75a914914c412c3d828df3ecb7cb0d690481a042
[deliverable/linux.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/list_sort.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_MINORS (1U << MINORBITS)
47 #define NVME_Q_DEPTH 1024
48 #define NVME_AQ_DEPTH 256
49 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
51 #define ADMIN_TIMEOUT (admin_timeout * HZ)
52 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
53
54 static unsigned char admin_timeout = 60;
55 module_param(admin_timeout, byte, 0644);
56 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58 unsigned char nvme_io_timeout = 30;
59 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62 static unsigned char shutdown_timeout = 5;
63 module_param(shutdown_timeout, byte, 0644);
64 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
66 static int nvme_major;
67 module_param(nvme_major, int, 0);
68
69 static int nvme_char_major;
70 module_param(nvme_char_major, int, 0);
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static DEFINE_SPINLOCK(dev_list_lock);
76 static LIST_HEAD(dev_list);
77 static struct task_struct *nvme_thread;
78 static struct workqueue_struct *nvme_workq;
79 static wait_queue_head_t nvme_kthread_wait;
80
81 static struct class *nvme_class;
82
83 static void nvme_reset_failed_dev(struct work_struct *ws);
84 static int nvme_reset(struct nvme_dev *dev);
85 static int nvme_process_cq(struct nvme_queue *nvmeq);
86
87 struct async_cmd_info {
88 struct kthread_work work;
89 struct kthread_worker *worker;
90 struct request *req;
91 u32 result;
92 int status;
93 void *ctx;
94 };
95
96 /*
97 * An NVM Express queue. Each device has at least two (one for admin
98 * commands and one for I/O commands).
99 */
100 struct nvme_queue {
101 struct device *q_dmadev;
102 struct nvme_dev *dev;
103 char irqname[24]; /* nvme4294967295-65535\0 */
104 spinlock_t q_lock;
105 struct nvme_command *sq_cmds;
106 volatile struct nvme_completion *cqes;
107 struct blk_mq_tags **tags;
108 dma_addr_t sq_dma_addr;
109 dma_addr_t cq_dma_addr;
110 u32 __iomem *q_db;
111 u16 q_depth;
112 s16 cq_vector;
113 u16 sq_head;
114 u16 sq_tail;
115 u16 cq_head;
116 u16 qid;
117 u8 cq_phase;
118 u8 cqe_seen;
119 struct async_cmd_info cmdinfo;
120 };
121
122 /*
123 * Check we didin't inadvertently grow the command struct
124 */
125 static inline void _nvme_check_size(void)
126 {
127 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
135 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
136 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
137 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
138 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
139 }
140
141 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
142 struct nvme_completion *);
143
144 struct nvme_cmd_info {
145 nvme_completion_fn fn;
146 void *ctx;
147 int aborted;
148 struct nvme_queue *nvmeq;
149 struct nvme_iod iod[0];
150 };
151
152 /*
153 * Max size of iod being embedded in the request payload
154 */
155 #define NVME_INT_PAGES 2
156 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
157 #define NVME_INT_MASK 0x01
158
159 /*
160 * Will slightly overestimate the number of pages needed. This is OK
161 * as it only leads to a small amount of wasted memory for the lifetime of
162 * the I/O.
163 */
164 static int nvme_npages(unsigned size, struct nvme_dev *dev)
165 {
166 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
167 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
168 }
169
170 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
171 {
172 unsigned int ret = sizeof(struct nvme_cmd_info);
173
174 ret += sizeof(struct nvme_iod);
175 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
176 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
177
178 return ret;
179 }
180
181 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
182 unsigned int hctx_idx)
183 {
184 struct nvme_dev *dev = data;
185 struct nvme_queue *nvmeq = dev->queues[0];
186
187 WARN_ON(hctx_idx != 0);
188 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
189 WARN_ON(nvmeq->tags);
190
191 hctx->driver_data = nvmeq;
192 nvmeq->tags = &dev->admin_tagset.tags[0];
193 return 0;
194 }
195
196 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
197 {
198 struct nvme_queue *nvmeq = hctx->driver_data;
199
200 nvmeq->tags = NULL;
201 }
202
203 static int nvme_admin_init_request(void *data, struct request *req,
204 unsigned int hctx_idx, unsigned int rq_idx,
205 unsigned int numa_node)
206 {
207 struct nvme_dev *dev = data;
208 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
209 struct nvme_queue *nvmeq = dev->queues[0];
210
211 BUG_ON(!nvmeq);
212 cmd->nvmeq = nvmeq;
213 return 0;
214 }
215
216 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
217 unsigned int hctx_idx)
218 {
219 struct nvme_dev *dev = data;
220 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
221
222 if (!nvmeq->tags)
223 nvmeq->tags = &dev->tagset.tags[hctx_idx];
224
225 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
226 hctx->driver_data = nvmeq;
227 return 0;
228 }
229
230 static int nvme_init_request(void *data, struct request *req,
231 unsigned int hctx_idx, unsigned int rq_idx,
232 unsigned int numa_node)
233 {
234 struct nvme_dev *dev = data;
235 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
236 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
237
238 BUG_ON(!nvmeq);
239 cmd->nvmeq = nvmeq;
240 return 0;
241 }
242
243 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
244 nvme_completion_fn handler)
245 {
246 cmd->fn = handler;
247 cmd->ctx = ctx;
248 cmd->aborted = 0;
249 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
250 }
251
252 static void *iod_get_private(struct nvme_iod *iod)
253 {
254 return (void *) (iod->private & ~0x1UL);
255 }
256
257 /*
258 * If bit 0 is set, the iod is embedded in the request payload.
259 */
260 static bool iod_should_kfree(struct nvme_iod *iod)
261 {
262 return (iod->private & NVME_INT_MASK) == 0;
263 }
264
265 /* Special values must be less than 0x1000 */
266 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
267 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
268 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
269 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
270
271 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
272 struct nvme_completion *cqe)
273 {
274 if (ctx == CMD_CTX_CANCELLED)
275 return;
276 if (ctx == CMD_CTX_COMPLETED) {
277 dev_warn(nvmeq->q_dmadev,
278 "completed id %d twice on queue %d\n",
279 cqe->command_id, le16_to_cpup(&cqe->sq_id));
280 return;
281 }
282 if (ctx == CMD_CTX_INVALID) {
283 dev_warn(nvmeq->q_dmadev,
284 "invalid id %d completed on queue %d\n",
285 cqe->command_id, le16_to_cpup(&cqe->sq_id));
286 return;
287 }
288 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
289 }
290
291 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
292 {
293 void *ctx;
294
295 if (fn)
296 *fn = cmd->fn;
297 ctx = cmd->ctx;
298 cmd->fn = special_completion;
299 cmd->ctx = CMD_CTX_CANCELLED;
300 return ctx;
301 }
302
303 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
304 struct nvme_completion *cqe)
305 {
306 u32 result = le32_to_cpup(&cqe->result);
307 u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310 ++nvmeq->dev->event_limit;
311 if (status != NVME_SC_SUCCESS)
312 return;
313
314 switch (result & 0xff07) {
315 case NVME_AER_NOTICE_NS_CHANGED:
316 dev_info(nvmeq->q_dmadev, "rescanning\n");
317 schedule_work(&nvmeq->dev->scan_work);
318 default:
319 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
320 }
321 }
322
323 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
324 struct nvme_completion *cqe)
325 {
326 struct request *req = ctx;
327
328 u16 status = le16_to_cpup(&cqe->status) >> 1;
329 u32 result = le32_to_cpup(&cqe->result);
330
331 blk_mq_free_request(req);
332
333 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
334 ++nvmeq->dev->abort_limit;
335 }
336
337 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
338 struct nvme_completion *cqe)
339 {
340 struct async_cmd_info *cmdinfo = ctx;
341 cmdinfo->result = le32_to_cpup(&cqe->result);
342 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
343 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
344 blk_mq_free_request(cmdinfo->req);
345 }
346
347 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
348 unsigned int tag)
349 {
350 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
351
352 return blk_mq_rq_to_pdu(req);
353 }
354
355 /*
356 * Called with local interrupts disabled and the q_lock held. May not sleep.
357 */
358 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
359 nvme_completion_fn *fn)
360 {
361 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
362 void *ctx;
363 if (tag >= nvmeq->q_depth) {
364 *fn = special_completion;
365 return CMD_CTX_INVALID;
366 }
367 if (fn)
368 *fn = cmd->fn;
369 ctx = cmd->ctx;
370 cmd->fn = special_completion;
371 cmd->ctx = CMD_CTX_COMPLETED;
372 return ctx;
373 }
374
375 /**
376 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
377 * @nvmeq: The queue to use
378 * @cmd: The command to send
379 *
380 * Safe to use from interrupt context
381 */
382 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
383 {
384 u16 tail = nvmeq->sq_tail;
385
386 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
387 if (++tail == nvmeq->q_depth)
388 tail = 0;
389 writel(tail, nvmeq->q_db);
390 nvmeq->sq_tail = tail;
391
392 return 0;
393 }
394
395 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
396 {
397 unsigned long flags;
398 int ret;
399 spin_lock_irqsave(&nvmeq->q_lock, flags);
400 ret = __nvme_submit_cmd(nvmeq, cmd);
401 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
402 return ret;
403 }
404
405 static __le64 **iod_list(struct nvme_iod *iod)
406 {
407 return ((void *)iod) + iod->offset;
408 }
409
410 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
411 unsigned nseg, unsigned long private)
412 {
413 iod->private = private;
414 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
415 iod->npages = -1;
416 iod->length = nbytes;
417 iod->nents = 0;
418 }
419
420 static struct nvme_iod *
421 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
422 unsigned long priv, gfp_t gfp)
423 {
424 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
425 sizeof(__le64 *) * nvme_npages(bytes, dev) +
426 sizeof(struct scatterlist) * nseg, gfp);
427
428 if (iod)
429 iod_init(iod, bytes, nseg, priv);
430
431 return iod;
432 }
433
434 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
435 gfp_t gfp)
436 {
437 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
438 sizeof(struct nvme_dsm_range);
439 struct nvme_iod *iod;
440
441 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
442 size <= NVME_INT_BYTES(dev)) {
443 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
444
445 iod = cmd->iod;
446 iod_init(iod, size, rq->nr_phys_segments,
447 (unsigned long) rq | NVME_INT_MASK);
448 return iod;
449 }
450
451 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
452 (unsigned long) rq, gfp);
453 }
454
455 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
456 {
457 const int last_prp = dev->page_size / 8 - 1;
458 int i;
459 __le64 **list = iod_list(iod);
460 dma_addr_t prp_dma = iod->first_dma;
461
462 if (iod->npages == 0)
463 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464 for (i = 0; i < iod->npages; i++) {
465 __le64 *prp_list = list[i];
466 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468 prp_dma = next_prp_dma;
469 }
470
471 if (iod_should_kfree(iod))
472 kfree(iod);
473 }
474
475 static int nvme_error_status(u16 status)
476 {
477 switch (status & 0x7ff) {
478 case NVME_SC_SUCCESS:
479 return 0;
480 case NVME_SC_CAP_EXCEEDED:
481 return -ENOSPC;
482 default:
483 return -EIO;
484 }
485 }
486
487 #ifdef CONFIG_BLK_DEV_INTEGRITY
488 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
489 {
490 if (be32_to_cpu(pi->ref_tag) == v)
491 pi->ref_tag = cpu_to_be32(p);
492 }
493
494 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
495 {
496 if (be32_to_cpu(pi->ref_tag) == p)
497 pi->ref_tag = cpu_to_be32(v);
498 }
499
500 /**
501 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
502 *
503 * The virtual start sector is the one that was originally submitted by the
504 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
505 * start sector may be different. Remap protection information to match the
506 * physical LBA on writes, and back to the original seed on reads.
507 *
508 * Type 0 and 3 do not have a ref tag, so no remapping required.
509 */
510 static void nvme_dif_remap(struct request *req,
511 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
512 {
513 struct nvme_ns *ns = req->rq_disk->private_data;
514 struct bio_integrity_payload *bip;
515 struct t10_pi_tuple *pi;
516 void *p, *pmap;
517 u32 i, nlb, ts, phys, virt;
518
519 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
520 return;
521
522 bip = bio_integrity(req->bio);
523 if (!bip)
524 return;
525
526 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
527
528 p = pmap;
529 virt = bip_get_seed(bip);
530 phys = nvme_block_nr(ns, blk_rq_pos(req));
531 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
532 ts = ns->disk->integrity->tuple_size;
533
534 for (i = 0; i < nlb; i++, virt++, phys++) {
535 pi = (struct t10_pi_tuple *)p;
536 dif_swap(phys, virt, pi);
537 p += ts;
538 }
539 kunmap_atomic(pmap);
540 }
541
542 static int nvme_noop_verify(struct blk_integrity_iter *iter)
543 {
544 return 0;
545 }
546
547 static int nvme_noop_generate(struct blk_integrity_iter *iter)
548 {
549 return 0;
550 }
551
552 struct blk_integrity nvme_meta_noop = {
553 .name = "NVME_META_NOOP",
554 .generate_fn = nvme_noop_generate,
555 .verify_fn = nvme_noop_verify,
556 };
557
558 static void nvme_init_integrity(struct nvme_ns *ns)
559 {
560 struct blk_integrity integrity;
561
562 switch (ns->pi_type) {
563 case NVME_NS_DPS_PI_TYPE3:
564 integrity = t10_pi_type3_crc;
565 break;
566 case NVME_NS_DPS_PI_TYPE1:
567 case NVME_NS_DPS_PI_TYPE2:
568 integrity = t10_pi_type1_crc;
569 break;
570 default:
571 integrity = nvme_meta_noop;
572 break;
573 }
574 integrity.tuple_size = ns->ms;
575 blk_integrity_register(ns->disk, &integrity);
576 blk_queue_max_integrity_segments(ns->queue, 1);
577 }
578 #else /* CONFIG_BLK_DEV_INTEGRITY */
579 static void nvme_dif_remap(struct request *req,
580 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
581 {
582 }
583 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
584 {
585 }
586 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
587 {
588 }
589 static void nvme_init_integrity(struct nvme_ns *ns)
590 {
591 }
592 #endif
593
594 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
595 struct nvme_completion *cqe)
596 {
597 struct nvme_iod *iod = ctx;
598 struct request *req = iod_get_private(iod);
599 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
600
601 u16 status = le16_to_cpup(&cqe->status) >> 1;
602
603 if (unlikely(status)) {
604 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
605 && (jiffies - req->start_time) < req->timeout) {
606 unsigned long flags;
607
608 blk_mq_requeue_request(req);
609 spin_lock_irqsave(req->q->queue_lock, flags);
610 if (!blk_queue_stopped(req->q))
611 blk_mq_kick_requeue_list(req->q);
612 spin_unlock_irqrestore(req->q->queue_lock, flags);
613 return;
614 }
615 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
616 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
617 req->errors = -EINTR;
618 else
619 req->errors = status;
620 } else {
621 req->errors = nvme_error_status(status);
622 }
623 } else
624 req->errors = 0;
625 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
626 u32 result = le32_to_cpup(&cqe->result);
627 req->special = (void *)(uintptr_t)result;
628 }
629
630 if (cmd_rq->aborted)
631 dev_warn(nvmeq->dev->dev,
632 "completing aborted command with status:%04x\n",
633 status);
634
635 if (iod->nents) {
636 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
637 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
638 if (blk_integrity_rq(req)) {
639 if (!rq_data_dir(req))
640 nvme_dif_remap(req, nvme_dif_complete);
641 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
642 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
643 }
644 }
645 nvme_free_iod(nvmeq->dev, iod);
646
647 blk_mq_complete_request(req);
648 }
649
650 /* length is in bytes. gfp flags indicates whether we may sleep. */
651 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
652 int total_len, gfp_t gfp)
653 {
654 struct dma_pool *pool;
655 int length = total_len;
656 struct scatterlist *sg = iod->sg;
657 int dma_len = sg_dma_len(sg);
658 u64 dma_addr = sg_dma_address(sg);
659 u32 page_size = dev->page_size;
660 int offset = dma_addr & (page_size - 1);
661 __le64 *prp_list;
662 __le64 **list = iod_list(iod);
663 dma_addr_t prp_dma;
664 int nprps, i;
665
666 length -= (page_size - offset);
667 if (length <= 0)
668 return total_len;
669
670 dma_len -= (page_size - offset);
671 if (dma_len) {
672 dma_addr += (page_size - offset);
673 } else {
674 sg = sg_next(sg);
675 dma_addr = sg_dma_address(sg);
676 dma_len = sg_dma_len(sg);
677 }
678
679 if (length <= page_size) {
680 iod->first_dma = dma_addr;
681 return total_len;
682 }
683
684 nprps = DIV_ROUND_UP(length, page_size);
685 if (nprps <= (256 / 8)) {
686 pool = dev->prp_small_pool;
687 iod->npages = 0;
688 } else {
689 pool = dev->prp_page_pool;
690 iod->npages = 1;
691 }
692
693 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
694 if (!prp_list) {
695 iod->first_dma = dma_addr;
696 iod->npages = -1;
697 return (total_len - length) + page_size;
698 }
699 list[0] = prp_list;
700 iod->first_dma = prp_dma;
701 i = 0;
702 for (;;) {
703 if (i == page_size >> 3) {
704 __le64 *old_prp_list = prp_list;
705 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
706 if (!prp_list)
707 return total_len - length;
708 list[iod->npages++] = prp_list;
709 prp_list[0] = old_prp_list[i - 1];
710 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
711 i = 1;
712 }
713 prp_list[i++] = cpu_to_le64(dma_addr);
714 dma_len -= page_size;
715 dma_addr += page_size;
716 length -= page_size;
717 if (length <= 0)
718 break;
719 if (dma_len > 0)
720 continue;
721 BUG_ON(dma_len < 0);
722 sg = sg_next(sg);
723 dma_addr = sg_dma_address(sg);
724 dma_len = sg_dma_len(sg);
725 }
726
727 return total_len;
728 }
729
730 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
731 struct nvme_iod *iod)
732 {
733 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
734
735 memcpy(cmnd, req->cmd, sizeof(struct nvme_command));
736 cmnd->rw.command_id = req->tag;
737 if (req->nr_phys_segments) {
738 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
739 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
740 }
741
742 if (++nvmeq->sq_tail == nvmeq->q_depth)
743 nvmeq->sq_tail = 0;
744 writel(nvmeq->sq_tail, nvmeq->q_db);
745 }
746
747 /*
748 * We reuse the small pool to allocate the 16-byte range here as it is not
749 * worth having a special pool for these or additional cases to handle freeing
750 * the iod.
751 */
752 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
753 struct request *req, struct nvme_iod *iod)
754 {
755 struct nvme_dsm_range *range =
756 (struct nvme_dsm_range *)iod_list(iod)[0];
757 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
758
759 range->cattr = cpu_to_le32(0);
760 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
761 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
762
763 memset(cmnd, 0, sizeof(*cmnd));
764 cmnd->dsm.opcode = nvme_cmd_dsm;
765 cmnd->dsm.command_id = req->tag;
766 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
767 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
768 cmnd->dsm.nr = 0;
769 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
770
771 if (++nvmeq->sq_tail == nvmeq->q_depth)
772 nvmeq->sq_tail = 0;
773 writel(nvmeq->sq_tail, nvmeq->q_db);
774 }
775
776 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
777 int cmdid)
778 {
779 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
780
781 memset(cmnd, 0, sizeof(*cmnd));
782 cmnd->common.opcode = nvme_cmd_flush;
783 cmnd->common.command_id = cmdid;
784 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
785
786 if (++nvmeq->sq_tail == nvmeq->q_depth)
787 nvmeq->sq_tail = 0;
788 writel(nvmeq->sq_tail, nvmeq->q_db);
789 }
790
791 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
792 struct nvme_ns *ns)
793 {
794 struct request *req = iod_get_private(iod);
795 struct nvme_command *cmnd;
796 u16 control = 0;
797 u32 dsmgmt = 0;
798
799 if (req->cmd_flags & REQ_FUA)
800 control |= NVME_RW_FUA;
801 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
802 control |= NVME_RW_LR;
803
804 if (req->cmd_flags & REQ_RAHEAD)
805 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
806
807 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
808 memset(cmnd, 0, sizeof(*cmnd));
809
810 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
811 cmnd->rw.command_id = req->tag;
812 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
813 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
814 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
815 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
816 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
817
818 if (blk_integrity_rq(req)) {
819 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
820 switch (ns->pi_type) {
821 case NVME_NS_DPS_PI_TYPE3:
822 control |= NVME_RW_PRINFO_PRCHK_GUARD;
823 break;
824 case NVME_NS_DPS_PI_TYPE1:
825 case NVME_NS_DPS_PI_TYPE2:
826 control |= NVME_RW_PRINFO_PRCHK_GUARD |
827 NVME_RW_PRINFO_PRCHK_REF;
828 cmnd->rw.reftag = cpu_to_le32(
829 nvme_block_nr(ns, blk_rq_pos(req)));
830 break;
831 }
832 } else if (ns->ms)
833 control |= NVME_RW_PRINFO_PRACT;
834
835 cmnd->rw.control = cpu_to_le16(control);
836 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
837
838 if (++nvmeq->sq_tail == nvmeq->q_depth)
839 nvmeq->sq_tail = 0;
840 writel(nvmeq->sq_tail, nvmeq->q_db);
841
842 return 0;
843 }
844
845 /*
846 * NOTE: ns is NULL when called on the admin queue.
847 */
848 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
849 const struct blk_mq_queue_data *bd)
850 {
851 struct nvme_ns *ns = hctx->queue->queuedata;
852 struct nvme_queue *nvmeq = hctx->driver_data;
853 struct nvme_dev *dev = nvmeq->dev;
854 struct request *req = bd->rq;
855 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
856 struct nvme_iod *iod;
857 enum dma_data_direction dma_dir;
858
859 /*
860 * If formated with metadata, require the block layer provide a buffer
861 * unless this namespace is formated such that the metadata can be
862 * stripped/generated by the controller with PRACT=1.
863 */
864 if (ns && ns->ms && !blk_integrity_rq(req)) {
865 if (!(ns->pi_type && ns->ms == 8) &&
866 req->cmd_type != REQ_TYPE_DRV_PRIV) {
867 req->errors = -EFAULT;
868 blk_mq_complete_request(req);
869 return BLK_MQ_RQ_QUEUE_OK;
870 }
871 }
872
873 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
874 if (!iod)
875 return BLK_MQ_RQ_QUEUE_BUSY;
876
877 if (req->cmd_flags & REQ_DISCARD) {
878 void *range;
879 /*
880 * We reuse the small pool to allocate the 16-byte range here
881 * as it is not worth having a special pool for these or
882 * additional cases to handle freeing the iod.
883 */
884 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
885 &iod->first_dma);
886 if (!range)
887 goto retry_cmd;
888 iod_list(iod)[0] = (__le64 *)range;
889 iod->npages = 0;
890 } else if (req->nr_phys_segments) {
891 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
892
893 sg_init_table(iod->sg, req->nr_phys_segments);
894 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
895 if (!iod->nents)
896 goto error_cmd;
897
898 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
899 goto retry_cmd;
900
901 if (blk_rq_bytes(req) !=
902 nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
903 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
904 goto retry_cmd;
905 }
906 if (blk_integrity_rq(req)) {
907 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
908 goto error_cmd;
909
910 sg_init_table(iod->meta_sg, 1);
911 if (blk_rq_map_integrity_sg(
912 req->q, req->bio, iod->meta_sg) != 1)
913 goto error_cmd;
914
915 if (rq_data_dir(req))
916 nvme_dif_remap(req, nvme_dif_prep);
917
918 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
919 goto error_cmd;
920 }
921 }
922
923 nvme_set_info(cmd, iod, req_completion);
924 spin_lock_irq(&nvmeq->q_lock);
925 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
926 nvme_submit_priv(nvmeq, req, iod);
927 else if (req->cmd_flags & REQ_DISCARD)
928 nvme_submit_discard(nvmeq, ns, req, iod);
929 else if (req->cmd_flags & REQ_FLUSH)
930 nvme_submit_flush(nvmeq, ns, req->tag);
931 else
932 nvme_submit_iod(nvmeq, iod, ns);
933
934 nvme_process_cq(nvmeq);
935 spin_unlock_irq(&nvmeq->q_lock);
936 return BLK_MQ_RQ_QUEUE_OK;
937
938 error_cmd:
939 nvme_free_iod(dev, iod);
940 return BLK_MQ_RQ_QUEUE_ERROR;
941 retry_cmd:
942 nvme_free_iod(dev, iod);
943 return BLK_MQ_RQ_QUEUE_BUSY;
944 }
945
946 static int nvme_process_cq(struct nvme_queue *nvmeq)
947 {
948 u16 head, phase;
949
950 head = nvmeq->cq_head;
951 phase = nvmeq->cq_phase;
952
953 for (;;) {
954 void *ctx;
955 nvme_completion_fn fn;
956 struct nvme_completion cqe = nvmeq->cqes[head];
957 if ((le16_to_cpu(cqe.status) & 1) != phase)
958 break;
959 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
960 if (++head == nvmeq->q_depth) {
961 head = 0;
962 phase = !phase;
963 }
964 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
965 fn(nvmeq, ctx, &cqe);
966 }
967
968 /* If the controller ignores the cq head doorbell and continuously
969 * writes to the queue, it is theoretically possible to wrap around
970 * the queue twice and mistakenly return IRQ_NONE. Linux only
971 * requires that 0.1% of your interrupts are handled, so this isn't
972 * a big problem.
973 */
974 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
975 return 0;
976
977 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
978 nvmeq->cq_head = head;
979 nvmeq->cq_phase = phase;
980
981 nvmeq->cqe_seen = 1;
982 return 1;
983 }
984
985 static irqreturn_t nvme_irq(int irq, void *data)
986 {
987 irqreturn_t result;
988 struct nvme_queue *nvmeq = data;
989 spin_lock(&nvmeq->q_lock);
990 nvme_process_cq(nvmeq);
991 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
992 nvmeq->cqe_seen = 0;
993 spin_unlock(&nvmeq->q_lock);
994 return result;
995 }
996
997 static irqreturn_t nvme_irq_check(int irq, void *data)
998 {
999 struct nvme_queue *nvmeq = data;
1000 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1001 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1002 return IRQ_NONE;
1003 return IRQ_WAKE_THREAD;
1004 }
1005
1006 /*
1007 * Returns 0 on success. If the result is negative, it's a Linux error code;
1008 * if the result is positive, it's an NVM Express status code
1009 */
1010 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1011 void *buffer, void __user *ubuffer, unsigned bufflen,
1012 u32 *result, unsigned timeout)
1013 {
1014 bool write = cmd->common.opcode & 1;
1015 struct bio *bio = NULL;
1016 struct request *req;
1017 int ret;
1018
1019 req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1020 if (IS_ERR(req))
1021 return PTR_ERR(req);
1022
1023 req->cmd_type = REQ_TYPE_DRV_PRIV;
1024 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1025 req->__data_len = 0;
1026 req->__sector = (sector_t) -1;
1027 req->bio = req->biotail = NULL;
1028
1029 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1030
1031 req->cmd = (unsigned char *)cmd;
1032 req->cmd_len = sizeof(struct nvme_command);
1033 req->special = (void *)0;
1034
1035 if (buffer && bufflen) {
1036 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1037 if (ret)
1038 goto out;
1039 } else if (ubuffer && bufflen) {
1040 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1041 if (ret)
1042 goto out;
1043 bio = req->bio;
1044 }
1045
1046 blk_execute_rq(req->q, NULL, req, 0);
1047 if (bio)
1048 blk_rq_unmap_user(bio);
1049 if (result)
1050 *result = (u32)(uintptr_t)req->special;
1051 ret = req->errors;
1052 out:
1053 blk_mq_free_request(req);
1054 return ret;
1055 }
1056
1057 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1058 void *buffer, unsigned bufflen)
1059 {
1060 return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1061 }
1062
1063 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1064 {
1065 struct nvme_queue *nvmeq = dev->queues[0];
1066 struct nvme_command c;
1067 struct nvme_cmd_info *cmd_info;
1068 struct request *req;
1069
1070 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1071 if (IS_ERR(req))
1072 return PTR_ERR(req);
1073
1074 req->cmd_flags |= REQ_NO_TIMEOUT;
1075 cmd_info = blk_mq_rq_to_pdu(req);
1076 nvme_set_info(cmd_info, NULL, async_req_completion);
1077
1078 memset(&c, 0, sizeof(c));
1079 c.common.opcode = nvme_admin_async_event;
1080 c.common.command_id = req->tag;
1081
1082 blk_mq_free_request(req);
1083 return __nvme_submit_cmd(nvmeq, &c);
1084 }
1085
1086 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1087 struct nvme_command *cmd,
1088 struct async_cmd_info *cmdinfo, unsigned timeout)
1089 {
1090 struct nvme_queue *nvmeq = dev->queues[0];
1091 struct request *req;
1092 struct nvme_cmd_info *cmd_rq;
1093
1094 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1095 if (IS_ERR(req))
1096 return PTR_ERR(req);
1097
1098 req->timeout = timeout;
1099 cmd_rq = blk_mq_rq_to_pdu(req);
1100 cmdinfo->req = req;
1101 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1102 cmdinfo->status = -EINTR;
1103
1104 cmd->common.command_id = req->tag;
1105
1106 return nvme_submit_cmd(nvmeq, cmd);
1107 }
1108
1109 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1110 {
1111 struct nvme_command c;
1112
1113 memset(&c, 0, sizeof(c));
1114 c.delete_queue.opcode = opcode;
1115 c.delete_queue.qid = cpu_to_le16(id);
1116
1117 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1118 }
1119
1120 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1121 struct nvme_queue *nvmeq)
1122 {
1123 struct nvme_command c;
1124 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1125
1126 /*
1127 * Note: we (ab)use the fact the the prp fields survive if no data
1128 * is attached to the request.
1129 */
1130 memset(&c, 0, sizeof(c));
1131 c.create_cq.opcode = nvme_admin_create_cq;
1132 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1133 c.create_cq.cqid = cpu_to_le16(qid);
1134 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1135 c.create_cq.cq_flags = cpu_to_le16(flags);
1136 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1137
1138 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1139 }
1140
1141 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1142 struct nvme_queue *nvmeq)
1143 {
1144 struct nvme_command c;
1145 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1146
1147 /*
1148 * Note: we (ab)use the fact the the prp fields survive if no data
1149 * is attached to the request.
1150 */
1151 memset(&c, 0, sizeof(c));
1152 c.create_sq.opcode = nvme_admin_create_sq;
1153 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1154 c.create_sq.sqid = cpu_to_le16(qid);
1155 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1156 c.create_sq.sq_flags = cpu_to_le16(flags);
1157 c.create_sq.cqid = cpu_to_le16(qid);
1158
1159 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1160 }
1161
1162 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1163 {
1164 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1165 }
1166
1167 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1168 {
1169 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1170 }
1171
1172 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1173 {
1174 struct nvme_command c = {
1175 .identify.opcode = nvme_admin_identify,
1176 .identify.cns = cpu_to_le32(1),
1177 };
1178 int error;
1179
1180 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1181 if (!*id)
1182 return -ENOMEM;
1183
1184 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1185 sizeof(struct nvme_id_ctrl));
1186 if (error)
1187 kfree(*id);
1188 return error;
1189 }
1190
1191 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1192 struct nvme_id_ns **id)
1193 {
1194 struct nvme_command c = {
1195 .identify.opcode = nvme_admin_identify,
1196 .identify.nsid = cpu_to_le32(nsid),
1197 };
1198 int error;
1199
1200 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1201 if (!*id)
1202 return -ENOMEM;
1203
1204 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1205 sizeof(struct nvme_id_ns));
1206 if (error)
1207 kfree(*id);
1208 return error;
1209 }
1210
1211 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1212 dma_addr_t dma_addr, u32 *result)
1213 {
1214 struct nvme_command c;
1215
1216 memset(&c, 0, sizeof(c));
1217 c.features.opcode = nvme_admin_get_features;
1218 c.features.nsid = cpu_to_le32(nsid);
1219 c.features.prp1 = cpu_to_le64(dma_addr);
1220 c.features.fid = cpu_to_le32(fid);
1221
1222 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1223 result, 0);
1224 }
1225
1226 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1227 dma_addr_t dma_addr, u32 *result)
1228 {
1229 struct nvme_command c;
1230
1231 memset(&c, 0, sizeof(c));
1232 c.features.opcode = nvme_admin_set_features;
1233 c.features.prp1 = cpu_to_le64(dma_addr);
1234 c.features.fid = cpu_to_le32(fid);
1235 c.features.dword11 = cpu_to_le32(dword11);
1236
1237 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1238 result, 0);
1239 }
1240
1241 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1242 {
1243 struct nvme_command c = {
1244 .common.opcode = nvme_admin_get_log_page,
1245 .common.nsid = cpu_to_le32(0xFFFFFFFF),
1246 .common.cdw10[0] = cpu_to_le32(
1247 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1248 NVME_LOG_SMART),
1249 };
1250 int error;
1251
1252 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1253 if (!*log)
1254 return -ENOMEM;
1255
1256 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1257 sizeof(struct nvme_smart_log));
1258 if (error)
1259 kfree(*log);
1260 return error;
1261 }
1262
1263 /**
1264 * nvme_abort_req - Attempt aborting a request
1265 *
1266 * Schedule controller reset if the command was already aborted once before and
1267 * still hasn't been returned to the driver, or if this is the admin queue.
1268 */
1269 static void nvme_abort_req(struct request *req)
1270 {
1271 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1272 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1273 struct nvme_dev *dev = nvmeq->dev;
1274 struct request *abort_req;
1275 struct nvme_cmd_info *abort_cmd;
1276 struct nvme_command cmd;
1277
1278 if (!nvmeq->qid || cmd_rq->aborted) {
1279 unsigned long flags;
1280
1281 spin_lock_irqsave(&dev_list_lock, flags);
1282 if (work_busy(&dev->reset_work))
1283 goto out;
1284 list_del_init(&dev->node);
1285 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
1286 req->tag, nvmeq->qid);
1287 dev->reset_workfn = nvme_reset_failed_dev;
1288 queue_work(nvme_workq, &dev->reset_work);
1289 out:
1290 spin_unlock_irqrestore(&dev_list_lock, flags);
1291 return;
1292 }
1293
1294 if (!dev->abort_limit)
1295 return;
1296
1297 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1298 false);
1299 if (IS_ERR(abort_req))
1300 return;
1301
1302 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1303 nvme_set_info(abort_cmd, abort_req, abort_completion);
1304
1305 memset(&cmd, 0, sizeof(cmd));
1306 cmd.abort.opcode = nvme_admin_abort_cmd;
1307 cmd.abort.cid = req->tag;
1308 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1309 cmd.abort.command_id = abort_req->tag;
1310
1311 --dev->abort_limit;
1312 cmd_rq->aborted = 1;
1313
1314 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1315 nvmeq->qid);
1316 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1317 dev_warn(nvmeq->q_dmadev,
1318 "Could not abort I/O %d QID %d",
1319 req->tag, nvmeq->qid);
1320 blk_mq_free_request(abort_req);
1321 }
1322 }
1323
1324 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1325 {
1326 struct nvme_queue *nvmeq = data;
1327 void *ctx;
1328 nvme_completion_fn fn;
1329 struct nvme_cmd_info *cmd;
1330 struct nvme_completion cqe;
1331
1332 if (!blk_mq_request_started(req))
1333 return;
1334
1335 cmd = blk_mq_rq_to_pdu(req);
1336
1337 if (cmd->ctx == CMD_CTX_CANCELLED)
1338 return;
1339
1340 if (blk_queue_dying(req->q))
1341 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1342 else
1343 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1344
1345
1346 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1347 req->tag, nvmeq->qid);
1348 ctx = cancel_cmd_info(cmd, &fn);
1349 fn(nvmeq, ctx, &cqe);
1350 }
1351
1352 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1353 {
1354 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1355 struct nvme_queue *nvmeq = cmd->nvmeq;
1356
1357 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1358 nvmeq->qid);
1359 spin_lock_irq(&nvmeq->q_lock);
1360 nvme_abort_req(req);
1361 spin_unlock_irq(&nvmeq->q_lock);
1362
1363 /*
1364 * The aborted req will be completed on receiving the abort req.
1365 * We enable the timer again. If hit twice, it'll cause a device reset,
1366 * as the device then is in a faulty state.
1367 */
1368 return BLK_EH_RESET_TIMER;
1369 }
1370
1371 static void nvme_free_queue(struct nvme_queue *nvmeq)
1372 {
1373 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1374 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1375 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1376 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1377 kfree(nvmeq);
1378 }
1379
1380 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1381 {
1382 int i;
1383
1384 for (i = dev->queue_count - 1; i >= lowest; i--) {
1385 struct nvme_queue *nvmeq = dev->queues[i];
1386 dev->queue_count--;
1387 dev->queues[i] = NULL;
1388 nvme_free_queue(nvmeq);
1389 }
1390 }
1391
1392 /**
1393 * nvme_suspend_queue - put queue into suspended state
1394 * @nvmeq - queue to suspend
1395 */
1396 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1397 {
1398 int vector;
1399
1400 spin_lock_irq(&nvmeq->q_lock);
1401 if (nvmeq->cq_vector == -1) {
1402 spin_unlock_irq(&nvmeq->q_lock);
1403 return 1;
1404 }
1405 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1406 nvmeq->dev->online_queues--;
1407 nvmeq->cq_vector = -1;
1408 spin_unlock_irq(&nvmeq->q_lock);
1409
1410 if (!nvmeq->qid && nvmeq->dev->admin_q)
1411 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1412
1413 irq_set_affinity_hint(vector, NULL);
1414 free_irq(vector, nvmeq);
1415
1416 return 0;
1417 }
1418
1419 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1420 {
1421 spin_lock_irq(&nvmeq->q_lock);
1422 if (nvmeq->tags && *nvmeq->tags)
1423 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1424 spin_unlock_irq(&nvmeq->q_lock);
1425 }
1426
1427 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1428 {
1429 struct nvme_queue *nvmeq = dev->queues[qid];
1430
1431 if (!nvmeq)
1432 return;
1433 if (nvme_suspend_queue(nvmeq))
1434 return;
1435
1436 /* Don't tell the adapter to delete the admin queue.
1437 * Don't tell a removed adapter to delete IO queues. */
1438 if (qid && readl(&dev->bar->csts) != -1) {
1439 adapter_delete_sq(dev, qid);
1440 adapter_delete_cq(dev, qid);
1441 }
1442
1443 spin_lock_irq(&nvmeq->q_lock);
1444 nvme_process_cq(nvmeq);
1445 spin_unlock_irq(&nvmeq->q_lock);
1446 }
1447
1448 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1449 int depth)
1450 {
1451 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1452 if (!nvmeq)
1453 return NULL;
1454
1455 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1456 &nvmeq->cq_dma_addr, GFP_KERNEL);
1457 if (!nvmeq->cqes)
1458 goto free_nvmeq;
1459
1460 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1461 &nvmeq->sq_dma_addr, GFP_KERNEL);
1462 if (!nvmeq->sq_cmds)
1463 goto free_cqdma;
1464
1465 nvmeq->q_dmadev = dev->dev;
1466 nvmeq->dev = dev;
1467 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1468 dev->instance, qid);
1469 spin_lock_init(&nvmeq->q_lock);
1470 nvmeq->cq_head = 0;
1471 nvmeq->cq_phase = 1;
1472 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1473 nvmeq->q_depth = depth;
1474 nvmeq->qid = qid;
1475 dev->queues[qid] = nvmeq;
1476
1477 /* make sure queue descriptor is set before queue count, for kthread */
1478 mb();
1479 dev->queue_count++;
1480
1481 return nvmeq;
1482
1483 free_cqdma:
1484 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1485 nvmeq->cq_dma_addr);
1486 free_nvmeq:
1487 kfree(nvmeq);
1488 return NULL;
1489 }
1490
1491 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1492 const char *name)
1493 {
1494 if (use_threaded_interrupts)
1495 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1496 nvme_irq_check, nvme_irq, IRQF_SHARED,
1497 name, nvmeq);
1498 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1499 IRQF_SHARED, name, nvmeq);
1500 }
1501
1502 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1503 {
1504 struct nvme_dev *dev = nvmeq->dev;
1505
1506 spin_lock_irq(&nvmeq->q_lock);
1507 nvmeq->sq_tail = 0;
1508 nvmeq->cq_head = 0;
1509 nvmeq->cq_phase = 1;
1510 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1511 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1512 dev->online_queues++;
1513 spin_unlock_irq(&nvmeq->q_lock);
1514 }
1515
1516 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1517 {
1518 struct nvme_dev *dev = nvmeq->dev;
1519 int result;
1520
1521 nvmeq->cq_vector = qid - 1;
1522 result = adapter_alloc_cq(dev, qid, nvmeq);
1523 if (result < 0)
1524 return result;
1525
1526 result = adapter_alloc_sq(dev, qid, nvmeq);
1527 if (result < 0)
1528 goto release_cq;
1529
1530 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1531 if (result < 0)
1532 goto release_sq;
1533
1534 nvme_init_queue(nvmeq, qid);
1535 return result;
1536
1537 release_sq:
1538 adapter_delete_sq(dev, qid);
1539 release_cq:
1540 adapter_delete_cq(dev, qid);
1541 return result;
1542 }
1543
1544 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1545 {
1546 unsigned long timeout;
1547 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1548
1549 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1550
1551 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1552 msleep(100);
1553 if (fatal_signal_pending(current))
1554 return -EINTR;
1555 if (time_after(jiffies, timeout)) {
1556 dev_err(dev->dev,
1557 "Device not ready; aborting %s\n", enabled ?
1558 "initialisation" : "reset");
1559 return -ENODEV;
1560 }
1561 }
1562
1563 return 0;
1564 }
1565
1566 /*
1567 * If the device has been passed off to us in an enabled state, just clear
1568 * the enabled bit. The spec says we should set the 'shutdown notification
1569 * bits', but doing so may cause the device to complete commands to the
1570 * admin queue ... and we don't know what memory that might be pointing at!
1571 */
1572 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1573 {
1574 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1575 dev->ctrl_config &= ~NVME_CC_ENABLE;
1576 writel(dev->ctrl_config, &dev->bar->cc);
1577
1578 return nvme_wait_ready(dev, cap, false);
1579 }
1580
1581 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1582 {
1583 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1584 dev->ctrl_config |= NVME_CC_ENABLE;
1585 writel(dev->ctrl_config, &dev->bar->cc);
1586
1587 return nvme_wait_ready(dev, cap, true);
1588 }
1589
1590 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1591 {
1592 unsigned long timeout;
1593
1594 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1595 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1596
1597 writel(dev->ctrl_config, &dev->bar->cc);
1598
1599 timeout = SHUTDOWN_TIMEOUT + jiffies;
1600 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1601 NVME_CSTS_SHST_CMPLT) {
1602 msleep(100);
1603 if (fatal_signal_pending(current))
1604 return -EINTR;
1605 if (time_after(jiffies, timeout)) {
1606 dev_err(dev->dev,
1607 "Device shutdown incomplete; abort shutdown\n");
1608 return -ENODEV;
1609 }
1610 }
1611
1612 return 0;
1613 }
1614
1615 static struct blk_mq_ops nvme_mq_admin_ops = {
1616 .queue_rq = nvme_queue_rq,
1617 .map_queue = blk_mq_map_queue,
1618 .init_hctx = nvme_admin_init_hctx,
1619 .exit_hctx = nvme_admin_exit_hctx,
1620 .init_request = nvme_admin_init_request,
1621 .timeout = nvme_timeout,
1622 };
1623
1624 static struct blk_mq_ops nvme_mq_ops = {
1625 .queue_rq = nvme_queue_rq,
1626 .map_queue = blk_mq_map_queue,
1627 .init_hctx = nvme_init_hctx,
1628 .init_request = nvme_init_request,
1629 .timeout = nvme_timeout,
1630 };
1631
1632 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1633 {
1634 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1635 blk_cleanup_queue(dev->admin_q);
1636 blk_mq_free_tag_set(&dev->admin_tagset);
1637 }
1638 }
1639
1640 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1641 {
1642 if (!dev->admin_q) {
1643 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1644 dev->admin_tagset.nr_hw_queues = 1;
1645 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1646 dev->admin_tagset.reserved_tags = 1;
1647 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1648 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1649 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1650 dev->admin_tagset.driver_data = dev;
1651
1652 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1653 return -ENOMEM;
1654
1655 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1656 if (IS_ERR(dev->admin_q)) {
1657 blk_mq_free_tag_set(&dev->admin_tagset);
1658 return -ENOMEM;
1659 }
1660 if (!blk_get_queue(dev->admin_q)) {
1661 nvme_dev_remove_admin(dev);
1662 dev->admin_q = NULL;
1663 return -ENODEV;
1664 }
1665 } else
1666 blk_mq_unfreeze_queue(dev->admin_q);
1667
1668 return 0;
1669 }
1670
1671 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1672 {
1673 int result;
1674 u32 aqa;
1675 u64 cap = readq(&dev->bar->cap);
1676 struct nvme_queue *nvmeq;
1677 unsigned page_shift = PAGE_SHIFT;
1678 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1679 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1680
1681 if (page_shift < dev_page_min) {
1682 dev_err(dev->dev,
1683 "Minimum device page size (%u) too large for "
1684 "host (%u)\n", 1 << dev_page_min,
1685 1 << page_shift);
1686 return -ENODEV;
1687 }
1688 if (page_shift > dev_page_max) {
1689 dev_info(dev->dev,
1690 "Device maximum page size (%u) smaller than "
1691 "host (%u); enabling work-around\n",
1692 1 << dev_page_max, 1 << page_shift);
1693 page_shift = dev_page_max;
1694 }
1695
1696 result = nvme_disable_ctrl(dev, cap);
1697 if (result < 0)
1698 return result;
1699
1700 nvmeq = dev->queues[0];
1701 if (!nvmeq) {
1702 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1703 if (!nvmeq)
1704 return -ENOMEM;
1705 }
1706
1707 aqa = nvmeq->q_depth - 1;
1708 aqa |= aqa << 16;
1709
1710 dev->page_size = 1 << page_shift;
1711
1712 dev->ctrl_config = NVME_CC_CSS_NVM;
1713 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1714 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1715 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1716
1717 writel(aqa, &dev->bar->aqa);
1718 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1719 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1720
1721 result = nvme_enable_ctrl(dev, cap);
1722 if (result)
1723 goto free_nvmeq;
1724
1725 nvmeq->cq_vector = 0;
1726 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1727 if (result)
1728 goto free_nvmeq;
1729
1730 return result;
1731
1732 free_nvmeq:
1733 nvme_free_queues(dev, 0);
1734 return result;
1735 }
1736
1737 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1738 {
1739 struct nvme_dev *dev = ns->dev;
1740 struct nvme_user_io io;
1741 struct nvme_command c;
1742 unsigned length, meta_len;
1743 int status, write;
1744 dma_addr_t meta_dma = 0;
1745 void *meta = NULL;
1746 void __user *metadata;
1747
1748 if (copy_from_user(&io, uio, sizeof(io)))
1749 return -EFAULT;
1750
1751 switch (io.opcode) {
1752 case nvme_cmd_write:
1753 case nvme_cmd_read:
1754 case nvme_cmd_compare:
1755 break;
1756 default:
1757 return -EINVAL;
1758 }
1759
1760 length = (io.nblocks + 1) << ns->lba_shift;
1761 meta_len = (io.nblocks + 1) * ns->ms;
1762 metadata = (void __user *)(unsigned long)io.metadata;
1763 write = io.opcode & 1;
1764
1765 if (ns->ext) {
1766 length += meta_len;
1767 meta_len = 0;
1768 }
1769 if (meta_len) {
1770 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1771 return -EINVAL;
1772
1773 meta = dma_alloc_coherent(dev->dev, meta_len,
1774 &meta_dma, GFP_KERNEL);
1775
1776 if (!meta) {
1777 status = -ENOMEM;
1778 goto unmap;
1779 }
1780 if (write) {
1781 if (copy_from_user(meta, metadata, meta_len)) {
1782 status = -EFAULT;
1783 goto unmap;
1784 }
1785 }
1786 }
1787
1788 memset(&c, 0, sizeof(c));
1789 c.rw.opcode = io.opcode;
1790 c.rw.flags = io.flags;
1791 c.rw.nsid = cpu_to_le32(ns->ns_id);
1792 c.rw.slba = cpu_to_le64(io.slba);
1793 c.rw.length = cpu_to_le16(io.nblocks);
1794 c.rw.control = cpu_to_le16(io.control);
1795 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1796 c.rw.reftag = cpu_to_le32(io.reftag);
1797 c.rw.apptag = cpu_to_le16(io.apptag);
1798 c.rw.appmask = cpu_to_le16(io.appmask);
1799 c.rw.metadata = cpu_to_le64(meta_dma);
1800
1801 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1802 (void __user *)io.addr, length, NULL, 0);
1803 unmap:
1804 if (meta) {
1805 if (status == NVME_SC_SUCCESS && !write) {
1806 if (copy_to_user(metadata, meta, meta_len))
1807 status = -EFAULT;
1808 }
1809 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1810 }
1811 return status;
1812 }
1813
1814 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1815 struct nvme_passthru_cmd __user *ucmd)
1816 {
1817 struct nvme_passthru_cmd cmd;
1818 struct nvme_command c;
1819 unsigned timeout = 0;
1820 int status;
1821
1822 if (!capable(CAP_SYS_ADMIN))
1823 return -EACCES;
1824 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1825 return -EFAULT;
1826
1827 memset(&c, 0, sizeof(c));
1828 c.common.opcode = cmd.opcode;
1829 c.common.flags = cmd.flags;
1830 c.common.nsid = cpu_to_le32(cmd.nsid);
1831 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1832 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1833 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1834 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1835 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1836 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1837 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1838 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1839
1840 if (cmd.timeout_ms)
1841 timeout = msecs_to_jiffies(cmd.timeout_ms);
1842
1843 status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1844 NULL, (void __user *)cmd.addr, cmd.data_len,
1845 &cmd.result, timeout);
1846 if (status >= 0) {
1847 if (put_user(cmd.result, &ucmd->result))
1848 return -EFAULT;
1849 }
1850
1851 return status;
1852 }
1853
1854 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1855 unsigned long arg)
1856 {
1857 struct nvme_ns *ns = bdev->bd_disk->private_data;
1858
1859 switch (cmd) {
1860 case NVME_IOCTL_ID:
1861 force_successful_syscall_return();
1862 return ns->ns_id;
1863 case NVME_IOCTL_ADMIN_CMD:
1864 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1865 case NVME_IOCTL_IO_CMD:
1866 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1867 case NVME_IOCTL_SUBMIT_IO:
1868 return nvme_submit_io(ns, (void __user *)arg);
1869 case SG_GET_VERSION_NUM:
1870 return nvme_sg_get_version_num((void __user *)arg);
1871 case SG_IO:
1872 return nvme_sg_io(ns, (void __user *)arg);
1873 default:
1874 return -ENOTTY;
1875 }
1876 }
1877
1878 #ifdef CONFIG_COMPAT
1879 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1880 unsigned int cmd, unsigned long arg)
1881 {
1882 switch (cmd) {
1883 case SG_IO:
1884 return -ENOIOCTLCMD;
1885 }
1886 return nvme_ioctl(bdev, mode, cmd, arg);
1887 }
1888 #else
1889 #define nvme_compat_ioctl NULL
1890 #endif
1891
1892 static int nvme_open(struct block_device *bdev, fmode_t mode)
1893 {
1894 int ret = 0;
1895 struct nvme_ns *ns;
1896
1897 spin_lock(&dev_list_lock);
1898 ns = bdev->bd_disk->private_data;
1899 if (!ns)
1900 ret = -ENXIO;
1901 else if (!kref_get_unless_zero(&ns->dev->kref))
1902 ret = -ENXIO;
1903 spin_unlock(&dev_list_lock);
1904
1905 return ret;
1906 }
1907
1908 static void nvme_free_dev(struct kref *kref);
1909
1910 static void nvme_release(struct gendisk *disk, fmode_t mode)
1911 {
1912 struct nvme_ns *ns = disk->private_data;
1913 struct nvme_dev *dev = ns->dev;
1914
1915 kref_put(&dev->kref, nvme_free_dev);
1916 }
1917
1918 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1919 {
1920 /* some standard values */
1921 geo->heads = 1 << 6;
1922 geo->sectors = 1 << 5;
1923 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1924 return 0;
1925 }
1926
1927 static void nvme_config_discard(struct nvme_ns *ns)
1928 {
1929 u32 logical_block_size = queue_logical_block_size(ns->queue);
1930 ns->queue->limits.discard_zeroes_data = 0;
1931 ns->queue->limits.discard_alignment = logical_block_size;
1932 ns->queue->limits.discard_granularity = logical_block_size;
1933 ns->queue->limits.max_discard_sectors = 0xffffffff;
1934 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1935 }
1936
1937 static int nvme_revalidate_disk(struct gendisk *disk)
1938 {
1939 struct nvme_ns *ns = disk->private_data;
1940 struct nvme_dev *dev = ns->dev;
1941 struct nvme_id_ns *id;
1942 u8 lbaf, pi_type;
1943 u16 old_ms;
1944 unsigned short bs;
1945
1946 if (nvme_identify_ns(dev, ns->ns_id, &id)) {
1947 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
1948 dev->instance, ns->ns_id);
1949 return -ENODEV;
1950 }
1951 if (id->ncap == 0) {
1952 kfree(id);
1953 return -ENODEV;
1954 }
1955
1956 old_ms = ns->ms;
1957 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1958 ns->lba_shift = id->lbaf[lbaf].ds;
1959 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1960 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1961
1962 /*
1963 * If identify namespace failed, use default 512 byte block size so
1964 * block layer can use before failing read/write for 0 capacity.
1965 */
1966 if (ns->lba_shift == 0)
1967 ns->lba_shift = 9;
1968 bs = 1 << ns->lba_shift;
1969
1970 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1971 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1972 id->dps & NVME_NS_DPS_PI_MASK : 0;
1973
1974 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1975 ns->ms != old_ms ||
1976 bs != queue_logical_block_size(disk->queue) ||
1977 (ns->ms && ns->ext)))
1978 blk_integrity_unregister(disk);
1979
1980 ns->pi_type = pi_type;
1981 blk_queue_logical_block_size(ns->queue, bs);
1982
1983 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
1984 !ns->ext)
1985 nvme_init_integrity(ns);
1986
1987 if (ns->ms && !blk_get_integrity(disk))
1988 set_capacity(disk, 0);
1989 else
1990 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1991
1992 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1993 nvme_config_discard(ns);
1994
1995 kfree(id);
1996 return 0;
1997 }
1998
1999 static const struct block_device_operations nvme_fops = {
2000 .owner = THIS_MODULE,
2001 .ioctl = nvme_ioctl,
2002 .compat_ioctl = nvme_compat_ioctl,
2003 .open = nvme_open,
2004 .release = nvme_release,
2005 .getgeo = nvme_getgeo,
2006 .revalidate_disk= nvme_revalidate_disk,
2007 };
2008
2009 static int nvme_kthread(void *data)
2010 {
2011 struct nvme_dev *dev, *next;
2012
2013 while (!kthread_should_stop()) {
2014 set_current_state(TASK_INTERRUPTIBLE);
2015 spin_lock(&dev_list_lock);
2016 list_for_each_entry_safe(dev, next, &dev_list, node) {
2017 int i;
2018 if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2019 if (work_busy(&dev->reset_work))
2020 continue;
2021 list_del_init(&dev->node);
2022 dev_warn(dev->dev,
2023 "Failed status: %x, reset controller\n",
2024 readl(&dev->bar->csts));
2025 dev->reset_workfn = nvme_reset_failed_dev;
2026 queue_work(nvme_workq, &dev->reset_work);
2027 continue;
2028 }
2029 for (i = 0; i < dev->queue_count; i++) {
2030 struct nvme_queue *nvmeq = dev->queues[i];
2031 if (!nvmeq)
2032 continue;
2033 spin_lock_irq(&nvmeq->q_lock);
2034 nvme_process_cq(nvmeq);
2035
2036 while ((i == 0) && (dev->event_limit > 0)) {
2037 if (nvme_submit_async_admin_req(dev))
2038 break;
2039 dev->event_limit--;
2040 }
2041 spin_unlock_irq(&nvmeq->q_lock);
2042 }
2043 }
2044 spin_unlock(&dev_list_lock);
2045 schedule_timeout(round_jiffies_relative(HZ));
2046 }
2047 return 0;
2048 }
2049
2050 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2051 {
2052 struct nvme_ns *ns;
2053 struct gendisk *disk;
2054 int node = dev_to_node(dev->dev);
2055
2056 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2057 if (!ns)
2058 return;
2059
2060 ns->queue = blk_mq_init_queue(&dev->tagset);
2061 if (IS_ERR(ns->queue))
2062 goto out_free_ns;
2063 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2064 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2065 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2066 ns->dev = dev;
2067 ns->queue->queuedata = ns;
2068
2069 disk = alloc_disk_node(0, node);
2070 if (!disk)
2071 goto out_free_queue;
2072
2073 ns->ns_id = nsid;
2074 ns->disk = disk;
2075 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2076 list_add_tail(&ns->list, &dev->namespaces);
2077
2078 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2079 if (dev->max_hw_sectors)
2080 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2081 if (dev->stripe_size)
2082 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2083 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2084 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2085
2086 disk->major = nvme_major;
2087 disk->first_minor = 0;
2088 disk->fops = &nvme_fops;
2089 disk->private_data = ns;
2090 disk->queue = ns->queue;
2091 disk->driverfs_dev = dev->device;
2092 disk->flags = GENHD_FL_EXT_DEVT;
2093 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2094
2095 /*
2096 * Initialize capacity to 0 until we establish the namespace format and
2097 * setup integrity extentions if necessary. The revalidate_disk after
2098 * add_disk allows the driver to register with integrity if the format
2099 * requires it.
2100 */
2101 set_capacity(disk, 0);
2102 if (nvme_revalidate_disk(ns->disk))
2103 goto out_free_disk;
2104
2105 add_disk(ns->disk);
2106 if (ns->ms)
2107 revalidate_disk(ns->disk);
2108 return;
2109 out_free_disk:
2110 kfree(disk);
2111 list_del(&ns->list);
2112 out_free_queue:
2113 blk_cleanup_queue(ns->queue);
2114 out_free_ns:
2115 kfree(ns);
2116 }
2117
2118 static void nvme_create_io_queues(struct nvme_dev *dev)
2119 {
2120 unsigned i;
2121
2122 for (i = dev->queue_count; i <= dev->max_qid; i++)
2123 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2124 break;
2125
2126 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2127 if (nvme_create_queue(dev->queues[i], i))
2128 break;
2129 }
2130
2131 static int set_queue_count(struct nvme_dev *dev, int count)
2132 {
2133 int status;
2134 u32 result;
2135 u32 q_count = (count - 1) | ((count - 1) << 16);
2136
2137 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2138 &result);
2139 if (status < 0)
2140 return status;
2141 if (status > 0) {
2142 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2143 return 0;
2144 }
2145 return min(result & 0xffff, result >> 16) + 1;
2146 }
2147
2148 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2149 {
2150 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2151 }
2152
2153 static int nvme_setup_io_queues(struct nvme_dev *dev)
2154 {
2155 struct nvme_queue *adminq = dev->queues[0];
2156 struct pci_dev *pdev = to_pci_dev(dev->dev);
2157 int result, i, vecs, nr_io_queues, size;
2158
2159 nr_io_queues = num_possible_cpus();
2160 result = set_queue_count(dev, nr_io_queues);
2161 if (result <= 0)
2162 return result;
2163 if (result < nr_io_queues)
2164 nr_io_queues = result;
2165
2166 size = db_bar_size(dev, nr_io_queues);
2167 if (size > 8192) {
2168 iounmap(dev->bar);
2169 do {
2170 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2171 if (dev->bar)
2172 break;
2173 if (!--nr_io_queues)
2174 return -ENOMEM;
2175 size = db_bar_size(dev, nr_io_queues);
2176 } while (1);
2177 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2178 adminq->q_db = dev->dbs;
2179 }
2180
2181 /* Deregister the admin queue's interrupt */
2182 free_irq(dev->entry[0].vector, adminq);
2183
2184 /*
2185 * If we enable msix early due to not intx, disable it again before
2186 * setting up the full range we need.
2187 */
2188 if (!pdev->irq)
2189 pci_disable_msix(pdev);
2190
2191 for (i = 0; i < nr_io_queues; i++)
2192 dev->entry[i].entry = i;
2193 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2194 if (vecs < 0) {
2195 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2196 if (vecs < 0) {
2197 vecs = 1;
2198 } else {
2199 for (i = 0; i < vecs; i++)
2200 dev->entry[i].vector = i + pdev->irq;
2201 }
2202 }
2203
2204 /*
2205 * Should investigate if there's a performance win from allocating
2206 * more queues than interrupt vectors; it might allow the submission
2207 * path to scale better, even if the receive path is limited by the
2208 * number of interrupts.
2209 */
2210 nr_io_queues = vecs;
2211 dev->max_qid = nr_io_queues;
2212
2213 result = queue_request_irq(dev, adminq, adminq->irqname);
2214 if (result)
2215 goto free_queues;
2216
2217 /* Free previously allocated queues that are no longer usable */
2218 nvme_free_queues(dev, nr_io_queues + 1);
2219 nvme_create_io_queues(dev);
2220
2221 return 0;
2222
2223 free_queues:
2224 nvme_free_queues(dev, 1);
2225 return result;
2226 }
2227
2228 static void nvme_free_namespace(struct nvme_ns *ns)
2229 {
2230 list_del(&ns->list);
2231
2232 spin_lock(&dev_list_lock);
2233 ns->disk->private_data = NULL;
2234 spin_unlock(&dev_list_lock);
2235
2236 put_disk(ns->disk);
2237 kfree(ns);
2238 }
2239
2240 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2241 {
2242 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2243 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2244
2245 return nsa->ns_id - nsb->ns_id;
2246 }
2247
2248 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2249 {
2250 struct nvme_ns *ns;
2251
2252 list_for_each_entry(ns, &dev->namespaces, list) {
2253 if (ns->ns_id == nsid)
2254 return ns;
2255 if (ns->ns_id > nsid)
2256 break;
2257 }
2258 return NULL;
2259 }
2260
2261 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2262 {
2263 return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2264 dev->online_queues < 2);
2265 }
2266
2267 static void nvme_ns_remove(struct nvme_ns *ns)
2268 {
2269 bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2270
2271 if (kill)
2272 blk_set_queue_dying(ns->queue);
2273 if (ns->disk->flags & GENHD_FL_UP) {
2274 if (blk_get_integrity(ns->disk))
2275 blk_integrity_unregister(ns->disk);
2276 del_gendisk(ns->disk);
2277 }
2278 if (kill || !blk_queue_dying(ns->queue)) {
2279 blk_mq_abort_requeue_list(ns->queue);
2280 blk_cleanup_queue(ns->queue);
2281 }
2282 }
2283
2284 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2285 {
2286 struct nvme_ns *ns, *next;
2287 unsigned i;
2288
2289 for (i = 1; i <= nn; i++) {
2290 ns = nvme_find_ns(dev, i);
2291 if (ns) {
2292 if (revalidate_disk(ns->disk)) {
2293 nvme_ns_remove(ns);
2294 nvme_free_namespace(ns);
2295 }
2296 } else
2297 nvme_alloc_ns(dev, i);
2298 }
2299 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2300 if (ns->ns_id > nn) {
2301 nvme_ns_remove(ns);
2302 nvme_free_namespace(ns);
2303 }
2304 }
2305 list_sort(NULL, &dev->namespaces, ns_cmp);
2306 }
2307
2308 static void nvme_dev_scan(struct work_struct *work)
2309 {
2310 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2311 struct nvme_id_ctrl *ctrl;
2312
2313 if (!dev->tagset.tags)
2314 return;
2315 if (nvme_identify_ctrl(dev, &ctrl))
2316 return;
2317 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2318 kfree(ctrl);
2319 }
2320
2321 /*
2322 * Return: error value if an error occurred setting up the queues or calling
2323 * Identify Device. 0 if these succeeded, even if adding some of the
2324 * namespaces failed. At the moment, these failures are silent. TBD which
2325 * failures should be reported.
2326 */
2327 static int nvme_dev_add(struct nvme_dev *dev)
2328 {
2329 struct pci_dev *pdev = to_pci_dev(dev->dev);
2330 int res;
2331 unsigned nn;
2332 struct nvme_id_ctrl *ctrl;
2333 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2334
2335 res = nvme_identify_ctrl(dev, &ctrl);
2336 if (res) {
2337 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2338 return -EIO;
2339 }
2340
2341 nn = le32_to_cpup(&ctrl->nn);
2342 dev->oncs = le16_to_cpup(&ctrl->oncs);
2343 dev->abort_limit = ctrl->acl + 1;
2344 dev->vwc = ctrl->vwc;
2345 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2346 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2347 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2348 if (ctrl->mdts)
2349 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2350 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2351 (pdev->device == 0x0953) && ctrl->vs[3]) {
2352 unsigned int max_hw_sectors;
2353
2354 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2355 max_hw_sectors = dev->stripe_size >> (shift - 9);
2356 if (dev->max_hw_sectors) {
2357 dev->max_hw_sectors = min(max_hw_sectors,
2358 dev->max_hw_sectors);
2359 } else
2360 dev->max_hw_sectors = max_hw_sectors;
2361 }
2362 kfree(ctrl);
2363
2364 if (!dev->tagset.tags) {
2365 dev->tagset.ops = &nvme_mq_ops;
2366 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2367 dev->tagset.timeout = NVME_IO_TIMEOUT;
2368 dev->tagset.numa_node = dev_to_node(dev->dev);
2369 dev->tagset.queue_depth =
2370 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2371 dev->tagset.cmd_size = nvme_cmd_size(dev);
2372 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2373 dev->tagset.driver_data = dev;
2374
2375 if (blk_mq_alloc_tag_set(&dev->tagset))
2376 return 0;
2377 }
2378 schedule_work(&dev->scan_work);
2379 return 0;
2380 }
2381
2382 static int nvme_dev_map(struct nvme_dev *dev)
2383 {
2384 u64 cap;
2385 int bars, result = -ENOMEM;
2386 struct pci_dev *pdev = to_pci_dev(dev->dev);
2387
2388 if (pci_enable_device_mem(pdev))
2389 return result;
2390
2391 dev->entry[0].vector = pdev->irq;
2392 pci_set_master(pdev);
2393 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2394 if (!bars)
2395 goto disable_pci;
2396
2397 if (pci_request_selected_regions(pdev, bars, "nvme"))
2398 goto disable_pci;
2399
2400 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2401 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2402 goto disable;
2403
2404 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2405 if (!dev->bar)
2406 goto disable;
2407
2408 if (readl(&dev->bar->csts) == -1) {
2409 result = -ENODEV;
2410 goto unmap;
2411 }
2412
2413 /*
2414 * Some devices don't advertse INTx interrupts, pre-enable a single
2415 * MSIX vec for setup. We'll adjust this later.
2416 */
2417 if (!pdev->irq) {
2418 result = pci_enable_msix(pdev, dev->entry, 1);
2419 if (result < 0)
2420 goto unmap;
2421 }
2422
2423 cap = readq(&dev->bar->cap);
2424 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2425 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2426 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2427
2428 return 0;
2429
2430 unmap:
2431 iounmap(dev->bar);
2432 dev->bar = NULL;
2433 disable:
2434 pci_release_regions(pdev);
2435 disable_pci:
2436 pci_disable_device(pdev);
2437 return result;
2438 }
2439
2440 static void nvme_dev_unmap(struct nvme_dev *dev)
2441 {
2442 struct pci_dev *pdev = to_pci_dev(dev->dev);
2443
2444 if (pdev->msi_enabled)
2445 pci_disable_msi(pdev);
2446 else if (pdev->msix_enabled)
2447 pci_disable_msix(pdev);
2448
2449 if (dev->bar) {
2450 iounmap(dev->bar);
2451 dev->bar = NULL;
2452 pci_release_regions(pdev);
2453 }
2454
2455 if (pci_is_enabled(pdev))
2456 pci_disable_device(pdev);
2457 }
2458
2459 struct nvme_delq_ctx {
2460 struct task_struct *waiter;
2461 struct kthread_worker *worker;
2462 atomic_t refcount;
2463 };
2464
2465 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2466 {
2467 dq->waiter = current;
2468 mb();
2469
2470 for (;;) {
2471 set_current_state(TASK_KILLABLE);
2472 if (!atomic_read(&dq->refcount))
2473 break;
2474 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2475 fatal_signal_pending(current)) {
2476 /*
2477 * Disable the controller first since we can't trust it
2478 * at this point, but leave the admin queue enabled
2479 * until all queue deletion requests are flushed.
2480 * FIXME: This may take a while if there are more h/w
2481 * queues than admin tags.
2482 */
2483 set_current_state(TASK_RUNNING);
2484 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2485 nvme_clear_queue(dev->queues[0]);
2486 flush_kthread_worker(dq->worker);
2487 nvme_disable_queue(dev, 0);
2488 return;
2489 }
2490 }
2491 set_current_state(TASK_RUNNING);
2492 }
2493
2494 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2495 {
2496 atomic_dec(&dq->refcount);
2497 if (dq->waiter)
2498 wake_up_process(dq->waiter);
2499 }
2500
2501 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2502 {
2503 atomic_inc(&dq->refcount);
2504 return dq;
2505 }
2506
2507 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2508 {
2509 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2510 nvme_put_dq(dq);
2511 }
2512
2513 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2514 kthread_work_func_t fn)
2515 {
2516 struct nvme_command c;
2517
2518 memset(&c, 0, sizeof(c));
2519 c.delete_queue.opcode = opcode;
2520 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2521
2522 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2523 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2524 ADMIN_TIMEOUT);
2525 }
2526
2527 static void nvme_del_cq_work_handler(struct kthread_work *work)
2528 {
2529 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2530 cmdinfo.work);
2531 nvme_del_queue_end(nvmeq);
2532 }
2533
2534 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2535 {
2536 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2537 nvme_del_cq_work_handler);
2538 }
2539
2540 static void nvme_del_sq_work_handler(struct kthread_work *work)
2541 {
2542 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2543 cmdinfo.work);
2544 int status = nvmeq->cmdinfo.status;
2545
2546 if (!status)
2547 status = nvme_delete_cq(nvmeq);
2548 if (status)
2549 nvme_del_queue_end(nvmeq);
2550 }
2551
2552 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2553 {
2554 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2555 nvme_del_sq_work_handler);
2556 }
2557
2558 static void nvme_del_queue_start(struct kthread_work *work)
2559 {
2560 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2561 cmdinfo.work);
2562 if (nvme_delete_sq(nvmeq))
2563 nvme_del_queue_end(nvmeq);
2564 }
2565
2566 static void nvme_disable_io_queues(struct nvme_dev *dev)
2567 {
2568 int i;
2569 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2570 struct nvme_delq_ctx dq;
2571 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2572 &worker, "nvme%d", dev->instance);
2573
2574 if (IS_ERR(kworker_task)) {
2575 dev_err(dev->dev,
2576 "Failed to create queue del task\n");
2577 for (i = dev->queue_count - 1; i > 0; i--)
2578 nvme_disable_queue(dev, i);
2579 return;
2580 }
2581
2582 dq.waiter = NULL;
2583 atomic_set(&dq.refcount, 0);
2584 dq.worker = &worker;
2585 for (i = dev->queue_count - 1; i > 0; i--) {
2586 struct nvme_queue *nvmeq = dev->queues[i];
2587
2588 if (nvme_suspend_queue(nvmeq))
2589 continue;
2590 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2591 nvmeq->cmdinfo.worker = dq.worker;
2592 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2593 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2594 }
2595 nvme_wait_dq(&dq, dev);
2596 kthread_stop(kworker_task);
2597 }
2598
2599 /*
2600 * Remove the node from the device list and check
2601 * for whether or not we need to stop the nvme_thread.
2602 */
2603 static void nvme_dev_list_remove(struct nvme_dev *dev)
2604 {
2605 struct task_struct *tmp = NULL;
2606
2607 spin_lock(&dev_list_lock);
2608 list_del_init(&dev->node);
2609 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2610 tmp = nvme_thread;
2611 nvme_thread = NULL;
2612 }
2613 spin_unlock(&dev_list_lock);
2614
2615 if (tmp)
2616 kthread_stop(tmp);
2617 }
2618
2619 static void nvme_freeze_queues(struct nvme_dev *dev)
2620 {
2621 struct nvme_ns *ns;
2622
2623 list_for_each_entry(ns, &dev->namespaces, list) {
2624 blk_mq_freeze_queue_start(ns->queue);
2625
2626 spin_lock_irq(ns->queue->queue_lock);
2627 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2628 spin_unlock_irq(ns->queue->queue_lock);
2629
2630 blk_mq_cancel_requeue_work(ns->queue);
2631 blk_mq_stop_hw_queues(ns->queue);
2632 }
2633 }
2634
2635 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2636 {
2637 struct nvme_ns *ns;
2638
2639 list_for_each_entry(ns, &dev->namespaces, list) {
2640 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2641 blk_mq_unfreeze_queue(ns->queue);
2642 blk_mq_start_stopped_hw_queues(ns->queue, true);
2643 blk_mq_kick_requeue_list(ns->queue);
2644 }
2645 }
2646
2647 static void nvme_dev_shutdown(struct nvme_dev *dev)
2648 {
2649 int i;
2650 u32 csts = -1;
2651
2652 nvme_dev_list_remove(dev);
2653
2654 if (dev->bar) {
2655 nvme_freeze_queues(dev);
2656 csts = readl(&dev->bar->csts);
2657 }
2658 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2659 for (i = dev->queue_count - 1; i >= 0; i--) {
2660 struct nvme_queue *nvmeq = dev->queues[i];
2661 nvme_suspend_queue(nvmeq);
2662 }
2663 } else {
2664 nvme_disable_io_queues(dev);
2665 nvme_shutdown_ctrl(dev);
2666 nvme_disable_queue(dev, 0);
2667 }
2668 nvme_dev_unmap(dev);
2669
2670 for (i = dev->queue_count - 1; i >= 0; i--)
2671 nvme_clear_queue(dev->queues[i]);
2672 }
2673
2674 static void nvme_dev_remove(struct nvme_dev *dev)
2675 {
2676 struct nvme_ns *ns;
2677
2678 list_for_each_entry(ns, &dev->namespaces, list)
2679 nvme_ns_remove(ns);
2680 }
2681
2682 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2683 {
2684 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2685 PAGE_SIZE, PAGE_SIZE, 0);
2686 if (!dev->prp_page_pool)
2687 return -ENOMEM;
2688
2689 /* Optimisation for I/Os between 4k and 128k */
2690 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2691 256, 256, 0);
2692 if (!dev->prp_small_pool) {
2693 dma_pool_destroy(dev->prp_page_pool);
2694 return -ENOMEM;
2695 }
2696 return 0;
2697 }
2698
2699 static void nvme_release_prp_pools(struct nvme_dev *dev)
2700 {
2701 dma_pool_destroy(dev->prp_page_pool);
2702 dma_pool_destroy(dev->prp_small_pool);
2703 }
2704
2705 static DEFINE_IDA(nvme_instance_ida);
2706
2707 static int nvme_set_instance(struct nvme_dev *dev)
2708 {
2709 int instance, error;
2710
2711 do {
2712 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2713 return -ENODEV;
2714
2715 spin_lock(&dev_list_lock);
2716 error = ida_get_new(&nvme_instance_ida, &instance);
2717 spin_unlock(&dev_list_lock);
2718 } while (error == -EAGAIN);
2719
2720 if (error)
2721 return -ENODEV;
2722
2723 dev->instance = instance;
2724 return 0;
2725 }
2726
2727 static void nvme_release_instance(struct nvme_dev *dev)
2728 {
2729 spin_lock(&dev_list_lock);
2730 ida_remove(&nvme_instance_ida, dev->instance);
2731 spin_unlock(&dev_list_lock);
2732 }
2733
2734 static void nvme_free_namespaces(struct nvme_dev *dev)
2735 {
2736 struct nvme_ns *ns, *next;
2737
2738 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2739 nvme_free_namespace(ns);
2740 }
2741
2742 static void nvme_free_dev(struct kref *kref)
2743 {
2744 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2745
2746 put_device(dev->dev);
2747 put_device(dev->device);
2748 nvme_free_namespaces(dev);
2749 nvme_release_instance(dev);
2750 if (dev->tagset.tags)
2751 blk_mq_free_tag_set(&dev->tagset);
2752 if (dev->admin_q)
2753 blk_put_queue(dev->admin_q);
2754 kfree(dev->queues);
2755 kfree(dev->entry);
2756 kfree(dev);
2757 }
2758
2759 static int nvme_dev_open(struct inode *inode, struct file *f)
2760 {
2761 struct nvme_dev *dev;
2762 int instance = iminor(inode);
2763 int ret = -ENODEV;
2764
2765 spin_lock(&dev_list_lock);
2766 list_for_each_entry(dev, &dev_list, node) {
2767 if (dev->instance == instance) {
2768 if (!dev->admin_q) {
2769 ret = -EWOULDBLOCK;
2770 break;
2771 }
2772 if (!kref_get_unless_zero(&dev->kref))
2773 break;
2774 f->private_data = dev;
2775 ret = 0;
2776 break;
2777 }
2778 }
2779 spin_unlock(&dev_list_lock);
2780
2781 return ret;
2782 }
2783
2784 static int nvme_dev_release(struct inode *inode, struct file *f)
2785 {
2786 struct nvme_dev *dev = f->private_data;
2787 kref_put(&dev->kref, nvme_free_dev);
2788 return 0;
2789 }
2790
2791 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2792 {
2793 struct nvme_dev *dev = f->private_data;
2794 struct nvme_ns *ns;
2795
2796 switch (cmd) {
2797 case NVME_IOCTL_ADMIN_CMD:
2798 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2799 case NVME_IOCTL_IO_CMD:
2800 if (list_empty(&dev->namespaces))
2801 return -ENOTTY;
2802 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2803 return nvme_user_cmd(dev, ns, (void __user *)arg);
2804 case NVME_IOCTL_RESET:
2805 dev_warn(dev->dev, "resetting controller\n");
2806 return nvme_reset(dev);
2807 default:
2808 return -ENOTTY;
2809 }
2810 }
2811
2812 static const struct file_operations nvme_dev_fops = {
2813 .owner = THIS_MODULE,
2814 .open = nvme_dev_open,
2815 .release = nvme_dev_release,
2816 .unlocked_ioctl = nvme_dev_ioctl,
2817 .compat_ioctl = nvme_dev_ioctl,
2818 };
2819
2820 static void nvme_set_irq_hints(struct nvme_dev *dev)
2821 {
2822 struct nvme_queue *nvmeq;
2823 int i;
2824
2825 for (i = 0; i < dev->online_queues; i++) {
2826 nvmeq = dev->queues[i];
2827
2828 if (!nvmeq->tags || !(*nvmeq->tags))
2829 continue;
2830
2831 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2832 blk_mq_tags_cpumask(*nvmeq->tags));
2833 }
2834 }
2835
2836 static int nvme_dev_start(struct nvme_dev *dev)
2837 {
2838 int result;
2839 bool start_thread = false;
2840
2841 result = nvme_dev_map(dev);
2842 if (result)
2843 return result;
2844
2845 result = nvme_configure_admin_queue(dev);
2846 if (result)
2847 goto unmap;
2848
2849 spin_lock(&dev_list_lock);
2850 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2851 start_thread = true;
2852 nvme_thread = NULL;
2853 }
2854 list_add(&dev->node, &dev_list);
2855 spin_unlock(&dev_list_lock);
2856
2857 if (start_thread) {
2858 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2859 wake_up_all(&nvme_kthread_wait);
2860 } else
2861 wait_event_killable(nvme_kthread_wait, nvme_thread);
2862
2863 if (IS_ERR_OR_NULL(nvme_thread)) {
2864 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2865 goto disable;
2866 }
2867
2868 nvme_init_queue(dev->queues[0], 0);
2869 result = nvme_alloc_admin_tags(dev);
2870 if (result)
2871 goto disable;
2872
2873 result = nvme_setup_io_queues(dev);
2874 if (result)
2875 goto free_tags;
2876
2877 nvme_set_irq_hints(dev);
2878
2879 dev->event_limit = 1;
2880 return result;
2881
2882 free_tags:
2883 nvme_dev_remove_admin(dev);
2884 blk_put_queue(dev->admin_q);
2885 dev->admin_q = NULL;
2886 dev->queues[0]->tags = NULL;
2887 disable:
2888 nvme_disable_queue(dev, 0);
2889 nvme_dev_list_remove(dev);
2890 unmap:
2891 nvme_dev_unmap(dev);
2892 return result;
2893 }
2894
2895 static int nvme_remove_dead_ctrl(void *arg)
2896 {
2897 struct nvme_dev *dev = (struct nvme_dev *)arg;
2898 struct pci_dev *pdev = to_pci_dev(dev->dev);
2899
2900 if (pci_get_drvdata(pdev))
2901 pci_stop_and_remove_bus_device_locked(pdev);
2902 kref_put(&dev->kref, nvme_free_dev);
2903 return 0;
2904 }
2905
2906 static void nvme_remove_disks(struct work_struct *ws)
2907 {
2908 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2909
2910 nvme_free_queues(dev, 1);
2911 nvme_dev_remove(dev);
2912 }
2913
2914 static int nvme_dev_resume(struct nvme_dev *dev)
2915 {
2916 int ret;
2917
2918 ret = nvme_dev_start(dev);
2919 if (ret)
2920 return ret;
2921 if (dev->online_queues < 2) {
2922 spin_lock(&dev_list_lock);
2923 dev->reset_workfn = nvme_remove_disks;
2924 queue_work(nvme_workq, &dev->reset_work);
2925 spin_unlock(&dev_list_lock);
2926 } else {
2927 nvme_unfreeze_queues(dev);
2928 nvme_dev_add(dev);
2929 nvme_set_irq_hints(dev);
2930 }
2931 return 0;
2932 }
2933
2934 static void nvme_dead_ctrl(struct nvme_dev *dev)
2935 {
2936 dev_warn(dev->dev, "Device failed to resume\n");
2937 kref_get(&dev->kref);
2938 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2939 dev->instance))) {
2940 dev_err(dev->dev,
2941 "Failed to start controller remove task\n");
2942 kref_put(&dev->kref, nvme_free_dev);
2943 }
2944 }
2945
2946 static void nvme_dev_reset(struct nvme_dev *dev)
2947 {
2948 bool in_probe = work_busy(&dev->probe_work);
2949
2950 nvme_dev_shutdown(dev);
2951
2952 /* Synchronize with device probe so that work will see failure status
2953 * and exit gracefully without trying to schedule another reset */
2954 flush_work(&dev->probe_work);
2955
2956 /* Fail this device if reset occured during probe to avoid
2957 * infinite initialization loops. */
2958 if (in_probe) {
2959 nvme_dead_ctrl(dev);
2960 return;
2961 }
2962 /* Schedule device resume asynchronously so the reset work is available
2963 * to cleanup errors that may occur during reinitialization */
2964 schedule_work(&dev->probe_work);
2965 }
2966
2967 static void nvme_reset_failed_dev(struct work_struct *ws)
2968 {
2969 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2970 nvme_dev_reset(dev);
2971 }
2972
2973 static void nvme_reset_workfn(struct work_struct *work)
2974 {
2975 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2976 dev->reset_workfn(work);
2977 }
2978
2979 static int nvme_reset(struct nvme_dev *dev)
2980 {
2981 int ret = -EBUSY;
2982
2983 if (!dev->admin_q || blk_queue_dying(dev->admin_q))
2984 return -ENODEV;
2985
2986 spin_lock(&dev_list_lock);
2987 if (!work_pending(&dev->reset_work)) {
2988 dev->reset_workfn = nvme_reset_failed_dev;
2989 queue_work(nvme_workq, &dev->reset_work);
2990 ret = 0;
2991 }
2992 spin_unlock(&dev_list_lock);
2993
2994 if (!ret) {
2995 flush_work(&dev->reset_work);
2996 flush_work(&dev->probe_work);
2997 return 0;
2998 }
2999
3000 return ret;
3001 }
3002
3003 static ssize_t nvme_sysfs_reset(struct device *dev,
3004 struct device_attribute *attr, const char *buf,
3005 size_t count)
3006 {
3007 struct nvme_dev *ndev = dev_get_drvdata(dev);
3008 int ret;
3009
3010 ret = nvme_reset(ndev);
3011 if (ret < 0)
3012 return ret;
3013
3014 return count;
3015 }
3016 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3017
3018 static void nvme_async_probe(struct work_struct *work);
3019 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3020 {
3021 int node, result = -ENOMEM;
3022 struct nvme_dev *dev;
3023
3024 node = dev_to_node(&pdev->dev);
3025 if (node == NUMA_NO_NODE)
3026 set_dev_node(&pdev->dev, 0);
3027
3028 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3029 if (!dev)
3030 return -ENOMEM;
3031 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3032 GFP_KERNEL, node);
3033 if (!dev->entry)
3034 goto free;
3035 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3036 GFP_KERNEL, node);
3037 if (!dev->queues)
3038 goto free;
3039
3040 INIT_LIST_HEAD(&dev->namespaces);
3041 dev->reset_workfn = nvme_reset_failed_dev;
3042 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
3043 dev->dev = get_device(&pdev->dev);
3044 pci_set_drvdata(pdev, dev);
3045 result = nvme_set_instance(dev);
3046 if (result)
3047 goto put_pci;
3048
3049 result = nvme_setup_prp_pools(dev);
3050 if (result)
3051 goto release;
3052
3053 kref_init(&dev->kref);
3054 dev->device = device_create(nvme_class, &pdev->dev,
3055 MKDEV(nvme_char_major, dev->instance),
3056 dev, "nvme%d", dev->instance);
3057 if (IS_ERR(dev->device)) {
3058 result = PTR_ERR(dev->device);
3059 goto release_pools;
3060 }
3061 get_device(dev->device);
3062 dev_set_drvdata(dev->device, dev);
3063
3064 result = device_create_file(dev->device, &dev_attr_reset_controller);
3065 if (result)
3066 goto put_dev;
3067
3068 INIT_LIST_HEAD(&dev->node);
3069 INIT_WORK(&dev->scan_work, nvme_dev_scan);
3070 INIT_WORK(&dev->probe_work, nvme_async_probe);
3071 schedule_work(&dev->probe_work);
3072 return 0;
3073
3074 put_dev:
3075 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3076 put_device(dev->device);
3077 release_pools:
3078 nvme_release_prp_pools(dev);
3079 release:
3080 nvme_release_instance(dev);
3081 put_pci:
3082 put_device(dev->dev);
3083 free:
3084 kfree(dev->queues);
3085 kfree(dev->entry);
3086 kfree(dev);
3087 return result;
3088 }
3089
3090 static void nvme_async_probe(struct work_struct *work)
3091 {
3092 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3093
3094 if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3095 nvme_dead_ctrl(dev);
3096 }
3097
3098 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3099 {
3100 struct nvme_dev *dev = pci_get_drvdata(pdev);
3101
3102 if (prepare)
3103 nvme_dev_shutdown(dev);
3104 else
3105 nvme_dev_resume(dev);
3106 }
3107
3108 static void nvme_shutdown(struct pci_dev *pdev)
3109 {
3110 struct nvme_dev *dev = pci_get_drvdata(pdev);
3111 nvme_dev_shutdown(dev);
3112 }
3113
3114 static void nvme_remove(struct pci_dev *pdev)
3115 {
3116 struct nvme_dev *dev = pci_get_drvdata(pdev);
3117
3118 spin_lock(&dev_list_lock);
3119 list_del_init(&dev->node);
3120 spin_unlock(&dev_list_lock);
3121
3122 pci_set_drvdata(pdev, NULL);
3123 flush_work(&dev->probe_work);
3124 flush_work(&dev->reset_work);
3125 flush_work(&dev->scan_work);
3126 device_remove_file(dev->device, &dev_attr_reset_controller);
3127 nvme_dev_remove(dev);
3128 nvme_dev_shutdown(dev);
3129 nvme_dev_remove_admin(dev);
3130 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3131 nvme_free_queues(dev, 0);
3132 nvme_release_prp_pools(dev);
3133 kref_put(&dev->kref, nvme_free_dev);
3134 }
3135
3136 /* These functions are yet to be implemented */
3137 #define nvme_error_detected NULL
3138 #define nvme_dump_registers NULL
3139 #define nvme_link_reset NULL
3140 #define nvme_slot_reset NULL
3141 #define nvme_error_resume NULL
3142
3143 #ifdef CONFIG_PM_SLEEP
3144 static int nvme_suspend(struct device *dev)
3145 {
3146 struct pci_dev *pdev = to_pci_dev(dev);
3147 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3148
3149 nvme_dev_shutdown(ndev);
3150 return 0;
3151 }
3152
3153 static int nvme_resume(struct device *dev)
3154 {
3155 struct pci_dev *pdev = to_pci_dev(dev);
3156 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3157
3158 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3159 ndev->reset_workfn = nvme_reset_failed_dev;
3160 queue_work(nvme_workq, &ndev->reset_work);
3161 }
3162 return 0;
3163 }
3164 #endif
3165
3166 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3167
3168 static const struct pci_error_handlers nvme_err_handler = {
3169 .error_detected = nvme_error_detected,
3170 .mmio_enabled = nvme_dump_registers,
3171 .link_reset = nvme_link_reset,
3172 .slot_reset = nvme_slot_reset,
3173 .resume = nvme_error_resume,
3174 .reset_notify = nvme_reset_notify,
3175 };
3176
3177 /* Move to pci_ids.h later */
3178 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
3179
3180 static const struct pci_device_id nvme_id_table[] = {
3181 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3182 { 0, }
3183 };
3184 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3185
3186 static struct pci_driver nvme_driver = {
3187 .name = "nvme",
3188 .id_table = nvme_id_table,
3189 .probe = nvme_probe,
3190 .remove = nvme_remove,
3191 .shutdown = nvme_shutdown,
3192 .driver = {
3193 .pm = &nvme_dev_pm_ops,
3194 },
3195 .err_handler = &nvme_err_handler,
3196 };
3197
3198 static int __init nvme_init(void)
3199 {
3200 int result;
3201
3202 init_waitqueue_head(&nvme_kthread_wait);
3203
3204 nvme_workq = create_singlethread_workqueue("nvme");
3205 if (!nvme_workq)
3206 return -ENOMEM;
3207
3208 result = register_blkdev(nvme_major, "nvme");
3209 if (result < 0)
3210 goto kill_workq;
3211 else if (result > 0)
3212 nvme_major = result;
3213
3214 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3215 &nvme_dev_fops);
3216 if (result < 0)
3217 goto unregister_blkdev;
3218 else if (result > 0)
3219 nvme_char_major = result;
3220
3221 nvme_class = class_create(THIS_MODULE, "nvme");
3222 if (IS_ERR(nvme_class)) {
3223 result = PTR_ERR(nvme_class);
3224 goto unregister_chrdev;
3225 }
3226
3227 result = pci_register_driver(&nvme_driver);
3228 if (result)
3229 goto destroy_class;
3230 return 0;
3231
3232 destroy_class:
3233 class_destroy(nvme_class);
3234 unregister_chrdev:
3235 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3236 unregister_blkdev:
3237 unregister_blkdev(nvme_major, "nvme");
3238 kill_workq:
3239 destroy_workqueue(nvme_workq);
3240 return result;
3241 }
3242
3243 static void __exit nvme_exit(void)
3244 {
3245 pci_unregister_driver(&nvme_driver);
3246 unregister_blkdev(nvme_major, "nvme");
3247 destroy_workqueue(nvme_workq);
3248 class_destroy(nvme_class);
3249 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3250 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3251 _nvme_check_size();
3252 }
3253
3254 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3255 MODULE_LICENSE("GPL");
3256 MODULE_VERSION("1.0");
3257 module_init(nvme_init);
3258 module_exit(nvme_exit);
This page took 0.091217 seconds and 4 git commands to generate.