Merge branches 'x86/amd', 'x86/vt-d', 'arm/exynos', 'arm/mediatek' and 'arm/renesas...
[deliverable/linux.git] / crypto / asymmetric_keys / x509_public_key.c
1 /* Instantiate a public key crypto key from an X.509 Certificate
2 *
3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
10 */
11
12 #define pr_fmt(fmt) "X.509: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <keys/asymmetric-subtype.h>
17 #include <keys/asymmetric-parser.h>
18 #include <keys/system_keyring.h>
19 #include <crypto/hash.h>
20 #include "asymmetric_keys.h"
21 #include "x509_parser.h"
22
23 /*
24 * Set up the signature parameters in an X.509 certificate. This involves
25 * digesting the signed data and extracting the signature.
26 */
27 int x509_get_sig_params(struct x509_certificate *cert)
28 {
29 struct public_key_signature *sig = cert->sig;
30 struct crypto_shash *tfm;
31 struct shash_desc *desc;
32 size_t desc_size;
33 int ret;
34
35 pr_devel("==>%s()\n", __func__);
36
37 if (!cert->pub->pkey_algo)
38 cert->unsupported_key = true;
39
40 if (!sig->pkey_algo)
41 cert->unsupported_sig = true;
42
43 /* We check the hash if we can - even if we can't then verify it */
44 if (!sig->hash_algo) {
45 cert->unsupported_sig = true;
46 return 0;
47 }
48
49 sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
50 if (!sig->s)
51 return -ENOMEM;
52
53 sig->s_size = cert->raw_sig_size;
54
55 /* Allocate the hashing algorithm we're going to need and find out how
56 * big the hash operational data will be.
57 */
58 tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
59 if (IS_ERR(tfm)) {
60 if (PTR_ERR(tfm) == -ENOENT) {
61 cert->unsupported_sig = true;
62 return 0;
63 }
64 return PTR_ERR(tfm);
65 }
66
67 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
68 sig->digest_size = crypto_shash_digestsize(tfm);
69
70 ret = -ENOMEM;
71 sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
72 if (!sig->digest)
73 goto error;
74
75 desc = kzalloc(desc_size, GFP_KERNEL);
76 if (!desc)
77 goto error;
78
79 desc->tfm = tfm;
80 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
81
82 ret = crypto_shash_init(desc);
83 if (ret < 0)
84 goto error_2;
85 might_sleep();
86 ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, sig->digest);
87
88 error_2:
89 kfree(desc);
90 error:
91 crypto_free_shash(tfm);
92 pr_devel("<==%s() = %d\n", __func__, ret);
93 return ret;
94 }
95
96 /*
97 * Check for self-signedness in an X.509 cert and if found, check the signature
98 * immediately if we can.
99 */
100 int x509_check_for_self_signed(struct x509_certificate *cert)
101 {
102 int ret = 0;
103
104 pr_devel("==>%s()\n", __func__);
105
106 if (cert->raw_subject_size != cert->raw_issuer_size ||
107 memcmp(cert->raw_subject, cert->raw_issuer,
108 cert->raw_issuer_size) != 0)
109 goto not_self_signed;
110
111 if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
112 /* If the AKID is present it may have one or two parts. If
113 * both are supplied, both must match.
114 */
115 bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
116 bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
117
118 if (!a && !b)
119 goto not_self_signed;
120
121 ret = -EKEYREJECTED;
122 if (((a && !b) || (b && !a)) &&
123 cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
124 goto out;
125 }
126
127 ret = -EKEYREJECTED;
128 if (cert->pub->pkey_algo != cert->sig->pkey_algo)
129 goto out;
130
131 ret = public_key_verify_signature(cert->pub, cert->sig);
132 if (ret < 0) {
133 if (ret == -ENOPKG) {
134 cert->unsupported_sig = true;
135 ret = 0;
136 }
137 goto out;
138 }
139
140 pr_devel("Cert Self-signature verified");
141 cert->self_signed = true;
142
143 out:
144 pr_devel("<==%s() = %d\n", __func__, ret);
145 return ret;
146
147 not_self_signed:
148 pr_devel("<==%s() = 0 [not]\n", __func__);
149 return 0;
150 }
151
152 /*
153 * Attempt to parse a data blob for a key as an X509 certificate.
154 */
155 static int x509_key_preparse(struct key_preparsed_payload *prep)
156 {
157 struct asymmetric_key_ids *kids;
158 struct x509_certificate *cert;
159 const char *q;
160 size_t srlen, sulen;
161 char *desc = NULL, *p;
162 int ret;
163
164 cert = x509_cert_parse(prep->data, prep->datalen);
165 if (IS_ERR(cert))
166 return PTR_ERR(cert);
167
168 pr_devel("Cert Issuer: %s\n", cert->issuer);
169 pr_devel("Cert Subject: %s\n", cert->subject);
170
171 if (cert->unsupported_key) {
172 ret = -ENOPKG;
173 goto error_free_cert;
174 }
175
176 pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
177 pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
178
179 cert->pub->id_type = "X509";
180
181 if (cert->unsupported_sig) {
182 public_key_signature_free(cert->sig);
183 cert->sig = NULL;
184 } else {
185 pr_devel("Cert Signature: %s + %s\n",
186 cert->sig->pkey_algo, cert->sig->hash_algo);
187 }
188
189 /* Propose a description */
190 sulen = strlen(cert->subject);
191 if (cert->raw_skid) {
192 srlen = cert->raw_skid_size;
193 q = cert->raw_skid;
194 } else {
195 srlen = cert->raw_serial_size;
196 q = cert->raw_serial;
197 }
198
199 ret = -ENOMEM;
200 desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
201 if (!desc)
202 goto error_free_cert;
203 p = memcpy(desc, cert->subject, sulen);
204 p += sulen;
205 *p++ = ':';
206 *p++ = ' ';
207 p = bin2hex(p, q, srlen);
208 *p = 0;
209
210 kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
211 if (!kids)
212 goto error_free_desc;
213 kids->id[0] = cert->id;
214 kids->id[1] = cert->skid;
215
216 /* We're pinning the module by being linked against it */
217 __module_get(public_key_subtype.owner);
218 prep->payload.data[asym_subtype] = &public_key_subtype;
219 prep->payload.data[asym_key_ids] = kids;
220 prep->payload.data[asym_crypto] = cert->pub;
221 prep->payload.data[asym_auth] = cert->sig;
222 prep->description = desc;
223 prep->quotalen = 100;
224
225 /* We've finished with the certificate */
226 cert->pub = NULL;
227 cert->id = NULL;
228 cert->skid = NULL;
229 cert->sig = NULL;
230 desc = NULL;
231 ret = 0;
232
233 error_free_desc:
234 kfree(desc);
235 error_free_cert:
236 x509_free_certificate(cert);
237 return ret;
238 }
239
240 static struct asymmetric_key_parser x509_key_parser = {
241 .owner = THIS_MODULE,
242 .name = "x509",
243 .parse = x509_key_preparse,
244 };
245
246 /*
247 * Module stuff
248 */
249 static int __init x509_key_init(void)
250 {
251 return register_asymmetric_key_parser(&x509_key_parser);
252 }
253
254 static void __exit x509_key_exit(void)
255 {
256 unregister_asymmetric_key_parser(&x509_key_parser);
257 }
258
259 module_init(x509_key_init);
260 module_exit(x509_key_exit);
261
262 MODULE_DESCRIPTION("X.509 certificate parser");
263 MODULE_LICENSE("GPL");
This page took 0.037607 seconds and 5 git commands to generate.