NULL, *prev = NULL;
808
809 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
810
811 if (rbprev)
812 prev = rb_entry_rq(rbprev);
813
814 if (rbnext)
815 next = rb_entry_rq(rbnext);
816 else {
817 rbnext = rb_first(&cfqq->sort_list);
818 if (rbnext && rbnext != &last->rb_node)
819 next = rb_entry_rq(rbnext);
820 }
821
822 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
823 }
824
825 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
826 struct cfq_queue *cfqq)
827 {
828 /*
829 * just an approximation, should be ok.
830 */
831 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
832 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
833 }
834
835 static inline s64
836 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
837 {
838 return cfqg->vdisktime - st->min_vdisktime;
839 }
840
841 static void
842 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
843 {
844 struct rb_node **node = &st->rb.rb_node;
845 struct rb_node *parent = NULL;
846 struct cfq_group *__cfqg;
847 s64 key = cfqg_key(st, cfqg);
848 int left = 1;
849
850 while (*node != NULL) {
851 parent = *node;
852 __cfqg = rb_entry_cfqg(parent);
853
854 if (key < cfqg_key(st, __cfqg))
855 node = &parent->rb_left;
856 else {
857 node = &parent->rb_right;
858 left = 0;
859 }
860 }
861
862 if (left)
863 st->left = &cfqg->rb_node;
864
865 rb_link_node(&cfqg->rb_node, parent, node);
866 rb_insert_color(&cfqg->rb_node, &st->rb);
867 }
868
869 static void
870 cfq_update_group_weight(struct cfq_group *cfqg)
871 {
872 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
873 if (cfqg->needs_update) {
874 cfqg->weight = cfqg->new_weight;
875 cfqg->needs_update = false;
876 }
877 }
878
879 static void
880 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
881 {
882 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
883
884 cfq_update_group_weight(cfqg);
885 __cfq_group_service_tree_add(st, cfqg);
886 st->total_weight += cfqg->weight;
887 }
888
889 static void
890 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
891 {
892 struct cfq_rb_root *st = &cfqd->grp_service_tree;
893 struct cfq_group *__cfqg;
894 struct rb_node *n;
895
896 cfqg->nr_cfqq++;
897 if (!RB_EMPTY_NODE(&cfqg->rb_node))
898 return;
899
900 /*
901 * Currently put the group at the end. Later implement something
902 * so that groups get lesser vtime based on their weights, so that
903 * if group does not loose all if it was not continuously backlogged.
904 */
905 n = rb_last(&st->rb);
906 if (n) {
907 __cfqg = rb_entry_cfqg(n);
908 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
909 } else
910 cfqg->vdisktime = st->min_vdisktime;
911 cfq_group_service_tree_add(st, cfqg);
912 }
913
914 static void
915 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
916 {
917 st->total_weight -= cfqg->weight;
918 if (!RB_EMPTY_NODE(&cfqg->rb_node))
919 cfq_rb_erase(&cfqg->rb_node, st);
920 }
921
922 static void
923 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
924 {
925 struct cfq_rb_root *st = &cfqd->grp_service_tree;
926
927 BUG_ON(cfqg->nr_cfqq < 1);
928 cfqg->nr_cfqq--;
929
930 /* If there are other cfq queues under this group, don't delete it */
931 if (cfqg->nr_cfqq)
932 return;
933
934 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
935 cfq_group_service_tree_del(st, cfqg);
936 cfqg->saved_workload_slice = 0;
937 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
938 }
939
940 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
941 unsigned int *unaccounted_time)
942 {
943 unsigned int slice_used;
944
945 /*
946 * Queue got expired before even a single request completed or
947 * got expired immediately after first request completion.
948 */
949 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
950 /*
951 * Also charge the seek time incurred to the group, otherwise
952 * if there are mutiple queues in the group, each can dispatch
953 * a single request on seeky media and cause lots of seek time
954 * and group will never know it.
955 */
956 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
957 1);
958 } else {
959 slice_used = jiffies - cfqq->slice_start;
960 if (slice_used > cfqq->allocated_slice) {
961 *unaccounted_time = slice_used - cfqq->allocated_slice;
962 slice_used = cfqq->allocated_slice;
963 }
964 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
965 *unaccounted_time += cfqq->slice_start -
966 cfqq->dispatch_start;
967 }
968
969 return slice_used;
970 }
971
972 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
973 struct cfq_queue *cfqq)
974 {
975 struct cfq_rb_root *st = &cfqd->grp_service_tree;
976 unsigned int used_sl, charge, unaccounted_sl = 0;
977 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
978 - cfqg->service_tree_idle.count;
979
980 BUG_ON(nr_sync < 0);
981 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
982
983 if (iops_mode(cfqd))
984 charge = cfqq->slice_dispatch;
985 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
986 charge = cfqq->allocated_slice;
987
988 /* Can't update vdisktime while group is on service tree */
989 cfq_group_service_tree_del(st, cfqg);
990 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
991 /* If a new weight was requested, update now, off tree */
992 cfq_group_service_tree_add(st, cfqg);
993
994 /* This group is being expired. Save the context */
995 if (time_after(cfqd->workload_expires, jiffies)) {
996 cfqg->saved_workload_slice = cfqd->workload_expires
997 - jiffies;
998 cfqg->saved_workload = cfqd->serving_type;
999 cfqg->saved_serving_prio = cfqd->serving_prio;
1000 } else
1001 cfqg->saved_workload_slice = 0;
1002
1003 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1004 st->min_vdisktime);
1005 cfq_log_cfqq(cfqq->cfqd, cfqq,
1006 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1007 used_sl, cfqq->slice_dispatch, charge,
1008 iops_mode(cfqd), cfqq->nr_sectors);
1009 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1010 unaccounted_sl);
1011 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1012 }
1013
1014 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1015 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1016 {
1017 if (blkg)
1018 return container_of(blkg, struct cfq_group, blkg);
1019 return NULL;
1020 }
1021
1022 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1023 unsigned int weight)
1024 {
1025 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1026 cfqg->new_weight = weight;
1027 cfqg->needs_update = true;
1028 }
1029
1030 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1031 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1032 {
1033 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1034 unsigned int major, minor;
1035
1036 /*
1037 * Add group onto cgroup list. It might happen that bdi->dev is
1038 * not initialized yet. Initialize this new group without major
1039 * and minor info and this info will be filled in once a new thread
1040 * comes for IO.
1041 */
1042 if (bdi->dev) {
1043 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1044 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1045 (void *)cfqd, MKDEV(major, minor));
1046 } else
1047 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1048 (void *)cfqd, 0);
1049
1050 cfqd->nr_blkcg_linked_grps++;
1051 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1052
1053 /* Add group on cfqd list */
1054 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1055 }
1056
1057 /*
1058 * Should be called from sleepable context. No request queue lock as per
1059 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1060 * from sleepable context.
1061 */
1062 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1063 {
1064 struct cfq_group *cfqg = NULL;
1065 int i, j, ret;
1066 struct cfq_rb_root *st;
1067
1068 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1069 if (!cfqg)
1070 return NULL;
1071
1072 for_each_cfqg_st(cfqg, i, j, st)
1073 *st = CFQ_RB_ROOT;
1074 RB_CLEAR_NODE(&cfqg->rb_node);
1075
1076 cfqg->ttime.last_end_request = jiffies;
1077
1078 /*
1079 * Take the initial reference that will be released on destroy
1080 * This can be thought of a joint reference by cgroup and
1081 * elevator which will be dropped by either elevator exit
1082 * or cgroup deletion path depending on who is exiting first.
1083 */
1084 cfqg->ref = 1;
1085
1086 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1087 if (ret) {
1088 kfree(cfqg);
1089 return NULL;
1090 }
1091
1092 return cfqg;
1093 }
1094
1095 static struct cfq_group *
1096 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1097 {
1098 struct cfq_group *cfqg = NULL;
1099 void *key = cfqd;
1100 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1101 unsigned int major, minor;
1102
1103 /*
1104 * This is the common case when there are no blkio cgroups.
1105 * Avoid lookup in this case
1106 */
1107 if (blkcg == &blkio_root_cgroup)
1108 cfqg = &cfqd->root_group;
1109 else
1110 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1111
1112 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1113 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1114 cfqg->blkg.dev = MKDEV(major, minor);
1115 }
1116
1117 return cfqg;
1118 }
1119
1120 /*
1121 * Search for the cfq group current task belongs to. request_queue lock must
1122 * be held.
1123 */
1124 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1125 {
1126 struct blkio_cgroup *blkcg;
1127 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1128 struct request_queue *q = cfqd->queue;
1129
1130 rcu_read_lock();
1131 blkcg = task_blkio_cgroup(current);
1132 cfqg = cfq_find_cfqg(cfqd, blkcg);
1133 if (cfqg) {
1134 rcu_read_unlock();
1135 return cfqg;
1136 }
1137
1138 /*
1139 * Need to allocate a group. Allocation of group also needs allocation
1140 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1141 * we need to drop rcu lock and queue_lock before we call alloc.
1142 *
1143 * Not taking any queue reference here and assuming that queue is
1144 * around by the time we return. CFQ queue allocation code does
1145 * the same. It might be racy though.
1146 */
1147
1148 rcu_read_unlock();
1149 spin_unlock_irq(q->queue_lock);
1150
1151 cfqg = cfq_alloc_cfqg(cfqd);
1152
1153 spin_lock_irq(q->queue_lock);
1154
1155 rcu_read_lock();
1156 blkcg = task_blkio_cgroup(current);
1157
1158 /*
1159 * If some other thread already allocated the group while we were
1160 * not holding queue lock, free up the group
1161 */
1162 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1163
1164 if (__cfqg) {
1165 kfree(cfqg);
1166 rcu_read_unlock();
1167 return __cfqg;
1168 }
1169
1170 if (!cfqg)
1171 cfqg = &cfqd->root_group;
1172
1173 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1174 rcu_read_unlock();
1175 return cfqg;
1176 }
1177
1178 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1179 {
1180 cfqg->ref++;
1181 return cfqg;
1182 }
1183
1184 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1185 {
1186 /* Currently, all async queues are mapped to root group */
1187 if (!cfq_cfqq_sync(cfqq))
1188 cfqg = &cfqq->cfqd->root_group;
1189
1190 cfqq->cfqg = cfqg;
1191 /* cfqq reference on cfqg */
1192 cfqq->cfqg->ref++;
1193 }
1194
1195 static void cfq_put_cfqg(struct cfq_group *cfqg)
1196 {
1197 struct cfq_rb_root *st;
1198 int i, j;
1199
1200 BUG_ON(cfqg->ref <= 0);
1201 cfqg->ref--;
1202 if (cfqg->ref)
1203 return;
1204 for_each_cfqg_st(cfqg, i, j, st)
1205 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1206 free_percpu(cfqg->blkg.stats_cpu);
1207 kfree(cfqg);
1208 }
1209
1210 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1211 {
1212 /* Something wrong if we are trying to remove same group twice */
1213 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1214
1215 hlist_del_init(&cfqg->cfqd_node);
1216
1217 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1218 cfqd->nr_blkcg_linked_grps--;
1219
1220 /*
1221 * Put the reference taken at the time of creation so that when all
1222 * queues are gone, group can be destroyed.
1223 */
1224 cfq_put_cfqg(cfqg);
1225 }
1226
1227 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1228 {
1229 struct hlist_node *pos, *n;
1230 struct cfq_group *cfqg;
1231
1232 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1233 /*
1234 * If cgroup removal path got to blk_group first and removed
1235 * it from cgroup list, then it will take care of destroying
1236 * cfqg also.
1237 */
1238 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1239 cfq_destroy_cfqg(cfqd, cfqg);
1240 }
1241 }
1242
1243 /*
1244 * Blk cgroup controller notification saying that blkio_group object is being
1245 * delinked as associated cgroup object is going away. That also means that
1246 * no new IO will come in this group. So get rid of this group as soon as
1247 * any pending IO in the group is finished.
1248 *
1249 * This function is called under rcu_read_lock(). key is the rcu protected
1250 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1251 * read lock.
1252 *
1253 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1254 * it should not be NULL as even if elevator was exiting, cgroup deltion
1255 * path got to it first.
1256 */
1257 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1258 {
1259 unsigned long flags;
1260 struct cfq_data *cfqd = key;
1261
1262 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1263 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1264 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1265 }
1266
1267 #else /* GROUP_IOSCHED */
1268 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1269 {
1270 return &cfqd->root_group;
1271 }
1272
1273 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1274 {
1275 return cfqg;
1276 }
1277
1278 static inline void
1279 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1280 cfqq->cfqg = cfqg;
1281 }
1282
1283 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1284 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1285
1286 #endif /* GROUP_IOSCHED */
1287
1288 /*
1289 * The cfqd->service_trees holds all pending cfq_queue's that have
1290 * requests waiting to be processed. It is sorted in the order that
1291 * we will service the queues.
1292 */
1293 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1294 bool add_front)
1295 {
1296 struct rb_node **p, *parent;
1297 struct cfq_queue *__cfqq;
1298 unsigned long rb_key;
1299 struct cfq_rb_root *service_tree;
1300 int left;
1301 int new_cfqq = 1;
1302
1303 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1304 cfqq_type(cfqq));
1305 if (cfq_class_idle(cfqq)) {
1306 rb_key = CFQ_IDLE_DELAY;
1307 parent = rb_last(&service_tree->rb);
1308 if (parent && parent != &cfqq->rb_node) {
1309 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1310 rb_key += __cfqq->rb_key;
1311 } else
1312 rb_key += jiffies;
1313 } else if (!add_front) {
1314 /*
1315 * Get our rb key offset. Subtract any residual slice
1316 * value carried from last service. A negative resid
1317 * count indicates slice overrun, and this should position
1318 * the next service time further away in the tree.
1319 */
1320 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1321 rb_key -= cfqq->slice_resid;
1322 cfqq->slice_resid = 0;
1323 } else {
1324 rb_key = -HZ;
1325 __cfqq = cfq_rb_first(service_tree);
1326 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1327 }
1328
1329 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1330 new_cfqq = 0;
1331 /*
1332 * same position, nothing more to do
1333 */
1334 if (rb_key == cfqq->rb_key &&
1335 cfqq->service_tree == service_tree)
1336 return;
1337
1338 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1339 cfqq->service_tree = NULL;
1340 }
1341
1342 left = 1;
1343 parent = NULL;
1344 cfqq->service_tree = service_tree;
1345 p = &service_tree->rb.rb_node;
1346 while (*p) {
1347 struct rb_node **n;
1348
1349 parent = *p;
1350 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1351
1352 /*
1353 * sort by key, that represents service time.
1354 */
1355 if (time_before(rb_key, __cfqq->rb_key))
1356 n = &(*p)->rb_left;
1357 else {
1358 n = &(*p)->rb_right;
1359 left = 0;
1360 }
1361
1362 p = n;
1363 }
1364
1365 if (left)
1366 service_tree->left = &cfqq->rb_node;
1367
1368 cfqq->rb_key = rb_key;
1369 rb_link_node(&cfqq->rb_node, parent, p);
1370 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1371 service_tree->count++;
1372 if (add_front || !new_cfqq)
1373 return;
1374 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1375 }
1376
1377 static struct cfq_queue *
1378 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1379 sector_t sector, struct rb_node **ret_parent,
1380 struct rb_node ***rb_link)
1381 {
1382 struct rb_node **p, *parent;
1383 struct cfq_queue *cfqq = NULL;
1384
1385 parent = NULL;
1386 p = &root->rb_node;
1387 while (*p) {
1388 struct rb_node **n;
1389
1390 parent = *p;
1391 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1392
1393 /*
1394 * Sort strictly based on sector. Smallest to the left,
1395 * largest to the right.
1396 */
1397 if (sector > blk_rq_pos(cfqq->next_rq))
1398 n = &(*p)->rb_right;
1399 else if (sector < blk_rq_pos(cfqq->next_rq))
1400 n = &(*p)->rb_left;
1401 else
1402 break;
1403 p = n;
1404 cfqq = NULL;
1405 }
1406
1407 *ret_parent = parent;
1408 if (rb_link)
1409 *rb_link = p;
1410 return cfqq;
1411 }
1412
1413 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1414 {
1415 struct rb_node **p, *parent;
1416 struct cfq_queue *__cfqq;
1417
1418 if (cfqq->p_root) {
1419 rb_erase(&cfqq->p_node, cfqq->p_root);
1420 cfqq->p_root = NULL;
1421 }
1422
1423 if (cfq_class_idle(cfqq))
1424 return;
1425 if (!cfqq->next_rq)
1426 return;
1427
1428 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1429 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1430 blk_rq_pos(cfqq->next_rq), &parent, &p);
1431 if (!__cfqq) {
1432 rb_link_node(&cfqq->p_node, parent, p);
1433 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1434 } else
1435 cfqq->p_root = NULL;
1436 }
1437
1438 /*
1439 * Update cfqq's position in the service tree.
1440 */
1441 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1442 {
1443 /*
1444 * Resorting requires the cfqq to be on the RR list already.
1445 */
1446 if (cfq_cfqq_on_rr(cfqq)) {
1447 cfq_service_tree_add(cfqd, cfqq, 0);
1448 cfq_prio_tree_add(cfqd, cfqq);
1449 }
1450 }
1451
1452 /*
1453 * add to busy list of queues for service, trying to be fair in ordering
1454 * the pending list according to last request service
1455 */
1456 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1457 {
1458 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1459 BUG_ON(cfq_cfqq_on_rr(cfqq));
1460 cfq_mark_cfqq_on_rr(cfqq);
1461 cfqd->busy_queues++;
1462 if (cfq_cfqq_sync(cfqq))
1463 cfqd->busy_sync_queues++;
1464
1465 cfq_resort_rr_list(cfqd, cfqq);
1466 }
1467
1468 /*
1469 * Called when the cfqq no longer has requests pending, remove it from
1470 * the service tree.
1471 */
1472 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1473 {
1474 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1475 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1476 cfq_clear_cfqq_on_rr(cfqq);
1477
1478 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1479 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1480 cfqq->service_tree = NULL;
1481 }
1482 if (cfqq->p_root) {
1483 rb_erase(&cfqq->p_node, cfqq->p_root);
1484 cfqq->p_root = NULL;
1485 }
1486
1487 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1488 BUG_ON(!cfqd->busy_queues);
1489 cfqd->busy_queues--;
1490 if (cfq_cfqq_sync(cfqq))
1491 cfqd->busy_sync_queues--;
1492 }
1493
1494 /*
1495 * rb tree support functions
1496 */
1497 static void cfq_del_rq_rb(struct request *rq)
1498 {
1499 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1500 const int sync = rq_is_sync(rq);
1501
1502 BUG_ON(!cfqq->queued[sync]);
1503 cfqq->queued[sync]--;
1504
1505 elv_rb_del(&cfqq->sort_list, rq);
1506
1507 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1508 /*
1509 * Queue will be deleted from service tree when we actually
1510 * expire it later. Right now just remove it from prio tree
1511 * as it is empty.
1512 */
1513 if (cfqq->p_root) {
1514 rb_erase(&cfqq->p_node, cfqq->p_root);
1515 cfqq->p_root = NULL;
1516 }
1517 }
1518 }
1519
1520 static void cfq_add_rq_rb(struct request *rq)
1521 {
1522 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1523 struct cfq_data *cfqd = cfqq->cfqd;
1524 struct request *prev;
1525
1526 cfqq->queued[rq_is_sync(rq)]++;
1527
1528 elv_rb_add(&cfqq->sort_list, rq);
1529
1530 if (!cfq_cfqq_on_rr(cfqq))
1531 cfq_add_cfqq_rr(cfqd, cfqq);
1532
1533 /*
1534 * check if this request is a better next-serve candidate
1535 */
1536 prev = cfqq->next_rq;
1537 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1538
1539 /*
1540 * adjust priority tree position, if ->next_rq changes
1541 */
1542 if (prev != cfqq->next_rq)
1543 cfq_prio_tree_add(cfqd, cfqq);
1544
1545 BUG_ON(!cfqq->next_rq);
1546 }
1547
1548 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1549 {
1550 elv_rb_del(&cfqq->sort_list, rq);
1551 cfqq->queued[rq_is_sync(rq)]--;
1552 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1553 rq_data_dir(rq), rq_is_sync(rq));
1554 cfq_add_rq_rb(rq);
1555 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1556 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1557 rq_is_sync(rq));
1558 }
1559
1560 static struct request *
1561 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1562 {
1563 struct task_struct *tsk = current;
1564 struct cfq_io_context *cic;
1565 struct cfq_queue *cfqq;
1566
1567 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1568 if (!cic)
1569 return NULL;
1570
1571 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1572 if (cfqq) {
1573 sector_t sector = bio->bi_sector + bio_sectors(bio);
1574
1575 return elv_rb_find(&cfqq->sort_list, sector);
1576 }
1577
1578 return NULL;
1579 }
1580
1581 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1582 {
1583 struct cfq_data *cfqd = q->elevator->elevator_data;
1584
1585 cfqd->rq_in_driver++;
1586 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1587 cfqd->rq_in_driver);
1588
1589 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1590 }
1591
1592 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1593 {
1594 struct cfq_data *cfqd = q->elevator->elevator_data;
1595
1596 WARN_ON(!cfqd->rq_in_driver);
1597 cfqd->rq_in_driver--;
1598 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1599 cfqd->rq_in_driver);
1600 }
1601
1602 static void cfq_remove_request(struct request *rq)
1603 {
1604 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1605
1606 if (cfqq->next_rq == rq)
1607 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1608
1609 list_del_init(&rq->queuelist);
1610 cfq_del_rq_rb(rq);
1611
1612 cfqq->cfqd->rq_queued--;
1613 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1614 rq_data_dir(rq), rq_is_sync(rq));
1615 if (rq->cmd_flags & REQ_PRIO) {
1616 WARN_ON(!cfqq->prio_pending);
1617 cfqq->prio_pending--;
1618 }
1619 }
1620
1621 static int cfq_merge(struct request_queue *q, struct request **req,
1622 struct bio *bio)
1623 {
1624 struct cfq_data *cfqd = q->elevator->elevator_data;
1625 struct request *__rq;
1626
1627 __rq = cfq_find_rq_fmerge(cfqd, bio);
1628 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1629 *req = __rq;
1630 return ELEVATOR_FRONT_MERGE;
1631 }
1632
1633 return ELEVATOR_NO_MERGE;
1634 }
1635
1636 static void cfq_merged_request(struct request_queue *q, struct request *req,
1637 int type)
1638 {
1639 if (type == ELEVATOR_FRONT_MERGE) {
1640 struct cfq_queue *cfqq = RQ_CFQQ(req);
1641
1642 cfq_reposition_rq_rb(cfqq, req);
1643 }
1644 }
1645
1646 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1647 struct bio *bio)
1648 {
1649 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1650 bio_data_dir(bio), cfq_bio_sync(bio));
1651 }
1652
1653 static void
1654 cfq_merged_requests(struct request_queue *q, struct request *rq,
1655 struct request *next)
1656 {
1657 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1658 /*
1659 * reposition in fifo if next is older than rq
1660 */
1661 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1662 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1663 list_move(&rq->queuelist, &next->queuelist);
1664 rq_set_fifo_time(rq, rq_fifo_time(next));
1665 }
1666
1667 if (cfqq->next_rq == next)
1668 cfqq->next_rq = rq;
1669 cfq_remove_request(next);
1670 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1671 rq_data_dir(next), rq_is_sync(next));
1672 }
1673
1674 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1675 struct bio *bio)
1676 {
1677 struct cfq_data *cfqd = q->elevator->elevator_data;
1678 struct cfq_io_context *cic;
1679 struct cfq_queue *cfqq;
1680
1681 /*
1682 * Disallow merge of a sync bio into an async request.
1683 */
1684 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1685 return false;
1686
1687 /*
1688 * Lookup the cfqq that this bio will be queued with. Allow
1689 * merge only if rq is queued there.
1690 */
1691 cic = cfq_cic_lookup(cfqd, current->io_context);
1692 if (!cic)
1693 return false;
1694
1695 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1696 return cfqq == RQ_CFQQ(rq);
1697 }
1698
1699 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1700 {
1701 del_timer(&cfqd->idle_slice_timer);
1702 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1703 }
1704
1705 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1706 struct cfq_queue *cfqq)
1707 {
1708 if (cfqq) {
1709 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1710 cfqd->serving_prio, cfqd->serving_type);
1711 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1712 cfqq->slice_start = 0;
1713 cfqq->dispatch_start = jiffies;
1714 cfqq->allocated_slice = 0;
1715 cfqq->slice_end = 0;
1716 cfqq->slice_dispatch = 0;
1717 cfqq->nr_sectors = 0;
1718
1719 cfq_clear_cfqq_wait_request(cfqq);
1720 cfq_clear_cfqq_must_dispatch(cfqq);
1721 cfq_clear_cfqq_must_alloc_slice(cfqq);
1722 cfq_clear_cfqq_fifo_expire(cfqq);
1723 cfq_mark_cfqq_slice_new(cfqq);
1724
1725 cfq_del_timer(cfqd, cfqq);
1726 }
1727
1728 cfqd->active_queue = cfqq;
1729 }
1730
1731 /*
1732 * current cfqq expired its slice (or was too idle), select new one
1733 */
1734 static void
1735 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1736 bool timed_out)
1737 {
1738 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1739
1740 if (cfq_cfqq_wait_request(cfqq))
1741 cfq_del_timer(cfqd, cfqq);
1742
1743 cfq_clear_cfqq_wait_request(cfqq);
1744 cfq_clear_cfqq_wait_busy(cfqq);
1745
1746 /*
1747 * If this cfqq is shared between multiple processes, check to
1748 * make sure that those processes are still issuing I/Os within
1749 * the mean seek distance. If not, it may be time to break the
1750 * queues apart again.
1751 */
1752 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1753 cfq_mark_cfqq_split_coop(cfqq);
1754
1755 /*
1756 * store what was left of this slice, if the queue idled/timed out
1757 */
1758 if (timed_out) {
1759 if (cfq_cfqq_slice_new(cfqq))
1760 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1761 else
1762 cfqq->slice_resid = cfqq->slice_end - jiffies;
1763 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1764 }
1765
1766 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1767
1768 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1769 cfq_del_cfqq_rr(cfqd, cfqq);
1770
1771 cfq_resort_rr_list(cfqd, cfqq);
1772
1773 if (cfqq == cfqd->active_queue)
1774 cfqd->active_queue = NULL;
1775
1776 if (cfqd->active_cic) {
1777 put_io_context(cfqd->active_cic->ioc);
1778 cfqd->active_cic = NULL;
1779 }
1780 }
1781
1782 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1783 {
1784 struct cfq_queue *cfqq = cfqd->active_queue;
1785
1786 if (cfqq)
1787 __cfq_slice_expired(cfqd, cfqq, timed_out);
1788 }
1789
1790 /*
1791 * Get next queue for service. Unless we have a queue preemption,
1792 * we'll simply select the first cfqq in the service tree.
1793 */
1794 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1795 {
1796 struct cfq_rb_root *service_tree =
1797 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1798 cfqd->serving_type);
1799
1800 if (!cfqd->rq_queued)
1801 return NULL;
1802
1803 /* There is nothing to dispatch */
1804 if (!service_tree)
1805 return NULL;
1806 if (RB_EMPTY_ROOT(&service_tree->rb))
1807 return NULL;
1808 return cfq_rb_first(service_tree);
1809 }
1810
1811 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1812 {
1813 struct cfq_group *cfqg;
1814 struct cfq_queue *cfqq;
1815 int i, j;
1816 struct cfq_rb_root *st;
1817
1818 if (!cfqd->rq_queued)
1819 return NULL;
1820
1821 cfqg = cfq_get_next_cfqg(cfqd);
1822 if (!cfqg)
1823 return NULL;
1824
1825 for_each_cfqg_st(cfqg, i, j, st)
1826 if ((cfqq = cfq_rb_first(st)) != NULL)
1827 return cfqq;
1828 return NULL;
1829 }
1830
1831 /*
1832 * Get and set a new active queue for service.
1833 */
1834 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1835 struct cfq_queue *cfqq)
1836 {
1837 if (!cfqq)
1838 cfqq = cfq_get_next_queue(cfqd);
1839
1840 __cfq_set_active_queue(cfqd, cfqq);
1841 return cfqq;
1842 }
1843
1844 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1845 struct request *rq)
1846 {
1847 if (blk_rq_pos(rq) >= cfqd->last_position)
1848 return blk_rq_pos(rq) - cfqd->last_position;
1849 else
1850 return cfqd->last_position - blk_rq_pos(rq);
1851 }
1852
1853 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1854 struct request *rq)
1855 {
1856 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1857 }
1858
1859 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1860 struct cfq_queue *cur_cfqq)
1861 {
1862 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1863 struct rb_node *parent, *node;
1864 struct cfq_queue *__cfqq;
1865 sector_t sector = cfqd->last_position;
1866
1867 if (RB_EMPTY_ROOT(root))
1868 return NULL;
1869
1870 /*
1871 * First, if we find a request starting at the end of the last
1872 * request, choose it.
1873 */
1874 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1875 if (__cfqq)
1876 return __cfqq;
1877
1878 /*
1879 * If the exact sector wasn't found, the parent of the NULL leaf
1880 * will contain the closest sector.
1881 */
1882 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1883 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1884 return __cfqq;
1885
1886 if (blk_rq_pos(__cfqq->next_rq) < sector)
1887 node = rb_next(&__cfqq->p_node);
1888 else
1889 node = rb_prev(&__cfqq->p_node);
1890 if (!node)
1891 return NULL;
1892
1893 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1894 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1895 return __cfqq;
1896
1897 return NULL;
1898 }
1899
1900 /*
1901 * cfqd - obvious
1902 * cur_cfqq - passed in so that we don't decide that the current queue is
1903 * closely cooperating with itself.
1904 *
1905 * So, basically we're assuming that that cur_cfqq has dispatched at least
1906 * one request, and that cfqd->last_position reflects a position on the disk
1907 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1908 * assumption.
1909 */
1910 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1911 struct cfq_queue *cur_cfqq)
1912 {
1913 struct cfq_queue *cfqq;
1914
1915 if (cfq_class_idle(cur_cfqq))
1916 return NULL;
1917 if (!cfq_cfqq_sync(cur_cfqq))
1918 return NULL;
1919 if (CFQQ_SEEKY(cur_cfqq))
1920 return NULL;
1921
1922 /*
1923 * Don't search priority tree if it's the only queue in the group.
1924 */
1925 if (cur_cfqq->cfqg->nr_cfqq == 1)
1926 return NULL;
1927
1928 /*
1929 * We should notice if some of the queues are cooperating, eg
1930 * working closely on the same area of the disk. In that case,
1931 * we can group them together and don't waste time idling.
1932 */
1933 cfqq = cfqq_close(cfqd, cur_cfqq);
1934 if (!cfqq)
1935 return NULL;
1936
1937 /* If new queue belongs to different cfq_group, don't choose it */
1938 if (cur_cfqq->cfqg != cfqq->cfqg)
1939 return NULL;
1940
1941 /*
1942 * It only makes sense to merge sync queues.
1943 */
1944 if (!cfq_cfqq_sync(cfqq))
1945 return NULL;
1946 if (CFQQ_SEEKY(cfqq))
1947 return NULL;
1948
1949 /*
1950 * Do not merge queues of different priority classes
1951 */
1952 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1953 return NULL;
1954
1955 return cfqq;
1956 }
1957
1958 /*
1959 * Determine whether we should enforce idle window for this queue.
1960 */
1961
1962 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1963 {
1964 enum wl_prio_t prio = cfqq_prio(cfqq);
1965 struct cfq_rb_root *service_tree = cfqq->service_tree;
1966
1967 BUG_ON(!service_tree);
1968 BUG_ON(!service_tree->count);
1969
1970 if (!cfqd->cfq_slice_idle)
1971 return false;
1972
1973 /* We never do for idle class queues. */
1974 if (prio == IDLE_WORKLOAD)
1975 return false;
1976
1977 /* We do for queues that were marked with idle window flag. */
1978 if (cfq_cfqq_idle_window(cfqq) &&
1979 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1980 return true;
1981
1982 /*
1983 * Otherwise, we do only if they are the last ones
1984 * in their service tree.
1985 */
1986 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1987 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1988 return true;
1989 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1990 service_tree->count);
1991 return false;
1992 }
1993
1994 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1995 {
1996 struct cfq_queue *cfqq = cfqd->active_queue;
1997 struct cfq_io_context *cic;
1998 unsigned long sl, group_idle = 0;
1999
2000 /*
2001 * SSD device without seek penalty, disable idling. But only do so
2002 * for devices that support queuing, otherwise we still have a problem
2003 * with sync vs async workloads.
2004 */
2005 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2006 return;
2007
2008 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2009 WARN_ON(cfq_cfqq_slice_new(cfqq));
2010
2011 /*
2012 * idle is disabled, either manually or by past process history
2013 */
2014 if (!cfq_should_idle(cfqd, cfqq)) {
2015 /* no queue idling. Check for group idling */
2016 if (cfqd->cfq_group_idle)
2017 group_idle = cfqd->cfq_group_idle;
2018 else
2019 return;
2020 }
2021
2022 /*
2023 * still active requests from this queue, don't idle
2024 */
2025 if (cfqq->dispatched)
2026 return;
2027
2028 /*
2029 * task has exited, don't wait
2030 */
2031 cic = cfqd->active_cic;
2032 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2033 return;
2034
2035 /*
2036 * If our average think time is larger than the remaining time
2037 * slice, then don't idle. This avoids overrunning the allotted
2038 * time slice.
2039 */
2040 if (sample_valid(cic->ttime.ttime_samples) &&
2041 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2042 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2043 cic->ttime.ttime_mean);
2044 return;
2045 }
2046
2047 /* There are other queues in the group, don't do group idle */
2048 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2049 return;
2050
2051 cfq_mark_cfqq_wait_request(cfqq);
2052
2053 if (group_idle)
2054 sl = cfqd->cfq_group_idle;
2055 else
2056 sl = cfqd->cfq_slice_idle;
2057
2058 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2059 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2060 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2061 group_idle ? 1 : 0);
2062 }
2063
2064 /*
2065 * Move request from internal lists to the request queue dispatch list.
2066 */
2067 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2068 {
2069 struct cfq_data *cfqd = q->elevator->elevator_data;
2070 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2071
2072 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2073
2074 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2075 cfq_remove_request(rq);
2076 cfqq->dispatched++;
2077 (RQ_CFQG(rq))->dispatched++;
2078 elv_dispatch_sort(q, rq);
2079
2080 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2081 cfqq->nr_sectors += blk_rq_sectors(rq);
2082 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2083 rq_data_dir(rq), rq_is_sync(rq));
2084 }
2085
2086 /*
2087 * return expired entry, or NULL to just start from scratch in rbtree
2088 */
2089 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2090 {
2091 struct request *rq = NULL;
2092
2093 if (cfq_cfqq_fifo_expire(cfqq))
2094 return NULL;
2095
2096 cfq_mark_cfqq_fifo_expire(cfqq);
2097
2098 if (list_empty(&cfqq->fifo))
2099 return NULL;
2100
2101 rq = rq_entry_fifo(cfqq->fifo.next);
2102 if (time_before(jiffies, rq_fifo_time(rq)))
2103 rq = NULL;
2104
2105 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2106 return rq;
2107 }
2108
2109 static inline int
2110 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2111 {
2112 const int base_rq = cfqd->cfq_slice_async_rq;
2113
2114 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2115
2116 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2117 }
2118
2119 /*
2120 * Must be called with the queue_lock held.
2121 */
2122 static int cfqq_process_refs(struct cfq_queue *cfqq)
2123 {
2124 int process_refs, io_refs;
2125
2126 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2127 process_refs = cfqq->ref - io_refs;
2128 BUG_ON(process_refs < 0);
2129 return process_refs;
2130 }
2131
2132 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2133 {
2134 int process_refs, new_process_refs;
2135 struct cfq_queue *__cfqq;
2136
2137 /*
2138 * If there are no process references on the new_cfqq, then it is
2139 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2140 * chain may have dropped their last reference (not just their
2141 * last process reference).
2142 */
2143 if (!cfqq_process_refs(new_cfqq))
2144 return;
2145
2146 /* Avoid a circular list and skip interim queue merges */
2147 while ((__cfqq = new_cfqq->new_cfqq)) {
2148 if (__cfqq == cfqq)
2149 return;
2150 new_cfqq = __cfqq;
2151 }
2152
2153 process_refs = cfqq_process_refs(cfqq);
2154 new_process_refs = cfqq_process_refs(new_cfqq);
2155 /*
2156 * If the process for the cfqq has gone away, there is no
2157 * sense in merging the queues.
2158 */
2159 if (process_refs == 0 || new_process_refs == 0)
2160 return;
2161
2162 /*
2163 * Merge in the direction of the lesser amount of work.
2164 */
2165 if (new_process_refs >= process_refs) {
2166 cfqq->new_cfqq = new_cfqq;
2167 new_cfqq->ref += process_refs;
2168 } else {
2169 new_cfqq->new_cfqq = cfqq;
2170 cfqq->ref += new_process_refs;
2171 }
2172 }
2173
2174 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2175 struct cfq_group *cfqg, enum wl_prio_t prio)
2176 {
2177 struct cfq_queue *queue;
2178 int i;
2179 bool key_valid = false;
2180 unsigned long lowest_key = 0;
2181 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2182
2183 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2184 /* select the one with lowest rb_key */
2185 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2186 if (queue &&
2187 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2188 lowest_key = queue->rb_key;
2189 cur_best = i;
2190 key_valid = true;
2191 }
2192 }
2193
2194 return cur_best;
2195 }
2196
2197 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2198 {
2199 unsigned slice;
2200 unsigned count;
2201 struct cfq_rb_root *st;
2202 unsigned group_slice;
2203 enum wl_prio_t original_prio = cfqd->serving_prio;
2204
2205 /* Choose next priority. RT > BE > IDLE */
2206 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2207 cfqd->serving_prio = RT_WORKLOAD;
2208 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2209 cfqd->serving_prio = BE_WORKLOAD;
2210 else {
2211 cfqd->serving_prio = IDLE_WORKLOAD;
2212 cfqd->workload_expires = jiffies + 1;
2213 return;
2214 }
2215
2216 if (original_prio != cfqd->serving_prio)
2217 goto new_workload;
2218
2219 /*
2220 * For RT and BE, we have to choose also the type
2221 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2222 * expiration time
2223 */
2224 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2225 count = st->count;
2226
2227 /*
2228 * check workload expiration, and that we still have other queues ready
2229 */
2230 if (count && !time_after(jiffies, cfqd->workload_expires))
2231 return;
2232
2233 new_workload:
2234 /* otherwise select new workload type */
2235 cfqd->serving_type =
2236 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2237 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2238 count = st->count;
2239
2240 /*
2241 * the workload slice is computed as a fraction of target latency
2242 * proportional to the number of queues in that workload, over
2243 * all the queues in the same priority class
2244 */
2245 group_slice = cfq_group_slice(cfqd, cfqg);
2246
2247 slice = group_slice * count /
2248 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2249 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2250
2251 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2252 unsigned int tmp;
2253
2254 /*
2255 * Async queues are currently system wide. Just taking
2256 * proportion of queues with-in same group will lead to higher
2257 * async ratio system wide as generally root group is going
2258 * to have higher weight. A more accurate thing would be to
2259 * calculate system wide asnc/sync ratio.
2260 */
2261 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2262 tmp = tmp/cfqd->busy_queues;
2263 slice = min_t(unsigned, slice, tmp);
2264
2265 /* async workload slice is scaled down according to
2266 * the sync/async slice ratio. */
2267 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2268 } else
2269 /* sync workload slice is at least 2 * cfq_slice_idle */
2270 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2271
2272 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2273 cfq_log(cfqd, "workload slice:%d", slice);
2274 cfqd->workload_expires = jiffies + slice;
2275 }
2276
2277 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2278 {
2279 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2280 struct cfq_group *cfqg;
2281
2282 if (RB_EMPTY_ROOT(&st->rb))
2283 return NULL;
2284 cfqg = cfq_rb_first_group(st);
2285 update_min_vdisktime(st);
2286 return cfqg;
2287 }
2288
2289 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2290 {
2291 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2292
2293 cfqd->serving_group = cfqg;
2294
2295 /* Restore the workload type data */
2296 if (cfqg->saved_workload_slice) {
2297 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2298 cfqd->serving_type = cfqg->saved_workload;
2299 cfqd->serving_prio = cfqg->saved_serving_prio;
2300 } else
2301 cfqd->workload_expires = jiffies - 1;
2302
2303 choose_service_tree(cfqd, cfqg);
2304 }
2305
2306 /*
2307 * Select a queue for service. If we have a current active queue,
2308 * check whether to continue servicing it, or retrieve and set a new one.
2309 */
2310 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2311 {
2312 struct cfq_queue *cfqq, *new_cfqq = NULL;
2313
2314 cfqq = cfqd->active_queue;
2315 if (!cfqq)
2316 goto new_queue;
2317
2318 if (!cfqd->rq_queued)
2319 return NULL;
2320
2321 /*
2322 * We were waiting for group to get backlogged. Expire the queue
2323 */
2324 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2325 goto expire;
2326
2327 /*
2328 * The active queue has run out of time, expire it and select new.
2329 */
2330 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2331 /*
2332 * If slice had not expired at the completion of last request
2333 * we might not have turned on wait_busy flag. Don't expire
2334 * the queue yet. Allow the group to get backlogged.
2335 *
2336 * The very fact that we have used the slice, that means we
2337 * have been idling all along on this queue and it should be
2338 * ok to wait for this request to complete.
2339 */
2340 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2341 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2342 cfqq = NULL;
2343 goto keep_queue;
2344 } else
2345 goto check_group_idle;
2346 }
2347
2348 /*
2349 * The active queue has requests and isn't expired, allow it to
2350 * dispatch.
2351 */
2352 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2353 goto keep_queue;
2354
2355 /*
2356 * If another queue has a request waiting within our mean seek
2357 * distance, let it run. The expire code will check for close
2358 * cooperators and put the close queue at the front of the service
2359 * tree. If possible, merge the expiring queue with the new cfqq.
2360 */
2361 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2362 if (new_cfqq) {
2363 if (!cfqq->new_cfqq)
2364 cfq_setup_merge(cfqq, new_cfqq);
2365 goto expire;
2366 }
2367
2368 /*
2369 * No requests pending. If the active queue still has requests in
2370 * flight or is idling for a new request, allow either of these
2371 * conditions to happen (or time out) before selecting a new queue.
2372 */
2373 if (timer_pending(&cfqd->idle_slice_timer)) {
2374 cfqq = NULL;
2375 goto keep_queue;
2376 }
2377
2378 /*
2379 * This is a deep seek queue, but the device is much faster than
2380 * the queue can deliver, don't idle
2381 **/
2382 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2383 (cfq_cfqq_slice_new(cfqq) ||
2384 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2385 cfq_clear_cfqq_deep(cfqq);
2386 cfq_clear_cfqq_idle_window(cfqq);
2387 }
2388
2389 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2390 cfqq = NULL;
2391 goto keep_queue;
2392 }
2393
2394 /*
2395 * If group idle is enabled and there are requests dispatched from
2396 * this group, wait for requests to complete.
2397 */
2398 check_group_idle:
2399 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2400 cfqq->cfqg->dispatched &&
2401 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2402 cfqq = NULL;
2403 goto keep_queue;
2404 }
2405
2406 expire:
2407 cfq_slice_expired(cfqd, 0);
2408 new_queue:
2409 /*
2410 * Current queue expired. Check if we have to switch to a new
2411 * service tree
2412 */
2413 if (!new_cfqq)
2414 cfq_choose_cfqg(cfqd);
2415
2416 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2417 keep_queue:
2418 return cfqq;
2419 }
2420
2421 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2422 {
2423 int dispatched = 0;
2424
2425 while (cfqq->next_rq) {
2426 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2427 dispatched++;
2428 }
2429
2430 BUG_ON(!list_empty(&cfqq->fifo));
2431
2432 /* By default cfqq is not expired if it is empty. Do it explicitly */
2433 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2434 return dispatched;
2435 }
2436
2437 /*
2438 * Drain our current requests. Used for barriers and when switching
2439 * io schedulers on-the-fly.
2440 */
2441 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2442 {
2443 struct cfq_queue *cfqq;
2444 int dispatched = 0;
2445
2446 /* Expire the timeslice of the current active queue first */
2447 cfq_slice_expired(cfqd, 0);
2448 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2449 __cfq_set_active_queue(cfqd, cfqq);
2450 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2451 }
2452
2453 BUG_ON(cfqd->busy_queues);
2454
2455 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2456 return dispatched;
2457 }
2458
2459 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2460 struct cfq_queue *cfqq)
2461 {
2462 /* the queue hasn't finished any request, can't estimate */
2463 if (cfq_cfqq_slice_new(cfqq))
2464 return true;
2465 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2466 cfqq->slice_end))
2467 return true;
2468
2469 return false;
2470 }
2471
2472 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2473 {
2474 unsigned int max_dispatch;
2475
2476 /*
2477 * Drain async requests before we start sync IO
2478 */
2479 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2480 return false;
2481
2482 /*
2483 * If this is an async queue and we have sync IO in flight, let it wait
2484 */
2485 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2486 return false;
2487
2488 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2489 if (cfq_class_idle(cfqq))
2490 max_dispatch = 1;
2491
2492 /*
2493 * Does this cfqq already have too much IO in flight?
2494 */
2495 if (cfqq->dispatched >= max_dispatch) {
2496 bool promote_sync = false;
2497 /*
2498 * idle queue must always only have a single IO in flight
2499 */
2500 if (cfq_class_idle(cfqq))
2501 return false;
2502
2503 /*
2504 * If there is only one sync queue
2505 * we can ignore async queue here and give the sync
2506 * queue no dispatch limit. The reason is a sync queue can
2507 * preempt async queue, limiting the sync queue doesn't make
2508 * sense. This is useful for aiostress test.
2509 */
2510 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2511 promote_sync = true;
2512
2513 /*
2514 * We have other queues, don't allow more IO from this one
2515 */
2516 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2517 !promote_sync)
2518 return false;
2519
2520 /*
2521 * Sole queue user, no limit
2522 */
2523 if (cfqd->busy_queues == 1 || promote_sync)
2524 max_dispatch = -1;
2525 else
2526 /*
2527 * Normally we start throttling cfqq when cfq_quantum/2
2528 * requests have been dispatched. But we can drive
2529 * deeper queue depths at the beginning of slice
2530 * subjected to upper limit of cfq_quantum.
2531 * */
2532 max_dispatch = cfqd->cfq_quantum;
2533 }
2534
2535 /*
2536 * Async queues must wait a bit before being allowed dispatch.
2537 * We also ramp up the dispatch depth gradually for async IO,
2538 * based on the last sync IO we serviced
2539 */
2540 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2541 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2542 unsigned int depth;
2543
2544 depth = last_sync / cfqd->cfq_slice[1];
2545 if (!depth && !cfqq->dispatched)
2546 depth = 1;
2547 if (depth < max_dispatch)
2548 max_dispatch = depth;
2549 }
2550
2551 /*
2552 * If we're below the current max, allow a dispatch
2553 */
2554 return cfqq->dispatched < max_dispatch;
2555 }
2556
2557 /*
2558 * Dispatch a request from cfqq, moving them to the request queue
2559 * dispatch list.
2560 */
2561 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2562 {
2563 struct request *rq;
2564
2565 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2566
2567 if (!cfq_may_dispatch(cfqd, cfqq))
2568 return false;
2569
2570 /*
2571 * follow expired path, else get first next available
2572 */
2573 rq = cfq_check_fifo(cfqq);
2574 if (!rq)
2575 rq = cfqq->next_rq;
2576
2577 /*
2578 * insert request into driver dispatch list
2579 */
2580 cfq_dispatch_insert(cfqd->queue, rq);
2581
2582 if (!cfqd->active_cic) {
2583 struct cfq_io_context *cic = RQ_CIC(rq);
2584
2585 atomic_long_inc(&cic->ioc->refcount);
2586 cfqd->active_cic = cic;
2587 }
2588
2589 return true;
2590 }
2591
2592 /*
2593 * Find the cfqq that we need to service and move a request from that to the
2594 * dispatch list
2595 */
2596 static int cfq_dispatch_requests(struct request_queue *q, int force)
2597 {
2598 struct cfq_data *cfqd = q->elevator->elevator_data;
2599 struct cfq_queue *cfqq;
2600
2601 if (!cfqd->busy_queues)
2602 return 0;
2603
2604 if (unlikely(force))
2605 return cfq_forced_dispatch(cfqd);
2606
2607 cfqq = cfq_select_queue(cfqd);
2608 if (!cfqq)
2609 return 0;
2610
2611 /*
2612 * Dispatch a request from this cfqq, if it is allowed
2613 */
2614 if (!cfq_dispatch_request(cfqd, cfqq))
2615 return 0;
2616
2617 cfqq->slice_dispatch++;
2618 cfq_clear_cfqq_must_dispatch(cfqq);
2619
2620 /*
2621 * expire an async queue immediately if it has used up its slice. idle
2622 * queue always expire after 1 dispatch round.
2623 */
2624 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2625 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2626 cfq_class_idle(cfqq))) {
2627 cfqq->slice_end = jiffies + 1;
2628 cfq_slice_expired(cfqd, 0);
2629 }
2630
2631 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2632 return 1;
2633 }
2634
2635 /*
2636 * task holds one reference to the queue, dropped when task exits. each rq
2637 * in-flight on this queue also holds a reference, dropped when rq is freed.
2638 *
2639 * Each cfq queue took a reference on the parent group. Drop it now.
2640 * queue lock must be held here.
2641 */
2642 static void cfq_put_queue(struct cfq_queue *cfqq)
2643 {
2644 struct cfq_data *cfqd = cfqq->cfqd;
2645 struct cfq_group *cfqg;
2646
2647 BUG_ON(cfqq->ref <= 0);
2648
2649 cfqq->ref--;
2650 if (cfqq->ref)
2651 return;
2652
2653 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2654 BUG_ON(rb_first(&cfqq->sort_list));
2655 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2656 cfqg = cfqq->cfqg;
2657
2658 if (unlikely(cfqd->active_queue == cfqq)) {
2659 __cfq_slice_expired(cfqd, cfqq, 0);
2660 cfq_schedule_dispatch(cfqd);
2661 }
2662
2663 BUG_ON(cfq_cfqq_on_rr(cfqq));
2664 kmem_cache_free(cfq_pool, cfqq);
2665 cfq_put_cfqg(cfqg);
2666 }
2667
2668 /*
2669 * Call func for each cic attached to this ioc.
2670 */
2671 static void
2672 call_for_each_cic(struct io_context *ioc,
2673 void (*func)(struct io_context *, struct cfq_io_context *))
2674 {
2675 struct cfq_io_context *cic;
2676 struct hlist_node *n;
2677
2678 rcu_read_lock();
2679
2680 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2681 func(ioc, cic);
2682
2683 rcu_read_unlock();
2684 }
2685
2686 static void cfq_cic_free_rcu(struct rcu_head *head)
2687 {
2688 struct cfq_io_context *cic;
2689
2690 cic = container_of(head, struct cfq_io_context, rcu_head);
2691
2692 kmem_cache_free(cfq_ioc_pool, cic);
2693 elv_ioc_count_dec(cfq_ioc_count);
2694
2695 if (ioc_gone) {
2696 /*
2697 * CFQ scheduler is exiting, grab exit lock and check
2698 * the pending io context count. If it hits zero,
2699 * complete ioc_gone and set it back to NULL
2700 */
2701 spin_lock(&ioc_gone_lock);
2702 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2703 complete(ioc_gone);
2704 ioc_gone = NULL;
2705 }
2706 spin_unlock(&ioc_gone_lock);
2707 }
2708 }
2709
2710 static void cfq_cic_free(struct cfq_io_context *cic)
2711 {
2712 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2713 }
2714
2715 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2716 {
2717 unsigned long flags;
2718 unsigned long dead_key = (unsigned long) cic->key;
2719
2720 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2721
2722 spin_lock_irqsave(&ioc->lock, flags);
2723 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2724 hlist_del_rcu(&cic->cic_list);
2725 spin_unlock_irqrestore(&ioc->lock, flags);
2726
2727 cfq_cic_free(cic);
2728 }
2729
2730 /*
2731 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2732 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2733 * and ->trim() which is called with the task lock held
2734 */
2735 static void cfq_free_io_context(struct io_context *ioc)
2736 {
2737 /*
2738 * ioc->refcount is zero here, or we are called from elv_unregister(),
2739 * so no more cic's are allowed to be linked into this ioc. So it
2740 * should be ok to iterate over the known list, we will see all cic's
2741 * since no new ones are added.
2742 */
2743 call_for_each_cic(ioc, cic_free_func);
2744 }
2745
2746 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2747 {
2748 struct cfq_queue *__cfqq, *next;
2749
2750 /*
2751 * If this queue was scheduled to merge with another queue, be
2752 * sure to drop the reference taken on that queue (and others in
2753 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2754 */
2755 __cfqq = cfqq->new_cfqq;
2756 while (__cfqq) {
2757 if (__cfqq == cfqq) {
2758 WARN(1, "cfqq->new_cfqq loop detected\n");
2759 break;
2760 }
2761 next = __cfqq->new_cfqq;
2762 cfq_put_queue(__cfqq);
2763 __cfqq = next;
2764 }
2765 }
2766
2767 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2768 {
2769 if (unlikely(cfqq == cfqd->active_queue)) {
2770 __cfq_slice_expired(cfqd, cfqq, 0);
2771 cfq_schedule_dispatch(cfqd);
2772 }
2773
2774 cfq_put_cooperator(cfqq);
2775
2776 cfq_put_queue(cfqq);
2777 }
2778
2779 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2780 struct cfq_io_context *cic)
2781 {
2782 struct io_context *ioc = cic->ioc;
2783
2784 list_del_init(&cic->queue_list);
2785
2786 /*
2787 * Make sure dead mark is seen for dead queues
2788 */
2789 smp_wmb();
2790 cic->key = cfqd_dead_key(cfqd);
2791
2792 rcu_read_lock();
2793 if (rcu_dereference(ioc->ioc_data) == cic) {
2794 rcu_read_unlock();
2795 spin_lock(&ioc->lock);
2796 rcu_assign_pointer(ioc->ioc_data, NULL);
2797 spin_unlock(&ioc->lock);
2798 } else
2799 rcu_read_unlock();
2800
2801 if (cic->cfqq[BLK_RW_ASYNC]) {
2802 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2803 cic->cfqq[BLK_RW_ASYNC] = NULL;
2804 }
2805
2806 if (cic->cfqq[BLK_RW_SYNC]) {
2807 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2808 cic->cfqq[BLK_RW_SYNC] = NULL;
2809 }
2810 }
2811
2812 static void cfq_exit_single_io_context(struct io_context *ioc,
2813 struct cfq_io_context *cic)
2814 {
2815 struct cfq_data *cfqd = cic_to_cfqd(cic);
2816
2817 if (cfqd) {
2818 struct request_queue *q = cfqd->queue;
2819 unsigned long flags;
2820
2821 spin_lock_irqsave(q->queue_lock, flags);
2822
2823 /*
2824 * Ensure we get a fresh copy of the ->key to prevent
2825 * race between exiting task and queue
2826 */
2827 smp_read_barrier_depends();
2828 if (cic->key == cfqd)
2829 __cfq_exit_single_io_context(cfqd, cic);
2830
2831 spin_unlock_irqrestore(q->queue_lock, flags);
2832 }
2833 }
2834
2835 /*
2836 * The process that ioc belongs to has exited, we need to clean up
2837 * and put the internal structures we have that belongs to that process.
2838 */
2839 static void cfq_exit_io_context(struct io_context *ioc)
2840 {
2841 call_for_each_cic(ioc, cfq_exit_single_io_context);
2842 }
2843
2844 static struct cfq_io_context *
2845 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2846 {
2847 struct cfq_io_context *cic;
2848
2849 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2850 cfqd->queue->node);
2851 if (cic) {
2852 cic->ttime.last_end_request = jiffies;
2853 INIT_LIST_HEAD(&cic->queue_list);
2854 INIT_HLIST_NODE(&cic->cic_list);
2855 cic->dtor = cfq_free_io_context;
2856 cic->exit = cfq_exit_io_context;
2857 elv_ioc_count_inc(cfq_ioc_count);
2858 }
2859
2860 return cic;
2861 }
2862
2863 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2864 {
2865 struct task_struct *tsk = current;
2866 int ioprio_class;
2867
2868 if (!cfq_cfqq_prio_changed(cfqq))
2869 return;
2870
2871 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2872 switch (ioprio_class) {
2873 default:
2874 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2875 case IOPRIO_CLASS_NONE:
2876 /*
2877 * no prio set, inherit CPU scheduling settings
2878 */
2879 cfqq->ioprio = task_nice_ioprio(tsk);
2880 cfqq->ioprio_class = task_nice_ioclass(tsk);
2881 break;
2882 case IOPRIO_CLASS_RT:
2883 cfqq->ioprio = task_ioprio(ioc);
2884 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2885 break;
2886 case IOPRIO_CLASS_BE:
2887 cfqq->ioprio = task_ioprio(ioc);
2888 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2889 break;
2890 case IOPRIO_CLASS_IDLE:
2891 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2892 cfqq->ioprio = 7;
2893 cfq_clear_cfqq_idle_window(cfqq);
2894 break;
2895 }
2896
2897 /*
2898 * keep track of original prio settings in case we have to temporarily
2899 * elevate the priority of this queue
2900 */
2901 cfqq->org_ioprio = cfqq->ioprio;
2902 cfq_clear_cfqq_prio_changed(cfqq);
2903 }
2904
2905 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2906 {
2907 struct cfq_data *cfqd = cic_to_cfqd(cic);
2908 struct cfq_queue *cfqq;
2909 unsigned long flags;
2910
2911 if (unlikely(!cfqd))
2912 return;
2913
2914 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2915
2916 cfqq = cic->cfqq[BLK_RW_ASYNC];
2917 if (cfqq) {
2918 struct cfq_queue *new_cfqq;
2919 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2920 GFP_ATOMIC);
2921 if (new_cfqq) {
2922 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2923 cfq_put_queue(cfqq);
2924 }
2925 }
2926
2927 cfqq = cic->cfqq[BLK_RW_SYNC];
2928 if (cfqq)
2929 cfq_mark_cfqq_prio_changed(cfqq);
2930
2931 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2932 }
2933
2934 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2935 {
2936 call_for_each_cic(ioc, changed_ioprio);
2937 ioc->ioprio_changed = 0;
2938 }
2939
2940 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2941 pid_t pid, bool is_sync)
2942 {
2943 RB_CLEAR_NODE(&cfqq->rb_node);
2944 RB_CLEAR_NODE(&cfqq->p_node);
2945 INIT_LIST_HEAD(&cfqq->fifo);
2946
2947 cfqq->ref = 0;
2948 cfqq->cfqd = cfqd;
2949
2950 cfq_mark_cfqq_prio_changed(cfqq);
2951
2952 if (is_sync) {
2953 if (!cfq_class_idle(cfqq))
2954 cfq_mark_cfqq_idle_window(cfqq);
2955 cfq_mark_cfqq_sync(cfqq);
2956 }
2957 cfqq->pid = pid;
2958 }
2959
2960 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2961 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2962 {
2963 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2964 struct cfq_data *cfqd = cic_to_cfqd(cic);
2965 unsigned long flags;
2966 struct request_queue *q;
2967
2968 if (unlikely(!cfqd))
2969 return;
2970
2971 q = cfqd->queue;
2972
2973 spin_lock_irqsave(q->queue_lock, flags);
2974
2975 if (sync_cfqq) {
2976 /*
2977 * Drop reference to sync queue. A new sync queue will be
2978 * assigned in new group upon arrival of a fresh request.
2979 */
2980 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2981 cic_set_cfqq(cic, NULL, 1);
2982 cfq_put_queue(sync_cfqq);
2983 }
2984
2985 spin_unlock_irqrestore(q->queue_lock, flags);
2986 }
2987
2988 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2989 {
2990 call_for_each_cic(ioc, changed_cgroup);
2991 ioc->cgroup_changed = 0;
2992 }
2993 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2994
2995 static struct cfq_queue *
2996 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2997 struct io_context *ioc, gfp_t gfp_mask)
2998 {
2999 struct cfq_queue *cfqq, *new_cfqq = NULL;
3000 struct cfq_io_context *cic;
3001 struct cfq_group *cfqg;
3002
3003 retry:
3004 cfqg = cfq_get_cfqg(cfqd);
3005 cic = cfq_cic_lookup(cfqd, ioc);
3006 /* cic always exists here */
3007 cfqq = cic_to_cfqq(cic, is_sync);
3008
3009 /*
3010 * Always try a new alloc if we fell back to the OOM cfqq
3011 * originally, since it should just be a temporary situation.
3012 */
3013 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3014 cfqq = NULL;
3015 if (new_cfqq) {
3016 cfqq = new_cfqq;
3017 new_cfqq = NULL;
3018 } else if (gfp_mask & __GFP_WAIT) {
3019 spin_unlock_irq(cfqd->queue->queue_lock);
3020 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3021 gfp_mask | __GFP_ZERO,
3022 cfqd->queue->node);
3023 spin_lock_irq(cfqd->queue->queue_lock);
3024 if (new_cfqq)
3025 goto retry;
3026 } else {
3027 cfqq = kmem_cache_alloc_node(cfq_pool,
3028 gfp_mask | __GFP_ZERO,
3029 cfqd->queue->node);
3030 }
3031
3032 if (cfqq) {
3033 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3034 cfq_init_prio_data(cfqq, ioc);
3035 cfq_link_cfqq_cfqg(cfqq, cfqg);
3036 cfq_log_cfqq(cfqd, cfqq, "alloced");
3037 } else
3038 cfqq = &cfqd->oom_cfqq;
3039 }
3040
3041 if (new_cfqq)
3042 kmem_cache_free(cfq_pool, new_cfqq);
3043
3044 return cfqq;
3045 }
3046
3047 static struct cfq_queue **
3048 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3049 {
3050 switch (ioprio_class) {
3051 case IOPRIO_CLASS_RT:
3052 return &cfqd->async_cfqq[0][ioprio];
3053 case IOPRIO_CLASS_BE:
3054 return &cfqd->async_cfqq[1][ioprio];
3055 case IOPRIO_CLASS_IDLE:
3056 return &cfqd->async_idle_cfqq;
3057 default:
3058 BUG();
3059 }
3060 }
3061
3062 static struct cfq_queue *
3063 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3064 gfp_t gfp_mask)
3065 {
3066 const int ioprio = task_ioprio(ioc);
3067 const int ioprio_class = task_ioprio_class(ioc);
3068 struct cfq_queue **async_cfqq = NULL;
3069 struct cfq_queue *cfqq = NULL;
3070
3071 if (!is_sync) {
3072 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3073 cfqq = *async_cfqq;
3074 }
3075
3076 if (!cfqq)
3077 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3078
3079 /*
3080 * pin the queue now that it's allocated, scheduler exit will prune it
3081 */
3082 if (!is_sync && !(*async_cfqq)) {
3083 cfqq->ref++;
3084 *async_cfqq = cfqq;
3085 }
3086
3087 cfqq->ref++;
3088 return cfqq;
3089 }
3090
3091 /*
3092 * We drop cfq io contexts lazily, so we may find a dead one.
3093 */
3094 static void
3095 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3096 struct cfq_io_context *cic)
3097 {
3098 unsigned long flags;
3099
3100 WARN_ON(!list_empty(&cic->queue_list));
3101 BUG_ON(cic->key != cfqd_dead_key(cfqd));
3102
3103 spin_lock_irqsave(&ioc->lock, flags);
3104
3105 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3106 lockdep_is_held(&ioc->lock)) == cic);
3107
3108 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3109 hlist_del_rcu(&cic->cic_list);
3110 spin_unlock_irqrestore(&ioc->lock, flags);
3111
3112 cfq_cic_free(cic);
3113 }
3114
3115 static struct cfq_io_context *
3116 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3117 {
3118 struct cfq_io_context *cic;
3119 unsigned long flags;
3120
3121 if (unlikely(!ioc))
3122 return NULL;
3123
3124 rcu_read_lock();
3125
3126 /*
3127 * we maintain a last-hit cache, to avoid browsing over the tree
3128 */
3129 cic = rcu_dereference(ioc->ioc_data);
3130 if (cic && cic->key == cfqd) {
3131 rcu_read_unlock();
3132 return cic;
3133 }
3134
3135 do {
3136 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3137 rcu_read_unlock();
3138 if (!cic)
3139 break;
3140 if (unlikely(cic->key != cfqd)) {
3141 cfq_drop_dead_cic(cfqd, ioc, cic);
3142 rcu_read_lock();
3143 continue;
3144 }
3145
3146 spin_lock_irqsave(&ioc->lock, flags);
3147 rcu_assign_pointer(ioc->ioc_data, cic);
3148 spin_unlock_irqrestore(&ioc->lock, flags);
3149 break;
3150 } while (1);
3151
3152 return cic;
3153 }
3154
3155 /*
3156 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3157 * the process specific cfq io context when entered from the block layer.
3158 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3159 */
3160 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3161 struct cfq_io_context *cic, gfp_t gfp_mask)
3162 {
3163 unsigned long flags;
3164 int ret;
3165
3166 ret = radix_tree_preload(gfp_mask);
3167 if (!ret) {
3168 cic->ioc = ioc;
3169 cic->key = cfqd;
3170
3171 spin_lock_irqsave(&ioc->lock, flags);
3172 ret = radix_tree_insert(&ioc->radix_root,
3173 cfqd->cic_index, cic);
3174 if (!ret)
3175 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3176 spin_unlock_irqrestore(&ioc->lock, flags);
3177
3178 radix_tree_preload_end();
3179
3180 if (!ret) {
3181 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3182 list_add(&cic->queue_list, &cfqd->cic_list);
3183 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3184 }
3185 }
3186
3187 if (ret)
3188 printk(KERN_ERR "cfq: cic link failed!\n");
3189
3190 return ret;
3191 }
3192
3193 /*
3194 * Setup general io context and cfq io context. There can be several cfq
3195 * io contexts per general io context, if this process is doing io to more
3196 * than one device managed by cfq.
3197 */
3198 static struct cfq_io_context *
3199 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3200 {
3201 struct io_context *ioc = NULL;
3202 struct cfq_io_context *cic;
3203
3204 might_sleep_if(gfp_mask & __GFP_WAIT);
3205
3206 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3207 if (!ioc)
3208 return NULL;
3209
3210 cic = cfq_cic_lookup(cfqd, ioc);
3211 if (cic)
3212 goto out;
3213
3214 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3215 if (cic == NULL)
3216 goto err;
3217
3218 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3219 goto err_free;
3220
3221 out:
3222 smp_read_barrier_depends();
3223 if (unlikely(ioc->ioprio_changed))
3224 cfq_ioc_set_ioprio(ioc);
3225
3226 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3227 if (unlikely(ioc->cgroup_changed))
3228 cfq_ioc_set_cgroup(ioc);
3229 #endif
3230 return cic;
3231 err_free:
3232 cfq_cic_free(cic);
3233 err:
3234 put_io_context(ioc);
3235 return NULL;
3236 }
3237
3238 static void
3239 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3240 {
3241 unsigned long elapsed = jiffies - ttime->last_end_request;
3242 elapsed = min(elapsed, 2UL * slice_idle);
3243
3244 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3245 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3246 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3247 }
3248
3249 static void
3250 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3251 struct cfq_io_context *cic)
3252 {
3253 if (cfq_cfqq_sync(cfqq)) {
3254 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3255 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3256 cfqd->cfq_slice_idle);
3257 }
3258 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3259 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3260 #endif
3261 }
3262
3263 static void
3264 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3265 struct request *rq)
3266 {
3267 sector_t sdist = 0;
3268 sector_t n_sec = blk_rq_sectors(rq);
3269 if (cfqq->last_request_pos) {
3270 if (cfqq->last_request_pos < blk_rq_pos(rq))
3271 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3272 else
3273 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3274 }
3275
3276 cfqq->seek_history <<= 1;
3277 if (blk_queue_nonrot(cfqd->queue))
3278 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3279 else
3280 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3281 }
3282
3283 /*
3284 * Disable idle window if the process thinks too long or seeks so much that
3285 * it doesn't matter
3286 */
3287 static void
3288 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3289 struct cfq_io_context *cic)
3290 {
3291 int old_idle, enable_idle;
3292
3293 /*
3294 * Don't idle for async or idle io prio class
3295 */
3296 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3297 return;
3298
3299 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3300
3301 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3302 cfq_mark_cfqq_deep(cfqq);
3303
3304 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3305 enable_idle = 0;
3306 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3307 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3308 enable_idle = 0;
3309 else if (sample_valid(cic->ttime.ttime_samples)) {
3310 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3311 enable_idle = 0;
3312 else
3313 enable_idle = 1;
3314 }
3315
3316 if (old_idle != enable_idle) {
3317 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3318 if (enable_idle)
3319 cfq_mark_cfqq_idle_window(cfqq);
3320 else
3321 cfq_clear_cfqq_idle_window(cfqq);
3322 }
3323 }
3324
3325 /*
3326 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3327 * no or if we aren't sure, a 1 will cause a preempt.
3328 */
3329 static bool
3330 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3331 struct request *rq)
3332 {
3333 struct cfq_queue *cfqq;
3334
3335 cfqq = cfqd->active_queue;
3336 if (!cfqq)
3337 return false;
3338
3339 if (cfq_class_idle(new_cfqq))
3340 return false;
3341
3342 if (cfq_class_idle(cfqq))
3343 return true;
3344
3345 /*
3346 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3347 */
3348 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3349 return false;
3350
3351 /*
3352 * if the new request is sync, but the currently running queue is
3353 * not, let the sync request have priority.
3354 */
3355 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3356 return true;
3357
3358 if (new_cfqq->cfqg != cfqq->cfqg)
3359 return false;
3360
3361 if (cfq_slice_used(cfqq))
3362 return true;
3363
3364 /* Allow preemption only if we are idling on sync-noidle tree */
3365 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3366 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3367 new_cfqq->service_tree->count == 2 &&
3368 RB_EMPTY_ROOT(&cfqq->sort_list))
3369 return true;
3370
3371 /*
3372 * So both queues are sync. Let the new request get disk time if
3373 * it's a metadata request and the current queue is doing regular IO.
3374 */
3375 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3376 return true;
3377
3378 /*
3379 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3380 */
3381 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3382 return true;
3383
3384 /* An idle queue should not be idle now for some reason */
3385 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3386 return true;
3387
3388 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3389 return false;
3390
3391 /*
3392 * if this request is as-good as one we would expect from the
3393 * current cfqq, let it preempt
3394 */
3395 if (cfq_rq_close(cfqd, cfqq, rq))
3396 return true;
3397
3398 return false;
3399 }
3400
3401 /*
3402 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3403 * let it have half of its nominal slice.
3404 */
3405 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3406 {
3407 struct cfq_queue *old_cfqq = cfqd->active_queue;
3408
3409 cfq_log_cfqq(cfqd, cfqq, "preempt");
3410 cfq_slice_expired(cfqd, 1);
3411
3412 /*
3413 * workload type is changed, don't save slice, otherwise preempt
3414 * doesn't happen
3415 */
3416 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3417 cfqq->cfqg->saved_workload_slice = 0;
3418
3419 /*
3420 * Put the new queue at the front of the of the current list,
3421 * so we know that it will be selected next.
3422 */
3423 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3424
3425 cfq_service_tree_add(cfqd, cfqq, 1);
3426
3427 cfqq->slice_end = 0;
3428 cfq_mark_cfqq_slice_new(cfqq);
3429 }
3430
3431 /*
3432 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3433 * something we should do about it
3434 */
3435 static void
3436 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3437 struct request *rq)
3438 {
3439 struct cfq_io_context *cic = RQ_CIC(rq);
3440
3441 cfqd->rq_queued++;
3442 if (rq->cmd_flags & REQ_PRIO)
3443 cfqq->prio_pending++;
3444
3445 cfq_update_io_thinktime(cfqd, cfqq, cic);
3446 cfq_update_io_seektime(cfqd, cfqq, rq);
3447 cfq_update_idle_window(cfqd, cfqq, cic);
3448
3449 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3450
3451 if (cfqq == cfqd->active_queue) {
3452 /*
3453 * Remember that we saw a request from this process, but
3454 * don't start queuing just yet. Otherwise we risk seeing lots
3455 * of tiny requests, because we disrupt the normal plugging
3456 * and merging. If the request is already larger than a single
3457 * page, let it rip immediately. For that case we assume that
3458 * merging is already done. Ditto for a busy system that
3459 * has other work pending, don't risk delaying until the
3460 * idle timer unplug to continue working.
3461 */
3462 if (cfq_cfqq_wait_request(cfqq)) {
3463 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3464 cfqd->busy_queues > 1) {
3465 cfq_del_timer(cfqd, cfqq);
3466 cfq_clear_cfqq_wait_request(cfqq);
3467 __blk_run_queue(cfqd->queue);
3468 } else {
3469 cfq_blkiocg_update_idle_time_stats(
3470 &cfqq->cfqg->blkg);
3471 cfq_mark_cfqq_must_dispatch(cfqq);
3472 }
3473 }
3474 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3475 /*
3476 * not the active queue - expire current slice if it is
3477 * idle and has expired it's mean thinktime or this new queue
3478 * has some old slice time left and is of higher priority or
3479 * this new queue is RT and the current one is BE
3480 */
3481 cfq_preempt_queue(cfqd, cfqq);
3482 __blk_run_queue(cfqd->queue);
3483 }
3484 }
3485
3486 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3487 {
3488 struct cfq_data *cfqd = q->elevator->elevator_data;
3489 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3490
3491 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3492 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3493
3494 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3495 list_add_tail(&rq->queuelist, &cfqq->fifo);
3496 cfq_add_rq_rb(rq);
3497 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3498 &cfqd->serving_group->blkg, rq_data_dir(rq),
3499 rq_is_sync(rq));
3500 cfq_rq_enqueued(cfqd, cfqq, rq);
3501 }
3502
3503 /*
3504 * Update hw_tag based on peak queue depth over 50 samples under
3505 * sufficient load.
3506 */
3507 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3508 {
3509 struct cfq_queue *cfqq = cfqd->active_queue;
3510
3511 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3512 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3513
3514 if (cfqd->hw_tag == 1)
3515 return;
3516
3517 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3518 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3519 return;
3520
3521 /*
3522 * If active queue hasn't enough requests and can idle, cfq might not
3523 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3524 * case
3525 */
3526 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3527 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3528 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3529 return;
3530
3531 if (cfqd->hw_tag_samples++ < 50)
3532 return;
3533
3534 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3535 cfqd->hw_tag = 1;
3536 else
3537 cfqd->hw_tag = 0;
3538 }
3539
3540 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3541 {
3542 struct cfq_io_context *cic = cfqd->active_cic;
3543
3544 /* If the queue already has requests, don't wait */
3545 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3546 return false;
3547
3548 /* If there are other queues in the group, don't wait */
3549 if (cfqq->cfqg->nr_cfqq > 1)
3550 return false;
3551
3552 /* the only queue in the group, but think time is big */
3553 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3554 return false;
3555
3556 if (cfq_slice_used(cfqq))
3557 return true;
3558
3559 /* if slice left is less than think time, wait busy */
3560 if (cic && sample_valid(cic->ttime.ttime_samples)
3561 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3562 return true;
3563
3564 /*
3565 * If think times is less than a jiffy than ttime_mean=0 and above
3566 * will not be true. It might happen that slice has not expired yet
3567 * but will expire soon (4-5 ns) during select_queue(). To cover the
3568 * case where think time is less than a jiffy, mark the queue wait
3569 * busy if only 1 jiffy is left in the slice.
3570 */
3571 if (cfqq->slice_end - jiffies == 1)
3572 return true;
3573
3574 return false;
3575 }
3576
3577 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3578 {
3579 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3580 struct cfq_data *cfqd = cfqq->cfqd;
3581 const int sync = rq_is_sync(rq);
3582 unsigned long now;
3583
3584 now = jiffies;
3585 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3586 !!(rq->cmd_flags & REQ_NOIDLE));
3587
3588 cfq_update_hw_tag(cfqd);
3589
3590 WARN_ON(!cfqd->rq_in_driver);
3591 WARN_ON(!cfqq->dispatched);
3592 cfqd->rq_in_driver--;
3593 cfqq->dispatched--;
3594 (RQ_CFQG(rq))->dispatched--;
3595 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3596 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3597 rq_data_dir(rq), rq_is_sync(rq));
3598
3599 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3600
3601 if (sync) {
3602 struct cfq_rb_root *service_tree;
3603
3604 RQ_CIC(rq)->ttime.last_end_request = now;
3605
3606 if (cfq_cfqq_on_rr(cfqq))
3607 service_tree = cfqq->service_tree;
3608 else
3609 service_tree = service_tree_for(cfqq->cfqg,
3610 cfqq_prio(cfqq), cfqq_type(cfqq));
3611 service_tree->ttime.last_end_request = now;
3612 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3613 cfqd->last_delayed_sync = now;
3614 }
3615
3616 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3617 cfqq->cfqg->ttime.last_end_request = now;
3618 #endif
3619
3620 /*
3621 * If this is the active queue, check if it needs to be expired,
3622 * or if we want to idle in case it has no pending requests.
3623 */
3624 if (cfqd->active_queue == cfqq) {
3625 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3626
3627 if (cfq_cfqq_slice_new(cfqq)) {
3628 cfq_set_prio_slice(cfqd, cfqq);
3629 cfq_clear_cfqq_slice_new(cfqq);
3630 }
3631
3632 /*
3633 * Should we wait for next request to come in before we expire
3634 * the queue.
3635 */
3636 if (cfq_should_wait_busy(cfqd, cfqq)) {
3637 unsigned long extend_sl = cfqd->cfq_slice_idle;
3638 if (!cfqd->cfq_slice_idle)
3639 extend_sl = cfqd->cfq_group_idle;
3640 cfqq->slice_end = jiffies + extend_sl;
3641 cfq_mark_cfqq_wait_busy(cfqq);
3642 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3643 }
3644
3645 /*
3646 * Idling is not enabled on:
3647 * - expired queues
3648 * - idle-priority queues
3649 * - async queues
3650 * - queues with still some requests queued
3651 * - when there is a close cooperator
3652 */
3653 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3654 cfq_slice_expired(cfqd, 1);
3655 else if (sync && cfqq_empty &&
3656 !cfq_close_cooperator(cfqd, cfqq)) {
3657 cfq_arm_slice_timer(cfqd);
3658 }
3659 }
3660
3661 if (!cfqd->rq_in_driver)
3662 cfq_schedule_dispatch(cfqd);
3663 }
3664
3665 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3666 {
3667 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3668 cfq_mark_cfqq_must_alloc_slice(cfqq);
3669 return ELV_MQUEUE_MUST;
3670 }
3671
3672 return ELV_MQUEUE_MAY;
3673 }
3674
3675 static int cfq_may_queue(struct request_queue *q, int rw)
3676 {
3677 struct cfq_data *cfqd = q->elevator->elevator_data;
3678 struct task_struct *tsk = current;
3679 struct cfq_io_context *cic;
3680 struct cfq_queue *cfqq;
3681
3682 /*
3683 * don't force setup of a queue from here, as a call to may_queue
3684 * does not necessarily imply that a request actually will be queued.
3685 * so just lookup a possibly existing queue, or return 'may queue'
3686 * if that fails
3687 */
3688 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3689 if (!cic)
3690 return ELV_MQUEUE_MAY;
3691
3692 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3693 if (cfqq) {
3694 cfq_init_prio_data(cfqq, cic->ioc);
3695
3696 return __cfq_may_queue(cfqq);
3697 }
3698
3699 return ELV_MQUEUE_MAY;
3700 }
3701
3702 /*
3703 * queue lock held here
3704 */
3705 static void cfq_put_request(struct request *rq)
3706 {
3707 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3708
3709 if (cfqq) {
3710 const int rw = rq_data_dir(rq);
3711
3712 BUG_ON(!cfqq->allocated[rw]);
3713 cfqq->allocated[rw]--;
3714
3715 put_io_context(RQ_CIC(rq)->ioc);
3716
3717 rq->elevator_private[0] = NULL;
3718 rq->elevator_private[1] = NULL;
3719
3720 /* Put down rq reference on cfqg */
3721 cfq_put_cfqg(RQ_CFQG(rq));
3722 rq->elevator_private[2] = NULL;
3723
3724 cfq_put_queue(cfqq);
3725 }
3726 }
3727
3728 static struct cfq_queue *
3729 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3730 struct cfq_queue *cfqq)
3731 {
3732 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3733 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3734 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3735 cfq_put_queue(cfqq);
3736 return cic_to_cfqq(cic, 1);
3737 }
3738
3739 /*
3740 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3741 * was the last process referring to said cfqq.
3742 */
3743 static struct cfq_queue *
3744 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3745 {
3746 if (cfqq_process_refs(cfqq) == 1) {
3747 cfqq->pid = current->pid;
3748 cfq_clear_cfqq_coop(cfqq);
3749 cfq_clear_cfqq_split_coop(cfqq);
3750 return cfqq;
3751 }
3752
3753 cic_set_cfqq(cic, NULL, 1);
3754
3755 cfq_put_cooperator(cfqq);
3756
3757 cfq_put_queue(cfqq);
3758 return NULL;
3759 }
3760 /*
3761 * Allocate cfq data structures associated with this request.
3762 */
3763 static int
3764 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3765 {
3766 struct cfq_data *cfqd = q->elevator->elevator_data;
3767 struct cfq_io_context *cic;
3768 const int rw = rq_data_dir(rq);
3769 const bool is_sync = rq_is_sync(rq);
3770 struct cfq_queue *cfqq;
3771 unsigned long flags;
3772
3773 might_sleep_if(gfp_mask & __GFP_WAIT);
3774
3775 cic = cfq_get_io_context(cfqd, gfp_mask);
3776
3777 spin_lock_irqsave(q->queue_lock, flags);
3778
3779 if (!cic)
3780 goto queue_fail;
3781
3782 new_queue:
3783 cfqq = cic_to_cfqq(cic, is_sync);
3784 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3785 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3786 cic_set_cfqq(cic, cfqq, is_sync);
3787 } else {
3788 /*
3789 * If the queue was seeky for too long, break it apart.
3790 */
3791 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3792 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3793 cfqq = split_cfqq(cic, cfqq);
3794 if (!cfqq)
3795 goto new_queue;
3796 }
3797
3798 /*
3799 * Check to see if this queue is scheduled to merge with
3800 * another, closely cooperating queue. The merging of
3801 * queues happens here as it must be done in process context.
3802 * The reference on new_cfqq was taken in merge_cfqqs.
3803 */
3804 if (cfqq->new_cfqq)
3805 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3806 }
3807
3808 cfqq->allocated[rw]++;
3809
3810 cfqq->ref++;
3811 rq->elevator_private[0] = cic;
3812 rq->elevator_private[1] = cfqq;
3813 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3814 spin_unlock_irqrestore(q->queue_lock, flags);
3815 return 0;
3816
3817 queue_fail:
3818 cfq_schedule_dispatch(cfqd);
3819 spin_unlock_irqrestore(q->queue_lock, flags);
3820 cfq_log(cfqd, "set_request fail");
3821 return 1;
3822 }
3823
3824 static void cfq_kick_queue(struct work_struct *work)
3825 {
3826 struct cfq_data *cfqd =
3827 container_of(work, struct cfq_data, unplug_work);
3828 struct request_queue *q = cfqd->queue;
3829
3830 spin_lock_irq(q->queue_lock);
3831 __blk_run_queue(cfqd->queue);
3832 spin_unlock_irq(q->queue_lock);
3833 }
3834
3835 /*
3836 * Timer running if the active_queue is currently idling inside its time slice
3837 */
3838 static void cfq_idle_slice_timer(unsigned long data)
3839 {
3840 struct cfq_data *cfqd = (struct cfq_data *) data;
3841 struct cfq_queue *cfqq;
3842 unsigned long flags;
3843 int timed_out = 1;
3844
3845 cfq_log(cfqd, "idle timer fired");
3846
3847 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3848
3849 cfqq = cfqd->active_queue;
3850 if (cfqq) {
3851 timed_out = 0;
3852
3853 /*
3854 * We saw a request before the queue expired, let it through
3855 */
3856 if (cfq_cfqq_must_dispatch(cfqq))
3857 goto out_kick;
3858
3859 /*
3860 * expired
3861 */
3862 if (cfq_slice_used(cfqq))
3863 goto expire;
3864
3865 /*
3866 * only expire and reinvoke request handler, if there are
3867 * other queues with pending requests
3868 */
3869 if (!cfqd->busy_queues)
3870 goto out_cont;
3871
3872 /*
3873 * not expired and it has a request pending, let it dispatch
3874 */
3875 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3876 goto out_kick;
3877
3878 /*
3879 * Queue depth flag is reset only when the idle didn't succeed
3880 */
3881 cfq_clear_cfqq_deep(cfqq);
3882 }
3883 expire:
3884 cfq_slice_expired(cfqd, timed_out);
3885 out_kick:
3886 cfq_schedule_dispatch(cfqd);
3887 out_cont:
3888 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3889 }
3890
3891 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3892 {
3893 del_timer_sync(&cfqd->idle_slice_timer);
3894 cancel_work_sync(&cfqd->unplug_work);
3895 }
3896
3897 static void cfq_put_async_queues(struct cfq_data *cfqd)
3898 {
3899 int i;
3900
3901 for (i = 0; i < IOPRIO_BE_NR; i++) {
3902 if (cfqd->async_cfqq[0][i])
3903 cfq_put_queue(cfqd->async_cfqq[0][i]);
3904 if (cfqd->async_cfqq[1][i])
3905 cfq_put_queue(cfqd->async_cfqq[1][i]);
3906 }
3907
3908 if (cfqd->async_idle_cfqq)
3909 cfq_put_queue(cfqd->async_idle_cfqq);
3910 }
3911
3912 static void cfq_exit_queue(struct elevator_queue *e)
3913 {
3914 struct cfq_data *cfqd = e->elevator_data;
3915 struct request_queue *q = cfqd->queue;
3916 bool wait = false;
3917
3918 cfq_shutdown_timer_wq(cfqd);
3919
3920 spin_lock_irq(q->queue_lock);
3921
3922 if (cfqd->active_queue)
3923 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3924
3925 while (!list_empty(&cfqd->cic_list)) {
3926 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3927 struct cfq_io_context,
3928 queue_list);
3929
3930 __cfq_exit_single_io_context(cfqd, cic);
3931 }
3932
3933 cfq_put_async_queues(cfqd);
3934 cfq_release_cfq_groups(cfqd);
3935
3936 /*
3937 * If there are groups which we could not unlink from blkcg list,
3938 * wait for a rcu period for them to be freed.
3939 */
3940 if (cfqd->nr_blkcg_linked_grps)
3941 wait = true;
3942
3943 spin_unlock_irq(q->queue_lock);
3944
3945 cfq_shutdown_timer_wq(cfqd);
3946
3947 spin_lock(&cic_index_lock);
3948 ida_remove(&cic_index_ida, cfqd->cic_index);
3949 spin_unlock(&cic_index_lock);
3950
3951 /*
3952 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3953 * Do this wait only if there are other unlinked groups out
3954 * there. This can happen if cgroup deletion path claimed the
3955 * responsibility of cleaning up a group before queue cleanup code
3956 * get to the group.
3957 *
3958 * Do not call synchronize_rcu() unconditionally as there are drivers
3959 * which create/delete request queue hundreds of times during scan/boot
3960 * and synchronize_rcu() can take significant time and slow down boot.
3961 */
3962 if (wait)
3963 synchronize_rcu();
3964
3965 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3966 /* Free up per cpu stats for root group */
3967 free_percpu(cfqd->root_group.blkg.stats_cpu);
3968 #endif
3969 kfree(cfqd);
3970 }
3971
3972 static int cfq_alloc_cic_index(void)
3973 {
3974 int index, error;
3975
3976 do {
3977 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3978 return -ENOMEM;
3979
3980 spin_lock(&cic_index_lock);
3981 error = ida_get_new(&cic_index_ida, &index);
3982 spin_unlock(&cic_index_lock);
3983 if (error && error != -EAGAIN)
3984 return error;
3985 } while (error);
3986
3987 return index;
3988 }
3989
3990 static void *cfq_init_queue(struct request_queue *q)
3991 {
3992 struct cfq_data *cfqd;
3993 int i, j;
3994 struct cfq_group *cfqg;
3995 struct cfq_rb_root *st;
3996
3997 i = cfq_alloc_cic_index();
3998 if (i < 0)
3999 return NULL;
4000
4001 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4002 if (!cfqd) {
4003 spin_lock(&cic_index_lock);
4004 ida_remove(&cic_index_ida, i);
4005 spin_unlock(&cic_index_lock);
4006 return NULL;
4007 }
4008
4009 /*
4010 * Don't need take queue_lock in the routine, since we are
4011 * initializing the ioscheduler, and nobody is using cfqd
4012 */
4013 cfqd->cic_index = i;
4014
4015 /* Init root service tree */
4016 cfqd->grp_service_tree = CFQ_RB_ROOT;
4017
4018 /* Init root group */
4019 cfqg = &cfqd->root_group;
4020 for_each_cfqg_st(cfqg, i, j, st)
4021 *st = CFQ_RB_ROOT;
4022 RB_CLEAR_NODE(&cfqg->rb_node);
4023
4024 /* Give preference to root group over other groups */
4025 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4026
4027 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4028 /*
4029 * Set root group reference to 2. One reference will be dropped when
4030 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4031 * Other reference will remain there as we don't want to delete this
4032 * group as it is statically allocated and gets destroyed when
4033 * throtl_data goes away.
4034 */
4035 cfqg->ref = 2;
4036
4037 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4038 kfree(cfqg);
4039 kfree(cfqd);
4040 return NULL;
4041 }
4042
4043 rcu_read_lock();
4044
4045 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4046 (void *)cfqd, 0);
4047 rcu_read_unlock();
4048 cfqd->nr_blkcg_linked_grps++;
4049
4050 /* Add group on cfqd->cfqg_list */
4051 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4052 #endif
4053 /*
4054 * Not strictly needed (since RB_ROOT just clears the node and we
4055 * zeroed cfqd on alloc), but better be safe in case someone decides
4056 * to add magic to the rb code
4057 */
4058 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4059 cfqd->prio_trees[i] = RB_ROOT;
4060
4061 /*
4062 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4063 * Grab a permanent reference to it, so that the normal code flow
4064 * will not attempt to free it.
4065 */
4066 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4067 cfqd->oom_cfqq.ref++;
4068 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4069
4070 INIT_LIST_HEAD(&cfqd->cic_list);
4071
4072 cfqd->queue = q;
4073
4074 init_timer(&cfqd->idle_slice_timer);
4075 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4076 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4077
4078 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4079
4080 cfqd->cfq_quantum = cfq_quantum;
4081 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4082 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4083 cfqd->cfq_back_max = cfq_back_max;
4084 cfqd->cfq_back_penalty = cfq_back_penalty;
4085 cfqd->cfq_slice[0] = cfq_slice_async;
4086 cfqd->cfq_slice[1] = cfq_slice_sync;
4087 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4088 cfqd->cfq_slice_idle = cfq_slice_idle;
4089 cfqd->cfq_group_idle = cfq_group_idle;
4090 cfqd->cfq_latency = 1;
4091 cfqd->hw_tag = -1;
4092 /*
4093 * we optimistically start assuming sync ops weren't delayed in last
4094 * second, in order to have larger depth for async operations.
4095 */
4096 cfqd->last_delayed_sync = jiffies - HZ;
4097 return cfqd;
4098 }
4099
4100 static void cfq_slab_kill(void)
4101 {
4102 /*
4103 * Caller already ensured that pending RCU callbacks are completed,
4104 * so we should have no busy allocations at this point.
4105 */
4106 if (cfq_pool)
4107 kmem_cache_destroy(cfq_pool);
4108 if (cfq_ioc_pool)
4109 kmem_cache_destroy(cfq_ioc_pool);
4110 }
4111
4112 static int __init cfq_slab_setup(void)
4113 {
4114 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4115 if (!cfq_pool)
4116 goto fail;
4117
4118 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4119 if (!cfq_ioc_pool)
4120 goto fail;
4121
4122 return 0;
4123 fail:
4124 cfq_slab_kill();
4125 return -ENOMEM;
4126 }
4127
4128 /*
4129 * sysfs parts below -->
4130 */
4131 static ssize_t
4132 cfq_var_show(unsigned int var, char *page)
4133 {
4134 return sprintf(page, "%d\n", var);
4135 }
4136
4137 static ssize_t
4138 cfq_var_store(unsigned int *var, const char *page, size_t count)
4139 {
4140 char *p = (char *) page;
4141
4142 *var = simple_strtoul(p, &p, 10);
4143 return count;
4144 }
4145
4146 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4147 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4148 { \
4149 struct cfq_data *cfqd = e->elevator_data; \
4150 unsigned int __data = __VAR; \
4151 if (__CONV) \
4152 __data = jiffies_to_msecs(__data); \
4153 return cfq_var_show(__data, (page)); \
4154 }
4155 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4156 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4157 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4158 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4159 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4160 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4161 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4162 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4163 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4164 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4165 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4166 #undef SHOW_FUNCTION
4167
4168 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4169 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4170 { \
4171 struct cfq_data *cfqd = e->elevator_data; \
4172 unsigned int __data; \
4173 int ret = cfq_var_store(&__data, (page), count); \
4174 if (__data < (MIN)) \
4175 __data = (MIN); \
4176 else if (__data > (MAX)) \
4177 __data = (MAX); \
4178 if (__CONV) \
4179 *(__PTR) = msecs_to_jiffies(__data); \
4180 else \
4181 *(__PTR) = __data; \
4182 return ret; \
4183 }
4184 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4185 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4186 UINT_MAX, 1);
4187 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4188 UINT_MAX, 1);
4189 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4190 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4191 UINT_MAX, 0);
4192 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4193 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4194 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4195 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4196 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4197 UINT_MAX, 0);
4198 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4199 #undef STORE_FUNCTION
4200
4201 #define CFQ_ATTR(name) \
4202 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4203
4204 static struct elv_fs_entry cfq_attrs[] = {
4205 CFQ_ATTR(quantum),
4206 CFQ_ATTR(fifo_expire_sync),
4207 CFQ_ATTR(fifo_expire_async),
4208 CFQ_ATTR(back_seek_max),
4209 CFQ_ATTR(back_seek_penalty),
4210 CFQ_ATTR(slice_sync),
4211 CFQ_ATTR(slice_async),
4212 CFQ_ATTR(slice_async_rq),
4213 CFQ_ATTR(slice_idle),
4214 CFQ_ATTR(group_idle),
4215 CFQ_ATTR(low_latency),
4216 __ATTR_NULL
4217 };
4218
4219 static struct elevator_type iosched_cfq = {
4220 .ops = {
4221 .elevator_merge_fn = cfq_merge,
4222 .elevator_merged_fn = cfq_merged_request,
4223 .elevator_merge_req_fn = cfq_merged_requests,
4224 .elevator_allow_merge_fn = cfq_allow_merge,
4225 .elevator_bio_merged_fn = cfq_bio_merged,
4226 .elevator_dispatch_fn = cfq_dispatch_requests,
4227 .elevator_add_req_fn = cfq_insert_request,
4228 .elevator_activate_req_fn = cfq_activate_request,
4229 .elevator_deactivate_req_fn = cfq_deactivate_request,
4230 .elevator_completed_req_fn = cfq_completed_request,
4231 .elevator_former_req_fn = elv_rb_former_request,
4232 .elevator_latter_req_fn = elv_rb_latter_request,
4233 .elevator_set_req_fn = cfq_set_request,
4234 .elevator_put_req_fn = cfq_put_request,
4235 .elevator_may_queue_fn = cfq_may_queue,
4236 .elevator_init_fn = cfq_init_queue,
4237 .elevator_exit_fn = cfq_exit_queue,
4238 .trim = cfq_free_io_context,
4239 },
4240 .elevator_attrs = cfq_attrs,
4241 .elevator_name = "cfq",
4242 .elevator_owner = THIS_MODULE,
4243 };
4244
4245 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4246 static struct blkio_policy_type blkio_policy_cfq = {
4247 .ops = {
4248 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4249 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4250 },
4251 .plid = BLKIO_POLICY_PROP,
4252 };
4253 #else
4254 static struct blkio_policy_type blkio_policy_cfq;
4255 #endif
4256
4257 static int __init cfq_init(void)
4258 {
4259 /*
4260 * could be 0 on HZ < 1000 setups
4261 */
4262 if (!cfq_slice_async)
4263 cfq_slice_async = 1;
4264 if (!cfq_slice_idle)
4265 cfq_slice_idle = 1;
4266
4267 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4268 if (!cfq_group_idle)
4269 cfq_group_idle = 1;
4270 #else
4271 cfq_group_idle = 0;
4272 #endif
4273 if (cfq_slab_setup())
4274 return -ENOMEM;
4275
4276 elv_register(&iosched_cfq);
4277 blkio_policy_register(&blkio_policy_cfq);
4278
4279 return 0;
4280 }
4281
4282 static void __exit cfq_exit(void)
4283 {
4284 DECLARE_COMPLETION_ONSTACK(all_gone);
4285 blkio_policy_unregister(&blkio_policy_cfq);
4286 elv_unregister(&iosched_cfq);
4287 ioc_gone = &all_gone;
4288 /* ioc_gone's update must be visible before reading ioc_count */
4289 smp_wmb();
4290
4291 /*
4292 * this also protects us from entering cfq_slab_kill() with
4293 * pending RCU callbacks
4294 */
4295 if (elv_ioc_count_read(cfq_ioc_count))
4296 wait_for_completion(&all_gone);
4297 ida_destroy(&cic_index_ida);
4298 cfq_slab_kill();
4299 }
4300
4301 module_init(cfq_init);
4302 module_exit(cfq_exit);
4303
4304 MODULE_AUTHOR("Jens Axboe");
4305 MODULE_LICENSE("GPL");
4306 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.136613 seconds and 5 git commands to generate.