sparc: Use: generic time config
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76 };
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 struct cfq_ttime ttime;
91 };
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
94
95 /*
96 * Per process-grouping structure
97 */
98 struct cfq_queue {
99 /* reference count */
100 int ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
126 unsigned int allocated_slice;
127 unsigned int slice_dispatch;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
130 unsigned long slice_end;
131 long slice_resid;
132
133 /* pending priority requests */
134 int prio_pending;
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
140 unsigned short ioprio_class;
141
142 pid_t pid;
143
144 u32 seek_history;
145 sector_t last_request_pos;
146
147 struct cfq_rb_root *service_tree;
148 struct cfq_queue *new_cfqq;
149 struct cfq_group *cfqg;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
152 };
153
154 /*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158 enum wl_prio_t {
159 BE_WORKLOAD = 0,
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
162 CFQ_PRIO_NR,
163 };
164
165 /*
166 * Second index in the service_trees.
167 */
168 enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172 };
173
174 /* This is per cgroup per device grouping structure */
175 struct cfq_group {
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
181 unsigned int weight;
182 unsigned int new_weight;
183 bool needs_update;
184
185 /* number of cfqq currently on this group */
186 int nr_cfqq;
187
188 /*
189 * Per group busy queues average. Useful for workload slice calc. We
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
193 */
194 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 /*
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
201 * Counts are embedded in the cfq_rb_root
202 */
203 struct cfq_rb_root service_trees[2][3];
204 struct cfq_rb_root service_tree_idle;
205
206 unsigned long saved_workload_slice;
207 enum wl_type_t saved_workload;
208 enum wl_prio_t saved_serving_prio;
209 struct blkio_group blkg;
210 #ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node;
212 int ref;
213 #endif
214 /* number of requests that are on the dispatch list or inside driver */
215 int dispatched;
216 struct cfq_ttime ttime;
217 };
218
219 struct cfq_io_cq {
220 struct io_cq icq; /* must be the first member */
221 struct cfq_queue *cfqq[2];
222 struct cfq_ttime ttime;
223 };
224
225 /*
226 * Per block device queue structure
227 */
228 struct cfq_data {
229 struct request_queue *queue;
230 /* Root service tree for cfq_groups */
231 struct cfq_rb_root grp_service_tree;
232 struct cfq_group root_group;
233
234 /*
235 * The priority currently being served
236 */
237 enum wl_prio_t serving_prio;
238 enum wl_type_t serving_type;
239 unsigned long workload_expires;
240 struct cfq_group *serving_group;
241
242 /*
243 * Each priority tree is sorted by next_request position. These
244 * trees are used when determining if two or more queues are
245 * interleaving requests (see cfq_close_cooperator).
246 */
247 struct rb_root prio_trees[CFQ_PRIO_LISTS];
248
249 unsigned int busy_queues;
250 unsigned int busy_sync_queues;
251
252 int rq_in_driver;
253 int rq_in_flight[2];
254
255 /*
256 * queue-depth detection
257 */
258 int rq_queued;
259 int hw_tag;
260 /*
261 * hw_tag can be
262 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
263 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
264 * 0 => no NCQ
265 */
266 int hw_tag_est_depth;
267 unsigned int hw_tag_samples;
268
269 /*
270 * idle window management
271 */
272 struct timer_list idle_slice_timer;
273 struct work_struct unplug_work;
274
275 struct cfq_queue *active_queue;
276 struct cfq_io_cq *active_cic;
277
278 /*
279 * async queue for each priority case
280 */
281 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
282 struct cfq_queue *async_idle_cfqq;
283
284 sector_t last_position;
285
286 /*
287 * tunables, see top of file
288 */
289 unsigned int cfq_quantum;
290 unsigned int cfq_fifo_expire[2];
291 unsigned int cfq_back_penalty;
292 unsigned int cfq_back_max;
293 unsigned int cfq_slice[2];
294 unsigned int cfq_slice_async_rq;
295 unsigned int cfq_slice_idle;
296 unsigned int cfq_group_idle;
297 unsigned int cfq_latency;
298 unsigned int cfq_target_latency;
299
300 /*
301 * Fallback dummy cfqq for extreme OOM conditions
302 */
303 struct cfq_queue oom_cfqq;
304
305 unsigned long last_delayed_sync;
306
307 /* List of cfq groups being managed on this device*/
308 struct hlist_head cfqg_list;
309
310 /* Number of groups which are on blkcg->blkg_list */
311 unsigned int nr_blkcg_linked_grps;
312 };
313
314 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
315
316 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
317 enum wl_prio_t prio,
318 enum wl_type_t type)
319 {
320 if (!cfqg)
321 return NULL;
322
323 if (prio == IDLE_WORKLOAD)
324 return &cfqg->service_tree_idle;
325
326 return &cfqg->service_trees[prio][type];
327 }
328
329 enum cfqq_state_flags {
330 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
331 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
332 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
333 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
334 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
335 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
336 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
337 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
338 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
339 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
340 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
341 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
342 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
343 };
344
345 #define CFQ_CFQQ_FNS(name) \
346 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
347 { \
348 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
349 } \
350 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
351 { \
352 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
353 } \
354 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
355 { \
356 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
357 }
358
359 CFQ_CFQQ_FNS(on_rr);
360 CFQ_CFQQ_FNS(wait_request);
361 CFQ_CFQQ_FNS(must_dispatch);
362 CFQ_CFQQ_FNS(must_alloc_slice);
363 CFQ_CFQQ_FNS(fifo_expire);
364 CFQ_CFQQ_FNS(idle_window);
365 CFQ_CFQQ_FNS(prio_changed);
366 CFQ_CFQQ_FNS(slice_new);
367 CFQ_CFQQ_FNS(sync);
368 CFQ_CFQQ_FNS(coop);
369 CFQ_CFQQ_FNS(split_coop);
370 CFQ_CFQQ_FNS(deep);
371 CFQ_CFQQ_FNS(wait_busy);
372 #undef CFQ_CFQQ_FNS
373
374 #ifdef CONFIG_CFQ_GROUP_IOSCHED
375 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
376 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
377 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
378 blkg_path(&(cfqq)->cfqg->blkg), ##args)
379
380 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
382 blkg_path(&(cfqg)->blkg), ##args) \
383
384 #else
385 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
386 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
387 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
388 #endif
389 #define cfq_log(cfqd, fmt, args...) \
390 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
391
392 /* Traverses through cfq group service trees */
393 #define for_each_cfqg_st(cfqg, i, j, st) \
394 for (i = 0; i <= IDLE_WORKLOAD; i++) \
395 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
396 : &cfqg->service_tree_idle; \
397 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
398 (i == IDLE_WORKLOAD && j == 0); \
399 j++, st = i < IDLE_WORKLOAD ? \
400 &cfqg->service_trees[i][j]: NULL) \
401
402 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
403 struct cfq_ttime *ttime, bool group_idle)
404 {
405 unsigned long slice;
406 if (!sample_valid(ttime->ttime_samples))
407 return false;
408 if (group_idle)
409 slice = cfqd->cfq_group_idle;
410 else
411 slice = cfqd->cfq_slice_idle;
412 return ttime->ttime_mean > slice;
413 }
414
415 static inline bool iops_mode(struct cfq_data *cfqd)
416 {
417 /*
418 * If we are not idling on queues and it is a NCQ drive, parallel
419 * execution of requests is on and measuring time is not possible
420 * in most of the cases until and unless we drive shallower queue
421 * depths and that becomes a performance bottleneck. In such cases
422 * switch to start providing fairness in terms of number of IOs.
423 */
424 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
425 return true;
426 else
427 return false;
428 }
429
430 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
431 {
432 if (cfq_class_idle(cfqq))
433 return IDLE_WORKLOAD;
434 if (cfq_class_rt(cfqq))
435 return RT_WORKLOAD;
436 return BE_WORKLOAD;
437 }
438
439
440 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
441 {
442 if (!cfq_cfqq_sync(cfqq))
443 return ASYNC_WORKLOAD;
444 if (!cfq_cfqq_idle_window(cfqq))
445 return SYNC_NOIDLE_WORKLOAD;
446 return SYNC_WORKLOAD;
447 }
448
449 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
450 struct cfq_data *cfqd,
451 struct cfq_group *cfqg)
452 {
453 if (wl == IDLE_WORKLOAD)
454 return cfqg->service_tree_idle.count;
455
456 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
457 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
458 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
459 }
460
461 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
462 struct cfq_group *cfqg)
463 {
464 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
465 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
466 }
467
468 static void cfq_dispatch_insert(struct request_queue *, struct request *);
469 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
470 struct io_context *, gfp_t);
471
472 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
473 {
474 /* cic->icq is the first member, %NULL will convert to %NULL */
475 return container_of(icq, struct cfq_io_cq, icq);
476 }
477
478 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
479 struct io_context *ioc)
480 {
481 if (ioc)
482 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
483 return NULL;
484 }
485
486 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
487 {
488 return cic->cfqq[is_sync];
489 }
490
491 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
492 bool is_sync)
493 {
494 cic->cfqq[is_sync] = cfqq;
495 }
496
497 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
498 {
499 return cic->icq.q->elevator->elevator_data;
500 }
501
502 /*
503 * We regard a request as SYNC, if it's either a read or has the SYNC bit
504 * set (in which case it could also be direct WRITE).
505 */
506 static inline bool cfq_bio_sync(struct bio *bio)
507 {
508 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
509 }
510
511 /*
512 * scheduler run of queue, if there are requests pending and no one in the
513 * driver that will restart queueing
514 */
515 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
516 {
517 if (cfqd->busy_queues) {
518 cfq_log(cfqd, "schedule dispatch");
519 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
520 }
521 }
522
523 /*
524 * Scale schedule slice based on io priority. Use the sync time slice only
525 * if a queue is marked sync and has sync io queued. A sync queue with async
526 * io only, should not get full sync slice length.
527 */
528 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
529 unsigned short prio)
530 {
531 const int base_slice = cfqd->cfq_slice[sync];
532
533 WARN_ON(prio >= IOPRIO_BE_NR);
534
535 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
536 }
537
538 static inline int
539 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
540 {
541 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
542 }
543
544 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
545 {
546 u64 d = delta << CFQ_SERVICE_SHIFT;
547
548 d = d * BLKIO_WEIGHT_DEFAULT;
549 do_div(d, cfqg->weight);
550 return d;
551 }
552
553 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
554 {
555 s64 delta = (s64)(vdisktime - min_vdisktime);
556 if (delta > 0)
557 min_vdisktime = vdisktime;
558
559 return min_vdisktime;
560 }
561
562 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
563 {
564 s64 delta = (s64)(vdisktime - min_vdisktime);
565 if (delta < 0)
566 min_vdisktime = vdisktime;
567
568 return min_vdisktime;
569 }
570
571 static void update_min_vdisktime(struct cfq_rb_root *st)
572 {
573 struct cfq_group *cfqg;
574
575 if (st->left) {
576 cfqg = rb_entry_cfqg(st->left);
577 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
578 cfqg->vdisktime);
579 }
580 }
581
582 /*
583 * get averaged number of queues of RT/BE priority.
584 * average is updated, with a formula that gives more weight to higher numbers,
585 * to quickly follows sudden increases and decrease slowly
586 */
587
588 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
589 struct cfq_group *cfqg, bool rt)
590 {
591 unsigned min_q, max_q;
592 unsigned mult = cfq_hist_divisor - 1;
593 unsigned round = cfq_hist_divisor / 2;
594 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
595
596 min_q = min(cfqg->busy_queues_avg[rt], busy);
597 max_q = max(cfqg->busy_queues_avg[rt], busy);
598 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
599 cfq_hist_divisor;
600 return cfqg->busy_queues_avg[rt];
601 }
602
603 static inline unsigned
604 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
605 {
606 struct cfq_rb_root *st = &cfqd->grp_service_tree;
607
608 return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
609 }
610
611 static inline unsigned
612 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
613 {
614 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
615 if (cfqd->cfq_latency) {
616 /*
617 * interested queues (we consider only the ones with the same
618 * priority class in the cfq group)
619 */
620 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
621 cfq_class_rt(cfqq));
622 unsigned sync_slice = cfqd->cfq_slice[1];
623 unsigned expect_latency = sync_slice * iq;
624 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
625
626 if (expect_latency > group_slice) {
627 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
628 /* scale low_slice according to IO priority
629 * and sync vs async */
630 unsigned low_slice =
631 min(slice, base_low_slice * slice / sync_slice);
632 /* the adapted slice value is scaled to fit all iqs
633 * into the target latency */
634 slice = max(slice * group_slice / expect_latency,
635 low_slice);
636 }
637 }
638 return slice;
639 }
640
641 static inline void
642 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
643 {
644 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
645
646 cfqq->slice_start = jiffies;
647 cfqq->slice_end = jiffies + slice;
648 cfqq->allocated_slice = slice;
649 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
650 }
651
652 /*
653 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
654 * isn't valid until the first request from the dispatch is activated
655 * and the slice time set.
656 */
657 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
658 {
659 if (cfq_cfqq_slice_new(cfqq))
660 return false;
661 if (time_before(jiffies, cfqq->slice_end))
662 return false;
663
664 return true;
665 }
666
667 /*
668 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
669 * We choose the request that is closest to the head right now. Distance
670 * behind the head is penalized and only allowed to a certain extent.
671 */
672 static struct request *
673 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
674 {
675 sector_t s1, s2, d1 = 0, d2 = 0;
676 unsigned long back_max;
677 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
678 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
679 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
680
681 if (rq1 == NULL || rq1 == rq2)
682 return rq2;
683 if (rq2 == NULL)
684 return rq1;
685
686 if (rq_is_sync(rq1) != rq_is_sync(rq2))
687 return rq_is_sync(rq1) ? rq1 : rq2;
688
689 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
690 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
691
692 s1 = blk_rq_pos(rq1);
693 s2 = blk_rq_pos(rq2);
694
695 /*
696 * by definition, 1KiB is 2 sectors
697 */
698 back_max = cfqd->cfq_back_max * 2;
699
700 /*
701 * Strict one way elevator _except_ in the case where we allow
702 * short backward seeks which are biased as twice the cost of a
703 * similar forward seek.
704 */
705 if (s1 >= last)
706 d1 = s1 - last;
707 else if (s1 + back_max >= last)
708 d1 = (last - s1) * cfqd->cfq_back_penalty;
709 else
710 wrap |= CFQ_RQ1_WRAP;
711
712 if (s2 >= last)
713 d2 = s2 - last;
714 else if (s2 + back_max >= last)
715 d2 = (last - s2) * cfqd->cfq_back_penalty;
716 else
717 wrap |= CFQ_RQ2_WRAP;
718
719 /* Found required data */
720
721 /*
722 * By doing switch() on the bit mask "wrap" we avoid having to
723 * check two variables for all permutations: --> faster!
724 */
725 switch (wrap) {
726 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
727 if (d1 < d2)
728 return rq1;
729 else if (d2 < d1)
730 return rq2;
731 else {
732 if (s1 >= s2)
733 return rq1;
734 else
735 return rq2;
736 }
737
738 case CFQ_RQ2_WRAP:
739 return rq1;
740 case CFQ_RQ1_WRAP:
741 return rq2;
742 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
743 default:
744 /*
745 * Since both rqs are wrapped,
746 * start with the one that's further behind head
747 * (--> only *one* back seek required),
748 * since back seek takes more time than forward.
749 */
750 if (s1 <= s2)
751 return rq1;
752 else
753 return rq2;
754 }
755 }
756
757 /*
758 * The below is leftmost cache rbtree addon
759 */
760 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
761 {
762 /* Service tree is empty */
763 if (!root->count)
764 return NULL;
765
766 if (!root->left)
767 root->left = rb_first(&root->rb);
768
769 if (root->left)
770 return rb_entry(root->left, struct cfq_queue, rb_node);
771
772 return NULL;
773 }
774
775 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
776 {
777 if (!root->left)
778 root->left = rb_first(&root->rb);
779
780 if (root->left)
781 return rb_entry_cfqg(root->left);
782
783 return NULL;
784 }
785
786 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
787 {
788 rb_erase(n, root);
789 RB_CLEAR_NODE(n);
790 }
791
792 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
793 {
794 if (root->left == n)
795 root->left = NULL;
796 rb_erase_init(n, &root->rb);
797 --root->count;
798 }
799
800 /*
801 * would be nice to take fifo expire time into account as well
802 */
803 static struct request *
804 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
805 struct request *last)
806 {
807 struct rb_node *rbnext = rb_next(&last->rb_node);
808 struct rb_node *rbprev = rb_prev(&last->rb_node);
809 struct request *next = NULL, *prev = NULL;
810
811 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
812
813 if (rbprev)
814 prev = rb_entry_rq(rbprev);
815
816 if (rbnext)
817 next = rb_entry_rq(rbnext);
818 else {
819 rbnext = rb_first(&cfqq->sort_list);
820 if (rbnext && rbnext != &last->rb_node)
821 next = rb_entry_rq(rbnext);
822 }
823
824 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
825 }
826
827 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
828 struct cfq_queue *cfqq)
829 {
830 /*
831 * just an approximation, should be ok.
832 */
833 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
834 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
835 }
836
837 static inline s64
838 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
839 {
840 return cfqg->vdisktime - st->min_vdisktime;
841 }
842
843 static void
844 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
845 {
846 struct rb_node **node = &st->rb.rb_node;
847 struct rb_node *parent = NULL;
848 struct cfq_group *__cfqg;
849 s64 key = cfqg_key(st, cfqg);
850 int left = 1;
851
852 while (*node != NULL) {
853 parent = *node;
854 __cfqg = rb_entry_cfqg(parent);
855
856 if (key < cfqg_key(st, __cfqg))
857 node = &parent->rb_left;
858 else {
859 node = &parent->rb_right;
860 left = 0;
861 }
862 }
863
864 if (left)
865 st->left = &cfqg->rb_node;
866
867 rb_link_node(&cfqg->rb_node, parent, node);
868 rb_insert_color(&cfqg->rb_node, &st->rb);
869 }
870
871 static void
872 cfq_update_group_weight(struct cfq_group *cfqg)
873 {
874 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
875 if (cfqg->needs_update) {
876 cfqg->weight = cfqg->new_weight;
877 cfqg->needs_update = false;
878 }
879 }
880
881 static void
882 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
883 {
884 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
885
886 cfq_update_group_weight(cfqg);
887 __cfq_group_service_tree_add(st, cfqg);
888 st->total_weight += cfqg->weight;
889 }
890
891 static void
892 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
893 {
894 struct cfq_rb_root *st = &cfqd->grp_service_tree;
895 struct cfq_group *__cfqg;
896 struct rb_node *n;
897
898 cfqg->nr_cfqq++;
899 if (!RB_EMPTY_NODE(&cfqg->rb_node))
900 return;
901
902 /*
903 * Currently put the group at the end. Later implement something
904 * so that groups get lesser vtime based on their weights, so that
905 * if group does not loose all if it was not continuously backlogged.
906 */
907 n = rb_last(&st->rb);
908 if (n) {
909 __cfqg = rb_entry_cfqg(n);
910 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
911 } else
912 cfqg->vdisktime = st->min_vdisktime;
913 cfq_group_service_tree_add(st, cfqg);
914 }
915
916 static void
917 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
918 {
919 st->total_weight -= cfqg->weight;
920 if (!RB_EMPTY_NODE(&cfqg->rb_node))
921 cfq_rb_erase(&cfqg->rb_node, st);
922 }
923
924 static void
925 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
926 {
927 struct cfq_rb_root *st = &cfqd->grp_service_tree;
928
929 BUG_ON(cfqg->nr_cfqq < 1);
930 cfqg->nr_cfqq--;
931
932 /* If there are other cfq queues under this group, don't delete it */
933 if (cfqg->nr_cfqq)
934 return;
935
936 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
937 cfq_group_service_tree_del(st, cfqg);
938 cfqg->saved_workload_slice = 0;
939 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
940 }
941
942 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
943 unsigned int *unaccounted_time)
944 {
945 unsigned int slice_used;
946
947 /*
948 * Queue got expired before even a single request completed or
949 * got expired immediately after first request completion.
950 */
951 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
952 /*
953 * Also charge the seek time incurred to the group, otherwise
954 * if there are mutiple queues in the group, each can dispatch
955 * a single request on seeky media and cause lots of seek time
956 * and group will never know it.
957 */
958 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
959 1);
960 } else {
961 slice_used = jiffies - cfqq->slice_start;
962 if (slice_used > cfqq->allocated_slice) {
963 *unaccounted_time = slice_used - cfqq->allocated_slice;
964 slice_used = cfqq->allocated_slice;
965 }
966 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
967 *unaccounted_time += cfqq->slice_start -
968 cfqq->dispatch_start;
969 }
970
971 return slice_used;
972 }
973
974 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
975 struct cfq_queue *cfqq)
976 {
977 struct cfq_rb_root *st = &cfqd->grp_service_tree;
978 unsigned int used_sl, charge, unaccounted_sl = 0;
979 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
980 - cfqg->service_tree_idle.count;
981
982 BUG_ON(nr_sync < 0);
983 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
984
985 if (iops_mode(cfqd))
986 charge = cfqq->slice_dispatch;
987 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
988 charge = cfqq->allocated_slice;
989
990 /* Can't update vdisktime while group is on service tree */
991 cfq_group_service_tree_del(st, cfqg);
992 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
993 /* If a new weight was requested, update now, off tree */
994 cfq_group_service_tree_add(st, cfqg);
995
996 /* This group is being expired. Save the context */
997 if (time_after(cfqd->workload_expires, jiffies)) {
998 cfqg->saved_workload_slice = cfqd->workload_expires
999 - jiffies;
1000 cfqg->saved_workload = cfqd->serving_type;
1001 cfqg->saved_serving_prio = cfqd->serving_prio;
1002 } else
1003 cfqg->saved_workload_slice = 0;
1004
1005 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1006 st->min_vdisktime);
1007 cfq_log_cfqq(cfqq->cfqd, cfqq,
1008 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1009 used_sl, cfqq->slice_dispatch, charge,
1010 iops_mode(cfqd), cfqq->nr_sectors);
1011 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1012 unaccounted_sl);
1013 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1014 }
1015
1016 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1017 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1018 {
1019 if (blkg)
1020 return container_of(blkg, struct cfq_group, blkg);
1021 return NULL;
1022 }
1023
1024 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1025 unsigned int weight)
1026 {
1027 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1028 cfqg->new_weight = weight;
1029 cfqg->needs_update = true;
1030 }
1031
1032 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1033 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1034 {
1035 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1036 unsigned int major, minor;
1037
1038 /*
1039 * Add group onto cgroup list. It might happen that bdi->dev is
1040 * not initialized yet. Initialize this new group without major
1041 * and minor info and this info will be filled in once a new thread
1042 * comes for IO.
1043 */
1044 if (bdi->dev) {
1045 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1046 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1047 (void *)cfqd, MKDEV(major, minor));
1048 } else
1049 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1050 (void *)cfqd, 0);
1051
1052 cfqd->nr_blkcg_linked_grps++;
1053 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1054
1055 /* Add group on cfqd list */
1056 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1057 }
1058
1059 /*
1060 * Should be called from sleepable context. No request queue lock as per
1061 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1062 * from sleepable context.
1063 */
1064 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1065 {
1066 struct cfq_group *cfqg = NULL;
1067 int i, j, ret;
1068 struct cfq_rb_root *st;
1069
1070 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1071 if (!cfqg)
1072 return NULL;
1073
1074 for_each_cfqg_st(cfqg, i, j, st)
1075 *st = CFQ_RB_ROOT;
1076 RB_CLEAR_NODE(&cfqg->rb_node);
1077
1078 cfqg->ttime.last_end_request = jiffies;
1079
1080 /*
1081 * Take the initial reference that will be released on destroy
1082 * This can be thought of a joint reference by cgroup and
1083 * elevator which will be dropped by either elevator exit
1084 * or cgroup deletion path depending on who is exiting first.
1085 */
1086 cfqg->ref = 1;
1087
1088 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1089 if (ret) {
1090 kfree(cfqg);
1091 return NULL;
1092 }
1093
1094 return cfqg;
1095 }
1096
1097 static struct cfq_group *
1098 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1099 {
1100 struct cfq_group *cfqg = NULL;
1101 void *key = cfqd;
1102 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1103 unsigned int major, minor;
1104
1105 /*
1106 * This is the common case when there are no blkio cgroups.
1107 * Avoid lookup in this case
1108 */
1109 if (blkcg == &blkio_root_cgroup)
1110 cfqg = &cfqd->root_group;
1111 else
1112 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1113
1114 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1115 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1116 cfqg->blkg.dev = MKDEV(major, minor);
1117 }
1118
1119 return cfqg;
1120 }
1121
1122 /*
1123 * Search for the cfq group current task belongs to. request_queue lock must
1124 * be held.
1125 */
1126 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1127 {
1128 struct blkio_cgroup *blkcg;
1129 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1130 struct request_queue *q = cfqd->queue;
1131
1132 rcu_read_lock();
1133 blkcg = task_blkio_cgroup(current);
1134 cfqg = cfq_find_cfqg(cfqd, blkcg);
1135 if (cfqg) {
1136 rcu_read_unlock();
1137 return cfqg;
1138 }
1139
1140 /*
1141 * Need to allocate a group. Allocation of group also needs allocation
1142 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1143 * we need to drop rcu lock and queue_lock before we call alloc.
1144 *
1145 * Not taking any queue reference here and assuming that queue is
1146 * around by the time we return. CFQ queue allocation code does
1147 * the same. It might be racy though.
1148 */
1149
1150 rcu_read_unlock();
1151 spin_unlock_irq(q->queue_lock);
1152
1153 cfqg = cfq_alloc_cfqg(cfqd);
1154
1155 spin_lock_irq(q->queue_lock);
1156
1157 rcu_read_lock();
1158 blkcg = task_blkio_cgroup(current);
1159
1160 /*
1161 * If some other thread already allocated the group while we were
1162 * not holding queue lock, free up the group
1163 */
1164 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1165
1166 if (__cfqg) {
1167 kfree(cfqg);
1168 rcu_read_unlock();
1169 return __cfqg;
1170 }
1171
1172 if (!cfqg)
1173 cfqg = &cfqd->root_group;
1174
1175 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1176 rcu_read_unlock();
1177 return cfqg;
1178 }
1179
1180 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1181 {
1182 cfqg->ref++;
1183 return cfqg;
1184 }
1185
1186 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1187 {
1188 /* Currently, all async queues are mapped to root group */
1189 if (!cfq_cfqq_sync(cfqq))
1190 cfqg = &cfqq->cfqd->root_group;
1191
1192 cfqq->cfqg = cfqg;
1193 /* cfqq reference on cfqg */
1194 cfqq->cfqg->ref++;
1195 }
1196
1197 static void cfq_put_cfqg(struct cfq_group *cfqg)
1198 {
1199 struct cfq_rb_root *st;
1200 int i, j;
1201
1202 BUG_ON(cfqg->ref <= 0);
1203 cfqg->ref--;
1204 if (cfqg->ref)
1205 return;
1206 for_each_cfqg_st(cfqg, i, j, st)
1207 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1208 free_percpu(cfqg->blkg.stats_cpu);
1209 kfree(cfqg);
1210 }
1211
1212 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1213 {
1214 /* Something wrong if we are trying to remove same group twice */
1215 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1216
1217 hlist_del_init(&cfqg->cfqd_node);
1218
1219 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1220 cfqd->nr_blkcg_linked_grps--;
1221
1222 /*
1223 * Put the reference taken at the time of creation so that when all
1224 * queues are gone, group can be destroyed.
1225 */
1226 cfq_put_cfqg(cfqg);
1227 }
1228
1229 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1230 {
1231 struct hlist_node *pos, *n;
1232 struct cfq_group *cfqg;
1233
1234 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1235 /*
1236 * If cgroup removal path got to blk_group first and removed
1237 * it from cgroup list, then it will take care of destroying
1238 * cfqg also.
1239 */
1240 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1241 cfq_destroy_cfqg(cfqd, cfqg);
1242 }
1243 }
1244
1245 /*
1246 * Blk cgroup controller notification saying that blkio_group object is being
1247 * delinked as associated cgroup object is going away. That also means that
1248 * no new IO will come in this group. So get rid of this group as soon as
1249 * any pending IO in the group is finished.
1250 *
1251 * This function is called under rcu_read_lock(). key is the rcu protected
1252 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1253 * read lock.
1254 *
1255 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1256 * it should not be NULL as even if elevator was exiting, cgroup deltion
1257 * path got to it first.
1258 */
1259 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1260 {
1261 unsigned long flags;
1262 struct cfq_data *cfqd = key;
1263
1264 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1265 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1266 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1267 }
1268
1269 #else /* GROUP_IOSCHED */
1270 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1271 {
1272 return &cfqd->root_group;
1273 }
1274
1275 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1276 {
1277 return cfqg;
1278 }
1279
1280 static inline void
1281 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1282 cfqq->cfqg = cfqg;
1283 }
1284
1285 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1286 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1287
1288 #endif /* GROUP_IOSCHED */
1289
1290 /*
1291 * The cfqd->service_trees holds all pending cfq_queue's that have
1292 * requests waiting to be processed. It is sorted in the order that
1293 * we will service the queues.
1294 */
1295 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1296 bool add_front)
1297 {
1298 struct rb_node **p, *parent;
1299 struct cfq_queue *__cfqq;
1300 unsigned long rb_key;
1301 struct cfq_rb_root *service_tree;
1302 int left;
1303 int new_cfqq = 1;
1304
1305 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1306 cfqq_type(cfqq));
1307 if (cfq_class_idle(cfqq)) {
1308 rb_key = CFQ_IDLE_DELAY;
1309 parent = rb_last(&service_tree->rb);
1310 if (parent && parent != &cfqq->rb_node) {
1311 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1312 rb_key += __cfqq->rb_key;
1313 } else
1314 rb_key += jiffies;
1315 } else if (!add_front) {
1316 /*
1317 * Get our rb key offset. Subtract any residual slice
1318 * value carried from last service. A negative resid
1319 * count indicates slice overrun, and this should position
1320 * the next service time further away in the tree.
1321 */
1322 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1323 rb_key -= cfqq->slice_resid;
1324 cfqq->slice_resid = 0;
1325 } else {
1326 rb_key = -HZ;
1327 __cfqq = cfq_rb_first(service_tree);
1328 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1329 }
1330
1331 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1332 new_cfqq = 0;
1333 /*
1334 * same position, nothing more to do
1335 */
1336 if (rb_key == cfqq->rb_key &&
1337 cfqq->service_tree == service_tree)
1338 return;
1339
1340 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1341 cfqq->service_tree = NULL;
1342 }
1343
1344 left = 1;
1345 parent = NULL;
1346 cfqq->service_tree = service_tree;
1347 p = &service_tree->rb.rb_node;
1348 while (*p) {
1349 struct rb_node **n;
1350
1351 parent = *p;
1352 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1353
1354 /*
1355 * sort by key, that represents service time.
1356 */
1357 if (time_before(rb_key, __cfqq->rb_key))
1358 n = &(*p)->rb_left;
1359 else {
1360 n = &(*p)->rb_right;
1361 left = 0;
1362 }
1363
1364 p = n;
1365 }
1366
1367 if (left)
1368 service_tree->left = &cfqq->rb_node;
1369
1370 cfqq->rb_key = rb_key;
1371 rb_link_node(&cfqq->rb_node, parent, p);
1372 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1373 service_tree->count++;
1374 if (add_front || !new_cfqq)
1375 return;
1376 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1377 }
1378
1379 static struct cfq_queue *
1380 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1381 sector_t sector, struct rb_node **ret_parent,
1382 struct rb_node ***rb_link)
1383 {
1384 struct rb_node **p, *parent;
1385 struct cfq_queue *cfqq = NULL;
1386
1387 parent = NULL;
1388 p = &root->rb_node;
1389 while (*p) {
1390 struct rb_node **n;
1391
1392 parent = *p;
1393 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1394
1395 /*
1396 * Sort strictly based on sector. Smallest to the left,
1397 * largest to the right.
1398 */
1399 if (sector > blk_rq_pos(cfqq->next_rq))
1400 n = &(*p)->rb_right;
1401 else if (sector < blk_rq_pos(cfqq->next_rq))
1402 n = &(*p)->rb_left;
1403 else
1404 break;
1405 p = n;
1406 cfqq = NULL;
1407 }
1408
1409 *ret_parent = parent;
1410 if (rb_link)
1411 *rb_link = p;
1412 return cfqq;
1413 }
1414
1415 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1416 {
1417 struct rb_node **p, *parent;
1418 struct cfq_queue *__cfqq;
1419
1420 if (cfqq->p_root) {
1421 rb_erase(&cfqq->p_node, cfqq->p_root);
1422 cfqq->p_root = NULL;
1423 }
1424
1425 if (cfq_class_idle(cfqq))
1426 return;
1427 if (!cfqq->next_rq)
1428 return;
1429
1430 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1431 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1432 blk_rq_pos(cfqq->next_rq), &parent, &p);
1433 if (!__cfqq) {
1434 rb_link_node(&cfqq->p_node, parent, p);
1435 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1436 } else
1437 cfqq->p_root = NULL;
1438 }
1439
1440 /*
1441 * Update cfqq's position in the service tree.
1442 */
1443 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1444 {
1445 /*
1446 * Resorting requires the cfqq to be on the RR list already.
1447 */
1448 if (cfq_cfqq_on_rr(cfqq)) {
1449 cfq_service_tree_add(cfqd, cfqq, 0);
1450 cfq_prio_tree_add(cfqd, cfqq);
1451 }
1452 }
1453
1454 /*
1455 * add to busy list of queues for service, trying to be fair in ordering
1456 * the pending list according to last request service
1457 */
1458 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1459 {
1460 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1461 BUG_ON(cfq_cfqq_on_rr(cfqq));
1462 cfq_mark_cfqq_on_rr(cfqq);
1463 cfqd->busy_queues++;
1464 if (cfq_cfqq_sync(cfqq))
1465 cfqd->busy_sync_queues++;
1466
1467 cfq_resort_rr_list(cfqd, cfqq);
1468 }
1469
1470 /*
1471 * Called when the cfqq no longer has requests pending, remove it from
1472 * the service tree.
1473 */
1474 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1475 {
1476 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1477 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1478 cfq_clear_cfqq_on_rr(cfqq);
1479
1480 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1481 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1482 cfqq->service_tree = NULL;
1483 }
1484 if (cfqq->p_root) {
1485 rb_erase(&cfqq->p_node, cfqq->p_root);
1486 cfqq->p_root = NULL;
1487 }
1488
1489 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1490 BUG_ON(!cfqd->busy_queues);
1491 cfqd->busy_queues--;
1492 if (cfq_cfqq_sync(cfqq))
1493 cfqd->busy_sync_queues--;
1494 }
1495
1496 /*
1497 * rb tree support functions
1498 */
1499 static void cfq_del_rq_rb(struct request *rq)
1500 {
1501 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1502 const int sync = rq_is_sync(rq);
1503
1504 BUG_ON(!cfqq->queued[sync]);
1505 cfqq->queued[sync]--;
1506
1507 elv_rb_del(&cfqq->sort_list, rq);
1508
1509 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1510 /*
1511 * Queue will be deleted from service tree when we actually
1512 * expire it later. Right now just remove it from prio tree
1513 * as it is empty.
1514 */
1515 if (cfqq->p_root) {
1516 rb_erase(&cfqq->p_node, cfqq->p_root);
1517 cfqq->p_root = NULL;
1518 }
1519 }
1520 }
1521
1522 static void cfq_add_rq_rb(struct request *rq)
1523 {
1524 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1525 struct cfq_data *cfqd = cfqq->cfqd;
1526 struct request *prev;
1527
1528 cfqq->queued[rq_is_sync(rq)]++;
1529
1530 elv_rb_add(&cfqq->sort_list, rq);
1531
1532 if (!cfq_cfqq_on_rr(cfqq))
1533 cfq_add_cfqq_rr(cfqd, cfqq);
1534
1535 /*
1536 * check if this request is a better next-serve candidate
1537 */
1538 prev = cfqq->next_rq;
1539 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1540
1541 /*
1542 * adjust priority tree position, if ->next_rq changes
1543 */
1544 if (prev != cfqq->next_rq)
1545 cfq_prio_tree_add(cfqd, cfqq);
1546
1547 BUG_ON(!cfqq->next_rq);
1548 }
1549
1550 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1551 {
1552 elv_rb_del(&cfqq->sort_list, rq);
1553 cfqq->queued[rq_is_sync(rq)]--;
1554 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1555 rq_data_dir(rq), rq_is_sync(rq));
1556 cfq_add_rq_rb(rq);
1557 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1558 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1559 rq_is_sync(rq));
1560 }
1561
1562 static struct request *
1563 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1564 {
1565 struct task_struct *tsk = current;
1566 struct cfq_io_cq *cic;
1567 struct cfq_queue *cfqq;
1568
1569 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1570 if (!cic)
1571 return NULL;
1572
1573 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1574 if (cfqq) {
1575 sector_t sector = bio->bi_sector + bio_sectors(bio);
1576
1577 return elv_rb_find(&cfqq->sort_list, sector);
1578 }
1579
1580 return NULL;
1581 }
1582
1583 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1584 {
1585 struct cfq_data *cfqd = q->elevator->elevator_data;
1586
1587 cfqd->rq_in_driver++;
1588 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1589 cfqd->rq_in_driver);
1590
1591 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1592 }
1593
1594 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1595 {
1596 struct cfq_data *cfqd = q->elevator->elevator_data;
1597
1598 WARN_ON(!cfqd->rq_in_driver);
1599 cfqd->rq_in_driver--;
1600 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1601 cfqd->rq_in_driver);
1602 }
1603
1604 static void cfq_remove_request(struct request *rq)
1605 {
1606 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1607
1608 if (cfqq->next_rq == rq)
1609 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1610
1611 list_del_init(&rq->queuelist);
1612 cfq_del_rq_rb(rq);
1613
1614 cfqq->cfqd->rq_queued--;
1615 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1616 rq_data_dir(rq), rq_is_sync(rq));
1617 if (rq->cmd_flags & REQ_PRIO) {
1618 WARN_ON(!cfqq->prio_pending);
1619 cfqq->prio_pending--;
1620 }
1621 }
1622
1623 static int cfq_merge(struct request_queue *q, struct request **req,
1624 struct bio *bio)
1625 {
1626 struct cfq_data *cfqd = q->elevator->elevator_data;
1627 struct request *__rq;
1628
1629 __rq = cfq_find_rq_fmerge(cfqd, bio);
1630 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1631 *req = __rq;
1632 return ELEVATOR_FRONT_MERGE;
1633 }
1634
1635 return ELEVATOR_NO_MERGE;
1636 }
1637
1638 static void cfq_merged_request(struct request_queue *q, struct request *req,
1639 int type)
1640 {
1641 if (type == ELEVATOR_FRONT_MERGE) {
1642 struct cfq_queue *cfqq = RQ_CFQQ(req);
1643
1644 cfq_reposition_rq_rb(cfqq, req);
1645 }
1646 }
1647
1648 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1649 struct bio *bio)
1650 {
1651 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1652 bio_data_dir(bio), cfq_bio_sync(bio));
1653 }
1654
1655 static void
1656 cfq_merged_requests(struct request_queue *q, struct request *rq,
1657 struct request *next)
1658 {
1659 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1660 struct cfq_data *cfqd = q->elevator->elevator_data;
1661
1662 /*
1663 * reposition in fifo if next is older than rq
1664 */
1665 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1666 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1667 list_move(&rq->queuelist, &next->queuelist);
1668 rq_set_fifo_time(rq, rq_fifo_time(next));
1669 }
1670
1671 if (cfqq->next_rq == next)
1672 cfqq->next_rq = rq;
1673 cfq_remove_request(next);
1674 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1675 rq_data_dir(next), rq_is_sync(next));
1676
1677 cfqq = RQ_CFQQ(next);
1678 /*
1679 * all requests of this queue are merged to other queues, delete it
1680 * from the service tree. If it's the active_queue,
1681 * cfq_dispatch_requests() will choose to expire it or do idle
1682 */
1683 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1684 cfqq != cfqd->active_queue)
1685 cfq_del_cfqq_rr(cfqd, cfqq);
1686 }
1687
1688 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1689 struct bio *bio)
1690 {
1691 struct cfq_data *cfqd = q->elevator->elevator_data;
1692 struct cfq_io_cq *cic;
1693 struct cfq_queue *cfqq;
1694
1695 /*
1696 * Disallow merge of a sync bio into an async request.
1697 */
1698 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1699 return false;
1700
1701 /*
1702 * Lookup the cfqq that this bio will be queued with and allow
1703 * merge only if rq is queued there.
1704 */
1705 cic = cfq_cic_lookup(cfqd, current->io_context);
1706 if (!cic)
1707 return false;
1708
1709 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1710 return cfqq == RQ_CFQQ(rq);
1711 }
1712
1713 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1714 {
1715 del_timer(&cfqd->idle_slice_timer);
1716 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1717 }
1718
1719 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1720 struct cfq_queue *cfqq)
1721 {
1722 if (cfqq) {
1723 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1724 cfqd->serving_prio, cfqd->serving_type);
1725 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1726 cfqq->slice_start = 0;
1727 cfqq->dispatch_start = jiffies;
1728 cfqq->allocated_slice = 0;
1729 cfqq->slice_end = 0;
1730 cfqq->slice_dispatch = 0;
1731 cfqq->nr_sectors = 0;
1732
1733 cfq_clear_cfqq_wait_request(cfqq);
1734 cfq_clear_cfqq_must_dispatch(cfqq);
1735 cfq_clear_cfqq_must_alloc_slice(cfqq);
1736 cfq_clear_cfqq_fifo_expire(cfqq);
1737 cfq_mark_cfqq_slice_new(cfqq);
1738
1739 cfq_del_timer(cfqd, cfqq);
1740 }
1741
1742 cfqd->active_queue = cfqq;
1743 }
1744
1745 /*
1746 * current cfqq expired its slice (or was too idle), select new one
1747 */
1748 static void
1749 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1750 bool timed_out)
1751 {
1752 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1753
1754 if (cfq_cfqq_wait_request(cfqq))
1755 cfq_del_timer(cfqd, cfqq);
1756
1757 cfq_clear_cfqq_wait_request(cfqq);
1758 cfq_clear_cfqq_wait_busy(cfqq);
1759
1760 /*
1761 * If this cfqq is shared between multiple processes, check to
1762 * make sure that those processes are still issuing I/Os within
1763 * the mean seek distance. If not, it may be time to break the
1764 * queues apart again.
1765 */
1766 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1767 cfq_mark_cfqq_split_coop(cfqq);
1768
1769 /*
1770 * store what was left of this slice, if the queue idled/timed out
1771 */
1772 if (timed_out) {
1773 if (cfq_cfqq_slice_new(cfqq))
1774 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1775 else
1776 cfqq->slice_resid = cfqq->slice_end - jiffies;
1777 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1778 }
1779
1780 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1781
1782 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1783 cfq_del_cfqq_rr(cfqd, cfqq);
1784
1785 cfq_resort_rr_list(cfqd, cfqq);
1786
1787 if (cfqq == cfqd->active_queue)
1788 cfqd->active_queue = NULL;
1789
1790 if (cfqd->active_cic) {
1791 put_io_context(cfqd->active_cic->icq.ioc);
1792 cfqd->active_cic = NULL;
1793 }
1794 }
1795
1796 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1797 {
1798 struct cfq_queue *cfqq = cfqd->active_queue;
1799
1800 if (cfqq)
1801 __cfq_slice_expired(cfqd, cfqq, timed_out);
1802 }
1803
1804 /*
1805 * Get next queue for service. Unless we have a queue preemption,
1806 * we'll simply select the first cfqq in the service tree.
1807 */
1808 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1809 {
1810 struct cfq_rb_root *service_tree =
1811 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1812 cfqd->serving_type);
1813
1814 if (!cfqd->rq_queued)
1815 return NULL;
1816
1817 /* There is nothing to dispatch */
1818 if (!service_tree)
1819 return NULL;
1820 if (RB_EMPTY_ROOT(&service_tree->rb))
1821 return NULL;
1822 return cfq_rb_first(service_tree);
1823 }
1824
1825 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1826 {
1827 struct cfq_group *cfqg;
1828 struct cfq_queue *cfqq;
1829 int i, j;
1830 struct cfq_rb_root *st;
1831
1832 if (!cfqd->rq_queued)
1833 return NULL;
1834
1835 cfqg = cfq_get_next_cfqg(cfqd);
1836 if (!cfqg)
1837 return NULL;
1838
1839 for_each_cfqg_st(cfqg, i, j, st)
1840 if ((cfqq = cfq_rb_first(st)) != NULL)
1841 return cfqq;
1842 return NULL;
1843 }
1844
1845 /*
1846 * Get and set a new active queue for service.
1847 */
1848 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1849 struct cfq_queue *cfqq)
1850 {
1851 if (!cfqq)
1852 cfqq = cfq_get_next_queue(cfqd);
1853
1854 __cfq_set_active_queue(cfqd, cfqq);
1855 return cfqq;
1856 }
1857
1858 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1859 struct request *rq)
1860 {
1861 if (blk_rq_pos(rq) >= cfqd->last_position)
1862 return blk_rq_pos(rq) - cfqd->last_position;
1863 else
1864 return cfqd->last_position - blk_rq_pos(rq);
1865 }
1866
1867 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1868 struct request *rq)
1869 {
1870 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1871 }
1872
1873 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1874 struct cfq_queue *cur_cfqq)
1875 {
1876 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1877 struct rb_node *parent, *node;
1878 struct cfq_queue *__cfqq;
1879 sector_t sector = cfqd->last_position;
1880
1881 if (RB_EMPTY_ROOT(root))
1882 return NULL;
1883
1884 /*
1885 * First, if we find a request starting at the end of the last
1886 * request, choose it.
1887 */
1888 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1889 if (__cfqq)
1890 return __cfqq;
1891
1892 /*
1893 * If the exact sector wasn't found, the parent of the NULL leaf
1894 * will contain the closest sector.
1895 */
1896 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1897 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1898 return __cfqq;
1899
1900 if (blk_rq_pos(__cfqq->next_rq) < sector)
1901 node = rb_next(&__cfqq->p_node);
1902 else
1903 node = rb_prev(&__cfqq->p_node);
1904 if (!node)
1905 return NULL;
1906
1907 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1908 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1909 return __cfqq;
1910
1911 return NULL;
1912 }
1913
1914 /*
1915 * cfqd - obvious
1916 * cur_cfqq - passed in so that we don't decide that the current queue is
1917 * closely cooperating with itself.
1918 *
1919 * So, basically we're assuming that that cur_cfqq has dispatched at least
1920 * one request, and that cfqd->last_position reflects a position on the disk
1921 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1922 * assumption.
1923 */
1924 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1925 struct cfq_queue *cur_cfqq)
1926 {
1927 struct cfq_queue *cfqq;
1928
1929 if (cfq_class_idle(cur_cfqq))
1930 return NULL;
1931 if (!cfq_cfqq_sync(cur_cfqq))
1932 return NULL;
1933 if (CFQQ_SEEKY(cur_cfqq))
1934 return NULL;
1935
1936 /*
1937 * Don't search priority tree if it's the only queue in the group.
1938 */
1939 if (cur_cfqq->cfqg->nr_cfqq == 1)
1940 return NULL;
1941
1942 /*
1943 * We should notice if some of the queues are cooperating, eg
1944 * working closely on the same area of the disk. In that case,
1945 * we can group them together and don't waste time idling.
1946 */
1947 cfqq = cfqq_close(cfqd, cur_cfqq);
1948 if (!cfqq)
1949 return NULL;
1950
1951 /* If new queue belongs to different cfq_group, don't choose it */
1952 if (cur_cfqq->cfqg != cfqq->cfqg)
1953 return NULL;
1954
1955 /*
1956 * It only makes sense to merge sync queues.
1957 */
1958 if (!cfq_cfqq_sync(cfqq))
1959 return NULL;
1960 if (CFQQ_SEEKY(cfqq))
1961 return NULL;
1962
1963 /*
1964 * Do not merge queues of different priority classes
1965 */
1966 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1967 return NULL;
1968
1969 return cfqq;
1970 }
1971
1972 /*
1973 * Determine whether we should enforce idle window for this queue.
1974 */
1975
1976 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1977 {
1978 enum wl_prio_t prio = cfqq_prio(cfqq);
1979 struct cfq_rb_root *service_tree = cfqq->service_tree;
1980
1981 BUG_ON(!service_tree);
1982 BUG_ON(!service_tree->count);
1983
1984 if (!cfqd->cfq_slice_idle)
1985 return false;
1986
1987 /* We never do for idle class queues. */
1988 if (prio == IDLE_WORKLOAD)
1989 return false;
1990
1991 /* We do for queues that were marked with idle window flag. */
1992 if (cfq_cfqq_idle_window(cfqq) &&
1993 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1994 return true;
1995
1996 /*
1997 * Otherwise, we do only if they are the last ones
1998 * in their service tree.
1999 */
2000 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2001 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2002 return true;
2003 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2004 service_tree->count);
2005 return false;
2006 }
2007
2008 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2009 {
2010 struct cfq_queue *cfqq = cfqd->active_queue;
2011 struct cfq_io_cq *cic;
2012 unsigned long sl, group_idle = 0;
2013
2014 /*
2015 * SSD device without seek penalty, disable idling. But only do so
2016 * for devices that support queuing, otherwise we still have a problem
2017 * with sync vs async workloads.
2018 */
2019 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2020 return;
2021
2022 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2023 WARN_ON(cfq_cfqq_slice_new(cfqq));
2024
2025 /*
2026 * idle is disabled, either manually or by past process history
2027 */
2028 if (!cfq_should_idle(cfqd, cfqq)) {
2029 /* no queue idling. Check for group idling */
2030 if (cfqd->cfq_group_idle)
2031 group_idle = cfqd->cfq_group_idle;
2032 else
2033 return;
2034 }
2035
2036 /*
2037 * still active requests from this queue, don't idle
2038 */
2039 if (cfqq->dispatched)
2040 return;
2041
2042 /*
2043 * task has exited, don't wait
2044 */
2045 cic = cfqd->active_cic;
2046 if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
2047 return;
2048
2049 /*
2050 * If our average think time is larger than the remaining time
2051 * slice, then don't idle. This avoids overrunning the allotted
2052 * time slice.
2053 */
2054 if (sample_valid(cic->ttime.ttime_samples) &&
2055 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2056 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2057 cic->ttime.ttime_mean);
2058 return;
2059 }
2060
2061 /* There are other queues in the group, don't do group idle */
2062 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2063 return;
2064
2065 cfq_mark_cfqq_wait_request(cfqq);
2066
2067 if (group_idle)
2068 sl = cfqd->cfq_group_idle;
2069 else
2070 sl = cfqd->cfq_slice_idle;
2071
2072 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2073 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2074 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2075 group_idle ? 1 : 0);
2076 }
2077
2078 /*
2079 * Move request from internal lists to the request queue dispatch list.
2080 */
2081 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2082 {
2083 struct cfq_data *cfqd = q->elevator->elevator_data;
2084 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2085
2086 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2087
2088 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2089 cfq_remove_request(rq);
2090 cfqq->dispatched++;
2091 (RQ_CFQG(rq))->dispatched++;
2092 elv_dispatch_sort(q, rq);
2093
2094 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2095 cfqq->nr_sectors += blk_rq_sectors(rq);
2096 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2097 rq_data_dir(rq), rq_is_sync(rq));
2098 }
2099
2100 /*
2101 * return expired entry, or NULL to just start from scratch in rbtree
2102 */
2103 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2104 {
2105 struct request *rq = NULL;
2106
2107 if (cfq_cfqq_fifo_expire(cfqq))
2108 return NULL;
2109
2110 cfq_mark_cfqq_fifo_expire(cfqq);
2111
2112 if (list_empty(&cfqq->fifo))
2113 return NULL;
2114
2115 rq = rq_entry_fifo(cfqq->fifo.next);
2116 if (time_before(jiffies, rq_fifo_time(rq)))
2117 rq = NULL;
2118
2119 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2120 return rq;
2121 }
2122
2123 static inline int
2124 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2125 {
2126 const int base_rq = cfqd->cfq_slice_async_rq;
2127
2128 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2129
2130 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2131 }
2132
2133 /*
2134 * Must be called with the queue_lock held.
2135 */
2136 static int cfqq_process_refs(struct cfq_queue *cfqq)
2137 {
2138 int process_refs, io_refs;
2139
2140 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2141 process_refs = cfqq->ref - io_refs;
2142 BUG_ON(process_refs < 0);
2143 return process_refs;
2144 }
2145
2146 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2147 {
2148 int process_refs, new_process_refs;
2149 struct cfq_queue *__cfqq;
2150
2151 /*
2152 * If there are no process references on the new_cfqq, then it is
2153 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2154 * chain may have dropped their last reference (not just their
2155 * last process reference).
2156 */
2157 if (!cfqq_process_refs(new_cfqq))
2158 return;
2159
2160 /* Avoid a circular list and skip interim queue merges */
2161 while ((__cfqq = new_cfqq->new_cfqq)) {
2162 if (__cfqq == cfqq)
2163 return;
2164 new_cfqq = __cfqq;
2165 }
2166
2167 process_refs = cfqq_process_refs(cfqq);
2168 new_process_refs = cfqq_process_refs(new_cfqq);
2169 /*
2170 * If the process for the cfqq has gone away, there is no
2171 * sense in merging the queues.
2172 */
2173 if (process_refs == 0 || new_process_refs == 0)
2174 return;
2175
2176 /*
2177 * Merge in the direction of the lesser amount of work.
2178 */
2179 if (new_process_refs >= process_refs) {
2180 cfqq->new_cfqq = new_cfqq;
2181 new_cfqq->ref += process_refs;
2182 } else {
2183 new_cfqq->new_cfqq = cfqq;
2184 cfqq->ref += new_process_refs;
2185 }
2186 }
2187
2188 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2189 struct cfq_group *cfqg, enum wl_prio_t prio)
2190 {
2191 struct cfq_queue *queue;
2192 int i;
2193 bool key_valid = false;
2194 unsigned long lowest_key = 0;
2195 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2196
2197 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2198 /* select the one with lowest rb_key */
2199 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2200 if (queue &&
2201 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2202 lowest_key = queue->rb_key;
2203 cur_best = i;
2204 key_valid = true;
2205 }
2206 }
2207
2208 return cur_best;
2209 }
2210
2211 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2212 {
2213 unsigned slice;
2214 unsigned count;
2215 struct cfq_rb_root *st;
2216 unsigned group_slice;
2217 enum wl_prio_t original_prio = cfqd->serving_prio;
2218
2219 /* Choose next priority. RT > BE > IDLE */
2220 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2221 cfqd->serving_prio = RT_WORKLOAD;
2222 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2223 cfqd->serving_prio = BE_WORKLOAD;
2224 else {
2225 cfqd->serving_prio = IDLE_WORKLOAD;
2226 cfqd->workload_expires = jiffies + 1;
2227 return;
2228 }
2229
2230 if (original_prio != cfqd->serving_prio)
2231 goto new_workload;
2232
2233 /*
2234 * For RT and BE, we have to choose also the type
2235 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2236 * expiration time
2237 */
2238 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2239 count = st->count;
2240
2241 /*
2242 * check workload expiration, and that we still have other queues ready
2243 */
2244 if (count && !time_after(jiffies, cfqd->workload_expires))
2245 return;
2246
2247 new_workload:
2248 /* otherwise select new workload type */
2249 cfqd->serving_type =
2250 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2251 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2252 count = st->count;
2253
2254 /*
2255 * the workload slice is computed as a fraction of target latency
2256 * proportional to the number of queues in that workload, over
2257 * all the queues in the same priority class
2258 */
2259 group_slice = cfq_group_slice(cfqd, cfqg);
2260
2261 slice = group_slice * count /
2262 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2263 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2264
2265 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2266 unsigned int tmp;
2267
2268 /*
2269 * Async queues are currently system wide. Just taking
2270 * proportion of queues with-in same group will lead to higher
2271 * async ratio system wide as generally root group is going
2272 * to have higher weight. A more accurate thing would be to
2273 * calculate system wide asnc/sync ratio.
2274 */
2275 tmp = cfqd->cfq_target_latency *
2276 cfqg_busy_async_queues(cfqd, cfqg);
2277 tmp = tmp/cfqd->busy_queues;
2278 slice = min_t(unsigned, slice, tmp);
2279
2280 /* async workload slice is scaled down according to
2281 * the sync/async slice ratio. */
2282 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2283 } else
2284 /* sync workload slice is at least 2 * cfq_slice_idle */
2285 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2286
2287 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2288 cfq_log(cfqd, "workload slice:%d", slice);
2289 cfqd->workload_expires = jiffies + slice;
2290 }
2291
2292 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2293 {
2294 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2295 struct cfq_group *cfqg;
2296
2297 if (RB_EMPTY_ROOT(&st->rb))
2298 return NULL;
2299 cfqg = cfq_rb_first_group(st);
2300 update_min_vdisktime(st);
2301 return cfqg;
2302 }
2303
2304 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2305 {
2306 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2307
2308 cfqd->serving_group = cfqg;
2309
2310 /* Restore the workload type data */
2311 if (cfqg->saved_workload_slice) {
2312 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2313 cfqd->serving_type = cfqg->saved_workload;
2314 cfqd->serving_prio = cfqg->saved_serving_prio;
2315 } else
2316 cfqd->workload_expires = jiffies - 1;
2317
2318 choose_service_tree(cfqd, cfqg);
2319 }
2320
2321 /*
2322 * Select a queue for service. If we have a current active queue,
2323 * check whether to continue servicing it, or retrieve and set a new one.
2324 */
2325 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2326 {
2327 struct cfq_queue *cfqq, *new_cfqq = NULL;
2328
2329 cfqq = cfqd->active_queue;
2330 if (!cfqq)
2331 goto new_queue;
2332
2333 if (!cfqd->rq_queued)
2334 return NULL;
2335
2336 /*
2337 * We were waiting for group to get backlogged. Expire the queue
2338 */
2339 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2340 goto expire;
2341
2342 /*
2343 * The active queue has run out of time, expire it and select new.
2344 */
2345 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2346 /*
2347 * If slice had not expired at the completion of last request
2348 * we might not have turned on wait_busy flag. Don't expire
2349 * the queue yet. Allow the group to get backlogged.
2350 *
2351 * The very fact that we have used the slice, that means we
2352 * have been idling all along on this queue and it should be
2353 * ok to wait for this request to complete.
2354 */
2355 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2356 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2357 cfqq = NULL;
2358 goto keep_queue;
2359 } else
2360 goto check_group_idle;
2361 }
2362
2363 /*
2364 * The active queue has requests and isn't expired, allow it to
2365 * dispatch.
2366 */
2367 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2368 goto keep_queue;
2369
2370 /*
2371 * If another queue has a request waiting within our mean seek
2372 * distance, let it run. The expire code will check for close
2373 * cooperators and put the close queue at the front of the service
2374 * tree. If possible, merge the expiring queue with the new cfqq.
2375 */
2376 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2377 if (new_cfqq) {
2378 if (!cfqq->new_cfqq)
2379 cfq_setup_merge(cfqq, new_cfqq);
2380 goto expire;
2381 }
2382
2383 /*
2384 * No requests pending. If the active queue still has requests in
2385 * flight or is idling for a new request, allow either of these
2386 * conditions to happen (or time out) before selecting a new queue.
2387 */
2388 if (timer_pending(&cfqd->idle_slice_timer)) {
2389 cfqq = NULL;
2390 goto keep_queue;
2391 }
2392
2393 /*
2394 * This is a deep seek queue, but the device is much faster than
2395 * the queue can deliver, don't idle
2396 **/
2397 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2398 (cfq_cfqq_slice_new(cfqq) ||
2399 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2400 cfq_clear_cfqq_deep(cfqq);
2401 cfq_clear_cfqq_idle_window(cfqq);
2402 }
2403
2404 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2405 cfqq = NULL;
2406 goto keep_queue;
2407 }
2408
2409 /*
2410 * If group idle is enabled and there are requests dispatched from
2411 * this group, wait for requests to complete.
2412 */
2413 check_group_idle:
2414 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2415 cfqq->cfqg->dispatched &&
2416 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2417 cfqq = NULL;
2418 goto keep_queue;
2419 }
2420
2421 expire:
2422 cfq_slice_expired(cfqd, 0);
2423 new_queue:
2424 /*
2425 * Current queue expired. Check if we have to switch to a new
2426 * service tree
2427 */
2428 if (!new_cfqq)
2429 cfq_choose_cfqg(cfqd);
2430
2431 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2432 keep_queue:
2433 return cfqq;
2434 }
2435
2436 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2437 {
2438 int dispatched = 0;
2439
2440 while (cfqq->next_rq) {
2441 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2442 dispatched++;
2443 }
2444
2445 BUG_ON(!list_empty(&cfqq->fifo));
2446
2447 /* By default cfqq is not expired if it is empty. Do it explicitly */
2448 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2449 return dispatched;
2450 }
2451
2452 /*
2453 * Drain our current requests. Used for barriers and when switching
2454 * io schedulers on-the-fly.
2455 */
2456 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2457 {
2458 struct cfq_queue *cfqq;
2459 int dispatched = 0;
2460
2461 /* Expire the timeslice of the current active queue first */
2462 cfq_slice_expired(cfqd, 0);
2463 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2464 __cfq_set_active_queue(cfqd, cfqq);
2465 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2466 }
2467
2468 BUG_ON(cfqd->busy_queues);
2469
2470 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2471 return dispatched;
2472 }
2473
2474 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2475 struct cfq_queue *cfqq)
2476 {
2477 /* the queue hasn't finished any request, can't estimate */
2478 if (cfq_cfqq_slice_new(cfqq))
2479 return true;
2480 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2481 cfqq->slice_end))
2482 return true;
2483
2484 return false;
2485 }
2486
2487 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2488 {
2489 unsigned int max_dispatch;
2490
2491 /*
2492 * Drain async requests before we start sync IO
2493 */
2494 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2495 return false;
2496
2497 /*
2498 * If this is an async queue and we have sync IO in flight, let it wait
2499 */
2500 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2501 return false;
2502
2503 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2504 if (cfq_class_idle(cfqq))
2505 max_dispatch = 1;
2506
2507 /*
2508 * Does this cfqq already have too much IO in flight?
2509 */
2510 if (cfqq->dispatched >= max_dispatch) {
2511 bool promote_sync = false;
2512 /*
2513 * idle queue must always only have a single IO in flight
2514 */
2515 if (cfq_class_idle(cfqq))
2516 return false;
2517
2518 /*
2519 * If there is only one sync queue
2520 * we can ignore async queue here and give the sync
2521 * queue no dispatch limit. The reason is a sync queue can
2522 * preempt async queue, limiting the sync queue doesn't make
2523 * sense. This is useful for aiostress test.
2524 */
2525 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2526 promote_sync = true;
2527
2528 /*
2529 * We have other queues, don't allow more IO from this one
2530 */
2531 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2532 !promote_sync)
2533 return false;
2534
2535 /*
2536 * Sole queue user, no limit
2537 */
2538 if (cfqd->busy_queues == 1 || promote_sync)
2539 max_dispatch = -1;
2540 else
2541 /*
2542 * Normally we start throttling cfqq when cfq_quantum/2
2543 * requests have been dispatched. But we can drive
2544 * deeper queue depths at the beginning of slice
2545 * subjected to upper limit of cfq_quantum.
2546 * */
2547 max_dispatch = cfqd->cfq_quantum;
2548 }
2549
2550 /*
2551 * Async queues must wait a bit before being allowed dispatch.
2552 * We also ramp up the dispatch depth gradually for async IO,
2553 * based on the last sync IO we serviced
2554 */
2555 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2556 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2557 unsigned int depth;
2558
2559 depth = last_sync / cfqd->cfq_slice[1];
2560 if (!depth && !cfqq->dispatched)
2561 depth = 1;
2562 if (depth < max_dispatch)
2563 max_dispatch = depth;
2564 }
2565
2566 /*
2567 * If we're below the current max, allow a dispatch
2568 */
2569 return cfqq->dispatched < max_dispatch;
2570 }
2571
2572 /*
2573 * Dispatch a request from cfqq, moving them to the request queue
2574 * dispatch list.
2575 */
2576 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2577 {
2578 struct request *rq;
2579
2580 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2581
2582 if (!cfq_may_dispatch(cfqd, cfqq))
2583 return false;
2584
2585 /*
2586 * follow expired path, else get first next available
2587 */
2588 rq = cfq_check_fifo(cfqq);
2589 if (!rq)
2590 rq = cfqq->next_rq;
2591
2592 /*
2593 * insert request into driver dispatch list
2594 */
2595 cfq_dispatch_insert(cfqd->queue, rq);
2596
2597 if (!cfqd->active_cic) {
2598 struct cfq_io_cq *cic = RQ_CIC(rq);
2599
2600 atomic_long_inc(&cic->icq.ioc->refcount);
2601 cfqd->active_cic = cic;
2602 }
2603
2604 return true;
2605 }
2606
2607 /*
2608 * Find the cfqq that we need to service and move a request from that to the
2609 * dispatch list
2610 */
2611 static int cfq_dispatch_requests(struct request_queue *q, int force)
2612 {
2613 struct cfq_data *cfqd = q->elevator->elevator_data;
2614 struct cfq_queue *cfqq;
2615
2616 if (!cfqd->busy_queues)
2617 return 0;
2618
2619 if (unlikely(force))
2620 return cfq_forced_dispatch(cfqd);
2621
2622 cfqq = cfq_select_queue(cfqd);
2623 if (!cfqq)
2624 return 0;
2625
2626 /*
2627 * Dispatch a request from this cfqq, if it is allowed
2628 */
2629 if (!cfq_dispatch_request(cfqd, cfqq))
2630 return 0;
2631
2632 cfqq->slice_dispatch++;
2633 cfq_clear_cfqq_must_dispatch(cfqq);
2634
2635 /*
2636 * expire an async queue immediately if it has used up its slice. idle
2637 * queue always expire after 1 dispatch round.
2638 */
2639 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2640 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2641 cfq_class_idle(cfqq))) {
2642 cfqq->slice_end = jiffies + 1;
2643 cfq_slice_expired(cfqd, 0);
2644 }
2645
2646 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2647 return 1;
2648 }
2649
2650 /*
2651 * task holds one reference to the queue, dropped when task exits. each rq
2652 * in-flight on this queue also holds a reference, dropped when rq is freed.
2653 *
2654 * Each cfq queue took a reference on the parent group. Drop it now.
2655 * queue lock must be held here.
2656 */
2657 static void cfq_put_queue(struct cfq_queue *cfqq)
2658 {
2659 struct cfq_data *cfqd = cfqq->cfqd;
2660 struct cfq_group *cfqg;
2661
2662 BUG_ON(cfqq->ref <= 0);
2663
2664 cfqq->ref--;
2665 if (cfqq->ref)
2666 return;
2667
2668 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2669 BUG_ON(rb_first(&cfqq->sort_list));
2670 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2671 cfqg = cfqq->cfqg;
2672
2673 if (unlikely(cfqd->active_queue == cfqq)) {
2674 __cfq_slice_expired(cfqd, cfqq, 0);
2675 cfq_schedule_dispatch(cfqd);
2676 }
2677
2678 BUG_ON(cfq_cfqq_on_rr(cfqq));
2679 kmem_cache_free(cfq_pool, cfqq);
2680 cfq_put_cfqg(cfqg);
2681 }
2682
2683 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2684 {
2685 struct cfq_queue *__cfqq, *next;
2686
2687 /*
2688 * If this queue was scheduled to merge with another queue, be
2689 * sure to drop the reference taken on that queue (and others in
2690 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2691 */
2692 __cfqq = cfqq->new_cfqq;
2693 while (__cfqq) {
2694 if (__cfqq == cfqq) {
2695 WARN(1, "cfqq->new_cfqq loop detected\n");
2696 break;
2697 }
2698 next = __cfqq->new_cfqq;
2699 cfq_put_queue(__cfqq);
2700 __cfqq = next;
2701 }
2702 }
2703
2704 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2705 {
2706 if (unlikely(cfqq == cfqd->active_queue)) {
2707 __cfq_slice_expired(cfqd, cfqq, 0);
2708 cfq_schedule_dispatch(cfqd);
2709 }
2710
2711 cfq_put_cooperator(cfqq);
2712
2713 cfq_put_queue(cfqq);
2714 }
2715
2716 static void cfq_init_icq(struct io_cq *icq)
2717 {
2718 struct cfq_io_cq *cic = icq_to_cic(icq);
2719
2720 cic->ttime.last_end_request = jiffies;
2721 }
2722
2723 static void cfq_exit_icq(struct io_cq *icq)
2724 {
2725 struct cfq_io_cq *cic = icq_to_cic(icq);
2726 struct cfq_data *cfqd = cic_to_cfqd(cic);
2727
2728 if (cic->cfqq[BLK_RW_ASYNC]) {
2729 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2730 cic->cfqq[BLK_RW_ASYNC] = NULL;
2731 }
2732
2733 if (cic->cfqq[BLK_RW_SYNC]) {
2734 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2735 cic->cfqq[BLK_RW_SYNC] = NULL;
2736 }
2737 }
2738
2739 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2740 {
2741 struct task_struct *tsk = current;
2742 int ioprio_class;
2743
2744 if (!cfq_cfqq_prio_changed(cfqq))
2745 return;
2746
2747 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2748 switch (ioprio_class) {
2749 default:
2750 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2751 case IOPRIO_CLASS_NONE:
2752 /*
2753 * no prio set, inherit CPU scheduling settings
2754 */
2755 cfqq->ioprio = task_nice_ioprio(tsk);
2756 cfqq->ioprio_class = task_nice_ioclass(tsk);
2757 break;
2758 case IOPRIO_CLASS_RT:
2759 cfqq->ioprio = task_ioprio(ioc);
2760 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2761 break;
2762 case IOPRIO_CLASS_BE:
2763 cfqq->ioprio = task_ioprio(ioc);
2764 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2765 break;
2766 case IOPRIO_CLASS_IDLE:
2767 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2768 cfqq->ioprio = 7;
2769 cfq_clear_cfqq_idle_window(cfqq);
2770 break;
2771 }
2772
2773 /*
2774 * keep track of original prio settings in case we have to temporarily
2775 * elevate the priority of this queue
2776 */
2777 cfqq->org_ioprio = cfqq->ioprio;
2778 cfq_clear_cfqq_prio_changed(cfqq);
2779 }
2780
2781 static void changed_ioprio(struct cfq_io_cq *cic)
2782 {
2783 struct cfq_data *cfqd = cic_to_cfqd(cic);
2784 struct cfq_queue *cfqq;
2785
2786 if (unlikely(!cfqd))
2787 return;
2788
2789 cfqq = cic->cfqq[BLK_RW_ASYNC];
2790 if (cfqq) {
2791 struct cfq_queue *new_cfqq;
2792 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2793 GFP_ATOMIC);
2794 if (new_cfqq) {
2795 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2796 cfq_put_queue(cfqq);
2797 }
2798 }
2799
2800 cfqq = cic->cfqq[BLK_RW_SYNC];
2801 if (cfqq)
2802 cfq_mark_cfqq_prio_changed(cfqq);
2803 }
2804
2805 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2806 pid_t pid, bool is_sync)
2807 {
2808 RB_CLEAR_NODE(&cfqq->rb_node);
2809 RB_CLEAR_NODE(&cfqq->p_node);
2810 INIT_LIST_HEAD(&cfqq->fifo);
2811
2812 cfqq->ref = 0;
2813 cfqq->cfqd = cfqd;
2814
2815 cfq_mark_cfqq_prio_changed(cfqq);
2816
2817 if (is_sync) {
2818 if (!cfq_class_idle(cfqq))
2819 cfq_mark_cfqq_idle_window(cfqq);
2820 cfq_mark_cfqq_sync(cfqq);
2821 }
2822 cfqq->pid = pid;
2823 }
2824
2825 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2826 static void changed_cgroup(struct cfq_io_cq *cic)
2827 {
2828 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2829 struct cfq_data *cfqd = cic_to_cfqd(cic);
2830 struct request_queue *q;
2831
2832 if (unlikely(!cfqd))
2833 return;
2834
2835 q = cfqd->queue;
2836
2837 if (sync_cfqq) {
2838 /*
2839 * Drop reference to sync queue. A new sync queue will be
2840 * assigned in new group upon arrival of a fresh request.
2841 */
2842 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2843 cic_set_cfqq(cic, NULL, 1);
2844 cfq_put_queue(sync_cfqq);
2845 }
2846 }
2847 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2848
2849 static struct cfq_queue *
2850 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2851 struct io_context *ioc, gfp_t gfp_mask)
2852 {
2853 struct cfq_queue *cfqq, *new_cfqq = NULL;
2854 struct cfq_io_cq *cic;
2855 struct cfq_group *cfqg;
2856
2857 retry:
2858 cfqg = cfq_get_cfqg(cfqd);
2859 cic = cfq_cic_lookup(cfqd, ioc);
2860 /* cic always exists here */
2861 cfqq = cic_to_cfqq(cic, is_sync);
2862
2863 /*
2864 * Always try a new alloc if we fell back to the OOM cfqq
2865 * originally, since it should just be a temporary situation.
2866 */
2867 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2868 cfqq = NULL;
2869 if (new_cfqq) {
2870 cfqq = new_cfqq;
2871 new_cfqq = NULL;
2872 } else if (gfp_mask & __GFP_WAIT) {
2873 spin_unlock_irq(cfqd->queue->queue_lock);
2874 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2875 gfp_mask | __GFP_ZERO,
2876 cfqd->queue->node);
2877 spin_lock_irq(cfqd->queue->queue_lock);
2878 if (new_cfqq)
2879 goto retry;
2880 } else {
2881 cfqq = kmem_cache_alloc_node(cfq_pool,
2882 gfp_mask | __GFP_ZERO,
2883 cfqd->queue->node);
2884 }
2885
2886 if (cfqq) {
2887 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2888 cfq_init_prio_data(cfqq, ioc);
2889 cfq_link_cfqq_cfqg(cfqq, cfqg);
2890 cfq_log_cfqq(cfqd, cfqq, "alloced");
2891 } else
2892 cfqq = &cfqd->oom_cfqq;
2893 }
2894
2895 if (new_cfqq)
2896 kmem_cache_free(cfq_pool, new_cfqq);
2897
2898 return cfqq;
2899 }
2900
2901 static struct cfq_queue **
2902 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2903 {
2904 switch (ioprio_class) {
2905 case IOPRIO_CLASS_RT:
2906 return &cfqd->async_cfqq[0][ioprio];
2907 case IOPRIO_CLASS_BE:
2908 return &cfqd->async_cfqq[1][ioprio];
2909 case IOPRIO_CLASS_IDLE:
2910 return &cfqd->async_idle_cfqq;
2911 default:
2912 BUG();
2913 }
2914 }
2915
2916 static struct cfq_queue *
2917 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2918 gfp_t gfp_mask)
2919 {
2920 const int ioprio = task_ioprio(ioc);
2921 const int ioprio_class = task_ioprio_class(ioc);
2922 struct cfq_queue **async_cfqq = NULL;
2923 struct cfq_queue *cfqq = NULL;
2924
2925 if (!is_sync) {
2926 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2927 cfqq = *async_cfqq;
2928 }
2929
2930 if (!cfqq)
2931 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2932
2933 /*
2934 * pin the queue now that it's allocated, scheduler exit will prune it
2935 */
2936 if (!is_sync && !(*async_cfqq)) {
2937 cfqq->ref++;
2938 *async_cfqq = cfqq;
2939 }
2940
2941 cfqq->ref++;
2942 return cfqq;
2943 }
2944
2945 static void
2946 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
2947 {
2948 unsigned long elapsed = jiffies - ttime->last_end_request;
2949 elapsed = min(elapsed, 2UL * slice_idle);
2950
2951 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2952 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2953 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2954 }
2955
2956 static void
2957 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2958 struct cfq_io_cq *cic)
2959 {
2960 if (cfq_cfqq_sync(cfqq)) {
2961 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
2962 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2963 cfqd->cfq_slice_idle);
2964 }
2965 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2966 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2967 #endif
2968 }
2969
2970 static void
2971 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2972 struct request *rq)
2973 {
2974 sector_t sdist = 0;
2975 sector_t n_sec = blk_rq_sectors(rq);
2976 if (cfqq->last_request_pos) {
2977 if (cfqq->last_request_pos < blk_rq_pos(rq))
2978 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2979 else
2980 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2981 }
2982
2983 cfqq->seek_history <<= 1;
2984 if (blk_queue_nonrot(cfqd->queue))
2985 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2986 else
2987 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2988 }
2989
2990 /*
2991 * Disable idle window if the process thinks too long or seeks so much that
2992 * it doesn't matter
2993 */
2994 static void
2995 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2996 struct cfq_io_cq *cic)
2997 {
2998 int old_idle, enable_idle;
2999
3000 /*
3001 * Don't idle for async or idle io prio class
3002 */
3003 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3004 return;
3005
3006 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3007
3008 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3009 cfq_mark_cfqq_deep(cfqq);
3010
3011 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3012 enable_idle = 0;
3013 else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3014 !cfqd->cfq_slice_idle ||
3015 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3016 enable_idle = 0;
3017 else if (sample_valid(cic->ttime.ttime_samples)) {
3018 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3019 enable_idle = 0;
3020 else
3021 enable_idle = 1;
3022 }
3023
3024 if (old_idle != enable_idle) {
3025 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3026 if (enable_idle)
3027 cfq_mark_cfqq_idle_window(cfqq);
3028 else
3029 cfq_clear_cfqq_idle_window(cfqq);
3030 }
3031 }
3032
3033 /*
3034 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3035 * no or if we aren't sure, a 1 will cause a preempt.
3036 */
3037 static bool
3038 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3039 struct request *rq)
3040 {
3041 struct cfq_queue *cfqq;
3042
3043 cfqq = cfqd->active_queue;
3044 if (!cfqq)
3045 return false;
3046
3047 if (cfq_class_idle(new_cfqq))
3048 return false;
3049
3050 if (cfq_class_idle(cfqq))
3051 return true;
3052
3053 /*
3054 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3055 */
3056 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3057 return false;
3058
3059 /*
3060 * if the new request is sync, but the currently running queue is
3061 * not, let the sync request have priority.
3062 */
3063 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3064 return true;
3065
3066 if (new_cfqq->cfqg != cfqq->cfqg)
3067 return false;
3068
3069 if (cfq_slice_used(cfqq))
3070 return true;
3071
3072 /* Allow preemption only if we are idling on sync-noidle tree */
3073 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3074 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3075 new_cfqq->service_tree->count == 2 &&
3076 RB_EMPTY_ROOT(&cfqq->sort_list))
3077 return true;
3078
3079 /*
3080 * So both queues are sync. Let the new request get disk time if
3081 * it's a metadata request and the current queue is doing regular IO.
3082 */
3083 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3084 return true;
3085
3086 /*
3087 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3088 */
3089 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3090 return true;
3091
3092 /* An idle queue should not be idle now for some reason */
3093 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3094 return true;
3095
3096 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3097 return false;
3098
3099 /*
3100 * if this request is as-good as one we would expect from the
3101 * current cfqq, let it preempt
3102 */
3103 if (cfq_rq_close(cfqd, cfqq, rq))
3104 return true;
3105
3106 return false;
3107 }
3108
3109 /*
3110 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3111 * let it have half of its nominal slice.
3112 */
3113 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3114 {
3115 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3116
3117 cfq_log_cfqq(cfqd, cfqq, "preempt");
3118 cfq_slice_expired(cfqd, 1);
3119
3120 /*
3121 * workload type is changed, don't save slice, otherwise preempt
3122 * doesn't happen
3123 */
3124 if (old_type != cfqq_type(cfqq))
3125 cfqq->cfqg->saved_workload_slice = 0;
3126
3127 /*
3128 * Put the new queue at the front of the of the current list,
3129 * so we know that it will be selected next.
3130 */
3131 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3132
3133 cfq_service_tree_add(cfqd, cfqq, 1);
3134
3135 cfqq->slice_end = 0;
3136 cfq_mark_cfqq_slice_new(cfqq);
3137 }
3138
3139 /*
3140 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3141 * something we should do about it
3142 */
3143 static void
3144 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3145 struct request *rq)
3146 {
3147 struct cfq_io_cq *cic = RQ_CIC(rq);
3148
3149 cfqd->rq_queued++;
3150 if (rq->cmd_flags & REQ_PRIO)
3151 cfqq->prio_pending++;
3152
3153 cfq_update_io_thinktime(cfqd, cfqq, cic);
3154 cfq_update_io_seektime(cfqd, cfqq, rq);
3155 cfq_update_idle_window(cfqd, cfqq, cic);
3156
3157 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3158
3159 if (cfqq == cfqd->active_queue) {
3160 /*
3161 * Remember that we saw a request from this process, but
3162 * don't start queuing just yet. Otherwise we risk seeing lots
3163 * of tiny requests, because we disrupt the normal plugging
3164 * and merging. If the request is already larger than a single
3165 * page, let it rip immediately. For that case we assume that
3166 * merging is already done. Ditto for a busy system that
3167 * has other work pending, don't risk delaying until the
3168 * idle timer unplug to continue working.
3169 */
3170 if (cfq_cfqq_wait_request(cfqq)) {
3171 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3172 cfqd->busy_queues > 1) {
3173 cfq_del_timer(cfqd, cfqq);
3174 cfq_clear_cfqq_wait_request(cfqq);
3175 __blk_run_queue(cfqd->queue);
3176 } else {
3177 cfq_blkiocg_update_idle_time_stats(
3178 &cfqq->cfqg->blkg);
3179 cfq_mark_cfqq_must_dispatch(cfqq);
3180 }
3181 }
3182 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3183 /*
3184 * not the active queue - expire current slice if it is
3185 * idle and has expired it's mean thinktime or this new queue
3186 * has some old slice time left and is of higher priority or
3187 * this new queue is RT and the current one is BE
3188 */
3189 cfq_preempt_queue(cfqd, cfqq);
3190 __blk_run_queue(cfqd->queue);
3191 }
3192 }
3193
3194 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3195 {
3196 struct cfq_data *cfqd = q->elevator->elevator_data;
3197 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3198
3199 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3200 cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3201
3202 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3203 list_add_tail(&rq->queuelist, &cfqq->fifo);
3204 cfq_add_rq_rb(rq);
3205 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3206 &cfqd->serving_group->blkg, rq_data_dir(rq),
3207 rq_is_sync(rq));
3208 cfq_rq_enqueued(cfqd, cfqq, rq);
3209 }
3210
3211 /*
3212 * Update hw_tag based on peak queue depth over 50 samples under
3213 * sufficient load.
3214 */
3215 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3216 {
3217 struct cfq_queue *cfqq = cfqd->active_queue;
3218
3219 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3220 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3221
3222 if (cfqd->hw_tag == 1)
3223 return;
3224
3225 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3226 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3227 return;
3228
3229 /*
3230 * If active queue hasn't enough requests and can idle, cfq might not
3231 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3232 * case
3233 */
3234 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3235 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3236 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3237 return;
3238
3239 if (cfqd->hw_tag_samples++ < 50)
3240 return;
3241
3242 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3243 cfqd->hw_tag = 1;
3244 else
3245 cfqd->hw_tag = 0;
3246 }
3247
3248 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3249 {
3250 struct cfq_io_cq *cic = cfqd->active_cic;
3251
3252 /* If the queue already has requests, don't wait */
3253 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3254 return false;
3255
3256 /* If there are other queues in the group, don't wait */
3257 if (cfqq->cfqg->nr_cfqq > 1)
3258 return false;
3259
3260 /* the only queue in the group, but think time is big */
3261 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3262 return false;
3263
3264 if (cfq_slice_used(cfqq))
3265 return true;
3266
3267 /* if slice left is less than think time, wait busy */
3268 if (cic && sample_valid(cic->ttime.ttime_samples)
3269 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3270 return true;
3271
3272 /*
3273 * If think times is less than a jiffy than ttime_mean=0 and above
3274 * will not be true. It might happen that slice has not expired yet
3275 * but will expire soon (4-5 ns) during select_queue(). To cover the
3276 * case where think time is less than a jiffy, mark the queue wait
3277 * busy if only 1 jiffy is left in the slice.
3278 */
3279 if (cfqq->slice_end - jiffies == 1)
3280 return true;
3281
3282 return false;
3283 }
3284
3285 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3286 {
3287 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3288 struct cfq_data *cfqd = cfqq->cfqd;
3289 const int sync = rq_is_sync(rq);
3290 unsigned long now;
3291
3292 now = jiffies;
3293 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3294 !!(rq->cmd_flags & REQ_NOIDLE));
3295
3296 cfq_update_hw_tag(cfqd);
3297
3298 WARN_ON(!cfqd->rq_in_driver);
3299 WARN_ON(!cfqq->dispatched);
3300 cfqd->rq_in_driver--;
3301 cfqq->dispatched--;
3302 (RQ_CFQG(rq))->dispatched--;
3303 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3304 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3305 rq_data_dir(rq), rq_is_sync(rq));
3306
3307 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3308
3309 if (sync) {
3310 struct cfq_rb_root *service_tree;
3311
3312 RQ_CIC(rq)->ttime.last_end_request = now;
3313
3314 if (cfq_cfqq_on_rr(cfqq))
3315 service_tree = cfqq->service_tree;
3316 else
3317 service_tree = service_tree_for(cfqq->cfqg,
3318 cfqq_prio(cfqq), cfqq_type(cfqq));
3319 service_tree->ttime.last_end_request = now;
3320 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3321 cfqd->last_delayed_sync = now;
3322 }
3323
3324 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3325 cfqq->cfqg->ttime.last_end_request = now;
3326 #endif
3327
3328 /*
3329 * If this is the active queue, check if it needs to be expired,
3330 * or if we want to idle in case it has no pending requests.
3331 */
3332 if (cfqd->active_queue == cfqq) {
3333 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3334
3335 if (cfq_cfqq_slice_new(cfqq)) {
3336 cfq_set_prio_slice(cfqd, cfqq);
3337 cfq_clear_cfqq_slice_new(cfqq);
3338 }
3339
3340 /*
3341 * Should we wait for next request to come in before we expire
3342 * the queue.
3343 */
3344 if (cfq_should_wait_busy(cfqd, cfqq)) {
3345 unsigned long extend_sl = cfqd->cfq_slice_idle;
3346 if (!cfqd->cfq_slice_idle)
3347 extend_sl = cfqd->cfq_group_idle;
3348 cfqq->slice_end = jiffies + extend_sl;
3349 cfq_mark_cfqq_wait_busy(cfqq);
3350 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3351 }
3352
3353 /*
3354 * Idling is not enabled on:
3355 * - expired queues
3356 * - idle-priority queues
3357 * - async queues
3358 * - queues with still some requests queued
3359 * - when there is a close cooperator
3360 */
3361 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3362 cfq_slice_expired(cfqd, 1);
3363 else if (sync && cfqq_empty &&
3364 !cfq_close_cooperator(cfqd, cfqq)) {
3365 cfq_arm_slice_timer(cfqd);
3366 }
3367 }
3368
3369 if (!cfqd->rq_in_driver)
3370 cfq_schedule_dispatch(cfqd);
3371 }
3372
3373 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3374 {
3375 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3376 cfq_mark_cfqq_must_alloc_slice(cfqq);
3377 return ELV_MQUEUE_MUST;
3378 }
3379
3380 return ELV_MQUEUE_MAY;
3381 }
3382
3383 static int cfq_may_queue(struct request_queue *q, int rw)
3384 {
3385 struct cfq_data *cfqd = q->elevator->elevator_data;
3386 struct task_struct *tsk = current;
3387 struct cfq_io_cq *cic;
3388 struct cfq_queue *cfqq;
3389
3390 /*
3391 * don't force setup of a queue from here, as a call to may_queue
3392 * does not necessarily imply that a request actually will be queued.
3393 * so just lookup a possibly existing queue, or return 'may queue'
3394 * if that fails
3395 */
3396 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3397 if (!cic)
3398 return ELV_MQUEUE_MAY;
3399
3400 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3401 if (cfqq) {
3402 cfq_init_prio_data(cfqq, cic->icq.ioc);
3403
3404 return __cfq_may_queue(cfqq);
3405 }
3406
3407 return ELV_MQUEUE_MAY;
3408 }
3409
3410 /*
3411 * queue lock held here
3412 */
3413 static void cfq_put_request(struct request *rq)
3414 {
3415 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3416
3417 if (cfqq) {
3418 const int rw = rq_data_dir(rq);
3419
3420 BUG_ON(!cfqq->allocated[rw]);
3421 cfqq->allocated[rw]--;
3422
3423 /* Put down rq reference on cfqg */
3424 cfq_put_cfqg(RQ_CFQG(rq));
3425 rq->elv.priv[0] = NULL;
3426 rq->elv.priv[1] = NULL;
3427
3428 cfq_put_queue(cfqq);
3429 }
3430 }
3431
3432 static struct cfq_queue *
3433 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3434 struct cfq_queue *cfqq)
3435 {
3436 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3437 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3438 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3439 cfq_put_queue(cfqq);
3440 return cic_to_cfqq(cic, 1);
3441 }
3442
3443 /*
3444 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3445 * was the last process referring to said cfqq.
3446 */
3447 static struct cfq_queue *
3448 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3449 {
3450 if (cfqq_process_refs(cfqq) == 1) {
3451 cfqq->pid = current->pid;
3452 cfq_clear_cfqq_coop(cfqq);
3453 cfq_clear_cfqq_split_coop(cfqq);
3454 return cfqq;
3455 }
3456
3457 cic_set_cfqq(cic, NULL, 1);
3458
3459 cfq_put_cooperator(cfqq);
3460
3461 cfq_put_queue(cfqq);
3462 return NULL;
3463 }
3464 /*
3465 * Allocate cfq data structures associated with this request.
3466 */
3467 static int
3468 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3469 {
3470 struct cfq_data *cfqd = q->elevator->elevator_data;
3471 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3472 const int rw = rq_data_dir(rq);
3473 const bool is_sync = rq_is_sync(rq);
3474 struct cfq_queue *cfqq;
3475 unsigned int changed;
3476
3477 might_sleep_if(gfp_mask & __GFP_WAIT);
3478
3479 spin_lock_irq(q->queue_lock);
3480
3481 /* handle changed notifications */
3482 changed = icq_get_changed(&cic->icq);
3483 if (unlikely(changed & ICQ_IOPRIO_CHANGED))
3484 changed_ioprio(cic);
3485 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3486 if (unlikely(changed & ICQ_CGROUP_CHANGED))
3487 changed_cgroup(cic);
3488 #endif
3489
3490 new_queue:
3491 cfqq = cic_to_cfqq(cic, is_sync);
3492 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3493 cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3494 cic_set_cfqq(cic, cfqq, is_sync);
3495 } else {
3496 /*
3497 * If the queue was seeky for too long, break it apart.
3498 */
3499 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3500 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3501 cfqq = split_cfqq(cic, cfqq);
3502 if (!cfqq)
3503 goto new_queue;
3504 }
3505
3506 /*
3507 * Check to see if this queue is scheduled to merge with
3508 * another, closely cooperating queue. The merging of
3509 * queues happens here as it must be done in process context.
3510 * The reference on new_cfqq was taken in merge_cfqqs.
3511 */
3512 if (cfqq->new_cfqq)
3513 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3514 }
3515
3516 cfqq->allocated[rw]++;
3517
3518 cfqq->ref++;
3519 rq->elv.priv[0] = cfqq;
3520 rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
3521 spin_unlock_irq(q->queue_lock);
3522 return 0;
3523 }
3524
3525 static void cfq_kick_queue(struct work_struct *work)
3526 {
3527 struct cfq_data *cfqd =
3528 container_of(work, struct cfq_data, unplug_work);
3529 struct request_queue *q = cfqd->queue;
3530
3531 spin_lock_irq(q->queue_lock);
3532 __blk_run_queue(cfqd->queue);
3533 spin_unlock_irq(q->queue_lock);
3534 }
3535
3536 /*
3537 * Timer running if the active_queue is currently idling inside its time slice
3538 */
3539 static void cfq_idle_slice_timer(unsigned long data)
3540 {
3541 struct cfq_data *cfqd = (struct cfq_data *) data;
3542 struct cfq_queue *cfqq;
3543 unsigned long flags;
3544 int timed_out = 1;
3545
3546 cfq_log(cfqd, "idle timer fired");
3547
3548 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3549
3550 cfqq = cfqd->active_queue;
3551 if (cfqq) {
3552 timed_out = 0;
3553
3554 /*
3555 * We saw a request before the queue expired, let it through
3556 */
3557 if (cfq_cfqq_must_dispatch(cfqq))
3558 goto out_kick;
3559
3560 /*
3561 * expired
3562 */
3563 if (cfq_slice_used(cfqq))
3564 goto expire;
3565
3566 /*
3567 * only expire and reinvoke request handler, if there are
3568 * other queues with pending requests
3569 */
3570 if (!cfqd->busy_queues)
3571 goto out_cont;
3572
3573 /*
3574 * not expired and it has a request pending, let it dispatch
3575 */
3576 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3577 goto out_kick;
3578
3579 /*
3580 * Queue depth flag is reset only when the idle didn't succeed
3581 */
3582 cfq_clear_cfqq_deep(cfqq);
3583 }
3584 expire:
3585 cfq_slice_expired(cfqd, timed_out);
3586 out_kick:
3587 cfq_schedule_dispatch(cfqd);
3588 out_cont:
3589 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3590 }
3591
3592 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3593 {
3594 del_timer_sync(&cfqd->idle_slice_timer);
3595 cancel_work_sync(&cfqd->unplug_work);
3596 }
3597
3598 static void cfq_put_async_queues(struct cfq_data *cfqd)
3599 {
3600 int i;
3601
3602 for (i = 0; i < IOPRIO_BE_NR; i++) {
3603 if (cfqd->async_cfqq[0][i])
3604 cfq_put_queue(cfqd->async_cfqq[0][i]);
3605 if (cfqd->async_cfqq[1][i])
3606 cfq_put_queue(cfqd->async_cfqq[1][i]);
3607 }
3608
3609 if (cfqd->async_idle_cfqq)
3610 cfq_put_queue(cfqd->async_idle_cfqq);
3611 }
3612
3613 static void cfq_exit_queue(struct elevator_queue *e)
3614 {
3615 struct cfq_data *cfqd = e->elevator_data;
3616 struct request_queue *q = cfqd->queue;
3617 bool wait = false;
3618
3619 cfq_shutdown_timer_wq(cfqd);
3620
3621 spin_lock_irq(q->queue_lock);
3622
3623 if (cfqd->active_queue)
3624 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3625
3626 cfq_put_async_queues(cfqd);
3627 cfq_release_cfq_groups(cfqd);
3628
3629 /*
3630 * If there are groups which we could not unlink from blkcg list,
3631 * wait for a rcu period for them to be freed.
3632 */
3633 if (cfqd->nr_blkcg_linked_grps)
3634 wait = true;
3635
3636 spin_unlock_irq(q->queue_lock);
3637
3638 cfq_shutdown_timer_wq(cfqd);
3639
3640 /*
3641 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3642 * Do this wait only if there are other unlinked groups out
3643 * there. This can happen if cgroup deletion path claimed the
3644 * responsibility of cleaning up a group before queue cleanup code
3645 * get to the group.
3646 *
3647 * Do not call synchronize_rcu() unconditionally as there are drivers
3648 * which create/delete request queue hundreds of times during scan/boot
3649 * and synchronize_rcu() can take significant time and slow down boot.
3650 */
3651 if (wait)
3652 synchronize_rcu();
3653
3654 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3655 /* Free up per cpu stats for root group */
3656 free_percpu(cfqd->root_group.blkg.stats_cpu);
3657 #endif
3658 kfree(cfqd);
3659 }
3660
3661 static void *cfq_init_queue(struct request_queue *q)
3662 {
3663 struct cfq_data *cfqd;
3664 int i, j;
3665 struct cfq_group *cfqg;
3666 struct cfq_rb_root *st;
3667
3668 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3669 if (!cfqd)
3670 return NULL;
3671
3672 /* Init root service tree */
3673 cfqd->grp_service_tree = CFQ_RB_ROOT;
3674
3675 /* Init root group */
3676 cfqg = &cfqd->root_group;
3677 for_each_cfqg_st(cfqg, i, j, st)
3678 *st = CFQ_RB_ROOT;
3679 RB_CLEAR_NODE(&cfqg->rb_node);
3680
3681 /* Give preference to root group over other groups */
3682 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3683
3684 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3685 /*
3686 * Set root group reference to 2. One reference will be dropped when
3687 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3688 * Other reference will remain there as we don't want to delete this
3689 * group as it is statically allocated and gets destroyed when
3690 * throtl_data goes away.
3691 */
3692 cfqg->ref = 2;
3693
3694 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3695 kfree(cfqg);
3696 kfree(cfqd);
3697 return NULL;
3698 }
3699
3700 rcu_read_lock();
3701
3702 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3703 (void *)cfqd, 0);
3704 rcu_read_unlock();
3705 cfqd->nr_blkcg_linked_grps++;
3706
3707 /* Add group on cfqd->cfqg_list */
3708 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3709 #endif
3710 /*
3711 * Not strictly needed (since RB_ROOT just clears the node and we
3712 * zeroed cfqd on alloc), but better be safe in case someone decides
3713 * to add magic to the rb code
3714 */
3715 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3716 cfqd->prio_trees[i] = RB_ROOT;
3717
3718 /*
3719 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3720 * Grab a permanent reference to it, so that the normal code flow
3721 * will not attempt to free it.
3722 */
3723 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3724 cfqd->oom_cfqq.ref++;
3725 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3726
3727 cfqd->queue = q;
3728
3729 init_timer(&cfqd->idle_slice_timer);
3730 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3731 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3732
3733 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3734
3735 cfqd->cfq_quantum = cfq_quantum;
3736 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3737 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3738 cfqd->cfq_back_max = cfq_back_max;
3739 cfqd->cfq_back_penalty = cfq_back_penalty;
3740 cfqd->cfq_slice[0] = cfq_slice_async;
3741 cfqd->cfq_slice[1] = cfq_slice_sync;
3742 cfqd->cfq_target_latency = cfq_target_latency;
3743 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3744 cfqd->cfq_slice_idle = cfq_slice_idle;
3745 cfqd->cfq_group_idle = cfq_group_idle;
3746 cfqd->cfq_latency = 1;
3747 cfqd->hw_tag = -1;
3748 /*
3749 * we optimistically start assuming sync ops weren't delayed in last
3750 * second, in order to have larger depth for async operations.
3751 */
3752 cfqd->last_delayed_sync = jiffies - HZ;
3753 return cfqd;
3754 }
3755
3756 /*
3757 * sysfs parts below -->
3758 */
3759 static ssize_t
3760 cfq_var_show(unsigned int var, char *page)
3761 {
3762 return sprintf(page, "%d\n", var);
3763 }
3764
3765 static ssize_t
3766 cfq_var_store(unsigned int *var, const char *page, size_t count)
3767 {
3768 char *p = (char *) page;
3769
3770 *var = simple_strtoul(p, &p, 10);
3771 return count;
3772 }
3773
3774 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3775 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3776 { \
3777 struct cfq_data *cfqd = e->elevator_data; \
3778 unsigned int __data = __VAR; \
3779 if (__CONV) \
3780 __data = jiffies_to_msecs(__data); \
3781 return cfq_var_show(__data, (page)); \
3782 }
3783 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3784 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3785 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3786 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3787 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3788 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3789 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3790 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3791 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3792 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3793 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3794 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
3795 #undef SHOW_FUNCTION
3796
3797 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3798 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3799 { \
3800 struct cfq_data *cfqd = e->elevator_data; \
3801 unsigned int __data; \
3802 int ret = cfq_var_store(&__data, (page), count); \
3803 if (__data < (MIN)) \
3804 __data = (MIN); \
3805 else if (__data > (MAX)) \
3806 __data = (MAX); \
3807 if (__CONV) \
3808 *(__PTR) = msecs_to_jiffies(__data); \
3809 else \
3810 *(__PTR) = __data; \
3811 return ret; \
3812 }
3813 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3814 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3815 UINT_MAX, 1);
3816 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3817 UINT_MAX, 1);
3818 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3819 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3820 UINT_MAX, 0);
3821 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3822 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3823 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3824 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3825 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3826 UINT_MAX, 0);
3827 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3828 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
3829 #undef STORE_FUNCTION
3830
3831 #define CFQ_ATTR(name) \
3832 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3833
3834 static struct elv_fs_entry cfq_attrs[] = {
3835 CFQ_ATTR(quantum),
3836 CFQ_ATTR(fifo_expire_sync),
3837 CFQ_ATTR(fifo_expire_async),
3838 CFQ_ATTR(back_seek_max),
3839 CFQ_ATTR(back_seek_penalty),
3840 CFQ_ATTR(slice_sync),
3841 CFQ_ATTR(slice_async),
3842 CFQ_ATTR(slice_async_rq),
3843 CFQ_ATTR(slice_idle),
3844 CFQ_ATTR(group_idle),
3845 CFQ_ATTR(low_latency),
3846 CFQ_ATTR(target_latency),
3847 __ATTR_NULL
3848 };
3849
3850 static struct elevator_type iosched_cfq = {
3851 .ops = {
3852 .elevator_merge_fn = cfq_merge,
3853 .elevator_merged_fn = cfq_merged_request,
3854 .elevator_merge_req_fn = cfq_merged_requests,
3855 .elevator_allow_merge_fn = cfq_allow_merge,
3856 .elevator_bio_merged_fn = cfq_bio_merged,
3857 .elevator_dispatch_fn = cfq_dispatch_requests,
3858 .elevator_add_req_fn = cfq_insert_request,
3859 .elevator_activate_req_fn = cfq_activate_request,
3860 .elevator_deactivate_req_fn = cfq_deactivate_request,
3861 .elevator_completed_req_fn = cfq_completed_request,
3862 .elevator_former_req_fn = elv_rb_former_request,
3863 .elevator_latter_req_fn = elv_rb_latter_request,
3864 .elevator_init_icq_fn = cfq_init_icq,
3865 .elevator_exit_icq_fn = cfq_exit_icq,
3866 .elevator_set_req_fn = cfq_set_request,
3867 .elevator_put_req_fn = cfq_put_request,
3868 .elevator_may_queue_fn = cfq_may_queue,
3869 .elevator_init_fn = cfq_init_queue,
3870 .elevator_exit_fn = cfq_exit_queue,
3871 },
3872 .icq_size = sizeof(struct cfq_io_cq),
3873 .icq_align = __alignof__(struct cfq_io_cq),
3874 .elevator_attrs = cfq_attrs,
3875 .elevator_name = "cfq",
3876 .elevator_owner = THIS_MODULE,
3877 };
3878
3879 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3880 static struct blkio_policy_type blkio_policy_cfq = {
3881 .ops = {
3882 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3883 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3884 },
3885 .plid = BLKIO_POLICY_PROP,
3886 };
3887 #else
3888 static struct blkio_policy_type blkio_policy_cfq;
3889 #endif
3890
3891 static int __init cfq_init(void)
3892 {
3893 int ret;
3894
3895 /*
3896 * could be 0 on HZ < 1000 setups
3897 */
3898 if (!cfq_slice_async)
3899 cfq_slice_async = 1;
3900 if (!cfq_slice_idle)
3901 cfq_slice_idle = 1;
3902
3903 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3904 if (!cfq_group_idle)
3905 cfq_group_idle = 1;
3906 #else
3907 cfq_group_idle = 0;
3908 #endif
3909 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3910 if (!cfq_pool)
3911 return -ENOMEM;
3912
3913 ret = elv_register(&iosched_cfq);
3914 if (ret) {
3915 kmem_cache_destroy(cfq_pool);
3916 return ret;
3917 }
3918
3919 blkio_policy_register(&blkio_policy_cfq);
3920
3921 return 0;
3922 }
3923
3924 static void __exit cfq_exit(void)
3925 {
3926 blkio_policy_unregister(&blkio_policy_cfq);
3927 elv_unregister(&iosched_cfq);
3928 kmem_cache_destroy(cfq_pool);
3929 }
3930
3931 module_init(cfq_init);
3932 module_exit(cfq_exit);
3933
3934 MODULE_AUTHOR("Jens Axboe");
3935 MODULE_LICENSE("GPL");
3936 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.11168 seconds and 5 git commands to generate.