Merge 4.8-rc5 into driver-core-next
[deliverable/linux.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sysfs.h>
30
31 #include "base.h"
32 #include "power/power.h"
33
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46
47 int (*platform_notify)(struct device *dev) = NULL;
48 int (*platform_notify_remove)(struct device *dev) = NULL;
49 static struct kobject *dev_kobj;
50 struct kobject *sysfs_dev_char_kobj;
51 struct kobject *sysfs_dev_block_kobj;
52
53 static DEFINE_MUTEX(device_hotplug_lock);
54
55 void lock_device_hotplug(void)
56 {
57 mutex_lock(&device_hotplug_lock);
58 }
59
60 void unlock_device_hotplug(void)
61 {
62 mutex_unlock(&device_hotplug_lock);
63 }
64
65 int lock_device_hotplug_sysfs(void)
66 {
67 if (mutex_trylock(&device_hotplug_lock))
68 return 0;
69
70 /* Avoid busy looping (5 ms of sleep should do). */
71 msleep(5);
72 return restart_syscall();
73 }
74
75 #ifdef CONFIG_BLOCK
76 static inline int device_is_not_partition(struct device *dev)
77 {
78 return !(dev->type == &part_type);
79 }
80 #else
81 static inline int device_is_not_partition(struct device *dev)
82 {
83 return 1;
84 }
85 #endif
86
87 /**
88 * dev_driver_string - Return a device's driver name, if at all possible
89 * @dev: struct device to get the name of
90 *
91 * Will return the device's driver's name if it is bound to a device. If
92 * the device is not bound to a driver, it will return the name of the bus
93 * it is attached to. If it is not attached to a bus either, an empty
94 * string will be returned.
95 */
96 const char *dev_driver_string(const struct device *dev)
97 {
98 struct device_driver *drv;
99
100 /* dev->driver can change to NULL underneath us because of unbinding,
101 * so be careful about accessing it. dev->bus and dev->class should
102 * never change once they are set, so they don't need special care.
103 */
104 drv = ACCESS_ONCE(dev->driver);
105 return drv ? drv->name :
106 (dev->bus ? dev->bus->name :
107 (dev->class ? dev->class->name : ""));
108 }
109 EXPORT_SYMBOL(dev_driver_string);
110
111 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
112
113 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
114 char *buf)
115 {
116 struct device_attribute *dev_attr = to_dev_attr(attr);
117 struct device *dev = kobj_to_dev(kobj);
118 ssize_t ret = -EIO;
119
120 if (dev_attr->show)
121 ret = dev_attr->show(dev, dev_attr, buf);
122 if (ret >= (ssize_t)PAGE_SIZE) {
123 print_symbol("dev_attr_show: %s returned bad count\n",
124 (unsigned long)dev_attr->show);
125 }
126 return ret;
127 }
128
129 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
130 const char *buf, size_t count)
131 {
132 struct device_attribute *dev_attr = to_dev_attr(attr);
133 struct device *dev = kobj_to_dev(kobj);
134 ssize_t ret = -EIO;
135
136 if (dev_attr->store)
137 ret = dev_attr->store(dev, dev_attr, buf, count);
138 return ret;
139 }
140
141 static const struct sysfs_ops dev_sysfs_ops = {
142 .show = dev_attr_show,
143 .store = dev_attr_store,
144 };
145
146 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
147
148 ssize_t device_store_ulong(struct device *dev,
149 struct device_attribute *attr,
150 const char *buf, size_t size)
151 {
152 struct dev_ext_attribute *ea = to_ext_attr(attr);
153 char *end;
154 unsigned long new = simple_strtoul(buf, &end, 0);
155 if (end == buf)
156 return -EINVAL;
157 *(unsigned long *)(ea->var) = new;
158 /* Always return full write size even if we didn't consume all */
159 return size;
160 }
161 EXPORT_SYMBOL_GPL(device_store_ulong);
162
163 ssize_t device_show_ulong(struct device *dev,
164 struct device_attribute *attr,
165 char *buf)
166 {
167 struct dev_ext_attribute *ea = to_ext_attr(attr);
168 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
169 }
170 EXPORT_SYMBOL_GPL(device_show_ulong);
171
172 ssize_t device_store_int(struct device *dev,
173 struct device_attribute *attr,
174 const char *buf, size_t size)
175 {
176 struct dev_ext_attribute *ea = to_ext_attr(attr);
177 char *end;
178 long new = simple_strtol(buf, &end, 0);
179 if (end == buf || new > INT_MAX || new < INT_MIN)
180 return -EINVAL;
181 *(int *)(ea->var) = new;
182 /* Always return full write size even if we didn't consume all */
183 return size;
184 }
185 EXPORT_SYMBOL_GPL(device_store_int);
186
187 ssize_t device_show_int(struct device *dev,
188 struct device_attribute *attr,
189 char *buf)
190 {
191 struct dev_ext_attribute *ea = to_ext_attr(attr);
192
193 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
194 }
195 EXPORT_SYMBOL_GPL(device_show_int);
196
197 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
198 const char *buf, size_t size)
199 {
200 struct dev_ext_attribute *ea = to_ext_attr(attr);
201
202 if (strtobool(buf, ea->var) < 0)
203 return -EINVAL;
204
205 return size;
206 }
207 EXPORT_SYMBOL_GPL(device_store_bool);
208
209 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
210 char *buf)
211 {
212 struct dev_ext_attribute *ea = to_ext_attr(attr);
213
214 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
215 }
216 EXPORT_SYMBOL_GPL(device_show_bool);
217
218 /**
219 * device_release - free device structure.
220 * @kobj: device's kobject.
221 *
222 * This is called once the reference count for the object
223 * reaches 0. We forward the call to the device's release
224 * method, which should handle actually freeing the structure.
225 */
226 static void device_release(struct kobject *kobj)
227 {
228 struct device *dev = kobj_to_dev(kobj);
229 struct device_private *p = dev->p;
230
231 /*
232 * Some platform devices are driven without driver attached
233 * and managed resources may have been acquired. Make sure
234 * all resources are released.
235 *
236 * Drivers still can add resources into device after device
237 * is deleted but alive, so release devres here to avoid
238 * possible memory leak.
239 */
240 devres_release_all(dev);
241
242 if (dev->release)
243 dev->release(dev);
244 else if (dev->type && dev->type->release)
245 dev->type->release(dev);
246 else if (dev->class && dev->class->dev_release)
247 dev->class->dev_release(dev);
248 else
249 WARN(1, KERN_ERR "Device '%s' does not have a release() "
250 "function, it is broken and must be fixed.\n",
251 dev_name(dev));
252 kfree(p);
253 }
254
255 static const void *device_namespace(struct kobject *kobj)
256 {
257 struct device *dev = kobj_to_dev(kobj);
258 const void *ns = NULL;
259
260 if (dev->class && dev->class->ns_type)
261 ns = dev->class->namespace(dev);
262
263 return ns;
264 }
265
266 static struct kobj_type device_ktype = {
267 .release = device_release,
268 .sysfs_ops = &dev_sysfs_ops,
269 .namespace = device_namespace,
270 };
271
272
273 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
274 {
275 struct kobj_type *ktype = get_ktype(kobj);
276
277 if (ktype == &device_ktype) {
278 struct device *dev = kobj_to_dev(kobj);
279 if (dev->bus)
280 return 1;
281 if (dev->class)
282 return 1;
283 }
284 return 0;
285 }
286
287 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
288 {
289 struct device *dev = kobj_to_dev(kobj);
290
291 if (dev->bus)
292 return dev->bus->name;
293 if (dev->class)
294 return dev->class->name;
295 return NULL;
296 }
297
298 static int dev_uevent(struct kset *kset, struct kobject *kobj,
299 struct kobj_uevent_env *env)
300 {
301 struct device *dev = kobj_to_dev(kobj);
302 int retval = 0;
303
304 /* add device node properties if present */
305 if (MAJOR(dev->devt)) {
306 const char *tmp;
307 const char *name;
308 umode_t mode = 0;
309 kuid_t uid = GLOBAL_ROOT_UID;
310 kgid_t gid = GLOBAL_ROOT_GID;
311
312 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
313 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
314 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
315 if (name) {
316 add_uevent_var(env, "DEVNAME=%s", name);
317 if (mode)
318 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
319 if (!uid_eq(uid, GLOBAL_ROOT_UID))
320 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
321 if (!gid_eq(gid, GLOBAL_ROOT_GID))
322 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
323 kfree(tmp);
324 }
325 }
326
327 if (dev->type && dev->type->name)
328 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
329
330 if (dev->driver)
331 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
332
333 /* Add common DT information about the device */
334 of_device_uevent(dev, env);
335
336 /* have the bus specific function add its stuff */
337 if (dev->bus && dev->bus->uevent) {
338 retval = dev->bus->uevent(dev, env);
339 if (retval)
340 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
341 dev_name(dev), __func__, retval);
342 }
343
344 /* have the class specific function add its stuff */
345 if (dev->class && dev->class->dev_uevent) {
346 retval = dev->class->dev_uevent(dev, env);
347 if (retval)
348 pr_debug("device: '%s': %s: class uevent() "
349 "returned %d\n", dev_name(dev),
350 __func__, retval);
351 }
352
353 /* have the device type specific function add its stuff */
354 if (dev->type && dev->type->uevent) {
355 retval = dev->type->uevent(dev, env);
356 if (retval)
357 pr_debug("device: '%s': %s: dev_type uevent() "
358 "returned %d\n", dev_name(dev),
359 __func__, retval);
360 }
361
362 return retval;
363 }
364
365 static const struct kset_uevent_ops device_uevent_ops = {
366 .filter = dev_uevent_filter,
367 .name = dev_uevent_name,
368 .uevent = dev_uevent,
369 };
370
371 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
372 char *buf)
373 {
374 struct kobject *top_kobj;
375 struct kset *kset;
376 struct kobj_uevent_env *env = NULL;
377 int i;
378 size_t count = 0;
379 int retval;
380
381 /* search the kset, the device belongs to */
382 top_kobj = &dev->kobj;
383 while (!top_kobj->kset && top_kobj->parent)
384 top_kobj = top_kobj->parent;
385 if (!top_kobj->kset)
386 goto out;
387
388 kset = top_kobj->kset;
389 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
390 goto out;
391
392 /* respect filter */
393 if (kset->uevent_ops && kset->uevent_ops->filter)
394 if (!kset->uevent_ops->filter(kset, &dev->kobj))
395 goto out;
396
397 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
398 if (!env)
399 return -ENOMEM;
400
401 /* let the kset specific function add its keys */
402 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
403 if (retval)
404 goto out;
405
406 /* copy keys to file */
407 for (i = 0; i < env->envp_idx; i++)
408 count += sprintf(&buf[count], "%s\n", env->envp[i]);
409 out:
410 kfree(env);
411 return count;
412 }
413
414 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
415 const char *buf, size_t count)
416 {
417 enum kobject_action action;
418
419 if (kobject_action_type(buf, count, &action) == 0)
420 kobject_uevent(&dev->kobj, action);
421 else
422 dev_err(dev, "uevent: unknown action-string\n");
423 return count;
424 }
425 static DEVICE_ATTR_RW(uevent);
426
427 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
428 char *buf)
429 {
430 bool val;
431
432 device_lock(dev);
433 val = !dev->offline;
434 device_unlock(dev);
435 return sprintf(buf, "%u\n", val);
436 }
437
438 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
439 const char *buf, size_t count)
440 {
441 bool val;
442 int ret;
443
444 ret = strtobool(buf, &val);
445 if (ret < 0)
446 return ret;
447
448 ret = lock_device_hotplug_sysfs();
449 if (ret)
450 return ret;
451
452 ret = val ? device_online(dev) : device_offline(dev);
453 unlock_device_hotplug();
454 return ret < 0 ? ret : count;
455 }
456 static DEVICE_ATTR_RW(online);
457
458 int device_add_groups(struct device *dev, const struct attribute_group **groups)
459 {
460 return sysfs_create_groups(&dev->kobj, groups);
461 }
462
463 void device_remove_groups(struct device *dev,
464 const struct attribute_group **groups)
465 {
466 sysfs_remove_groups(&dev->kobj, groups);
467 }
468
469 static int device_add_attrs(struct device *dev)
470 {
471 struct class *class = dev->class;
472 const struct device_type *type = dev->type;
473 int error;
474
475 if (class) {
476 error = device_add_groups(dev, class->dev_groups);
477 if (error)
478 return error;
479 }
480
481 if (type) {
482 error = device_add_groups(dev, type->groups);
483 if (error)
484 goto err_remove_class_groups;
485 }
486
487 error = device_add_groups(dev, dev->groups);
488 if (error)
489 goto err_remove_type_groups;
490
491 if (device_supports_offline(dev) && !dev->offline_disabled) {
492 error = device_create_file(dev, &dev_attr_online);
493 if (error)
494 goto err_remove_dev_groups;
495 }
496
497 return 0;
498
499 err_remove_dev_groups:
500 device_remove_groups(dev, dev->groups);
501 err_remove_type_groups:
502 if (type)
503 device_remove_groups(dev, type->groups);
504 err_remove_class_groups:
505 if (class)
506 device_remove_groups(dev, class->dev_groups);
507
508 return error;
509 }
510
511 static void device_remove_attrs(struct device *dev)
512 {
513 struct class *class = dev->class;
514 const struct device_type *type = dev->type;
515
516 device_remove_file(dev, &dev_attr_online);
517 device_remove_groups(dev, dev->groups);
518
519 if (type)
520 device_remove_groups(dev, type->groups);
521
522 if (class)
523 device_remove_groups(dev, class->dev_groups);
524 }
525
526 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
527 char *buf)
528 {
529 return print_dev_t(buf, dev->devt);
530 }
531 static DEVICE_ATTR_RO(dev);
532
533 /* /sys/devices/ */
534 struct kset *devices_kset;
535
536 /**
537 * devices_kset_move_before - Move device in the devices_kset's list.
538 * @deva: Device to move.
539 * @devb: Device @deva should come before.
540 */
541 static void devices_kset_move_before(struct device *deva, struct device *devb)
542 {
543 if (!devices_kset)
544 return;
545 pr_debug("devices_kset: Moving %s before %s\n",
546 dev_name(deva), dev_name(devb));
547 spin_lock(&devices_kset->list_lock);
548 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
549 spin_unlock(&devices_kset->list_lock);
550 }
551
552 /**
553 * devices_kset_move_after - Move device in the devices_kset's list.
554 * @deva: Device to move
555 * @devb: Device @deva should come after.
556 */
557 static void devices_kset_move_after(struct device *deva, struct device *devb)
558 {
559 if (!devices_kset)
560 return;
561 pr_debug("devices_kset: Moving %s after %s\n",
562 dev_name(deva), dev_name(devb));
563 spin_lock(&devices_kset->list_lock);
564 list_move(&deva->kobj.entry, &devb->kobj.entry);
565 spin_unlock(&devices_kset->list_lock);
566 }
567
568 /**
569 * devices_kset_move_last - move the device to the end of devices_kset's list.
570 * @dev: device to move
571 */
572 void devices_kset_move_last(struct device *dev)
573 {
574 if (!devices_kset)
575 return;
576 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
577 spin_lock(&devices_kset->list_lock);
578 list_move_tail(&dev->kobj.entry, &devices_kset->list);
579 spin_unlock(&devices_kset->list_lock);
580 }
581
582 /**
583 * device_create_file - create sysfs attribute file for device.
584 * @dev: device.
585 * @attr: device attribute descriptor.
586 */
587 int device_create_file(struct device *dev,
588 const struct device_attribute *attr)
589 {
590 int error = 0;
591
592 if (dev) {
593 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
594 "Attribute %s: write permission without 'store'\n",
595 attr->attr.name);
596 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
597 "Attribute %s: read permission without 'show'\n",
598 attr->attr.name);
599 error = sysfs_create_file(&dev->kobj, &attr->attr);
600 }
601
602 return error;
603 }
604 EXPORT_SYMBOL_GPL(device_create_file);
605
606 /**
607 * device_remove_file - remove sysfs attribute file.
608 * @dev: device.
609 * @attr: device attribute descriptor.
610 */
611 void device_remove_file(struct device *dev,
612 const struct device_attribute *attr)
613 {
614 if (dev)
615 sysfs_remove_file(&dev->kobj, &attr->attr);
616 }
617 EXPORT_SYMBOL_GPL(device_remove_file);
618
619 /**
620 * device_remove_file_self - remove sysfs attribute file from its own method.
621 * @dev: device.
622 * @attr: device attribute descriptor.
623 *
624 * See kernfs_remove_self() for details.
625 */
626 bool device_remove_file_self(struct device *dev,
627 const struct device_attribute *attr)
628 {
629 if (dev)
630 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
631 else
632 return false;
633 }
634 EXPORT_SYMBOL_GPL(device_remove_file_self);
635
636 /**
637 * device_create_bin_file - create sysfs binary attribute file for device.
638 * @dev: device.
639 * @attr: device binary attribute descriptor.
640 */
641 int device_create_bin_file(struct device *dev,
642 const struct bin_attribute *attr)
643 {
644 int error = -EINVAL;
645 if (dev)
646 error = sysfs_create_bin_file(&dev->kobj, attr);
647 return error;
648 }
649 EXPORT_SYMBOL_GPL(device_create_bin_file);
650
651 /**
652 * device_remove_bin_file - remove sysfs binary attribute file
653 * @dev: device.
654 * @attr: device binary attribute descriptor.
655 */
656 void device_remove_bin_file(struct device *dev,
657 const struct bin_attribute *attr)
658 {
659 if (dev)
660 sysfs_remove_bin_file(&dev->kobj, attr);
661 }
662 EXPORT_SYMBOL_GPL(device_remove_bin_file);
663
664 static void klist_children_get(struct klist_node *n)
665 {
666 struct device_private *p = to_device_private_parent(n);
667 struct device *dev = p->device;
668
669 get_device(dev);
670 }
671
672 static void klist_children_put(struct klist_node *n)
673 {
674 struct device_private *p = to_device_private_parent(n);
675 struct device *dev = p->device;
676
677 put_device(dev);
678 }
679
680 /**
681 * device_initialize - init device structure.
682 * @dev: device.
683 *
684 * This prepares the device for use by other layers by initializing
685 * its fields.
686 * It is the first half of device_register(), if called by
687 * that function, though it can also be called separately, so one
688 * may use @dev's fields. In particular, get_device()/put_device()
689 * may be used for reference counting of @dev after calling this
690 * function.
691 *
692 * All fields in @dev must be initialized by the caller to 0, except
693 * for those explicitly set to some other value. The simplest
694 * approach is to use kzalloc() to allocate the structure containing
695 * @dev.
696 *
697 * NOTE: Use put_device() to give up your reference instead of freeing
698 * @dev directly once you have called this function.
699 */
700 void device_initialize(struct device *dev)
701 {
702 dev->kobj.kset = devices_kset;
703 kobject_init(&dev->kobj, &device_ktype);
704 INIT_LIST_HEAD(&dev->dma_pools);
705 mutex_init(&dev->mutex);
706 lockdep_set_novalidate_class(&dev->mutex);
707 spin_lock_init(&dev->devres_lock);
708 INIT_LIST_HEAD(&dev->devres_head);
709 device_pm_init(dev);
710 set_dev_node(dev, -1);
711 #ifdef CONFIG_GENERIC_MSI_IRQ
712 INIT_LIST_HEAD(&dev->msi_list);
713 #endif
714 }
715 EXPORT_SYMBOL_GPL(device_initialize);
716
717 struct kobject *virtual_device_parent(struct device *dev)
718 {
719 static struct kobject *virtual_dir = NULL;
720
721 if (!virtual_dir)
722 virtual_dir = kobject_create_and_add("virtual",
723 &devices_kset->kobj);
724
725 return virtual_dir;
726 }
727
728 struct class_dir {
729 struct kobject kobj;
730 struct class *class;
731 };
732
733 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
734
735 static void class_dir_release(struct kobject *kobj)
736 {
737 struct class_dir *dir = to_class_dir(kobj);
738 kfree(dir);
739 }
740
741 static const
742 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
743 {
744 struct class_dir *dir = to_class_dir(kobj);
745 return dir->class->ns_type;
746 }
747
748 static struct kobj_type class_dir_ktype = {
749 .release = class_dir_release,
750 .sysfs_ops = &kobj_sysfs_ops,
751 .child_ns_type = class_dir_child_ns_type
752 };
753
754 static struct kobject *
755 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
756 {
757 struct class_dir *dir;
758 int retval;
759
760 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
761 if (!dir)
762 return NULL;
763
764 dir->class = class;
765 kobject_init(&dir->kobj, &class_dir_ktype);
766
767 dir->kobj.kset = &class->p->glue_dirs;
768
769 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
770 if (retval < 0) {
771 kobject_put(&dir->kobj);
772 return NULL;
773 }
774 return &dir->kobj;
775 }
776
777 static DEFINE_MUTEX(gdp_mutex);
778
779 static struct kobject *get_device_parent(struct device *dev,
780 struct device *parent)
781 {
782 if (dev->class) {
783 struct kobject *kobj = NULL;
784 struct kobject *parent_kobj;
785 struct kobject *k;
786
787 #ifdef CONFIG_BLOCK
788 /* block disks show up in /sys/block */
789 if (sysfs_deprecated && dev->class == &block_class) {
790 if (parent && parent->class == &block_class)
791 return &parent->kobj;
792 return &block_class.p->subsys.kobj;
793 }
794 #endif
795
796 /*
797 * If we have no parent, we live in "virtual".
798 * Class-devices with a non class-device as parent, live
799 * in a "glue" directory to prevent namespace collisions.
800 */
801 if (parent == NULL)
802 parent_kobj = virtual_device_parent(dev);
803 else if (parent->class && !dev->class->ns_type)
804 return &parent->kobj;
805 else
806 parent_kobj = &parent->kobj;
807
808 mutex_lock(&gdp_mutex);
809
810 /* find our class-directory at the parent and reference it */
811 spin_lock(&dev->class->p->glue_dirs.list_lock);
812 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
813 if (k->parent == parent_kobj) {
814 kobj = kobject_get(k);
815 break;
816 }
817 spin_unlock(&dev->class->p->glue_dirs.list_lock);
818 if (kobj) {
819 mutex_unlock(&gdp_mutex);
820 return kobj;
821 }
822
823 /* or create a new class-directory at the parent device */
824 k = class_dir_create_and_add(dev->class, parent_kobj);
825 /* do not emit an uevent for this simple "glue" directory */
826 mutex_unlock(&gdp_mutex);
827 return k;
828 }
829
830 /* subsystems can specify a default root directory for their devices */
831 if (!parent && dev->bus && dev->bus->dev_root)
832 return &dev->bus->dev_root->kobj;
833
834 if (parent)
835 return &parent->kobj;
836 return NULL;
837 }
838
839 static inline bool live_in_glue_dir(struct kobject *kobj,
840 struct device *dev)
841 {
842 if (!kobj || !dev->class ||
843 kobj->kset != &dev->class->p->glue_dirs)
844 return false;
845 return true;
846 }
847
848 static inline struct kobject *get_glue_dir(struct device *dev)
849 {
850 return dev->kobj.parent;
851 }
852
853 /*
854 * make sure cleaning up dir as the last step, we need to make
855 * sure .release handler of kobject is run with holding the
856 * global lock
857 */
858 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
859 {
860 /* see if we live in a "glue" directory */
861 if (!live_in_glue_dir(glue_dir, dev))
862 return;
863
864 mutex_lock(&gdp_mutex);
865 kobject_put(glue_dir);
866 mutex_unlock(&gdp_mutex);
867 }
868
869 static int device_add_class_symlinks(struct device *dev)
870 {
871 struct device_node *of_node = dev_of_node(dev);
872 int error;
873
874 if (of_node) {
875 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
876 if (error)
877 dev_warn(dev, "Error %d creating of_node link\n",error);
878 /* An error here doesn't warrant bringing down the device */
879 }
880
881 if (!dev->class)
882 return 0;
883
884 error = sysfs_create_link(&dev->kobj,
885 &dev->class->p->subsys.kobj,
886 "subsystem");
887 if (error)
888 goto out_devnode;
889
890 if (dev->parent && device_is_not_partition(dev)) {
891 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
892 "device");
893 if (error)
894 goto out_subsys;
895 }
896
897 #ifdef CONFIG_BLOCK
898 /* /sys/block has directories and does not need symlinks */
899 if (sysfs_deprecated && dev->class == &block_class)
900 return 0;
901 #endif
902
903 /* link in the class directory pointing to the device */
904 error = sysfs_create_link(&dev->class->p->subsys.kobj,
905 &dev->kobj, dev_name(dev));
906 if (error)
907 goto out_device;
908
909 return 0;
910
911 out_device:
912 sysfs_remove_link(&dev->kobj, "device");
913
914 out_subsys:
915 sysfs_remove_link(&dev->kobj, "subsystem");
916 out_devnode:
917 sysfs_remove_link(&dev->kobj, "of_node");
918 return error;
919 }
920
921 static void device_remove_class_symlinks(struct device *dev)
922 {
923 if (dev_of_node(dev))
924 sysfs_remove_link(&dev->kobj, "of_node");
925
926 if (!dev->class)
927 return;
928
929 if (dev->parent && device_is_not_partition(dev))
930 sysfs_remove_link(&dev->kobj, "device");
931 sysfs_remove_link(&dev->kobj, "subsystem");
932 #ifdef CONFIG_BLOCK
933 if (sysfs_deprecated && dev->class == &block_class)
934 return;
935 #endif
936 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
937 }
938
939 /**
940 * dev_set_name - set a device name
941 * @dev: device
942 * @fmt: format string for the device's name
943 */
944 int dev_set_name(struct device *dev, const char *fmt, ...)
945 {
946 va_list vargs;
947 int err;
948
949 va_start(vargs, fmt);
950 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
951 va_end(vargs);
952 return err;
953 }
954 EXPORT_SYMBOL_GPL(dev_set_name);
955
956 /**
957 * device_to_dev_kobj - select a /sys/dev/ directory for the device
958 * @dev: device
959 *
960 * By default we select char/ for new entries. Setting class->dev_obj
961 * to NULL prevents an entry from being created. class->dev_kobj must
962 * be set (or cleared) before any devices are registered to the class
963 * otherwise device_create_sys_dev_entry() and
964 * device_remove_sys_dev_entry() will disagree about the presence of
965 * the link.
966 */
967 static struct kobject *device_to_dev_kobj(struct device *dev)
968 {
969 struct kobject *kobj;
970
971 if (dev->class)
972 kobj = dev->class->dev_kobj;
973 else
974 kobj = sysfs_dev_char_kobj;
975
976 return kobj;
977 }
978
979 static int device_create_sys_dev_entry(struct device *dev)
980 {
981 struct kobject *kobj = device_to_dev_kobj(dev);
982 int error = 0;
983 char devt_str[15];
984
985 if (kobj) {
986 format_dev_t(devt_str, dev->devt);
987 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
988 }
989
990 return error;
991 }
992
993 static void device_remove_sys_dev_entry(struct device *dev)
994 {
995 struct kobject *kobj = device_to_dev_kobj(dev);
996 char devt_str[15];
997
998 if (kobj) {
999 format_dev_t(devt_str, dev->devt);
1000 sysfs_remove_link(kobj, devt_str);
1001 }
1002 }
1003
1004 int device_private_init(struct device *dev)
1005 {
1006 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1007 if (!dev->p)
1008 return -ENOMEM;
1009 dev->p->device = dev;
1010 klist_init(&dev->p->klist_children, klist_children_get,
1011 klist_children_put);
1012 INIT_LIST_HEAD(&dev->p->deferred_probe);
1013 return 0;
1014 }
1015
1016 /**
1017 * device_add - add device to device hierarchy.
1018 * @dev: device.
1019 *
1020 * This is part 2 of device_register(), though may be called
1021 * separately _iff_ device_initialize() has been called separately.
1022 *
1023 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1024 * to the global and sibling lists for the device, then
1025 * adds it to the other relevant subsystems of the driver model.
1026 *
1027 * Do not call this routine or device_register() more than once for
1028 * any device structure. The driver model core is not designed to work
1029 * with devices that get unregistered and then spring back to life.
1030 * (Among other things, it's very hard to guarantee that all references
1031 * to the previous incarnation of @dev have been dropped.) Allocate
1032 * and register a fresh new struct device instead.
1033 *
1034 * NOTE: _Never_ directly free @dev after calling this function, even
1035 * if it returned an error! Always use put_device() to give up your
1036 * reference instead.
1037 */
1038 int device_add(struct device *dev)
1039 {
1040 struct device *parent = NULL;
1041 struct kobject *kobj;
1042 struct class_interface *class_intf;
1043 int error = -EINVAL;
1044 struct kobject *glue_dir = NULL;
1045
1046 dev = get_device(dev);
1047 if (!dev)
1048 goto done;
1049
1050 if (!dev->p) {
1051 error = device_private_init(dev);
1052 if (error)
1053 goto done;
1054 }
1055
1056 /*
1057 * for statically allocated devices, which should all be converted
1058 * some day, we need to initialize the name. We prevent reading back
1059 * the name, and force the use of dev_name()
1060 */
1061 if (dev->init_name) {
1062 dev_set_name(dev, "%s", dev->init_name);
1063 dev->init_name = NULL;
1064 }
1065
1066 /* subsystems can specify simple device enumeration */
1067 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1068 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1069
1070 if (!dev_name(dev)) {
1071 error = -EINVAL;
1072 goto name_error;
1073 }
1074
1075 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1076
1077 parent = get_device(dev->parent);
1078 kobj = get_device_parent(dev, parent);
1079 if (kobj)
1080 dev->kobj.parent = kobj;
1081
1082 /* use parent numa_node */
1083 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1084 set_dev_node(dev, dev_to_node(parent));
1085
1086 /* first, register with generic layer. */
1087 /* we require the name to be set before, and pass NULL */
1088 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1089 if (error) {
1090 glue_dir = get_glue_dir(dev);
1091 goto Error;
1092 }
1093
1094 /* notify platform of device entry */
1095 if (platform_notify)
1096 platform_notify(dev);
1097
1098 error = device_create_file(dev, &dev_attr_uevent);
1099 if (error)
1100 goto attrError;
1101
1102 error = device_add_class_symlinks(dev);
1103 if (error)
1104 goto SymlinkError;
1105 error = device_add_attrs(dev);
1106 if (error)
1107 goto AttrsError;
1108 error = bus_add_device(dev);
1109 if (error)
1110 goto BusError;
1111 error = dpm_sysfs_add(dev);
1112 if (error)
1113 goto DPMError;
1114 device_pm_add(dev);
1115
1116 if (MAJOR(dev->devt)) {
1117 error = device_create_file(dev, &dev_attr_dev);
1118 if (error)
1119 goto DevAttrError;
1120
1121 error = device_create_sys_dev_entry(dev);
1122 if (error)
1123 goto SysEntryError;
1124
1125 devtmpfs_create_node(dev);
1126 }
1127
1128 /* Notify clients of device addition. This call must come
1129 * after dpm_sysfs_add() and before kobject_uevent().
1130 */
1131 if (dev->bus)
1132 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1133 BUS_NOTIFY_ADD_DEVICE, dev);
1134
1135 kobject_uevent(&dev->kobj, KOBJ_ADD);
1136 bus_probe_device(dev);
1137 if (parent)
1138 klist_add_tail(&dev->p->knode_parent,
1139 &parent->p->klist_children);
1140
1141 if (dev->class) {
1142 mutex_lock(&dev->class->p->mutex);
1143 /* tie the class to the device */
1144 klist_add_tail(&dev->knode_class,
1145 &dev->class->p->klist_devices);
1146
1147 /* notify any interfaces that the device is here */
1148 list_for_each_entry(class_intf,
1149 &dev->class->p->interfaces, node)
1150 if (class_intf->add_dev)
1151 class_intf->add_dev(dev, class_intf);
1152 mutex_unlock(&dev->class->p->mutex);
1153 }
1154 done:
1155 put_device(dev);
1156 return error;
1157 SysEntryError:
1158 if (MAJOR(dev->devt))
1159 device_remove_file(dev, &dev_attr_dev);
1160 DevAttrError:
1161 device_pm_remove(dev);
1162 dpm_sysfs_remove(dev);
1163 DPMError:
1164 bus_remove_device(dev);
1165 BusError:
1166 device_remove_attrs(dev);
1167 AttrsError:
1168 device_remove_class_symlinks(dev);
1169 SymlinkError:
1170 device_remove_file(dev, &dev_attr_uevent);
1171 attrError:
1172 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1173 glue_dir = get_glue_dir(dev);
1174 kobject_del(&dev->kobj);
1175 Error:
1176 cleanup_glue_dir(dev, glue_dir);
1177 put_device(parent);
1178 name_error:
1179 kfree(dev->p);
1180 dev->p = NULL;
1181 goto done;
1182 }
1183 EXPORT_SYMBOL_GPL(device_add);
1184
1185 /**
1186 * device_register - register a device with the system.
1187 * @dev: pointer to the device structure
1188 *
1189 * This happens in two clean steps - initialize the device
1190 * and add it to the system. The two steps can be called
1191 * separately, but this is the easiest and most common.
1192 * I.e. you should only call the two helpers separately if
1193 * have a clearly defined need to use and refcount the device
1194 * before it is added to the hierarchy.
1195 *
1196 * For more information, see the kerneldoc for device_initialize()
1197 * and device_add().
1198 *
1199 * NOTE: _Never_ directly free @dev after calling this function, even
1200 * if it returned an error! Always use put_device() to give up the
1201 * reference initialized in this function instead.
1202 */
1203 int device_register(struct device *dev)
1204 {
1205 device_initialize(dev);
1206 return device_add(dev);
1207 }
1208 EXPORT_SYMBOL_GPL(device_register);
1209
1210 /**
1211 * get_device - increment reference count for device.
1212 * @dev: device.
1213 *
1214 * This simply forwards the call to kobject_get(), though
1215 * we do take care to provide for the case that we get a NULL
1216 * pointer passed in.
1217 */
1218 struct device *get_device(struct device *dev)
1219 {
1220 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1221 }
1222 EXPORT_SYMBOL_GPL(get_device);
1223
1224 /**
1225 * put_device - decrement reference count.
1226 * @dev: device in question.
1227 */
1228 void put_device(struct device *dev)
1229 {
1230 /* might_sleep(); */
1231 if (dev)
1232 kobject_put(&dev->kobj);
1233 }
1234 EXPORT_SYMBOL_GPL(put_device);
1235
1236 /**
1237 * device_del - delete device from system.
1238 * @dev: device.
1239 *
1240 * This is the first part of the device unregistration
1241 * sequence. This removes the device from the lists we control
1242 * from here, has it removed from the other driver model
1243 * subsystems it was added to in device_add(), and removes it
1244 * from the kobject hierarchy.
1245 *
1246 * NOTE: this should be called manually _iff_ device_add() was
1247 * also called manually.
1248 */
1249 void device_del(struct device *dev)
1250 {
1251 struct device *parent = dev->parent;
1252 struct kobject *glue_dir = NULL;
1253 struct class_interface *class_intf;
1254
1255 /* Notify clients of device removal. This call must come
1256 * before dpm_sysfs_remove().
1257 */
1258 if (dev->bus)
1259 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1260 BUS_NOTIFY_DEL_DEVICE, dev);
1261 dpm_sysfs_remove(dev);
1262 if (parent)
1263 klist_del(&dev->p->knode_parent);
1264 if (MAJOR(dev->devt)) {
1265 devtmpfs_delete_node(dev);
1266 device_remove_sys_dev_entry(dev);
1267 device_remove_file(dev, &dev_attr_dev);
1268 }
1269 if (dev->class) {
1270 device_remove_class_symlinks(dev);
1271
1272 mutex_lock(&dev->class->p->mutex);
1273 /* notify any interfaces that the device is now gone */
1274 list_for_each_entry(class_intf,
1275 &dev->class->p->interfaces, node)
1276 if (class_intf->remove_dev)
1277 class_intf->remove_dev(dev, class_intf);
1278 /* remove the device from the class list */
1279 klist_del(&dev->knode_class);
1280 mutex_unlock(&dev->class->p->mutex);
1281 }
1282 device_remove_file(dev, &dev_attr_uevent);
1283 device_remove_attrs(dev);
1284 bus_remove_device(dev);
1285 device_pm_remove(dev);
1286 driver_deferred_probe_del(dev);
1287
1288 /* Notify the platform of the removal, in case they
1289 * need to do anything...
1290 */
1291 if (platform_notify_remove)
1292 platform_notify_remove(dev);
1293 if (dev->bus)
1294 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1295 BUS_NOTIFY_REMOVED_DEVICE, dev);
1296 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1297 glue_dir = get_glue_dir(dev);
1298 kobject_del(&dev->kobj);
1299 cleanup_glue_dir(dev, glue_dir);
1300 put_device(parent);
1301 }
1302 EXPORT_SYMBOL_GPL(device_del);
1303
1304 /**
1305 * device_unregister - unregister device from system.
1306 * @dev: device going away.
1307 *
1308 * We do this in two parts, like we do device_register(). First,
1309 * we remove it from all the subsystems with device_del(), then
1310 * we decrement the reference count via put_device(). If that
1311 * is the final reference count, the device will be cleaned up
1312 * via device_release() above. Otherwise, the structure will
1313 * stick around until the final reference to the device is dropped.
1314 */
1315 void device_unregister(struct device *dev)
1316 {
1317 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1318 device_del(dev);
1319 put_device(dev);
1320 }
1321 EXPORT_SYMBOL_GPL(device_unregister);
1322
1323 static struct device *prev_device(struct klist_iter *i)
1324 {
1325 struct klist_node *n = klist_prev(i);
1326 struct device *dev = NULL;
1327 struct device_private *p;
1328
1329 if (n) {
1330 p = to_device_private_parent(n);
1331 dev = p->device;
1332 }
1333 return dev;
1334 }
1335
1336 static struct device *next_device(struct klist_iter *i)
1337 {
1338 struct klist_node *n = klist_next(i);
1339 struct device *dev = NULL;
1340 struct device_private *p;
1341
1342 if (n) {
1343 p = to_device_private_parent(n);
1344 dev = p->device;
1345 }
1346 return dev;
1347 }
1348
1349 /**
1350 * device_get_devnode - path of device node file
1351 * @dev: device
1352 * @mode: returned file access mode
1353 * @uid: returned file owner
1354 * @gid: returned file group
1355 * @tmp: possibly allocated string
1356 *
1357 * Return the relative path of a possible device node.
1358 * Non-default names may need to allocate a memory to compose
1359 * a name. This memory is returned in tmp and needs to be
1360 * freed by the caller.
1361 */
1362 const char *device_get_devnode(struct device *dev,
1363 umode_t *mode, kuid_t *uid, kgid_t *gid,
1364 const char **tmp)
1365 {
1366 char *s;
1367
1368 *tmp = NULL;
1369
1370 /* the device type may provide a specific name */
1371 if (dev->type && dev->type->devnode)
1372 *tmp = dev->type->devnode(dev, mode, uid, gid);
1373 if (*tmp)
1374 return *tmp;
1375
1376 /* the class may provide a specific name */
1377 if (dev->class && dev->class->devnode)
1378 *tmp = dev->class->devnode(dev, mode);
1379 if (*tmp)
1380 return *tmp;
1381
1382 /* return name without allocation, tmp == NULL */
1383 if (strchr(dev_name(dev), '!') == NULL)
1384 return dev_name(dev);
1385
1386 /* replace '!' in the name with '/' */
1387 s = kstrdup(dev_name(dev), GFP_KERNEL);
1388 if (!s)
1389 return NULL;
1390 strreplace(s, '!', '/');
1391 return *tmp = s;
1392 }
1393
1394 /**
1395 * device_for_each_child - device child iterator.
1396 * @parent: parent struct device.
1397 * @fn: function to be called for each device.
1398 * @data: data for the callback.
1399 *
1400 * Iterate over @parent's child devices, and call @fn for each,
1401 * passing it @data.
1402 *
1403 * We check the return of @fn each time. If it returns anything
1404 * other than 0, we break out and return that value.
1405 */
1406 int device_for_each_child(struct device *parent, void *data,
1407 int (*fn)(struct device *dev, void *data))
1408 {
1409 struct klist_iter i;
1410 struct device *child;
1411 int error = 0;
1412
1413 if (!parent->p)
1414 return 0;
1415
1416 klist_iter_init(&parent->p->klist_children, &i);
1417 while ((child = next_device(&i)) && !error)
1418 error = fn(child, data);
1419 klist_iter_exit(&i);
1420 return error;
1421 }
1422 EXPORT_SYMBOL_GPL(device_for_each_child);
1423
1424 /**
1425 * device_for_each_child_reverse - device child iterator in reversed order.
1426 * @parent: parent struct device.
1427 * @fn: function to be called for each device.
1428 * @data: data for the callback.
1429 *
1430 * Iterate over @parent's child devices, and call @fn for each,
1431 * passing it @data.
1432 *
1433 * We check the return of @fn each time. If it returns anything
1434 * other than 0, we break out and return that value.
1435 */
1436 int device_for_each_child_reverse(struct device *parent, void *data,
1437 int (*fn)(struct device *dev, void *data))
1438 {
1439 struct klist_iter i;
1440 struct device *child;
1441 int error = 0;
1442
1443 if (!parent->p)
1444 return 0;
1445
1446 klist_iter_init(&parent->p->klist_children, &i);
1447 while ((child = prev_device(&i)) && !error)
1448 error = fn(child, data);
1449 klist_iter_exit(&i);
1450 return error;
1451 }
1452 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
1453
1454 /**
1455 * device_find_child - device iterator for locating a particular device.
1456 * @parent: parent struct device
1457 * @match: Callback function to check device
1458 * @data: Data to pass to match function
1459 *
1460 * This is similar to the device_for_each_child() function above, but it
1461 * returns a reference to a device that is 'found' for later use, as
1462 * determined by the @match callback.
1463 *
1464 * The callback should return 0 if the device doesn't match and non-zero
1465 * if it does. If the callback returns non-zero and a reference to the
1466 * current device can be obtained, this function will return to the caller
1467 * and not iterate over any more devices.
1468 *
1469 * NOTE: you will need to drop the reference with put_device() after use.
1470 */
1471 struct device *device_find_child(struct device *parent, void *data,
1472 int (*match)(struct device *dev, void *data))
1473 {
1474 struct klist_iter i;
1475 struct device *child;
1476
1477 if (!parent)
1478 return NULL;
1479
1480 klist_iter_init(&parent->p->klist_children, &i);
1481 while ((child = next_device(&i)))
1482 if (match(child, data) && get_device(child))
1483 break;
1484 klist_iter_exit(&i);
1485 return child;
1486 }
1487 EXPORT_SYMBOL_GPL(device_find_child);
1488
1489 int __init devices_init(void)
1490 {
1491 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1492 if (!devices_kset)
1493 return -ENOMEM;
1494 dev_kobj = kobject_create_and_add("dev", NULL);
1495 if (!dev_kobj)
1496 goto dev_kobj_err;
1497 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1498 if (!sysfs_dev_block_kobj)
1499 goto block_kobj_err;
1500 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1501 if (!sysfs_dev_char_kobj)
1502 goto char_kobj_err;
1503
1504 return 0;
1505
1506 char_kobj_err:
1507 kobject_put(sysfs_dev_block_kobj);
1508 block_kobj_err:
1509 kobject_put(dev_kobj);
1510 dev_kobj_err:
1511 kset_unregister(devices_kset);
1512 return -ENOMEM;
1513 }
1514
1515 static int device_check_offline(struct device *dev, void *not_used)
1516 {
1517 int ret;
1518
1519 ret = device_for_each_child(dev, NULL, device_check_offline);
1520 if (ret)
1521 return ret;
1522
1523 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
1524 }
1525
1526 /**
1527 * device_offline - Prepare the device for hot-removal.
1528 * @dev: Device to be put offline.
1529 *
1530 * Execute the device bus type's .offline() callback, if present, to prepare
1531 * the device for a subsequent hot-removal. If that succeeds, the device must
1532 * not be used until either it is removed or its bus type's .online() callback
1533 * is executed.
1534 *
1535 * Call under device_hotplug_lock.
1536 */
1537 int device_offline(struct device *dev)
1538 {
1539 int ret;
1540
1541 if (dev->offline_disabled)
1542 return -EPERM;
1543
1544 ret = device_for_each_child(dev, NULL, device_check_offline);
1545 if (ret)
1546 return ret;
1547
1548 device_lock(dev);
1549 if (device_supports_offline(dev)) {
1550 if (dev->offline) {
1551 ret = 1;
1552 } else {
1553 ret = dev->bus->offline(dev);
1554 if (!ret) {
1555 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1556 dev->offline = true;
1557 }
1558 }
1559 }
1560 device_unlock(dev);
1561
1562 return ret;
1563 }
1564
1565 /**
1566 * device_online - Put the device back online after successful device_offline().
1567 * @dev: Device to be put back online.
1568 *
1569 * If device_offline() has been successfully executed for @dev, but the device
1570 * has not been removed subsequently, execute its bus type's .online() callback
1571 * to indicate that the device can be used again.
1572 *
1573 * Call under device_hotplug_lock.
1574 */
1575 int device_online(struct device *dev)
1576 {
1577 int ret = 0;
1578
1579 device_lock(dev);
1580 if (device_supports_offline(dev)) {
1581 if (dev->offline) {
1582 ret = dev->bus->online(dev);
1583 if (!ret) {
1584 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1585 dev->offline = false;
1586 }
1587 } else {
1588 ret = 1;
1589 }
1590 }
1591 device_unlock(dev);
1592
1593 return ret;
1594 }
1595
1596 struct root_device {
1597 struct device dev;
1598 struct module *owner;
1599 };
1600
1601 static inline struct root_device *to_root_device(struct device *d)
1602 {
1603 return container_of(d, struct root_device, dev);
1604 }
1605
1606 static void root_device_release(struct device *dev)
1607 {
1608 kfree(to_root_device(dev));
1609 }
1610
1611 /**
1612 * __root_device_register - allocate and register a root device
1613 * @name: root device name
1614 * @owner: owner module of the root device, usually THIS_MODULE
1615 *
1616 * This function allocates a root device and registers it
1617 * using device_register(). In order to free the returned
1618 * device, use root_device_unregister().
1619 *
1620 * Root devices are dummy devices which allow other devices
1621 * to be grouped under /sys/devices. Use this function to
1622 * allocate a root device and then use it as the parent of
1623 * any device which should appear under /sys/devices/{name}
1624 *
1625 * The /sys/devices/{name} directory will also contain a
1626 * 'module' symlink which points to the @owner directory
1627 * in sysfs.
1628 *
1629 * Returns &struct device pointer on success, or ERR_PTR() on error.
1630 *
1631 * Note: You probably want to use root_device_register().
1632 */
1633 struct device *__root_device_register(const char *name, struct module *owner)
1634 {
1635 struct root_device *root;
1636 int err = -ENOMEM;
1637
1638 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1639 if (!root)
1640 return ERR_PTR(err);
1641
1642 err = dev_set_name(&root->dev, "%s", name);
1643 if (err) {
1644 kfree(root);
1645 return ERR_PTR(err);
1646 }
1647
1648 root->dev.release = root_device_release;
1649
1650 err = device_register(&root->dev);
1651 if (err) {
1652 put_device(&root->dev);
1653 return ERR_PTR(err);
1654 }
1655
1656 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
1657 if (owner) {
1658 struct module_kobject *mk = &owner->mkobj;
1659
1660 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1661 if (err) {
1662 device_unregister(&root->dev);
1663 return ERR_PTR(err);
1664 }
1665 root->owner = owner;
1666 }
1667 #endif
1668
1669 return &root->dev;
1670 }
1671 EXPORT_SYMBOL_GPL(__root_device_register);
1672
1673 /**
1674 * root_device_unregister - unregister and free a root device
1675 * @dev: device going away
1676 *
1677 * This function unregisters and cleans up a device that was created by
1678 * root_device_register().
1679 */
1680 void root_device_unregister(struct device *dev)
1681 {
1682 struct root_device *root = to_root_device(dev);
1683
1684 if (root->owner)
1685 sysfs_remove_link(&root->dev.kobj, "module");
1686
1687 device_unregister(dev);
1688 }
1689 EXPORT_SYMBOL_GPL(root_device_unregister);
1690
1691
1692 static void device_create_release(struct device *dev)
1693 {
1694 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1695 kfree(dev);
1696 }
1697
1698 static struct device *
1699 device_create_groups_vargs(struct class *class, struct device *parent,
1700 dev_t devt, void *drvdata,
1701 const struct attribute_group **groups,
1702 const char *fmt, va_list args)
1703 {
1704 struct device *dev = NULL;
1705 int retval = -ENODEV;
1706
1707 if (class == NULL || IS_ERR(class))
1708 goto error;
1709
1710 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1711 if (!dev) {
1712 retval = -ENOMEM;
1713 goto error;
1714 }
1715
1716 device_initialize(dev);
1717 dev->devt = devt;
1718 dev->class = class;
1719 dev->parent = parent;
1720 dev->groups = groups;
1721 dev->release = device_create_release;
1722 dev_set_drvdata(dev, drvdata);
1723
1724 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1725 if (retval)
1726 goto error;
1727
1728 retval = device_add(dev);
1729 if (retval)
1730 goto error;
1731
1732 return dev;
1733
1734 error:
1735 put_device(dev);
1736 return ERR_PTR(retval);
1737 }
1738
1739 /**
1740 * device_create_vargs - creates a device and registers it with sysfs
1741 * @class: pointer to the struct class that this device should be registered to
1742 * @parent: pointer to the parent struct device of this new device, if any
1743 * @devt: the dev_t for the char device to be added
1744 * @drvdata: the data to be added to the device for callbacks
1745 * @fmt: string for the device's name
1746 * @args: va_list for the device's name
1747 *
1748 * This function can be used by char device classes. A struct device
1749 * will be created in sysfs, registered to the specified class.
1750 *
1751 * A "dev" file will be created, showing the dev_t for the device, if
1752 * the dev_t is not 0,0.
1753 * If a pointer to a parent struct device is passed in, the newly created
1754 * struct device will be a child of that device in sysfs.
1755 * The pointer to the struct device will be returned from the call.
1756 * Any further sysfs files that might be required can be created using this
1757 * pointer.
1758 *
1759 * Returns &struct device pointer on success, or ERR_PTR() on error.
1760 *
1761 * Note: the struct class passed to this function must have previously
1762 * been created with a call to class_create().
1763 */
1764 struct device *device_create_vargs(struct class *class, struct device *parent,
1765 dev_t devt, void *drvdata, const char *fmt,
1766 va_list args)
1767 {
1768 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
1769 fmt, args);
1770 }
1771 EXPORT_SYMBOL_GPL(device_create_vargs);
1772
1773 /**
1774 * device_create - creates a device and registers it with sysfs
1775 * @class: pointer to the struct class that this device should be registered to
1776 * @parent: pointer to the parent struct device of this new device, if any
1777 * @devt: the dev_t for the char device to be added
1778 * @drvdata: the data to be added to the device for callbacks
1779 * @fmt: string for the device's name
1780 *
1781 * This function can be used by char device classes. A struct device
1782 * will be created in sysfs, registered to the specified class.
1783 *
1784 * A "dev" file will be created, showing the dev_t for the device, if
1785 * the dev_t is not 0,0.
1786 * If a pointer to a parent struct device is passed in, the newly created
1787 * struct device will be a child of that device in sysfs.
1788 * The pointer to the struct device will be returned from the call.
1789 * Any further sysfs files that might be required can be created using this
1790 * pointer.
1791 *
1792 * Returns &struct device pointer on success, or ERR_PTR() on error.
1793 *
1794 * Note: the struct class passed to this function must have previously
1795 * been created with a call to class_create().
1796 */
1797 struct device *device_create(struct class *class, struct device *parent,
1798 dev_t devt, void *drvdata, const char *fmt, ...)
1799 {
1800 va_list vargs;
1801 struct device *dev;
1802
1803 va_start(vargs, fmt);
1804 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
1805 va_end(vargs);
1806 return dev;
1807 }
1808 EXPORT_SYMBOL_GPL(device_create);
1809
1810 /**
1811 * device_create_with_groups - creates a device and registers it with sysfs
1812 * @class: pointer to the struct class that this device should be registered to
1813 * @parent: pointer to the parent struct device of this new device, if any
1814 * @devt: the dev_t for the char device to be added
1815 * @drvdata: the data to be added to the device for callbacks
1816 * @groups: NULL-terminated list of attribute groups to be created
1817 * @fmt: string for the device's name
1818 *
1819 * This function can be used by char device classes. A struct device
1820 * will be created in sysfs, registered to the specified class.
1821 * Additional attributes specified in the groups parameter will also
1822 * be created automatically.
1823 *
1824 * A "dev" file will be created, showing the dev_t for the device, if
1825 * the dev_t is not 0,0.
1826 * If a pointer to a parent struct device is passed in, the newly created
1827 * struct device will be a child of that device in sysfs.
1828 * The pointer to the struct device will be returned from the call.
1829 * Any further sysfs files that might be required can be created using this
1830 * pointer.
1831 *
1832 * Returns &struct device pointer on success, or ERR_PTR() on error.
1833 *
1834 * Note: the struct class passed to this function must have previously
1835 * been created with a call to class_create().
1836 */
1837 struct device *device_create_with_groups(struct class *class,
1838 struct device *parent, dev_t devt,
1839 void *drvdata,
1840 const struct attribute_group **groups,
1841 const char *fmt, ...)
1842 {
1843 va_list vargs;
1844 struct device *dev;
1845
1846 va_start(vargs, fmt);
1847 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
1848 fmt, vargs);
1849 va_end(vargs);
1850 return dev;
1851 }
1852 EXPORT_SYMBOL_GPL(device_create_with_groups);
1853
1854 static int __match_devt(struct device *dev, const void *data)
1855 {
1856 const dev_t *devt = data;
1857
1858 return dev->devt == *devt;
1859 }
1860
1861 /**
1862 * device_destroy - removes a device that was created with device_create()
1863 * @class: pointer to the struct class that this device was registered with
1864 * @devt: the dev_t of the device that was previously registered
1865 *
1866 * This call unregisters and cleans up a device that was created with a
1867 * call to device_create().
1868 */
1869 void device_destroy(struct class *class, dev_t devt)
1870 {
1871 struct device *dev;
1872
1873 dev = class_find_device(class, NULL, &devt, __match_devt);
1874 if (dev) {
1875 put_device(dev);
1876 device_unregister(dev);
1877 }
1878 }
1879 EXPORT_SYMBOL_GPL(device_destroy);
1880
1881 /**
1882 * device_rename - renames a device
1883 * @dev: the pointer to the struct device to be renamed
1884 * @new_name: the new name of the device
1885 *
1886 * It is the responsibility of the caller to provide mutual
1887 * exclusion between two different calls of device_rename
1888 * on the same device to ensure that new_name is valid and
1889 * won't conflict with other devices.
1890 *
1891 * Note: Don't call this function. Currently, the networking layer calls this
1892 * function, but that will change. The following text from Kay Sievers offers
1893 * some insight:
1894 *
1895 * Renaming devices is racy at many levels, symlinks and other stuff are not
1896 * replaced atomically, and you get a "move" uevent, but it's not easy to
1897 * connect the event to the old and new device. Device nodes are not renamed at
1898 * all, there isn't even support for that in the kernel now.
1899 *
1900 * In the meantime, during renaming, your target name might be taken by another
1901 * driver, creating conflicts. Or the old name is taken directly after you
1902 * renamed it -- then you get events for the same DEVPATH, before you even see
1903 * the "move" event. It's just a mess, and nothing new should ever rely on
1904 * kernel device renaming. Besides that, it's not even implemented now for
1905 * other things than (driver-core wise very simple) network devices.
1906 *
1907 * We are currently about to change network renaming in udev to completely
1908 * disallow renaming of devices in the same namespace as the kernel uses,
1909 * because we can't solve the problems properly, that arise with swapping names
1910 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1911 * be allowed to some other name than eth[0-9]*, for the aforementioned
1912 * reasons.
1913 *
1914 * Make up a "real" name in the driver before you register anything, or add
1915 * some other attributes for userspace to find the device, or use udev to add
1916 * symlinks -- but never rename kernel devices later, it's a complete mess. We
1917 * don't even want to get into that and try to implement the missing pieces in
1918 * the core. We really have other pieces to fix in the driver core mess. :)
1919 */
1920 int device_rename(struct device *dev, const char *new_name)
1921 {
1922 struct kobject *kobj = &dev->kobj;
1923 char *old_device_name = NULL;
1924 int error;
1925
1926 dev = get_device(dev);
1927 if (!dev)
1928 return -EINVAL;
1929
1930 dev_dbg(dev, "renaming to %s\n", new_name);
1931
1932 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1933 if (!old_device_name) {
1934 error = -ENOMEM;
1935 goto out;
1936 }
1937
1938 if (dev->class) {
1939 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
1940 kobj, old_device_name,
1941 new_name, kobject_namespace(kobj));
1942 if (error)
1943 goto out;
1944 }
1945
1946 error = kobject_rename(kobj, new_name);
1947 if (error)
1948 goto out;
1949
1950 out:
1951 put_device(dev);
1952
1953 kfree(old_device_name);
1954
1955 return error;
1956 }
1957 EXPORT_SYMBOL_GPL(device_rename);
1958
1959 static int device_move_class_links(struct device *dev,
1960 struct device *old_parent,
1961 struct device *new_parent)
1962 {
1963 int error = 0;
1964
1965 if (old_parent)
1966 sysfs_remove_link(&dev->kobj, "device");
1967 if (new_parent)
1968 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1969 "device");
1970 return error;
1971 }
1972
1973 /**
1974 * device_move - moves a device to a new parent
1975 * @dev: the pointer to the struct device to be moved
1976 * @new_parent: the new parent of the device (can by NULL)
1977 * @dpm_order: how to reorder the dpm_list
1978 */
1979 int device_move(struct device *dev, struct device *new_parent,
1980 enum dpm_order dpm_order)
1981 {
1982 int error;
1983 struct device *old_parent;
1984 struct kobject *new_parent_kobj;
1985
1986 dev = get_device(dev);
1987 if (!dev)
1988 return -EINVAL;
1989
1990 device_pm_lock();
1991 new_parent = get_device(new_parent);
1992 new_parent_kobj = get_device_parent(dev, new_parent);
1993
1994 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1995 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1996 error = kobject_move(&dev->kobj, new_parent_kobj);
1997 if (error) {
1998 cleanup_glue_dir(dev, new_parent_kobj);
1999 put_device(new_parent);
2000 goto out;
2001 }
2002 old_parent = dev->parent;
2003 dev->parent = new_parent;
2004 if (old_parent)
2005 klist_remove(&dev->p->knode_parent);
2006 if (new_parent) {
2007 klist_add_tail(&dev->p->knode_parent,
2008 &new_parent->p->klist_children);
2009 set_dev_node(dev, dev_to_node(new_parent));
2010 }
2011
2012 if (dev->class) {
2013 error = device_move_class_links(dev, old_parent, new_parent);
2014 if (error) {
2015 /* We ignore errors on cleanup since we're hosed anyway... */
2016 device_move_class_links(dev, new_parent, old_parent);
2017 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2018 if (new_parent)
2019 klist_remove(&dev->p->knode_parent);
2020 dev->parent = old_parent;
2021 if (old_parent) {
2022 klist_add_tail(&dev->p->knode_parent,
2023 &old_parent->p->klist_children);
2024 set_dev_node(dev, dev_to_node(old_parent));
2025 }
2026 }
2027 cleanup_glue_dir(dev, new_parent_kobj);
2028 put_device(new_parent);
2029 goto out;
2030 }
2031 }
2032 switch (dpm_order) {
2033 case DPM_ORDER_NONE:
2034 break;
2035 case DPM_ORDER_DEV_AFTER_PARENT:
2036 device_pm_move_after(dev, new_parent);
2037 devices_kset_move_after(dev, new_parent);
2038 break;
2039 case DPM_ORDER_PARENT_BEFORE_DEV:
2040 device_pm_move_before(new_parent, dev);
2041 devices_kset_move_before(new_parent, dev);
2042 break;
2043 case DPM_ORDER_DEV_LAST:
2044 device_pm_move_last(dev);
2045 devices_kset_move_last(dev);
2046 break;
2047 }
2048
2049 put_device(old_parent);
2050 out:
2051 device_pm_unlock();
2052 put_device(dev);
2053 return error;
2054 }
2055 EXPORT_SYMBOL_GPL(device_move);
2056
2057 /**
2058 * device_shutdown - call ->shutdown() on each device to shutdown.
2059 */
2060 void device_shutdown(void)
2061 {
2062 struct device *dev, *parent;
2063
2064 spin_lock(&devices_kset->list_lock);
2065 /*
2066 * Walk the devices list backward, shutting down each in turn.
2067 * Beware that device unplug events may also start pulling
2068 * devices offline, even as the system is shutting down.
2069 */
2070 while (!list_empty(&devices_kset->list)) {
2071 dev = list_entry(devices_kset->list.prev, struct device,
2072 kobj.entry);
2073
2074 /*
2075 * hold reference count of device's parent to
2076 * prevent it from being freed because parent's
2077 * lock is to be held
2078 */
2079 parent = get_device(dev->parent);
2080 get_device(dev);
2081 /*
2082 * Make sure the device is off the kset list, in the
2083 * event that dev->*->shutdown() doesn't remove it.
2084 */
2085 list_del_init(&dev->kobj.entry);
2086 spin_unlock(&devices_kset->list_lock);
2087
2088 /* hold lock to avoid race with probe/release */
2089 if (parent)
2090 device_lock(parent);
2091 device_lock(dev);
2092
2093 /* Don't allow any more runtime suspends */
2094 pm_runtime_get_noresume(dev);
2095 pm_runtime_barrier(dev);
2096
2097 if (dev->bus && dev->bus->shutdown) {
2098 if (initcall_debug)
2099 dev_info(dev, "shutdown\n");
2100 dev->bus->shutdown(dev);
2101 } else if (dev->driver && dev->driver->shutdown) {
2102 if (initcall_debug)
2103 dev_info(dev, "shutdown\n");
2104 dev->driver->shutdown(dev);
2105 }
2106
2107 device_unlock(dev);
2108 if (parent)
2109 device_unlock(parent);
2110
2111 put_device(dev);
2112 put_device(parent);
2113
2114 spin_lock(&devices_kset->list_lock);
2115 }
2116 spin_unlock(&devices_kset->list_lock);
2117 }
2118
2119 /*
2120 * Device logging functions
2121 */
2122
2123 #ifdef CONFIG_PRINTK
2124 static int
2125 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2126 {
2127 const char *subsys;
2128 size_t pos = 0;
2129
2130 if (dev->class)
2131 subsys = dev->class->name;
2132 else if (dev->bus)
2133 subsys = dev->bus->name;
2134 else
2135 return 0;
2136
2137 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2138 if (pos >= hdrlen)
2139 goto overflow;
2140
2141 /*
2142 * Add device identifier DEVICE=:
2143 * b12:8 block dev_t
2144 * c127:3 char dev_t
2145 * n8 netdev ifindex
2146 * +sound:card0 subsystem:devname
2147 */
2148 if (MAJOR(dev->devt)) {
2149 char c;
2150
2151 if (strcmp(subsys, "block") == 0)
2152 c = 'b';
2153 else
2154 c = 'c';
2155 pos++;
2156 pos += snprintf(hdr + pos, hdrlen - pos,
2157 "DEVICE=%c%u:%u",
2158 c, MAJOR(dev->devt), MINOR(dev->devt));
2159 } else if (strcmp(subsys, "net") == 0) {
2160 struct net_device *net = to_net_dev(dev);
2161
2162 pos++;
2163 pos += snprintf(hdr + pos, hdrlen - pos,
2164 "DEVICE=n%u", net->ifindex);
2165 } else {
2166 pos++;
2167 pos += snprintf(hdr + pos, hdrlen - pos,
2168 "DEVICE=+%s:%s", subsys, dev_name(dev));
2169 }
2170
2171 if (pos >= hdrlen)
2172 goto overflow;
2173
2174 return pos;
2175
2176 overflow:
2177 dev_WARN(dev, "device/subsystem name too long");
2178 return 0;
2179 }
2180
2181 int dev_vprintk_emit(int level, const struct device *dev,
2182 const char *fmt, va_list args)
2183 {
2184 char hdr[128];
2185 size_t hdrlen;
2186
2187 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2188
2189 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2190 }
2191 EXPORT_SYMBOL(dev_vprintk_emit);
2192
2193 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2194 {
2195 va_list args;
2196 int r;
2197
2198 va_start(args, fmt);
2199
2200 r = dev_vprintk_emit(level, dev, fmt, args);
2201
2202 va_end(args);
2203
2204 return r;
2205 }
2206 EXPORT_SYMBOL(dev_printk_emit);
2207
2208 static void __dev_printk(const char *level, const struct device *dev,
2209 struct va_format *vaf)
2210 {
2211 if (dev)
2212 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2213 dev_driver_string(dev), dev_name(dev), vaf);
2214 else
2215 printk("%s(NULL device *): %pV", level, vaf);
2216 }
2217
2218 void dev_printk(const char *level, const struct device *dev,
2219 const char *fmt, ...)
2220 {
2221 struct va_format vaf;
2222 va_list args;
2223
2224 va_start(args, fmt);
2225
2226 vaf.fmt = fmt;
2227 vaf.va = &args;
2228
2229 __dev_printk(level, dev, &vaf);
2230
2231 va_end(args);
2232 }
2233 EXPORT_SYMBOL(dev_printk);
2234
2235 #define define_dev_printk_level(func, kern_level) \
2236 void func(const struct device *dev, const char *fmt, ...) \
2237 { \
2238 struct va_format vaf; \
2239 va_list args; \
2240 \
2241 va_start(args, fmt); \
2242 \
2243 vaf.fmt = fmt; \
2244 vaf.va = &args; \
2245 \
2246 __dev_printk(kern_level, dev, &vaf); \
2247 \
2248 va_end(args); \
2249 } \
2250 EXPORT_SYMBOL(func);
2251
2252 define_dev_printk_level(dev_emerg, KERN_EMERG);
2253 define_dev_printk_level(dev_alert, KERN_ALERT);
2254 define_dev_printk_level(dev_crit, KERN_CRIT);
2255 define_dev_printk_level(dev_err, KERN_ERR);
2256 define_dev_printk_level(dev_warn, KERN_WARNING);
2257 define_dev_printk_level(dev_notice, KERN_NOTICE);
2258 define_dev_printk_level(_dev_info, KERN_INFO);
2259
2260 #endif
2261
2262 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2263 {
2264 return fwnode && !IS_ERR(fwnode->secondary);
2265 }
2266
2267 /**
2268 * set_primary_fwnode - Change the primary firmware node of a given device.
2269 * @dev: Device to handle.
2270 * @fwnode: New primary firmware node of the device.
2271 *
2272 * Set the device's firmware node pointer to @fwnode, but if a secondary
2273 * firmware node of the device is present, preserve it.
2274 */
2275 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2276 {
2277 if (fwnode) {
2278 struct fwnode_handle *fn = dev->fwnode;
2279
2280 if (fwnode_is_primary(fn))
2281 fn = fn->secondary;
2282
2283 if (fn) {
2284 WARN_ON(fwnode->secondary);
2285 fwnode->secondary = fn;
2286 }
2287 dev->fwnode = fwnode;
2288 } else {
2289 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2290 dev->fwnode->secondary : NULL;
2291 }
2292 }
2293 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2294
2295 /**
2296 * set_secondary_fwnode - Change the secondary firmware node of a given device.
2297 * @dev: Device to handle.
2298 * @fwnode: New secondary firmware node of the device.
2299 *
2300 * If a primary firmware node of the device is present, set its secondary
2301 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
2302 * @fwnode.
2303 */
2304 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2305 {
2306 if (fwnode)
2307 fwnode->secondary = ERR_PTR(-ENODEV);
2308
2309 if (fwnode_is_primary(dev->fwnode))
2310 dev->fwnode->secondary = fwnode;
2311 else
2312 dev->fwnode = fwnode;
2313 }
This page took 0.11853 seconds and 6 git commands to generate.