Documentation: kernel-parameters.txt remove capability.disable
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76 };
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 struct cfq_ttime ttime;
91 };
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
94
95 /*
96 * Per process-grouping structure
97 */
98 struct cfq_queue {
99 /* reference count */
100 int ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
126 unsigned int allocated_slice;
127 unsigned int slice_dispatch;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
130 unsigned long slice_end;
131 long slice_resid;
132
133 /* pending priority requests */
134 int prio_pending;
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
140 unsigned short ioprio_class;
141
142 pid_t pid;
143
144 u32 seek_history;
145 sector_t last_request_pos;
146
147 struct cfq_rb_root *service_tree;
148 struct cfq_queue *new_cfqq;
149 struct cfq_group *cfqg;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
152 };
153
154 /*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158 enum wl_prio_t {
159 BE_WORKLOAD = 0,
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
162 CFQ_PRIO_NR,
163 };
164
165 /*
166 * Second index in the service_trees.
167 */
168 enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172 };
173
174 struct cfqg_stats {
175 #ifdef CONFIG_CFQ_GROUP_IOSCHED
176 /* total bytes transferred */
177 struct blkg_rwstat service_bytes;
178 /* total IOs serviced, post merge */
179 struct blkg_rwstat serviced;
180 /* number of ios merged */
181 struct blkg_rwstat merged;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued;
188 /* total sectors transferred */
189 struct blkg_stat sectors;
190 /* total disk time and nr sectors dispatched by this group */
191 struct blkg_stat time;
192 #ifdef CONFIG_DEBUG_BLK_CGROUP
193 /* time not charged to this cgroup */
194 struct blkg_stat unaccounted_time;
195 /* sum of number of ios queued across all samples */
196 struct blkg_stat avg_queue_size_sum;
197 /* count of samples taken for average */
198 struct blkg_stat avg_queue_size_samples;
199 /* how many times this group has been removed from service tree */
200 struct blkg_stat dequeue;
201 /* total time spent waiting for it to be assigned a timeslice. */
202 struct blkg_stat group_wait_time;
203 /* time spent idling for this blkcg_gq */
204 struct blkg_stat idle_time;
205 /* total time with empty current active q with other requests queued */
206 struct blkg_stat empty_time;
207 /* fields after this shouldn't be cleared on stat reset */
208 uint64_t start_group_wait_time;
209 uint64_t start_idle_time;
210 uint64_t start_empty_time;
211 uint16_t flags;
212 #endif /* CONFIG_DEBUG_BLK_CGROUP */
213 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
214 };
215
216 /* This is per cgroup per device grouping structure */
217 struct cfq_group {
218 /* must be the first member */
219 struct blkg_policy_data pd;
220
221 /* group service_tree member */
222 struct rb_node rb_node;
223
224 /* group service_tree key */
225 u64 vdisktime;
226 unsigned int weight;
227 unsigned int new_weight;
228 unsigned int dev_weight;
229
230 /* number of cfqq currently on this group */
231 int nr_cfqq;
232
233 /*
234 * Per group busy queues average. Useful for workload slice calc. We
235 * create the array for each prio class but at run time it is used
236 * only for RT and BE class and slot for IDLE class remains unused.
237 * This is primarily done to avoid confusion and a gcc warning.
238 */
239 unsigned int busy_queues_avg[CFQ_PRIO_NR];
240 /*
241 * rr lists of queues with requests. We maintain service trees for
242 * RT and BE classes. These trees are subdivided in subclasses
243 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
244 * class there is no subclassification and all the cfq queues go on
245 * a single tree service_tree_idle.
246 * Counts are embedded in the cfq_rb_root
247 */
248 struct cfq_rb_root service_trees[2][3];
249 struct cfq_rb_root service_tree_idle;
250
251 unsigned long saved_workload_slice;
252 enum wl_type_t saved_workload;
253 enum wl_prio_t saved_serving_prio;
254
255 /* number of requests that are on the dispatch list or inside driver */
256 int dispatched;
257 struct cfq_ttime ttime;
258 struct cfqg_stats stats;
259 };
260
261 struct cfq_io_cq {
262 struct io_cq icq; /* must be the first member */
263 struct cfq_queue *cfqq[2];
264 struct cfq_ttime ttime;
265 int ioprio; /* the current ioprio */
266 #ifdef CONFIG_CFQ_GROUP_IOSCHED
267 uint64_t blkcg_id; /* the current blkcg ID */
268 #endif
269 };
270
271 /*
272 * Per block device queue structure
273 */
274 struct cfq_data {
275 struct request_queue *queue;
276 /* Root service tree for cfq_groups */
277 struct cfq_rb_root grp_service_tree;
278 struct cfq_group *root_group;
279
280 /*
281 * The priority currently being served
282 */
283 enum wl_prio_t serving_prio;
284 enum wl_type_t serving_type;
285 unsigned long workload_expires;
286 struct cfq_group *serving_group;
287
288 /*
289 * Each priority tree is sorted by next_request position. These
290 * trees are used when determining if two or more queues are
291 * interleaving requests (see cfq_close_cooperator).
292 */
293 struct rb_root prio_trees[CFQ_PRIO_LISTS];
294
295 unsigned int busy_queues;
296 unsigned int busy_sync_queues;
297
298 int rq_in_driver;
299 int rq_in_flight[2];
300
301 /*
302 * queue-depth detection
303 */
304 int rq_queued;
305 int hw_tag;
306 /*
307 * hw_tag can be
308 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
309 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
310 * 0 => no NCQ
311 */
312 int hw_tag_est_depth;
313 unsigned int hw_tag_samples;
314
315 /*
316 * idle window management
317 */
318 struct timer_list idle_slice_timer;
319 struct work_struct unplug_work;
320
321 struct cfq_queue *active_queue;
322 struct cfq_io_cq *active_cic;
323
324 /*
325 * async queue for each priority case
326 */
327 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
328 struct cfq_queue *async_idle_cfqq;
329
330 sector_t last_position;
331
332 /*
333 * tunables, see top of file
334 */
335 unsigned int cfq_quantum;
336 unsigned int cfq_fifo_expire[2];
337 unsigned int cfq_back_penalty;
338 unsigned int cfq_back_max;
339 unsigned int cfq_slice[2];
340 unsigned int cfq_slice_async_rq;
341 unsigned int cfq_slice_idle;
342 unsigned int cfq_group_idle;
343 unsigned int cfq_latency;
344 unsigned int cfq_target_latency;
345
346 /*
347 * Fallback dummy cfqq for extreme OOM conditions
348 */
349 struct cfq_queue oom_cfqq;
350
351 unsigned long last_delayed_sync;
352 };
353
354 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
355
356 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
357 enum wl_prio_t prio,
358 enum wl_type_t type)
359 {
360 if (!cfqg)
361 return NULL;
362
363 if (prio == IDLE_WORKLOAD)
364 return &cfqg->service_tree_idle;
365
366 return &cfqg->service_trees[prio][type];
367 }
368
369 enum cfqq_state_flags {
370 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
371 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
372 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
373 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
374 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
375 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
376 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
377 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
378 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
379 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
380 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
381 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
382 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
383 };
384
385 #define CFQ_CFQQ_FNS(name) \
386 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
387 { \
388 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
389 } \
390 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
391 { \
392 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
393 } \
394 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
395 { \
396 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
397 }
398
399 CFQ_CFQQ_FNS(on_rr);
400 CFQ_CFQQ_FNS(wait_request);
401 CFQ_CFQQ_FNS(must_dispatch);
402 CFQ_CFQQ_FNS(must_alloc_slice);
403 CFQ_CFQQ_FNS(fifo_expire);
404 CFQ_CFQQ_FNS(idle_window);
405 CFQ_CFQQ_FNS(prio_changed);
406 CFQ_CFQQ_FNS(slice_new);
407 CFQ_CFQQ_FNS(sync);
408 CFQ_CFQQ_FNS(coop);
409 CFQ_CFQQ_FNS(split_coop);
410 CFQ_CFQQ_FNS(deep);
411 CFQ_CFQQ_FNS(wait_busy);
412 #undef CFQ_CFQQ_FNS
413
414 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
415 {
416 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
417 }
418
419 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
420 {
421 return pd_to_blkg(&cfqg->pd);
422 }
423
424 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
425
426 /* cfqg stats flags */
427 enum cfqg_stats_flags {
428 CFQG_stats_waiting = 0,
429 CFQG_stats_idling,
430 CFQG_stats_empty,
431 };
432
433 #define CFQG_FLAG_FNS(name) \
434 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
435 { \
436 stats->flags |= (1 << CFQG_stats_##name); \
437 } \
438 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
439 { \
440 stats->flags &= ~(1 << CFQG_stats_##name); \
441 } \
442 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
443 { \
444 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
445 } \
446
447 CFQG_FLAG_FNS(waiting)
448 CFQG_FLAG_FNS(idling)
449 CFQG_FLAG_FNS(empty)
450 #undef CFQG_FLAG_FNS
451
452 /* This should be called with the queue_lock held. */
453 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
454 {
455 unsigned long long now;
456
457 if (!cfqg_stats_waiting(stats))
458 return;
459
460 now = sched_clock();
461 if (time_after64(now, stats->start_group_wait_time))
462 blkg_stat_add(&stats->group_wait_time,
463 now - stats->start_group_wait_time);
464 cfqg_stats_clear_waiting(stats);
465 }
466
467 /* This should be called with the queue_lock held. */
468 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
469 struct cfq_group *curr_cfqg)
470 {
471 struct cfqg_stats *stats = &cfqg->stats;
472
473 if (cfqg_stats_waiting(stats))
474 return;
475 if (cfqg == curr_cfqg)
476 return;
477 stats->start_group_wait_time = sched_clock();
478 cfqg_stats_mark_waiting(stats);
479 }
480
481 /* This should be called with the queue_lock held. */
482 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
483 {
484 unsigned long long now;
485
486 if (!cfqg_stats_empty(stats))
487 return;
488
489 now = sched_clock();
490 if (time_after64(now, stats->start_empty_time))
491 blkg_stat_add(&stats->empty_time,
492 now - stats->start_empty_time);
493 cfqg_stats_clear_empty(stats);
494 }
495
496 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
497 {
498 blkg_stat_add(&cfqg->stats.dequeue, 1);
499 }
500
501 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
502 {
503 struct cfqg_stats *stats = &cfqg->stats;
504
505 if (blkg_rwstat_sum(&stats->queued))
506 return;
507
508 /*
509 * group is already marked empty. This can happen if cfqq got new
510 * request in parent group and moved to this group while being added
511 * to service tree. Just ignore the event and move on.
512 */
513 if (cfqg_stats_empty(stats))
514 return;
515
516 stats->start_empty_time = sched_clock();
517 cfqg_stats_mark_empty(stats);
518 }
519
520 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
521 {
522 struct cfqg_stats *stats = &cfqg->stats;
523
524 if (cfqg_stats_idling(stats)) {
525 unsigned long long now = sched_clock();
526
527 if (time_after64(now, stats->start_idle_time))
528 blkg_stat_add(&stats->idle_time,
529 now - stats->start_idle_time);
530 cfqg_stats_clear_idling(stats);
531 }
532 }
533
534 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
535 {
536 struct cfqg_stats *stats = &cfqg->stats;
537
538 BUG_ON(cfqg_stats_idling(stats));
539
540 stats->start_idle_time = sched_clock();
541 cfqg_stats_mark_idling(stats);
542 }
543
544 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
545 {
546 struct cfqg_stats *stats = &cfqg->stats;
547
548 blkg_stat_add(&stats->avg_queue_size_sum,
549 blkg_rwstat_sum(&stats->queued));
550 blkg_stat_add(&stats->avg_queue_size_samples, 1);
551 cfqg_stats_update_group_wait_time(stats);
552 }
553
554 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
555
556 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
557 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
558 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
559 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
560 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
561 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
562 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
563
564 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
565
566 #ifdef CONFIG_CFQ_GROUP_IOSCHED
567
568 static struct blkcg_policy blkcg_policy_cfq;
569
570 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
571 {
572 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
573 }
574
575 static inline void cfqg_get(struct cfq_group *cfqg)
576 {
577 return blkg_get(cfqg_to_blkg(cfqg));
578 }
579
580 static inline void cfqg_put(struct cfq_group *cfqg)
581 {
582 return blkg_put(cfqg_to_blkg(cfqg));
583 }
584
585 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
586 char __pbuf[128]; \
587 \
588 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
589 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
590 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
591 __pbuf, ##args); \
592 } while (0)
593
594 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
595 char __pbuf[128]; \
596 \
597 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
598 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
599 } while (0)
600
601 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
602 struct cfq_group *curr_cfqg, int rw)
603 {
604 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
605 cfqg_stats_end_empty_time(&cfqg->stats);
606 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
607 }
608
609 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
610 unsigned long time, unsigned long unaccounted_time)
611 {
612 blkg_stat_add(&cfqg->stats.time, time);
613 #ifdef CONFIG_DEBUG_BLK_CGROUP
614 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
615 #endif
616 }
617
618 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
619 {
620 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
621 }
622
623 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
624 {
625 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
626 }
627
628 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
629 uint64_t bytes, int rw)
630 {
631 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
632 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
633 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
634 }
635
636 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
637 uint64_t start_time, uint64_t io_start_time, int rw)
638 {
639 struct cfqg_stats *stats = &cfqg->stats;
640 unsigned long long now = sched_clock();
641
642 if (time_after64(now, io_start_time))
643 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
644 if (time_after64(io_start_time, start_time))
645 blkg_rwstat_add(&stats->wait_time, rw,
646 io_start_time - start_time);
647 }
648
649 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
650 {
651 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
652 struct cfqg_stats *stats = &cfqg->stats;
653
654 /* queued stats shouldn't be cleared */
655 blkg_rwstat_reset(&stats->service_bytes);
656 blkg_rwstat_reset(&stats->serviced);
657 blkg_rwstat_reset(&stats->merged);
658 blkg_rwstat_reset(&stats->service_time);
659 blkg_rwstat_reset(&stats->wait_time);
660 blkg_stat_reset(&stats->time);
661 #ifdef CONFIG_DEBUG_BLK_CGROUP
662 blkg_stat_reset(&stats->unaccounted_time);
663 blkg_stat_reset(&stats->avg_queue_size_sum);
664 blkg_stat_reset(&stats->avg_queue_size_samples);
665 blkg_stat_reset(&stats->dequeue);
666 blkg_stat_reset(&stats->group_wait_time);
667 blkg_stat_reset(&stats->idle_time);
668 blkg_stat_reset(&stats->empty_time);
669 #endif
670 }
671
672 #else /* CONFIG_CFQ_GROUP_IOSCHED */
673
674 static inline void cfqg_get(struct cfq_group *cfqg) { }
675 static inline void cfqg_put(struct cfq_group *cfqg) { }
676
677 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
678 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
679 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
680
681 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
682 struct cfq_group *curr_cfqg, int rw) { }
683 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
684 unsigned long time, unsigned long unaccounted_time) { }
685 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
686 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
687 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
688 uint64_t bytes, int rw) { }
689 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
690 uint64_t start_time, uint64_t io_start_time, int rw) { }
691
692 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
693
694 #define cfq_log(cfqd, fmt, args...) \
695 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
696
697 /* Traverses through cfq group service trees */
698 #define for_each_cfqg_st(cfqg, i, j, st) \
699 for (i = 0; i <= IDLE_WORKLOAD; i++) \
700 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
701 : &cfqg->service_tree_idle; \
702 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
703 (i == IDLE_WORKLOAD && j == 0); \
704 j++, st = i < IDLE_WORKLOAD ? \
705 &cfqg->service_trees[i][j]: NULL) \
706
707 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
708 struct cfq_ttime *ttime, bool group_idle)
709 {
710 unsigned long slice;
711 if (!sample_valid(ttime->ttime_samples))
712 return false;
713 if (group_idle)
714 slice = cfqd->cfq_group_idle;
715 else
716 slice = cfqd->cfq_slice_idle;
717 return ttime->ttime_mean > slice;
718 }
719
720 static inline bool iops_mode(struct cfq_data *cfqd)
721 {
722 /*
723 * If we are not idling on queues and it is a NCQ drive, parallel
724 * execution of requests is on and measuring time is not possible
725 * in most of the cases until and unless we drive shallower queue
726 * depths and that becomes a performance bottleneck. In such cases
727 * switch to start providing fairness in terms of number of IOs.
728 */
729 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
730 return true;
731 else
732 return false;
733 }
734
735 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
736 {
737 if (cfq_class_idle(cfqq))
738 return IDLE_WORKLOAD;
739 if (cfq_class_rt(cfqq))
740 return RT_WORKLOAD;
741 return BE_WORKLOAD;
742 }
743
744
745 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
746 {
747 if (!cfq_cfqq_sync(cfqq))
748 return ASYNC_WORKLOAD;
749 if (!cfq_cfqq_idle_window(cfqq))
750 return SYNC_NOIDLE_WORKLOAD;
751 return SYNC_WORKLOAD;
752 }
753
754 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
755 struct cfq_data *cfqd,
756 struct cfq_group *cfqg)
757 {
758 if (wl == IDLE_WORKLOAD)
759 return cfqg->service_tree_idle.count;
760
761 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
762 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
763 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
764 }
765
766 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
767 struct cfq_group *cfqg)
768 {
769 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
770 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
771 }
772
773 static void cfq_dispatch_insert(struct request_queue *, struct request *);
774 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
775 struct cfq_io_cq *cic, struct bio *bio,
776 gfp_t gfp_mask);
777
778 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
779 {
780 /* cic->icq is the first member, %NULL will convert to %NULL */
781 return container_of(icq, struct cfq_io_cq, icq);
782 }
783
784 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
785 struct io_context *ioc)
786 {
787 if (ioc)
788 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
789 return NULL;
790 }
791
792 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
793 {
794 return cic->cfqq[is_sync];
795 }
796
797 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
798 bool is_sync)
799 {
800 cic->cfqq[is_sync] = cfqq;
801 }
802
803 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
804 {
805 return cic->icq.q->elevator->elevator_data;
806 }
807
808 /*
809 * We regard a request as SYNC, if it's either a read or has the SYNC bit
810 * set (in which case it could also be direct WRITE).
811 */
812 static inline bool cfq_bio_sync(struct bio *bio)
813 {
814 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
815 }
816
817 /*
818 * scheduler run of queue, if there are requests pending and no one in the
819 * driver that will restart queueing
820 */
821 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
822 {
823 if (cfqd->busy_queues) {
824 cfq_log(cfqd, "schedule dispatch");
825 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
826 }
827 }
828
829 /*
830 * Scale schedule slice based on io priority. Use the sync time slice only
831 * if a queue is marked sync and has sync io queued. A sync queue with async
832 * io only, should not get full sync slice length.
833 */
834 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
835 unsigned short prio)
836 {
837 const int base_slice = cfqd->cfq_slice[sync];
838
839 WARN_ON(prio >= IOPRIO_BE_NR);
840
841 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
842 }
843
844 static inline int
845 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
846 {
847 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
848 }
849
850 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
851 {
852 u64 d = delta << CFQ_SERVICE_SHIFT;
853
854 d = d * CFQ_WEIGHT_DEFAULT;
855 do_div(d, cfqg->weight);
856 return d;
857 }
858
859 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
860 {
861 s64 delta = (s64)(vdisktime - min_vdisktime);
862 if (delta > 0)
863 min_vdisktime = vdisktime;
864
865 return min_vdisktime;
866 }
867
868 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
869 {
870 s64 delta = (s64)(vdisktime - min_vdisktime);
871 if (delta < 0)
872 min_vdisktime = vdisktime;
873
874 return min_vdisktime;
875 }
876
877 static void update_min_vdisktime(struct cfq_rb_root *st)
878 {
879 struct cfq_group *cfqg;
880
881 if (st->left) {
882 cfqg = rb_entry_cfqg(st->left);
883 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
884 cfqg->vdisktime);
885 }
886 }
887
888 /*
889 * get averaged number of queues of RT/BE priority.
890 * average is updated, with a formula that gives more weight to higher numbers,
891 * to quickly follows sudden increases and decrease slowly
892 */
893
894 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
895 struct cfq_group *cfqg, bool rt)
896 {
897 unsigned min_q, max_q;
898 unsigned mult = cfq_hist_divisor - 1;
899 unsigned round = cfq_hist_divisor / 2;
900 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
901
902 min_q = min(cfqg->busy_queues_avg[rt], busy);
903 max_q = max(cfqg->busy_queues_avg[rt], busy);
904 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
905 cfq_hist_divisor;
906 return cfqg->busy_queues_avg[rt];
907 }
908
909 static inline unsigned
910 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
911 {
912 struct cfq_rb_root *st = &cfqd->grp_service_tree;
913
914 return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
915 }
916
917 static inline unsigned
918 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
919 {
920 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
921 if (cfqd->cfq_latency) {
922 /*
923 * interested queues (we consider only the ones with the same
924 * priority class in the cfq group)
925 */
926 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
927 cfq_class_rt(cfqq));
928 unsigned sync_slice = cfqd->cfq_slice[1];
929 unsigned expect_latency = sync_slice * iq;
930 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
931
932 if (expect_latency > group_slice) {
933 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
934 /* scale low_slice according to IO priority
935 * and sync vs async */
936 unsigned low_slice =
937 min(slice, base_low_slice * slice / sync_slice);
938 /* the adapted slice value is scaled to fit all iqs
939 * into the target latency */
940 slice = max(slice * group_slice / expect_latency,
941 low_slice);
942 }
943 }
944 return slice;
945 }
946
947 static inline void
948 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
949 {
950 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
951
952 cfqq->slice_start = jiffies;
953 cfqq->slice_end = jiffies + slice;
954 cfqq->allocated_slice = slice;
955 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
956 }
957
958 /*
959 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
960 * isn't valid until the first request from the dispatch is activated
961 * and the slice time set.
962 */
963 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
964 {
965 if (cfq_cfqq_slice_new(cfqq))
966 return false;
967 if (time_before(jiffies, cfqq->slice_end))
968 return false;
969
970 return true;
971 }
972
973 /*
974 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
975 * We choose the request that is closest to the head right now. Distance
976 * behind the head is penalized and only allowed to a certain extent.
977 */
978 static struct request *
979 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
980 {
981 sector_t s1, s2, d1 = 0, d2 = 0;
982 unsigned long back_max;
983 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
984 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
985 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
986
987 if (rq1 == NULL || rq1 == rq2)
988 return rq2;
989 if (rq2 == NULL)
990 return rq1;
991
992 if (rq_is_sync(rq1) != rq_is_sync(rq2))
993 return rq_is_sync(rq1) ? rq1 : rq2;
994
995 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
996 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
997
998 s1 = blk_rq_pos(rq1);
999 s2 = blk_rq_pos(rq2);
1000
1001 /*
1002 * by definition, 1KiB is 2 sectors
1003 */
1004 back_max = cfqd->cfq_back_max * 2;
1005
1006 /*
1007 * Strict one way elevator _except_ in the case where we allow
1008 * short backward seeks which are biased as twice the cost of a
1009 * similar forward seek.
1010 */
1011 if (s1 >= last)
1012 d1 = s1 - last;
1013 else if (s1 + back_max >= last)
1014 d1 = (last - s1) * cfqd->cfq_back_penalty;
1015 else
1016 wrap |= CFQ_RQ1_WRAP;
1017
1018 if (s2 >= last)
1019 d2 = s2 - last;
1020 else if (s2 + back_max >= last)
1021 d2 = (last - s2) * cfqd->cfq_back_penalty;
1022 else
1023 wrap |= CFQ_RQ2_WRAP;
1024
1025 /* Found required data */
1026
1027 /*
1028 * By doing switch() on the bit mask "wrap" we avoid having to
1029 * check two variables for all permutations: --> faster!
1030 */
1031 switch (wrap) {
1032 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1033 if (d1 < d2)
1034 return rq1;
1035 else if (d2 < d1)
1036 return rq2;
1037 else {
1038 if (s1 >= s2)
1039 return rq1;
1040 else
1041 return rq2;
1042 }
1043
1044 case CFQ_RQ2_WRAP:
1045 return rq1;
1046 case CFQ_RQ1_WRAP:
1047 return rq2;
1048 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1049 default:
1050 /*
1051 * Since both rqs are wrapped,
1052 * start with the one that's further behind head
1053 * (--> only *one* back seek required),
1054 * since back seek takes more time than forward.
1055 */
1056 if (s1 <= s2)
1057 return rq1;
1058 else
1059 return rq2;
1060 }
1061 }
1062
1063 /*
1064 * The below is leftmost cache rbtree addon
1065 */
1066 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1067 {
1068 /* Service tree is empty */
1069 if (!root->count)
1070 return NULL;
1071
1072 if (!root->left)
1073 root->left = rb_first(&root->rb);
1074
1075 if (root->left)
1076 return rb_entry(root->left, struct cfq_queue, rb_node);
1077
1078 return NULL;
1079 }
1080
1081 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1082 {
1083 if (!root->left)
1084 root->left = rb_first(&root->rb);
1085
1086 if (root->left)
1087 return rb_entry_cfqg(root->left);
1088
1089 return NULL;
1090 }
1091
1092 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1093 {
1094 rb_erase(n, root);
1095 RB_CLEAR_NODE(n);
1096 }
1097
1098 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1099 {
1100 if (root->left == n)
1101 root->left = NULL;
1102 rb_erase_init(n, &root->rb);
1103 --root->count;
1104 }
1105
1106 /*
1107 * would be nice to take fifo expire time into account as well
1108 */
1109 static struct request *
1110 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1111 struct request *last)
1112 {
1113 struct rb_node *rbnext = rb_next(&last->rb_node);
1114 struct rb_node *rbprev = rb_prev(&last->rb_node);
1115 struct request *next = NULL, *prev = NULL;
1116
1117 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1118
1119 if (rbprev)
1120 prev = rb_entry_rq(rbprev);
1121
1122 if (rbnext)
1123 next = rb_entry_rq(rbnext);
1124 else {
1125 rbnext = rb_first(&cfqq->sort_list);
1126 if (rbnext && rbnext != &last->rb_node)
1127 next = rb_entry_rq(rbnext);
1128 }
1129
1130 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1131 }
1132
1133 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1134 struct cfq_queue *cfqq)
1135 {
1136 /*
1137 * just an approximation, should be ok.
1138 */
1139 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1140 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1141 }
1142
1143 static inline s64
1144 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1145 {
1146 return cfqg->vdisktime - st->min_vdisktime;
1147 }
1148
1149 static void
1150 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1151 {
1152 struct rb_node **node = &st->rb.rb_node;
1153 struct rb_node *parent = NULL;
1154 struct cfq_group *__cfqg;
1155 s64 key = cfqg_key(st, cfqg);
1156 int left = 1;
1157
1158 while (*node != NULL) {
1159 parent = *node;
1160 __cfqg = rb_entry_cfqg(parent);
1161
1162 if (key < cfqg_key(st, __cfqg))
1163 node = &parent->rb_left;
1164 else {
1165 node = &parent->rb_right;
1166 left = 0;
1167 }
1168 }
1169
1170 if (left)
1171 st->left = &cfqg->rb_node;
1172
1173 rb_link_node(&cfqg->rb_node, parent, node);
1174 rb_insert_color(&cfqg->rb_node, &st->rb);
1175 }
1176
1177 static void
1178 cfq_update_group_weight(struct cfq_group *cfqg)
1179 {
1180 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1181 if (cfqg->new_weight) {
1182 cfqg->weight = cfqg->new_weight;
1183 cfqg->new_weight = 0;
1184 }
1185 }
1186
1187 static void
1188 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1189 {
1190 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1191
1192 cfq_update_group_weight(cfqg);
1193 __cfq_group_service_tree_add(st, cfqg);
1194 st->total_weight += cfqg->weight;
1195 }
1196
1197 static void
1198 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1199 {
1200 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1201 struct cfq_group *__cfqg;
1202 struct rb_node *n;
1203
1204 cfqg->nr_cfqq++;
1205 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1206 return;
1207
1208 /*
1209 * Currently put the group at the end. Later implement something
1210 * so that groups get lesser vtime based on their weights, so that
1211 * if group does not loose all if it was not continuously backlogged.
1212 */
1213 n = rb_last(&st->rb);
1214 if (n) {
1215 __cfqg = rb_entry_cfqg(n);
1216 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1217 } else
1218 cfqg->vdisktime = st->min_vdisktime;
1219 cfq_group_service_tree_add(st, cfqg);
1220 }
1221
1222 static void
1223 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1224 {
1225 st->total_weight -= cfqg->weight;
1226 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1227 cfq_rb_erase(&cfqg->rb_node, st);
1228 }
1229
1230 static void
1231 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1232 {
1233 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1234
1235 BUG_ON(cfqg->nr_cfqq < 1);
1236 cfqg->nr_cfqq--;
1237
1238 /* If there are other cfq queues under this group, don't delete it */
1239 if (cfqg->nr_cfqq)
1240 return;
1241
1242 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1243 cfq_group_service_tree_del(st, cfqg);
1244 cfqg->saved_workload_slice = 0;
1245 cfqg_stats_update_dequeue(cfqg);
1246 }
1247
1248 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1249 unsigned int *unaccounted_time)
1250 {
1251 unsigned int slice_used;
1252
1253 /*
1254 * Queue got expired before even a single request completed or
1255 * got expired immediately after first request completion.
1256 */
1257 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1258 /*
1259 * Also charge the seek time incurred to the group, otherwise
1260 * if there are mutiple queues in the group, each can dispatch
1261 * a single request on seeky media and cause lots of seek time
1262 * and group will never know it.
1263 */
1264 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1265 1);
1266 } else {
1267 slice_used = jiffies - cfqq->slice_start;
1268 if (slice_used > cfqq->allocated_slice) {
1269 *unaccounted_time = slice_used - cfqq->allocated_slice;
1270 slice_used = cfqq->allocated_slice;
1271 }
1272 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1273 *unaccounted_time += cfqq->slice_start -
1274 cfqq->dispatch_start;
1275 }
1276
1277 return slice_used;
1278 }
1279
1280 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1281 struct cfq_queue *cfqq)
1282 {
1283 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1284 unsigned int used_sl, charge, unaccounted_sl = 0;
1285 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1286 - cfqg->service_tree_idle.count;
1287
1288 BUG_ON(nr_sync < 0);
1289 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1290
1291 if (iops_mode(cfqd))
1292 charge = cfqq->slice_dispatch;
1293 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1294 charge = cfqq->allocated_slice;
1295
1296 /* Can't update vdisktime while group is on service tree */
1297 cfq_group_service_tree_del(st, cfqg);
1298 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1299 /* If a new weight was requested, update now, off tree */
1300 cfq_group_service_tree_add(st, cfqg);
1301
1302 /* This group is being expired. Save the context */
1303 if (time_after(cfqd->workload_expires, jiffies)) {
1304 cfqg->saved_workload_slice = cfqd->workload_expires
1305 - jiffies;
1306 cfqg->saved_workload = cfqd->serving_type;
1307 cfqg->saved_serving_prio = cfqd->serving_prio;
1308 } else
1309 cfqg->saved_workload_slice = 0;
1310
1311 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1312 st->min_vdisktime);
1313 cfq_log_cfqq(cfqq->cfqd, cfqq,
1314 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1315 used_sl, cfqq->slice_dispatch, charge,
1316 iops_mode(cfqd), cfqq->nr_sectors);
1317 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1318 cfqg_stats_set_start_empty_time(cfqg);
1319 }
1320
1321 /**
1322 * cfq_init_cfqg_base - initialize base part of a cfq_group
1323 * @cfqg: cfq_group to initialize
1324 *
1325 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1326 * is enabled or not.
1327 */
1328 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1329 {
1330 struct cfq_rb_root *st;
1331 int i, j;
1332
1333 for_each_cfqg_st(cfqg, i, j, st)
1334 *st = CFQ_RB_ROOT;
1335 RB_CLEAR_NODE(&cfqg->rb_node);
1336
1337 cfqg->ttime.last_end_request = jiffies;
1338 }
1339
1340 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1341 static void cfq_pd_init(struct blkcg_gq *blkg)
1342 {
1343 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1344
1345 cfq_init_cfqg_base(cfqg);
1346 cfqg->weight = blkg->blkcg->cfq_weight;
1347 }
1348
1349 /*
1350 * Search for the cfq group current task belongs to. request_queue lock must
1351 * be held.
1352 */
1353 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1354 struct blkcg *blkcg)
1355 {
1356 struct request_queue *q = cfqd->queue;
1357 struct cfq_group *cfqg = NULL;
1358
1359 /* avoid lookup for the common case where there's no blkcg */
1360 if (blkcg == &blkcg_root) {
1361 cfqg = cfqd->root_group;
1362 } else {
1363 struct blkcg_gq *blkg;
1364
1365 blkg = blkg_lookup_create(blkcg, q);
1366 if (!IS_ERR(blkg))
1367 cfqg = blkg_to_cfqg(blkg);
1368 }
1369
1370 return cfqg;
1371 }
1372
1373 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1374 {
1375 /* Currently, all async queues are mapped to root group */
1376 if (!cfq_cfqq_sync(cfqq))
1377 cfqg = cfqq->cfqd->root_group;
1378
1379 cfqq->cfqg = cfqg;
1380 /* cfqq reference on cfqg */
1381 cfqg_get(cfqg);
1382 }
1383
1384 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1385 struct blkg_policy_data *pd, int off)
1386 {
1387 struct cfq_group *cfqg = pd_to_cfqg(pd);
1388
1389 if (!cfqg->dev_weight)
1390 return 0;
1391 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1392 }
1393
1394 static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1395 struct seq_file *sf)
1396 {
1397 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1398 cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1399 false);
1400 return 0;
1401 }
1402
1403 static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1404 struct seq_file *sf)
1405 {
1406 seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1407 return 0;
1408 }
1409
1410 static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1411 const char *buf)
1412 {
1413 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1414 struct blkg_conf_ctx ctx;
1415 struct cfq_group *cfqg;
1416 int ret;
1417
1418 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1419 if (ret)
1420 return ret;
1421
1422 ret = -EINVAL;
1423 cfqg = blkg_to_cfqg(ctx.blkg);
1424 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1425 cfqg->dev_weight = ctx.v;
1426 cfqg->new_weight = cfqg->dev_weight ?: blkcg->cfq_weight;
1427 ret = 0;
1428 }
1429
1430 blkg_conf_finish(&ctx);
1431 return ret;
1432 }
1433
1434 static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1435 {
1436 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1437 struct blkcg_gq *blkg;
1438 struct hlist_node *n;
1439
1440 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1441 return -EINVAL;
1442
1443 spin_lock_irq(&blkcg->lock);
1444 blkcg->cfq_weight = (unsigned int)val;
1445
1446 hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1447 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1448
1449 if (cfqg && !cfqg->dev_weight)
1450 cfqg->new_weight = blkcg->cfq_weight;
1451 }
1452
1453 spin_unlock_irq(&blkcg->lock);
1454 return 0;
1455 }
1456
1457 static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1458 struct seq_file *sf)
1459 {
1460 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1461
1462 blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1463 cft->private, false);
1464 return 0;
1465 }
1466
1467 static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1468 struct seq_file *sf)
1469 {
1470 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1471
1472 blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1473 cft->private, true);
1474 return 0;
1475 }
1476
1477 #ifdef CONFIG_DEBUG_BLK_CGROUP
1478 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1479 struct blkg_policy_data *pd, int off)
1480 {
1481 struct cfq_group *cfqg = pd_to_cfqg(pd);
1482 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1483 u64 v = 0;
1484
1485 if (samples) {
1486 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1487 do_div(v, samples);
1488 }
1489 __blkg_prfill_u64(sf, pd, v);
1490 return 0;
1491 }
1492
1493 /* print avg_queue_size */
1494 static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1495 struct seq_file *sf)
1496 {
1497 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1498
1499 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1500 &blkcg_policy_cfq, 0, false);
1501 return 0;
1502 }
1503 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1504
1505 static struct cftype cfq_blkcg_files[] = {
1506 {
1507 .name = "weight_device",
1508 .read_seq_string = cfqg_print_weight_device,
1509 .write_string = cfqg_set_weight_device,
1510 .max_write_len = 256,
1511 },
1512 {
1513 .name = "weight",
1514 .read_seq_string = cfq_print_weight,
1515 .write_u64 = cfq_set_weight,
1516 },
1517 {
1518 .name = "time",
1519 .private = offsetof(struct cfq_group, stats.time),
1520 .read_seq_string = cfqg_print_stat,
1521 },
1522 {
1523 .name = "sectors",
1524 .private = offsetof(struct cfq_group, stats.sectors),
1525 .read_seq_string = cfqg_print_stat,
1526 },
1527 {
1528 .name = "io_service_bytes",
1529 .private = offsetof(struct cfq_group, stats.service_bytes),
1530 .read_seq_string = cfqg_print_rwstat,
1531 },
1532 {
1533 .name = "io_serviced",
1534 .private = offsetof(struct cfq_group, stats.serviced),
1535 .read_seq_string = cfqg_print_rwstat,
1536 },
1537 {
1538 .name = "io_service_time",
1539 .private = offsetof(struct cfq_group, stats.service_time),
1540 .read_seq_string = cfqg_print_rwstat,
1541 },
1542 {
1543 .name = "io_wait_time",
1544 .private = offsetof(struct cfq_group, stats.wait_time),
1545 .read_seq_string = cfqg_print_rwstat,
1546 },
1547 {
1548 .name = "io_merged",
1549 .private = offsetof(struct cfq_group, stats.merged),
1550 .read_seq_string = cfqg_print_rwstat,
1551 },
1552 {
1553 .name = "io_queued",
1554 .private = offsetof(struct cfq_group, stats.queued),
1555 .read_seq_string = cfqg_print_rwstat,
1556 },
1557 #ifdef CONFIG_DEBUG_BLK_CGROUP
1558 {
1559 .name = "avg_queue_size",
1560 .read_seq_string = cfqg_print_avg_queue_size,
1561 },
1562 {
1563 .name = "group_wait_time",
1564 .private = offsetof(struct cfq_group, stats.group_wait_time),
1565 .read_seq_string = cfqg_print_stat,
1566 },
1567 {
1568 .name = "idle_time",
1569 .private = offsetof(struct cfq_group, stats.idle_time),
1570 .read_seq_string = cfqg_print_stat,
1571 },
1572 {
1573 .name = "empty_time",
1574 .private = offsetof(struct cfq_group, stats.empty_time),
1575 .read_seq_string = cfqg_print_stat,
1576 },
1577 {
1578 .name = "dequeue",
1579 .private = offsetof(struct cfq_group, stats.dequeue),
1580 .read_seq_string = cfqg_print_stat,
1581 },
1582 {
1583 .name = "unaccounted_time",
1584 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1585 .read_seq_string = cfqg_print_stat,
1586 },
1587 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1588 { } /* terminate */
1589 };
1590 #else /* GROUP_IOSCHED */
1591 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1592 struct blkcg *blkcg)
1593 {
1594 return cfqd->root_group;
1595 }
1596
1597 static inline void
1598 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1599 cfqq->cfqg = cfqg;
1600 }
1601
1602 #endif /* GROUP_IOSCHED */
1603
1604 /*
1605 * The cfqd->service_trees holds all pending cfq_queue's that have
1606 * requests waiting to be processed. It is sorted in the order that
1607 * we will service the queues.
1608 */
1609 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1610 bool add_front)
1611 {
1612 struct rb_node **p, *parent;
1613 struct cfq_queue *__cfqq;
1614 unsigned long rb_key;
1615 struct cfq_rb_root *service_tree;
1616 int left;
1617 int new_cfqq = 1;
1618
1619 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1620 cfqq_type(cfqq));
1621 if (cfq_class_idle(cfqq)) {
1622 rb_key = CFQ_IDLE_DELAY;
1623 parent = rb_last(&service_tree->rb);
1624 if (parent && parent != &cfqq->rb_node) {
1625 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1626 rb_key += __cfqq->rb_key;
1627 } else
1628 rb_key += jiffies;
1629 } else if (!add_front) {
1630 /*
1631 * Get our rb key offset. Subtract any residual slice
1632 * value carried from last service. A negative resid
1633 * count indicates slice overrun, and this should position
1634 * the next service time further away in the tree.
1635 */
1636 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1637 rb_key -= cfqq->slice_resid;
1638 cfqq->slice_resid = 0;
1639 } else {
1640 rb_key = -HZ;
1641 __cfqq = cfq_rb_first(service_tree);
1642 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1643 }
1644
1645 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1646 new_cfqq = 0;
1647 /*
1648 * same position, nothing more to do
1649 */
1650 if (rb_key == cfqq->rb_key &&
1651 cfqq->service_tree == service_tree)
1652 return;
1653
1654 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1655 cfqq->service_tree = NULL;
1656 }
1657
1658 left = 1;
1659 parent = NULL;
1660 cfqq->service_tree = service_tree;
1661 p = &service_tree->rb.rb_node;
1662 while (*p) {
1663 struct rb_node **n;
1664
1665 parent = *p;
1666 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1667
1668 /*
1669 * sort by key, that represents service time.
1670 */
1671 if (time_before(rb_key, __cfqq->rb_key))
1672 n = &(*p)->rb_left;
1673 else {
1674 n = &(*p)->rb_right;
1675 left = 0;
1676 }
1677
1678 p = n;
1679 }
1680
1681 if (left)
1682 service_tree->left = &cfqq->rb_node;
1683
1684 cfqq->rb_key = rb_key;
1685 rb_link_node(&cfqq->rb_node, parent, p);
1686 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1687 service_tree->count++;
1688 if (add_front || !new_cfqq)
1689 return;
1690 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1691 }
1692
1693 static struct cfq_queue *
1694 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1695 sector_t sector, struct rb_node **ret_parent,
1696 struct rb_node ***rb_link)
1697 {
1698 struct rb_node **p, *parent;
1699 struct cfq_queue *cfqq = NULL;
1700
1701 parent = NULL;
1702 p = &root->rb_node;
1703 while (*p) {
1704 struct rb_node **n;
1705
1706 parent = *p;
1707 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1708
1709 /*
1710 * Sort strictly based on sector. Smallest to the left,
1711 * largest to the right.
1712 */
1713 if (sector > blk_rq_pos(cfqq->next_rq))
1714 n = &(*p)->rb_right;
1715 else if (sector < blk_rq_pos(cfqq->next_rq))
1716 n = &(*p)->rb_left;
1717 else
1718 break;
1719 p = n;
1720 cfqq = NULL;
1721 }
1722
1723 *ret_parent = parent;
1724 if (rb_link)
1725 *rb_link = p;
1726 return cfqq;
1727 }
1728
1729 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1730 {
1731 struct rb_node **p, *parent;
1732 struct cfq_queue *__cfqq;
1733
1734 if (cfqq->p_root) {
1735 rb_erase(&cfqq->p_node, cfqq->p_root);
1736 cfqq->p_root = NULL;
1737 }
1738
1739 if (cfq_class_idle(cfqq))
1740 return;
1741 if (!cfqq->next_rq)
1742 return;
1743
1744 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1745 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1746 blk_rq_pos(cfqq->next_rq), &parent, &p);
1747 if (!__cfqq) {
1748 rb_link_node(&cfqq->p_node, parent, p);
1749 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1750 } else
1751 cfqq->p_root = NULL;
1752 }
1753
1754 /*
1755 * Update cfqq's position in the service tree.
1756 */
1757 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1758 {
1759 /*
1760 * Resorting requires the cfqq to be on the RR list already.
1761 */
1762 if (cfq_cfqq_on_rr(cfqq)) {
1763 cfq_service_tree_add(cfqd, cfqq, 0);
1764 cfq_prio_tree_add(cfqd, cfqq);
1765 }
1766 }
1767
1768 /*
1769 * add to busy list of queues for service, trying to be fair in ordering
1770 * the pending list according to last request service
1771 */
1772 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1773 {
1774 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1775 BUG_ON(cfq_cfqq_on_rr(cfqq));
1776 cfq_mark_cfqq_on_rr(cfqq);
1777 cfqd->busy_queues++;
1778 if (cfq_cfqq_sync(cfqq))
1779 cfqd->busy_sync_queues++;
1780
1781 cfq_resort_rr_list(cfqd, cfqq);
1782 }
1783
1784 /*
1785 * Called when the cfqq no longer has requests pending, remove it from
1786 * the service tree.
1787 */
1788 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1789 {
1790 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1791 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1792 cfq_clear_cfqq_on_rr(cfqq);
1793
1794 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1795 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1796 cfqq->service_tree = NULL;
1797 }
1798 if (cfqq->p_root) {
1799 rb_erase(&cfqq->p_node, cfqq->p_root);
1800 cfqq->p_root = NULL;
1801 }
1802
1803 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1804 BUG_ON(!cfqd->busy_queues);
1805 cfqd->busy_queues--;
1806 if (cfq_cfqq_sync(cfqq))
1807 cfqd->busy_sync_queues--;
1808 }
1809
1810 /*
1811 * rb tree support functions
1812 */
1813 static void cfq_del_rq_rb(struct request *rq)
1814 {
1815 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1816 const int sync = rq_is_sync(rq);
1817
1818 BUG_ON(!cfqq->queued[sync]);
1819 cfqq->queued[sync]--;
1820
1821 elv_rb_del(&cfqq->sort_list, rq);
1822
1823 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1824 /*
1825 * Queue will be deleted from service tree when we actually
1826 * expire it later. Right now just remove it from prio tree
1827 * as it is empty.
1828 */
1829 if (cfqq->p_root) {
1830 rb_erase(&cfqq->p_node, cfqq->p_root);
1831 cfqq->p_root = NULL;
1832 }
1833 }
1834 }
1835
1836 static void cfq_add_rq_rb(struct request *rq)
1837 {
1838 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1839 struct cfq_data *cfqd = cfqq->cfqd;
1840 struct request *prev;
1841
1842 cfqq->queued[rq_is_sync(rq)]++;
1843
1844 elv_rb_add(&cfqq->sort_list, rq);
1845
1846 if (!cfq_cfqq_on_rr(cfqq))
1847 cfq_add_cfqq_rr(cfqd, cfqq);
1848
1849 /*
1850 * check if this request is a better next-serve candidate
1851 */
1852 prev = cfqq->next_rq;
1853 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1854
1855 /*
1856 * adjust priority tree position, if ->next_rq changes
1857 */
1858 if (prev != cfqq->next_rq)
1859 cfq_prio_tree_add(cfqd, cfqq);
1860
1861 BUG_ON(!cfqq->next_rq);
1862 }
1863
1864 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1865 {
1866 elv_rb_del(&cfqq->sort_list, rq);
1867 cfqq->queued[rq_is_sync(rq)]--;
1868 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1869 cfq_add_rq_rb(rq);
1870 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
1871 rq->cmd_flags);
1872 }
1873
1874 static struct request *
1875 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1876 {
1877 struct task_struct *tsk = current;
1878 struct cfq_io_cq *cic;
1879 struct cfq_queue *cfqq;
1880
1881 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1882 if (!cic)
1883 return NULL;
1884
1885 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1886 if (cfqq) {
1887 sector_t sector = bio->bi_sector + bio_sectors(bio);
1888
1889 return elv_rb_find(&cfqq->sort_list, sector);
1890 }
1891
1892 return NULL;
1893 }
1894
1895 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1896 {
1897 struct cfq_data *cfqd = q->elevator->elevator_data;
1898
1899 cfqd->rq_in_driver++;
1900 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1901 cfqd->rq_in_driver);
1902
1903 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1904 }
1905
1906 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1907 {
1908 struct cfq_data *cfqd = q->elevator->elevator_data;
1909
1910 WARN_ON(!cfqd->rq_in_driver);
1911 cfqd->rq_in_driver--;
1912 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1913 cfqd->rq_in_driver);
1914 }
1915
1916 static void cfq_remove_request(struct request *rq)
1917 {
1918 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1919
1920 if (cfqq->next_rq == rq)
1921 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1922
1923 list_del_init(&rq->queuelist);
1924 cfq_del_rq_rb(rq);
1925
1926 cfqq->cfqd->rq_queued--;
1927 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1928 if (rq->cmd_flags & REQ_PRIO) {
1929 WARN_ON(!cfqq->prio_pending);
1930 cfqq->prio_pending--;
1931 }
1932 }
1933
1934 static int cfq_merge(struct request_queue *q, struct request **req,
1935 struct bio *bio)
1936 {
1937 struct cfq_data *cfqd = q->elevator->elevator_data;
1938 struct request *__rq;
1939
1940 __rq = cfq_find_rq_fmerge(cfqd, bio);
1941 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1942 *req = __rq;
1943 return ELEVATOR_FRONT_MERGE;
1944 }
1945
1946 return ELEVATOR_NO_MERGE;
1947 }
1948
1949 static void cfq_merged_request(struct request_queue *q, struct request *req,
1950 int type)
1951 {
1952 if (type == ELEVATOR_FRONT_MERGE) {
1953 struct cfq_queue *cfqq = RQ_CFQQ(req);
1954
1955 cfq_reposition_rq_rb(cfqq, req);
1956 }
1957 }
1958
1959 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1960 struct bio *bio)
1961 {
1962 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
1963 }
1964
1965 static void
1966 cfq_merged_requests(struct request_queue *q, struct request *rq,
1967 struct request *next)
1968 {
1969 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1970 struct cfq_data *cfqd = q->elevator->elevator_data;
1971
1972 /*
1973 * reposition in fifo if next is older than rq
1974 */
1975 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1976 time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
1977 cfqq == RQ_CFQQ(next)) {
1978 list_move(&rq->queuelist, &next->queuelist);
1979 rq_set_fifo_time(rq, rq_fifo_time(next));
1980 }
1981
1982 if (cfqq->next_rq == next)
1983 cfqq->next_rq = rq;
1984 cfq_remove_request(next);
1985 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
1986
1987 cfqq = RQ_CFQQ(next);
1988 /*
1989 * all requests of this queue are merged to other queues, delete it
1990 * from the service tree. If it's the active_queue,
1991 * cfq_dispatch_requests() will choose to expire it or do idle
1992 */
1993 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1994 cfqq != cfqd->active_queue)
1995 cfq_del_cfqq_rr(cfqd, cfqq);
1996 }
1997
1998 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1999 struct bio *bio)
2000 {
2001 struct cfq_data *cfqd = q->elevator->elevator_data;
2002 struct cfq_io_cq *cic;
2003 struct cfq_queue *cfqq;
2004
2005 /*
2006 * Disallow merge of a sync bio into an async request.
2007 */
2008 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2009 return false;
2010
2011 /*
2012 * Lookup the cfqq that this bio will be queued with and allow
2013 * merge only if rq is queued there.
2014 */
2015 cic = cfq_cic_lookup(cfqd, current->io_context);
2016 if (!cic)
2017 return false;
2018
2019 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2020 return cfqq == RQ_CFQQ(rq);
2021 }
2022
2023 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2024 {
2025 del_timer(&cfqd->idle_slice_timer);
2026 cfqg_stats_update_idle_time(cfqq->cfqg);
2027 }
2028
2029 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2030 struct cfq_queue *cfqq)
2031 {
2032 if (cfqq) {
2033 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
2034 cfqd->serving_prio, cfqd->serving_type);
2035 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2036 cfqq->slice_start = 0;
2037 cfqq->dispatch_start = jiffies;
2038 cfqq->allocated_slice = 0;
2039 cfqq->slice_end = 0;
2040 cfqq->slice_dispatch = 0;
2041 cfqq->nr_sectors = 0;
2042
2043 cfq_clear_cfqq_wait_request(cfqq);
2044 cfq_clear_cfqq_must_dispatch(cfqq);
2045 cfq_clear_cfqq_must_alloc_slice(cfqq);
2046 cfq_clear_cfqq_fifo_expire(cfqq);
2047 cfq_mark_cfqq_slice_new(cfqq);
2048
2049 cfq_del_timer(cfqd, cfqq);
2050 }
2051
2052 cfqd->active_queue = cfqq;
2053 }
2054
2055 /*
2056 * current cfqq expired its slice (or was too idle), select new one
2057 */
2058 static void
2059 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2060 bool timed_out)
2061 {
2062 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2063
2064 if (cfq_cfqq_wait_request(cfqq))
2065 cfq_del_timer(cfqd, cfqq);
2066
2067 cfq_clear_cfqq_wait_request(cfqq);
2068 cfq_clear_cfqq_wait_busy(cfqq);
2069
2070 /*
2071 * If this cfqq is shared between multiple processes, check to
2072 * make sure that those processes are still issuing I/Os within
2073 * the mean seek distance. If not, it may be time to break the
2074 * queues apart again.
2075 */
2076 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2077 cfq_mark_cfqq_split_coop(cfqq);
2078
2079 /*
2080 * store what was left of this slice, if the queue idled/timed out
2081 */
2082 if (timed_out) {
2083 if (cfq_cfqq_slice_new(cfqq))
2084 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2085 else
2086 cfqq->slice_resid = cfqq->slice_end - jiffies;
2087 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2088 }
2089
2090 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2091
2092 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2093 cfq_del_cfqq_rr(cfqd, cfqq);
2094
2095 cfq_resort_rr_list(cfqd, cfqq);
2096
2097 if (cfqq == cfqd->active_queue)
2098 cfqd->active_queue = NULL;
2099
2100 if (cfqd->active_cic) {
2101 put_io_context(cfqd->active_cic->icq.ioc);
2102 cfqd->active_cic = NULL;
2103 }
2104 }
2105
2106 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2107 {
2108 struct cfq_queue *cfqq = cfqd->active_queue;
2109
2110 if (cfqq)
2111 __cfq_slice_expired(cfqd, cfqq, timed_out);
2112 }
2113
2114 /*
2115 * Get next queue for service. Unless we have a queue preemption,
2116 * we'll simply select the first cfqq in the service tree.
2117 */
2118 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2119 {
2120 struct cfq_rb_root *service_tree =
2121 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
2122 cfqd->serving_type);
2123
2124 if (!cfqd->rq_queued)
2125 return NULL;
2126
2127 /* There is nothing to dispatch */
2128 if (!service_tree)
2129 return NULL;
2130 if (RB_EMPTY_ROOT(&service_tree->rb))
2131 return NULL;
2132 return cfq_rb_first(service_tree);
2133 }
2134
2135 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2136 {
2137 struct cfq_group *cfqg;
2138 struct cfq_queue *cfqq;
2139 int i, j;
2140 struct cfq_rb_root *st;
2141
2142 if (!cfqd->rq_queued)
2143 return NULL;
2144
2145 cfqg = cfq_get_next_cfqg(cfqd);
2146 if (!cfqg)
2147 return NULL;
2148
2149 for_each_cfqg_st(cfqg, i, j, st)
2150 if ((cfqq = cfq_rb_first(st)) != NULL)
2151 return cfqq;
2152 return NULL;
2153 }
2154
2155 /*
2156 * Get and set a new active queue for service.
2157 */
2158 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2159 struct cfq_queue *cfqq)
2160 {
2161 if (!cfqq)
2162 cfqq = cfq_get_next_queue(cfqd);
2163
2164 __cfq_set_active_queue(cfqd, cfqq);
2165 return cfqq;
2166 }
2167
2168 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2169 struct request *rq)
2170 {
2171 if (blk_rq_pos(rq) >= cfqd->last_position)
2172 return blk_rq_pos(rq) - cfqd->last_position;
2173 else
2174 return cfqd->last_position - blk_rq_pos(rq);
2175 }
2176
2177 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2178 struct request *rq)
2179 {
2180 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2181 }
2182
2183 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2184 struct cfq_queue *cur_cfqq)
2185 {
2186 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2187 struct rb_node *parent, *node;
2188 struct cfq_queue *__cfqq;
2189 sector_t sector = cfqd->last_position;
2190
2191 if (RB_EMPTY_ROOT(root))
2192 return NULL;
2193
2194 /*
2195 * First, if we find a request starting at the end of the last
2196 * request, choose it.
2197 */
2198 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2199 if (__cfqq)
2200 return __cfqq;
2201
2202 /*
2203 * If the exact sector wasn't found, the parent of the NULL leaf
2204 * will contain the closest sector.
2205 */
2206 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2207 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2208 return __cfqq;
2209
2210 if (blk_rq_pos(__cfqq->next_rq) < sector)
2211 node = rb_next(&__cfqq->p_node);
2212 else
2213 node = rb_prev(&__cfqq->p_node);
2214 if (!node)
2215 return NULL;
2216
2217 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2218 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2219 return __cfqq;
2220
2221 return NULL;
2222 }
2223
2224 /*
2225 * cfqd - obvious
2226 * cur_cfqq - passed in so that we don't decide that the current queue is
2227 * closely cooperating with itself.
2228 *
2229 * So, basically we're assuming that that cur_cfqq has dispatched at least
2230 * one request, and that cfqd->last_position reflects a position on the disk
2231 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2232 * assumption.
2233 */
2234 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2235 struct cfq_queue *cur_cfqq)
2236 {
2237 struct cfq_queue *cfqq;
2238
2239 if (cfq_class_idle(cur_cfqq))
2240 return NULL;
2241 if (!cfq_cfqq_sync(cur_cfqq))
2242 return NULL;
2243 if (CFQQ_SEEKY(cur_cfqq))
2244 return NULL;
2245
2246 /*
2247 * Don't search priority tree if it's the only queue in the group.
2248 */
2249 if (cur_cfqq->cfqg->nr_cfqq == 1)
2250 return NULL;
2251
2252 /*
2253 * We should notice if some of the queues are cooperating, eg
2254 * working closely on the same area of the disk. In that case,
2255 * we can group them together and don't waste time idling.
2256 */
2257 cfqq = cfqq_close(cfqd, cur_cfqq);
2258 if (!cfqq)
2259 return NULL;
2260
2261 /* If new queue belongs to different cfq_group, don't choose it */
2262 if (cur_cfqq->cfqg != cfqq->cfqg)
2263 return NULL;
2264
2265 /*
2266 * It only makes sense to merge sync queues.
2267 */
2268 if (!cfq_cfqq_sync(cfqq))
2269 return NULL;
2270 if (CFQQ_SEEKY(cfqq))
2271 return NULL;
2272
2273 /*
2274 * Do not merge queues of different priority classes
2275 */
2276 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2277 return NULL;
2278
2279 return cfqq;
2280 }
2281
2282 /*
2283 * Determine whether we should enforce idle window for this queue.
2284 */
2285
2286 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2287 {
2288 enum wl_prio_t prio = cfqq_prio(cfqq);
2289 struct cfq_rb_root *service_tree = cfqq->service_tree;
2290
2291 BUG_ON(!service_tree);
2292 BUG_ON(!service_tree->count);
2293
2294 if (!cfqd->cfq_slice_idle)
2295 return false;
2296
2297 /* We never do for idle class queues. */
2298 if (prio == IDLE_WORKLOAD)
2299 return false;
2300
2301 /* We do for queues that were marked with idle window flag. */
2302 if (cfq_cfqq_idle_window(cfqq) &&
2303 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2304 return true;
2305
2306 /*
2307 * Otherwise, we do only if they are the last ones
2308 * in their service tree.
2309 */
2310 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2311 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2312 return true;
2313 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2314 service_tree->count);
2315 return false;
2316 }
2317
2318 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2319 {
2320 struct cfq_queue *cfqq = cfqd->active_queue;
2321 struct cfq_io_cq *cic;
2322 unsigned long sl, group_idle = 0;
2323
2324 /*
2325 * SSD device without seek penalty, disable idling. But only do so
2326 * for devices that support queuing, otherwise we still have a problem
2327 * with sync vs async workloads.
2328 */
2329 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2330 return;
2331
2332 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2333 WARN_ON(cfq_cfqq_slice_new(cfqq));
2334
2335 /*
2336 * idle is disabled, either manually or by past process history
2337 */
2338 if (!cfq_should_idle(cfqd, cfqq)) {
2339 /* no queue idling. Check for group idling */
2340 if (cfqd->cfq_group_idle)
2341 group_idle = cfqd->cfq_group_idle;
2342 else
2343 return;
2344 }
2345
2346 /*
2347 * still active requests from this queue, don't idle
2348 */
2349 if (cfqq->dispatched)
2350 return;
2351
2352 /*
2353 * task has exited, don't wait
2354 */
2355 cic = cfqd->active_cic;
2356 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2357 return;
2358
2359 /*
2360 * If our average think time is larger than the remaining time
2361 * slice, then don't idle. This avoids overrunning the allotted
2362 * time slice.
2363 */
2364 if (sample_valid(cic->ttime.ttime_samples) &&
2365 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2366 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2367 cic->ttime.ttime_mean);
2368 return;
2369 }
2370
2371 /* There are other queues in the group, don't do group idle */
2372 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2373 return;
2374
2375 cfq_mark_cfqq_wait_request(cfqq);
2376
2377 if (group_idle)
2378 sl = cfqd->cfq_group_idle;
2379 else
2380 sl = cfqd->cfq_slice_idle;
2381
2382 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2383 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2384 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2385 group_idle ? 1 : 0);
2386 }
2387
2388 /*
2389 * Move request from internal lists to the request queue dispatch list.
2390 */
2391 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2392 {
2393 struct cfq_data *cfqd = q->elevator->elevator_data;
2394 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2395
2396 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2397
2398 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2399 cfq_remove_request(rq);
2400 cfqq->dispatched++;
2401 (RQ_CFQG(rq))->dispatched++;
2402 elv_dispatch_sort(q, rq);
2403
2404 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2405 cfqq->nr_sectors += blk_rq_sectors(rq);
2406 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2407 }
2408
2409 /*
2410 * return expired entry, or NULL to just start from scratch in rbtree
2411 */
2412 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2413 {
2414 struct request *rq = NULL;
2415
2416 if (cfq_cfqq_fifo_expire(cfqq))
2417 return NULL;
2418
2419 cfq_mark_cfqq_fifo_expire(cfqq);
2420
2421 if (list_empty(&cfqq->fifo))
2422 return NULL;
2423
2424 rq = rq_entry_fifo(cfqq->fifo.next);
2425 if (time_before(jiffies, rq_fifo_time(rq)))
2426 rq = NULL;
2427
2428 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2429 return rq;
2430 }
2431
2432 static inline int
2433 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2434 {
2435 const int base_rq = cfqd->cfq_slice_async_rq;
2436
2437 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2438
2439 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2440 }
2441
2442 /*
2443 * Must be called with the queue_lock held.
2444 */
2445 static int cfqq_process_refs(struct cfq_queue *cfqq)
2446 {
2447 int process_refs, io_refs;
2448
2449 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2450 process_refs = cfqq->ref - io_refs;
2451 BUG_ON(process_refs < 0);
2452 return process_refs;
2453 }
2454
2455 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2456 {
2457 int process_refs, new_process_refs;
2458 struct cfq_queue *__cfqq;
2459
2460 /*
2461 * If there are no process references on the new_cfqq, then it is
2462 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2463 * chain may have dropped their last reference (not just their
2464 * last process reference).
2465 */
2466 if (!cfqq_process_refs(new_cfqq))
2467 return;
2468
2469 /* Avoid a circular list and skip interim queue merges */
2470 while ((__cfqq = new_cfqq->new_cfqq)) {
2471 if (__cfqq == cfqq)
2472 return;
2473 new_cfqq = __cfqq;
2474 }
2475
2476 process_refs = cfqq_process_refs(cfqq);
2477 new_process_refs = cfqq_process_refs(new_cfqq);
2478 /*
2479 * If the process for the cfqq has gone away, there is no
2480 * sense in merging the queues.
2481 */
2482 if (process_refs == 0 || new_process_refs == 0)
2483 return;
2484
2485 /*
2486 * Merge in the direction of the lesser amount of work.
2487 */
2488 if (new_process_refs >= process_refs) {
2489 cfqq->new_cfqq = new_cfqq;
2490 new_cfqq->ref += process_refs;
2491 } else {
2492 new_cfqq->new_cfqq = cfqq;
2493 cfqq->ref += new_process_refs;
2494 }
2495 }
2496
2497 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2498 struct cfq_group *cfqg, enum wl_prio_t prio)
2499 {
2500 struct cfq_queue *queue;
2501 int i;
2502 bool key_valid = false;
2503 unsigned long lowest_key = 0;
2504 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2505
2506 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2507 /* select the one with lowest rb_key */
2508 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2509 if (queue &&
2510 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2511 lowest_key = queue->rb_key;
2512 cur_best = i;
2513 key_valid = true;
2514 }
2515 }
2516
2517 return cur_best;
2518 }
2519
2520 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2521 {
2522 unsigned slice;
2523 unsigned count;
2524 struct cfq_rb_root *st;
2525 unsigned group_slice;
2526 enum wl_prio_t original_prio = cfqd->serving_prio;
2527
2528 /* Choose next priority. RT > BE > IDLE */
2529 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2530 cfqd->serving_prio = RT_WORKLOAD;
2531 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2532 cfqd->serving_prio = BE_WORKLOAD;
2533 else {
2534 cfqd->serving_prio = IDLE_WORKLOAD;
2535 cfqd->workload_expires = jiffies + 1;
2536 return;
2537 }
2538
2539 if (original_prio != cfqd->serving_prio)
2540 goto new_workload;
2541
2542 /*
2543 * For RT and BE, we have to choose also the type
2544 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2545 * expiration time
2546 */
2547 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2548 count = st->count;
2549
2550 /*
2551 * check workload expiration, and that we still have other queues ready
2552 */
2553 if (count && !time_after(jiffies, cfqd->workload_expires))
2554 return;
2555
2556 new_workload:
2557 /* otherwise select new workload type */
2558 cfqd->serving_type =
2559 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2560 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2561 count = st->count;
2562
2563 /*
2564 * the workload slice is computed as a fraction of target latency
2565 * proportional to the number of queues in that workload, over
2566 * all the queues in the same priority class
2567 */
2568 group_slice = cfq_group_slice(cfqd, cfqg);
2569
2570 slice = group_slice * count /
2571 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2572 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2573
2574 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2575 unsigned int tmp;
2576
2577 /*
2578 * Async queues are currently system wide. Just taking
2579 * proportion of queues with-in same group will lead to higher
2580 * async ratio system wide as generally root group is going
2581 * to have higher weight. A more accurate thing would be to
2582 * calculate system wide asnc/sync ratio.
2583 */
2584 tmp = cfqd->cfq_target_latency *
2585 cfqg_busy_async_queues(cfqd, cfqg);
2586 tmp = tmp/cfqd->busy_queues;
2587 slice = min_t(unsigned, slice, tmp);
2588
2589 /* async workload slice is scaled down according to
2590 * the sync/async slice ratio. */
2591 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2592 } else
2593 /* sync workload slice is at least 2 * cfq_slice_idle */
2594 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2595
2596 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2597 cfq_log(cfqd, "workload slice:%d", slice);
2598 cfqd->workload_expires = jiffies + slice;
2599 }
2600
2601 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2602 {
2603 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2604 struct cfq_group *cfqg;
2605
2606 if (RB_EMPTY_ROOT(&st->rb))
2607 return NULL;
2608 cfqg = cfq_rb_first_group(st);
2609 update_min_vdisktime(st);
2610 return cfqg;
2611 }
2612
2613 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2614 {
2615 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2616
2617 cfqd->serving_group = cfqg;
2618
2619 /* Restore the workload type data */
2620 if (cfqg->saved_workload_slice) {
2621 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2622 cfqd->serving_type = cfqg->saved_workload;
2623 cfqd->serving_prio = cfqg->saved_serving_prio;
2624 } else
2625 cfqd->workload_expires = jiffies - 1;
2626
2627 choose_service_tree(cfqd, cfqg);
2628 }
2629
2630 /*
2631 * Select a queue for service. If we have a current active queue,
2632 * check whether to continue servicing it, or retrieve and set a new one.
2633 */
2634 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2635 {
2636 struct cfq_queue *cfqq, *new_cfqq = NULL;
2637
2638 cfqq = cfqd->active_queue;
2639 if (!cfqq)
2640 goto new_queue;
2641
2642 if (!cfqd->rq_queued)
2643 return NULL;
2644
2645 /*
2646 * We were waiting for group to get backlogged. Expire the queue
2647 */
2648 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2649 goto expire;
2650
2651 /*
2652 * The active queue has run out of time, expire it and select new.
2653 */
2654 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2655 /*
2656 * If slice had not expired at the completion of last request
2657 * we might not have turned on wait_busy flag. Don't expire
2658 * the queue yet. Allow the group to get backlogged.
2659 *
2660 * The very fact that we have used the slice, that means we
2661 * have been idling all along on this queue and it should be
2662 * ok to wait for this request to complete.
2663 */
2664 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2665 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2666 cfqq = NULL;
2667 goto keep_queue;
2668 } else
2669 goto check_group_idle;
2670 }
2671
2672 /*
2673 * The active queue has requests and isn't expired, allow it to
2674 * dispatch.
2675 */
2676 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2677 goto keep_queue;
2678
2679 /*
2680 * If another queue has a request waiting within our mean seek
2681 * distance, let it run. The expire code will check for close
2682 * cooperators and put the close queue at the front of the service
2683 * tree. If possible, merge the expiring queue with the new cfqq.
2684 */
2685 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2686 if (new_cfqq) {
2687 if (!cfqq->new_cfqq)
2688 cfq_setup_merge(cfqq, new_cfqq);
2689 goto expire;
2690 }
2691
2692 /*
2693 * No requests pending. If the active queue still has requests in
2694 * flight or is idling for a new request, allow either of these
2695 * conditions to happen (or time out) before selecting a new queue.
2696 */
2697 if (timer_pending(&cfqd->idle_slice_timer)) {
2698 cfqq = NULL;
2699 goto keep_queue;
2700 }
2701
2702 /*
2703 * This is a deep seek queue, but the device is much faster than
2704 * the queue can deliver, don't idle
2705 **/
2706 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2707 (cfq_cfqq_slice_new(cfqq) ||
2708 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2709 cfq_clear_cfqq_deep(cfqq);
2710 cfq_clear_cfqq_idle_window(cfqq);
2711 }
2712
2713 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2714 cfqq = NULL;
2715 goto keep_queue;
2716 }
2717
2718 /*
2719 * If group idle is enabled and there are requests dispatched from
2720 * this group, wait for requests to complete.
2721 */
2722 check_group_idle:
2723 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2724 cfqq->cfqg->dispatched &&
2725 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2726 cfqq = NULL;
2727 goto keep_queue;
2728 }
2729
2730 expire:
2731 cfq_slice_expired(cfqd, 0);
2732 new_queue:
2733 /*
2734 * Current queue expired. Check if we have to switch to a new
2735 * service tree
2736 */
2737 if (!new_cfqq)
2738 cfq_choose_cfqg(cfqd);
2739
2740 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2741 keep_queue:
2742 return cfqq;
2743 }
2744
2745 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2746 {
2747 int dispatched = 0;
2748
2749 while (cfqq->next_rq) {
2750 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2751 dispatched++;
2752 }
2753
2754 BUG_ON(!list_empty(&cfqq->fifo));
2755
2756 /* By default cfqq is not expired if it is empty. Do it explicitly */
2757 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2758 return dispatched;
2759 }
2760
2761 /*
2762 * Drain our current requests. Used for barriers and when switching
2763 * io schedulers on-the-fly.
2764 */
2765 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2766 {
2767 struct cfq_queue *cfqq;
2768 int dispatched = 0;
2769
2770 /* Expire the timeslice of the current active queue first */
2771 cfq_slice_expired(cfqd, 0);
2772 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2773 __cfq_set_active_queue(cfqd, cfqq);
2774 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2775 }
2776
2777 BUG_ON(cfqd->busy_queues);
2778
2779 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2780 return dispatched;
2781 }
2782
2783 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2784 struct cfq_queue *cfqq)
2785 {
2786 /* the queue hasn't finished any request, can't estimate */
2787 if (cfq_cfqq_slice_new(cfqq))
2788 return true;
2789 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2790 cfqq->slice_end))
2791 return true;
2792
2793 return false;
2794 }
2795
2796 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2797 {
2798 unsigned int max_dispatch;
2799
2800 /*
2801 * Drain async requests before we start sync IO
2802 */
2803 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2804 return false;
2805
2806 /*
2807 * If this is an async queue and we have sync IO in flight, let it wait
2808 */
2809 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2810 return false;
2811
2812 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2813 if (cfq_class_idle(cfqq))
2814 max_dispatch = 1;
2815
2816 /*
2817 * Does this cfqq already have too much IO in flight?
2818 */
2819 if (cfqq->dispatched >= max_dispatch) {
2820 bool promote_sync = false;
2821 /*
2822 * idle queue must always only have a single IO in flight
2823 */
2824 if (cfq_class_idle(cfqq))
2825 return false;
2826
2827 /*
2828 * If there is only one sync queue
2829 * we can ignore async queue here and give the sync
2830 * queue no dispatch limit. The reason is a sync queue can
2831 * preempt async queue, limiting the sync queue doesn't make
2832 * sense. This is useful for aiostress test.
2833 */
2834 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2835 promote_sync = true;
2836
2837 /*
2838 * We have other queues, don't allow more IO from this one
2839 */
2840 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2841 !promote_sync)
2842 return false;
2843
2844 /*
2845 * Sole queue user, no limit
2846 */
2847 if (cfqd->busy_queues == 1 || promote_sync)
2848 max_dispatch = -1;
2849 else
2850 /*
2851 * Normally we start throttling cfqq when cfq_quantum/2
2852 * requests have been dispatched. But we can drive
2853 * deeper queue depths at the beginning of slice
2854 * subjected to upper limit of cfq_quantum.
2855 * */
2856 max_dispatch = cfqd->cfq_quantum;
2857 }
2858
2859 /*
2860 * Async queues must wait a bit before being allowed dispatch.
2861 * We also ramp up the dispatch depth gradually for async IO,
2862 * based on the last sync IO we serviced
2863 */
2864 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2865 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2866 unsigned int depth;
2867
2868 depth = last_sync / cfqd->cfq_slice[1];
2869 if (!depth && !cfqq->dispatched)
2870 depth = 1;
2871 if (depth < max_dispatch)
2872 max_dispatch = depth;
2873 }
2874
2875 /*
2876 * If we're below the current max, allow a dispatch
2877 */
2878 return cfqq->dispatched < max_dispatch;
2879 }
2880
2881 /*
2882 * Dispatch a request from cfqq, moving them to the request queue
2883 * dispatch list.
2884 */
2885 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2886 {
2887 struct request *rq;
2888
2889 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2890
2891 if (!cfq_may_dispatch(cfqd, cfqq))
2892 return false;
2893
2894 /*
2895 * follow expired path, else get first next available
2896 */
2897 rq = cfq_check_fifo(cfqq);
2898 if (!rq)
2899 rq = cfqq->next_rq;
2900
2901 /*
2902 * insert request into driver dispatch list
2903 */
2904 cfq_dispatch_insert(cfqd->queue, rq);
2905
2906 if (!cfqd->active_cic) {
2907 struct cfq_io_cq *cic = RQ_CIC(rq);
2908
2909 atomic_long_inc(&cic->icq.ioc->refcount);
2910 cfqd->active_cic = cic;
2911 }
2912
2913 return true;
2914 }
2915
2916 /*
2917 * Find the cfqq that we need to service and move a request from that to the
2918 * dispatch list
2919 */
2920 static int cfq_dispatch_requests(struct request_queue *q, int force)
2921 {
2922 struct cfq_data *cfqd = q->elevator->elevator_data;
2923 struct cfq_queue *cfqq;
2924
2925 if (!cfqd->busy_queues)
2926 return 0;
2927
2928 if (unlikely(force))
2929 return cfq_forced_dispatch(cfqd);
2930
2931 cfqq = cfq_select_queue(cfqd);
2932 if (!cfqq)
2933 return 0;
2934
2935 /*
2936 * Dispatch a request from this cfqq, if it is allowed
2937 */
2938 if (!cfq_dispatch_request(cfqd, cfqq))
2939 return 0;
2940
2941 cfqq->slice_dispatch++;
2942 cfq_clear_cfqq_must_dispatch(cfqq);
2943
2944 /*
2945 * expire an async queue immediately if it has used up its slice. idle
2946 * queue always expire after 1 dispatch round.
2947 */
2948 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2949 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2950 cfq_class_idle(cfqq))) {
2951 cfqq->slice_end = jiffies + 1;
2952 cfq_slice_expired(cfqd, 0);
2953 }
2954
2955 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2956 return 1;
2957 }
2958
2959 /*
2960 * task holds one reference to the queue, dropped when task exits. each rq
2961 * in-flight on this queue also holds a reference, dropped when rq is freed.
2962 *
2963 * Each cfq queue took a reference on the parent group. Drop it now.
2964 * queue lock must be held here.
2965 */
2966 static void cfq_put_queue(struct cfq_queue *cfqq)
2967 {
2968 struct cfq_data *cfqd = cfqq->cfqd;
2969 struct cfq_group *cfqg;
2970
2971 BUG_ON(cfqq->ref <= 0);
2972
2973 cfqq->ref--;
2974 if (cfqq->ref)
2975 return;
2976
2977 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2978 BUG_ON(rb_first(&cfqq->sort_list));
2979 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2980 cfqg = cfqq->cfqg;
2981
2982 if (unlikely(cfqd->active_queue == cfqq)) {
2983 __cfq_slice_expired(cfqd, cfqq, 0);
2984 cfq_schedule_dispatch(cfqd);
2985 }
2986
2987 BUG_ON(cfq_cfqq_on_rr(cfqq));
2988 kmem_cache_free(cfq_pool, cfqq);
2989 cfqg_put(cfqg);
2990 }
2991
2992 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2993 {
2994 struct cfq_queue *__cfqq, *next;
2995
2996 /*
2997 * If this queue was scheduled to merge with another queue, be
2998 * sure to drop the reference taken on that queue (and others in
2999 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3000 */
3001 __cfqq = cfqq->new_cfqq;
3002 while (__cfqq) {
3003 if (__cfqq == cfqq) {
3004 WARN(1, "cfqq->new_cfqq loop detected\n");
3005 break;
3006 }
3007 next = __cfqq->new_cfqq;
3008 cfq_put_queue(__cfqq);
3009 __cfqq = next;
3010 }
3011 }
3012
3013 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3014 {
3015 if (unlikely(cfqq == cfqd->active_queue)) {
3016 __cfq_slice_expired(cfqd, cfqq, 0);
3017 cfq_schedule_dispatch(cfqd);
3018 }
3019
3020 cfq_put_cooperator(cfqq);
3021
3022 cfq_put_queue(cfqq);
3023 }
3024
3025 static void cfq_init_icq(struct io_cq *icq)
3026 {
3027 struct cfq_io_cq *cic = icq_to_cic(icq);
3028
3029 cic->ttime.last_end_request = jiffies;
3030 }
3031
3032 static void cfq_exit_icq(struct io_cq *icq)
3033 {
3034 struct cfq_io_cq *cic = icq_to_cic(icq);
3035 struct cfq_data *cfqd = cic_to_cfqd(cic);
3036
3037 if (cic->cfqq[BLK_RW_ASYNC]) {
3038 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3039 cic->cfqq[BLK_RW_ASYNC] = NULL;
3040 }
3041
3042 if (cic->cfqq[BLK_RW_SYNC]) {
3043 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3044 cic->cfqq[BLK_RW_SYNC] = NULL;
3045 }
3046 }
3047
3048 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3049 {
3050 struct task_struct *tsk = current;
3051 int ioprio_class;
3052
3053 if (!cfq_cfqq_prio_changed(cfqq))
3054 return;
3055
3056 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3057 switch (ioprio_class) {
3058 default:
3059 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3060 case IOPRIO_CLASS_NONE:
3061 /*
3062 * no prio set, inherit CPU scheduling settings
3063 */
3064 cfqq->ioprio = task_nice_ioprio(tsk);
3065 cfqq->ioprio_class = task_nice_ioclass(tsk);
3066 break;
3067 case IOPRIO_CLASS_RT:
3068 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3069 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3070 break;
3071 case IOPRIO_CLASS_BE:
3072 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3073 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3074 break;
3075 case IOPRIO_CLASS_IDLE:
3076 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3077 cfqq->ioprio = 7;
3078 cfq_clear_cfqq_idle_window(cfqq);
3079 break;
3080 }
3081
3082 /*
3083 * keep track of original prio settings in case we have to temporarily
3084 * elevate the priority of this queue
3085 */
3086 cfqq->org_ioprio = cfqq->ioprio;
3087 cfq_clear_cfqq_prio_changed(cfqq);
3088 }
3089
3090 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3091 {
3092 int ioprio = cic->icq.ioc->ioprio;
3093 struct cfq_data *cfqd = cic_to_cfqd(cic);
3094 struct cfq_queue *cfqq;
3095
3096 /*
3097 * Check whether ioprio has changed. The condition may trigger
3098 * spuriously on a newly created cic but there's no harm.
3099 */
3100 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3101 return;
3102
3103 cfqq = cic->cfqq[BLK_RW_ASYNC];
3104 if (cfqq) {
3105 struct cfq_queue *new_cfqq;
3106 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3107 GFP_ATOMIC);
3108 if (new_cfqq) {
3109 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3110 cfq_put_queue(cfqq);
3111 }
3112 }
3113
3114 cfqq = cic->cfqq[BLK_RW_SYNC];
3115 if (cfqq)
3116 cfq_mark_cfqq_prio_changed(cfqq);
3117
3118 cic->ioprio = ioprio;
3119 }
3120
3121 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3122 pid_t pid, bool is_sync)
3123 {
3124 RB_CLEAR_NODE(&cfqq->rb_node);
3125 RB_CLEAR_NODE(&cfqq->p_node);
3126 INIT_LIST_HEAD(&cfqq->fifo);
3127
3128 cfqq->ref = 0;
3129 cfqq->cfqd = cfqd;
3130
3131 cfq_mark_cfqq_prio_changed(cfqq);
3132
3133 if (is_sync) {
3134 if (!cfq_class_idle(cfqq))
3135 cfq_mark_cfqq_idle_window(cfqq);
3136 cfq_mark_cfqq_sync(cfqq);
3137 }
3138 cfqq->pid = pid;
3139 }
3140
3141 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3142 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3143 {
3144 struct cfq_data *cfqd = cic_to_cfqd(cic);
3145 struct cfq_queue *sync_cfqq;
3146 uint64_t id;
3147
3148 rcu_read_lock();
3149 id = bio_blkcg(bio)->id;
3150 rcu_read_unlock();
3151
3152 /*
3153 * Check whether blkcg has changed. The condition may trigger
3154 * spuriously on a newly created cic but there's no harm.
3155 */
3156 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3157 return;
3158
3159 sync_cfqq = cic_to_cfqq(cic, 1);
3160 if (sync_cfqq) {
3161 /*
3162 * Drop reference to sync queue. A new sync queue will be
3163 * assigned in new group upon arrival of a fresh request.
3164 */
3165 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3166 cic_set_cfqq(cic, NULL, 1);
3167 cfq_put_queue(sync_cfqq);
3168 }
3169
3170 cic->blkcg_id = id;
3171 }
3172 #else
3173 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3174 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3175
3176 static struct cfq_queue *
3177 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3178 struct bio *bio, gfp_t gfp_mask)
3179 {
3180 struct blkcg *blkcg;
3181 struct cfq_queue *cfqq, *new_cfqq = NULL;
3182 struct cfq_group *cfqg;
3183
3184 retry:
3185 rcu_read_lock();
3186
3187 blkcg = bio_blkcg(bio);
3188 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3189 cfqq = cic_to_cfqq(cic, is_sync);
3190
3191 /*
3192 * Always try a new alloc if we fell back to the OOM cfqq
3193 * originally, since it should just be a temporary situation.
3194 */
3195 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3196 cfqq = NULL;
3197 if (new_cfqq) {
3198 cfqq = new_cfqq;
3199 new_cfqq = NULL;
3200 } else if (gfp_mask & __GFP_WAIT) {
3201 rcu_read_unlock();
3202 spin_unlock_irq(cfqd->queue->queue_lock);
3203 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3204 gfp_mask | __GFP_ZERO,
3205 cfqd->queue->node);
3206 spin_lock_irq(cfqd->queue->queue_lock);
3207 if (new_cfqq)
3208 goto retry;
3209 } else {
3210 cfqq = kmem_cache_alloc_node(cfq_pool,
3211 gfp_mask | __GFP_ZERO,
3212 cfqd->queue->node);
3213 }
3214
3215 if (cfqq) {
3216 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3217 cfq_init_prio_data(cfqq, cic);
3218 cfq_link_cfqq_cfqg(cfqq, cfqg);
3219 cfq_log_cfqq(cfqd, cfqq, "alloced");
3220 } else
3221 cfqq = &cfqd->oom_cfqq;
3222 }
3223
3224 if (new_cfqq)
3225 kmem_cache_free(cfq_pool, new_cfqq);
3226
3227 rcu_read_unlock();
3228 return cfqq;
3229 }
3230
3231 static struct cfq_queue **
3232 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3233 {
3234 switch (ioprio_class) {
3235 case IOPRIO_CLASS_RT:
3236 return &cfqd->async_cfqq[0][ioprio];
3237 case IOPRIO_CLASS_NONE:
3238 ioprio = IOPRIO_NORM;
3239 /* fall through */
3240 case IOPRIO_CLASS_BE:
3241 return &cfqd->async_cfqq[1][ioprio];
3242 case IOPRIO_CLASS_IDLE:
3243 return &cfqd->async_idle_cfqq;
3244 default:
3245 BUG();
3246 }
3247 }
3248
3249 static struct cfq_queue *
3250 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3251 struct bio *bio, gfp_t gfp_mask)
3252 {
3253 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3254 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3255 struct cfq_queue **async_cfqq = NULL;
3256 struct cfq_queue *cfqq = NULL;
3257
3258 if (!is_sync) {
3259 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3260 cfqq = *async_cfqq;
3261 }
3262
3263 if (!cfqq)
3264 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3265
3266 /*
3267 * pin the queue now that it's allocated, scheduler exit will prune it
3268 */
3269 if (!is_sync && !(*async_cfqq)) {
3270 cfqq->ref++;
3271 *async_cfqq = cfqq;
3272 }
3273
3274 cfqq->ref++;
3275 return cfqq;
3276 }
3277
3278 static void
3279 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3280 {
3281 unsigned long elapsed = jiffies - ttime->last_end_request;
3282 elapsed = min(elapsed, 2UL * slice_idle);
3283
3284 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3285 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3286 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3287 }
3288
3289 static void
3290 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3291 struct cfq_io_cq *cic)
3292 {
3293 if (cfq_cfqq_sync(cfqq)) {
3294 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3295 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3296 cfqd->cfq_slice_idle);
3297 }
3298 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3299 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3300 #endif
3301 }
3302
3303 static void
3304 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3305 struct request *rq)
3306 {
3307 sector_t sdist = 0;
3308 sector_t n_sec = blk_rq_sectors(rq);
3309 if (cfqq->last_request_pos) {
3310 if (cfqq->last_request_pos < blk_rq_pos(rq))
3311 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3312 else
3313 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3314 }
3315
3316 cfqq->seek_history <<= 1;
3317 if (blk_queue_nonrot(cfqd->queue))
3318 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3319 else
3320 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3321 }
3322
3323 /*
3324 * Disable idle window if the process thinks too long or seeks so much that
3325 * it doesn't matter
3326 */
3327 static void
3328 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3329 struct cfq_io_cq *cic)
3330 {
3331 int old_idle, enable_idle;
3332
3333 /*
3334 * Don't idle for async or idle io prio class
3335 */
3336 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3337 return;
3338
3339 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3340
3341 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3342 cfq_mark_cfqq_deep(cfqq);
3343
3344 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3345 enable_idle = 0;
3346 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3347 !cfqd->cfq_slice_idle ||
3348 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3349 enable_idle = 0;
3350 else if (sample_valid(cic->ttime.ttime_samples)) {
3351 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3352 enable_idle = 0;
3353 else
3354 enable_idle = 1;
3355 }
3356
3357 if (old_idle != enable_idle) {
3358 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3359 if (enable_idle)
3360 cfq_mark_cfqq_idle_window(cfqq);
3361 else
3362 cfq_clear_cfqq_idle_window(cfqq);
3363 }
3364 }
3365
3366 /*
3367 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3368 * no or if we aren't sure, a 1 will cause a preempt.
3369 */
3370 static bool
3371 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3372 struct request *rq)
3373 {
3374 struct cfq_queue *cfqq;
3375
3376 cfqq = cfqd->active_queue;
3377 if (!cfqq)
3378 return false;
3379
3380 if (cfq_class_idle(new_cfqq))
3381 return false;
3382
3383 if (cfq_class_idle(cfqq))
3384 return true;
3385
3386 /*
3387 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3388 */
3389 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3390 return false;
3391
3392 /*
3393 * if the new request is sync, but the currently running queue is
3394 * not, let the sync request have priority.
3395 */
3396 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3397 return true;
3398
3399 if (new_cfqq->cfqg != cfqq->cfqg)
3400 return false;
3401
3402 if (cfq_slice_used(cfqq))
3403 return true;
3404
3405 /* Allow preemption only if we are idling on sync-noidle tree */
3406 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3407 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3408 new_cfqq->service_tree->count == 2 &&
3409 RB_EMPTY_ROOT(&cfqq->sort_list))
3410 return true;
3411
3412 /*
3413 * So both queues are sync. Let the new request get disk time if
3414 * it's a metadata request and the current queue is doing regular IO.
3415 */
3416 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3417 return true;
3418
3419 /*
3420 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3421 */
3422 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3423 return true;
3424
3425 /* An idle queue should not be idle now for some reason */
3426 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3427 return true;
3428
3429 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3430 return false;
3431
3432 /*
3433 * if this request is as-good as one we would expect from the
3434 * current cfqq, let it preempt
3435 */
3436 if (cfq_rq_close(cfqd, cfqq, rq))
3437 return true;
3438
3439 return false;
3440 }
3441
3442 /*
3443 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3444 * let it have half of its nominal slice.
3445 */
3446 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3447 {
3448 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3449
3450 cfq_log_cfqq(cfqd, cfqq, "preempt");
3451 cfq_slice_expired(cfqd, 1);
3452
3453 /*
3454 * workload type is changed, don't save slice, otherwise preempt
3455 * doesn't happen
3456 */
3457 if (old_type != cfqq_type(cfqq))
3458 cfqq->cfqg->saved_workload_slice = 0;
3459
3460 /*
3461 * Put the new queue at the front of the of the current list,
3462 * so we know that it will be selected next.
3463 */
3464 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3465
3466 cfq_service_tree_add(cfqd, cfqq, 1);
3467
3468 cfqq->slice_end = 0;
3469 cfq_mark_cfqq_slice_new(cfqq);
3470 }
3471
3472 /*
3473 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3474 * something we should do about it
3475 */
3476 static void
3477 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3478 struct request *rq)
3479 {
3480 struct cfq_io_cq *cic = RQ_CIC(rq);
3481
3482 cfqd->rq_queued++;
3483 if (rq->cmd_flags & REQ_PRIO)
3484 cfqq->prio_pending++;
3485
3486 cfq_update_io_thinktime(cfqd, cfqq, cic);
3487 cfq_update_io_seektime(cfqd, cfqq, rq);
3488 cfq_update_idle_window(cfqd, cfqq, cic);
3489
3490 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3491
3492 if (cfqq == cfqd->active_queue) {
3493 /*
3494 * Remember that we saw a request from this process, but
3495 * don't start queuing just yet. Otherwise we risk seeing lots
3496 * of tiny requests, because we disrupt the normal plugging
3497 * and merging. If the request is already larger than a single
3498 * page, let it rip immediately. For that case we assume that
3499 * merging is already done. Ditto for a busy system that
3500 * has other work pending, don't risk delaying until the
3501 * idle timer unplug to continue working.
3502 */
3503 if (cfq_cfqq_wait_request(cfqq)) {
3504 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3505 cfqd->busy_queues > 1) {
3506 cfq_del_timer(cfqd, cfqq);
3507 cfq_clear_cfqq_wait_request(cfqq);
3508 __blk_run_queue(cfqd->queue);
3509 } else {
3510 cfqg_stats_update_idle_time(cfqq->cfqg);
3511 cfq_mark_cfqq_must_dispatch(cfqq);
3512 }
3513 }
3514 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3515 /*
3516 * not the active queue - expire current slice if it is
3517 * idle and has expired it's mean thinktime or this new queue
3518 * has some old slice time left and is of higher priority or
3519 * this new queue is RT and the current one is BE
3520 */
3521 cfq_preempt_queue(cfqd, cfqq);
3522 __blk_run_queue(cfqd->queue);
3523 }
3524 }
3525
3526 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3527 {
3528 struct cfq_data *cfqd = q->elevator->elevator_data;
3529 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3530
3531 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3532 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3533
3534 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3535 list_add_tail(&rq->queuelist, &cfqq->fifo);
3536 cfq_add_rq_rb(rq);
3537 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3538 rq->cmd_flags);
3539 cfq_rq_enqueued(cfqd, cfqq, rq);
3540 }
3541
3542 /*
3543 * Update hw_tag based on peak queue depth over 50 samples under
3544 * sufficient load.
3545 */
3546 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3547 {
3548 struct cfq_queue *cfqq = cfqd->active_queue;
3549
3550 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3551 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3552
3553 if (cfqd->hw_tag == 1)
3554 return;
3555
3556 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3557 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3558 return;
3559
3560 /*
3561 * If active queue hasn't enough requests and can idle, cfq might not
3562 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3563 * case
3564 */
3565 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3566 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3567 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3568 return;
3569
3570 if (cfqd->hw_tag_samples++ < 50)
3571 return;
3572
3573 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3574 cfqd->hw_tag = 1;
3575 else
3576 cfqd->hw_tag = 0;
3577 }
3578
3579 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3580 {
3581 struct cfq_io_cq *cic = cfqd->active_cic;
3582
3583 /* If the queue already has requests, don't wait */
3584 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3585 return false;
3586
3587 /* If there are other queues in the group, don't wait */
3588 if (cfqq->cfqg->nr_cfqq > 1)
3589 return false;
3590
3591 /* the only queue in the group, but think time is big */
3592 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3593 return false;
3594
3595 if (cfq_slice_used(cfqq))
3596 return true;
3597
3598 /* if slice left is less than think time, wait busy */
3599 if (cic && sample_valid(cic->ttime.ttime_samples)
3600 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3601 return true;
3602
3603 /*
3604 * If think times is less than a jiffy than ttime_mean=0 and above
3605 * will not be true. It might happen that slice has not expired yet
3606 * but will expire soon (4-5 ns) during select_queue(). To cover the
3607 * case where think time is less than a jiffy, mark the queue wait
3608 * busy if only 1 jiffy is left in the slice.
3609 */
3610 if (cfqq->slice_end - jiffies == 1)
3611 return true;
3612
3613 return false;
3614 }
3615
3616 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3617 {
3618 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3619 struct cfq_data *cfqd = cfqq->cfqd;
3620 const int sync = rq_is_sync(rq);
3621 unsigned long now;
3622
3623 now = jiffies;
3624 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3625 !!(rq->cmd_flags & REQ_NOIDLE));
3626
3627 cfq_update_hw_tag(cfqd);
3628
3629 WARN_ON(!cfqd->rq_in_driver);
3630 WARN_ON(!cfqq->dispatched);
3631 cfqd->rq_in_driver--;
3632 cfqq->dispatched--;
3633 (RQ_CFQG(rq))->dispatched--;
3634 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3635 rq_io_start_time_ns(rq), rq->cmd_flags);
3636
3637 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3638
3639 if (sync) {
3640 struct cfq_rb_root *service_tree;
3641
3642 RQ_CIC(rq)->ttime.last_end_request = now;
3643
3644 if (cfq_cfqq_on_rr(cfqq))
3645 service_tree = cfqq->service_tree;
3646 else
3647 service_tree = service_tree_for(cfqq->cfqg,
3648 cfqq_prio(cfqq), cfqq_type(cfqq));
3649 service_tree->ttime.last_end_request = now;
3650 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3651 cfqd->last_delayed_sync = now;
3652 }
3653
3654 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3655 cfqq->cfqg->ttime.last_end_request = now;
3656 #endif
3657
3658 /*
3659 * If this is the active queue, check if it needs to be expired,
3660 * or if we want to idle in case it has no pending requests.
3661 */
3662 if (cfqd->active_queue == cfqq) {
3663 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3664
3665 if (cfq_cfqq_slice_new(cfqq)) {
3666 cfq_set_prio_slice(cfqd, cfqq);
3667 cfq_clear_cfqq_slice_new(cfqq);
3668 }
3669
3670 /*
3671 * Should we wait for next request to come in before we expire
3672 * the queue.
3673 */
3674 if (cfq_should_wait_busy(cfqd, cfqq)) {
3675 unsigned long extend_sl = cfqd->cfq_slice_idle;
3676 if (!cfqd->cfq_slice_idle)
3677 extend_sl = cfqd->cfq_group_idle;
3678 cfqq->slice_end = jiffies + extend_sl;
3679 cfq_mark_cfqq_wait_busy(cfqq);
3680 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3681 }
3682
3683 /*
3684 * Idling is not enabled on:
3685 * - expired queues
3686 * - idle-priority queues
3687 * - async queues
3688 * - queues with still some requests queued
3689 * - when there is a close cooperator
3690 */
3691 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3692 cfq_slice_expired(cfqd, 1);
3693 else if (sync && cfqq_empty &&
3694 !cfq_close_cooperator(cfqd, cfqq)) {
3695 cfq_arm_slice_timer(cfqd);
3696 }
3697 }
3698
3699 if (!cfqd->rq_in_driver)
3700 cfq_schedule_dispatch(cfqd);
3701 }
3702
3703 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3704 {
3705 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3706 cfq_mark_cfqq_must_alloc_slice(cfqq);
3707 return ELV_MQUEUE_MUST;
3708 }
3709
3710 return ELV_MQUEUE_MAY;
3711 }
3712
3713 static int cfq_may_queue(struct request_queue *q, int rw)
3714 {
3715 struct cfq_data *cfqd = q->elevator->elevator_data;
3716 struct task_struct *tsk = current;
3717 struct cfq_io_cq *cic;
3718 struct cfq_queue *cfqq;
3719
3720 /*
3721 * don't force setup of a queue from here, as a call to may_queue
3722 * does not necessarily imply that a request actually will be queued.
3723 * so just lookup a possibly existing queue, or return 'may queue'
3724 * if that fails
3725 */
3726 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3727 if (!cic)
3728 return ELV_MQUEUE_MAY;
3729
3730 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3731 if (cfqq) {
3732 cfq_init_prio_data(cfqq, cic);
3733
3734 return __cfq_may_queue(cfqq);
3735 }
3736
3737 return ELV_MQUEUE_MAY;
3738 }
3739
3740 /*
3741 * queue lock held here
3742 */
3743 static void cfq_put_request(struct request *rq)
3744 {
3745 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3746
3747 if (cfqq) {
3748 const int rw = rq_data_dir(rq);
3749
3750 BUG_ON(!cfqq->allocated[rw]);
3751 cfqq->allocated[rw]--;
3752
3753 /* Put down rq reference on cfqg */
3754 cfqg_put(RQ_CFQG(rq));
3755 rq->elv.priv[0] = NULL;
3756 rq->elv.priv[1] = NULL;
3757
3758 cfq_put_queue(cfqq);
3759 }
3760 }
3761
3762 static struct cfq_queue *
3763 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3764 struct cfq_queue *cfqq)
3765 {
3766 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3767 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3768 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3769 cfq_put_queue(cfqq);
3770 return cic_to_cfqq(cic, 1);
3771 }
3772
3773 /*
3774 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3775 * was the last process referring to said cfqq.
3776 */
3777 static struct cfq_queue *
3778 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3779 {
3780 if (cfqq_process_refs(cfqq) == 1) {
3781 cfqq->pid = current->pid;
3782 cfq_clear_cfqq_coop(cfqq);
3783 cfq_clear_cfqq_split_coop(cfqq);
3784 return cfqq;
3785 }
3786
3787 cic_set_cfqq(cic, NULL, 1);
3788
3789 cfq_put_cooperator(cfqq);
3790
3791 cfq_put_queue(cfqq);
3792 return NULL;
3793 }
3794 /*
3795 * Allocate cfq data structures associated with this request.
3796 */
3797 static int
3798 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
3799 gfp_t gfp_mask)
3800 {
3801 struct cfq_data *cfqd = q->elevator->elevator_data;
3802 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3803 const int rw = rq_data_dir(rq);
3804 const bool is_sync = rq_is_sync(rq);
3805 struct cfq_queue *cfqq;
3806
3807 might_sleep_if(gfp_mask & __GFP_WAIT);
3808
3809 spin_lock_irq(q->queue_lock);
3810
3811 check_ioprio_changed(cic, bio);
3812 check_blkcg_changed(cic, bio);
3813 new_queue:
3814 cfqq = cic_to_cfqq(cic, is_sync);
3815 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3816 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
3817 cic_set_cfqq(cic, cfqq, is_sync);
3818 } else {
3819 /*
3820 * If the queue was seeky for too long, break it apart.
3821 */
3822 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3823 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3824 cfqq = split_cfqq(cic, cfqq);
3825 if (!cfqq)
3826 goto new_queue;
3827 }
3828
3829 /*
3830 * Check to see if this queue is scheduled to merge with
3831 * another, closely cooperating queue. The merging of
3832 * queues happens here as it must be done in process context.
3833 * The reference on new_cfqq was taken in merge_cfqqs.
3834 */
3835 if (cfqq->new_cfqq)
3836 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3837 }
3838
3839 cfqq->allocated[rw]++;
3840
3841 cfqq->ref++;
3842 cfqg_get(cfqq->cfqg);
3843 rq->elv.priv[0] = cfqq;
3844 rq->elv.priv[1] = cfqq->cfqg;
3845 spin_unlock_irq(q->queue_lock);
3846 return 0;
3847 }
3848
3849 static void cfq_kick_queue(struct work_struct *work)
3850 {
3851 struct cfq_data *cfqd =
3852 container_of(work, struct cfq_data, unplug_work);
3853 struct request_queue *q = cfqd->queue;
3854
3855 spin_lock_irq(q->queue_lock);
3856 __blk_run_queue(cfqd->queue);
3857 spin_unlock_irq(q->queue_lock);
3858 }
3859
3860 /*
3861 * Timer running if the active_queue is currently idling inside its time slice
3862 */
3863 static void cfq_idle_slice_timer(unsigned long data)
3864 {
3865 struct cfq_data *cfqd = (struct cfq_data *) data;
3866 struct cfq_queue *cfqq;
3867 unsigned long flags;
3868 int timed_out = 1;
3869
3870 cfq_log(cfqd, "idle timer fired");
3871
3872 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3873
3874 cfqq = cfqd->active_queue;
3875 if (cfqq) {
3876 timed_out = 0;
3877
3878 /*
3879 * We saw a request before the queue expired, let it through
3880 */
3881 if (cfq_cfqq_must_dispatch(cfqq))
3882 goto out_kick;
3883
3884 /*
3885 * expired
3886 */
3887 if (cfq_slice_used(cfqq))
3888 goto expire;
3889
3890 /*
3891 * only expire and reinvoke request handler, if there are
3892 * other queues with pending requests
3893 */
3894 if (!cfqd->busy_queues)
3895 goto out_cont;
3896
3897 /*
3898 * not expired and it has a request pending, let it dispatch
3899 */
3900 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3901 goto out_kick;
3902
3903 /*
3904 * Queue depth flag is reset only when the idle didn't succeed
3905 */
3906 cfq_clear_cfqq_deep(cfqq);
3907 }
3908 expire:
3909 cfq_slice_expired(cfqd, timed_out);
3910 out_kick:
3911 cfq_schedule_dispatch(cfqd);
3912 out_cont:
3913 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3914 }
3915
3916 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3917 {
3918 del_timer_sync(&cfqd->idle_slice_timer);
3919 cancel_work_sync(&cfqd->unplug_work);
3920 }
3921
3922 static void cfq_put_async_queues(struct cfq_data *cfqd)
3923 {
3924 int i;
3925
3926 for (i = 0; i < IOPRIO_BE_NR; i++) {
3927 if (cfqd->async_cfqq[0][i])
3928 cfq_put_queue(cfqd->async_cfqq[0][i]);
3929 if (cfqd->async_cfqq[1][i])
3930 cfq_put_queue(cfqd->async_cfqq[1][i]);
3931 }
3932
3933 if (cfqd->async_idle_cfqq)
3934 cfq_put_queue(cfqd->async_idle_cfqq);
3935 }
3936
3937 static void cfq_exit_queue(struct elevator_queue *e)
3938 {
3939 struct cfq_data *cfqd = e->elevator_data;
3940 struct request_queue *q = cfqd->queue;
3941
3942 cfq_shutdown_timer_wq(cfqd);
3943
3944 spin_lock_irq(q->queue_lock);
3945
3946 if (cfqd->active_queue)
3947 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3948
3949 cfq_put_async_queues(cfqd);
3950
3951 spin_unlock_irq(q->queue_lock);
3952
3953 cfq_shutdown_timer_wq(cfqd);
3954
3955 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3956 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
3957 #else
3958 kfree(cfqd->root_group);
3959 #endif
3960 kfree(cfqd);
3961 }
3962
3963 static int cfq_init_queue(struct request_queue *q)
3964 {
3965 struct cfq_data *cfqd;
3966 struct blkcg_gq *blkg __maybe_unused;
3967 int i, ret;
3968
3969 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3970 if (!cfqd)
3971 return -ENOMEM;
3972
3973 cfqd->queue = q;
3974 q->elevator->elevator_data = cfqd;
3975
3976 /* Init root service tree */
3977 cfqd->grp_service_tree = CFQ_RB_ROOT;
3978
3979 /* Init root group and prefer root group over other groups by default */
3980 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3981 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
3982 if (ret)
3983 goto out_free;
3984
3985 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
3986 #else
3987 ret = -ENOMEM;
3988 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3989 GFP_KERNEL, cfqd->queue->node);
3990 if (!cfqd->root_group)
3991 goto out_free;
3992
3993 cfq_init_cfqg_base(cfqd->root_group);
3994 #endif
3995 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
3996
3997 /*
3998 * Not strictly needed (since RB_ROOT just clears the node and we
3999 * zeroed cfqd on alloc), but better be safe in case someone decides
4000 * to add magic to the rb code
4001 */
4002 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4003 cfqd->prio_trees[i] = RB_ROOT;
4004
4005 /*
4006 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4007 * Grab a permanent reference to it, so that the normal code flow
4008 * will not attempt to free it. oom_cfqq is linked to root_group
4009 * but shouldn't hold a reference as it'll never be unlinked. Lose
4010 * the reference from linking right away.
4011 */
4012 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4013 cfqd->oom_cfqq.ref++;
4014
4015 spin_lock_irq(q->queue_lock);
4016 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4017 cfqg_put(cfqd->root_group);
4018 spin_unlock_irq(q->queue_lock);
4019
4020 init_timer(&cfqd->idle_slice_timer);
4021 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4022 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4023
4024 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4025
4026 cfqd->cfq_quantum = cfq_quantum;
4027 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4028 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4029 cfqd->cfq_back_max = cfq_back_max;
4030 cfqd->cfq_back_penalty = cfq_back_penalty;
4031 cfqd->cfq_slice[0] = cfq_slice_async;
4032 cfqd->cfq_slice[1] = cfq_slice_sync;
4033 cfqd->cfq_target_latency = cfq_target_latency;
4034 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4035 cfqd->cfq_slice_idle = cfq_slice_idle;
4036 cfqd->cfq_group_idle = cfq_group_idle;
4037 cfqd->cfq_latency = 1;
4038 cfqd->hw_tag = -1;
4039 /*
4040 * we optimistically start assuming sync ops weren't delayed in last
4041 * second, in order to have larger depth for async operations.
4042 */
4043 cfqd->last_delayed_sync = jiffies - HZ;
4044 return 0;
4045
4046 out_free:
4047 kfree(cfqd);
4048 return ret;
4049 }
4050
4051 /*
4052 * sysfs parts below -->
4053 */
4054 static ssize_t
4055 cfq_var_show(unsigned int var, char *page)
4056 {
4057 return sprintf(page, "%d\n", var);
4058 }
4059
4060 static ssize_t
4061 cfq_var_store(unsigned int *var, const char *page, size_t count)
4062 {
4063 char *p = (char *) page;
4064
4065 *var = simple_strtoul(p, &p, 10);
4066 return count;
4067 }
4068
4069 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4070 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4071 { \
4072 struct cfq_data *cfqd = e->elevator_data; \
4073 unsigned int __data = __VAR; \
4074 if (__CONV) \
4075 __data = jiffies_to_msecs(__data); \
4076 return cfq_var_show(__data, (page)); \
4077 }
4078 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4079 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4080 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4081 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4082 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4083 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4084 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4085 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4086 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4087 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4088 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4089 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4090 #undef SHOW_FUNCTION
4091
4092 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4093 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4094 { \
4095 struct cfq_data *cfqd = e->elevator_data; \
4096 unsigned int __data; \
4097 int ret = cfq_var_store(&__data, (page), count); \
4098 if (__data < (MIN)) \
4099 __data = (MIN); \
4100 else if (__data > (MAX)) \
4101 __data = (MAX); \
4102 if (__CONV) \
4103 *(__PTR) = msecs_to_jiffies(__data); \
4104 else \
4105 *(__PTR) = __data; \
4106 return ret; \
4107 }
4108 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4109 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4110 UINT_MAX, 1);
4111 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4112 UINT_MAX, 1);
4113 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4114 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4115 UINT_MAX, 0);
4116 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4117 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4118 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4119 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4120 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4121 UINT_MAX, 0);
4122 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4123 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4124 #undef STORE_FUNCTION
4125
4126 #define CFQ_ATTR(name) \
4127 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4128
4129 static struct elv_fs_entry cfq_attrs[] = {
4130 CFQ_ATTR(quantum),
4131 CFQ_ATTR(fifo_expire_sync),
4132 CFQ_ATTR(fifo_expire_async),
4133 CFQ_ATTR(back_seek_max),
4134 CFQ_ATTR(back_seek_penalty),
4135 CFQ_ATTR(slice_sync),
4136 CFQ_ATTR(slice_async),
4137 CFQ_ATTR(slice_async_rq),
4138 CFQ_ATTR(slice_idle),
4139 CFQ_ATTR(group_idle),
4140 CFQ_ATTR(low_latency),
4141 CFQ_ATTR(target_latency),
4142 __ATTR_NULL
4143 };
4144
4145 static struct elevator_type iosched_cfq = {
4146 .ops = {
4147 .elevator_merge_fn = cfq_merge,
4148 .elevator_merged_fn = cfq_merged_request,
4149 .elevator_merge_req_fn = cfq_merged_requests,
4150 .elevator_allow_merge_fn = cfq_allow_merge,
4151 .elevator_bio_merged_fn = cfq_bio_merged,
4152 .elevator_dispatch_fn = cfq_dispatch_requests,
4153 .elevator_add_req_fn = cfq_insert_request,
4154 .elevator_activate_req_fn = cfq_activate_request,
4155 .elevator_deactivate_req_fn = cfq_deactivate_request,
4156 .elevator_completed_req_fn = cfq_completed_request,
4157 .elevator_former_req_fn = elv_rb_former_request,
4158 .elevator_latter_req_fn = elv_rb_latter_request,
4159 .elevator_init_icq_fn = cfq_init_icq,
4160 .elevator_exit_icq_fn = cfq_exit_icq,
4161 .elevator_set_req_fn = cfq_set_request,
4162 .elevator_put_req_fn = cfq_put_request,
4163 .elevator_may_queue_fn = cfq_may_queue,
4164 .elevator_init_fn = cfq_init_queue,
4165 .elevator_exit_fn = cfq_exit_queue,
4166 },
4167 .icq_size = sizeof(struct cfq_io_cq),
4168 .icq_align = __alignof__(struct cfq_io_cq),
4169 .elevator_attrs = cfq_attrs,
4170 .elevator_name = "cfq",
4171 .elevator_owner = THIS_MODULE,
4172 };
4173
4174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4175 static struct blkcg_policy blkcg_policy_cfq = {
4176 .pd_size = sizeof(struct cfq_group),
4177 .cftypes = cfq_blkcg_files,
4178
4179 .pd_init_fn = cfq_pd_init,
4180 .pd_reset_stats_fn = cfq_pd_reset_stats,
4181 };
4182 #endif
4183
4184 static int __init cfq_init(void)
4185 {
4186 int ret;
4187
4188 /*
4189 * could be 0 on HZ < 1000 setups
4190 */
4191 if (!cfq_slice_async)
4192 cfq_slice_async = 1;
4193 if (!cfq_slice_idle)
4194 cfq_slice_idle = 1;
4195
4196 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4197 if (!cfq_group_idle)
4198 cfq_group_idle = 1;
4199
4200 ret = blkcg_policy_register(&blkcg_policy_cfq);
4201 if (ret)
4202 return ret;
4203 #else
4204 cfq_group_idle = 0;
4205 #endif
4206
4207 ret = -ENOMEM;
4208 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4209 if (!cfq_pool)
4210 goto err_pol_unreg;
4211
4212 ret = elv_register(&iosched_cfq);
4213 if (ret)
4214 goto err_free_pool;
4215
4216 return 0;
4217
4218 err_free_pool:
4219 kmem_cache_destroy(cfq_pool);
4220 err_pol_unreg:
4221 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4222 blkcg_policy_unregister(&blkcg_policy_cfq);
4223 #endif
4224 return ret;
4225 }
4226
4227 static void __exit cfq_exit(void)
4228 {
4229 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4230 blkcg_policy_unregister(&blkcg_policy_cfq);
4231 #endif
4232 elv_unregister(&iosched_cfq);
4233 kmem_cache_destroy(cfq_pool);
4234 }
4235
4236 module_init(cfq_init);
4237 module_exit(cfq_exit);
4238
4239 MODULE_AUTHOR("Jens Axboe");
4240 MODULE_LICENSE("GPL");
4241 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.118307 seconds and 5 git commands to generate.