TTY:console: update document console.txt
[deliverable/linux.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
27 help
28 This options enables the fips boot option which is
29 required if you want to system to operate in a FIPS 200
30 certification. You should say no unless you know what
31 this is.
32
33 config CRYPTO_ALGAPI
34 tristate
35 select CRYPTO_ALGAPI2
36 help
37 This option provides the API for cryptographic algorithms.
38
39 config CRYPTO_ALGAPI2
40 tristate
41
42 config CRYPTO_AEAD
43 tristate
44 select CRYPTO_AEAD2
45 select CRYPTO_ALGAPI
46
47 config CRYPTO_AEAD2
48 tristate
49 select CRYPTO_ALGAPI2
50
51 config CRYPTO_BLKCIPHER
52 tristate
53 select CRYPTO_BLKCIPHER2
54 select CRYPTO_ALGAPI
55
56 config CRYPTO_BLKCIPHER2
57 tristate
58 select CRYPTO_ALGAPI2
59 select CRYPTO_RNG2
60 select CRYPTO_WORKQUEUE
61
62 config CRYPTO_HASH
63 tristate
64 select CRYPTO_HASH2
65 select CRYPTO_ALGAPI
66
67 config CRYPTO_HASH2
68 tristate
69 select CRYPTO_ALGAPI2
70
71 config CRYPTO_RNG
72 tristate
73 select CRYPTO_RNG2
74 select CRYPTO_ALGAPI
75
76 config CRYPTO_RNG2
77 tristate
78 select CRYPTO_ALGAPI2
79
80 config CRYPTO_PCOMP
81 tristate
82 select CRYPTO_PCOMP2
83 select CRYPTO_ALGAPI
84
85 config CRYPTO_PCOMP2
86 tristate
87 select CRYPTO_ALGAPI2
88
89 config CRYPTO_MANAGER
90 tristate "Cryptographic algorithm manager"
91 select CRYPTO_MANAGER2
92 help
93 Create default cryptographic template instantiations such as
94 cbc(aes).
95
96 config CRYPTO_MANAGER2
97 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
98 select CRYPTO_AEAD2
99 select CRYPTO_HASH2
100 select CRYPTO_BLKCIPHER2
101 select CRYPTO_PCOMP2
102
103 config CRYPTO_USER
104 tristate "Userspace cryptographic algorithm configuration"
105 depends on NET
106 select CRYPTO_MANAGER
107 help
108 Userspace configuration for cryptographic instantiations such as
109 cbc(aes).
110
111 config CRYPTO_MANAGER_DISABLE_TESTS
112 bool "Disable run-time self tests"
113 default y
114 depends on CRYPTO_MANAGER2
115 help
116 Disable run-time self tests that normally take place at
117 algorithm registration.
118
119 config CRYPTO_GF128MUL
120 tristate "GF(2^128) multiplication functions"
121 help
122 Efficient table driven implementation of multiplications in the
123 field GF(2^128). This is needed by some cypher modes. This
124 option will be selected automatically if you select such a
125 cipher mode. Only select this option by hand if you expect to load
126 an external module that requires these functions.
127
128 config CRYPTO_NULL
129 tristate "Null algorithms"
130 select CRYPTO_ALGAPI
131 select CRYPTO_BLKCIPHER
132 select CRYPTO_HASH
133 help
134 These are 'Null' algorithms, used by IPsec, which do nothing.
135
136 config CRYPTO_PCRYPT
137 tristate "Parallel crypto engine"
138 depends on SMP
139 select PADATA
140 select CRYPTO_MANAGER
141 select CRYPTO_AEAD
142 help
143 This converts an arbitrary crypto algorithm into a parallel
144 algorithm that executes in kernel threads.
145
146 config CRYPTO_WORKQUEUE
147 tristate
148
149 config CRYPTO_CRYPTD
150 tristate "Software async crypto daemon"
151 select CRYPTO_BLKCIPHER
152 select CRYPTO_HASH
153 select CRYPTO_MANAGER
154 select CRYPTO_WORKQUEUE
155 help
156 This is a generic software asynchronous crypto daemon that
157 converts an arbitrary synchronous software crypto algorithm
158 into an asynchronous algorithm that executes in a kernel thread.
159
160 config CRYPTO_AUTHENC
161 tristate "Authenc support"
162 select CRYPTO_AEAD
163 select CRYPTO_BLKCIPHER
164 select CRYPTO_MANAGER
165 select CRYPTO_HASH
166 help
167 Authenc: Combined mode wrapper for IPsec.
168 This is required for IPSec.
169
170 config CRYPTO_TEST
171 tristate "Testing module"
172 depends on m
173 select CRYPTO_MANAGER
174 help
175 Quick & dirty crypto test module.
176
177 config CRYPTO_ABLK_HELPER_X86
178 tristate
179 depends on X86
180 select CRYPTO_CRYPTD
181
182 config CRYPTO_GLUE_HELPER_X86
183 tristate
184 depends on X86
185 select CRYPTO_ALGAPI
186
187 comment "Authenticated Encryption with Associated Data"
188
189 config CRYPTO_CCM
190 tristate "CCM support"
191 select CRYPTO_CTR
192 select CRYPTO_AEAD
193 help
194 Support for Counter with CBC MAC. Required for IPsec.
195
196 config CRYPTO_GCM
197 tristate "GCM/GMAC support"
198 select CRYPTO_CTR
199 select CRYPTO_AEAD
200 select CRYPTO_GHASH
201 select CRYPTO_NULL
202 help
203 Support for Galois/Counter Mode (GCM) and Galois Message
204 Authentication Code (GMAC). Required for IPSec.
205
206 config CRYPTO_SEQIV
207 tristate "Sequence Number IV Generator"
208 select CRYPTO_AEAD
209 select CRYPTO_BLKCIPHER
210 select CRYPTO_RNG
211 help
212 This IV generator generates an IV based on a sequence number by
213 xoring it with a salt. This algorithm is mainly useful for CTR
214
215 comment "Block modes"
216
217 config CRYPTO_CBC
218 tristate "CBC support"
219 select CRYPTO_BLKCIPHER
220 select CRYPTO_MANAGER
221 help
222 CBC: Cipher Block Chaining mode
223 This block cipher algorithm is required for IPSec.
224
225 config CRYPTO_CTR
226 tristate "CTR support"
227 select CRYPTO_BLKCIPHER
228 select CRYPTO_SEQIV
229 select CRYPTO_MANAGER
230 help
231 CTR: Counter mode
232 This block cipher algorithm is required for IPSec.
233
234 config CRYPTO_CTS
235 tristate "CTS support"
236 select CRYPTO_BLKCIPHER
237 help
238 CTS: Cipher Text Stealing
239 This is the Cipher Text Stealing mode as described by
240 Section 8 of rfc2040 and referenced by rfc3962.
241 (rfc3962 includes errata information in its Appendix A)
242 This mode is required for Kerberos gss mechanism support
243 for AES encryption.
244
245 config CRYPTO_ECB
246 tristate "ECB support"
247 select CRYPTO_BLKCIPHER
248 select CRYPTO_MANAGER
249 help
250 ECB: Electronic CodeBook mode
251 This is the simplest block cipher algorithm. It simply encrypts
252 the input block by block.
253
254 config CRYPTO_LRW
255 tristate "LRW support"
256 select CRYPTO_BLKCIPHER
257 select CRYPTO_MANAGER
258 select CRYPTO_GF128MUL
259 help
260 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
261 narrow block cipher mode for dm-crypt. Use it with cipher
262 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
263 The first 128, 192 or 256 bits in the key are used for AES and the
264 rest is used to tie each cipher block to its logical position.
265
266 config CRYPTO_PCBC
267 tristate "PCBC support"
268 select CRYPTO_BLKCIPHER
269 select CRYPTO_MANAGER
270 help
271 PCBC: Propagating Cipher Block Chaining mode
272 This block cipher algorithm is required for RxRPC.
273
274 config CRYPTO_XTS
275 tristate "XTS support"
276 select CRYPTO_BLKCIPHER
277 select CRYPTO_MANAGER
278 select CRYPTO_GF128MUL
279 help
280 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
281 key size 256, 384 or 512 bits. This implementation currently
282 can't handle a sectorsize which is not a multiple of 16 bytes.
283
284 comment "Hash modes"
285
286 config CRYPTO_CMAC
287 tristate "CMAC support"
288 select CRYPTO_HASH
289 select CRYPTO_MANAGER
290 help
291 Cipher-based Message Authentication Code (CMAC) specified by
292 The National Institute of Standards and Technology (NIST).
293
294 https://tools.ietf.org/html/rfc4493
295 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
296
297 config CRYPTO_HMAC
298 tristate "HMAC support"
299 select CRYPTO_HASH
300 select CRYPTO_MANAGER
301 help
302 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
303 This is required for IPSec.
304
305 config CRYPTO_XCBC
306 tristate "XCBC support"
307 select CRYPTO_HASH
308 select CRYPTO_MANAGER
309 help
310 XCBC: Keyed-Hashing with encryption algorithm
311 http://www.ietf.org/rfc/rfc3566.txt
312 http://csrc.nist.gov/encryption/modes/proposedmodes/
313 xcbc-mac/xcbc-mac-spec.pdf
314
315 config CRYPTO_VMAC
316 tristate "VMAC support"
317 select CRYPTO_HASH
318 select CRYPTO_MANAGER
319 help
320 VMAC is a message authentication algorithm designed for
321 very high speed on 64-bit architectures.
322
323 See also:
324 <http://fastcrypto.org/vmac>
325
326 comment "Digest"
327
328 config CRYPTO_CRC32C
329 tristate "CRC32c CRC algorithm"
330 select CRYPTO_HASH
331 select CRC32
332 help
333 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
334 by iSCSI for header and data digests and by others.
335 See Castagnoli93. Module will be crc32c.
336
337 config CRYPTO_CRC32C_INTEL
338 tristate "CRC32c INTEL hardware acceleration"
339 depends on X86
340 select CRYPTO_HASH
341 help
342 In Intel processor with SSE4.2 supported, the processor will
343 support CRC32C implementation using hardware accelerated CRC32
344 instruction. This option will create 'crc32c-intel' module,
345 which will enable any routine to use the CRC32 instruction to
346 gain performance compared with software implementation.
347 Module will be crc32c-intel.
348
349 config CRYPTO_CRC32C_SPARC64
350 tristate "CRC32c CRC algorithm (SPARC64)"
351 depends on SPARC64
352 select CRYPTO_HASH
353 select CRC32
354 help
355 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
356 when available.
357
358 config CRYPTO_CRC32
359 tristate "CRC32 CRC algorithm"
360 select CRYPTO_HASH
361 select CRC32
362 help
363 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
364 Shash crypto api wrappers to crc32_le function.
365
366 config CRYPTO_CRC32_PCLMUL
367 tristate "CRC32 PCLMULQDQ hardware acceleration"
368 depends on X86
369 select CRYPTO_HASH
370 select CRC32
371 help
372 From Intel Westmere and AMD Bulldozer processor with SSE4.2
373 and PCLMULQDQ supported, the processor will support
374 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
375 instruction. This option will create 'crc32-plcmul' module,
376 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
377 and gain better performance as compared with the table implementation.
378
379 config CRYPTO_GHASH
380 tristate "GHASH digest algorithm"
381 select CRYPTO_GF128MUL
382 help
383 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
384
385 config CRYPTO_MD4
386 tristate "MD4 digest algorithm"
387 select CRYPTO_HASH
388 help
389 MD4 message digest algorithm (RFC1320).
390
391 config CRYPTO_MD5
392 tristate "MD5 digest algorithm"
393 select CRYPTO_HASH
394 help
395 MD5 message digest algorithm (RFC1321).
396
397 config CRYPTO_MD5_SPARC64
398 tristate "MD5 digest algorithm (SPARC64)"
399 depends on SPARC64
400 select CRYPTO_MD5
401 select CRYPTO_HASH
402 help
403 MD5 message digest algorithm (RFC1321) implemented
404 using sparc64 crypto instructions, when available.
405
406 config CRYPTO_MICHAEL_MIC
407 tristate "Michael MIC keyed digest algorithm"
408 select CRYPTO_HASH
409 help
410 Michael MIC is used for message integrity protection in TKIP
411 (IEEE 802.11i). This algorithm is required for TKIP, but it
412 should not be used for other purposes because of the weakness
413 of the algorithm.
414
415 config CRYPTO_RMD128
416 tristate "RIPEMD-128 digest algorithm"
417 select CRYPTO_HASH
418 help
419 RIPEMD-128 (ISO/IEC 10118-3:2004).
420
421 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
422 be used as a secure replacement for RIPEMD. For other use cases,
423 RIPEMD-160 should be used.
424
425 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
426 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
427
428 config CRYPTO_RMD160
429 tristate "RIPEMD-160 digest algorithm"
430 select CRYPTO_HASH
431 help
432 RIPEMD-160 (ISO/IEC 10118-3:2004).
433
434 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
435 to be used as a secure replacement for the 128-bit hash functions
436 MD4, MD5 and it's predecessor RIPEMD
437 (not to be confused with RIPEMD-128).
438
439 It's speed is comparable to SHA1 and there are no known attacks
440 against RIPEMD-160.
441
442 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
443 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
444
445 config CRYPTO_RMD256
446 tristate "RIPEMD-256 digest algorithm"
447 select CRYPTO_HASH
448 help
449 RIPEMD-256 is an optional extension of RIPEMD-128 with a
450 256 bit hash. It is intended for applications that require
451 longer hash-results, without needing a larger security level
452 (than RIPEMD-128).
453
454 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
455 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
456
457 config CRYPTO_RMD320
458 tristate "RIPEMD-320 digest algorithm"
459 select CRYPTO_HASH
460 help
461 RIPEMD-320 is an optional extension of RIPEMD-160 with a
462 320 bit hash. It is intended for applications that require
463 longer hash-results, without needing a larger security level
464 (than RIPEMD-160).
465
466 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
467 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
468
469 config CRYPTO_SHA1
470 tristate "SHA1 digest algorithm"
471 select CRYPTO_HASH
472 help
473 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
474
475 config CRYPTO_SHA1_SSSE3
476 tristate "SHA1 digest algorithm (SSSE3/AVX)"
477 depends on X86 && 64BIT
478 select CRYPTO_SHA1
479 select CRYPTO_HASH
480 help
481 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
482 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
483 Extensions (AVX), when available.
484
485 config CRYPTO_SHA256_SSSE3
486 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
487 depends on X86 && 64BIT
488 select CRYPTO_SHA256
489 select CRYPTO_HASH
490 help
491 SHA-256 secure hash standard (DFIPS 180-2) implemented
492 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
493 Extensions version 1 (AVX1), or Advanced Vector Extensions
494 version 2 (AVX2) instructions, when available.
495
496 config CRYPTO_SHA512_SSSE3
497 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
498 depends on X86 && 64BIT
499 select CRYPTO_SHA512
500 select CRYPTO_HASH
501 help
502 SHA-512 secure hash standard (DFIPS 180-2) implemented
503 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
504 Extensions version 1 (AVX1), or Advanced Vector Extensions
505 version 2 (AVX2) instructions, when available.
506
507 config CRYPTO_SHA1_SPARC64
508 tristate "SHA1 digest algorithm (SPARC64)"
509 depends on SPARC64
510 select CRYPTO_SHA1
511 select CRYPTO_HASH
512 help
513 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
514 using sparc64 crypto instructions, when available.
515
516 config CRYPTO_SHA1_ARM
517 tristate "SHA1 digest algorithm (ARM-asm)"
518 depends on ARM
519 select CRYPTO_SHA1
520 select CRYPTO_HASH
521 help
522 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
523 using optimized ARM assembler.
524
525 config CRYPTO_SHA1_PPC
526 tristate "SHA1 digest algorithm (powerpc)"
527 depends on PPC
528 help
529 This is the powerpc hardware accelerated implementation of the
530 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
531
532 config CRYPTO_SHA256
533 tristate "SHA224 and SHA256 digest algorithm"
534 select CRYPTO_HASH
535 help
536 SHA256 secure hash standard (DFIPS 180-2).
537
538 This version of SHA implements a 256 bit hash with 128 bits of
539 security against collision attacks.
540
541 This code also includes SHA-224, a 224 bit hash with 112 bits
542 of security against collision attacks.
543
544 config CRYPTO_SHA256_SPARC64
545 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
546 depends on SPARC64
547 select CRYPTO_SHA256
548 select CRYPTO_HASH
549 help
550 SHA-256 secure hash standard (DFIPS 180-2) implemented
551 using sparc64 crypto instructions, when available.
552
553 config CRYPTO_SHA512
554 tristate "SHA384 and SHA512 digest algorithms"
555 select CRYPTO_HASH
556 help
557 SHA512 secure hash standard (DFIPS 180-2).
558
559 This version of SHA implements a 512 bit hash with 256 bits of
560 security against collision attacks.
561
562 This code also includes SHA-384, a 384 bit hash with 192 bits
563 of security against collision attacks.
564
565 config CRYPTO_SHA512_SPARC64
566 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
567 depends on SPARC64
568 select CRYPTO_SHA512
569 select CRYPTO_HASH
570 help
571 SHA-512 secure hash standard (DFIPS 180-2) implemented
572 using sparc64 crypto instructions, when available.
573
574 config CRYPTO_TGR192
575 tristate "Tiger digest algorithms"
576 select CRYPTO_HASH
577 help
578 Tiger hash algorithm 192, 160 and 128-bit hashes
579
580 Tiger is a hash function optimized for 64-bit processors while
581 still having decent performance on 32-bit processors.
582 Tiger was developed by Ross Anderson and Eli Biham.
583
584 See also:
585 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
586
587 config CRYPTO_WP512
588 tristate "Whirlpool digest algorithms"
589 select CRYPTO_HASH
590 help
591 Whirlpool hash algorithm 512, 384 and 256-bit hashes
592
593 Whirlpool-512 is part of the NESSIE cryptographic primitives.
594 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
595
596 See also:
597 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
598
599 config CRYPTO_GHASH_CLMUL_NI_INTEL
600 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
601 depends on X86 && 64BIT
602 select CRYPTO_CRYPTD
603 help
604 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
605 The implementation is accelerated by CLMUL-NI of Intel.
606
607 comment "Ciphers"
608
609 config CRYPTO_AES
610 tristate "AES cipher algorithms"
611 select CRYPTO_ALGAPI
612 help
613 AES cipher algorithms (FIPS-197). AES uses the Rijndael
614 algorithm.
615
616 Rijndael appears to be consistently a very good performer in
617 both hardware and software across a wide range of computing
618 environments regardless of its use in feedback or non-feedback
619 modes. Its key setup time is excellent, and its key agility is
620 good. Rijndael's very low memory requirements make it very well
621 suited for restricted-space environments, in which it also
622 demonstrates excellent performance. Rijndael's operations are
623 among the easiest to defend against power and timing attacks.
624
625 The AES specifies three key sizes: 128, 192 and 256 bits
626
627 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
628
629 config CRYPTO_AES_586
630 tristate "AES cipher algorithms (i586)"
631 depends on (X86 || UML_X86) && !64BIT
632 select CRYPTO_ALGAPI
633 select CRYPTO_AES
634 help
635 AES cipher algorithms (FIPS-197). AES uses the Rijndael
636 algorithm.
637
638 Rijndael appears to be consistently a very good performer in
639 both hardware and software across a wide range of computing
640 environments regardless of its use in feedback or non-feedback
641 modes. Its key setup time is excellent, and its key agility is
642 good. Rijndael's very low memory requirements make it very well
643 suited for restricted-space environments, in which it also
644 demonstrates excellent performance. Rijndael's operations are
645 among the easiest to defend against power and timing attacks.
646
647 The AES specifies three key sizes: 128, 192 and 256 bits
648
649 See <http://csrc.nist.gov/encryption/aes/> for more information.
650
651 config CRYPTO_AES_X86_64
652 tristate "AES cipher algorithms (x86_64)"
653 depends on (X86 || UML_X86) && 64BIT
654 select CRYPTO_ALGAPI
655 select CRYPTO_AES
656 help
657 AES cipher algorithms (FIPS-197). AES uses the Rijndael
658 algorithm.
659
660 Rijndael appears to be consistently a very good performer in
661 both hardware and software across a wide range of computing
662 environments regardless of its use in feedback or non-feedback
663 modes. Its key setup time is excellent, and its key agility is
664 good. Rijndael's very low memory requirements make it very well
665 suited for restricted-space environments, in which it also
666 demonstrates excellent performance. Rijndael's operations are
667 among the easiest to defend against power and timing attacks.
668
669 The AES specifies three key sizes: 128, 192 and 256 bits
670
671 See <http://csrc.nist.gov/encryption/aes/> for more information.
672
673 config CRYPTO_AES_NI_INTEL
674 tristate "AES cipher algorithms (AES-NI)"
675 depends on X86
676 select CRYPTO_AES_X86_64 if 64BIT
677 select CRYPTO_AES_586 if !64BIT
678 select CRYPTO_CRYPTD
679 select CRYPTO_ABLK_HELPER_X86
680 select CRYPTO_ALGAPI
681 select CRYPTO_GLUE_HELPER_X86 if 64BIT
682 select CRYPTO_LRW
683 select CRYPTO_XTS
684 help
685 Use Intel AES-NI instructions for AES algorithm.
686
687 AES cipher algorithms (FIPS-197). AES uses the Rijndael
688 algorithm.
689
690 Rijndael appears to be consistently a very good performer in
691 both hardware and software across a wide range of computing
692 environments regardless of its use in feedback or non-feedback
693 modes. Its key setup time is excellent, and its key agility is
694 good. Rijndael's very low memory requirements make it very well
695 suited for restricted-space environments, in which it also
696 demonstrates excellent performance. Rijndael's operations are
697 among the easiest to defend against power and timing attacks.
698
699 The AES specifies three key sizes: 128, 192 and 256 bits
700
701 See <http://csrc.nist.gov/encryption/aes/> for more information.
702
703 In addition to AES cipher algorithm support, the acceleration
704 for some popular block cipher mode is supported too, including
705 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
706 acceleration for CTR.
707
708 config CRYPTO_AES_SPARC64
709 tristate "AES cipher algorithms (SPARC64)"
710 depends on SPARC64
711 select CRYPTO_CRYPTD
712 select CRYPTO_ALGAPI
713 help
714 Use SPARC64 crypto opcodes for AES algorithm.
715
716 AES cipher algorithms (FIPS-197). AES uses the Rijndael
717 algorithm.
718
719 Rijndael appears to be consistently a very good performer in
720 both hardware and software across a wide range of computing
721 environments regardless of its use in feedback or non-feedback
722 modes. Its key setup time is excellent, and its key agility is
723 good. Rijndael's very low memory requirements make it very well
724 suited for restricted-space environments, in which it also
725 demonstrates excellent performance. Rijndael's operations are
726 among the easiest to defend against power and timing attacks.
727
728 The AES specifies three key sizes: 128, 192 and 256 bits
729
730 See <http://csrc.nist.gov/encryption/aes/> for more information.
731
732 In addition to AES cipher algorithm support, the acceleration
733 for some popular block cipher mode is supported too, including
734 ECB and CBC.
735
736 config CRYPTO_AES_ARM
737 tristate "AES cipher algorithms (ARM-asm)"
738 depends on ARM
739 select CRYPTO_ALGAPI
740 select CRYPTO_AES
741 help
742 Use optimized AES assembler routines for ARM platforms.
743
744 AES cipher algorithms (FIPS-197). AES uses the Rijndael
745 algorithm.
746
747 Rijndael appears to be consistently a very good performer in
748 both hardware and software across a wide range of computing
749 environments regardless of its use in feedback or non-feedback
750 modes. Its key setup time is excellent, and its key agility is
751 good. Rijndael's very low memory requirements make it very well
752 suited for restricted-space environments, in which it also
753 demonstrates excellent performance. Rijndael's operations are
754 among the easiest to defend against power and timing attacks.
755
756 The AES specifies three key sizes: 128, 192 and 256 bits
757
758 See <http://csrc.nist.gov/encryption/aes/> for more information.
759
760 config CRYPTO_ANUBIS
761 tristate "Anubis cipher algorithm"
762 select CRYPTO_ALGAPI
763 help
764 Anubis cipher algorithm.
765
766 Anubis is a variable key length cipher which can use keys from
767 128 bits to 320 bits in length. It was evaluated as a entrant
768 in the NESSIE competition.
769
770 See also:
771 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
772 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
773
774 config CRYPTO_ARC4
775 tristate "ARC4 cipher algorithm"
776 select CRYPTO_BLKCIPHER
777 help
778 ARC4 cipher algorithm.
779
780 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
781 bits in length. This algorithm is required for driver-based
782 WEP, but it should not be for other purposes because of the
783 weakness of the algorithm.
784
785 config CRYPTO_BLOWFISH
786 tristate "Blowfish cipher algorithm"
787 select CRYPTO_ALGAPI
788 select CRYPTO_BLOWFISH_COMMON
789 help
790 Blowfish cipher algorithm, by Bruce Schneier.
791
792 This is a variable key length cipher which can use keys from 32
793 bits to 448 bits in length. It's fast, simple and specifically
794 designed for use on "large microprocessors".
795
796 See also:
797 <http://www.schneier.com/blowfish.html>
798
799 config CRYPTO_BLOWFISH_COMMON
800 tristate
801 help
802 Common parts of the Blowfish cipher algorithm shared by the
803 generic c and the assembler implementations.
804
805 See also:
806 <http://www.schneier.com/blowfish.html>
807
808 config CRYPTO_BLOWFISH_X86_64
809 tristate "Blowfish cipher algorithm (x86_64)"
810 depends on X86 && 64BIT
811 select CRYPTO_ALGAPI
812 select CRYPTO_BLOWFISH_COMMON
813 help
814 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
815
816 This is a variable key length cipher which can use keys from 32
817 bits to 448 bits in length. It's fast, simple and specifically
818 designed for use on "large microprocessors".
819
820 See also:
821 <http://www.schneier.com/blowfish.html>
822
823 config CRYPTO_BLOWFISH_AVX2_X86_64
824 tristate "Blowfish cipher algorithm (x86_64/AVX2)"
825 depends on X86 && 64BIT
826 select CRYPTO_ALGAPI
827 select CRYPTO_CRYPTD
828 select CRYPTO_ABLK_HELPER_X86
829 select CRYPTO_BLOWFISH_COMMON
830 select CRYPTO_BLOWFISH_X86_64
831 help
832 Blowfish cipher algorithm (x86_64/AVX2), by Bruce Schneier.
833
834 This is a variable key length cipher which can use keys from 32
835 bits to 448 bits in length. It's fast, simple and specifically
836 designed for use on "large microprocessors".
837
838 See also:
839 <http://www.schneier.com/blowfish.html>
840
841 config CRYPTO_CAMELLIA
842 tristate "Camellia cipher algorithms"
843 depends on CRYPTO
844 select CRYPTO_ALGAPI
845 help
846 Camellia cipher algorithms module.
847
848 Camellia is a symmetric key block cipher developed jointly
849 at NTT and Mitsubishi Electric Corporation.
850
851 The Camellia specifies three key sizes: 128, 192 and 256 bits.
852
853 See also:
854 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
855
856 config CRYPTO_CAMELLIA_X86_64
857 tristate "Camellia cipher algorithm (x86_64)"
858 depends on X86 && 64BIT
859 depends on CRYPTO
860 select CRYPTO_ALGAPI
861 select CRYPTO_GLUE_HELPER_X86
862 select CRYPTO_LRW
863 select CRYPTO_XTS
864 help
865 Camellia cipher algorithm module (x86_64).
866
867 Camellia is a symmetric key block cipher developed jointly
868 at NTT and Mitsubishi Electric Corporation.
869
870 The Camellia specifies three key sizes: 128, 192 and 256 bits.
871
872 See also:
873 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
874
875 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
876 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
877 depends on X86 && 64BIT
878 depends on CRYPTO
879 select CRYPTO_ALGAPI
880 select CRYPTO_CRYPTD
881 select CRYPTO_ABLK_HELPER_X86
882 select CRYPTO_GLUE_HELPER_X86
883 select CRYPTO_CAMELLIA_X86_64
884 select CRYPTO_LRW
885 select CRYPTO_XTS
886 help
887 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
888
889 Camellia is a symmetric key block cipher developed jointly
890 at NTT and Mitsubishi Electric Corporation.
891
892 The Camellia specifies three key sizes: 128, 192 and 256 bits.
893
894 See also:
895 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
896
897 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
898 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
899 depends on X86 && 64BIT
900 depends on CRYPTO
901 select CRYPTO_ALGAPI
902 select CRYPTO_CRYPTD
903 select CRYPTO_ABLK_HELPER_X86
904 select CRYPTO_GLUE_HELPER_X86
905 select CRYPTO_CAMELLIA_X86_64
906 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
907 select CRYPTO_LRW
908 select CRYPTO_XTS
909 help
910 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
911
912 Camellia is a symmetric key block cipher developed jointly
913 at NTT and Mitsubishi Electric Corporation.
914
915 The Camellia specifies three key sizes: 128, 192 and 256 bits.
916
917 See also:
918 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
919
920 config CRYPTO_CAMELLIA_SPARC64
921 tristate "Camellia cipher algorithm (SPARC64)"
922 depends on SPARC64
923 depends on CRYPTO
924 select CRYPTO_ALGAPI
925 help
926 Camellia cipher algorithm module (SPARC64).
927
928 Camellia is a symmetric key block cipher developed jointly
929 at NTT and Mitsubishi Electric Corporation.
930
931 The Camellia specifies three key sizes: 128, 192 and 256 bits.
932
933 See also:
934 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
935
936 config CRYPTO_CAST_COMMON
937 tristate
938 help
939 Common parts of the CAST cipher algorithms shared by the
940 generic c and the assembler implementations.
941
942 config CRYPTO_CAST5
943 tristate "CAST5 (CAST-128) cipher algorithm"
944 select CRYPTO_ALGAPI
945 select CRYPTO_CAST_COMMON
946 help
947 The CAST5 encryption algorithm (synonymous with CAST-128) is
948 described in RFC2144.
949
950 config CRYPTO_CAST5_AVX_X86_64
951 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
952 depends on X86 && 64BIT
953 select CRYPTO_ALGAPI
954 select CRYPTO_CRYPTD
955 select CRYPTO_ABLK_HELPER_X86
956 select CRYPTO_CAST_COMMON
957 select CRYPTO_CAST5
958 help
959 The CAST5 encryption algorithm (synonymous with CAST-128) is
960 described in RFC2144.
961
962 This module provides the Cast5 cipher algorithm that processes
963 sixteen blocks parallel using the AVX instruction set.
964
965 config CRYPTO_CAST6
966 tristate "CAST6 (CAST-256) cipher algorithm"
967 select CRYPTO_ALGAPI
968 select CRYPTO_CAST_COMMON
969 help
970 The CAST6 encryption algorithm (synonymous with CAST-256) is
971 described in RFC2612.
972
973 config CRYPTO_CAST6_AVX_X86_64
974 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
975 depends on X86 && 64BIT
976 select CRYPTO_ALGAPI
977 select CRYPTO_CRYPTD
978 select CRYPTO_ABLK_HELPER_X86
979 select CRYPTO_GLUE_HELPER_X86
980 select CRYPTO_CAST_COMMON
981 select CRYPTO_CAST6
982 select CRYPTO_LRW
983 select CRYPTO_XTS
984 help
985 The CAST6 encryption algorithm (synonymous with CAST-256) is
986 described in RFC2612.
987
988 This module provides the Cast6 cipher algorithm that processes
989 eight blocks parallel using the AVX instruction set.
990
991 config CRYPTO_DES
992 tristate "DES and Triple DES EDE cipher algorithms"
993 select CRYPTO_ALGAPI
994 help
995 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
996
997 config CRYPTO_DES_SPARC64
998 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
999 depends on SPARC64
1000 select CRYPTO_ALGAPI
1001 select CRYPTO_DES
1002 help
1003 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1004 optimized using SPARC64 crypto opcodes.
1005
1006 config CRYPTO_FCRYPT
1007 tristate "FCrypt cipher algorithm"
1008 select CRYPTO_ALGAPI
1009 select CRYPTO_BLKCIPHER
1010 help
1011 FCrypt algorithm used by RxRPC.
1012
1013 config CRYPTO_KHAZAD
1014 tristate "Khazad cipher algorithm"
1015 select CRYPTO_ALGAPI
1016 help
1017 Khazad cipher algorithm.
1018
1019 Khazad was a finalist in the initial NESSIE competition. It is
1020 an algorithm optimized for 64-bit processors with good performance
1021 on 32-bit processors. Khazad uses an 128 bit key size.
1022
1023 See also:
1024 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1025
1026 config CRYPTO_SALSA20
1027 tristate "Salsa20 stream cipher algorithm"
1028 select CRYPTO_BLKCIPHER
1029 help
1030 Salsa20 stream cipher algorithm.
1031
1032 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1033 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1034
1035 The Salsa20 stream cipher algorithm is designed by Daniel J.
1036 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1037
1038 config CRYPTO_SALSA20_586
1039 tristate "Salsa20 stream cipher algorithm (i586)"
1040 depends on (X86 || UML_X86) && !64BIT
1041 select CRYPTO_BLKCIPHER
1042 help
1043 Salsa20 stream cipher algorithm.
1044
1045 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1046 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1047
1048 The Salsa20 stream cipher algorithm is designed by Daniel J.
1049 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1050
1051 config CRYPTO_SALSA20_X86_64
1052 tristate "Salsa20 stream cipher algorithm (x86_64)"
1053 depends on (X86 || UML_X86) && 64BIT
1054 select CRYPTO_BLKCIPHER
1055 help
1056 Salsa20 stream cipher algorithm.
1057
1058 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1059 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1060
1061 The Salsa20 stream cipher algorithm is designed by Daniel J.
1062 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1063
1064 config CRYPTO_SEED
1065 tristate "SEED cipher algorithm"
1066 select CRYPTO_ALGAPI
1067 help
1068 SEED cipher algorithm (RFC4269).
1069
1070 SEED is a 128-bit symmetric key block cipher that has been
1071 developed by KISA (Korea Information Security Agency) as a
1072 national standard encryption algorithm of the Republic of Korea.
1073 It is a 16 round block cipher with the key size of 128 bit.
1074
1075 See also:
1076 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1077
1078 config CRYPTO_SERPENT
1079 tristate "Serpent cipher algorithm"
1080 select CRYPTO_ALGAPI
1081 help
1082 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1083
1084 Keys are allowed to be from 0 to 256 bits in length, in steps
1085 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1086 variant of Serpent for compatibility with old kerneli.org code.
1087
1088 See also:
1089 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1090
1091 config CRYPTO_SERPENT_SSE2_X86_64
1092 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1093 depends on X86 && 64BIT
1094 select CRYPTO_ALGAPI
1095 select CRYPTO_CRYPTD
1096 select CRYPTO_ABLK_HELPER_X86
1097 select CRYPTO_GLUE_HELPER_X86
1098 select CRYPTO_SERPENT
1099 select CRYPTO_LRW
1100 select CRYPTO_XTS
1101 help
1102 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1103
1104 Keys are allowed to be from 0 to 256 bits in length, in steps
1105 of 8 bits.
1106
1107 This module provides Serpent cipher algorithm that processes eigth
1108 blocks parallel using SSE2 instruction set.
1109
1110 See also:
1111 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1112
1113 config CRYPTO_SERPENT_SSE2_586
1114 tristate "Serpent cipher algorithm (i586/SSE2)"
1115 depends on X86 && !64BIT
1116 select CRYPTO_ALGAPI
1117 select CRYPTO_CRYPTD
1118 select CRYPTO_ABLK_HELPER_X86
1119 select CRYPTO_GLUE_HELPER_X86
1120 select CRYPTO_SERPENT
1121 select CRYPTO_LRW
1122 select CRYPTO_XTS
1123 help
1124 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1125
1126 Keys are allowed to be from 0 to 256 bits in length, in steps
1127 of 8 bits.
1128
1129 This module provides Serpent cipher algorithm that processes four
1130 blocks parallel using SSE2 instruction set.
1131
1132 See also:
1133 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1134
1135 config CRYPTO_SERPENT_AVX_X86_64
1136 tristate "Serpent cipher algorithm (x86_64/AVX)"
1137 depends on X86 && 64BIT
1138 select CRYPTO_ALGAPI
1139 select CRYPTO_CRYPTD
1140 select CRYPTO_ABLK_HELPER_X86
1141 select CRYPTO_GLUE_HELPER_X86
1142 select CRYPTO_SERPENT
1143 select CRYPTO_LRW
1144 select CRYPTO_XTS
1145 help
1146 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1147
1148 Keys are allowed to be from 0 to 256 bits in length, in steps
1149 of 8 bits.
1150
1151 This module provides the Serpent cipher algorithm that processes
1152 eight blocks parallel using the AVX instruction set.
1153
1154 See also:
1155 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1156
1157 config CRYPTO_SERPENT_AVX2_X86_64
1158 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1159 depends on X86 && 64BIT
1160 select CRYPTO_ALGAPI
1161 select CRYPTO_CRYPTD
1162 select CRYPTO_ABLK_HELPER_X86
1163 select CRYPTO_GLUE_HELPER_X86
1164 select CRYPTO_SERPENT
1165 select CRYPTO_SERPENT_AVX_X86_64
1166 select CRYPTO_LRW
1167 select CRYPTO_XTS
1168 help
1169 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1170
1171 Keys are allowed to be from 0 to 256 bits in length, in steps
1172 of 8 bits.
1173
1174 This module provides Serpent cipher algorithm that processes 16
1175 blocks parallel using AVX2 instruction set.
1176
1177 See also:
1178 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1179
1180 config CRYPTO_TEA
1181 tristate "TEA, XTEA and XETA cipher algorithms"
1182 select CRYPTO_ALGAPI
1183 help
1184 TEA cipher algorithm.
1185
1186 Tiny Encryption Algorithm is a simple cipher that uses
1187 many rounds for security. It is very fast and uses
1188 little memory.
1189
1190 Xtendend Tiny Encryption Algorithm is a modification to
1191 the TEA algorithm to address a potential key weakness
1192 in the TEA algorithm.
1193
1194 Xtendend Encryption Tiny Algorithm is a mis-implementation
1195 of the XTEA algorithm for compatibility purposes.
1196
1197 config CRYPTO_TWOFISH
1198 tristate "Twofish cipher algorithm"
1199 select CRYPTO_ALGAPI
1200 select CRYPTO_TWOFISH_COMMON
1201 help
1202 Twofish cipher algorithm.
1203
1204 Twofish was submitted as an AES (Advanced Encryption Standard)
1205 candidate cipher by researchers at CounterPane Systems. It is a
1206 16 round block cipher supporting key sizes of 128, 192, and 256
1207 bits.
1208
1209 See also:
1210 <http://www.schneier.com/twofish.html>
1211
1212 config CRYPTO_TWOFISH_COMMON
1213 tristate
1214 help
1215 Common parts of the Twofish cipher algorithm shared by the
1216 generic c and the assembler implementations.
1217
1218 config CRYPTO_TWOFISH_586
1219 tristate "Twofish cipher algorithms (i586)"
1220 depends on (X86 || UML_X86) && !64BIT
1221 select CRYPTO_ALGAPI
1222 select CRYPTO_TWOFISH_COMMON
1223 help
1224 Twofish cipher algorithm.
1225
1226 Twofish was submitted as an AES (Advanced Encryption Standard)
1227 candidate cipher by researchers at CounterPane Systems. It is a
1228 16 round block cipher supporting key sizes of 128, 192, and 256
1229 bits.
1230
1231 See also:
1232 <http://www.schneier.com/twofish.html>
1233
1234 config CRYPTO_TWOFISH_X86_64
1235 tristate "Twofish cipher algorithm (x86_64)"
1236 depends on (X86 || UML_X86) && 64BIT
1237 select CRYPTO_ALGAPI
1238 select CRYPTO_TWOFISH_COMMON
1239 help
1240 Twofish cipher algorithm (x86_64).
1241
1242 Twofish was submitted as an AES (Advanced Encryption Standard)
1243 candidate cipher by researchers at CounterPane Systems. It is a
1244 16 round block cipher supporting key sizes of 128, 192, and 256
1245 bits.
1246
1247 See also:
1248 <http://www.schneier.com/twofish.html>
1249
1250 config CRYPTO_TWOFISH_X86_64_3WAY
1251 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1252 depends on X86 && 64BIT
1253 select CRYPTO_ALGAPI
1254 select CRYPTO_TWOFISH_COMMON
1255 select CRYPTO_TWOFISH_X86_64
1256 select CRYPTO_GLUE_HELPER_X86
1257 select CRYPTO_LRW
1258 select CRYPTO_XTS
1259 help
1260 Twofish cipher algorithm (x86_64, 3-way parallel).
1261
1262 Twofish was submitted as an AES (Advanced Encryption Standard)
1263 candidate cipher by researchers at CounterPane Systems. It is a
1264 16 round block cipher supporting key sizes of 128, 192, and 256
1265 bits.
1266
1267 This module provides Twofish cipher algorithm that processes three
1268 blocks parallel, utilizing resources of out-of-order CPUs better.
1269
1270 See also:
1271 <http://www.schneier.com/twofish.html>
1272
1273 config CRYPTO_TWOFISH_AVX_X86_64
1274 tristate "Twofish cipher algorithm (x86_64/AVX)"
1275 depends on X86 && 64BIT
1276 select CRYPTO_ALGAPI
1277 select CRYPTO_CRYPTD
1278 select CRYPTO_ABLK_HELPER_X86
1279 select CRYPTO_GLUE_HELPER_X86
1280 select CRYPTO_TWOFISH_COMMON
1281 select CRYPTO_TWOFISH_X86_64
1282 select CRYPTO_TWOFISH_X86_64_3WAY
1283 select CRYPTO_LRW
1284 select CRYPTO_XTS
1285 help
1286 Twofish cipher algorithm (x86_64/AVX).
1287
1288 Twofish was submitted as an AES (Advanced Encryption Standard)
1289 candidate cipher by researchers at CounterPane Systems. It is a
1290 16 round block cipher supporting key sizes of 128, 192, and 256
1291 bits.
1292
1293 This module provides the Twofish cipher algorithm that processes
1294 eight blocks parallel using the AVX Instruction Set.
1295
1296 See also:
1297 <http://www.schneier.com/twofish.html>
1298
1299 config CRYPTO_TWOFISH_AVX2_X86_64
1300 tristate "Twofish cipher algorithm (x86_64/AVX2)"
1301 depends on X86 && 64BIT
1302 select CRYPTO_ALGAPI
1303 select CRYPTO_CRYPTD
1304 select CRYPTO_ABLK_HELPER_X86
1305 select CRYPTO_GLUE_HELPER_X86
1306 select CRYPTO_TWOFISH_COMMON
1307 select CRYPTO_TWOFISH_X86_64
1308 select CRYPTO_TWOFISH_X86_64_3WAY
1309 select CRYPTO_TWOFISH_AVX_X86_64
1310 select CRYPTO_LRW
1311 select CRYPTO_XTS
1312 help
1313 Twofish cipher algorithm (x86_64/AVX2).
1314
1315 Twofish was submitted as an AES (Advanced Encryption Standard)
1316 candidate cipher by researchers at CounterPane Systems. It is a
1317 16 round block cipher supporting key sizes of 128, 192, and 256
1318 bits.
1319
1320 See also:
1321 <http://www.schneier.com/twofish.html>
1322
1323 comment "Compression"
1324
1325 config CRYPTO_DEFLATE
1326 tristate "Deflate compression algorithm"
1327 select CRYPTO_ALGAPI
1328 select ZLIB_INFLATE
1329 select ZLIB_DEFLATE
1330 help
1331 This is the Deflate algorithm (RFC1951), specified for use in
1332 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1333
1334 You will most probably want this if using IPSec.
1335
1336 config CRYPTO_ZLIB
1337 tristate "Zlib compression algorithm"
1338 select CRYPTO_PCOMP
1339 select ZLIB_INFLATE
1340 select ZLIB_DEFLATE
1341 select NLATTR
1342 help
1343 This is the zlib algorithm.
1344
1345 config CRYPTO_LZO
1346 tristate "LZO compression algorithm"
1347 select CRYPTO_ALGAPI
1348 select LZO_COMPRESS
1349 select LZO_DECOMPRESS
1350 help
1351 This is the LZO algorithm.
1352
1353 config CRYPTO_842
1354 tristate "842 compression algorithm"
1355 depends on CRYPTO_DEV_NX_COMPRESS
1356 # 842 uses lzo if the hardware becomes unavailable
1357 select LZO_COMPRESS
1358 select LZO_DECOMPRESS
1359 help
1360 This is the 842 algorithm.
1361
1362 comment "Random Number Generation"
1363
1364 config CRYPTO_ANSI_CPRNG
1365 tristate "Pseudo Random Number Generation for Cryptographic modules"
1366 default m
1367 select CRYPTO_AES
1368 select CRYPTO_RNG
1369 help
1370 This option enables the generic pseudo random number generator
1371 for cryptographic modules. Uses the Algorithm specified in
1372 ANSI X9.31 A.2.4. Note that this option must be enabled if
1373 CRYPTO_FIPS is selected
1374
1375 config CRYPTO_USER_API
1376 tristate
1377
1378 config CRYPTO_USER_API_HASH
1379 tristate "User-space interface for hash algorithms"
1380 depends on NET
1381 select CRYPTO_HASH
1382 select CRYPTO_USER_API
1383 help
1384 This option enables the user-spaces interface for hash
1385 algorithms.
1386
1387 config CRYPTO_USER_API_SKCIPHER
1388 tristate "User-space interface for symmetric key cipher algorithms"
1389 depends on NET
1390 select CRYPTO_BLKCIPHER
1391 select CRYPTO_USER_API
1392 help
1393 This option enables the user-spaces interface for symmetric
1394 key cipher algorithms.
1395
1396 source "drivers/crypto/Kconfig"
1397 source crypto/asymmetric_keys/Kconfig
1398
1399 endif # if CRYPTO
This page took 0.060587 seconds and 5 git commands to generate.