Fix common misspellings
[deliverable/linux.git] / drivers / ata / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 *
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10 *
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
28 /*
29 * sata_mv TODO list:
30 *
31 * --> Develop a low-power-consumption strategy, and implement it.
32 *
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34 *
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
38 *
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
41 */
42
43 /*
44 * 80x1-B2 errata PCI#11:
45 *
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
50 */
51
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
72
73 #define DRV_NAME "sata_mv"
74 #define DRV_VERSION "1.28"
75
76 /*
77 * module options
78 */
79
80 static int msi;
81 #ifdef CONFIG_PCI
82 module_param(msi, int, S_IRUGO);
83 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
84 #endif
85
86 static int irq_coalescing_io_count;
87 module_param(irq_coalescing_io_count, int, S_IRUGO);
88 MODULE_PARM_DESC(irq_coalescing_io_count,
89 "IRQ coalescing I/O count threshold (0..255)");
90
91 static int irq_coalescing_usecs;
92 module_param(irq_coalescing_usecs, int, S_IRUGO);
93 MODULE_PARM_DESC(irq_coalescing_usecs,
94 "IRQ coalescing time threshold in usecs");
95
96 enum {
97 /* BAR's are enumerated in terms of pci_resource_start() terms */
98 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
99 MV_IO_BAR = 2, /* offset 0x18: IO space */
100 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
101
102 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
103 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
104
105 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
106 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
107 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
108 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
109
110 MV_PCI_REG_BASE = 0,
111
112 /*
113 * Per-chip ("all ports") interrupt coalescing feature.
114 * This is only for GEN_II / GEN_IIE hardware.
115 *
116 * Coalescing defers the interrupt until either the IO_THRESHOLD
117 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
118 */
119 COAL_REG_BASE = 0x18000,
120 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
121 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
122
123 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
124 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
125
126 /*
127 * Registers for the (unused here) transaction coalescing feature:
128 */
129 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
130 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
131
132 SATAHC0_REG_BASE = 0x20000,
133 FLASH_CTL = 0x1046c,
134 GPIO_PORT_CTL = 0x104f0,
135 RESET_CFG = 0x180d8,
136
137 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
138 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
139 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
140 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
141
142 MV_MAX_Q_DEPTH = 32,
143 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
144
145 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
146 * CRPB needs alignment on a 256B boundary. Size == 256B
147 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
148 */
149 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
150 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
151 MV_MAX_SG_CT = 256,
152 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
153
154 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
155 MV_PORT_HC_SHIFT = 2,
156 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
157 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
158 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
159
160 /* Host Flags */
161 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
162
163 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
164
165 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
166
167 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
168 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
169
170 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
171
172 CRQB_FLAG_READ = (1 << 0),
173 CRQB_TAG_SHIFT = 1,
174 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
175 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
176 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
177 CRQB_CMD_ADDR_SHIFT = 8,
178 CRQB_CMD_CS = (0x2 << 11),
179 CRQB_CMD_LAST = (1 << 15),
180
181 CRPB_FLAG_STATUS_SHIFT = 8,
182 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
183 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
184
185 EPRD_FLAG_END_OF_TBL = (1 << 31),
186
187 /* PCI interface registers */
188
189 MV_PCI_COMMAND = 0xc00,
190 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
191 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
192
193 PCI_MAIN_CMD_STS = 0xd30,
194 STOP_PCI_MASTER = (1 << 2),
195 PCI_MASTER_EMPTY = (1 << 3),
196 GLOB_SFT_RST = (1 << 4),
197
198 MV_PCI_MODE = 0xd00,
199 MV_PCI_MODE_MASK = 0x30,
200
201 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
202 MV_PCI_DISC_TIMER = 0xd04,
203 MV_PCI_MSI_TRIGGER = 0xc38,
204 MV_PCI_SERR_MASK = 0xc28,
205 MV_PCI_XBAR_TMOUT = 0x1d04,
206 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
207 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
208 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
209 MV_PCI_ERR_COMMAND = 0x1d50,
210
211 PCI_IRQ_CAUSE = 0x1d58,
212 PCI_IRQ_MASK = 0x1d5c,
213 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
214
215 PCIE_IRQ_CAUSE = 0x1900,
216 PCIE_IRQ_MASK = 0x1910,
217 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
218
219 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
220 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
221 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
222 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
223 SOC_HC_MAIN_IRQ_MASK = 0x20024,
224 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
225 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
226 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
227 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
228 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
229 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
230 PCI_ERR = (1 << 18),
231 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
232 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
233 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
234 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
235 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
236 GPIO_INT = (1 << 22),
237 SELF_INT = (1 << 23),
238 TWSI_INT = (1 << 24),
239 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
240 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
241 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
242
243 /* SATAHC registers */
244 HC_CFG = 0x00,
245
246 HC_IRQ_CAUSE = 0x14,
247 DMA_IRQ = (1 << 0), /* shift by port # */
248 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
249 DEV_IRQ = (1 << 8), /* shift by port # */
250
251 /*
252 * Per-HC (Host-Controller) interrupt coalescing feature.
253 * This is present on all chip generations.
254 *
255 * Coalescing defers the interrupt until either the IO_THRESHOLD
256 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
257 */
258 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
259 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
260
261 SOC_LED_CTRL = 0x2c,
262 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
263 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
264 /* with dev activity LED */
265
266 /* Shadow block registers */
267 SHD_BLK = 0x100,
268 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
269
270 /* SATA registers */
271 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
272 SATA_ACTIVE = 0x350,
273 FIS_IRQ_CAUSE = 0x364,
274 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
275
276 LTMODE = 0x30c, /* requires read-after-write */
277 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
278
279 PHY_MODE2 = 0x330,
280 PHY_MODE3 = 0x310,
281
282 PHY_MODE4 = 0x314, /* requires read-after-write */
283 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
284 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
285 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
286 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
287
288 SATA_IFCTL = 0x344,
289 SATA_TESTCTL = 0x348,
290 SATA_IFSTAT = 0x34c,
291 VENDOR_UNIQUE_FIS = 0x35c,
292
293 FISCFG = 0x360,
294 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
295 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
296
297 PHY_MODE9_GEN2 = 0x398,
298 PHY_MODE9_GEN1 = 0x39c,
299 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
300
301 MV5_PHY_MODE = 0x74,
302 MV5_LTMODE = 0x30,
303 MV5_PHY_CTL = 0x0C,
304 SATA_IFCFG = 0x050,
305
306 MV_M2_PREAMP_MASK = 0x7e0,
307
308 /* Port registers */
309 EDMA_CFG = 0,
310 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
311 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
312 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
313 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
314 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
315 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
316 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
317
318 EDMA_ERR_IRQ_CAUSE = 0x8,
319 EDMA_ERR_IRQ_MASK = 0xc,
320 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
321 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
322 EDMA_ERR_DEV = (1 << 2), /* device error */
323 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
324 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
325 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
326 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
327 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
328 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
329 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
330 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
331 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
332 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
333 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
334
335 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
336 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
337 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
338 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
339 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
340
341 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
342
343 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
344 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
345 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
346 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
347 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
348 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
349
350 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
351
352 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
353 EDMA_ERR_OVERRUN_5 = (1 << 5),
354 EDMA_ERR_UNDERRUN_5 = (1 << 6),
355
356 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
357 EDMA_ERR_LNK_CTRL_RX_1 |
358 EDMA_ERR_LNK_CTRL_RX_3 |
359 EDMA_ERR_LNK_CTRL_TX,
360
361 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
362 EDMA_ERR_PRD_PAR |
363 EDMA_ERR_DEV_DCON |
364 EDMA_ERR_DEV_CON |
365 EDMA_ERR_SERR |
366 EDMA_ERR_SELF_DIS |
367 EDMA_ERR_CRQB_PAR |
368 EDMA_ERR_CRPB_PAR |
369 EDMA_ERR_INTRL_PAR |
370 EDMA_ERR_IORDY |
371 EDMA_ERR_LNK_CTRL_RX_2 |
372 EDMA_ERR_LNK_DATA_RX |
373 EDMA_ERR_LNK_DATA_TX |
374 EDMA_ERR_TRANS_PROTO,
375
376 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
377 EDMA_ERR_PRD_PAR |
378 EDMA_ERR_DEV_DCON |
379 EDMA_ERR_DEV_CON |
380 EDMA_ERR_OVERRUN_5 |
381 EDMA_ERR_UNDERRUN_5 |
382 EDMA_ERR_SELF_DIS_5 |
383 EDMA_ERR_CRQB_PAR |
384 EDMA_ERR_CRPB_PAR |
385 EDMA_ERR_INTRL_PAR |
386 EDMA_ERR_IORDY,
387
388 EDMA_REQ_Q_BASE_HI = 0x10,
389 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
390
391 EDMA_REQ_Q_OUT_PTR = 0x18,
392 EDMA_REQ_Q_PTR_SHIFT = 5,
393
394 EDMA_RSP_Q_BASE_HI = 0x1c,
395 EDMA_RSP_Q_IN_PTR = 0x20,
396 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
397 EDMA_RSP_Q_PTR_SHIFT = 3,
398
399 EDMA_CMD = 0x28, /* EDMA command register */
400 EDMA_EN = (1 << 0), /* enable EDMA */
401 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
402 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
403
404 EDMA_STATUS = 0x30, /* EDMA engine status */
405 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
406 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
407
408 EDMA_IORDY_TMOUT = 0x34,
409 EDMA_ARB_CFG = 0x38,
410
411 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
412 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
413
414 BMDMA_CMD = 0x224, /* bmdma command register */
415 BMDMA_STATUS = 0x228, /* bmdma status register */
416 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
417 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
418
419 /* Host private flags (hp_flags) */
420 MV_HP_FLAG_MSI = (1 << 0),
421 MV_HP_ERRATA_50XXB0 = (1 << 1),
422 MV_HP_ERRATA_50XXB2 = (1 << 2),
423 MV_HP_ERRATA_60X1B2 = (1 << 3),
424 MV_HP_ERRATA_60X1C0 = (1 << 4),
425 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
426 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
427 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
428 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
429 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
430 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
431 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
432
433 /* Port private flags (pp_flags) */
434 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
435 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
436 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
437 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
438 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
439 };
440
441 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
442 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
443 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
444 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
445 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
446
447 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
448 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
449
450 enum {
451 /* DMA boundary 0xffff is required by the s/g splitting
452 * we need on /length/ in mv_fill-sg().
453 */
454 MV_DMA_BOUNDARY = 0xffffU,
455
456 /* mask of register bits containing lower 32 bits
457 * of EDMA request queue DMA address
458 */
459 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
460
461 /* ditto, for response queue */
462 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
463 };
464
465 enum chip_type {
466 chip_504x,
467 chip_508x,
468 chip_5080,
469 chip_604x,
470 chip_608x,
471 chip_6042,
472 chip_7042,
473 chip_soc,
474 };
475
476 /* Command ReQuest Block: 32B */
477 struct mv_crqb {
478 __le32 sg_addr;
479 __le32 sg_addr_hi;
480 __le16 ctrl_flags;
481 __le16 ata_cmd[11];
482 };
483
484 struct mv_crqb_iie {
485 __le32 addr;
486 __le32 addr_hi;
487 __le32 flags;
488 __le32 len;
489 __le32 ata_cmd[4];
490 };
491
492 /* Command ResPonse Block: 8B */
493 struct mv_crpb {
494 __le16 id;
495 __le16 flags;
496 __le32 tmstmp;
497 };
498
499 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
500 struct mv_sg {
501 __le32 addr;
502 __le32 flags_size;
503 __le32 addr_hi;
504 __le32 reserved;
505 };
506
507 /*
508 * We keep a local cache of a few frequently accessed port
509 * registers here, to avoid having to read them (very slow)
510 * when switching between EDMA and non-EDMA modes.
511 */
512 struct mv_cached_regs {
513 u32 fiscfg;
514 u32 ltmode;
515 u32 haltcond;
516 u32 unknown_rsvd;
517 };
518
519 struct mv_port_priv {
520 struct mv_crqb *crqb;
521 dma_addr_t crqb_dma;
522 struct mv_crpb *crpb;
523 dma_addr_t crpb_dma;
524 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
525 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
526
527 unsigned int req_idx;
528 unsigned int resp_idx;
529
530 u32 pp_flags;
531 struct mv_cached_regs cached;
532 unsigned int delayed_eh_pmp_map;
533 };
534
535 struct mv_port_signal {
536 u32 amps;
537 u32 pre;
538 };
539
540 struct mv_host_priv {
541 u32 hp_flags;
542 unsigned int board_idx;
543 u32 main_irq_mask;
544 struct mv_port_signal signal[8];
545 const struct mv_hw_ops *ops;
546 int n_ports;
547 void __iomem *base;
548 void __iomem *main_irq_cause_addr;
549 void __iomem *main_irq_mask_addr;
550 u32 irq_cause_offset;
551 u32 irq_mask_offset;
552 u32 unmask_all_irqs;
553
554 #if defined(CONFIG_HAVE_CLK)
555 struct clk *clk;
556 #endif
557 /*
558 * These consistent DMA memory pools give us guaranteed
559 * alignment for hardware-accessed data structures,
560 * and less memory waste in accomplishing the alignment.
561 */
562 struct dma_pool *crqb_pool;
563 struct dma_pool *crpb_pool;
564 struct dma_pool *sg_tbl_pool;
565 };
566
567 struct mv_hw_ops {
568 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
569 unsigned int port);
570 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
571 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
572 void __iomem *mmio);
573 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
574 unsigned int n_hc);
575 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
576 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
577 };
578
579 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
580 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
581 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
582 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
583 static int mv_port_start(struct ata_port *ap);
584 static void mv_port_stop(struct ata_port *ap);
585 static int mv_qc_defer(struct ata_queued_cmd *qc);
586 static void mv_qc_prep(struct ata_queued_cmd *qc);
587 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
588 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
589 static int mv_hardreset(struct ata_link *link, unsigned int *class,
590 unsigned long deadline);
591 static void mv_eh_freeze(struct ata_port *ap);
592 static void mv_eh_thaw(struct ata_port *ap);
593 static void mv6_dev_config(struct ata_device *dev);
594
595 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
596 unsigned int port);
597 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
598 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
599 void __iomem *mmio);
600 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
601 unsigned int n_hc);
602 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
603 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
604
605 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
606 unsigned int port);
607 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
608 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
609 void __iomem *mmio);
610 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
611 unsigned int n_hc);
612 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
613 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
614 void __iomem *mmio);
615 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
616 void __iomem *mmio);
617 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
618 void __iomem *mmio, unsigned int n_hc);
619 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
620 void __iomem *mmio);
621 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
622 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
623 void __iomem *mmio, unsigned int port);
624 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
625 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
626 unsigned int port_no);
627 static int mv_stop_edma(struct ata_port *ap);
628 static int mv_stop_edma_engine(void __iomem *port_mmio);
629 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
630
631 static void mv_pmp_select(struct ata_port *ap, int pmp);
632 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
633 unsigned long deadline);
634 static int mv_softreset(struct ata_link *link, unsigned int *class,
635 unsigned long deadline);
636 static void mv_pmp_error_handler(struct ata_port *ap);
637 static void mv_process_crpb_entries(struct ata_port *ap,
638 struct mv_port_priv *pp);
639
640 static void mv_sff_irq_clear(struct ata_port *ap);
641 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
642 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
643 static void mv_bmdma_start(struct ata_queued_cmd *qc);
644 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
645 static u8 mv_bmdma_status(struct ata_port *ap);
646 static u8 mv_sff_check_status(struct ata_port *ap);
647
648 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
649 * because we have to allow room for worst case splitting of
650 * PRDs for 64K boundaries in mv_fill_sg().
651 */
652 static struct scsi_host_template mv5_sht = {
653 ATA_BASE_SHT(DRV_NAME),
654 .sg_tablesize = MV_MAX_SG_CT / 2,
655 .dma_boundary = MV_DMA_BOUNDARY,
656 };
657
658 static struct scsi_host_template mv6_sht = {
659 ATA_NCQ_SHT(DRV_NAME),
660 .can_queue = MV_MAX_Q_DEPTH - 1,
661 .sg_tablesize = MV_MAX_SG_CT / 2,
662 .dma_boundary = MV_DMA_BOUNDARY,
663 };
664
665 static struct ata_port_operations mv5_ops = {
666 .inherits = &ata_sff_port_ops,
667
668 .lost_interrupt = ATA_OP_NULL,
669
670 .qc_defer = mv_qc_defer,
671 .qc_prep = mv_qc_prep,
672 .qc_issue = mv_qc_issue,
673
674 .freeze = mv_eh_freeze,
675 .thaw = mv_eh_thaw,
676 .hardreset = mv_hardreset,
677
678 .scr_read = mv5_scr_read,
679 .scr_write = mv5_scr_write,
680
681 .port_start = mv_port_start,
682 .port_stop = mv_port_stop,
683 };
684
685 static struct ata_port_operations mv6_ops = {
686 .inherits = &ata_bmdma_port_ops,
687
688 .lost_interrupt = ATA_OP_NULL,
689
690 .qc_defer = mv_qc_defer,
691 .qc_prep = mv_qc_prep,
692 .qc_issue = mv_qc_issue,
693
694 .dev_config = mv6_dev_config,
695
696 .freeze = mv_eh_freeze,
697 .thaw = mv_eh_thaw,
698 .hardreset = mv_hardreset,
699 .softreset = mv_softreset,
700 .pmp_hardreset = mv_pmp_hardreset,
701 .pmp_softreset = mv_softreset,
702 .error_handler = mv_pmp_error_handler,
703
704 .scr_read = mv_scr_read,
705 .scr_write = mv_scr_write,
706
707 .sff_check_status = mv_sff_check_status,
708 .sff_irq_clear = mv_sff_irq_clear,
709 .check_atapi_dma = mv_check_atapi_dma,
710 .bmdma_setup = mv_bmdma_setup,
711 .bmdma_start = mv_bmdma_start,
712 .bmdma_stop = mv_bmdma_stop,
713 .bmdma_status = mv_bmdma_status,
714
715 .port_start = mv_port_start,
716 .port_stop = mv_port_stop,
717 };
718
719 static struct ata_port_operations mv_iie_ops = {
720 .inherits = &mv6_ops,
721 .dev_config = ATA_OP_NULL,
722 .qc_prep = mv_qc_prep_iie,
723 };
724
725 static const struct ata_port_info mv_port_info[] = {
726 { /* chip_504x */
727 .flags = MV_GEN_I_FLAGS,
728 .pio_mask = ATA_PIO4,
729 .udma_mask = ATA_UDMA6,
730 .port_ops = &mv5_ops,
731 },
732 { /* chip_508x */
733 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
734 .pio_mask = ATA_PIO4,
735 .udma_mask = ATA_UDMA6,
736 .port_ops = &mv5_ops,
737 },
738 { /* chip_5080 */
739 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
740 .pio_mask = ATA_PIO4,
741 .udma_mask = ATA_UDMA6,
742 .port_ops = &mv5_ops,
743 },
744 { /* chip_604x */
745 .flags = MV_GEN_II_FLAGS,
746 .pio_mask = ATA_PIO4,
747 .udma_mask = ATA_UDMA6,
748 .port_ops = &mv6_ops,
749 },
750 { /* chip_608x */
751 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
752 .pio_mask = ATA_PIO4,
753 .udma_mask = ATA_UDMA6,
754 .port_ops = &mv6_ops,
755 },
756 { /* chip_6042 */
757 .flags = MV_GEN_IIE_FLAGS,
758 .pio_mask = ATA_PIO4,
759 .udma_mask = ATA_UDMA6,
760 .port_ops = &mv_iie_ops,
761 },
762 { /* chip_7042 */
763 .flags = MV_GEN_IIE_FLAGS,
764 .pio_mask = ATA_PIO4,
765 .udma_mask = ATA_UDMA6,
766 .port_ops = &mv_iie_ops,
767 },
768 { /* chip_soc */
769 .flags = MV_GEN_IIE_FLAGS,
770 .pio_mask = ATA_PIO4,
771 .udma_mask = ATA_UDMA6,
772 .port_ops = &mv_iie_ops,
773 },
774 };
775
776 static const struct pci_device_id mv_pci_tbl[] = {
777 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
778 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
779 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
780 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
781 /* RocketRAID 1720/174x have different identifiers */
782 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
783 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
784 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
785
786 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
787 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
788 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
789 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
790 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
791
792 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
793
794 /* Adaptec 1430SA */
795 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
796
797 /* Marvell 7042 support */
798 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
799
800 /* Highpoint RocketRAID PCIe series */
801 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
802 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
803
804 { } /* terminate list */
805 };
806
807 static const struct mv_hw_ops mv5xxx_ops = {
808 .phy_errata = mv5_phy_errata,
809 .enable_leds = mv5_enable_leds,
810 .read_preamp = mv5_read_preamp,
811 .reset_hc = mv5_reset_hc,
812 .reset_flash = mv5_reset_flash,
813 .reset_bus = mv5_reset_bus,
814 };
815
816 static const struct mv_hw_ops mv6xxx_ops = {
817 .phy_errata = mv6_phy_errata,
818 .enable_leds = mv6_enable_leds,
819 .read_preamp = mv6_read_preamp,
820 .reset_hc = mv6_reset_hc,
821 .reset_flash = mv6_reset_flash,
822 .reset_bus = mv_reset_pci_bus,
823 };
824
825 static const struct mv_hw_ops mv_soc_ops = {
826 .phy_errata = mv6_phy_errata,
827 .enable_leds = mv_soc_enable_leds,
828 .read_preamp = mv_soc_read_preamp,
829 .reset_hc = mv_soc_reset_hc,
830 .reset_flash = mv_soc_reset_flash,
831 .reset_bus = mv_soc_reset_bus,
832 };
833
834 static const struct mv_hw_ops mv_soc_65n_ops = {
835 .phy_errata = mv_soc_65n_phy_errata,
836 .enable_leds = mv_soc_enable_leds,
837 .reset_hc = mv_soc_reset_hc,
838 .reset_flash = mv_soc_reset_flash,
839 .reset_bus = mv_soc_reset_bus,
840 };
841
842 /*
843 * Functions
844 */
845
846 static inline void writelfl(unsigned long data, void __iomem *addr)
847 {
848 writel(data, addr);
849 (void) readl(addr); /* flush to avoid PCI posted write */
850 }
851
852 static inline unsigned int mv_hc_from_port(unsigned int port)
853 {
854 return port >> MV_PORT_HC_SHIFT;
855 }
856
857 static inline unsigned int mv_hardport_from_port(unsigned int port)
858 {
859 return port & MV_PORT_MASK;
860 }
861
862 /*
863 * Consolidate some rather tricky bit shift calculations.
864 * This is hot-path stuff, so not a function.
865 * Simple code, with two return values, so macro rather than inline.
866 *
867 * port is the sole input, in range 0..7.
868 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
869 * hardport is the other output, in range 0..3.
870 *
871 * Note that port and hardport may be the same variable in some cases.
872 */
873 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
874 { \
875 shift = mv_hc_from_port(port) * HC_SHIFT; \
876 hardport = mv_hardport_from_port(port); \
877 shift += hardport * 2; \
878 }
879
880 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
881 {
882 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
883 }
884
885 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
886 unsigned int port)
887 {
888 return mv_hc_base(base, mv_hc_from_port(port));
889 }
890
891 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
892 {
893 return mv_hc_base_from_port(base, port) +
894 MV_SATAHC_ARBTR_REG_SZ +
895 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
896 }
897
898 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
899 {
900 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
901 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
902
903 return hc_mmio + ofs;
904 }
905
906 static inline void __iomem *mv_host_base(struct ata_host *host)
907 {
908 struct mv_host_priv *hpriv = host->private_data;
909 return hpriv->base;
910 }
911
912 static inline void __iomem *mv_ap_base(struct ata_port *ap)
913 {
914 return mv_port_base(mv_host_base(ap->host), ap->port_no);
915 }
916
917 static inline int mv_get_hc_count(unsigned long port_flags)
918 {
919 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
920 }
921
922 /**
923 * mv_save_cached_regs - (re-)initialize cached port registers
924 * @ap: the port whose registers we are caching
925 *
926 * Initialize the local cache of port registers,
927 * so that reading them over and over again can
928 * be avoided on the hotter paths of this driver.
929 * This saves a few microseconds each time we switch
930 * to/from EDMA mode to perform (eg.) a drive cache flush.
931 */
932 static void mv_save_cached_regs(struct ata_port *ap)
933 {
934 void __iomem *port_mmio = mv_ap_base(ap);
935 struct mv_port_priv *pp = ap->private_data;
936
937 pp->cached.fiscfg = readl(port_mmio + FISCFG);
938 pp->cached.ltmode = readl(port_mmio + LTMODE);
939 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
940 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
941 }
942
943 /**
944 * mv_write_cached_reg - write to a cached port register
945 * @addr: hardware address of the register
946 * @old: pointer to cached value of the register
947 * @new: new value for the register
948 *
949 * Write a new value to a cached register,
950 * but only if the value is different from before.
951 */
952 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
953 {
954 if (new != *old) {
955 unsigned long laddr;
956 *old = new;
957 /*
958 * Workaround for 88SX60x1-B2 FEr SATA#13:
959 * Read-after-write is needed to prevent generating 64-bit
960 * write cycles on the PCI bus for SATA interface registers
961 * at offsets ending in 0x4 or 0xc.
962 *
963 * Looks like a lot of fuss, but it avoids an unnecessary
964 * +1 usec read-after-write delay for unaffected registers.
965 */
966 laddr = (long)addr & 0xffff;
967 if (laddr >= 0x300 && laddr <= 0x33c) {
968 laddr &= 0x000f;
969 if (laddr == 0x4 || laddr == 0xc) {
970 writelfl(new, addr); /* read after write */
971 return;
972 }
973 }
974 writel(new, addr); /* unaffected by the errata */
975 }
976 }
977
978 static void mv_set_edma_ptrs(void __iomem *port_mmio,
979 struct mv_host_priv *hpriv,
980 struct mv_port_priv *pp)
981 {
982 u32 index;
983
984 /*
985 * initialize request queue
986 */
987 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
988 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
989
990 WARN_ON(pp->crqb_dma & 0x3ff);
991 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
992 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
993 port_mmio + EDMA_REQ_Q_IN_PTR);
994 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
995
996 /*
997 * initialize response queue
998 */
999 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1000 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1001
1002 WARN_ON(pp->crpb_dma & 0xff);
1003 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1004 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1005 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1006 port_mmio + EDMA_RSP_Q_OUT_PTR);
1007 }
1008
1009 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1010 {
1011 /*
1012 * When writing to the main_irq_mask in hardware,
1013 * we must ensure exclusivity between the interrupt coalescing bits
1014 * and the corresponding individual port DONE_IRQ bits.
1015 *
1016 * Note that this register is really an "IRQ enable" register,
1017 * not an "IRQ mask" register as Marvell's naming might suggest.
1018 */
1019 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1020 mask &= ~DONE_IRQ_0_3;
1021 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1022 mask &= ~DONE_IRQ_4_7;
1023 writelfl(mask, hpriv->main_irq_mask_addr);
1024 }
1025
1026 static void mv_set_main_irq_mask(struct ata_host *host,
1027 u32 disable_bits, u32 enable_bits)
1028 {
1029 struct mv_host_priv *hpriv = host->private_data;
1030 u32 old_mask, new_mask;
1031
1032 old_mask = hpriv->main_irq_mask;
1033 new_mask = (old_mask & ~disable_bits) | enable_bits;
1034 if (new_mask != old_mask) {
1035 hpriv->main_irq_mask = new_mask;
1036 mv_write_main_irq_mask(new_mask, hpriv);
1037 }
1038 }
1039
1040 static void mv_enable_port_irqs(struct ata_port *ap,
1041 unsigned int port_bits)
1042 {
1043 unsigned int shift, hardport, port = ap->port_no;
1044 u32 disable_bits, enable_bits;
1045
1046 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1047
1048 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1049 enable_bits = port_bits << shift;
1050 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1051 }
1052
1053 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1054 void __iomem *port_mmio,
1055 unsigned int port_irqs)
1056 {
1057 struct mv_host_priv *hpriv = ap->host->private_data;
1058 int hardport = mv_hardport_from_port(ap->port_no);
1059 void __iomem *hc_mmio = mv_hc_base_from_port(
1060 mv_host_base(ap->host), ap->port_no);
1061 u32 hc_irq_cause;
1062
1063 /* clear EDMA event indicators, if any */
1064 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1065
1066 /* clear pending irq events */
1067 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1068 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1069
1070 /* clear FIS IRQ Cause */
1071 if (IS_GEN_IIE(hpriv))
1072 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1073
1074 mv_enable_port_irqs(ap, port_irqs);
1075 }
1076
1077 static void mv_set_irq_coalescing(struct ata_host *host,
1078 unsigned int count, unsigned int usecs)
1079 {
1080 struct mv_host_priv *hpriv = host->private_data;
1081 void __iomem *mmio = hpriv->base, *hc_mmio;
1082 u32 coal_enable = 0;
1083 unsigned long flags;
1084 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1085 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1086 ALL_PORTS_COAL_DONE;
1087
1088 /* Disable IRQ coalescing if either threshold is zero */
1089 if (!usecs || !count) {
1090 clks = count = 0;
1091 } else {
1092 /* Respect maximum limits of the hardware */
1093 clks = usecs * COAL_CLOCKS_PER_USEC;
1094 if (clks > MAX_COAL_TIME_THRESHOLD)
1095 clks = MAX_COAL_TIME_THRESHOLD;
1096 if (count > MAX_COAL_IO_COUNT)
1097 count = MAX_COAL_IO_COUNT;
1098 }
1099
1100 spin_lock_irqsave(&host->lock, flags);
1101 mv_set_main_irq_mask(host, coal_disable, 0);
1102
1103 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1104 /*
1105 * GEN_II/GEN_IIE with dual host controllers:
1106 * one set of global thresholds for the entire chip.
1107 */
1108 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1109 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1110 /* clear leftover coal IRQ bit */
1111 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1112 if (count)
1113 coal_enable = ALL_PORTS_COAL_DONE;
1114 clks = count = 0; /* force clearing of regular regs below */
1115 }
1116
1117 /*
1118 * All chips: independent thresholds for each HC on the chip.
1119 */
1120 hc_mmio = mv_hc_base_from_port(mmio, 0);
1121 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1122 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1123 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1124 if (count)
1125 coal_enable |= PORTS_0_3_COAL_DONE;
1126 if (is_dual_hc) {
1127 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1128 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1129 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1130 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1131 if (count)
1132 coal_enable |= PORTS_4_7_COAL_DONE;
1133 }
1134
1135 mv_set_main_irq_mask(host, 0, coal_enable);
1136 spin_unlock_irqrestore(&host->lock, flags);
1137 }
1138
1139 /**
1140 * mv_start_edma - Enable eDMA engine
1141 * @base: port base address
1142 * @pp: port private data
1143 *
1144 * Verify the local cache of the eDMA state is accurate with a
1145 * WARN_ON.
1146 *
1147 * LOCKING:
1148 * Inherited from caller.
1149 */
1150 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1151 struct mv_port_priv *pp, u8 protocol)
1152 {
1153 int want_ncq = (protocol == ATA_PROT_NCQ);
1154
1155 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1156 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1157 if (want_ncq != using_ncq)
1158 mv_stop_edma(ap);
1159 }
1160 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1161 struct mv_host_priv *hpriv = ap->host->private_data;
1162
1163 mv_edma_cfg(ap, want_ncq, 1);
1164
1165 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1166 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1167
1168 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1169 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1170 }
1171 }
1172
1173 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1174 {
1175 void __iomem *port_mmio = mv_ap_base(ap);
1176 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1177 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1178 int i;
1179
1180 /*
1181 * Wait for the EDMA engine to finish transactions in progress.
1182 * No idea what a good "timeout" value might be, but measurements
1183 * indicate that it often requires hundreds of microseconds
1184 * with two drives in-use. So we use the 15msec value above
1185 * as a rough guess at what even more drives might require.
1186 */
1187 for (i = 0; i < timeout; ++i) {
1188 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1189 if ((edma_stat & empty_idle) == empty_idle)
1190 break;
1191 udelay(per_loop);
1192 }
1193 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1194 }
1195
1196 /**
1197 * mv_stop_edma_engine - Disable eDMA engine
1198 * @port_mmio: io base address
1199 *
1200 * LOCKING:
1201 * Inherited from caller.
1202 */
1203 static int mv_stop_edma_engine(void __iomem *port_mmio)
1204 {
1205 int i;
1206
1207 /* Disable eDMA. The disable bit auto clears. */
1208 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1209
1210 /* Wait for the chip to confirm eDMA is off. */
1211 for (i = 10000; i > 0; i--) {
1212 u32 reg = readl(port_mmio + EDMA_CMD);
1213 if (!(reg & EDMA_EN))
1214 return 0;
1215 udelay(10);
1216 }
1217 return -EIO;
1218 }
1219
1220 static int mv_stop_edma(struct ata_port *ap)
1221 {
1222 void __iomem *port_mmio = mv_ap_base(ap);
1223 struct mv_port_priv *pp = ap->private_data;
1224 int err = 0;
1225
1226 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1227 return 0;
1228 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1229 mv_wait_for_edma_empty_idle(ap);
1230 if (mv_stop_edma_engine(port_mmio)) {
1231 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1232 err = -EIO;
1233 }
1234 mv_edma_cfg(ap, 0, 0);
1235 return err;
1236 }
1237
1238 #ifdef ATA_DEBUG
1239 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1240 {
1241 int b, w;
1242 for (b = 0; b < bytes; ) {
1243 DPRINTK("%p: ", start + b);
1244 for (w = 0; b < bytes && w < 4; w++) {
1245 printk("%08x ", readl(start + b));
1246 b += sizeof(u32);
1247 }
1248 printk("\n");
1249 }
1250 }
1251 #endif
1252
1253 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1254 {
1255 #ifdef ATA_DEBUG
1256 int b, w;
1257 u32 dw;
1258 for (b = 0; b < bytes; ) {
1259 DPRINTK("%02x: ", b);
1260 for (w = 0; b < bytes && w < 4; w++) {
1261 (void) pci_read_config_dword(pdev, b, &dw);
1262 printk("%08x ", dw);
1263 b += sizeof(u32);
1264 }
1265 printk("\n");
1266 }
1267 #endif
1268 }
1269 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1270 struct pci_dev *pdev)
1271 {
1272 #ifdef ATA_DEBUG
1273 void __iomem *hc_base = mv_hc_base(mmio_base,
1274 port >> MV_PORT_HC_SHIFT);
1275 void __iomem *port_base;
1276 int start_port, num_ports, p, start_hc, num_hcs, hc;
1277
1278 if (0 > port) {
1279 start_hc = start_port = 0;
1280 num_ports = 8; /* shld be benign for 4 port devs */
1281 num_hcs = 2;
1282 } else {
1283 start_hc = port >> MV_PORT_HC_SHIFT;
1284 start_port = port;
1285 num_ports = num_hcs = 1;
1286 }
1287 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1288 num_ports > 1 ? num_ports - 1 : start_port);
1289
1290 if (NULL != pdev) {
1291 DPRINTK("PCI config space regs:\n");
1292 mv_dump_pci_cfg(pdev, 0x68);
1293 }
1294 DPRINTK("PCI regs:\n");
1295 mv_dump_mem(mmio_base+0xc00, 0x3c);
1296 mv_dump_mem(mmio_base+0xd00, 0x34);
1297 mv_dump_mem(mmio_base+0xf00, 0x4);
1298 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1299 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1300 hc_base = mv_hc_base(mmio_base, hc);
1301 DPRINTK("HC regs (HC %i):\n", hc);
1302 mv_dump_mem(hc_base, 0x1c);
1303 }
1304 for (p = start_port; p < start_port + num_ports; p++) {
1305 port_base = mv_port_base(mmio_base, p);
1306 DPRINTK("EDMA regs (port %i):\n", p);
1307 mv_dump_mem(port_base, 0x54);
1308 DPRINTK("SATA regs (port %i):\n", p);
1309 mv_dump_mem(port_base+0x300, 0x60);
1310 }
1311 #endif
1312 }
1313
1314 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1315 {
1316 unsigned int ofs;
1317
1318 switch (sc_reg_in) {
1319 case SCR_STATUS:
1320 case SCR_CONTROL:
1321 case SCR_ERROR:
1322 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1323 break;
1324 case SCR_ACTIVE:
1325 ofs = SATA_ACTIVE; /* active is not with the others */
1326 break;
1327 default:
1328 ofs = 0xffffffffU;
1329 break;
1330 }
1331 return ofs;
1332 }
1333
1334 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1335 {
1336 unsigned int ofs = mv_scr_offset(sc_reg_in);
1337
1338 if (ofs != 0xffffffffU) {
1339 *val = readl(mv_ap_base(link->ap) + ofs);
1340 return 0;
1341 } else
1342 return -EINVAL;
1343 }
1344
1345 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1346 {
1347 unsigned int ofs = mv_scr_offset(sc_reg_in);
1348
1349 if (ofs != 0xffffffffU) {
1350 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1351 if (sc_reg_in == SCR_CONTROL) {
1352 /*
1353 * Workaround for 88SX60x1 FEr SATA#26:
1354 *
1355 * COMRESETs have to take care not to accidentally
1356 * put the drive to sleep when writing SCR_CONTROL.
1357 * Setting bits 12..15 prevents this problem.
1358 *
1359 * So if we see an outbound COMMRESET, set those bits.
1360 * Ditto for the followup write that clears the reset.
1361 *
1362 * The proprietary driver does this for
1363 * all chip versions, and so do we.
1364 */
1365 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1366 val |= 0xf000;
1367 }
1368 writelfl(val, addr);
1369 return 0;
1370 } else
1371 return -EINVAL;
1372 }
1373
1374 static void mv6_dev_config(struct ata_device *adev)
1375 {
1376 /*
1377 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1378 *
1379 * Gen-II does not support NCQ over a port multiplier
1380 * (no FIS-based switching).
1381 */
1382 if (adev->flags & ATA_DFLAG_NCQ) {
1383 if (sata_pmp_attached(adev->link->ap)) {
1384 adev->flags &= ~ATA_DFLAG_NCQ;
1385 ata_dev_printk(adev, KERN_INFO,
1386 "NCQ disabled for command-based switching\n");
1387 }
1388 }
1389 }
1390
1391 static int mv_qc_defer(struct ata_queued_cmd *qc)
1392 {
1393 struct ata_link *link = qc->dev->link;
1394 struct ata_port *ap = link->ap;
1395 struct mv_port_priv *pp = ap->private_data;
1396
1397 /*
1398 * Don't allow new commands if we're in a delayed EH state
1399 * for NCQ and/or FIS-based switching.
1400 */
1401 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1402 return ATA_DEFER_PORT;
1403
1404 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1405 * can run concurrently.
1406 * set excl_link when we want to send a PIO command in DMA mode
1407 * or a non-NCQ command in NCQ mode.
1408 * When we receive a command from that link, and there are no
1409 * outstanding commands, mark a flag to clear excl_link and let
1410 * the command go through.
1411 */
1412 if (unlikely(ap->excl_link)) {
1413 if (link == ap->excl_link) {
1414 if (ap->nr_active_links)
1415 return ATA_DEFER_PORT;
1416 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1417 return 0;
1418 } else
1419 return ATA_DEFER_PORT;
1420 }
1421
1422 /*
1423 * If the port is completely idle, then allow the new qc.
1424 */
1425 if (ap->nr_active_links == 0)
1426 return 0;
1427
1428 /*
1429 * The port is operating in host queuing mode (EDMA) with NCQ
1430 * enabled, allow multiple NCQ commands. EDMA also allows
1431 * queueing multiple DMA commands but libata core currently
1432 * doesn't allow it.
1433 */
1434 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1435 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1436 if (ata_is_ncq(qc->tf.protocol))
1437 return 0;
1438 else {
1439 ap->excl_link = link;
1440 return ATA_DEFER_PORT;
1441 }
1442 }
1443
1444 return ATA_DEFER_PORT;
1445 }
1446
1447 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1448 {
1449 struct mv_port_priv *pp = ap->private_data;
1450 void __iomem *port_mmio;
1451
1452 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1453 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1454 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1455
1456 ltmode = *old_ltmode & ~LTMODE_BIT8;
1457 haltcond = *old_haltcond | EDMA_ERR_DEV;
1458
1459 if (want_fbs) {
1460 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1461 ltmode = *old_ltmode | LTMODE_BIT8;
1462 if (want_ncq)
1463 haltcond &= ~EDMA_ERR_DEV;
1464 else
1465 fiscfg |= FISCFG_WAIT_DEV_ERR;
1466 } else {
1467 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1468 }
1469
1470 port_mmio = mv_ap_base(ap);
1471 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1472 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1473 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1474 }
1475
1476 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1477 {
1478 struct mv_host_priv *hpriv = ap->host->private_data;
1479 u32 old, new;
1480
1481 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1482 old = readl(hpriv->base + GPIO_PORT_CTL);
1483 if (want_ncq)
1484 new = old | (1 << 22);
1485 else
1486 new = old & ~(1 << 22);
1487 if (new != old)
1488 writel(new, hpriv->base + GPIO_PORT_CTL);
1489 }
1490
1491 /**
1492 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1493 * @ap: Port being initialized
1494 *
1495 * There are two DMA modes on these chips: basic DMA, and EDMA.
1496 *
1497 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1498 * of basic DMA on the GEN_IIE versions of the chips.
1499 *
1500 * This bit survives EDMA resets, and must be set for basic DMA
1501 * to function, and should be cleared when EDMA is active.
1502 */
1503 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1504 {
1505 struct mv_port_priv *pp = ap->private_data;
1506 u32 new, *old = &pp->cached.unknown_rsvd;
1507
1508 if (enable_bmdma)
1509 new = *old | 1;
1510 else
1511 new = *old & ~1;
1512 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1513 }
1514
1515 /*
1516 * SOC chips have an issue whereby the HDD LEDs don't always blink
1517 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1518 * of the SOC takes care of it, generating a steady blink rate when
1519 * any drive on the chip is active.
1520 *
1521 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1522 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1523 *
1524 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1525 * LED operation works then, and provides better (more accurate) feedback.
1526 *
1527 * Note that this code assumes that an SOC never has more than one HC onboard.
1528 */
1529 static void mv_soc_led_blink_enable(struct ata_port *ap)
1530 {
1531 struct ata_host *host = ap->host;
1532 struct mv_host_priv *hpriv = host->private_data;
1533 void __iomem *hc_mmio;
1534 u32 led_ctrl;
1535
1536 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1537 return;
1538 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1539 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1540 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1541 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1542 }
1543
1544 static void mv_soc_led_blink_disable(struct ata_port *ap)
1545 {
1546 struct ata_host *host = ap->host;
1547 struct mv_host_priv *hpriv = host->private_data;
1548 void __iomem *hc_mmio;
1549 u32 led_ctrl;
1550 unsigned int port;
1551
1552 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1553 return;
1554
1555 /* disable led-blink only if no ports are using NCQ */
1556 for (port = 0; port < hpriv->n_ports; port++) {
1557 struct ata_port *this_ap = host->ports[port];
1558 struct mv_port_priv *pp = this_ap->private_data;
1559
1560 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1561 return;
1562 }
1563
1564 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1565 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1566 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1567 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1568 }
1569
1570 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1571 {
1572 u32 cfg;
1573 struct mv_port_priv *pp = ap->private_data;
1574 struct mv_host_priv *hpriv = ap->host->private_data;
1575 void __iomem *port_mmio = mv_ap_base(ap);
1576
1577 /* set up non-NCQ EDMA configuration */
1578 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1579 pp->pp_flags &=
1580 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1581
1582 if (IS_GEN_I(hpriv))
1583 cfg |= (1 << 8); /* enab config burst size mask */
1584
1585 else if (IS_GEN_II(hpriv)) {
1586 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1587 mv_60x1_errata_sata25(ap, want_ncq);
1588
1589 } else if (IS_GEN_IIE(hpriv)) {
1590 int want_fbs = sata_pmp_attached(ap);
1591 /*
1592 * Possible future enhancement:
1593 *
1594 * The chip can use FBS with non-NCQ, if we allow it,
1595 * But first we need to have the error handling in place
1596 * for this mode (datasheet section 7.3.15.4.2.3).
1597 * So disallow non-NCQ FBS for now.
1598 */
1599 want_fbs &= want_ncq;
1600
1601 mv_config_fbs(ap, want_ncq, want_fbs);
1602
1603 if (want_fbs) {
1604 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1605 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1606 }
1607
1608 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1609 if (want_edma) {
1610 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1611 if (!IS_SOC(hpriv))
1612 cfg |= (1 << 18); /* enab early completion */
1613 }
1614 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1615 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1616 mv_bmdma_enable_iie(ap, !want_edma);
1617
1618 if (IS_SOC(hpriv)) {
1619 if (want_ncq)
1620 mv_soc_led_blink_enable(ap);
1621 else
1622 mv_soc_led_blink_disable(ap);
1623 }
1624 }
1625
1626 if (want_ncq) {
1627 cfg |= EDMA_CFG_NCQ;
1628 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1629 }
1630
1631 writelfl(cfg, port_mmio + EDMA_CFG);
1632 }
1633
1634 static void mv_port_free_dma_mem(struct ata_port *ap)
1635 {
1636 struct mv_host_priv *hpriv = ap->host->private_data;
1637 struct mv_port_priv *pp = ap->private_data;
1638 int tag;
1639
1640 if (pp->crqb) {
1641 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1642 pp->crqb = NULL;
1643 }
1644 if (pp->crpb) {
1645 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1646 pp->crpb = NULL;
1647 }
1648 /*
1649 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1650 * For later hardware, we have one unique sg_tbl per NCQ tag.
1651 */
1652 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1653 if (pp->sg_tbl[tag]) {
1654 if (tag == 0 || !IS_GEN_I(hpriv))
1655 dma_pool_free(hpriv->sg_tbl_pool,
1656 pp->sg_tbl[tag],
1657 pp->sg_tbl_dma[tag]);
1658 pp->sg_tbl[tag] = NULL;
1659 }
1660 }
1661 }
1662
1663 /**
1664 * mv_port_start - Port specific init/start routine.
1665 * @ap: ATA channel to manipulate
1666 *
1667 * Allocate and point to DMA memory, init port private memory,
1668 * zero indices.
1669 *
1670 * LOCKING:
1671 * Inherited from caller.
1672 */
1673 static int mv_port_start(struct ata_port *ap)
1674 {
1675 struct device *dev = ap->host->dev;
1676 struct mv_host_priv *hpriv = ap->host->private_data;
1677 struct mv_port_priv *pp;
1678 unsigned long flags;
1679 int tag;
1680
1681 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1682 if (!pp)
1683 return -ENOMEM;
1684 ap->private_data = pp;
1685
1686 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1687 if (!pp->crqb)
1688 return -ENOMEM;
1689 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1690
1691 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1692 if (!pp->crpb)
1693 goto out_port_free_dma_mem;
1694 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1695
1696 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1697 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1698 ap->flags |= ATA_FLAG_AN;
1699 /*
1700 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1701 * For later hardware, we need one unique sg_tbl per NCQ tag.
1702 */
1703 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1704 if (tag == 0 || !IS_GEN_I(hpriv)) {
1705 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1706 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1707 if (!pp->sg_tbl[tag])
1708 goto out_port_free_dma_mem;
1709 } else {
1710 pp->sg_tbl[tag] = pp->sg_tbl[0];
1711 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1712 }
1713 }
1714
1715 spin_lock_irqsave(ap->lock, flags);
1716 mv_save_cached_regs(ap);
1717 mv_edma_cfg(ap, 0, 0);
1718 spin_unlock_irqrestore(ap->lock, flags);
1719
1720 return 0;
1721
1722 out_port_free_dma_mem:
1723 mv_port_free_dma_mem(ap);
1724 return -ENOMEM;
1725 }
1726
1727 /**
1728 * mv_port_stop - Port specific cleanup/stop routine.
1729 * @ap: ATA channel to manipulate
1730 *
1731 * Stop DMA, cleanup port memory.
1732 *
1733 * LOCKING:
1734 * This routine uses the host lock to protect the DMA stop.
1735 */
1736 static void mv_port_stop(struct ata_port *ap)
1737 {
1738 unsigned long flags;
1739
1740 spin_lock_irqsave(ap->lock, flags);
1741 mv_stop_edma(ap);
1742 mv_enable_port_irqs(ap, 0);
1743 spin_unlock_irqrestore(ap->lock, flags);
1744 mv_port_free_dma_mem(ap);
1745 }
1746
1747 /**
1748 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1749 * @qc: queued command whose SG list to source from
1750 *
1751 * Populate the SG list and mark the last entry.
1752 *
1753 * LOCKING:
1754 * Inherited from caller.
1755 */
1756 static void mv_fill_sg(struct ata_queued_cmd *qc)
1757 {
1758 struct mv_port_priv *pp = qc->ap->private_data;
1759 struct scatterlist *sg;
1760 struct mv_sg *mv_sg, *last_sg = NULL;
1761 unsigned int si;
1762
1763 mv_sg = pp->sg_tbl[qc->tag];
1764 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1765 dma_addr_t addr = sg_dma_address(sg);
1766 u32 sg_len = sg_dma_len(sg);
1767
1768 while (sg_len) {
1769 u32 offset = addr & 0xffff;
1770 u32 len = sg_len;
1771
1772 if (offset + len > 0x10000)
1773 len = 0x10000 - offset;
1774
1775 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1776 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1777 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1778 mv_sg->reserved = 0;
1779
1780 sg_len -= len;
1781 addr += len;
1782
1783 last_sg = mv_sg;
1784 mv_sg++;
1785 }
1786 }
1787
1788 if (likely(last_sg))
1789 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1790 mb(); /* ensure data structure is visible to the chipset */
1791 }
1792
1793 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1794 {
1795 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1796 (last ? CRQB_CMD_LAST : 0);
1797 *cmdw = cpu_to_le16(tmp);
1798 }
1799
1800 /**
1801 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1802 * @ap: Port associated with this ATA transaction.
1803 *
1804 * We need this only for ATAPI bmdma transactions,
1805 * as otherwise we experience spurious interrupts
1806 * after libata-sff handles the bmdma interrupts.
1807 */
1808 static void mv_sff_irq_clear(struct ata_port *ap)
1809 {
1810 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1811 }
1812
1813 /**
1814 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1815 * @qc: queued command to check for chipset/DMA compatibility.
1816 *
1817 * The bmdma engines cannot handle speculative data sizes
1818 * (bytecount under/over flow). So only allow DMA for
1819 * data transfer commands with known data sizes.
1820 *
1821 * LOCKING:
1822 * Inherited from caller.
1823 */
1824 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1825 {
1826 struct scsi_cmnd *scmd = qc->scsicmd;
1827
1828 if (scmd) {
1829 switch (scmd->cmnd[0]) {
1830 case READ_6:
1831 case READ_10:
1832 case READ_12:
1833 case WRITE_6:
1834 case WRITE_10:
1835 case WRITE_12:
1836 case GPCMD_READ_CD:
1837 case GPCMD_SEND_DVD_STRUCTURE:
1838 case GPCMD_SEND_CUE_SHEET:
1839 return 0; /* DMA is safe */
1840 }
1841 }
1842 return -EOPNOTSUPP; /* use PIO instead */
1843 }
1844
1845 /**
1846 * mv_bmdma_setup - Set up BMDMA transaction
1847 * @qc: queued command to prepare DMA for.
1848 *
1849 * LOCKING:
1850 * Inherited from caller.
1851 */
1852 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1853 {
1854 struct ata_port *ap = qc->ap;
1855 void __iomem *port_mmio = mv_ap_base(ap);
1856 struct mv_port_priv *pp = ap->private_data;
1857
1858 mv_fill_sg(qc);
1859
1860 /* clear all DMA cmd bits */
1861 writel(0, port_mmio + BMDMA_CMD);
1862
1863 /* load PRD table addr. */
1864 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1865 port_mmio + BMDMA_PRD_HIGH);
1866 writelfl(pp->sg_tbl_dma[qc->tag],
1867 port_mmio + BMDMA_PRD_LOW);
1868
1869 /* issue r/w command */
1870 ap->ops->sff_exec_command(ap, &qc->tf);
1871 }
1872
1873 /**
1874 * mv_bmdma_start - Start a BMDMA transaction
1875 * @qc: queued command to start DMA on.
1876 *
1877 * LOCKING:
1878 * Inherited from caller.
1879 */
1880 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1881 {
1882 struct ata_port *ap = qc->ap;
1883 void __iomem *port_mmio = mv_ap_base(ap);
1884 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1885 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1886
1887 /* start host DMA transaction */
1888 writelfl(cmd, port_mmio + BMDMA_CMD);
1889 }
1890
1891 /**
1892 * mv_bmdma_stop - Stop BMDMA transfer
1893 * @qc: queued command to stop DMA on.
1894 *
1895 * Clears the ATA_DMA_START flag in the bmdma control register
1896 *
1897 * LOCKING:
1898 * Inherited from caller.
1899 */
1900 static void mv_bmdma_stop_ap(struct ata_port *ap)
1901 {
1902 void __iomem *port_mmio = mv_ap_base(ap);
1903 u32 cmd;
1904
1905 /* clear start/stop bit */
1906 cmd = readl(port_mmio + BMDMA_CMD);
1907 if (cmd & ATA_DMA_START) {
1908 cmd &= ~ATA_DMA_START;
1909 writelfl(cmd, port_mmio + BMDMA_CMD);
1910
1911 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1912 ata_sff_dma_pause(ap);
1913 }
1914 }
1915
1916 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1917 {
1918 mv_bmdma_stop_ap(qc->ap);
1919 }
1920
1921 /**
1922 * mv_bmdma_status - Read BMDMA status
1923 * @ap: port for which to retrieve DMA status.
1924 *
1925 * Read and return equivalent of the sff BMDMA status register.
1926 *
1927 * LOCKING:
1928 * Inherited from caller.
1929 */
1930 static u8 mv_bmdma_status(struct ata_port *ap)
1931 {
1932 void __iomem *port_mmio = mv_ap_base(ap);
1933 u32 reg, status;
1934
1935 /*
1936 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1937 * and the ATA_DMA_INTR bit doesn't exist.
1938 */
1939 reg = readl(port_mmio + BMDMA_STATUS);
1940 if (reg & ATA_DMA_ACTIVE)
1941 status = ATA_DMA_ACTIVE;
1942 else if (reg & ATA_DMA_ERR)
1943 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1944 else {
1945 /*
1946 * Just because DMA_ACTIVE is 0 (DMA completed),
1947 * this does _not_ mean the device is "done".
1948 * So we should not yet be signalling ATA_DMA_INTR
1949 * in some cases. Eg. DSM/TRIM, and perhaps others.
1950 */
1951 mv_bmdma_stop_ap(ap);
1952 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1953 status = 0;
1954 else
1955 status = ATA_DMA_INTR;
1956 }
1957 return status;
1958 }
1959
1960 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1961 {
1962 struct ata_taskfile *tf = &qc->tf;
1963 /*
1964 * Workaround for 88SX60x1 FEr SATA#24.
1965 *
1966 * Chip may corrupt WRITEs if multi_count >= 4kB.
1967 * Note that READs are unaffected.
1968 *
1969 * It's not clear if this errata really means "4K bytes",
1970 * or if it always happens for multi_count > 7
1971 * regardless of device sector_size.
1972 *
1973 * So, for safety, any write with multi_count > 7
1974 * gets converted here into a regular PIO write instead:
1975 */
1976 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1977 if (qc->dev->multi_count > 7) {
1978 switch (tf->command) {
1979 case ATA_CMD_WRITE_MULTI:
1980 tf->command = ATA_CMD_PIO_WRITE;
1981 break;
1982 case ATA_CMD_WRITE_MULTI_FUA_EXT:
1983 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1984 /* fall through */
1985 case ATA_CMD_WRITE_MULTI_EXT:
1986 tf->command = ATA_CMD_PIO_WRITE_EXT;
1987 break;
1988 }
1989 }
1990 }
1991 }
1992
1993 /**
1994 * mv_qc_prep - Host specific command preparation.
1995 * @qc: queued command to prepare
1996 *
1997 * This routine simply redirects to the general purpose routine
1998 * if command is not DMA. Else, it handles prep of the CRQB
1999 * (command request block), does some sanity checking, and calls
2000 * the SG load routine.
2001 *
2002 * LOCKING:
2003 * Inherited from caller.
2004 */
2005 static void mv_qc_prep(struct ata_queued_cmd *qc)
2006 {
2007 struct ata_port *ap = qc->ap;
2008 struct mv_port_priv *pp = ap->private_data;
2009 __le16 *cw;
2010 struct ata_taskfile *tf = &qc->tf;
2011 u16 flags = 0;
2012 unsigned in_index;
2013
2014 switch (tf->protocol) {
2015 case ATA_PROT_DMA:
2016 if (tf->command == ATA_CMD_DSM)
2017 return;
2018 /* fall-thru */
2019 case ATA_PROT_NCQ:
2020 break; /* continue below */
2021 case ATA_PROT_PIO:
2022 mv_rw_multi_errata_sata24(qc);
2023 return;
2024 default:
2025 return;
2026 }
2027
2028 /* Fill in command request block
2029 */
2030 if (!(tf->flags & ATA_TFLAG_WRITE))
2031 flags |= CRQB_FLAG_READ;
2032 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2033 flags |= qc->tag << CRQB_TAG_SHIFT;
2034 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2035
2036 /* get current queue index from software */
2037 in_index = pp->req_idx;
2038
2039 pp->crqb[in_index].sg_addr =
2040 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2041 pp->crqb[in_index].sg_addr_hi =
2042 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2043 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2044
2045 cw = &pp->crqb[in_index].ata_cmd[0];
2046
2047 /* Sadly, the CRQB cannot accommodate all registers--there are
2048 * only 11 bytes...so we must pick and choose required
2049 * registers based on the command. So, we drop feature and
2050 * hob_feature for [RW] DMA commands, but they are needed for
2051 * NCQ. NCQ will drop hob_nsect, which is not needed there
2052 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2053 */
2054 switch (tf->command) {
2055 case ATA_CMD_READ:
2056 case ATA_CMD_READ_EXT:
2057 case ATA_CMD_WRITE:
2058 case ATA_CMD_WRITE_EXT:
2059 case ATA_CMD_WRITE_FUA_EXT:
2060 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2061 break;
2062 case ATA_CMD_FPDMA_READ:
2063 case ATA_CMD_FPDMA_WRITE:
2064 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2065 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2066 break;
2067 default:
2068 /* The only other commands EDMA supports in non-queued and
2069 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2070 * of which are defined/used by Linux. If we get here, this
2071 * driver needs work.
2072 *
2073 * FIXME: modify libata to give qc_prep a return value and
2074 * return error here.
2075 */
2076 BUG_ON(tf->command);
2077 break;
2078 }
2079 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2080 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2081 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2082 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2083 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2084 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2085 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2086 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2087 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2088
2089 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2090 return;
2091 mv_fill_sg(qc);
2092 }
2093
2094 /**
2095 * mv_qc_prep_iie - Host specific command preparation.
2096 * @qc: queued command to prepare
2097 *
2098 * This routine simply redirects to the general purpose routine
2099 * if command is not DMA. Else, it handles prep of the CRQB
2100 * (command request block), does some sanity checking, and calls
2101 * the SG load routine.
2102 *
2103 * LOCKING:
2104 * Inherited from caller.
2105 */
2106 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2107 {
2108 struct ata_port *ap = qc->ap;
2109 struct mv_port_priv *pp = ap->private_data;
2110 struct mv_crqb_iie *crqb;
2111 struct ata_taskfile *tf = &qc->tf;
2112 unsigned in_index;
2113 u32 flags = 0;
2114
2115 if ((tf->protocol != ATA_PROT_DMA) &&
2116 (tf->protocol != ATA_PROT_NCQ))
2117 return;
2118 if (tf->command == ATA_CMD_DSM)
2119 return; /* use bmdma for this */
2120
2121 /* Fill in Gen IIE command request block */
2122 if (!(tf->flags & ATA_TFLAG_WRITE))
2123 flags |= CRQB_FLAG_READ;
2124
2125 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2126 flags |= qc->tag << CRQB_TAG_SHIFT;
2127 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2128 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2129
2130 /* get current queue index from software */
2131 in_index = pp->req_idx;
2132
2133 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2134 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2135 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2136 crqb->flags = cpu_to_le32(flags);
2137
2138 crqb->ata_cmd[0] = cpu_to_le32(
2139 (tf->command << 16) |
2140 (tf->feature << 24)
2141 );
2142 crqb->ata_cmd[1] = cpu_to_le32(
2143 (tf->lbal << 0) |
2144 (tf->lbam << 8) |
2145 (tf->lbah << 16) |
2146 (tf->device << 24)
2147 );
2148 crqb->ata_cmd[2] = cpu_to_le32(
2149 (tf->hob_lbal << 0) |
2150 (tf->hob_lbam << 8) |
2151 (tf->hob_lbah << 16) |
2152 (tf->hob_feature << 24)
2153 );
2154 crqb->ata_cmd[3] = cpu_to_le32(
2155 (tf->nsect << 0) |
2156 (tf->hob_nsect << 8)
2157 );
2158
2159 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2160 return;
2161 mv_fill_sg(qc);
2162 }
2163
2164 /**
2165 * mv_sff_check_status - fetch device status, if valid
2166 * @ap: ATA port to fetch status from
2167 *
2168 * When using command issue via mv_qc_issue_fis(),
2169 * the initial ATA_BUSY state does not show up in the
2170 * ATA status (shadow) register. This can confuse libata!
2171 *
2172 * So we have a hook here to fake ATA_BUSY for that situation,
2173 * until the first time a BUSY, DRQ, or ERR bit is seen.
2174 *
2175 * The rest of the time, it simply returns the ATA status register.
2176 */
2177 static u8 mv_sff_check_status(struct ata_port *ap)
2178 {
2179 u8 stat = ioread8(ap->ioaddr.status_addr);
2180 struct mv_port_priv *pp = ap->private_data;
2181
2182 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2183 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2184 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2185 else
2186 stat = ATA_BUSY;
2187 }
2188 return stat;
2189 }
2190
2191 /**
2192 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2193 * @fis: fis to be sent
2194 * @nwords: number of 32-bit words in the fis
2195 */
2196 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2197 {
2198 void __iomem *port_mmio = mv_ap_base(ap);
2199 u32 ifctl, old_ifctl, ifstat;
2200 int i, timeout = 200, final_word = nwords - 1;
2201
2202 /* Initiate FIS transmission mode */
2203 old_ifctl = readl(port_mmio + SATA_IFCTL);
2204 ifctl = 0x100 | (old_ifctl & 0xf);
2205 writelfl(ifctl, port_mmio + SATA_IFCTL);
2206
2207 /* Send all words of the FIS except for the final word */
2208 for (i = 0; i < final_word; ++i)
2209 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2210
2211 /* Flag end-of-transmission, and then send the final word */
2212 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2213 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2214
2215 /*
2216 * Wait for FIS transmission to complete.
2217 * This typically takes just a single iteration.
2218 */
2219 do {
2220 ifstat = readl(port_mmio + SATA_IFSTAT);
2221 } while (!(ifstat & 0x1000) && --timeout);
2222
2223 /* Restore original port configuration */
2224 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2225
2226 /* See if it worked */
2227 if ((ifstat & 0x3000) != 0x1000) {
2228 ata_port_printk(ap, KERN_WARNING,
2229 "%s transmission error, ifstat=%08x\n",
2230 __func__, ifstat);
2231 return AC_ERR_OTHER;
2232 }
2233 return 0;
2234 }
2235
2236 /**
2237 * mv_qc_issue_fis - Issue a command directly as a FIS
2238 * @qc: queued command to start
2239 *
2240 * Note that the ATA shadow registers are not updated
2241 * after command issue, so the device will appear "READY"
2242 * if polled, even while it is BUSY processing the command.
2243 *
2244 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2245 *
2246 * Note: we don't get updated shadow regs on *completion*
2247 * of non-data commands. So avoid sending them via this function,
2248 * as they will appear to have completed immediately.
2249 *
2250 * GEN_IIE has special registers that we could get the result tf from,
2251 * but earlier chipsets do not. For now, we ignore those registers.
2252 */
2253 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2254 {
2255 struct ata_port *ap = qc->ap;
2256 struct mv_port_priv *pp = ap->private_data;
2257 struct ata_link *link = qc->dev->link;
2258 u32 fis[5];
2259 int err = 0;
2260
2261 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2262 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2263 if (err)
2264 return err;
2265
2266 switch (qc->tf.protocol) {
2267 case ATAPI_PROT_PIO:
2268 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2269 /* fall through */
2270 case ATAPI_PROT_NODATA:
2271 ap->hsm_task_state = HSM_ST_FIRST;
2272 break;
2273 case ATA_PROT_PIO:
2274 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2275 if (qc->tf.flags & ATA_TFLAG_WRITE)
2276 ap->hsm_task_state = HSM_ST_FIRST;
2277 else
2278 ap->hsm_task_state = HSM_ST;
2279 break;
2280 default:
2281 ap->hsm_task_state = HSM_ST_LAST;
2282 break;
2283 }
2284
2285 if (qc->tf.flags & ATA_TFLAG_POLLING)
2286 ata_sff_queue_pio_task(link, 0);
2287 return 0;
2288 }
2289
2290 /**
2291 * mv_qc_issue - Initiate a command to the host
2292 * @qc: queued command to start
2293 *
2294 * This routine simply redirects to the general purpose routine
2295 * if command is not DMA. Else, it sanity checks our local
2296 * caches of the request producer/consumer indices then enables
2297 * DMA and bumps the request producer index.
2298 *
2299 * LOCKING:
2300 * Inherited from caller.
2301 */
2302 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2303 {
2304 static int limit_warnings = 10;
2305 struct ata_port *ap = qc->ap;
2306 void __iomem *port_mmio = mv_ap_base(ap);
2307 struct mv_port_priv *pp = ap->private_data;
2308 u32 in_index;
2309 unsigned int port_irqs;
2310
2311 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2312
2313 switch (qc->tf.protocol) {
2314 case ATA_PROT_DMA:
2315 if (qc->tf.command == ATA_CMD_DSM) {
2316 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2317 return AC_ERR_OTHER;
2318 break; /* use bmdma for this */
2319 }
2320 /* fall thru */
2321 case ATA_PROT_NCQ:
2322 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2323 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2324 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2325
2326 /* Write the request in pointer to kick the EDMA to life */
2327 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2328 port_mmio + EDMA_REQ_Q_IN_PTR);
2329 return 0;
2330
2331 case ATA_PROT_PIO:
2332 /*
2333 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2334 *
2335 * Someday, we might implement special polling workarounds
2336 * for these, but it all seems rather unnecessary since we
2337 * normally use only DMA for commands which transfer more
2338 * than a single block of data.
2339 *
2340 * Much of the time, this could just work regardless.
2341 * So for now, just log the incident, and allow the attempt.
2342 */
2343 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2344 --limit_warnings;
2345 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2346 ": attempting PIO w/multiple DRQ: "
2347 "this may fail due to h/w errata\n");
2348 }
2349 /* drop through */
2350 case ATA_PROT_NODATA:
2351 case ATAPI_PROT_PIO:
2352 case ATAPI_PROT_NODATA:
2353 if (ap->flags & ATA_FLAG_PIO_POLLING)
2354 qc->tf.flags |= ATA_TFLAG_POLLING;
2355 break;
2356 }
2357
2358 if (qc->tf.flags & ATA_TFLAG_POLLING)
2359 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2360 else
2361 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2362
2363 /*
2364 * We're about to send a non-EDMA capable command to the
2365 * port. Turn off EDMA so there won't be problems accessing
2366 * shadow block, etc registers.
2367 */
2368 mv_stop_edma(ap);
2369 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2370 mv_pmp_select(ap, qc->dev->link->pmp);
2371
2372 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2373 struct mv_host_priv *hpriv = ap->host->private_data;
2374 /*
2375 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2376 *
2377 * After any NCQ error, the READ_LOG_EXT command
2378 * from libata-eh *must* use mv_qc_issue_fis().
2379 * Otherwise it might fail, due to chip errata.
2380 *
2381 * Rather than special-case it, we'll just *always*
2382 * use this method here for READ_LOG_EXT, making for
2383 * easier testing.
2384 */
2385 if (IS_GEN_II(hpriv))
2386 return mv_qc_issue_fis(qc);
2387 }
2388 return ata_bmdma_qc_issue(qc);
2389 }
2390
2391 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2392 {
2393 struct mv_port_priv *pp = ap->private_data;
2394 struct ata_queued_cmd *qc;
2395
2396 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2397 return NULL;
2398 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2399 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2400 return qc;
2401 return NULL;
2402 }
2403
2404 static void mv_pmp_error_handler(struct ata_port *ap)
2405 {
2406 unsigned int pmp, pmp_map;
2407 struct mv_port_priv *pp = ap->private_data;
2408
2409 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2410 /*
2411 * Perform NCQ error analysis on failed PMPs
2412 * before we freeze the port entirely.
2413 *
2414 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2415 */
2416 pmp_map = pp->delayed_eh_pmp_map;
2417 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2418 for (pmp = 0; pmp_map != 0; pmp++) {
2419 unsigned int this_pmp = (1 << pmp);
2420 if (pmp_map & this_pmp) {
2421 struct ata_link *link = &ap->pmp_link[pmp];
2422 pmp_map &= ~this_pmp;
2423 ata_eh_analyze_ncq_error(link);
2424 }
2425 }
2426 ata_port_freeze(ap);
2427 }
2428 sata_pmp_error_handler(ap);
2429 }
2430
2431 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2432 {
2433 void __iomem *port_mmio = mv_ap_base(ap);
2434
2435 return readl(port_mmio + SATA_TESTCTL) >> 16;
2436 }
2437
2438 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2439 {
2440 struct ata_eh_info *ehi;
2441 unsigned int pmp;
2442
2443 /*
2444 * Initialize EH info for PMPs which saw device errors
2445 */
2446 ehi = &ap->link.eh_info;
2447 for (pmp = 0; pmp_map != 0; pmp++) {
2448 unsigned int this_pmp = (1 << pmp);
2449 if (pmp_map & this_pmp) {
2450 struct ata_link *link = &ap->pmp_link[pmp];
2451
2452 pmp_map &= ~this_pmp;
2453 ehi = &link->eh_info;
2454 ata_ehi_clear_desc(ehi);
2455 ata_ehi_push_desc(ehi, "dev err");
2456 ehi->err_mask |= AC_ERR_DEV;
2457 ehi->action |= ATA_EH_RESET;
2458 ata_link_abort(link);
2459 }
2460 }
2461 }
2462
2463 static int mv_req_q_empty(struct ata_port *ap)
2464 {
2465 void __iomem *port_mmio = mv_ap_base(ap);
2466 u32 in_ptr, out_ptr;
2467
2468 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2469 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2470 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2471 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2472 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2473 }
2474
2475 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2476 {
2477 struct mv_port_priv *pp = ap->private_data;
2478 int failed_links;
2479 unsigned int old_map, new_map;
2480
2481 /*
2482 * Device error during FBS+NCQ operation:
2483 *
2484 * Set a port flag to prevent further I/O being enqueued.
2485 * Leave the EDMA running to drain outstanding commands from this port.
2486 * Perform the post-mortem/EH only when all responses are complete.
2487 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2488 */
2489 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2490 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2491 pp->delayed_eh_pmp_map = 0;
2492 }
2493 old_map = pp->delayed_eh_pmp_map;
2494 new_map = old_map | mv_get_err_pmp_map(ap);
2495
2496 if (old_map != new_map) {
2497 pp->delayed_eh_pmp_map = new_map;
2498 mv_pmp_eh_prep(ap, new_map & ~old_map);
2499 }
2500 failed_links = hweight16(new_map);
2501
2502 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2503 "failed_links=%d nr_active_links=%d\n",
2504 __func__, pp->delayed_eh_pmp_map,
2505 ap->qc_active, failed_links,
2506 ap->nr_active_links);
2507
2508 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2509 mv_process_crpb_entries(ap, pp);
2510 mv_stop_edma(ap);
2511 mv_eh_freeze(ap);
2512 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2513 return 1; /* handled */
2514 }
2515 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2516 return 1; /* handled */
2517 }
2518
2519 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2520 {
2521 /*
2522 * Possible future enhancement:
2523 *
2524 * FBS+non-NCQ operation is not yet implemented.
2525 * See related notes in mv_edma_cfg().
2526 *
2527 * Device error during FBS+non-NCQ operation:
2528 *
2529 * We need to snapshot the shadow registers for each failed command.
2530 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2531 */
2532 return 0; /* not handled */
2533 }
2534
2535 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2536 {
2537 struct mv_port_priv *pp = ap->private_data;
2538
2539 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2540 return 0; /* EDMA was not active: not handled */
2541 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2542 return 0; /* FBS was not active: not handled */
2543
2544 if (!(edma_err_cause & EDMA_ERR_DEV))
2545 return 0; /* non DEV error: not handled */
2546 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2547 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2548 return 0; /* other problems: not handled */
2549
2550 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2551 /*
2552 * EDMA should NOT have self-disabled for this case.
2553 * If it did, then something is wrong elsewhere,
2554 * and we cannot handle it here.
2555 */
2556 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2557 ata_port_printk(ap, KERN_WARNING,
2558 "%s: err_cause=0x%x pp_flags=0x%x\n",
2559 __func__, edma_err_cause, pp->pp_flags);
2560 return 0; /* not handled */
2561 }
2562 return mv_handle_fbs_ncq_dev_err(ap);
2563 } else {
2564 /*
2565 * EDMA should have self-disabled for this case.
2566 * If it did not, then something is wrong elsewhere,
2567 * and we cannot handle it here.
2568 */
2569 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2570 ata_port_printk(ap, KERN_WARNING,
2571 "%s: err_cause=0x%x pp_flags=0x%x\n",
2572 __func__, edma_err_cause, pp->pp_flags);
2573 return 0; /* not handled */
2574 }
2575 return mv_handle_fbs_non_ncq_dev_err(ap);
2576 }
2577 return 0; /* not handled */
2578 }
2579
2580 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2581 {
2582 struct ata_eh_info *ehi = &ap->link.eh_info;
2583 char *when = "idle";
2584
2585 ata_ehi_clear_desc(ehi);
2586 if (edma_was_enabled) {
2587 when = "EDMA enabled";
2588 } else {
2589 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2590 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2591 when = "polling";
2592 }
2593 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2594 ehi->err_mask |= AC_ERR_OTHER;
2595 ehi->action |= ATA_EH_RESET;
2596 ata_port_freeze(ap);
2597 }
2598
2599 /**
2600 * mv_err_intr - Handle error interrupts on the port
2601 * @ap: ATA channel to manipulate
2602 *
2603 * Most cases require a full reset of the chip's state machine,
2604 * which also performs a COMRESET.
2605 * Also, if the port disabled DMA, update our cached copy to match.
2606 *
2607 * LOCKING:
2608 * Inherited from caller.
2609 */
2610 static void mv_err_intr(struct ata_port *ap)
2611 {
2612 void __iomem *port_mmio = mv_ap_base(ap);
2613 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2614 u32 fis_cause = 0;
2615 struct mv_port_priv *pp = ap->private_data;
2616 struct mv_host_priv *hpriv = ap->host->private_data;
2617 unsigned int action = 0, err_mask = 0;
2618 struct ata_eh_info *ehi = &ap->link.eh_info;
2619 struct ata_queued_cmd *qc;
2620 int abort = 0;
2621
2622 /*
2623 * Read and clear the SError and err_cause bits.
2624 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2625 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2626 */
2627 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2628 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2629
2630 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2631 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2632 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2633 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2634 }
2635 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2636
2637 if (edma_err_cause & EDMA_ERR_DEV) {
2638 /*
2639 * Device errors during FIS-based switching operation
2640 * require special handling.
2641 */
2642 if (mv_handle_dev_err(ap, edma_err_cause))
2643 return;
2644 }
2645
2646 qc = mv_get_active_qc(ap);
2647 ata_ehi_clear_desc(ehi);
2648 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2649 edma_err_cause, pp->pp_flags);
2650
2651 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2652 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2653 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2654 u32 ec = edma_err_cause &
2655 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2656 sata_async_notification(ap);
2657 if (!ec)
2658 return; /* Just an AN; no need for the nukes */
2659 ata_ehi_push_desc(ehi, "SDB notify");
2660 }
2661 }
2662 /*
2663 * All generations share these EDMA error cause bits:
2664 */
2665 if (edma_err_cause & EDMA_ERR_DEV) {
2666 err_mask |= AC_ERR_DEV;
2667 action |= ATA_EH_RESET;
2668 ata_ehi_push_desc(ehi, "dev error");
2669 }
2670 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2671 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2672 EDMA_ERR_INTRL_PAR)) {
2673 err_mask |= AC_ERR_ATA_BUS;
2674 action |= ATA_EH_RESET;
2675 ata_ehi_push_desc(ehi, "parity error");
2676 }
2677 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2678 ata_ehi_hotplugged(ehi);
2679 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2680 "dev disconnect" : "dev connect");
2681 action |= ATA_EH_RESET;
2682 }
2683
2684 /*
2685 * Gen-I has a different SELF_DIS bit,
2686 * different FREEZE bits, and no SERR bit:
2687 */
2688 if (IS_GEN_I(hpriv)) {
2689 eh_freeze_mask = EDMA_EH_FREEZE_5;
2690 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2691 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2692 ata_ehi_push_desc(ehi, "EDMA self-disable");
2693 }
2694 } else {
2695 eh_freeze_mask = EDMA_EH_FREEZE;
2696 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2697 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2698 ata_ehi_push_desc(ehi, "EDMA self-disable");
2699 }
2700 if (edma_err_cause & EDMA_ERR_SERR) {
2701 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2702 err_mask |= AC_ERR_ATA_BUS;
2703 action |= ATA_EH_RESET;
2704 }
2705 }
2706
2707 if (!err_mask) {
2708 err_mask = AC_ERR_OTHER;
2709 action |= ATA_EH_RESET;
2710 }
2711
2712 ehi->serror |= serr;
2713 ehi->action |= action;
2714
2715 if (qc)
2716 qc->err_mask |= err_mask;
2717 else
2718 ehi->err_mask |= err_mask;
2719
2720 if (err_mask == AC_ERR_DEV) {
2721 /*
2722 * Cannot do ata_port_freeze() here,
2723 * because it would kill PIO access,
2724 * which is needed for further diagnosis.
2725 */
2726 mv_eh_freeze(ap);
2727 abort = 1;
2728 } else if (edma_err_cause & eh_freeze_mask) {
2729 /*
2730 * Note to self: ata_port_freeze() calls ata_port_abort()
2731 */
2732 ata_port_freeze(ap);
2733 } else {
2734 abort = 1;
2735 }
2736
2737 if (abort) {
2738 if (qc)
2739 ata_link_abort(qc->dev->link);
2740 else
2741 ata_port_abort(ap);
2742 }
2743 }
2744
2745 static bool mv_process_crpb_response(struct ata_port *ap,
2746 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2747 {
2748 u8 ata_status;
2749 u16 edma_status = le16_to_cpu(response->flags);
2750
2751 /*
2752 * edma_status from a response queue entry:
2753 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2754 * MSB is saved ATA status from command completion.
2755 */
2756 if (!ncq_enabled) {
2757 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2758 if (err_cause) {
2759 /*
2760 * Error will be seen/handled by
2761 * mv_err_intr(). So do nothing at all here.
2762 */
2763 return false;
2764 }
2765 }
2766 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2767 if (!ac_err_mask(ata_status))
2768 return true;
2769 /* else: leave it for mv_err_intr() */
2770 return false;
2771 }
2772
2773 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2774 {
2775 void __iomem *port_mmio = mv_ap_base(ap);
2776 struct mv_host_priv *hpriv = ap->host->private_data;
2777 u32 in_index;
2778 bool work_done = false;
2779 u32 done_mask = 0;
2780 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2781
2782 /* Get the hardware queue position index */
2783 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2784 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2785
2786 /* Process new responses from since the last time we looked */
2787 while (in_index != pp->resp_idx) {
2788 unsigned int tag;
2789 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2790
2791 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2792
2793 if (IS_GEN_I(hpriv)) {
2794 /* 50xx: no NCQ, only one command active at a time */
2795 tag = ap->link.active_tag;
2796 } else {
2797 /* Gen II/IIE: get command tag from CRPB entry */
2798 tag = le16_to_cpu(response->id) & 0x1f;
2799 }
2800 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2801 done_mask |= 1 << tag;
2802 work_done = true;
2803 }
2804
2805 if (work_done) {
2806 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2807
2808 /* Update the software queue position index in hardware */
2809 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2810 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2811 port_mmio + EDMA_RSP_Q_OUT_PTR);
2812 }
2813 }
2814
2815 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2816 {
2817 struct mv_port_priv *pp;
2818 int edma_was_enabled;
2819
2820 /*
2821 * Grab a snapshot of the EDMA_EN flag setting,
2822 * so that we have a consistent view for this port,
2823 * even if something we call of our routines changes it.
2824 */
2825 pp = ap->private_data;
2826 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2827 /*
2828 * Process completed CRPB response(s) before other events.
2829 */
2830 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2831 mv_process_crpb_entries(ap, pp);
2832 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2833 mv_handle_fbs_ncq_dev_err(ap);
2834 }
2835 /*
2836 * Handle chip-reported errors, or continue on to handle PIO.
2837 */
2838 if (unlikely(port_cause & ERR_IRQ)) {
2839 mv_err_intr(ap);
2840 } else if (!edma_was_enabled) {
2841 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2842 if (qc)
2843 ata_bmdma_port_intr(ap, qc);
2844 else
2845 mv_unexpected_intr(ap, edma_was_enabled);
2846 }
2847 }
2848
2849 /**
2850 * mv_host_intr - Handle all interrupts on the given host controller
2851 * @host: host specific structure
2852 * @main_irq_cause: Main interrupt cause register for the chip.
2853 *
2854 * LOCKING:
2855 * Inherited from caller.
2856 */
2857 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2858 {
2859 struct mv_host_priv *hpriv = host->private_data;
2860 void __iomem *mmio = hpriv->base, *hc_mmio;
2861 unsigned int handled = 0, port;
2862
2863 /* If asserted, clear the "all ports" IRQ coalescing bit */
2864 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2865 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2866
2867 for (port = 0; port < hpriv->n_ports; port++) {
2868 struct ata_port *ap = host->ports[port];
2869 unsigned int p, shift, hardport, port_cause;
2870
2871 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2872 /*
2873 * Each hc within the host has its own hc_irq_cause register,
2874 * where the interrupting ports bits get ack'd.
2875 */
2876 if (hardport == 0) { /* first port on this hc ? */
2877 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2878 u32 port_mask, ack_irqs;
2879 /*
2880 * Skip this entire hc if nothing pending for any ports
2881 */
2882 if (!hc_cause) {
2883 port += MV_PORTS_PER_HC - 1;
2884 continue;
2885 }
2886 /*
2887 * We don't need/want to read the hc_irq_cause register,
2888 * because doing so hurts performance, and
2889 * main_irq_cause already gives us everything we need.
2890 *
2891 * But we do have to *write* to the hc_irq_cause to ack
2892 * the ports that we are handling this time through.
2893 *
2894 * This requires that we create a bitmap for those
2895 * ports which interrupted us, and use that bitmap
2896 * to ack (only) those ports via hc_irq_cause.
2897 */
2898 ack_irqs = 0;
2899 if (hc_cause & PORTS_0_3_COAL_DONE)
2900 ack_irqs = HC_COAL_IRQ;
2901 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2902 if ((port + p) >= hpriv->n_ports)
2903 break;
2904 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2905 if (hc_cause & port_mask)
2906 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2907 }
2908 hc_mmio = mv_hc_base_from_port(mmio, port);
2909 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2910 handled = 1;
2911 }
2912 /*
2913 * Handle interrupts signalled for this port:
2914 */
2915 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2916 if (port_cause)
2917 mv_port_intr(ap, port_cause);
2918 }
2919 return handled;
2920 }
2921
2922 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2923 {
2924 struct mv_host_priv *hpriv = host->private_data;
2925 struct ata_port *ap;
2926 struct ata_queued_cmd *qc;
2927 struct ata_eh_info *ehi;
2928 unsigned int i, err_mask, printed = 0;
2929 u32 err_cause;
2930
2931 err_cause = readl(mmio + hpriv->irq_cause_offset);
2932
2933 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2934 err_cause);
2935
2936 DPRINTK("All regs @ PCI error\n");
2937 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2938
2939 writelfl(0, mmio + hpriv->irq_cause_offset);
2940
2941 for (i = 0; i < host->n_ports; i++) {
2942 ap = host->ports[i];
2943 if (!ata_link_offline(&ap->link)) {
2944 ehi = &ap->link.eh_info;
2945 ata_ehi_clear_desc(ehi);
2946 if (!printed++)
2947 ata_ehi_push_desc(ehi,
2948 "PCI err cause 0x%08x", err_cause);
2949 err_mask = AC_ERR_HOST_BUS;
2950 ehi->action = ATA_EH_RESET;
2951 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2952 if (qc)
2953 qc->err_mask |= err_mask;
2954 else
2955 ehi->err_mask |= err_mask;
2956
2957 ata_port_freeze(ap);
2958 }
2959 }
2960 return 1; /* handled */
2961 }
2962
2963 /**
2964 * mv_interrupt - Main interrupt event handler
2965 * @irq: unused
2966 * @dev_instance: private data; in this case the host structure
2967 *
2968 * Read the read only register to determine if any host
2969 * controllers have pending interrupts. If so, call lower level
2970 * routine to handle. Also check for PCI errors which are only
2971 * reported here.
2972 *
2973 * LOCKING:
2974 * This routine holds the host lock while processing pending
2975 * interrupts.
2976 */
2977 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2978 {
2979 struct ata_host *host = dev_instance;
2980 struct mv_host_priv *hpriv = host->private_data;
2981 unsigned int handled = 0;
2982 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2983 u32 main_irq_cause, pending_irqs;
2984
2985 spin_lock(&host->lock);
2986
2987 /* for MSI: block new interrupts while in here */
2988 if (using_msi)
2989 mv_write_main_irq_mask(0, hpriv);
2990
2991 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2992 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2993 /*
2994 * Deal with cases where we either have nothing pending, or have read
2995 * a bogus register value which can indicate HW removal or PCI fault.
2996 */
2997 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2998 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2999 handled = mv_pci_error(host, hpriv->base);
3000 else
3001 handled = mv_host_intr(host, pending_irqs);
3002 }
3003
3004 /* for MSI: unmask; interrupt cause bits will retrigger now */
3005 if (using_msi)
3006 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3007
3008 spin_unlock(&host->lock);
3009
3010 return IRQ_RETVAL(handled);
3011 }
3012
3013 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3014 {
3015 unsigned int ofs;
3016
3017 switch (sc_reg_in) {
3018 case SCR_STATUS:
3019 case SCR_ERROR:
3020 case SCR_CONTROL:
3021 ofs = sc_reg_in * sizeof(u32);
3022 break;
3023 default:
3024 ofs = 0xffffffffU;
3025 break;
3026 }
3027 return ofs;
3028 }
3029
3030 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3031 {
3032 struct mv_host_priv *hpriv = link->ap->host->private_data;
3033 void __iomem *mmio = hpriv->base;
3034 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3035 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3036
3037 if (ofs != 0xffffffffU) {
3038 *val = readl(addr + ofs);
3039 return 0;
3040 } else
3041 return -EINVAL;
3042 }
3043
3044 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3045 {
3046 struct mv_host_priv *hpriv = link->ap->host->private_data;
3047 void __iomem *mmio = hpriv->base;
3048 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3049 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3050
3051 if (ofs != 0xffffffffU) {
3052 writelfl(val, addr + ofs);
3053 return 0;
3054 } else
3055 return -EINVAL;
3056 }
3057
3058 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3059 {
3060 struct pci_dev *pdev = to_pci_dev(host->dev);
3061 int early_5080;
3062
3063 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3064
3065 if (!early_5080) {
3066 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3067 tmp |= (1 << 0);
3068 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3069 }
3070
3071 mv_reset_pci_bus(host, mmio);
3072 }
3073
3074 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3075 {
3076 writel(0x0fcfffff, mmio + FLASH_CTL);
3077 }
3078
3079 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3080 void __iomem *mmio)
3081 {
3082 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3083 u32 tmp;
3084
3085 tmp = readl(phy_mmio + MV5_PHY_MODE);
3086
3087 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3088 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3089 }
3090
3091 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3092 {
3093 u32 tmp;
3094
3095 writel(0, mmio + GPIO_PORT_CTL);
3096
3097 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3098
3099 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3100 tmp |= ~(1 << 0);
3101 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3102 }
3103
3104 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3105 unsigned int port)
3106 {
3107 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3108 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3109 u32 tmp;
3110 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3111
3112 if (fix_apm_sq) {
3113 tmp = readl(phy_mmio + MV5_LTMODE);
3114 tmp |= (1 << 19);
3115 writel(tmp, phy_mmio + MV5_LTMODE);
3116
3117 tmp = readl(phy_mmio + MV5_PHY_CTL);
3118 tmp &= ~0x3;
3119 tmp |= 0x1;
3120 writel(tmp, phy_mmio + MV5_PHY_CTL);
3121 }
3122
3123 tmp = readl(phy_mmio + MV5_PHY_MODE);
3124 tmp &= ~mask;
3125 tmp |= hpriv->signal[port].pre;
3126 tmp |= hpriv->signal[port].amps;
3127 writel(tmp, phy_mmio + MV5_PHY_MODE);
3128 }
3129
3130
3131 #undef ZERO
3132 #define ZERO(reg) writel(0, port_mmio + (reg))
3133 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3134 unsigned int port)
3135 {
3136 void __iomem *port_mmio = mv_port_base(mmio, port);
3137
3138 mv_reset_channel(hpriv, mmio, port);
3139
3140 ZERO(0x028); /* command */
3141 writel(0x11f, port_mmio + EDMA_CFG);
3142 ZERO(0x004); /* timer */
3143 ZERO(0x008); /* irq err cause */
3144 ZERO(0x00c); /* irq err mask */
3145 ZERO(0x010); /* rq bah */
3146 ZERO(0x014); /* rq inp */
3147 ZERO(0x018); /* rq outp */
3148 ZERO(0x01c); /* respq bah */
3149 ZERO(0x024); /* respq outp */
3150 ZERO(0x020); /* respq inp */
3151 ZERO(0x02c); /* test control */
3152 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3153 }
3154 #undef ZERO
3155
3156 #define ZERO(reg) writel(0, hc_mmio + (reg))
3157 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3158 unsigned int hc)
3159 {
3160 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3161 u32 tmp;
3162
3163 ZERO(0x00c);
3164 ZERO(0x010);
3165 ZERO(0x014);
3166 ZERO(0x018);
3167
3168 tmp = readl(hc_mmio + 0x20);
3169 tmp &= 0x1c1c1c1c;
3170 tmp |= 0x03030303;
3171 writel(tmp, hc_mmio + 0x20);
3172 }
3173 #undef ZERO
3174
3175 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3176 unsigned int n_hc)
3177 {
3178 unsigned int hc, port;
3179
3180 for (hc = 0; hc < n_hc; hc++) {
3181 for (port = 0; port < MV_PORTS_PER_HC; port++)
3182 mv5_reset_hc_port(hpriv, mmio,
3183 (hc * MV_PORTS_PER_HC) + port);
3184
3185 mv5_reset_one_hc(hpriv, mmio, hc);
3186 }
3187
3188 return 0;
3189 }
3190
3191 #undef ZERO
3192 #define ZERO(reg) writel(0, mmio + (reg))
3193 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3194 {
3195 struct mv_host_priv *hpriv = host->private_data;
3196 u32 tmp;
3197
3198 tmp = readl(mmio + MV_PCI_MODE);
3199 tmp &= 0xff00ffff;
3200 writel(tmp, mmio + MV_PCI_MODE);
3201
3202 ZERO(MV_PCI_DISC_TIMER);
3203 ZERO(MV_PCI_MSI_TRIGGER);
3204 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3205 ZERO(MV_PCI_SERR_MASK);
3206 ZERO(hpriv->irq_cause_offset);
3207 ZERO(hpriv->irq_mask_offset);
3208 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3209 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3210 ZERO(MV_PCI_ERR_ATTRIBUTE);
3211 ZERO(MV_PCI_ERR_COMMAND);
3212 }
3213 #undef ZERO
3214
3215 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3216 {
3217 u32 tmp;
3218
3219 mv5_reset_flash(hpriv, mmio);
3220
3221 tmp = readl(mmio + GPIO_PORT_CTL);
3222 tmp &= 0x3;
3223 tmp |= (1 << 5) | (1 << 6);
3224 writel(tmp, mmio + GPIO_PORT_CTL);
3225 }
3226
3227 /**
3228 * mv6_reset_hc - Perform the 6xxx global soft reset
3229 * @mmio: base address of the HBA
3230 *
3231 * This routine only applies to 6xxx parts.
3232 *
3233 * LOCKING:
3234 * Inherited from caller.
3235 */
3236 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3237 unsigned int n_hc)
3238 {
3239 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3240 int i, rc = 0;
3241 u32 t;
3242
3243 /* Following procedure defined in PCI "main command and status
3244 * register" table.
3245 */
3246 t = readl(reg);
3247 writel(t | STOP_PCI_MASTER, reg);
3248
3249 for (i = 0; i < 1000; i++) {
3250 udelay(1);
3251 t = readl(reg);
3252 if (PCI_MASTER_EMPTY & t)
3253 break;
3254 }
3255 if (!(PCI_MASTER_EMPTY & t)) {
3256 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3257 rc = 1;
3258 goto done;
3259 }
3260
3261 /* set reset */
3262 i = 5;
3263 do {
3264 writel(t | GLOB_SFT_RST, reg);
3265 t = readl(reg);
3266 udelay(1);
3267 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3268
3269 if (!(GLOB_SFT_RST & t)) {
3270 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3271 rc = 1;
3272 goto done;
3273 }
3274
3275 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3276 i = 5;
3277 do {
3278 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3279 t = readl(reg);
3280 udelay(1);
3281 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3282
3283 if (GLOB_SFT_RST & t) {
3284 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3285 rc = 1;
3286 }
3287 done:
3288 return rc;
3289 }
3290
3291 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3292 void __iomem *mmio)
3293 {
3294 void __iomem *port_mmio;
3295 u32 tmp;
3296
3297 tmp = readl(mmio + RESET_CFG);
3298 if ((tmp & (1 << 0)) == 0) {
3299 hpriv->signal[idx].amps = 0x7 << 8;
3300 hpriv->signal[idx].pre = 0x1 << 5;
3301 return;
3302 }
3303
3304 port_mmio = mv_port_base(mmio, idx);
3305 tmp = readl(port_mmio + PHY_MODE2);
3306
3307 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3308 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3309 }
3310
3311 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3312 {
3313 writel(0x00000060, mmio + GPIO_PORT_CTL);
3314 }
3315
3316 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3317 unsigned int port)
3318 {
3319 void __iomem *port_mmio = mv_port_base(mmio, port);
3320
3321 u32 hp_flags = hpriv->hp_flags;
3322 int fix_phy_mode2 =
3323 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3324 int fix_phy_mode4 =
3325 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3326 u32 m2, m3;
3327
3328 if (fix_phy_mode2) {
3329 m2 = readl(port_mmio + PHY_MODE2);
3330 m2 &= ~(1 << 16);
3331 m2 |= (1 << 31);
3332 writel(m2, port_mmio + PHY_MODE2);
3333
3334 udelay(200);
3335
3336 m2 = readl(port_mmio + PHY_MODE2);
3337 m2 &= ~((1 << 16) | (1 << 31));
3338 writel(m2, port_mmio + PHY_MODE2);
3339
3340 udelay(200);
3341 }
3342
3343 /*
3344 * Gen-II/IIe PHY_MODE3 errata RM#2:
3345 * Achieves better receiver noise performance than the h/w default:
3346 */
3347 m3 = readl(port_mmio + PHY_MODE3);
3348 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3349
3350 /* Guideline 88F5182 (GL# SATA-S11) */
3351 if (IS_SOC(hpriv))
3352 m3 &= ~0x1c;
3353
3354 if (fix_phy_mode4) {
3355 u32 m4 = readl(port_mmio + PHY_MODE4);
3356 /*
3357 * Enforce reserved-bit restrictions on GenIIe devices only.
3358 * For earlier chipsets, force only the internal config field
3359 * (workaround for errata FEr SATA#10 part 1).
3360 */
3361 if (IS_GEN_IIE(hpriv))
3362 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3363 else
3364 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3365 writel(m4, port_mmio + PHY_MODE4);
3366 }
3367 /*
3368 * Workaround for 60x1-B2 errata SATA#13:
3369 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3370 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3371 * Or ensure we use writelfl() when writing PHY_MODE4.
3372 */
3373 writel(m3, port_mmio + PHY_MODE3);
3374
3375 /* Revert values of pre-emphasis and signal amps to the saved ones */
3376 m2 = readl(port_mmio + PHY_MODE2);
3377
3378 m2 &= ~MV_M2_PREAMP_MASK;
3379 m2 |= hpriv->signal[port].amps;
3380 m2 |= hpriv->signal[port].pre;
3381 m2 &= ~(1 << 16);
3382
3383 /* according to mvSata 3.6.1, some IIE values are fixed */
3384 if (IS_GEN_IIE(hpriv)) {
3385 m2 &= ~0xC30FF01F;
3386 m2 |= 0x0000900F;
3387 }
3388
3389 writel(m2, port_mmio + PHY_MODE2);
3390 }
3391
3392 /* TODO: use the generic LED interface to configure the SATA Presence */
3393 /* & Acitivy LEDs on the board */
3394 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3395 void __iomem *mmio)
3396 {
3397 return;
3398 }
3399
3400 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3401 void __iomem *mmio)
3402 {
3403 void __iomem *port_mmio;
3404 u32 tmp;
3405
3406 port_mmio = mv_port_base(mmio, idx);
3407 tmp = readl(port_mmio + PHY_MODE2);
3408
3409 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3410 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3411 }
3412
3413 #undef ZERO
3414 #define ZERO(reg) writel(0, port_mmio + (reg))
3415 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3416 void __iomem *mmio, unsigned int port)
3417 {
3418 void __iomem *port_mmio = mv_port_base(mmio, port);
3419
3420 mv_reset_channel(hpriv, mmio, port);
3421
3422 ZERO(0x028); /* command */
3423 writel(0x101f, port_mmio + EDMA_CFG);
3424 ZERO(0x004); /* timer */
3425 ZERO(0x008); /* irq err cause */
3426 ZERO(0x00c); /* irq err mask */
3427 ZERO(0x010); /* rq bah */
3428 ZERO(0x014); /* rq inp */
3429 ZERO(0x018); /* rq outp */
3430 ZERO(0x01c); /* respq bah */
3431 ZERO(0x024); /* respq outp */
3432 ZERO(0x020); /* respq inp */
3433 ZERO(0x02c); /* test control */
3434 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3435 }
3436
3437 #undef ZERO
3438
3439 #define ZERO(reg) writel(0, hc_mmio + (reg))
3440 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3441 void __iomem *mmio)
3442 {
3443 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3444
3445 ZERO(0x00c);
3446 ZERO(0x010);
3447 ZERO(0x014);
3448
3449 }
3450
3451 #undef ZERO
3452
3453 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3454 void __iomem *mmio, unsigned int n_hc)
3455 {
3456 unsigned int port;
3457
3458 for (port = 0; port < hpriv->n_ports; port++)
3459 mv_soc_reset_hc_port(hpriv, mmio, port);
3460
3461 mv_soc_reset_one_hc(hpriv, mmio);
3462
3463 return 0;
3464 }
3465
3466 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3467 void __iomem *mmio)
3468 {
3469 return;
3470 }
3471
3472 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3473 {
3474 return;
3475 }
3476
3477 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3478 void __iomem *mmio, unsigned int port)
3479 {
3480 void __iomem *port_mmio = mv_port_base(mmio, port);
3481 u32 reg;
3482
3483 reg = readl(port_mmio + PHY_MODE3);
3484 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3485 reg |= (0x1 << 27);
3486 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3487 reg |= (0x1 << 29);
3488 writel(reg, port_mmio + PHY_MODE3);
3489
3490 reg = readl(port_mmio + PHY_MODE4);
3491 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3492 reg |= (0x1 << 16);
3493 writel(reg, port_mmio + PHY_MODE4);
3494
3495 reg = readl(port_mmio + PHY_MODE9_GEN2);
3496 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3497 reg |= 0x8;
3498 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3499 writel(reg, port_mmio + PHY_MODE9_GEN2);
3500
3501 reg = readl(port_mmio + PHY_MODE9_GEN1);
3502 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3503 reg |= 0x8;
3504 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3505 writel(reg, port_mmio + PHY_MODE9_GEN1);
3506 }
3507
3508 /**
3509 * soc_is_65 - check if the soc is 65 nano device
3510 *
3511 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3512 * register, this register should contain non-zero value and it exists only
3513 * in the 65 nano devices, when reading it from older devices we get 0.
3514 */
3515 static bool soc_is_65n(struct mv_host_priv *hpriv)
3516 {
3517 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3518
3519 if (readl(port0_mmio + PHYCFG_OFS))
3520 return true;
3521 return false;
3522 }
3523
3524 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3525 {
3526 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3527
3528 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3529 if (want_gen2i)
3530 ifcfg |= (1 << 7); /* enable gen2i speed */
3531 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3532 }
3533
3534 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3535 unsigned int port_no)
3536 {
3537 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3538
3539 /*
3540 * The datasheet warns against setting EDMA_RESET when EDMA is active
3541 * (but doesn't say what the problem might be). So we first try
3542 * to disable the EDMA engine before doing the EDMA_RESET operation.
3543 */
3544 mv_stop_edma_engine(port_mmio);
3545 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3546
3547 if (!IS_GEN_I(hpriv)) {
3548 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3549 mv_setup_ifcfg(port_mmio, 1);
3550 }
3551 /*
3552 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3553 * link, and physical layers. It resets all SATA interface registers
3554 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3555 */
3556 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3557 udelay(25); /* allow reset propagation */
3558 writelfl(0, port_mmio + EDMA_CMD);
3559
3560 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3561
3562 if (IS_GEN_I(hpriv))
3563 mdelay(1);
3564 }
3565
3566 static void mv_pmp_select(struct ata_port *ap, int pmp)
3567 {
3568 if (sata_pmp_supported(ap)) {
3569 void __iomem *port_mmio = mv_ap_base(ap);
3570 u32 reg = readl(port_mmio + SATA_IFCTL);
3571 int old = reg & 0xf;
3572
3573 if (old != pmp) {
3574 reg = (reg & ~0xf) | pmp;
3575 writelfl(reg, port_mmio + SATA_IFCTL);
3576 }
3577 }
3578 }
3579
3580 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3581 unsigned long deadline)
3582 {
3583 mv_pmp_select(link->ap, sata_srst_pmp(link));
3584 return sata_std_hardreset(link, class, deadline);
3585 }
3586
3587 static int mv_softreset(struct ata_link *link, unsigned int *class,
3588 unsigned long deadline)
3589 {
3590 mv_pmp_select(link->ap, sata_srst_pmp(link));
3591 return ata_sff_softreset(link, class, deadline);
3592 }
3593
3594 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3595 unsigned long deadline)
3596 {
3597 struct ata_port *ap = link->ap;
3598 struct mv_host_priv *hpriv = ap->host->private_data;
3599 struct mv_port_priv *pp = ap->private_data;
3600 void __iomem *mmio = hpriv->base;
3601 int rc, attempts = 0, extra = 0;
3602 u32 sstatus;
3603 bool online;
3604
3605 mv_reset_channel(hpriv, mmio, ap->port_no);
3606 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3607 pp->pp_flags &=
3608 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3609
3610 /* Workaround for errata FEr SATA#10 (part 2) */
3611 do {
3612 const unsigned long *timing =
3613 sata_ehc_deb_timing(&link->eh_context);
3614
3615 rc = sata_link_hardreset(link, timing, deadline + extra,
3616 &online, NULL);
3617 rc = online ? -EAGAIN : rc;
3618 if (rc)
3619 return rc;
3620 sata_scr_read(link, SCR_STATUS, &sstatus);
3621 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3622 /* Force 1.5gb/s link speed and try again */
3623 mv_setup_ifcfg(mv_ap_base(ap), 0);
3624 if (time_after(jiffies + HZ, deadline))
3625 extra = HZ; /* only extend it once, max */
3626 }
3627 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3628 mv_save_cached_regs(ap);
3629 mv_edma_cfg(ap, 0, 0);
3630
3631 return rc;
3632 }
3633
3634 static void mv_eh_freeze(struct ata_port *ap)
3635 {
3636 mv_stop_edma(ap);
3637 mv_enable_port_irqs(ap, 0);
3638 }
3639
3640 static void mv_eh_thaw(struct ata_port *ap)
3641 {
3642 struct mv_host_priv *hpriv = ap->host->private_data;
3643 unsigned int port = ap->port_no;
3644 unsigned int hardport = mv_hardport_from_port(port);
3645 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3646 void __iomem *port_mmio = mv_ap_base(ap);
3647 u32 hc_irq_cause;
3648
3649 /* clear EDMA errors on this port */
3650 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3651
3652 /* clear pending irq events */
3653 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3654 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3655
3656 mv_enable_port_irqs(ap, ERR_IRQ);
3657 }
3658
3659 /**
3660 * mv_port_init - Perform some early initialization on a single port.
3661 * @port: libata data structure storing shadow register addresses
3662 * @port_mmio: base address of the port
3663 *
3664 * Initialize shadow register mmio addresses, clear outstanding
3665 * interrupts on the port, and unmask interrupts for the future
3666 * start of the port.
3667 *
3668 * LOCKING:
3669 * Inherited from caller.
3670 */
3671 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3672 {
3673 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3674
3675 /* PIO related setup
3676 */
3677 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3678 port->error_addr =
3679 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3680 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3681 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3682 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3683 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3684 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3685 port->status_addr =
3686 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3687 /* special case: control/altstatus doesn't have ATA_REG_ address */
3688 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3689
3690 /* Clear any currently outstanding port interrupt conditions */
3691 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3692 writelfl(readl(serr), serr);
3693 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3694
3695 /* unmask all non-transient EDMA error interrupts */
3696 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3697
3698 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3699 readl(port_mmio + EDMA_CFG),
3700 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3701 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3702 }
3703
3704 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3705 {
3706 struct mv_host_priv *hpriv = host->private_data;
3707 void __iomem *mmio = hpriv->base;
3708 u32 reg;
3709
3710 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3711 return 0; /* not PCI-X capable */
3712 reg = readl(mmio + MV_PCI_MODE);
3713 if ((reg & MV_PCI_MODE_MASK) == 0)
3714 return 0; /* conventional PCI mode */
3715 return 1; /* chip is in PCI-X mode */
3716 }
3717
3718 static int mv_pci_cut_through_okay(struct ata_host *host)
3719 {
3720 struct mv_host_priv *hpriv = host->private_data;
3721 void __iomem *mmio = hpriv->base;
3722 u32 reg;
3723
3724 if (!mv_in_pcix_mode(host)) {
3725 reg = readl(mmio + MV_PCI_COMMAND);
3726 if (reg & MV_PCI_COMMAND_MRDTRIG)
3727 return 0; /* not okay */
3728 }
3729 return 1; /* okay */
3730 }
3731
3732 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3733 {
3734 struct mv_host_priv *hpriv = host->private_data;
3735 void __iomem *mmio = hpriv->base;
3736
3737 /* workaround for 60x1-B2 errata PCI#7 */
3738 if (mv_in_pcix_mode(host)) {
3739 u32 reg = readl(mmio + MV_PCI_COMMAND);
3740 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3741 }
3742 }
3743
3744 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3745 {
3746 struct pci_dev *pdev = to_pci_dev(host->dev);
3747 struct mv_host_priv *hpriv = host->private_data;
3748 u32 hp_flags = hpriv->hp_flags;
3749
3750 switch (board_idx) {
3751 case chip_5080:
3752 hpriv->ops = &mv5xxx_ops;
3753 hp_flags |= MV_HP_GEN_I;
3754
3755 switch (pdev->revision) {
3756 case 0x1:
3757 hp_flags |= MV_HP_ERRATA_50XXB0;
3758 break;
3759 case 0x3:
3760 hp_flags |= MV_HP_ERRATA_50XXB2;
3761 break;
3762 default:
3763 dev_printk(KERN_WARNING, &pdev->dev,
3764 "Applying 50XXB2 workarounds to unknown rev\n");
3765 hp_flags |= MV_HP_ERRATA_50XXB2;
3766 break;
3767 }
3768 break;
3769
3770 case chip_504x:
3771 case chip_508x:
3772 hpriv->ops = &mv5xxx_ops;
3773 hp_flags |= MV_HP_GEN_I;
3774
3775 switch (pdev->revision) {
3776 case 0x0:
3777 hp_flags |= MV_HP_ERRATA_50XXB0;
3778 break;
3779 case 0x3:
3780 hp_flags |= MV_HP_ERRATA_50XXB2;
3781 break;
3782 default:
3783 dev_printk(KERN_WARNING, &pdev->dev,
3784 "Applying B2 workarounds to unknown rev\n");
3785 hp_flags |= MV_HP_ERRATA_50XXB2;
3786 break;
3787 }
3788 break;
3789
3790 case chip_604x:
3791 case chip_608x:
3792 hpriv->ops = &mv6xxx_ops;
3793 hp_flags |= MV_HP_GEN_II;
3794
3795 switch (pdev->revision) {
3796 case 0x7:
3797 mv_60x1b2_errata_pci7(host);
3798 hp_flags |= MV_HP_ERRATA_60X1B2;
3799 break;
3800 case 0x9:
3801 hp_flags |= MV_HP_ERRATA_60X1C0;
3802 break;
3803 default:
3804 dev_printk(KERN_WARNING, &pdev->dev,
3805 "Applying B2 workarounds to unknown rev\n");
3806 hp_flags |= MV_HP_ERRATA_60X1B2;
3807 break;
3808 }
3809 break;
3810
3811 case chip_7042:
3812 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3813 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3814 (pdev->device == 0x2300 || pdev->device == 0x2310))
3815 {
3816 /*
3817 * Highpoint RocketRAID PCIe 23xx series cards:
3818 *
3819 * Unconfigured drives are treated as "Legacy"
3820 * by the BIOS, and it overwrites sector 8 with
3821 * a "Lgcy" metadata block prior to Linux boot.
3822 *
3823 * Configured drives (RAID or JBOD) leave sector 8
3824 * alone, but instead overwrite a high numbered
3825 * sector for the RAID metadata. This sector can
3826 * be determined exactly, by truncating the physical
3827 * drive capacity to a nice even GB value.
3828 *
3829 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3830 *
3831 * Warn the user, lest they think we're just buggy.
3832 */
3833 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3834 " BIOS CORRUPTS DATA on all attached drives,"
3835 " regardless of if/how they are configured."
3836 " BEWARE!\n");
3837 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3838 " use sectors 8-9 on \"Legacy\" drives,"
3839 " and avoid the final two gigabytes on"
3840 " all RocketRAID BIOS initialized drives.\n");
3841 }
3842 /* drop through */
3843 case chip_6042:
3844 hpriv->ops = &mv6xxx_ops;
3845 hp_flags |= MV_HP_GEN_IIE;
3846 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3847 hp_flags |= MV_HP_CUT_THROUGH;
3848
3849 switch (pdev->revision) {
3850 case 0x2: /* Rev.B0: the first/only public release */
3851 hp_flags |= MV_HP_ERRATA_60X1C0;
3852 break;
3853 default:
3854 dev_printk(KERN_WARNING, &pdev->dev,
3855 "Applying 60X1C0 workarounds to unknown rev\n");
3856 hp_flags |= MV_HP_ERRATA_60X1C0;
3857 break;
3858 }
3859 break;
3860 case chip_soc:
3861 if (soc_is_65n(hpriv))
3862 hpriv->ops = &mv_soc_65n_ops;
3863 else
3864 hpriv->ops = &mv_soc_ops;
3865 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3866 MV_HP_ERRATA_60X1C0;
3867 break;
3868
3869 default:
3870 dev_printk(KERN_ERR, host->dev,
3871 "BUG: invalid board index %u\n", board_idx);
3872 return 1;
3873 }
3874
3875 hpriv->hp_flags = hp_flags;
3876 if (hp_flags & MV_HP_PCIE) {
3877 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3878 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3879 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3880 } else {
3881 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3882 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3883 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3884 }
3885
3886 return 0;
3887 }
3888
3889 /**
3890 * mv_init_host - Perform some early initialization of the host.
3891 * @host: ATA host to initialize
3892 *
3893 * If possible, do an early global reset of the host. Then do
3894 * our port init and clear/unmask all/relevant host interrupts.
3895 *
3896 * LOCKING:
3897 * Inherited from caller.
3898 */
3899 static int mv_init_host(struct ata_host *host)
3900 {
3901 int rc = 0, n_hc, port, hc;
3902 struct mv_host_priv *hpriv = host->private_data;
3903 void __iomem *mmio = hpriv->base;
3904
3905 rc = mv_chip_id(host, hpriv->board_idx);
3906 if (rc)
3907 goto done;
3908
3909 if (IS_SOC(hpriv)) {
3910 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3911 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3912 } else {
3913 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3914 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3915 }
3916
3917 /* initialize shadow irq mask with register's value */
3918 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3919
3920 /* global interrupt mask: 0 == mask everything */
3921 mv_set_main_irq_mask(host, ~0, 0);
3922
3923 n_hc = mv_get_hc_count(host->ports[0]->flags);
3924
3925 for (port = 0; port < host->n_ports; port++)
3926 if (hpriv->ops->read_preamp)
3927 hpriv->ops->read_preamp(hpriv, port, mmio);
3928
3929 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3930 if (rc)
3931 goto done;
3932
3933 hpriv->ops->reset_flash(hpriv, mmio);
3934 hpriv->ops->reset_bus(host, mmio);
3935 hpriv->ops->enable_leds(hpriv, mmio);
3936
3937 for (port = 0; port < host->n_ports; port++) {
3938 struct ata_port *ap = host->ports[port];
3939 void __iomem *port_mmio = mv_port_base(mmio, port);
3940
3941 mv_port_init(&ap->ioaddr, port_mmio);
3942 }
3943
3944 for (hc = 0; hc < n_hc; hc++) {
3945 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3946
3947 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3948 "(before clear)=0x%08x\n", hc,
3949 readl(hc_mmio + HC_CFG),
3950 readl(hc_mmio + HC_IRQ_CAUSE));
3951
3952 /* Clear any currently outstanding hc interrupt conditions */
3953 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3954 }
3955
3956 if (!IS_SOC(hpriv)) {
3957 /* Clear any currently outstanding host interrupt conditions */
3958 writelfl(0, mmio + hpriv->irq_cause_offset);
3959
3960 /* and unmask interrupt generation for host regs */
3961 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3962 }
3963
3964 /*
3965 * enable only global host interrupts for now.
3966 * The per-port interrupts get done later as ports are set up.
3967 */
3968 mv_set_main_irq_mask(host, 0, PCI_ERR);
3969 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3970 irq_coalescing_usecs);
3971 done:
3972 return rc;
3973 }
3974
3975 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3976 {
3977 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3978 MV_CRQB_Q_SZ, 0);
3979 if (!hpriv->crqb_pool)
3980 return -ENOMEM;
3981
3982 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3983 MV_CRPB_Q_SZ, 0);
3984 if (!hpriv->crpb_pool)
3985 return -ENOMEM;
3986
3987 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3988 MV_SG_TBL_SZ, 0);
3989 if (!hpriv->sg_tbl_pool)
3990 return -ENOMEM;
3991
3992 return 0;
3993 }
3994
3995 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3996 struct mbus_dram_target_info *dram)
3997 {
3998 int i;
3999
4000 for (i = 0; i < 4; i++) {
4001 writel(0, hpriv->base + WINDOW_CTRL(i));
4002 writel(0, hpriv->base + WINDOW_BASE(i));
4003 }
4004
4005 for (i = 0; i < dram->num_cs; i++) {
4006 struct mbus_dram_window *cs = dram->cs + i;
4007
4008 writel(((cs->size - 1) & 0xffff0000) |
4009 (cs->mbus_attr << 8) |
4010 (dram->mbus_dram_target_id << 4) | 1,
4011 hpriv->base + WINDOW_CTRL(i));
4012 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4013 }
4014 }
4015
4016 /**
4017 * mv_platform_probe - handle a positive probe of an soc Marvell
4018 * host
4019 * @pdev: platform device found
4020 *
4021 * LOCKING:
4022 * Inherited from caller.
4023 */
4024 static int mv_platform_probe(struct platform_device *pdev)
4025 {
4026 static int printed_version;
4027 const struct mv_sata_platform_data *mv_platform_data;
4028 const struct ata_port_info *ppi[] =
4029 { &mv_port_info[chip_soc], NULL };
4030 struct ata_host *host;
4031 struct mv_host_priv *hpriv;
4032 struct resource *res;
4033 int n_ports, rc;
4034
4035 if (!printed_version++)
4036 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4037
4038 /*
4039 * Simple resource validation ..
4040 */
4041 if (unlikely(pdev->num_resources != 2)) {
4042 dev_err(&pdev->dev, "invalid number of resources\n");
4043 return -EINVAL;
4044 }
4045
4046 /*
4047 * Get the register base first
4048 */
4049 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4050 if (res == NULL)
4051 return -EINVAL;
4052
4053 /* allocate host */
4054 mv_platform_data = pdev->dev.platform_data;
4055 n_ports = mv_platform_data->n_ports;
4056
4057 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4058 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4059
4060 if (!host || !hpriv)
4061 return -ENOMEM;
4062 host->private_data = hpriv;
4063 hpriv->n_ports = n_ports;
4064 hpriv->board_idx = chip_soc;
4065
4066 host->iomap = NULL;
4067 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4068 resource_size(res));
4069 hpriv->base -= SATAHC0_REG_BASE;
4070
4071 #if defined(CONFIG_HAVE_CLK)
4072 hpriv->clk = clk_get(&pdev->dev, NULL);
4073 if (IS_ERR(hpriv->clk))
4074 dev_notice(&pdev->dev, "cannot get clkdev\n");
4075 else
4076 clk_enable(hpriv->clk);
4077 #endif
4078
4079 /*
4080 * (Re-)program MBUS remapping windows if we are asked to.
4081 */
4082 if (mv_platform_data->dram != NULL)
4083 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4084
4085 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4086 if (rc)
4087 goto err;
4088
4089 /* initialize adapter */
4090 rc = mv_init_host(host);
4091 if (rc)
4092 goto err;
4093
4094 dev_printk(KERN_INFO, &pdev->dev,
4095 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4096 host->n_ports);
4097
4098 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4099 IRQF_SHARED, &mv6_sht);
4100 err:
4101 #if defined(CONFIG_HAVE_CLK)
4102 if (!IS_ERR(hpriv->clk)) {
4103 clk_disable(hpriv->clk);
4104 clk_put(hpriv->clk);
4105 }
4106 #endif
4107
4108 return rc;
4109 }
4110
4111 /*
4112 *
4113 * mv_platform_remove - unplug a platform interface
4114 * @pdev: platform device
4115 *
4116 * A platform bus SATA device has been unplugged. Perform the needed
4117 * cleanup. Also called on module unload for any active devices.
4118 */
4119 static int __devexit mv_platform_remove(struct platform_device *pdev)
4120 {
4121 struct device *dev = &pdev->dev;
4122 struct ata_host *host = dev_get_drvdata(dev);
4123 #if defined(CONFIG_HAVE_CLK)
4124 struct mv_host_priv *hpriv = host->private_data;
4125 #endif
4126 ata_host_detach(host);
4127
4128 #if defined(CONFIG_HAVE_CLK)
4129 if (!IS_ERR(hpriv->clk)) {
4130 clk_disable(hpriv->clk);
4131 clk_put(hpriv->clk);
4132 }
4133 #endif
4134 return 0;
4135 }
4136
4137 #ifdef CONFIG_PM
4138 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4139 {
4140 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4141 if (host)
4142 return ata_host_suspend(host, state);
4143 else
4144 return 0;
4145 }
4146
4147 static int mv_platform_resume(struct platform_device *pdev)
4148 {
4149 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4150 int ret;
4151
4152 if (host) {
4153 struct mv_host_priv *hpriv = host->private_data;
4154 const struct mv_sata_platform_data *mv_platform_data = \
4155 pdev->dev.platform_data;
4156 /*
4157 * (Re-)program MBUS remapping windows if we are asked to.
4158 */
4159 if (mv_platform_data->dram != NULL)
4160 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4161
4162 /* initialize adapter */
4163 ret = mv_init_host(host);
4164 if (ret) {
4165 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4166 return ret;
4167 }
4168 ata_host_resume(host);
4169 }
4170
4171 return 0;
4172 }
4173 #else
4174 #define mv_platform_suspend NULL
4175 #define mv_platform_resume NULL
4176 #endif
4177
4178 static struct platform_driver mv_platform_driver = {
4179 .probe = mv_platform_probe,
4180 .remove = __devexit_p(mv_platform_remove),
4181 .suspend = mv_platform_suspend,
4182 .resume = mv_platform_resume,
4183 .driver = {
4184 .name = DRV_NAME,
4185 .owner = THIS_MODULE,
4186 },
4187 };
4188
4189
4190 #ifdef CONFIG_PCI
4191 static int mv_pci_init_one(struct pci_dev *pdev,
4192 const struct pci_device_id *ent);
4193 #ifdef CONFIG_PM
4194 static int mv_pci_device_resume(struct pci_dev *pdev);
4195 #endif
4196
4197
4198 static struct pci_driver mv_pci_driver = {
4199 .name = DRV_NAME,
4200 .id_table = mv_pci_tbl,
4201 .probe = mv_pci_init_one,
4202 .remove = ata_pci_remove_one,
4203 #ifdef CONFIG_PM
4204 .suspend = ata_pci_device_suspend,
4205 .resume = mv_pci_device_resume,
4206 #endif
4207
4208 };
4209
4210 /* move to PCI layer or libata core? */
4211 static int pci_go_64(struct pci_dev *pdev)
4212 {
4213 int rc;
4214
4215 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4216 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4217 if (rc) {
4218 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4219 if (rc) {
4220 dev_printk(KERN_ERR, &pdev->dev,
4221 "64-bit DMA enable failed\n");
4222 return rc;
4223 }
4224 }
4225 } else {
4226 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4227 if (rc) {
4228 dev_printk(KERN_ERR, &pdev->dev,
4229 "32-bit DMA enable failed\n");
4230 return rc;
4231 }
4232 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4233 if (rc) {
4234 dev_printk(KERN_ERR, &pdev->dev,
4235 "32-bit consistent DMA enable failed\n");
4236 return rc;
4237 }
4238 }
4239
4240 return rc;
4241 }
4242
4243 /**
4244 * mv_print_info - Dump key info to kernel log for perusal.
4245 * @host: ATA host to print info about
4246 *
4247 * FIXME: complete this.
4248 *
4249 * LOCKING:
4250 * Inherited from caller.
4251 */
4252 static void mv_print_info(struct ata_host *host)
4253 {
4254 struct pci_dev *pdev = to_pci_dev(host->dev);
4255 struct mv_host_priv *hpriv = host->private_data;
4256 u8 scc;
4257 const char *scc_s, *gen;
4258
4259 /* Use this to determine the HW stepping of the chip so we know
4260 * what errata to workaround
4261 */
4262 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4263 if (scc == 0)
4264 scc_s = "SCSI";
4265 else if (scc == 0x01)
4266 scc_s = "RAID";
4267 else
4268 scc_s = "?";
4269
4270 if (IS_GEN_I(hpriv))
4271 gen = "I";
4272 else if (IS_GEN_II(hpriv))
4273 gen = "II";
4274 else if (IS_GEN_IIE(hpriv))
4275 gen = "IIE";
4276 else
4277 gen = "?";
4278
4279 dev_printk(KERN_INFO, &pdev->dev,
4280 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4281 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4282 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4283 }
4284
4285 /**
4286 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4287 * @pdev: PCI device found
4288 * @ent: PCI device ID entry for the matched host
4289 *
4290 * LOCKING:
4291 * Inherited from caller.
4292 */
4293 static int mv_pci_init_one(struct pci_dev *pdev,
4294 const struct pci_device_id *ent)
4295 {
4296 static int printed_version;
4297 unsigned int board_idx = (unsigned int)ent->driver_data;
4298 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4299 struct ata_host *host;
4300 struct mv_host_priv *hpriv;
4301 int n_ports, port, rc;
4302
4303 if (!printed_version++)
4304 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4305
4306 /* allocate host */
4307 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4308
4309 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4310 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4311 if (!host || !hpriv)
4312 return -ENOMEM;
4313 host->private_data = hpriv;
4314 hpriv->n_ports = n_ports;
4315 hpriv->board_idx = board_idx;
4316
4317 /* acquire resources */
4318 rc = pcim_enable_device(pdev);
4319 if (rc)
4320 return rc;
4321
4322 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4323 if (rc == -EBUSY)
4324 pcim_pin_device(pdev);
4325 if (rc)
4326 return rc;
4327 host->iomap = pcim_iomap_table(pdev);
4328 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4329
4330 rc = pci_go_64(pdev);
4331 if (rc)
4332 return rc;
4333
4334 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4335 if (rc)
4336 return rc;
4337
4338 for (port = 0; port < host->n_ports; port++) {
4339 struct ata_port *ap = host->ports[port];
4340 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4341 unsigned int offset = port_mmio - hpriv->base;
4342
4343 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4344 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4345 }
4346
4347 /* initialize adapter */
4348 rc = mv_init_host(host);
4349 if (rc)
4350 return rc;
4351
4352 /* Enable message-switched interrupts, if requested */
4353 if (msi && pci_enable_msi(pdev) == 0)
4354 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4355
4356 mv_dump_pci_cfg(pdev, 0x68);
4357 mv_print_info(host);
4358
4359 pci_set_master(pdev);
4360 pci_try_set_mwi(pdev);
4361 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4362 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4363 }
4364
4365 #ifdef CONFIG_PM
4366 static int mv_pci_device_resume(struct pci_dev *pdev)
4367 {
4368 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4369 int rc;
4370
4371 rc = ata_pci_device_do_resume(pdev);
4372 if (rc)
4373 return rc;
4374
4375 /* initialize adapter */
4376 rc = mv_init_host(host);
4377 if (rc)
4378 return rc;
4379
4380 ata_host_resume(host);
4381
4382 return 0;
4383 }
4384 #endif
4385 #endif
4386
4387 static int mv_platform_probe(struct platform_device *pdev);
4388 static int __devexit mv_platform_remove(struct platform_device *pdev);
4389
4390 static int __init mv_init(void)
4391 {
4392 int rc = -ENODEV;
4393 #ifdef CONFIG_PCI
4394 rc = pci_register_driver(&mv_pci_driver);
4395 if (rc < 0)
4396 return rc;
4397 #endif
4398 rc = platform_driver_register(&mv_platform_driver);
4399
4400 #ifdef CONFIG_PCI
4401 if (rc < 0)
4402 pci_unregister_driver(&mv_pci_driver);
4403 #endif
4404 return rc;
4405 }
4406
4407 static void __exit mv_exit(void)
4408 {
4409 #ifdef CONFIG_PCI
4410 pci_unregister_driver(&mv_pci_driver);
4411 #endif
4412 platform_driver_unregister(&mv_platform_driver);
4413 }
4414
4415 MODULE_AUTHOR("Brett Russ");
4416 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4417 MODULE_LICENSE("GPL");
4418 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4419 MODULE_VERSION(DRV_VERSION);
4420 MODULE_ALIAS("platform:" DRV_NAME);
4421
4422 module_init(mv_init);
4423 module_exit(mv_exit);
This page took 0.121177 seconds and 5 git commands to generate.