userfaultfd: selftest: update userfaultfd x86 32bit syscall number
[deliverable/linux.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on MODULE_SIG
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34 config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41 tristate
42
43 config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51 select CRYPTO_NULL2
52 select CRYPTO_RNG2
53
54 config CRYPTO_BLKCIPHER
55 tristate
56 select CRYPTO_BLKCIPHER2
57 select CRYPTO_ALGAPI
58
59 config CRYPTO_BLKCIPHER2
60 tristate
61 select CRYPTO_ALGAPI2
62 select CRYPTO_RNG2
63 select CRYPTO_WORKQUEUE
64
65 config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87 config CRYPTO_PCOMP
88 tristate
89 select CRYPTO_PCOMP2
90 select CRYPTO_ALGAPI
91
92 config CRYPTO_PCOMP2
93 tristate
94 select CRYPTO_ALGAPI2
95
96 config CRYPTO_AKCIPHER2
97 tristate
98 select CRYPTO_ALGAPI2
99
100 config CRYPTO_AKCIPHER
101 tristate
102 select CRYPTO_AKCIPHER2
103 select CRYPTO_ALGAPI
104
105 config CRYPTO_RSA
106 tristate "RSA algorithm"
107 select CRYPTO_AKCIPHER
108 select MPILIB
109 select ASN1
110 help
111 Generic implementation of the RSA public key algorithm.
112
113 config CRYPTO_MANAGER
114 tristate "Cryptographic algorithm manager"
115 select CRYPTO_MANAGER2
116 help
117 Create default cryptographic template instantiations such as
118 cbc(aes).
119
120 config CRYPTO_MANAGER2
121 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
122 select CRYPTO_AEAD2
123 select CRYPTO_HASH2
124 select CRYPTO_BLKCIPHER2
125 select CRYPTO_PCOMP2
126 select CRYPTO_AKCIPHER2
127
128 config CRYPTO_USER
129 tristate "Userspace cryptographic algorithm configuration"
130 depends on NET
131 select CRYPTO_MANAGER
132 help
133 Userspace configuration for cryptographic instantiations such as
134 cbc(aes).
135
136 config CRYPTO_MANAGER_DISABLE_TESTS
137 bool "Disable run-time self tests"
138 default y
139 depends on CRYPTO_MANAGER2
140 help
141 Disable run-time self tests that normally take place at
142 algorithm registration.
143
144 config CRYPTO_GF128MUL
145 tristate "GF(2^128) multiplication functions"
146 help
147 Efficient table driven implementation of multiplications in the
148 field GF(2^128). This is needed by some cypher modes. This
149 option will be selected automatically if you select such a
150 cipher mode. Only select this option by hand if you expect to load
151 an external module that requires these functions.
152
153 config CRYPTO_NULL
154 tristate "Null algorithms"
155 select CRYPTO_NULL2
156 help
157 These are 'Null' algorithms, used by IPsec, which do nothing.
158
159 config CRYPTO_NULL2
160 tristate
161 select CRYPTO_ALGAPI2
162 select CRYPTO_BLKCIPHER2
163 select CRYPTO_HASH2
164
165 config CRYPTO_PCRYPT
166 tristate "Parallel crypto engine"
167 depends on SMP
168 select PADATA
169 select CRYPTO_MANAGER
170 select CRYPTO_AEAD
171 help
172 This converts an arbitrary crypto algorithm into a parallel
173 algorithm that executes in kernel threads.
174
175 config CRYPTO_WORKQUEUE
176 tristate
177
178 config CRYPTO_CRYPTD
179 tristate "Software async crypto daemon"
180 select CRYPTO_BLKCIPHER
181 select CRYPTO_HASH
182 select CRYPTO_MANAGER
183 select CRYPTO_WORKQUEUE
184 help
185 This is a generic software asynchronous crypto daemon that
186 converts an arbitrary synchronous software crypto algorithm
187 into an asynchronous algorithm that executes in a kernel thread.
188
189 config CRYPTO_MCRYPTD
190 tristate "Software async multi-buffer crypto daemon"
191 select CRYPTO_BLKCIPHER
192 select CRYPTO_HASH
193 select CRYPTO_MANAGER
194 select CRYPTO_WORKQUEUE
195 help
196 This is a generic software asynchronous crypto daemon that
197 provides the kernel thread to assist multi-buffer crypto
198 algorithms for submitting jobs and flushing jobs in multi-buffer
199 crypto algorithms. Multi-buffer crypto algorithms are executed
200 in the context of this kernel thread and drivers can post
201 their crypto request asynchronously to be processed by this daemon.
202
203 config CRYPTO_AUTHENC
204 tristate "Authenc support"
205 select CRYPTO_AEAD
206 select CRYPTO_BLKCIPHER
207 select CRYPTO_MANAGER
208 select CRYPTO_HASH
209 select CRYPTO_NULL
210 help
211 Authenc: Combined mode wrapper for IPsec.
212 This is required for IPSec.
213
214 config CRYPTO_TEST
215 tristate "Testing module"
216 depends on m
217 select CRYPTO_MANAGER
218 help
219 Quick & dirty crypto test module.
220
221 config CRYPTO_ABLK_HELPER
222 tristate
223 select CRYPTO_CRYPTD
224
225 config CRYPTO_GLUE_HELPER_X86
226 tristate
227 depends on X86
228 select CRYPTO_ALGAPI
229
230 comment "Authenticated Encryption with Associated Data"
231
232 config CRYPTO_CCM
233 tristate "CCM support"
234 select CRYPTO_CTR
235 select CRYPTO_AEAD
236 help
237 Support for Counter with CBC MAC. Required for IPsec.
238
239 config CRYPTO_GCM
240 tristate "GCM/GMAC support"
241 select CRYPTO_CTR
242 select CRYPTO_AEAD
243 select CRYPTO_GHASH
244 select CRYPTO_NULL
245 help
246 Support for Galois/Counter Mode (GCM) and Galois Message
247 Authentication Code (GMAC). Required for IPSec.
248
249 config CRYPTO_CHACHA20POLY1305
250 tristate "ChaCha20-Poly1305 AEAD support"
251 select CRYPTO_CHACHA20
252 select CRYPTO_POLY1305
253 select CRYPTO_AEAD
254 help
255 ChaCha20-Poly1305 AEAD support, RFC7539.
256
257 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
258 with the Poly1305 authenticator. It is defined in RFC7539 for use in
259 IETF protocols.
260
261 config CRYPTO_SEQIV
262 tristate "Sequence Number IV Generator"
263 select CRYPTO_AEAD
264 select CRYPTO_BLKCIPHER
265 select CRYPTO_NULL
266 select CRYPTO_RNG_DEFAULT
267 help
268 This IV generator generates an IV based on a sequence number by
269 xoring it with a salt. This algorithm is mainly useful for CTR
270
271 config CRYPTO_ECHAINIV
272 tristate "Encrypted Chain IV Generator"
273 select CRYPTO_AEAD
274 select CRYPTO_NULL
275 select CRYPTO_RNG_DEFAULT
276 default m
277 help
278 This IV generator generates an IV based on the encryption of
279 a sequence number xored with a salt. This is the default
280 algorithm for CBC.
281
282 comment "Block modes"
283
284 config CRYPTO_CBC
285 tristate "CBC support"
286 select CRYPTO_BLKCIPHER
287 select CRYPTO_MANAGER
288 help
289 CBC: Cipher Block Chaining mode
290 This block cipher algorithm is required for IPSec.
291
292 config CRYPTO_CTR
293 tristate "CTR support"
294 select CRYPTO_BLKCIPHER
295 select CRYPTO_SEQIV
296 select CRYPTO_MANAGER
297 help
298 CTR: Counter mode
299 This block cipher algorithm is required for IPSec.
300
301 config CRYPTO_CTS
302 tristate "CTS support"
303 select CRYPTO_BLKCIPHER
304 help
305 CTS: Cipher Text Stealing
306 This is the Cipher Text Stealing mode as described by
307 Section 8 of rfc2040 and referenced by rfc3962.
308 (rfc3962 includes errata information in its Appendix A)
309 This mode is required for Kerberos gss mechanism support
310 for AES encryption.
311
312 config CRYPTO_ECB
313 tristate "ECB support"
314 select CRYPTO_BLKCIPHER
315 select CRYPTO_MANAGER
316 help
317 ECB: Electronic CodeBook mode
318 This is the simplest block cipher algorithm. It simply encrypts
319 the input block by block.
320
321 config CRYPTO_LRW
322 tristate "LRW support"
323 select CRYPTO_BLKCIPHER
324 select CRYPTO_MANAGER
325 select CRYPTO_GF128MUL
326 help
327 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
328 narrow block cipher mode for dm-crypt. Use it with cipher
329 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
330 The first 128, 192 or 256 bits in the key are used for AES and the
331 rest is used to tie each cipher block to its logical position.
332
333 config CRYPTO_PCBC
334 tristate "PCBC support"
335 select CRYPTO_BLKCIPHER
336 select CRYPTO_MANAGER
337 help
338 PCBC: Propagating Cipher Block Chaining mode
339 This block cipher algorithm is required for RxRPC.
340
341 config CRYPTO_XTS
342 tristate "XTS support"
343 select CRYPTO_BLKCIPHER
344 select CRYPTO_MANAGER
345 select CRYPTO_GF128MUL
346 help
347 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
348 key size 256, 384 or 512 bits. This implementation currently
349 can't handle a sectorsize which is not a multiple of 16 bytes.
350
351 comment "Hash modes"
352
353 config CRYPTO_CMAC
354 tristate "CMAC support"
355 select CRYPTO_HASH
356 select CRYPTO_MANAGER
357 help
358 Cipher-based Message Authentication Code (CMAC) specified by
359 The National Institute of Standards and Technology (NIST).
360
361 https://tools.ietf.org/html/rfc4493
362 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
363
364 config CRYPTO_HMAC
365 tristate "HMAC support"
366 select CRYPTO_HASH
367 select CRYPTO_MANAGER
368 help
369 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
370 This is required for IPSec.
371
372 config CRYPTO_XCBC
373 tristate "XCBC support"
374 select CRYPTO_HASH
375 select CRYPTO_MANAGER
376 help
377 XCBC: Keyed-Hashing with encryption algorithm
378 http://www.ietf.org/rfc/rfc3566.txt
379 http://csrc.nist.gov/encryption/modes/proposedmodes/
380 xcbc-mac/xcbc-mac-spec.pdf
381
382 config CRYPTO_VMAC
383 tristate "VMAC support"
384 select CRYPTO_HASH
385 select CRYPTO_MANAGER
386 help
387 VMAC is a message authentication algorithm designed for
388 very high speed on 64-bit architectures.
389
390 See also:
391 <http://fastcrypto.org/vmac>
392
393 comment "Digest"
394
395 config CRYPTO_CRC32C
396 tristate "CRC32c CRC algorithm"
397 select CRYPTO_HASH
398 select CRC32
399 help
400 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
401 by iSCSI for header and data digests and by others.
402 See Castagnoli93. Module will be crc32c.
403
404 config CRYPTO_CRC32C_INTEL
405 tristate "CRC32c INTEL hardware acceleration"
406 depends on X86
407 select CRYPTO_HASH
408 help
409 In Intel processor with SSE4.2 supported, the processor will
410 support CRC32C implementation using hardware accelerated CRC32
411 instruction. This option will create 'crc32c-intel' module,
412 which will enable any routine to use the CRC32 instruction to
413 gain performance compared with software implementation.
414 Module will be crc32c-intel.
415
416 config CRYPTO_CRC32C_SPARC64
417 tristate "CRC32c CRC algorithm (SPARC64)"
418 depends on SPARC64
419 select CRYPTO_HASH
420 select CRC32
421 help
422 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
423 when available.
424
425 config CRYPTO_CRC32
426 tristate "CRC32 CRC algorithm"
427 select CRYPTO_HASH
428 select CRC32
429 help
430 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
431 Shash crypto api wrappers to crc32_le function.
432
433 config CRYPTO_CRC32_PCLMUL
434 tristate "CRC32 PCLMULQDQ hardware acceleration"
435 depends on X86
436 select CRYPTO_HASH
437 select CRC32
438 help
439 From Intel Westmere and AMD Bulldozer processor with SSE4.2
440 and PCLMULQDQ supported, the processor will support
441 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
442 instruction. This option will create 'crc32-plcmul' module,
443 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
444 and gain better performance as compared with the table implementation.
445
446 config CRYPTO_CRCT10DIF
447 tristate "CRCT10DIF algorithm"
448 select CRYPTO_HASH
449 help
450 CRC T10 Data Integrity Field computation is being cast as
451 a crypto transform. This allows for faster crc t10 diff
452 transforms to be used if they are available.
453
454 config CRYPTO_CRCT10DIF_PCLMUL
455 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
456 depends on X86 && 64BIT && CRC_T10DIF
457 select CRYPTO_HASH
458 help
459 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
460 CRC T10 DIF PCLMULQDQ computation can be hardware
461 accelerated PCLMULQDQ instruction. This option will create
462 'crct10dif-plcmul' module, which is faster when computing the
463 crct10dif checksum as compared with the generic table implementation.
464
465 config CRYPTO_GHASH
466 tristate "GHASH digest algorithm"
467 select CRYPTO_GF128MUL
468 help
469 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
470
471 config CRYPTO_POLY1305
472 tristate "Poly1305 authenticator algorithm"
473 help
474 Poly1305 authenticator algorithm, RFC7539.
475
476 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
477 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
478 in IETF protocols. This is the portable C implementation of Poly1305.
479
480 config CRYPTO_POLY1305_X86_64
481 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
482 depends on X86 && 64BIT
483 select CRYPTO_POLY1305
484 help
485 Poly1305 authenticator algorithm, RFC7539.
486
487 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
488 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
489 in IETF protocols. This is the x86_64 assembler implementation using SIMD
490 instructions.
491
492 config CRYPTO_MD4
493 tristate "MD4 digest algorithm"
494 select CRYPTO_HASH
495 help
496 MD4 message digest algorithm (RFC1320).
497
498 config CRYPTO_MD5
499 tristate "MD5 digest algorithm"
500 select CRYPTO_HASH
501 help
502 MD5 message digest algorithm (RFC1321).
503
504 config CRYPTO_MD5_OCTEON
505 tristate "MD5 digest algorithm (OCTEON)"
506 depends on CPU_CAVIUM_OCTEON
507 select CRYPTO_MD5
508 select CRYPTO_HASH
509 help
510 MD5 message digest algorithm (RFC1321) implemented
511 using OCTEON crypto instructions, when available.
512
513 config CRYPTO_MD5_PPC
514 tristate "MD5 digest algorithm (PPC)"
515 depends on PPC
516 select CRYPTO_HASH
517 help
518 MD5 message digest algorithm (RFC1321) implemented
519 in PPC assembler.
520
521 config CRYPTO_MD5_SPARC64
522 tristate "MD5 digest algorithm (SPARC64)"
523 depends on SPARC64
524 select CRYPTO_MD5
525 select CRYPTO_HASH
526 help
527 MD5 message digest algorithm (RFC1321) implemented
528 using sparc64 crypto instructions, when available.
529
530 config CRYPTO_MICHAEL_MIC
531 tristate "Michael MIC keyed digest algorithm"
532 select CRYPTO_HASH
533 help
534 Michael MIC is used for message integrity protection in TKIP
535 (IEEE 802.11i). This algorithm is required for TKIP, but it
536 should not be used for other purposes because of the weakness
537 of the algorithm.
538
539 config CRYPTO_RMD128
540 tristate "RIPEMD-128 digest algorithm"
541 select CRYPTO_HASH
542 help
543 RIPEMD-128 (ISO/IEC 10118-3:2004).
544
545 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
546 be used as a secure replacement for RIPEMD. For other use cases,
547 RIPEMD-160 should be used.
548
549 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
550 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
551
552 config CRYPTO_RMD160
553 tristate "RIPEMD-160 digest algorithm"
554 select CRYPTO_HASH
555 help
556 RIPEMD-160 (ISO/IEC 10118-3:2004).
557
558 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
559 to be used as a secure replacement for the 128-bit hash functions
560 MD4, MD5 and it's predecessor RIPEMD
561 (not to be confused with RIPEMD-128).
562
563 It's speed is comparable to SHA1 and there are no known attacks
564 against RIPEMD-160.
565
566 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
567 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
568
569 config CRYPTO_RMD256
570 tristate "RIPEMD-256 digest algorithm"
571 select CRYPTO_HASH
572 help
573 RIPEMD-256 is an optional extension of RIPEMD-128 with a
574 256 bit hash. It is intended for applications that require
575 longer hash-results, without needing a larger security level
576 (than RIPEMD-128).
577
578 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
579 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
580
581 config CRYPTO_RMD320
582 tristate "RIPEMD-320 digest algorithm"
583 select CRYPTO_HASH
584 help
585 RIPEMD-320 is an optional extension of RIPEMD-160 with a
586 320 bit hash. It is intended for applications that require
587 longer hash-results, without needing a larger security level
588 (than RIPEMD-160).
589
590 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
591 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
592
593 config CRYPTO_SHA1
594 tristate "SHA1 digest algorithm"
595 select CRYPTO_HASH
596 help
597 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
598
599 config CRYPTO_SHA1_SSSE3
600 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
601 depends on X86 && 64BIT
602 select CRYPTO_SHA1
603 select CRYPTO_HASH
604 help
605 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
606 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
607 Extensions (AVX/AVX2), when available.
608
609 config CRYPTO_SHA256_SSSE3
610 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
611 depends on X86 && 64BIT
612 select CRYPTO_SHA256
613 select CRYPTO_HASH
614 help
615 SHA-256 secure hash standard (DFIPS 180-2) implemented
616 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
617 Extensions version 1 (AVX1), or Advanced Vector Extensions
618 version 2 (AVX2) instructions, when available.
619
620 config CRYPTO_SHA512_SSSE3
621 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
622 depends on X86 && 64BIT
623 select CRYPTO_SHA512
624 select CRYPTO_HASH
625 help
626 SHA-512 secure hash standard (DFIPS 180-2) implemented
627 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
628 Extensions version 1 (AVX1), or Advanced Vector Extensions
629 version 2 (AVX2) instructions, when available.
630
631 config CRYPTO_SHA1_OCTEON
632 tristate "SHA1 digest algorithm (OCTEON)"
633 depends on CPU_CAVIUM_OCTEON
634 select CRYPTO_SHA1
635 select CRYPTO_HASH
636 help
637 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
638 using OCTEON crypto instructions, when available.
639
640 config CRYPTO_SHA1_SPARC64
641 tristate "SHA1 digest algorithm (SPARC64)"
642 depends on SPARC64
643 select CRYPTO_SHA1
644 select CRYPTO_HASH
645 help
646 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
647 using sparc64 crypto instructions, when available.
648
649 config CRYPTO_SHA1_PPC
650 tristate "SHA1 digest algorithm (powerpc)"
651 depends on PPC
652 help
653 This is the powerpc hardware accelerated implementation of the
654 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
655
656 config CRYPTO_SHA1_PPC_SPE
657 tristate "SHA1 digest algorithm (PPC SPE)"
658 depends on PPC && SPE
659 help
660 SHA-1 secure hash standard (DFIPS 180-4) implemented
661 using powerpc SPE SIMD instruction set.
662
663 config CRYPTO_SHA1_MB
664 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
665 depends on X86 && 64BIT
666 select CRYPTO_SHA1
667 select CRYPTO_HASH
668 select CRYPTO_MCRYPTD
669 help
670 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
671 using multi-buffer technique. This algorithm computes on
672 multiple data lanes concurrently with SIMD instructions for
673 better throughput. It should not be enabled by default but
674 used when there is significant amount of work to keep the keep
675 the data lanes filled to get performance benefit. If the data
676 lanes remain unfilled, a flush operation will be initiated to
677 process the crypto jobs, adding a slight latency.
678
679 config CRYPTO_SHA256
680 tristate "SHA224 and SHA256 digest algorithm"
681 select CRYPTO_HASH
682 help
683 SHA256 secure hash standard (DFIPS 180-2).
684
685 This version of SHA implements a 256 bit hash with 128 bits of
686 security against collision attacks.
687
688 This code also includes SHA-224, a 224 bit hash with 112 bits
689 of security against collision attacks.
690
691 config CRYPTO_SHA256_PPC_SPE
692 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
693 depends on PPC && SPE
694 select CRYPTO_SHA256
695 select CRYPTO_HASH
696 help
697 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
698 implemented using powerpc SPE SIMD instruction set.
699
700 config CRYPTO_SHA256_OCTEON
701 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
702 depends on CPU_CAVIUM_OCTEON
703 select CRYPTO_SHA256
704 select CRYPTO_HASH
705 help
706 SHA-256 secure hash standard (DFIPS 180-2) implemented
707 using OCTEON crypto instructions, when available.
708
709 config CRYPTO_SHA256_SPARC64
710 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
711 depends on SPARC64
712 select CRYPTO_SHA256
713 select CRYPTO_HASH
714 help
715 SHA-256 secure hash standard (DFIPS 180-2) implemented
716 using sparc64 crypto instructions, when available.
717
718 config CRYPTO_SHA512
719 tristate "SHA384 and SHA512 digest algorithms"
720 select CRYPTO_HASH
721 help
722 SHA512 secure hash standard (DFIPS 180-2).
723
724 This version of SHA implements a 512 bit hash with 256 bits of
725 security against collision attacks.
726
727 This code also includes SHA-384, a 384 bit hash with 192 bits
728 of security against collision attacks.
729
730 config CRYPTO_SHA512_OCTEON
731 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
732 depends on CPU_CAVIUM_OCTEON
733 select CRYPTO_SHA512
734 select CRYPTO_HASH
735 help
736 SHA-512 secure hash standard (DFIPS 180-2) implemented
737 using OCTEON crypto instructions, when available.
738
739 config CRYPTO_SHA512_SPARC64
740 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
741 depends on SPARC64
742 select CRYPTO_SHA512
743 select CRYPTO_HASH
744 help
745 SHA-512 secure hash standard (DFIPS 180-2) implemented
746 using sparc64 crypto instructions, when available.
747
748 config CRYPTO_TGR192
749 tristate "Tiger digest algorithms"
750 select CRYPTO_HASH
751 help
752 Tiger hash algorithm 192, 160 and 128-bit hashes
753
754 Tiger is a hash function optimized for 64-bit processors while
755 still having decent performance on 32-bit processors.
756 Tiger was developed by Ross Anderson and Eli Biham.
757
758 See also:
759 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
760
761 config CRYPTO_WP512
762 tristate "Whirlpool digest algorithms"
763 select CRYPTO_HASH
764 help
765 Whirlpool hash algorithm 512, 384 and 256-bit hashes
766
767 Whirlpool-512 is part of the NESSIE cryptographic primitives.
768 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
769
770 See also:
771 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
772
773 config CRYPTO_GHASH_CLMUL_NI_INTEL
774 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
775 depends on X86 && 64BIT
776 select CRYPTO_CRYPTD
777 help
778 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
779 The implementation is accelerated by CLMUL-NI of Intel.
780
781 comment "Ciphers"
782
783 config CRYPTO_AES
784 tristate "AES cipher algorithms"
785 select CRYPTO_ALGAPI
786 help
787 AES cipher algorithms (FIPS-197). AES uses the Rijndael
788 algorithm.
789
790 Rijndael appears to be consistently a very good performer in
791 both hardware and software across a wide range of computing
792 environments regardless of its use in feedback or non-feedback
793 modes. Its key setup time is excellent, and its key agility is
794 good. Rijndael's very low memory requirements make it very well
795 suited for restricted-space environments, in which it also
796 demonstrates excellent performance. Rijndael's operations are
797 among the easiest to defend against power and timing attacks.
798
799 The AES specifies three key sizes: 128, 192 and 256 bits
800
801 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
802
803 config CRYPTO_AES_586
804 tristate "AES cipher algorithms (i586)"
805 depends on (X86 || UML_X86) && !64BIT
806 select CRYPTO_ALGAPI
807 select CRYPTO_AES
808 help
809 AES cipher algorithms (FIPS-197). AES uses the Rijndael
810 algorithm.
811
812 Rijndael appears to be consistently a very good performer in
813 both hardware and software across a wide range of computing
814 environments regardless of its use in feedback or non-feedback
815 modes. Its key setup time is excellent, and its key agility is
816 good. Rijndael's very low memory requirements make it very well
817 suited for restricted-space environments, in which it also
818 demonstrates excellent performance. Rijndael's operations are
819 among the easiest to defend against power and timing attacks.
820
821 The AES specifies three key sizes: 128, 192 and 256 bits
822
823 See <http://csrc.nist.gov/encryption/aes/> for more information.
824
825 config CRYPTO_AES_X86_64
826 tristate "AES cipher algorithms (x86_64)"
827 depends on (X86 || UML_X86) && 64BIT
828 select CRYPTO_ALGAPI
829 select CRYPTO_AES
830 help
831 AES cipher algorithms (FIPS-197). AES uses the Rijndael
832 algorithm.
833
834 Rijndael appears to be consistently a very good performer in
835 both hardware and software across a wide range of computing
836 environments regardless of its use in feedback or non-feedback
837 modes. Its key setup time is excellent, and its key agility is
838 good. Rijndael's very low memory requirements make it very well
839 suited for restricted-space environments, in which it also
840 demonstrates excellent performance. Rijndael's operations are
841 among the easiest to defend against power and timing attacks.
842
843 The AES specifies three key sizes: 128, 192 and 256 bits
844
845 See <http://csrc.nist.gov/encryption/aes/> for more information.
846
847 config CRYPTO_AES_NI_INTEL
848 tristate "AES cipher algorithms (AES-NI)"
849 depends on X86
850 select CRYPTO_AES_X86_64 if 64BIT
851 select CRYPTO_AES_586 if !64BIT
852 select CRYPTO_CRYPTD
853 select CRYPTO_ABLK_HELPER
854 select CRYPTO_ALGAPI
855 select CRYPTO_GLUE_HELPER_X86 if 64BIT
856 select CRYPTO_LRW
857 select CRYPTO_XTS
858 help
859 Use Intel AES-NI instructions for AES algorithm.
860
861 AES cipher algorithms (FIPS-197). AES uses the Rijndael
862 algorithm.
863
864 Rijndael appears to be consistently a very good performer in
865 both hardware and software across a wide range of computing
866 environments regardless of its use in feedback or non-feedback
867 modes. Its key setup time is excellent, and its key agility is
868 good. Rijndael's very low memory requirements make it very well
869 suited for restricted-space environments, in which it also
870 demonstrates excellent performance. Rijndael's operations are
871 among the easiest to defend against power and timing attacks.
872
873 The AES specifies three key sizes: 128, 192 and 256 bits
874
875 See <http://csrc.nist.gov/encryption/aes/> for more information.
876
877 In addition to AES cipher algorithm support, the acceleration
878 for some popular block cipher mode is supported too, including
879 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
880 acceleration for CTR.
881
882 config CRYPTO_AES_SPARC64
883 tristate "AES cipher algorithms (SPARC64)"
884 depends on SPARC64
885 select CRYPTO_CRYPTD
886 select CRYPTO_ALGAPI
887 help
888 Use SPARC64 crypto opcodes for AES algorithm.
889
890 AES cipher algorithms (FIPS-197). AES uses the Rijndael
891 algorithm.
892
893 Rijndael appears to be consistently a very good performer in
894 both hardware and software across a wide range of computing
895 environments regardless of its use in feedback or non-feedback
896 modes. Its key setup time is excellent, and its key agility is
897 good. Rijndael's very low memory requirements make it very well
898 suited for restricted-space environments, in which it also
899 demonstrates excellent performance. Rijndael's operations are
900 among the easiest to defend against power and timing attacks.
901
902 The AES specifies three key sizes: 128, 192 and 256 bits
903
904 See <http://csrc.nist.gov/encryption/aes/> for more information.
905
906 In addition to AES cipher algorithm support, the acceleration
907 for some popular block cipher mode is supported too, including
908 ECB and CBC.
909
910 config CRYPTO_AES_PPC_SPE
911 tristate "AES cipher algorithms (PPC SPE)"
912 depends on PPC && SPE
913 help
914 AES cipher algorithms (FIPS-197). Additionally the acceleration
915 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
916 This module should only be used for low power (router) devices
917 without hardware AES acceleration (e.g. caam crypto). It reduces the
918 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
919 timining attacks. Nevertheless it might be not as secure as other
920 architecture specific assembler implementations that work on 1KB
921 tables or 256 bytes S-boxes.
922
923 config CRYPTO_ANUBIS
924 tristate "Anubis cipher algorithm"
925 select CRYPTO_ALGAPI
926 help
927 Anubis cipher algorithm.
928
929 Anubis is a variable key length cipher which can use keys from
930 128 bits to 320 bits in length. It was evaluated as a entrant
931 in the NESSIE competition.
932
933 See also:
934 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
935 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
936
937 config CRYPTO_ARC4
938 tristate "ARC4 cipher algorithm"
939 select CRYPTO_BLKCIPHER
940 help
941 ARC4 cipher algorithm.
942
943 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
944 bits in length. This algorithm is required for driver-based
945 WEP, but it should not be for other purposes because of the
946 weakness of the algorithm.
947
948 config CRYPTO_BLOWFISH
949 tristate "Blowfish cipher algorithm"
950 select CRYPTO_ALGAPI
951 select CRYPTO_BLOWFISH_COMMON
952 help
953 Blowfish cipher algorithm, by Bruce Schneier.
954
955 This is a variable key length cipher which can use keys from 32
956 bits to 448 bits in length. It's fast, simple and specifically
957 designed for use on "large microprocessors".
958
959 See also:
960 <http://www.schneier.com/blowfish.html>
961
962 config CRYPTO_BLOWFISH_COMMON
963 tristate
964 help
965 Common parts of the Blowfish cipher algorithm shared by the
966 generic c and the assembler implementations.
967
968 See also:
969 <http://www.schneier.com/blowfish.html>
970
971 config CRYPTO_BLOWFISH_X86_64
972 tristate "Blowfish cipher algorithm (x86_64)"
973 depends on X86 && 64BIT
974 select CRYPTO_ALGAPI
975 select CRYPTO_BLOWFISH_COMMON
976 help
977 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
978
979 This is a variable key length cipher which can use keys from 32
980 bits to 448 bits in length. It's fast, simple and specifically
981 designed for use on "large microprocessors".
982
983 See also:
984 <http://www.schneier.com/blowfish.html>
985
986 config CRYPTO_CAMELLIA
987 tristate "Camellia cipher algorithms"
988 depends on CRYPTO
989 select CRYPTO_ALGAPI
990 help
991 Camellia cipher algorithms module.
992
993 Camellia is a symmetric key block cipher developed jointly
994 at NTT and Mitsubishi Electric Corporation.
995
996 The Camellia specifies three key sizes: 128, 192 and 256 bits.
997
998 See also:
999 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1000
1001 config CRYPTO_CAMELLIA_X86_64
1002 tristate "Camellia cipher algorithm (x86_64)"
1003 depends on X86 && 64BIT
1004 depends on CRYPTO
1005 select CRYPTO_ALGAPI
1006 select CRYPTO_GLUE_HELPER_X86
1007 select CRYPTO_LRW
1008 select CRYPTO_XTS
1009 help
1010 Camellia cipher algorithm module (x86_64).
1011
1012 Camellia is a symmetric key block cipher developed jointly
1013 at NTT and Mitsubishi Electric Corporation.
1014
1015 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1016
1017 See also:
1018 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1019
1020 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1021 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1022 depends on X86 && 64BIT
1023 depends on CRYPTO
1024 select CRYPTO_ALGAPI
1025 select CRYPTO_CRYPTD
1026 select CRYPTO_ABLK_HELPER
1027 select CRYPTO_GLUE_HELPER_X86
1028 select CRYPTO_CAMELLIA_X86_64
1029 select CRYPTO_LRW
1030 select CRYPTO_XTS
1031 help
1032 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1033
1034 Camellia is a symmetric key block cipher developed jointly
1035 at NTT and Mitsubishi Electric Corporation.
1036
1037 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1038
1039 See also:
1040 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1041
1042 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1043 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1044 depends on X86 && 64BIT
1045 depends on CRYPTO
1046 select CRYPTO_ALGAPI
1047 select CRYPTO_CRYPTD
1048 select CRYPTO_ABLK_HELPER
1049 select CRYPTO_GLUE_HELPER_X86
1050 select CRYPTO_CAMELLIA_X86_64
1051 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1052 select CRYPTO_LRW
1053 select CRYPTO_XTS
1054 help
1055 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1056
1057 Camellia is a symmetric key block cipher developed jointly
1058 at NTT and Mitsubishi Electric Corporation.
1059
1060 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1061
1062 See also:
1063 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1064
1065 config CRYPTO_CAMELLIA_SPARC64
1066 tristate "Camellia cipher algorithm (SPARC64)"
1067 depends on SPARC64
1068 depends on CRYPTO
1069 select CRYPTO_ALGAPI
1070 help
1071 Camellia cipher algorithm module (SPARC64).
1072
1073 Camellia is a symmetric key block cipher developed jointly
1074 at NTT and Mitsubishi Electric Corporation.
1075
1076 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1077
1078 See also:
1079 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1080
1081 config CRYPTO_CAST_COMMON
1082 tristate
1083 help
1084 Common parts of the CAST cipher algorithms shared by the
1085 generic c and the assembler implementations.
1086
1087 config CRYPTO_CAST5
1088 tristate "CAST5 (CAST-128) cipher algorithm"
1089 select CRYPTO_ALGAPI
1090 select CRYPTO_CAST_COMMON
1091 help
1092 The CAST5 encryption algorithm (synonymous with CAST-128) is
1093 described in RFC2144.
1094
1095 config CRYPTO_CAST5_AVX_X86_64
1096 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1097 depends on X86 && 64BIT
1098 select CRYPTO_ALGAPI
1099 select CRYPTO_CRYPTD
1100 select CRYPTO_ABLK_HELPER
1101 select CRYPTO_CAST_COMMON
1102 select CRYPTO_CAST5
1103 help
1104 The CAST5 encryption algorithm (synonymous with CAST-128) is
1105 described in RFC2144.
1106
1107 This module provides the Cast5 cipher algorithm that processes
1108 sixteen blocks parallel using the AVX instruction set.
1109
1110 config CRYPTO_CAST6
1111 tristate "CAST6 (CAST-256) cipher algorithm"
1112 select CRYPTO_ALGAPI
1113 select CRYPTO_CAST_COMMON
1114 help
1115 The CAST6 encryption algorithm (synonymous with CAST-256) is
1116 described in RFC2612.
1117
1118 config CRYPTO_CAST6_AVX_X86_64
1119 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1120 depends on X86 && 64BIT
1121 select CRYPTO_ALGAPI
1122 select CRYPTO_CRYPTD
1123 select CRYPTO_ABLK_HELPER
1124 select CRYPTO_GLUE_HELPER_X86
1125 select CRYPTO_CAST_COMMON
1126 select CRYPTO_CAST6
1127 select CRYPTO_LRW
1128 select CRYPTO_XTS
1129 help
1130 The CAST6 encryption algorithm (synonymous with CAST-256) is
1131 described in RFC2612.
1132
1133 This module provides the Cast6 cipher algorithm that processes
1134 eight blocks parallel using the AVX instruction set.
1135
1136 config CRYPTO_DES
1137 tristate "DES and Triple DES EDE cipher algorithms"
1138 select CRYPTO_ALGAPI
1139 help
1140 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1141
1142 config CRYPTO_DES_SPARC64
1143 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1144 depends on SPARC64
1145 select CRYPTO_ALGAPI
1146 select CRYPTO_DES
1147 help
1148 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1149 optimized using SPARC64 crypto opcodes.
1150
1151 config CRYPTO_DES3_EDE_X86_64
1152 tristate "Triple DES EDE cipher algorithm (x86-64)"
1153 depends on X86 && 64BIT
1154 select CRYPTO_ALGAPI
1155 select CRYPTO_DES
1156 help
1157 Triple DES EDE (FIPS 46-3) algorithm.
1158
1159 This module provides implementation of the Triple DES EDE cipher
1160 algorithm that is optimized for x86-64 processors. Two versions of
1161 algorithm are provided; regular processing one input block and
1162 one that processes three blocks parallel.
1163
1164 config CRYPTO_FCRYPT
1165 tristate "FCrypt cipher algorithm"
1166 select CRYPTO_ALGAPI
1167 select CRYPTO_BLKCIPHER
1168 help
1169 FCrypt algorithm used by RxRPC.
1170
1171 config CRYPTO_KHAZAD
1172 tristate "Khazad cipher algorithm"
1173 select CRYPTO_ALGAPI
1174 help
1175 Khazad cipher algorithm.
1176
1177 Khazad was a finalist in the initial NESSIE competition. It is
1178 an algorithm optimized for 64-bit processors with good performance
1179 on 32-bit processors. Khazad uses an 128 bit key size.
1180
1181 See also:
1182 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1183
1184 config CRYPTO_SALSA20
1185 tristate "Salsa20 stream cipher algorithm"
1186 select CRYPTO_BLKCIPHER
1187 help
1188 Salsa20 stream cipher algorithm.
1189
1190 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1191 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1192
1193 The Salsa20 stream cipher algorithm is designed by Daniel J.
1194 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1195
1196 config CRYPTO_SALSA20_586
1197 tristate "Salsa20 stream cipher algorithm (i586)"
1198 depends on (X86 || UML_X86) && !64BIT
1199 select CRYPTO_BLKCIPHER
1200 help
1201 Salsa20 stream cipher algorithm.
1202
1203 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1204 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1205
1206 The Salsa20 stream cipher algorithm is designed by Daniel J.
1207 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1208
1209 config CRYPTO_SALSA20_X86_64
1210 tristate "Salsa20 stream cipher algorithm (x86_64)"
1211 depends on (X86 || UML_X86) && 64BIT
1212 select CRYPTO_BLKCIPHER
1213 help
1214 Salsa20 stream cipher algorithm.
1215
1216 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1217 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1218
1219 The Salsa20 stream cipher algorithm is designed by Daniel J.
1220 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1221
1222 config CRYPTO_CHACHA20
1223 tristate "ChaCha20 cipher algorithm"
1224 select CRYPTO_BLKCIPHER
1225 help
1226 ChaCha20 cipher algorithm, RFC7539.
1227
1228 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1229 Bernstein and further specified in RFC7539 for use in IETF protocols.
1230 This is the portable C implementation of ChaCha20.
1231
1232 See also:
1233 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1234
1235 config CRYPTO_CHACHA20_X86_64
1236 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1237 depends on X86 && 64BIT
1238 select CRYPTO_BLKCIPHER
1239 select CRYPTO_CHACHA20
1240 help
1241 ChaCha20 cipher algorithm, RFC7539.
1242
1243 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1244 Bernstein and further specified in RFC7539 for use in IETF protocols.
1245 This is the x86_64 assembler implementation using SIMD instructions.
1246
1247 See also:
1248 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1249
1250 config CRYPTO_SEED
1251 tristate "SEED cipher algorithm"
1252 select CRYPTO_ALGAPI
1253 help
1254 SEED cipher algorithm (RFC4269).
1255
1256 SEED is a 128-bit symmetric key block cipher that has been
1257 developed by KISA (Korea Information Security Agency) as a
1258 national standard encryption algorithm of the Republic of Korea.
1259 It is a 16 round block cipher with the key size of 128 bit.
1260
1261 See also:
1262 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1263
1264 config CRYPTO_SERPENT
1265 tristate "Serpent cipher algorithm"
1266 select CRYPTO_ALGAPI
1267 help
1268 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1269
1270 Keys are allowed to be from 0 to 256 bits in length, in steps
1271 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1272 variant of Serpent for compatibility with old kerneli.org code.
1273
1274 See also:
1275 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1276
1277 config CRYPTO_SERPENT_SSE2_X86_64
1278 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1279 depends on X86 && 64BIT
1280 select CRYPTO_ALGAPI
1281 select CRYPTO_CRYPTD
1282 select CRYPTO_ABLK_HELPER
1283 select CRYPTO_GLUE_HELPER_X86
1284 select CRYPTO_SERPENT
1285 select CRYPTO_LRW
1286 select CRYPTO_XTS
1287 help
1288 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1289
1290 Keys are allowed to be from 0 to 256 bits in length, in steps
1291 of 8 bits.
1292
1293 This module provides Serpent cipher algorithm that processes eight
1294 blocks parallel using SSE2 instruction set.
1295
1296 See also:
1297 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1298
1299 config CRYPTO_SERPENT_SSE2_586
1300 tristate "Serpent cipher algorithm (i586/SSE2)"
1301 depends on X86 && !64BIT
1302 select CRYPTO_ALGAPI
1303 select CRYPTO_CRYPTD
1304 select CRYPTO_ABLK_HELPER
1305 select CRYPTO_GLUE_HELPER_X86
1306 select CRYPTO_SERPENT
1307 select CRYPTO_LRW
1308 select CRYPTO_XTS
1309 help
1310 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1311
1312 Keys are allowed to be from 0 to 256 bits in length, in steps
1313 of 8 bits.
1314
1315 This module provides Serpent cipher algorithm that processes four
1316 blocks parallel using SSE2 instruction set.
1317
1318 See also:
1319 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1320
1321 config CRYPTO_SERPENT_AVX_X86_64
1322 tristate "Serpent cipher algorithm (x86_64/AVX)"
1323 depends on X86 && 64BIT
1324 select CRYPTO_ALGAPI
1325 select CRYPTO_CRYPTD
1326 select CRYPTO_ABLK_HELPER
1327 select CRYPTO_GLUE_HELPER_X86
1328 select CRYPTO_SERPENT
1329 select CRYPTO_LRW
1330 select CRYPTO_XTS
1331 help
1332 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1333
1334 Keys are allowed to be from 0 to 256 bits in length, in steps
1335 of 8 bits.
1336
1337 This module provides the Serpent cipher algorithm that processes
1338 eight blocks parallel using the AVX instruction set.
1339
1340 See also:
1341 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1342
1343 config CRYPTO_SERPENT_AVX2_X86_64
1344 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1345 depends on X86 && 64BIT
1346 select CRYPTO_ALGAPI
1347 select CRYPTO_CRYPTD
1348 select CRYPTO_ABLK_HELPER
1349 select CRYPTO_GLUE_HELPER_X86
1350 select CRYPTO_SERPENT
1351 select CRYPTO_SERPENT_AVX_X86_64
1352 select CRYPTO_LRW
1353 select CRYPTO_XTS
1354 help
1355 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1356
1357 Keys are allowed to be from 0 to 256 bits in length, in steps
1358 of 8 bits.
1359
1360 This module provides Serpent cipher algorithm that processes 16
1361 blocks parallel using AVX2 instruction set.
1362
1363 See also:
1364 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1365
1366 config CRYPTO_TEA
1367 tristate "TEA, XTEA and XETA cipher algorithms"
1368 select CRYPTO_ALGAPI
1369 help
1370 TEA cipher algorithm.
1371
1372 Tiny Encryption Algorithm is a simple cipher that uses
1373 many rounds for security. It is very fast and uses
1374 little memory.
1375
1376 Xtendend Tiny Encryption Algorithm is a modification to
1377 the TEA algorithm to address a potential key weakness
1378 in the TEA algorithm.
1379
1380 Xtendend Encryption Tiny Algorithm is a mis-implementation
1381 of the XTEA algorithm for compatibility purposes.
1382
1383 config CRYPTO_TWOFISH
1384 tristate "Twofish cipher algorithm"
1385 select CRYPTO_ALGAPI
1386 select CRYPTO_TWOFISH_COMMON
1387 help
1388 Twofish cipher algorithm.
1389
1390 Twofish was submitted as an AES (Advanced Encryption Standard)
1391 candidate cipher by researchers at CounterPane Systems. It is a
1392 16 round block cipher supporting key sizes of 128, 192, and 256
1393 bits.
1394
1395 See also:
1396 <http://www.schneier.com/twofish.html>
1397
1398 config CRYPTO_TWOFISH_COMMON
1399 tristate
1400 help
1401 Common parts of the Twofish cipher algorithm shared by the
1402 generic c and the assembler implementations.
1403
1404 config CRYPTO_TWOFISH_586
1405 tristate "Twofish cipher algorithms (i586)"
1406 depends on (X86 || UML_X86) && !64BIT
1407 select CRYPTO_ALGAPI
1408 select CRYPTO_TWOFISH_COMMON
1409 help
1410 Twofish cipher algorithm.
1411
1412 Twofish was submitted as an AES (Advanced Encryption Standard)
1413 candidate cipher by researchers at CounterPane Systems. It is a
1414 16 round block cipher supporting key sizes of 128, 192, and 256
1415 bits.
1416
1417 See also:
1418 <http://www.schneier.com/twofish.html>
1419
1420 config CRYPTO_TWOFISH_X86_64
1421 tristate "Twofish cipher algorithm (x86_64)"
1422 depends on (X86 || UML_X86) && 64BIT
1423 select CRYPTO_ALGAPI
1424 select CRYPTO_TWOFISH_COMMON
1425 help
1426 Twofish cipher algorithm (x86_64).
1427
1428 Twofish was submitted as an AES (Advanced Encryption Standard)
1429 candidate cipher by researchers at CounterPane Systems. It is a
1430 16 round block cipher supporting key sizes of 128, 192, and 256
1431 bits.
1432
1433 See also:
1434 <http://www.schneier.com/twofish.html>
1435
1436 config CRYPTO_TWOFISH_X86_64_3WAY
1437 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1438 depends on X86 && 64BIT
1439 select CRYPTO_ALGAPI
1440 select CRYPTO_TWOFISH_COMMON
1441 select CRYPTO_TWOFISH_X86_64
1442 select CRYPTO_GLUE_HELPER_X86
1443 select CRYPTO_LRW
1444 select CRYPTO_XTS
1445 help
1446 Twofish cipher algorithm (x86_64, 3-way parallel).
1447
1448 Twofish was submitted as an AES (Advanced Encryption Standard)
1449 candidate cipher by researchers at CounterPane Systems. It is a
1450 16 round block cipher supporting key sizes of 128, 192, and 256
1451 bits.
1452
1453 This module provides Twofish cipher algorithm that processes three
1454 blocks parallel, utilizing resources of out-of-order CPUs better.
1455
1456 See also:
1457 <http://www.schneier.com/twofish.html>
1458
1459 config CRYPTO_TWOFISH_AVX_X86_64
1460 tristate "Twofish cipher algorithm (x86_64/AVX)"
1461 depends on X86 && 64BIT
1462 select CRYPTO_ALGAPI
1463 select CRYPTO_CRYPTD
1464 select CRYPTO_ABLK_HELPER
1465 select CRYPTO_GLUE_HELPER_X86
1466 select CRYPTO_TWOFISH_COMMON
1467 select CRYPTO_TWOFISH_X86_64
1468 select CRYPTO_TWOFISH_X86_64_3WAY
1469 select CRYPTO_LRW
1470 select CRYPTO_XTS
1471 help
1472 Twofish cipher algorithm (x86_64/AVX).
1473
1474 Twofish was submitted as an AES (Advanced Encryption Standard)
1475 candidate cipher by researchers at CounterPane Systems. It is a
1476 16 round block cipher supporting key sizes of 128, 192, and 256
1477 bits.
1478
1479 This module provides the Twofish cipher algorithm that processes
1480 eight blocks parallel using the AVX Instruction Set.
1481
1482 See also:
1483 <http://www.schneier.com/twofish.html>
1484
1485 comment "Compression"
1486
1487 config CRYPTO_DEFLATE
1488 tristate "Deflate compression algorithm"
1489 select CRYPTO_ALGAPI
1490 select ZLIB_INFLATE
1491 select ZLIB_DEFLATE
1492 help
1493 This is the Deflate algorithm (RFC1951), specified for use in
1494 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1495
1496 You will most probably want this if using IPSec.
1497
1498 config CRYPTO_ZLIB
1499 tristate "Zlib compression algorithm"
1500 select CRYPTO_PCOMP
1501 select ZLIB_INFLATE
1502 select ZLIB_DEFLATE
1503 select NLATTR
1504 help
1505 This is the zlib algorithm.
1506
1507 config CRYPTO_LZO
1508 tristate "LZO compression algorithm"
1509 select CRYPTO_ALGAPI
1510 select LZO_COMPRESS
1511 select LZO_DECOMPRESS
1512 help
1513 This is the LZO algorithm.
1514
1515 config CRYPTO_842
1516 tristate "842 compression algorithm"
1517 select CRYPTO_ALGAPI
1518 select 842_COMPRESS
1519 select 842_DECOMPRESS
1520 help
1521 This is the 842 algorithm.
1522
1523 config CRYPTO_LZ4
1524 tristate "LZ4 compression algorithm"
1525 select CRYPTO_ALGAPI
1526 select LZ4_COMPRESS
1527 select LZ4_DECOMPRESS
1528 help
1529 This is the LZ4 algorithm.
1530
1531 config CRYPTO_LZ4HC
1532 tristate "LZ4HC compression algorithm"
1533 select CRYPTO_ALGAPI
1534 select LZ4HC_COMPRESS
1535 select LZ4_DECOMPRESS
1536 help
1537 This is the LZ4 high compression mode algorithm.
1538
1539 comment "Random Number Generation"
1540
1541 config CRYPTO_ANSI_CPRNG
1542 tristate "Pseudo Random Number Generation for Cryptographic modules"
1543 select CRYPTO_AES
1544 select CRYPTO_RNG
1545 help
1546 This option enables the generic pseudo random number generator
1547 for cryptographic modules. Uses the Algorithm specified in
1548 ANSI X9.31 A.2.4. Note that this option must be enabled if
1549 CRYPTO_FIPS is selected
1550
1551 menuconfig CRYPTO_DRBG_MENU
1552 tristate "NIST SP800-90A DRBG"
1553 help
1554 NIST SP800-90A compliant DRBG. In the following submenu, one or
1555 more of the DRBG types must be selected.
1556
1557 if CRYPTO_DRBG_MENU
1558
1559 config CRYPTO_DRBG_HMAC
1560 bool
1561 default y
1562 select CRYPTO_HMAC
1563 select CRYPTO_SHA256
1564
1565 config CRYPTO_DRBG_HASH
1566 bool "Enable Hash DRBG"
1567 select CRYPTO_SHA256
1568 help
1569 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1570
1571 config CRYPTO_DRBG_CTR
1572 bool "Enable CTR DRBG"
1573 select CRYPTO_AES
1574 help
1575 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1576
1577 config CRYPTO_DRBG
1578 tristate
1579 default CRYPTO_DRBG_MENU
1580 select CRYPTO_RNG
1581 select CRYPTO_JITTERENTROPY
1582
1583 endif # if CRYPTO_DRBG_MENU
1584
1585 config CRYPTO_JITTERENTROPY
1586 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1587 help
1588 The Jitterentropy RNG is a noise that is intended
1589 to provide seed to another RNG. The RNG does not
1590 perform any cryptographic whitening of the generated
1591 random numbers. This Jitterentropy RNG registers with
1592 the kernel crypto API and can be used by any caller.
1593
1594 config CRYPTO_USER_API
1595 tristate
1596
1597 config CRYPTO_USER_API_HASH
1598 tristate "User-space interface for hash algorithms"
1599 depends on NET
1600 select CRYPTO_HASH
1601 select CRYPTO_USER_API
1602 help
1603 This option enables the user-spaces interface for hash
1604 algorithms.
1605
1606 config CRYPTO_USER_API_SKCIPHER
1607 tristate "User-space interface for symmetric key cipher algorithms"
1608 depends on NET
1609 select CRYPTO_BLKCIPHER
1610 select CRYPTO_USER_API
1611 help
1612 This option enables the user-spaces interface for symmetric
1613 key cipher algorithms.
1614
1615 config CRYPTO_USER_API_RNG
1616 tristate "User-space interface for random number generator algorithms"
1617 depends on NET
1618 select CRYPTO_RNG
1619 select CRYPTO_USER_API
1620 help
1621 This option enables the user-spaces interface for random
1622 number generator algorithms.
1623
1624 config CRYPTO_USER_API_AEAD
1625 tristate "User-space interface for AEAD cipher algorithms"
1626 depends on NET
1627 select CRYPTO_AEAD
1628 select CRYPTO_USER_API
1629 help
1630 This option enables the user-spaces interface for AEAD
1631 cipher algorithms.
1632
1633 config CRYPTO_HASH_INFO
1634 bool
1635
1636 source "drivers/crypto/Kconfig"
1637 source crypto/asymmetric_keys/Kconfig
1638
1639 endif # if CRYPTO
This page took 0.061835 seconds and 5 git commands to generate.