Merge remote-tracking branch 'battery/for-next'
[deliverable/linux.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG /* Activate rbd_assert() calls */
52
53 /*
54 * The basic unit of block I/O is a sector. It is interpreted in a
55 * number of contexts in Linux (blk, bio, genhd), but the default is
56 * universally 512 bytes. These symbols are just slightly more
57 * meaningful than the bare numbers they represent.
58 */
59 #define SECTOR_SHIFT 9
60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
61
62 /*
63 * Increment the given counter and return its updated value.
64 * If the counter is already 0 it will not be incremented.
65 * If the counter is already at its maximum value returns
66 * -EINVAL without updating it.
67 */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70 unsigned int counter;
71
72 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73 if (counter <= (unsigned int)INT_MAX)
74 return (int)counter;
75
76 atomic_dec(v);
77
78 return -EINVAL;
79 }
80
81 /* Decrement the counter. Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84 int counter;
85
86 counter = atomic_dec_return(v);
87 if (counter >= 0)
88 return counter;
89
90 atomic_inc(v);
91
92 return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR 256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN 16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN \
104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME "-"
109
110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX 64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX 64
117
118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING (1<<0)
124 #define RBD_FEATURE_STRIPINGV2 (1<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2)
126 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
127 RBD_FEATURE_STRIPINGV2 | \
128 RBD_FEATURE_EXCLUSIVE_LOCK)
129
130 /* Features supported by this (client software) implementation. */
131
132 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
133
134 /*
135 * An RBD device name will be "rbd#", where the "rbd" comes from
136 * RBD_DRV_NAME above, and # is a unique integer identifier.
137 */
138 #define DEV_NAME_LEN 32
139
140 /*
141 * block device image metadata (in-memory version)
142 */
143 struct rbd_image_header {
144 /* These six fields never change for a given rbd image */
145 char *object_prefix;
146 __u8 obj_order;
147 __u8 crypt_type;
148 __u8 comp_type;
149 u64 stripe_unit;
150 u64 stripe_count;
151 u64 features; /* Might be changeable someday? */
152
153 /* The remaining fields need to be updated occasionally */
154 u64 image_size;
155 struct ceph_snap_context *snapc;
156 char *snap_names; /* format 1 only */
157 u64 *snap_sizes; /* format 1 only */
158 };
159
160 /*
161 * An rbd image specification.
162 *
163 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
164 * identify an image. Each rbd_dev structure includes a pointer to
165 * an rbd_spec structure that encapsulates this identity.
166 *
167 * Each of the id's in an rbd_spec has an associated name. For a
168 * user-mapped image, the names are supplied and the id's associated
169 * with them are looked up. For a layered image, a parent image is
170 * defined by the tuple, and the names are looked up.
171 *
172 * An rbd_dev structure contains a parent_spec pointer which is
173 * non-null if the image it represents is a child in a layered
174 * image. This pointer will refer to the rbd_spec structure used
175 * by the parent rbd_dev for its own identity (i.e., the structure
176 * is shared between the parent and child).
177 *
178 * Since these structures are populated once, during the discovery
179 * phase of image construction, they are effectively immutable so
180 * we make no effort to synchronize access to them.
181 *
182 * Note that code herein does not assume the image name is known (it
183 * could be a null pointer).
184 */
185 struct rbd_spec {
186 u64 pool_id;
187 const char *pool_name;
188
189 const char *image_id;
190 const char *image_name;
191
192 u64 snap_id;
193 const char *snap_name;
194
195 struct kref kref;
196 };
197
198 /*
199 * an instance of the client. multiple devices may share an rbd client.
200 */
201 struct rbd_client {
202 struct ceph_client *client;
203 struct kref kref;
204 struct list_head node;
205 };
206
207 struct rbd_img_request;
208 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
209
210 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
211
212 struct rbd_obj_request;
213 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
214
215 enum obj_request_type {
216 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
217 };
218
219 enum obj_operation_type {
220 OBJ_OP_WRITE,
221 OBJ_OP_READ,
222 OBJ_OP_DISCARD,
223 };
224
225 enum obj_req_flags {
226 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
227 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
228 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
229 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
230 };
231
232 struct rbd_obj_request {
233 const char *object_name;
234 u64 offset; /* object start byte */
235 u64 length; /* bytes from offset */
236 unsigned long flags;
237
238 /*
239 * An object request associated with an image will have its
240 * img_data flag set; a standalone object request will not.
241 *
242 * A standalone object request will have which == BAD_WHICH
243 * and a null obj_request pointer.
244 *
245 * An object request initiated in support of a layered image
246 * object (to check for its existence before a write) will
247 * have which == BAD_WHICH and a non-null obj_request pointer.
248 *
249 * Finally, an object request for rbd image data will have
250 * which != BAD_WHICH, and will have a non-null img_request
251 * pointer. The value of which will be in the range
252 * 0..(img_request->obj_request_count-1).
253 */
254 union {
255 struct rbd_obj_request *obj_request; /* STAT op */
256 struct {
257 struct rbd_img_request *img_request;
258 u64 img_offset;
259 /* links for img_request->obj_requests list */
260 struct list_head links;
261 };
262 };
263 u32 which; /* posn image request list */
264
265 enum obj_request_type type;
266 union {
267 struct bio *bio_list;
268 struct {
269 struct page **pages;
270 u32 page_count;
271 };
272 };
273 struct page **copyup_pages;
274 u32 copyup_page_count;
275
276 struct ceph_osd_request *osd_req;
277
278 u64 xferred; /* bytes transferred */
279 int result;
280
281 rbd_obj_callback_t callback;
282 struct completion completion;
283
284 struct kref kref;
285 };
286
287 enum img_req_flags {
288 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
289 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
290 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
291 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
292 };
293
294 struct rbd_img_request {
295 struct rbd_device *rbd_dev;
296 u64 offset; /* starting image byte offset */
297 u64 length; /* byte count from offset */
298 unsigned long flags;
299 union {
300 u64 snap_id; /* for reads */
301 struct ceph_snap_context *snapc; /* for writes */
302 };
303 union {
304 struct request *rq; /* block request */
305 struct rbd_obj_request *obj_request; /* obj req initiator */
306 };
307 struct page **copyup_pages;
308 u32 copyup_page_count;
309 spinlock_t completion_lock;/* protects next_completion */
310 u32 next_completion;
311 rbd_img_callback_t callback;
312 u64 xferred;/* aggregate bytes transferred */
313 int result; /* first nonzero obj_request result */
314
315 u32 obj_request_count;
316 struct list_head obj_requests; /* rbd_obj_request structs */
317
318 struct kref kref;
319 };
320
321 #define for_each_obj_request(ireq, oreq) \
322 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
323 #define for_each_obj_request_from(ireq, oreq) \
324 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_safe(ireq, oreq, n) \
326 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
327
328 enum rbd_watch_state {
329 RBD_WATCH_STATE_UNREGISTERED,
330 RBD_WATCH_STATE_REGISTERED,
331 RBD_WATCH_STATE_ERROR,
332 };
333
334 enum rbd_lock_state {
335 RBD_LOCK_STATE_UNLOCKED,
336 RBD_LOCK_STATE_LOCKED,
337 RBD_LOCK_STATE_RELEASING,
338 };
339
340 /* WatchNotify::ClientId */
341 struct rbd_client_id {
342 u64 gid;
343 u64 handle;
344 };
345
346 struct rbd_mapping {
347 u64 size;
348 u64 features;
349 bool read_only;
350 };
351
352 /*
353 * a single device
354 */
355 struct rbd_device {
356 int dev_id; /* blkdev unique id */
357
358 int major; /* blkdev assigned major */
359 int minor;
360 struct gendisk *disk; /* blkdev's gendisk and rq */
361
362 u32 image_format; /* Either 1 or 2 */
363 struct rbd_client *rbd_client;
364
365 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
366
367 spinlock_t lock; /* queue, flags, open_count */
368
369 struct rbd_image_header header;
370 unsigned long flags; /* possibly lock protected */
371 struct rbd_spec *spec;
372 struct rbd_options *opts;
373 char *config_info; /* add{,_single_major} string */
374
375 struct ceph_object_id header_oid;
376 struct ceph_object_locator header_oloc;
377
378 struct ceph_file_layout layout; /* used for all rbd requests */
379
380 struct mutex watch_mutex;
381 enum rbd_watch_state watch_state;
382 struct ceph_osd_linger_request *watch_handle;
383 u64 watch_cookie;
384 struct delayed_work watch_dwork;
385
386 struct rw_semaphore lock_rwsem;
387 enum rbd_lock_state lock_state;
388 struct rbd_client_id owner_cid;
389 struct work_struct acquired_lock_work;
390 struct work_struct released_lock_work;
391 struct delayed_work lock_dwork;
392 struct work_struct unlock_work;
393 wait_queue_head_t lock_waitq;
394
395 struct workqueue_struct *task_wq;
396
397 struct rbd_spec *parent_spec;
398 u64 parent_overlap;
399 atomic_t parent_ref;
400 struct rbd_device *parent;
401
402 /* Block layer tags. */
403 struct blk_mq_tag_set tag_set;
404
405 /* protects updating the header */
406 struct rw_semaphore header_rwsem;
407
408 struct rbd_mapping mapping;
409
410 struct list_head node;
411
412 /* sysfs related */
413 struct device dev;
414 unsigned long open_count; /* protected by lock */
415 };
416
417 /*
418 * Flag bits for rbd_dev->flags. If atomicity is required,
419 * rbd_dev->lock is used to protect access.
420 *
421 * Currently, only the "removing" flag (which is coupled with the
422 * "open_count" field) requires atomic access.
423 */
424 enum rbd_dev_flags {
425 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
426 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
427 };
428
429 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
430
431 static LIST_HEAD(rbd_dev_list); /* devices */
432 static DEFINE_SPINLOCK(rbd_dev_list_lock);
433
434 static LIST_HEAD(rbd_client_list); /* clients */
435 static DEFINE_SPINLOCK(rbd_client_list_lock);
436
437 /* Slab caches for frequently-allocated structures */
438
439 static struct kmem_cache *rbd_img_request_cache;
440 static struct kmem_cache *rbd_obj_request_cache;
441 static struct kmem_cache *rbd_segment_name_cache;
442
443 static int rbd_major;
444 static DEFINE_IDA(rbd_dev_id_ida);
445
446 static struct workqueue_struct *rbd_wq;
447
448 /*
449 * Default to false for now, as single-major requires >= 0.75 version of
450 * userspace rbd utility.
451 */
452 static bool single_major = false;
453 module_param(single_major, bool, S_IRUGO);
454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
455
456 static int rbd_img_request_submit(struct rbd_img_request *img_request);
457
458 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
459 size_t count);
460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
461 size_t count);
462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
463 size_t count);
464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
465 size_t count);
466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
467 static void rbd_spec_put(struct rbd_spec *spec);
468
469 static int rbd_dev_id_to_minor(int dev_id)
470 {
471 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
472 }
473
474 static int minor_to_rbd_dev_id(int minor)
475 {
476 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
477 }
478
479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
480 {
481 return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
482 rbd_dev->spec->snap_id == CEPH_NOSNAP &&
483 !rbd_dev->mapping.read_only;
484 }
485
486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
487 {
488 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
489 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
490 }
491
492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
493 {
494 bool is_lock_owner;
495
496 down_read(&rbd_dev->lock_rwsem);
497 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
498 up_read(&rbd_dev->lock_rwsem);
499 return is_lock_owner;
500 }
501
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506
507 static struct attribute *rbd_bus_attrs[] = {
508 &bus_attr_add.attr,
509 &bus_attr_remove.attr,
510 &bus_attr_add_single_major.attr,
511 &bus_attr_remove_single_major.attr,
512 NULL,
513 };
514
515 static umode_t rbd_bus_is_visible(struct kobject *kobj,
516 struct attribute *attr, int index)
517 {
518 if (!single_major &&
519 (attr == &bus_attr_add_single_major.attr ||
520 attr == &bus_attr_remove_single_major.attr))
521 return 0;
522
523 return attr->mode;
524 }
525
526 static const struct attribute_group rbd_bus_group = {
527 .attrs = rbd_bus_attrs,
528 .is_visible = rbd_bus_is_visible,
529 };
530 __ATTRIBUTE_GROUPS(rbd_bus);
531
532 static struct bus_type rbd_bus_type = {
533 .name = "rbd",
534 .bus_groups = rbd_bus_groups,
535 };
536
537 static void rbd_root_dev_release(struct device *dev)
538 {
539 }
540
541 static struct device rbd_root_dev = {
542 .init_name = "rbd",
543 .release = rbd_root_dev_release,
544 };
545
546 static __printf(2, 3)
547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
548 {
549 struct va_format vaf;
550 va_list args;
551
552 va_start(args, fmt);
553 vaf.fmt = fmt;
554 vaf.va = &args;
555
556 if (!rbd_dev)
557 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
558 else if (rbd_dev->disk)
559 printk(KERN_WARNING "%s: %s: %pV\n",
560 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
561 else if (rbd_dev->spec && rbd_dev->spec->image_name)
562 printk(KERN_WARNING "%s: image %s: %pV\n",
563 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
564 else if (rbd_dev->spec && rbd_dev->spec->image_id)
565 printk(KERN_WARNING "%s: id %s: %pV\n",
566 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
567 else /* punt */
568 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
569 RBD_DRV_NAME, rbd_dev, &vaf);
570 va_end(args);
571 }
572
573 #ifdef RBD_DEBUG
574 #define rbd_assert(expr) \
575 if (unlikely(!(expr))) { \
576 printk(KERN_ERR "\nAssertion failure in %s() " \
577 "at line %d:\n\n" \
578 "\trbd_assert(%s);\n\n", \
579 __func__, __LINE__, #expr); \
580 BUG(); \
581 }
582 #else /* !RBD_DEBUG */
583 # define rbd_assert(expr) ((void) 0)
584 #endif /* !RBD_DEBUG */
585
586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
590
591 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
593 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
596 u64 snap_id);
597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
598 u8 *order, u64 *snap_size);
599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
600 u64 *snap_features);
601
602 static int rbd_open(struct block_device *bdev, fmode_t mode)
603 {
604 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
605 bool removing = false;
606
607 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
608 return -EROFS;
609
610 spin_lock_irq(&rbd_dev->lock);
611 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
612 removing = true;
613 else
614 rbd_dev->open_count++;
615 spin_unlock_irq(&rbd_dev->lock);
616 if (removing)
617 return -ENOENT;
618
619 (void) get_device(&rbd_dev->dev);
620
621 return 0;
622 }
623
624 static void rbd_release(struct gendisk *disk, fmode_t mode)
625 {
626 struct rbd_device *rbd_dev = disk->private_data;
627 unsigned long open_count_before;
628
629 spin_lock_irq(&rbd_dev->lock);
630 open_count_before = rbd_dev->open_count--;
631 spin_unlock_irq(&rbd_dev->lock);
632 rbd_assert(open_count_before > 0);
633
634 put_device(&rbd_dev->dev);
635 }
636
637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
638 {
639 int ret = 0;
640 int val;
641 bool ro;
642 bool ro_changed = false;
643
644 /* get_user() may sleep, so call it before taking rbd_dev->lock */
645 if (get_user(val, (int __user *)(arg)))
646 return -EFAULT;
647
648 ro = val ? true : false;
649 /* Snapshot doesn't allow to write*/
650 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
651 return -EROFS;
652
653 spin_lock_irq(&rbd_dev->lock);
654 /* prevent others open this device */
655 if (rbd_dev->open_count > 1) {
656 ret = -EBUSY;
657 goto out;
658 }
659
660 if (rbd_dev->mapping.read_only != ro) {
661 rbd_dev->mapping.read_only = ro;
662 ro_changed = true;
663 }
664
665 out:
666 spin_unlock_irq(&rbd_dev->lock);
667 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
668 if (ret == 0 && ro_changed)
669 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
670
671 return ret;
672 }
673
674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
675 unsigned int cmd, unsigned long arg)
676 {
677 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
678 int ret = 0;
679
680 switch (cmd) {
681 case BLKROSET:
682 ret = rbd_ioctl_set_ro(rbd_dev, arg);
683 break;
684 default:
685 ret = -ENOTTY;
686 }
687
688 return ret;
689 }
690
691 #ifdef CONFIG_COMPAT
692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
693 unsigned int cmd, unsigned long arg)
694 {
695 return rbd_ioctl(bdev, mode, cmd, arg);
696 }
697 #endif /* CONFIG_COMPAT */
698
699 static const struct block_device_operations rbd_bd_ops = {
700 .owner = THIS_MODULE,
701 .open = rbd_open,
702 .release = rbd_release,
703 .ioctl = rbd_ioctl,
704 #ifdef CONFIG_COMPAT
705 .compat_ioctl = rbd_compat_ioctl,
706 #endif
707 };
708
709 /*
710 * Initialize an rbd client instance. Success or not, this function
711 * consumes ceph_opts. Caller holds client_mutex.
712 */
713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
714 {
715 struct rbd_client *rbdc;
716 int ret = -ENOMEM;
717
718 dout("%s:\n", __func__);
719 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
720 if (!rbdc)
721 goto out_opt;
722
723 kref_init(&rbdc->kref);
724 INIT_LIST_HEAD(&rbdc->node);
725
726 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
727 if (IS_ERR(rbdc->client))
728 goto out_rbdc;
729 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
730
731 ret = ceph_open_session(rbdc->client);
732 if (ret < 0)
733 goto out_client;
734
735 spin_lock(&rbd_client_list_lock);
736 list_add_tail(&rbdc->node, &rbd_client_list);
737 spin_unlock(&rbd_client_list_lock);
738
739 dout("%s: rbdc %p\n", __func__, rbdc);
740
741 return rbdc;
742 out_client:
743 ceph_destroy_client(rbdc->client);
744 out_rbdc:
745 kfree(rbdc);
746 out_opt:
747 if (ceph_opts)
748 ceph_destroy_options(ceph_opts);
749 dout("%s: error %d\n", __func__, ret);
750
751 return ERR_PTR(ret);
752 }
753
754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
755 {
756 kref_get(&rbdc->kref);
757
758 return rbdc;
759 }
760
761 /*
762 * Find a ceph client with specific addr and configuration. If
763 * found, bump its reference count.
764 */
765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
766 {
767 struct rbd_client *client_node;
768 bool found = false;
769
770 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
771 return NULL;
772
773 spin_lock(&rbd_client_list_lock);
774 list_for_each_entry(client_node, &rbd_client_list, node) {
775 if (!ceph_compare_options(ceph_opts, client_node->client)) {
776 __rbd_get_client(client_node);
777
778 found = true;
779 break;
780 }
781 }
782 spin_unlock(&rbd_client_list_lock);
783
784 return found ? client_node : NULL;
785 }
786
787 /*
788 * (Per device) rbd map options
789 */
790 enum {
791 Opt_queue_depth,
792 Opt_last_int,
793 /* int args above */
794 Opt_last_string,
795 /* string args above */
796 Opt_read_only,
797 Opt_read_write,
798 Opt_err
799 };
800
801 static match_table_t rbd_opts_tokens = {
802 {Opt_queue_depth, "queue_depth=%d"},
803 /* int args above */
804 /* string args above */
805 {Opt_read_only, "read_only"},
806 {Opt_read_only, "ro"}, /* Alternate spelling */
807 {Opt_read_write, "read_write"},
808 {Opt_read_write, "rw"}, /* Alternate spelling */
809 {Opt_err, NULL}
810 };
811
812 struct rbd_options {
813 int queue_depth;
814 bool read_only;
815 };
816
817 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
818 #define RBD_READ_ONLY_DEFAULT false
819
820 static int parse_rbd_opts_token(char *c, void *private)
821 {
822 struct rbd_options *rbd_opts = private;
823 substring_t argstr[MAX_OPT_ARGS];
824 int token, intval, ret;
825
826 token = match_token(c, rbd_opts_tokens, argstr);
827 if (token < Opt_last_int) {
828 ret = match_int(&argstr[0], &intval);
829 if (ret < 0) {
830 pr_err("bad mount option arg (not int) at '%s'\n", c);
831 return ret;
832 }
833 dout("got int token %d val %d\n", token, intval);
834 } else if (token > Opt_last_int && token < Opt_last_string) {
835 dout("got string token %d val %s\n", token, argstr[0].from);
836 } else {
837 dout("got token %d\n", token);
838 }
839
840 switch (token) {
841 case Opt_queue_depth:
842 if (intval < 1) {
843 pr_err("queue_depth out of range\n");
844 return -EINVAL;
845 }
846 rbd_opts->queue_depth = intval;
847 break;
848 case Opt_read_only:
849 rbd_opts->read_only = true;
850 break;
851 case Opt_read_write:
852 rbd_opts->read_only = false;
853 break;
854 default:
855 /* libceph prints "bad option" msg */
856 return -EINVAL;
857 }
858
859 return 0;
860 }
861
862 static char* obj_op_name(enum obj_operation_type op_type)
863 {
864 switch (op_type) {
865 case OBJ_OP_READ:
866 return "read";
867 case OBJ_OP_WRITE:
868 return "write";
869 case OBJ_OP_DISCARD:
870 return "discard";
871 default:
872 return "???";
873 }
874 }
875
876 /*
877 * Get a ceph client with specific addr and configuration, if one does
878 * not exist create it. Either way, ceph_opts is consumed by this
879 * function.
880 */
881 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
882 {
883 struct rbd_client *rbdc;
884
885 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
886 rbdc = rbd_client_find(ceph_opts);
887 if (rbdc) /* using an existing client */
888 ceph_destroy_options(ceph_opts);
889 else
890 rbdc = rbd_client_create(ceph_opts);
891 mutex_unlock(&client_mutex);
892
893 return rbdc;
894 }
895
896 /*
897 * Destroy ceph client
898 *
899 * Caller must hold rbd_client_list_lock.
900 */
901 static void rbd_client_release(struct kref *kref)
902 {
903 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
904
905 dout("%s: rbdc %p\n", __func__, rbdc);
906 spin_lock(&rbd_client_list_lock);
907 list_del(&rbdc->node);
908 spin_unlock(&rbd_client_list_lock);
909
910 ceph_destroy_client(rbdc->client);
911 kfree(rbdc);
912 }
913
914 /*
915 * Drop reference to ceph client node. If it's not referenced anymore, release
916 * it.
917 */
918 static void rbd_put_client(struct rbd_client *rbdc)
919 {
920 if (rbdc)
921 kref_put(&rbdc->kref, rbd_client_release);
922 }
923
924 static bool rbd_image_format_valid(u32 image_format)
925 {
926 return image_format == 1 || image_format == 2;
927 }
928
929 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
930 {
931 size_t size;
932 u32 snap_count;
933
934 /* The header has to start with the magic rbd header text */
935 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
936 return false;
937
938 /* The bio layer requires at least sector-sized I/O */
939
940 if (ondisk->options.order < SECTOR_SHIFT)
941 return false;
942
943 /* If we use u64 in a few spots we may be able to loosen this */
944
945 if (ondisk->options.order > 8 * sizeof (int) - 1)
946 return false;
947
948 /*
949 * The size of a snapshot header has to fit in a size_t, and
950 * that limits the number of snapshots.
951 */
952 snap_count = le32_to_cpu(ondisk->snap_count);
953 size = SIZE_MAX - sizeof (struct ceph_snap_context);
954 if (snap_count > size / sizeof (__le64))
955 return false;
956
957 /*
958 * Not only that, but the size of the entire the snapshot
959 * header must also be representable in a size_t.
960 */
961 size -= snap_count * sizeof (__le64);
962 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
963 return false;
964
965 return true;
966 }
967
968 /*
969 * Fill an rbd image header with information from the given format 1
970 * on-disk header.
971 */
972 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
973 struct rbd_image_header_ondisk *ondisk)
974 {
975 struct rbd_image_header *header = &rbd_dev->header;
976 bool first_time = header->object_prefix == NULL;
977 struct ceph_snap_context *snapc;
978 char *object_prefix = NULL;
979 char *snap_names = NULL;
980 u64 *snap_sizes = NULL;
981 u32 snap_count;
982 size_t size;
983 int ret = -ENOMEM;
984 u32 i;
985
986 /* Allocate this now to avoid having to handle failure below */
987
988 if (first_time) {
989 size_t len;
990
991 len = strnlen(ondisk->object_prefix,
992 sizeof (ondisk->object_prefix));
993 object_prefix = kmalloc(len + 1, GFP_KERNEL);
994 if (!object_prefix)
995 return -ENOMEM;
996 memcpy(object_prefix, ondisk->object_prefix, len);
997 object_prefix[len] = '\0';
998 }
999
1000 /* Allocate the snapshot context and fill it in */
1001
1002 snap_count = le32_to_cpu(ondisk->snap_count);
1003 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1004 if (!snapc)
1005 goto out_err;
1006 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1007 if (snap_count) {
1008 struct rbd_image_snap_ondisk *snaps;
1009 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1010
1011 /* We'll keep a copy of the snapshot names... */
1012
1013 if (snap_names_len > (u64)SIZE_MAX)
1014 goto out_2big;
1015 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1016 if (!snap_names)
1017 goto out_err;
1018
1019 /* ...as well as the array of their sizes. */
1020
1021 size = snap_count * sizeof (*header->snap_sizes);
1022 snap_sizes = kmalloc(size, GFP_KERNEL);
1023 if (!snap_sizes)
1024 goto out_err;
1025
1026 /*
1027 * Copy the names, and fill in each snapshot's id
1028 * and size.
1029 *
1030 * Note that rbd_dev_v1_header_info() guarantees the
1031 * ondisk buffer we're working with has
1032 * snap_names_len bytes beyond the end of the
1033 * snapshot id array, this memcpy() is safe.
1034 */
1035 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1036 snaps = ondisk->snaps;
1037 for (i = 0; i < snap_count; i++) {
1038 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1039 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1040 }
1041 }
1042
1043 /* We won't fail any more, fill in the header */
1044
1045 if (first_time) {
1046 header->object_prefix = object_prefix;
1047 header->obj_order = ondisk->options.order;
1048 header->crypt_type = ondisk->options.crypt_type;
1049 header->comp_type = ondisk->options.comp_type;
1050 /* The rest aren't used for format 1 images */
1051 header->stripe_unit = 0;
1052 header->stripe_count = 0;
1053 header->features = 0;
1054 } else {
1055 ceph_put_snap_context(header->snapc);
1056 kfree(header->snap_names);
1057 kfree(header->snap_sizes);
1058 }
1059
1060 /* The remaining fields always get updated (when we refresh) */
1061
1062 header->image_size = le64_to_cpu(ondisk->image_size);
1063 header->snapc = snapc;
1064 header->snap_names = snap_names;
1065 header->snap_sizes = snap_sizes;
1066
1067 return 0;
1068 out_2big:
1069 ret = -EIO;
1070 out_err:
1071 kfree(snap_sizes);
1072 kfree(snap_names);
1073 ceph_put_snap_context(snapc);
1074 kfree(object_prefix);
1075
1076 return ret;
1077 }
1078
1079 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1080 {
1081 const char *snap_name;
1082
1083 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1084
1085 /* Skip over names until we find the one we are looking for */
1086
1087 snap_name = rbd_dev->header.snap_names;
1088 while (which--)
1089 snap_name += strlen(snap_name) + 1;
1090
1091 return kstrdup(snap_name, GFP_KERNEL);
1092 }
1093
1094 /*
1095 * Snapshot id comparison function for use with qsort()/bsearch().
1096 * Note that result is for snapshots in *descending* order.
1097 */
1098 static int snapid_compare_reverse(const void *s1, const void *s2)
1099 {
1100 u64 snap_id1 = *(u64 *)s1;
1101 u64 snap_id2 = *(u64 *)s2;
1102
1103 if (snap_id1 < snap_id2)
1104 return 1;
1105 return snap_id1 == snap_id2 ? 0 : -1;
1106 }
1107
1108 /*
1109 * Search a snapshot context to see if the given snapshot id is
1110 * present.
1111 *
1112 * Returns the position of the snapshot id in the array if it's found,
1113 * or BAD_SNAP_INDEX otherwise.
1114 *
1115 * Note: The snapshot array is in kept sorted (by the osd) in
1116 * reverse order, highest snapshot id first.
1117 */
1118 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1119 {
1120 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1121 u64 *found;
1122
1123 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1124 sizeof (snap_id), snapid_compare_reverse);
1125
1126 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1127 }
1128
1129 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1130 u64 snap_id)
1131 {
1132 u32 which;
1133 const char *snap_name;
1134
1135 which = rbd_dev_snap_index(rbd_dev, snap_id);
1136 if (which == BAD_SNAP_INDEX)
1137 return ERR_PTR(-ENOENT);
1138
1139 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1140 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1141 }
1142
1143 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1144 {
1145 if (snap_id == CEPH_NOSNAP)
1146 return RBD_SNAP_HEAD_NAME;
1147
1148 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1149 if (rbd_dev->image_format == 1)
1150 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1151
1152 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1153 }
1154
1155 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1156 u64 *snap_size)
1157 {
1158 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1159 if (snap_id == CEPH_NOSNAP) {
1160 *snap_size = rbd_dev->header.image_size;
1161 } else if (rbd_dev->image_format == 1) {
1162 u32 which;
1163
1164 which = rbd_dev_snap_index(rbd_dev, snap_id);
1165 if (which == BAD_SNAP_INDEX)
1166 return -ENOENT;
1167
1168 *snap_size = rbd_dev->header.snap_sizes[which];
1169 } else {
1170 u64 size = 0;
1171 int ret;
1172
1173 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1174 if (ret)
1175 return ret;
1176
1177 *snap_size = size;
1178 }
1179 return 0;
1180 }
1181
1182 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1183 u64 *snap_features)
1184 {
1185 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1186 if (snap_id == CEPH_NOSNAP) {
1187 *snap_features = rbd_dev->header.features;
1188 } else if (rbd_dev->image_format == 1) {
1189 *snap_features = 0; /* No features for format 1 */
1190 } else {
1191 u64 features = 0;
1192 int ret;
1193
1194 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1195 if (ret)
1196 return ret;
1197
1198 *snap_features = features;
1199 }
1200 return 0;
1201 }
1202
1203 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1204 {
1205 u64 snap_id = rbd_dev->spec->snap_id;
1206 u64 size = 0;
1207 u64 features = 0;
1208 int ret;
1209
1210 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1211 if (ret)
1212 return ret;
1213 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1214 if (ret)
1215 return ret;
1216
1217 rbd_dev->mapping.size = size;
1218 rbd_dev->mapping.features = features;
1219
1220 return 0;
1221 }
1222
1223 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1224 {
1225 rbd_dev->mapping.size = 0;
1226 rbd_dev->mapping.features = 0;
1227 }
1228
1229 static void rbd_segment_name_free(const char *name)
1230 {
1231 /* The explicit cast here is needed to drop the const qualifier */
1232
1233 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1234 }
1235
1236 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1237 {
1238 char *name;
1239 u64 segment;
1240 int ret;
1241 char *name_format;
1242
1243 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1244 if (!name)
1245 return NULL;
1246 segment = offset >> rbd_dev->header.obj_order;
1247 name_format = "%s.%012llx";
1248 if (rbd_dev->image_format == 2)
1249 name_format = "%s.%016llx";
1250 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1251 rbd_dev->header.object_prefix, segment);
1252 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1253 pr_err("error formatting segment name for #%llu (%d)\n",
1254 segment, ret);
1255 rbd_segment_name_free(name);
1256 name = NULL;
1257 }
1258
1259 return name;
1260 }
1261
1262 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1263 {
1264 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1265
1266 return offset & (segment_size - 1);
1267 }
1268
1269 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1270 u64 offset, u64 length)
1271 {
1272 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1273
1274 offset &= segment_size - 1;
1275
1276 rbd_assert(length <= U64_MAX - offset);
1277 if (offset + length > segment_size)
1278 length = segment_size - offset;
1279
1280 return length;
1281 }
1282
1283 /*
1284 * returns the size of an object in the image
1285 */
1286 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1287 {
1288 return 1 << header->obj_order;
1289 }
1290
1291 /*
1292 * bio helpers
1293 */
1294
1295 static void bio_chain_put(struct bio *chain)
1296 {
1297 struct bio *tmp;
1298
1299 while (chain) {
1300 tmp = chain;
1301 chain = chain->bi_next;
1302 bio_put(tmp);
1303 }
1304 }
1305
1306 /*
1307 * zeros a bio chain, starting at specific offset
1308 */
1309 static void zero_bio_chain(struct bio *chain, int start_ofs)
1310 {
1311 struct bio_vec bv;
1312 struct bvec_iter iter;
1313 unsigned long flags;
1314 void *buf;
1315 int pos = 0;
1316
1317 while (chain) {
1318 bio_for_each_segment(bv, chain, iter) {
1319 if (pos + bv.bv_len > start_ofs) {
1320 int remainder = max(start_ofs - pos, 0);
1321 buf = bvec_kmap_irq(&bv, &flags);
1322 memset(buf + remainder, 0,
1323 bv.bv_len - remainder);
1324 flush_dcache_page(bv.bv_page);
1325 bvec_kunmap_irq(buf, &flags);
1326 }
1327 pos += bv.bv_len;
1328 }
1329
1330 chain = chain->bi_next;
1331 }
1332 }
1333
1334 /*
1335 * similar to zero_bio_chain(), zeros data defined by a page array,
1336 * starting at the given byte offset from the start of the array and
1337 * continuing up to the given end offset. The pages array is
1338 * assumed to be big enough to hold all bytes up to the end.
1339 */
1340 static void zero_pages(struct page **pages, u64 offset, u64 end)
1341 {
1342 struct page **page = &pages[offset >> PAGE_SHIFT];
1343
1344 rbd_assert(end > offset);
1345 rbd_assert(end - offset <= (u64)SIZE_MAX);
1346 while (offset < end) {
1347 size_t page_offset;
1348 size_t length;
1349 unsigned long flags;
1350 void *kaddr;
1351
1352 page_offset = offset & ~PAGE_MASK;
1353 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1354 local_irq_save(flags);
1355 kaddr = kmap_atomic(*page);
1356 memset(kaddr + page_offset, 0, length);
1357 flush_dcache_page(*page);
1358 kunmap_atomic(kaddr);
1359 local_irq_restore(flags);
1360
1361 offset += length;
1362 page++;
1363 }
1364 }
1365
1366 /*
1367 * Clone a portion of a bio, starting at the given byte offset
1368 * and continuing for the number of bytes indicated.
1369 */
1370 static struct bio *bio_clone_range(struct bio *bio_src,
1371 unsigned int offset,
1372 unsigned int len,
1373 gfp_t gfpmask)
1374 {
1375 struct bio *bio;
1376
1377 bio = bio_clone(bio_src, gfpmask);
1378 if (!bio)
1379 return NULL; /* ENOMEM */
1380
1381 bio_advance(bio, offset);
1382 bio->bi_iter.bi_size = len;
1383
1384 return bio;
1385 }
1386
1387 /*
1388 * Clone a portion of a bio chain, starting at the given byte offset
1389 * into the first bio in the source chain and continuing for the
1390 * number of bytes indicated. The result is another bio chain of
1391 * exactly the given length, or a null pointer on error.
1392 *
1393 * The bio_src and offset parameters are both in-out. On entry they
1394 * refer to the first source bio and the offset into that bio where
1395 * the start of data to be cloned is located.
1396 *
1397 * On return, bio_src is updated to refer to the bio in the source
1398 * chain that contains first un-cloned byte, and *offset will
1399 * contain the offset of that byte within that bio.
1400 */
1401 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1402 unsigned int *offset,
1403 unsigned int len,
1404 gfp_t gfpmask)
1405 {
1406 struct bio *bi = *bio_src;
1407 unsigned int off = *offset;
1408 struct bio *chain = NULL;
1409 struct bio **end;
1410
1411 /* Build up a chain of clone bios up to the limit */
1412
1413 if (!bi || off >= bi->bi_iter.bi_size || !len)
1414 return NULL; /* Nothing to clone */
1415
1416 end = &chain;
1417 while (len) {
1418 unsigned int bi_size;
1419 struct bio *bio;
1420
1421 if (!bi) {
1422 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1423 goto out_err; /* EINVAL; ran out of bio's */
1424 }
1425 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1426 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1427 if (!bio)
1428 goto out_err; /* ENOMEM */
1429
1430 *end = bio;
1431 end = &bio->bi_next;
1432
1433 off += bi_size;
1434 if (off == bi->bi_iter.bi_size) {
1435 bi = bi->bi_next;
1436 off = 0;
1437 }
1438 len -= bi_size;
1439 }
1440 *bio_src = bi;
1441 *offset = off;
1442
1443 return chain;
1444 out_err:
1445 bio_chain_put(chain);
1446
1447 return NULL;
1448 }
1449
1450 /*
1451 * The default/initial value for all object request flags is 0. For
1452 * each flag, once its value is set to 1 it is never reset to 0
1453 * again.
1454 */
1455 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1456 {
1457 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1458 struct rbd_device *rbd_dev;
1459
1460 rbd_dev = obj_request->img_request->rbd_dev;
1461 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1462 obj_request);
1463 }
1464 }
1465
1466 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1467 {
1468 smp_mb();
1469 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1470 }
1471
1472 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1473 {
1474 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1475 struct rbd_device *rbd_dev = NULL;
1476
1477 if (obj_request_img_data_test(obj_request))
1478 rbd_dev = obj_request->img_request->rbd_dev;
1479 rbd_warn(rbd_dev, "obj_request %p already marked done",
1480 obj_request);
1481 }
1482 }
1483
1484 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1485 {
1486 smp_mb();
1487 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1488 }
1489
1490 /*
1491 * This sets the KNOWN flag after (possibly) setting the EXISTS
1492 * flag. The latter is set based on the "exists" value provided.
1493 *
1494 * Note that for our purposes once an object exists it never goes
1495 * away again. It's possible that the response from two existence
1496 * checks are separated by the creation of the target object, and
1497 * the first ("doesn't exist") response arrives *after* the second
1498 * ("does exist"). In that case we ignore the second one.
1499 */
1500 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1501 bool exists)
1502 {
1503 if (exists)
1504 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1505 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1506 smp_mb();
1507 }
1508
1509 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1510 {
1511 smp_mb();
1512 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1513 }
1514
1515 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1516 {
1517 smp_mb();
1518 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1519 }
1520
1521 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1522 {
1523 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1524
1525 return obj_request->img_offset <
1526 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1527 }
1528
1529 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1530 {
1531 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1532 atomic_read(&obj_request->kref.refcount));
1533 kref_get(&obj_request->kref);
1534 }
1535
1536 static void rbd_obj_request_destroy(struct kref *kref);
1537 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1538 {
1539 rbd_assert(obj_request != NULL);
1540 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1541 atomic_read(&obj_request->kref.refcount));
1542 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1543 }
1544
1545 static void rbd_img_request_get(struct rbd_img_request *img_request)
1546 {
1547 dout("%s: img %p (was %d)\n", __func__, img_request,
1548 atomic_read(&img_request->kref.refcount));
1549 kref_get(&img_request->kref);
1550 }
1551
1552 static bool img_request_child_test(struct rbd_img_request *img_request);
1553 static void rbd_parent_request_destroy(struct kref *kref);
1554 static void rbd_img_request_destroy(struct kref *kref);
1555 static void rbd_img_request_put(struct rbd_img_request *img_request)
1556 {
1557 rbd_assert(img_request != NULL);
1558 dout("%s: img %p (was %d)\n", __func__, img_request,
1559 atomic_read(&img_request->kref.refcount));
1560 if (img_request_child_test(img_request))
1561 kref_put(&img_request->kref, rbd_parent_request_destroy);
1562 else
1563 kref_put(&img_request->kref, rbd_img_request_destroy);
1564 }
1565
1566 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1567 struct rbd_obj_request *obj_request)
1568 {
1569 rbd_assert(obj_request->img_request == NULL);
1570
1571 /* Image request now owns object's original reference */
1572 obj_request->img_request = img_request;
1573 obj_request->which = img_request->obj_request_count;
1574 rbd_assert(!obj_request_img_data_test(obj_request));
1575 obj_request_img_data_set(obj_request);
1576 rbd_assert(obj_request->which != BAD_WHICH);
1577 img_request->obj_request_count++;
1578 list_add_tail(&obj_request->links, &img_request->obj_requests);
1579 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1580 obj_request->which);
1581 }
1582
1583 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1584 struct rbd_obj_request *obj_request)
1585 {
1586 rbd_assert(obj_request->which != BAD_WHICH);
1587
1588 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1589 obj_request->which);
1590 list_del(&obj_request->links);
1591 rbd_assert(img_request->obj_request_count > 0);
1592 img_request->obj_request_count--;
1593 rbd_assert(obj_request->which == img_request->obj_request_count);
1594 obj_request->which = BAD_WHICH;
1595 rbd_assert(obj_request_img_data_test(obj_request));
1596 rbd_assert(obj_request->img_request == img_request);
1597 obj_request->img_request = NULL;
1598 obj_request->callback = NULL;
1599 rbd_obj_request_put(obj_request);
1600 }
1601
1602 static bool obj_request_type_valid(enum obj_request_type type)
1603 {
1604 switch (type) {
1605 case OBJ_REQUEST_NODATA:
1606 case OBJ_REQUEST_BIO:
1607 case OBJ_REQUEST_PAGES:
1608 return true;
1609 default:
1610 return false;
1611 }
1612 }
1613
1614 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1615 struct rbd_obj_request *obj_request)
1616 {
1617 dout("%s %p\n", __func__, obj_request);
1618 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1619 }
1620
1621 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1622 {
1623 dout("%s %p\n", __func__, obj_request);
1624 ceph_osdc_cancel_request(obj_request->osd_req);
1625 }
1626
1627 /*
1628 * Wait for an object request to complete. If interrupted, cancel the
1629 * underlying osd request.
1630 *
1631 * @timeout: in jiffies, 0 means "wait forever"
1632 */
1633 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1634 unsigned long timeout)
1635 {
1636 long ret;
1637
1638 dout("%s %p\n", __func__, obj_request);
1639 ret = wait_for_completion_interruptible_timeout(
1640 &obj_request->completion,
1641 ceph_timeout_jiffies(timeout));
1642 if (ret <= 0) {
1643 if (ret == 0)
1644 ret = -ETIMEDOUT;
1645 rbd_obj_request_end(obj_request);
1646 } else {
1647 ret = 0;
1648 }
1649
1650 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1651 return ret;
1652 }
1653
1654 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1655 {
1656 return __rbd_obj_request_wait(obj_request, 0);
1657 }
1658
1659 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1660 {
1661
1662 dout("%s: img %p\n", __func__, img_request);
1663
1664 /*
1665 * If no error occurred, compute the aggregate transfer
1666 * count for the image request. We could instead use
1667 * atomic64_cmpxchg() to update it as each object request
1668 * completes; not clear which way is better off hand.
1669 */
1670 if (!img_request->result) {
1671 struct rbd_obj_request *obj_request;
1672 u64 xferred = 0;
1673
1674 for_each_obj_request(img_request, obj_request)
1675 xferred += obj_request->xferred;
1676 img_request->xferred = xferred;
1677 }
1678
1679 if (img_request->callback)
1680 img_request->callback(img_request);
1681 else
1682 rbd_img_request_put(img_request);
1683 }
1684
1685 /*
1686 * The default/initial value for all image request flags is 0. Each
1687 * is conditionally set to 1 at image request initialization time
1688 * and currently never change thereafter.
1689 */
1690 static void img_request_write_set(struct rbd_img_request *img_request)
1691 {
1692 set_bit(IMG_REQ_WRITE, &img_request->flags);
1693 smp_mb();
1694 }
1695
1696 static bool img_request_write_test(struct rbd_img_request *img_request)
1697 {
1698 smp_mb();
1699 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1700 }
1701
1702 /*
1703 * Set the discard flag when the img_request is an discard request
1704 */
1705 static void img_request_discard_set(struct rbd_img_request *img_request)
1706 {
1707 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1708 smp_mb();
1709 }
1710
1711 static bool img_request_discard_test(struct rbd_img_request *img_request)
1712 {
1713 smp_mb();
1714 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1715 }
1716
1717 static void img_request_child_set(struct rbd_img_request *img_request)
1718 {
1719 set_bit(IMG_REQ_CHILD, &img_request->flags);
1720 smp_mb();
1721 }
1722
1723 static void img_request_child_clear(struct rbd_img_request *img_request)
1724 {
1725 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1726 smp_mb();
1727 }
1728
1729 static bool img_request_child_test(struct rbd_img_request *img_request)
1730 {
1731 smp_mb();
1732 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1733 }
1734
1735 static void img_request_layered_set(struct rbd_img_request *img_request)
1736 {
1737 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1738 smp_mb();
1739 }
1740
1741 static void img_request_layered_clear(struct rbd_img_request *img_request)
1742 {
1743 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1744 smp_mb();
1745 }
1746
1747 static bool img_request_layered_test(struct rbd_img_request *img_request)
1748 {
1749 smp_mb();
1750 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1751 }
1752
1753 static enum obj_operation_type
1754 rbd_img_request_op_type(struct rbd_img_request *img_request)
1755 {
1756 if (img_request_write_test(img_request))
1757 return OBJ_OP_WRITE;
1758 else if (img_request_discard_test(img_request))
1759 return OBJ_OP_DISCARD;
1760 else
1761 return OBJ_OP_READ;
1762 }
1763
1764 static void
1765 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1766 {
1767 u64 xferred = obj_request->xferred;
1768 u64 length = obj_request->length;
1769
1770 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1771 obj_request, obj_request->img_request, obj_request->result,
1772 xferred, length);
1773 /*
1774 * ENOENT means a hole in the image. We zero-fill the entire
1775 * length of the request. A short read also implies zero-fill
1776 * to the end of the request. An error requires the whole
1777 * length of the request to be reported finished with an error
1778 * to the block layer. In each case we update the xferred
1779 * count to indicate the whole request was satisfied.
1780 */
1781 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1782 if (obj_request->result == -ENOENT) {
1783 if (obj_request->type == OBJ_REQUEST_BIO)
1784 zero_bio_chain(obj_request->bio_list, 0);
1785 else
1786 zero_pages(obj_request->pages, 0, length);
1787 obj_request->result = 0;
1788 } else if (xferred < length && !obj_request->result) {
1789 if (obj_request->type == OBJ_REQUEST_BIO)
1790 zero_bio_chain(obj_request->bio_list, xferred);
1791 else
1792 zero_pages(obj_request->pages, xferred, length);
1793 }
1794 obj_request->xferred = length;
1795 obj_request_done_set(obj_request);
1796 }
1797
1798 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1799 {
1800 dout("%s: obj %p cb %p\n", __func__, obj_request,
1801 obj_request->callback);
1802 if (obj_request->callback)
1803 obj_request->callback(obj_request);
1804 else
1805 complete_all(&obj_request->completion);
1806 }
1807
1808 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1809 {
1810 struct rbd_img_request *img_request = NULL;
1811 struct rbd_device *rbd_dev = NULL;
1812 bool layered = false;
1813
1814 if (obj_request_img_data_test(obj_request)) {
1815 img_request = obj_request->img_request;
1816 layered = img_request && img_request_layered_test(img_request);
1817 rbd_dev = img_request->rbd_dev;
1818 }
1819
1820 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1821 obj_request, img_request, obj_request->result,
1822 obj_request->xferred, obj_request->length);
1823 if (layered && obj_request->result == -ENOENT &&
1824 obj_request->img_offset < rbd_dev->parent_overlap)
1825 rbd_img_parent_read(obj_request);
1826 else if (img_request)
1827 rbd_img_obj_request_read_callback(obj_request);
1828 else
1829 obj_request_done_set(obj_request);
1830 }
1831
1832 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1833 {
1834 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1835 obj_request->result, obj_request->length);
1836 /*
1837 * There is no such thing as a successful short write. Set
1838 * it to our originally-requested length.
1839 */
1840 obj_request->xferred = obj_request->length;
1841 obj_request_done_set(obj_request);
1842 }
1843
1844 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1845 {
1846 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1847 obj_request->result, obj_request->length);
1848 /*
1849 * There is no such thing as a successful short discard. Set
1850 * it to our originally-requested length.
1851 */
1852 obj_request->xferred = obj_request->length;
1853 /* discarding a non-existent object is not a problem */
1854 if (obj_request->result == -ENOENT)
1855 obj_request->result = 0;
1856 obj_request_done_set(obj_request);
1857 }
1858
1859 /*
1860 * For a simple stat call there's nothing to do. We'll do more if
1861 * this is part of a write sequence for a layered image.
1862 */
1863 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1864 {
1865 dout("%s: obj %p\n", __func__, obj_request);
1866 obj_request_done_set(obj_request);
1867 }
1868
1869 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1870 {
1871 dout("%s: obj %p\n", __func__, obj_request);
1872
1873 if (obj_request_img_data_test(obj_request))
1874 rbd_osd_copyup_callback(obj_request);
1875 else
1876 obj_request_done_set(obj_request);
1877 }
1878
1879 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1880 {
1881 struct rbd_obj_request *obj_request = osd_req->r_priv;
1882 u16 opcode;
1883
1884 dout("%s: osd_req %p\n", __func__, osd_req);
1885 rbd_assert(osd_req == obj_request->osd_req);
1886 if (obj_request_img_data_test(obj_request)) {
1887 rbd_assert(obj_request->img_request);
1888 rbd_assert(obj_request->which != BAD_WHICH);
1889 } else {
1890 rbd_assert(obj_request->which == BAD_WHICH);
1891 }
1892
1893 if (osd_req->r_result < 0)
1894 obj_request->result = osd_req->r_result;
1895
1896 /*
1897 * We support a 64-bit length, but ultimately it has to be
1898 * passed to the block layer, which just supports a 32-bit
1899 * length field.
1900 */
1901 obj_request->xferred = osd_req->r_ops[0].outdata_len;
1902 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1903
1904 opcode = osd_req->r_ops[0].op;
1905 switch (opcode) {
1906 case CEPH_OSD_OP_READ:
1907 rbd_osd_read_callback(obj_request);
1908 break;
1909 case CEPH_OSD_OP_SETALLOCHINT:
1910 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1911 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1912 /* fall through */
1913 case CEPH_OSD_OP_WRITE:
1914 case CEPH_OSD_OP_WRITEFULL:
1915 rbd_osd_write_callback(obj_request);
1916 break;
1917 case CEPH_OSD_OP_STAT:
1918 rbd_osd_stat_callback(obj_request);
1919 break;
1920 case CEPH_OSD_OP_DELETE:
1921 case CEPH_OSD_OP_TRUNCATE:
1922 case CEPH_OSD_OP_ZERO:
1923 rbd_osd_discard_callback(obj_request);
1924 break;
1925 case CEPH_OSD_OP_CALL:
1926 rbd_osd_call_callback(obj_request);
1927 break;
1928 default:
1929 rbd_warn(NULL, "%s: unsupported op %hu",
1930 obj_request->object_name, (unsigned short) opcode);
1931 break;
1932 }
1933
1934 if (obj_request_done_test(obj_request))
1935 rbd_obj_request_complete(obj_request);
1936 }
1937
1938 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1939 {
1940 struct rbd_img_request *img_request = obj_request->img_request;
1941 struct ceph_osd_request *osd_req = obj_request->osd_req;
1942
1943 if (img_request)
1944 osd_req->r_snapid = img_request->snap_id;
1945 }
1946
1947 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1948 {
1949 struct ceph_osd_request *osd_req = obj_request->osd_req;
1950
1951 osd_req->r_mtime = CURRENT_TIME;
1952 osd_req->r_data_offset = obj_request->offset;
1953 }
1954
1955 /*
1956 * Create an osd request. A read request has one osd op (read).
1957 * A write request has either one (watch) or two (hint+write) osd ops.
1958 * (All rbd data writes are prefixed with an allocation hint op, but
1959 * technically osd watch is a write request, hence this distinction.)
1960 */
1961 static struct ceph_osd_request *rbd_osd_req_create(
1962 struct rbd_device *rbd_dev,
1963 enum obj_operation_type op_type,
1964 unsigned int num_ops,
1965 struct rbd_obj_request *obj_request)
1966 {
1967 struct ceph_snap_context *snapc = NULL;
1968 struct ceph_osd_client *osdc;
1969 struct ceph_osd_request *osd_req;
1970
1971 if (obj_request_img_data_test(obj_request) &&
1972 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1973 struct rbd_img_request *img_request = obj_request->img_request;
1974 if (op_type == OBJ_OP_WRITE) {
1975 rbd_assert(img_request_write_test(img_request));
1976 } else {
1977 rbd_assert(img_request_discard_test(img_request));
1978 }
1979 snapc = img_request->snapc;
1980 }
1981
1982 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1983
1984 /* Allocate and initialize the request, for the num_ops ops */
1985
1986 osdc = &rbd_dev->rbd_client->client->osdc;
1987 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1988 GFP_NOIO);
1989 if (!osd_req)
1990 goto fail;
1991
1992 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1993 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1994 else
1995 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1996
1997 osd_req->r_callback = rbd_osd_req_callback;
1998 osd_req->r_priv = obj_request;
1999
2000 osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2001 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2002 obj_request->object_name))
2003 goto fail;
2004
2005 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2006 goto fail;
2007
2008 return osd_req;
2009
2010 fail:
2011 ceph_osdc_put_request(osd_req);
2012 return NULL;
2013 }
2014
2015 /*
2016 * Create a copyup osd request based on the information in the object
2017 * request supplied. A copyup request has two or three osd ops, a
2018 * copyup method call, potentially a hint op, and a write or truncate
2019 * or zero op.
2020 */
2021 static struct ceph_osd_request *
2022 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2023 {
2024 struct rbd_img_request *img_request;
2025 struct ceph_snap_context *snapc;
2026 struct rbd_device *rbd_dev;
2027 struct ceph_osd_client *osdc;
2028 struct ceph_osd_request *osd_req;
2029 int num_osd_ops = 3;
2030
2031 rbd_assert(obj_request_img_data_test(obj_request));
2032 img_request = obj_request->img_request;
2033 rbd_assert(img_request);
2034 rbd_assert(img_request_write_test(img_request) ||
2035 img_request_discard_test(img_request));
2036
2037 if (img_request_discard_test(img_request))
2038 num_osd_ops = 2;
2039
2040 /* Allocate and initialize the request, for all the ops */
2041
2042 snapc = img_request->snapc;
2043 rbd_dev = img_request->rbd_dev;
2044 osdc = &rbd_dev->rbd_client->client->osdc;
2045 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2046 false, GFP_NOIO);
2047 if (!osd_req)
2048 goto fail;
2049
2050 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2051 osd_req->r_callback = rbd_osd_req_callback;
2052 osd_req->r_priv = obj_request;
2053
2054 osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2055 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2056 obj_request->object_name))
2057 goto fail;
2058
2059 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2060 goto fail;
2061
2062 return osd_req;
2063
2064 fail:
2065 ceph_osdc_put_request(osd_req);
2066 return NULL;
2067 }
2068
2069
2070 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2071 {
2072 ceph_osdc_put_request(osd_req);
2073 }
2074
2075 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2076
2077 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2078 u64 offset, u64 length,
2079 enum obj_request_type type)
2080 {
2081 struct rbd_obj_request *obj_request;
2082 size_t size;
2083 char *name;
2084
2085 rbd_assert(obj_request_type_valid(type));
2086
2087 size = strlen(object_name) + 1;
2088 name = kmalloc(size, GFP_NOIO);
2089 if (!name)
2090 return NULL;
2091
2092 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2093 if (!obj_request) {
2094 kfree(name);
2095 return NULL;
2096 }
2097
2098 obj_request->object_name = memcpy(name, object_name, size);
2099 obj_request->offset = offset;
2100 obj_request->length = length;
2101 obj_request->flags = 0;
2102 obj_request->which = BAD_WHICH;
2103 obj_request->type = type;
2104 INIT_LIST_HEAD(&obj_request->links);
2105 init_completion(&obj_request->completion);
2106 kref_init(&obj_request->kref);
2107
2108 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2109 offset, length, (int)type, obj_request);
2110
2111 return obj_request;
2112 }
2113
2114 static void rbd_obj_request_destroy(struct kref *kref)
2115 {
2116 struct rbd_obj_request *obj_request;
2117
2118 obj_request = container_of(kref, struct rbd_obj_request, kref);
2119
2120 dout("%s: obj %p\n", __func__, obj_request);
2121
2122 rbd_assert(obj_request->img_request == NULL);
2123 rbd_assert(obj_request->which == BAD_WHICH);
2124
2125 if (obj_request->osd_req)
2126 rbd_osd_req_destroy(obj_request->osd_req);
2127
2128 rbd_assert(obj_request_type_valid(obj_request->type));
2129 switch (obj_request->type) {
2130 case OBJ_REQUEST_NODATA:
2131 break; /* Nothing to do */
2132 case OBJ_REQUEST_BIO:
2133 if (obj_request->bio_list)
2134 bio_chain_put(obj_request->bio_list);
2135 break;
2136 case OBJ_REQUEST_PAGES:
2137 if (obj_request->pages)
2138 ceph_release_page_vector(obj_request->pages,
2139 obj_request->page_count);
2140 break;
2141 }
2142
2143 kfree(obj_request->object_name);
2144 obj_request->object_name = NULL;
2145 kmem_cache_free(rbd_obj_request_cache, obj_request);
2146 }
2147
2148 /* It's OK to call this for a device with no parent */
2149
2150 static void rbd_spec_put(struct rbd_spec *spec);
2151 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2152 {
2153 rbd_dev_remove_parent(rbd_dev);
2154 rbd_spec_put(rbd_dev->parent_spec);
2155 rbd_dev->parent_spec = NULL;
2156 rbd_dev->parent_overlap = 0;
2157 }
2158
2159 /*
2160 * Parent image reference counting is used to determine when an
2161 * image's parent fields can be safely torn down--after there are no
2162 * more in-flight requests to the parent image. When the last
2163 * reference is dropped, cleaning them up is safe.
2164 */
2165 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2166 {
2167 int counter;
2168
2169 if (!rbd_dev->parent_spec)
2170 return;
2171
2172 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2173 if (counter > 0)
2174 return;
2175
2176 /* Last reference; clean up parent data structures */
2177
2178 if (!counter)
2179 rbd_dev_unparent(rbd_dev);
2180 else
2181 rbd_warn(rbd_dev, "parent reference underflow");
2182 }
2183
2184 /*
2185 * If an image has a non-zero parent overlap, get a reference to its
2186 * parent.
2187 *
2188 * Returns true if the rbd device has a parent with a non-zero
2189 * overlap and a reference for it was successfully taken, or
2190 * false otherwise.
2191 */
2192 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2193 {
2194 int counter = 0;
2195
2196 if (!rbd_dev->parent_spec)
2197 return false;
2198
2199 down_read(&rbd_dev->header_rwsem);
2200 if (rbd_dev->parent_overlap)
2201 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2202 up_read(&rbd_dev->header_rwsem);
2203
2204 if (counter < 0)
2205 rbd_warn(rbd_dev, "parent reference overflow");
2206
2207 return counter > 0;
2208 }
2209
2210 /*
2211 * Caller is responsible for filling in the list of object requests
2212 * that comprises the image request, and the Linux request pointer
2213 * (if there is one).
2214 */
2215 static struct rbd_img_request *rbd_img_request_create(
2216 struct rbd_device *rbd_dev,
2217 u64 offset, u64 length,
2218 enum obj_operation_type op_type,
2219 struct ceph_snap_context *snapc)
2220 {
2221 struct rbd_img_request *img_request;
2222
2223 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2224 if (!img_request)
2225 return NULL;
2226
2227 img_request->rq = NULL;
2228 img_request->rbd_dev = rbd_dev;
2229 img_request->offset = offset;
2230 img_request->length = length;
2231 img_request->flags = 0;
2232 if (op_type == OBJ_OP_DISCARD) {
2233 img_request_discard_set(img_request);
2234 img_request->snapc = snapc;
2235 } else if (op_type == OBJ_OP_WRITE) {
2236 img_request_write_set(img_request);
2237 img_request->snapc = snapc;
2238 } else {
2239 img_request->snap_id = rbd_dev->spec->snap_id;
2240 }
2241 if (rbd_dev_parent_get(rbd_dev))
2242 img_request_layered_set(img_request);
2243 spin_lock_init(&img_request->completion_lock);
2244 img_request->next_completion = 0;
2245 img_request->callback = NULL;
2246 img_request->result = 0;
2247 img_request->obj_request_count = 0;
2248 INIT_LIST_HEAD(&img_request->obj_requests);
2249 kref_init(&img_request->kref);
2250
2251 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2252 obj_op_name(op_type), offset, length, img_request);
2253
2254 return img_request;
2255 }
2256
2257 static void rbd_img_request_destroy(struct kref *kref)
2258 {
2259 struct rbd_img_request *img_request;
2260 struct rbd_obj_request *obj_request;
2261 struct rbd_obj_request *next_obj_request;
2262
2263 img_request = container_of(kref, struct rbd_img_request, kref);
2264
2265 dout("%s: img %p\n", __func__, img_request);
2266
2267 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2268 rbd_img_obj_request_del(img_request, obj_request);
2269 rbd_assert(img_request->obj_request_count == 0);
2270
2271 if (img_request_layered_test(img_request)) {
2272 img_request_layered_clear(img_request);
2273 rbd_dev_parent_put(img_request->rbd_dev);
2274 }
2275
2276 if (img_request_write_test(img_request) ||
2277 img_request_discard_test(img_request))
2278 ceph_put_snap_context(img_request->snapc);
2279
2280 kmem_cache_free(rbd_img_request_cache, img_request);
2281 }
2282
2283 static struct rbd_img_request *rbd_parent_request_create(
2284 struct rbd_obj_request *obj_request,
2285 u64 img_offset, u64 length)
2286 {
2287 struct rbd_img_request *parent_request;
2288 struct rbd_device *rbd_dev;
2289
2290 rbd_assert(obj_request->img_request);
2291 rbd_dev = obj_request->img_request->rbd_dev;
2292
2293 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2294 length, OBJ_OP_READ, NULL);
2295 if (!parent_request)
2296 return NULL;
2297
2298 img_request_child_set(parent_request);
2299 rbd_obj_request_get(obj_request);
2300 parent_request->obj_request = obj_request;
2301
2302 return parent_request;
2303 }
2304
2305 static void rbd_parent_request_destroy(struct kref *kref)
2306 {
2307 struct rbd_img_request *parent_request;
2308 struct rbd_obj_request *orig_request;
2309
2310 parent_request = container_of(kref, struct rbd_img_request, kref);
2311 orig_request = parent_request->obj_request;
2312
2313 parent_request->obj_request = NULL;
2314 rbd_obj_request_put(orig_request);
2315 img_request_child_clear(parent_request);
2316
2317 rbd_img_request_destroy(kref);
2318 }
2319
2320 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2321 {
2322 struct rbd_img_request *img_request;
2323 unsigned int xferred;
2324 int result;
2325 bool more;
2326
2327 rbd_assert(obj_request_img_data_test(obj_request));
2328 img_request = obj_request->img_request;
2329
2330 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2331 xferred = (unsigned int)obj_request->xferred;
2332 result = obj_request->result;
2333 if (result) {
2334 struct rbd_device *rbd_dev = img_request->rbd_dev;
2335 enum obj_operation_type op_type;
2336
2337 if (img_request_discard_test(img_request))
2338 op_type = OBJ_OP_DISCARD;
2339 else if (img_request_write_test(img_request))
2340 op_type = OBJ_OP_WRITE;
2341 else
2342 op_type = OBJ_OP_READ;
2343
2344 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2345 obj_op_name(op_type), obj_request->length,
2346 obj_request->img_offset, obj_request->offset);
2347 rbd_warn(rbd_dev, " result %d xferred %x",
2348 result, xferred);
2349 if (!img_request->result)
2350 img_request->result = result;
2351 /*
2352 * Need to end I/O on the entire obj_request worth of
2353 * bytes in case of error.
2354 */
2355 xferred = obj_request->length;
2356 }
2357
2358 /* Image object requests don't own their page array */
2359
2360 if (obj_request->type == OBJ_REQUEST_PAGES) {
2361 obj_request->pages = NULL;
2362 obj_request->page_count = 0;
2363 }
2364
2365 if (img_request_child_test(img_request)) {
2366 rbd_assert(img_request->obj_request != NULL);
2367 more = obj_request->which < img_request->obj_request_count - 1;
2368 } else {
2369 rbd_assert(img_request->rq != NULL);
2370
2371 more = blk_update_request(img_request->rq, result, xferred);
2372 if (!more)
2373 __blk_mq_end_request(img_request->rq, result);
2374 }
2375
2376 return more;
2377 }
2378
2379 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2380 {
2381 struct rbd_img_request *img_request;
2382 u32 which = obj_request->which;
2383 bool more = true;
2384
2385 rbd_assert(obj_request_img_data_test(obj_request));
2386 img_request = obj_request->img_request;
2387
2388 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2389 rbd_assert(img_request != NULL);
2390 rbd_assert(img_request->obj_request_count > 0);
2391 rbd_assert(which != BAD_WHICH);
2392 rbd_assert(which < img_request->obj_request_count);
2393
2394 spin_lock_irq(&img_request->completion_lock);
2395 if (which != img_request->next_completion)
2396 goto out;
2397
2398 for_each_obj_request_from(img_request, obj_request) {
2399 rbd_assert(more);
2400 rbd_assert(which < img_request->obj_request_count);
2401
2402 if (!obj_request_done_test(obj_request))
2403 break;
2404 more = rbd_img_obj_end_request(obj_request);
2405 which++;
2406 }
2407
2408 rbd_assert(more ^ (which == img_request->obj_request_count));
2409 img_request->next_completion = which;
2410 out:
2411 spin_unlock_irq(&img_request->completion_lock);
2412 rbd_img_request_put(img_request);
2413
2414 if (!more)
2415 rbd_img_request_complete(img_request);
2416 }
2417
2418 /*
2419 * Add individual osd ops to the given ceph_osd_request and prepare
2420 * them for submission. num_ops is the current number of
2421 * osd operations already to the object request.
2422 */
2423 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2424 struct ceph_osd_request *osd_request,
2425 enum obj_operation_type op_type,
2426 unsigned int num_ops)
2427 {
2428 struct rbd_img_request *img_request = obj_request->img_request;
2429 struct rbd_device *rbd_dev = img_request->rbd_dev;
2430 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2431 u64 offset = obj_request->offset;
2432 u64 length = obj_request->length;
2433 u64 img_end;
2434 u16 opcode;
2435
2436 if (op_type == OBJ_OP_DISCARD) {
2437 if (!offset && length == object_size &&
2438 (!img_request_layered_test(img_request) ||
2439 !obj_request_overlaps_parent(obj_request))) {
2440 opcode = CEPH_OSD_OP_DELETE;
2441 } else if ((offset + length == object_size)) {
2442 opcode = CEPH_OSD_OP_TRUNCATE;
2443 } else {
2444 down_read(&rbd_dev->header_rwsem);
2445 img_end = rbd_dev->header.image_size;
2446 up_read(&rbd_dev->header_rwsem);
2447
2448 if (obj_request->img_offset + length == img_end)
2449 opcode = CEPH_OSD_OP_TRUNCATE;
2450 else
2451 opcode = CEPH_OSD_OP_ZERO;
2452 }
2453 } else if (op_type == OBJ_OP_WRITE) {
2454 if (!offset && length == object_size)
2455 opcode = CEPH_OSD_OP_WRITEFULL;
2456 else
2457 opcode = CEPH_OSD_OP_WRITE;
2458 osd_req_op_alloc_hint_init(osd_request, num_ops,
2459 object_size, object_size);
2460 num_ops++;
2461 } else {
2462 opcode = CEPH_OSD_OP_READ;
2463 }
2464
2465 if (opcode == CEPH_OSD_OP_DELETE)
2466 osd_req_op_init(osd_request, num_ops, opcode, 0);
2467 else
2468 osd_req_op_extent_init(osd_request, num_ops, opcode,
2469 offset, length, 0, 0);
2470
2471 if (obj_request->type == OBJ_REQUEST_BIO)
2472 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2473 obj_request->bio_list, length);
2474 else if (obj_request->type == OBJ_REQUEST_PAGES)
2475 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2476 obj_request->pages, length,
2477 offset & ~PAGE_MASK, false, false);
2478
2479 /* Discards are also writes */
2480 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2481 rbd_osd_req_format_write(obj_request);
2482 else
2483 rbd_osd_req_format_read(obj_request);
2484 }
2485
2486 /*
2487 * Split up an image request into one or more object requests, each
2488 * to a different object. The "type" parameter indicates whether
2489 * "data_desc" is the pointer to the head of a list of bio
2490 * structures, or the base of a page array. In either case this
2491 * function assumes data_desc describes memory sufficient to hold
2492 * all data described by the image request.
2493 */
2494 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2495 enum obj_request_type type,
2496 void *data_desc)
2497 {
2498 struct rbd_device *rbd_dev = img_request->rbd_dev;
2499 struct rbd_obj_request *obj_request = NULL;
2500 struct rbd_obj_request *next_obj_request;
2501 struct bio *bio_list = NULL;
2502 unsigned int bio_offset = 0;
2503 struct page **pages = NULL;
2504 enum obj_operation_type op_type;
2505 u64 img_offset;
2506 u64 resid;
2507
2508 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2509 (int)type, data_desc);
2510
2511 img_offset = img_request->offset;
2512 resid = img_request->length;
2513 rbd_assert(resid > 0);
2514 op_type = rbd_img_request_op_type(img_request);
2515
2516 if (type == OBJ_REQUEST_BIO) {
2517 bio_list = data_desc;
2518 rbd_assert(img_offset ==
2519 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2520 } else if (type == OBJ_REQUEST_PAGES) {
2521 pages = data_desc;
2522 }
2523
2524 while (resid) {
2525 struct ceph_osd_request *osd_req;
2526 const char *object_name;
2527 u64 offset;
2528 u64 length;
2529
2530 object_name = rbd_segment_name(rbd_dev, img_offset);
2531 if (!object_name)
2532 goto out_unwind;
2533 offset = rbd_segment_offset(rbd_dev, img_offset);
2534 length = rbd_segment_length(rbd_dev, img_offset, resid);
2535 obj_request = rbd_obj_request_create(object_name,
2536 offset, length, type);
2537 /* object request has its own copy of the object name */
2538 rbd_segment_name_free(object_name);
2539 if (!obj_request)
2540 goto out_unwind;
2541
2542 /*
2543 * set obj_request->img_request before creating the
2544 * osd_request so that it gets the right snapc
2545 */
2546 rbd_img_obj_request_add(img_request, obj_request);
2547
2548 if (type == OBJ_REQUEST_BIO) {
2549 unsigned int clone_size;
2550
2551 rbd_assert(length <= (u64)UINT_MAX);
2552 clone_size = (unsigned int)length;
2553 obj_request->bio_list =
2554 bio_chain_clone_range(&bio_list,
2555 &bio_offset,
2556 clone_size,
2557 GFP_NOIO);
2558 if (!obj_request->bio_list)
2559 goto out_unwind;
2560 } else if (type == OBJ_REQUEST_PAGES) {
2561 unsigned int page_count;
2562
2563 obj_request->pages = pages;
2564 page_count = (u32)calc_pages_for(offset, length);
2565 obj_request->page_count = page_count;
2566 if ((offset + length) & ~PAGE_MASK)
2567 page_count--; /* more on last page */
2568 pages += page_count;
2569 }
2570
2571 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2572 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2573 obj_request);
2574 if (!osd_req)
2575 goto out_unwind;
2576
2577 obj_request->osd_req = osd_req;
2578 obj_request->callback = rbd_img_obj_callback;
2579 obj_request->img_offset = img_offset;
2580
2581 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2582
2583 rbd_img_request_get(img_request);
2584
2585 img_offset += length;
2586 resid -= length;
2587 }
2588
2589 return 0;
2590
2591 out_unwind:
2592 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2593 rbd_img_obj_request_del(img_request, obj_request);
2594
2595 return -ENOMEM;
2596 }
2597
2598 static void
2599 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2600 {
2601 struct rbd_img_request *img_request;
2602 struct rbd_device *rbd_dev;
2603 struct page **pages;
2604 u32 page_count;
2605
2606 dout("%s: obj %p\n", __func__, obj_request);
2607
2608 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2609 obj_request->type == OBJ_REQUEST_NODATA);
2610 rbd_assert(obj_request_img_data_test(obj_request));
2611 img_request = obj_request->img_request;
2612 rbd_assert(img_request);
2613
2614 rbd_dev = img_request->rbd_dev;
2615 rbd_assert(rbd_dev);
2616
2617 pages = obj_request->copyup_pages;
2618 rbd_assert(pages != NULL);
2619 obj_request->copyup_pages = NULL;
2620 page_count = obj_request->copyup_page_count;
2621 rbd_assert(page_count);
2622 obj_request->copyup_page_count = 0;
2623 ceph_release_page_vector(pages, page_count);
2624
2625 /*
2626 * We want the transfer count to reflect the size of the
2627 * original write request. There is no such thing as a
2628 * successful short write, so if the request was successful
2629 * we can just set it to the originally-requested length.
2630 */
2631 if (!obj_request->result)
2632 obj_request->xferred = obj_request->length;
2633
2634 obj_request_done_set(obj_request);
2635 }
2636
2637 static void
2638 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2639 {
2640 struct rbd_obj_request *orig_request;
2641 struct ceph_osd_request *osd_req;
2642 struct ceph_osd_client *osdc;
2643 struct rbd_device *rbd_dev;
2644 struct page **pages;
2645 enum obj_operation_type op_type;
2646 u32 page_count;
2647 int img_result;
2648 u64 parent_length;
2649
2650 rbd_assert(img_request_child_test(img_request));
2651
2652 /* First get what we need from the image request */
2653
2654 pages = img_request->copyup_pages;
2655 rbd_assert(pages != NULL);
2656 img_request->copyup_pages = NULL;
2657 page_count = img_request->copyup_page_count;
2658 rbd_assert(page_count);
2659 img_request->copyup_page_count = 0;
2660
2661 orig_request = img_request->obj_request;
2662 rbd_assert(orig_request != NULL);
2663 rbd_assert(obj_request_type_valid(orig_request->type));
2664 img_result = img_request->result;
2665 parent_length = img_request->length;
2666 rbd_assert(parent_length == img_request->xferred);
2667 rbd_img_request_put(img_request);
2668
2669 rbd_assert(orig_request->img_request);
2670 rbd_dev = orig_request->img_request->rbd_dev;
2671 rbd_assert(rbd_dev);
2672
2673 /*
2674 * If the overlap has become 0 (most likely because the
2675 * image has been flattened) we need to free the pages
2676 * and re-submit the original write request.
2677 */
2678 if (!rbd_dev->parent_overlap) {
2679 struct ceph_osd_client *osdc;
2680
2681 ceph_release_page_vector(pages, page_count);
2682 osdc = &rbd_dev->rbd_client->client->osdc;
2683 img_result = rbd_obj_request_submit(osdc, orig_request);
2684 if (!img_result)
2685 return;
2686 }
2687
2688 if (img_result)
2689 goto out_err;
2690
2691 /*
2692 * The original osd request is of no use to use any more.
2693 * We need a new one that can hold the three ops in a copyup
2694 * request. Allocate the new copyup osd request for the
2695 * original request, and release the old one.
2696 */
2697 img_result = -ENOMEM;
2698 osd_req = rbd_osd_req_create_copyup(orig_request);
2699 if (!osd_req)
2700 goto out_err;
2701 rbd_osd_req_destroy(orig_request->osd_req);
2702 orig_request->osd_req = osd_req;
2703 orig_request->copyup_pages = pages;
2704 orig_request->copyup_page_count = page_count;
2705
2706 /* Initialize the copyup op */
2707
2708 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2709 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2710 false, false);
2711
2712 /* Add the other op(s) */
2713
2714 op_type = rbd_img_request_op_type(orig_request->img_request);
2715 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2716
2717 /* All set, send it off. */
2718
2719 osdc = &rbd_dev->rbd_client->client->osdc;
2720 img_result = rbd_obj_request_submit(osdc, orig_request);
2721 if (!img_result)
2722 return;
2723 out_err:
2724 /* Record the error code and complete the request */
2725
2726 orig_request->result = img_result;
2727 orig_request->xferred = 0;
2728 obj_request_done_set(orig_request);
2729 rbd_obj_request_complete(orig_request);
2730 }
2731
2732 /*
2733 * Read from the parent image the range of data that covers the
2734 * entire target of the given object request. This is used for
2735 * satisfying a layered image write request when the target of an
2736 * object request from the image request does not exist.
2737 *
2738 * A page array big enough to hold the returned data is allocated
2739 * and supplied to rbd_img_request_fill() as the "data descriptor."
2740 * When the read completes, this page array will be transferred to
2741 * the original object request for the copyup operation.
2742 *
2743 * If an error occurs, record it as the result of the original
2744 * object request and mark it done so it gets completed.
2745 */
2746 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2747 {
2748 struct rbd_img_request *img_request = NULL;
2749 struct rbd_img_request *parent_request = NULL;
2750 struct rbd_device *rbd_dev;
2751 u64 img_offset;
2752 u64 length;
2753 struct page **pages = NULL;
2754 u32 page_count;
2755 int result;
2756
2757 rbd_assert(obj_request_img_data_test(obj_request));
2758 rbd_assert(obj_request_type_valid(obj_request->type));
2759
2760 img_request = obj_request->img_request;
2761 rbd_assert(img_request != NULL);
2762 rbd_dev = img_request->rbd_dev;
2763 rbd_assert(rbd_dev->parent != NULL);
2764
2765 /*
2766 * Determine the byte range covered by the object in the
2767 * child image to which the original request was to be sent.
2768 */
2769 img_offset = obj_request->img_offset - obj_request->offset;
2770 length = (u64)1 << rbd_dev->header.obj_order;
2771
2772 /*
2773 * There is no defined parent data beyond the parent
2774 * overlap, so limit what we read at that boundary if
2775 * necessary.
2776 */
2777 if (img_offset + length > rbd_dev->parent_overlap) {
2778 rbd_assert(img_offset < rbd_dev->parent_overlap);
2779 length = rbd_dev->parent_overlap - img_offset;
2780 }
2781
2782 /*
2783 * Allocate a page array big enough to receive the data read
2784 * from the parent.
2785 */
2786 page_count = (u32)calc_pages_for(0, length);
2787 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2788 if (IS_ERR(pages)) {
2789 result = PTR_ERR(pages);
2790 pages = NULL;
2791 goto out_err;
2792 }
2793
2794 result = -ENOMEM;
2795 parent_request = rbd_parent_request_create(obj_request,
2796 img_offset, length);
2797 if (!parent_request)
2798 goto out_err;
2799
2800 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2801 if (result)
2802 goto out_err;
2803 parent_request->copyup_pages = pages;
2804 parent_request->copyup_page_count = page_count;
2805
2806 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2807 result = rbd_img_request_submit(parent_request);
2808 if (!result)
2809 return 0;
2810
2811 parent_request->copyup_pages = NULL;
2812 parent_request->copyup_page_count = 0;
2813 parent_request->obj_request = NULL;
2814 rbd_obj_request_put(obj_request);
2815 out_err:
2816 if (pages)
2817 ceph_release_page_vector(pages, page_count);
2818 if (parent_request)
2819 rbd_img_request_put(parent_request);
2820 obj_request->result = result;
2821 obj_request->xferred = 0;
2822 obj_request_done_set(obj_request);
2823
2824 return result;
2825 }
2826
2827 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2828 {
2829 struct rbd_obj_request *orig_request;
2830 struct rbd_device *rbd_dev;
2831 int result;
2832
2833 rbd_assert(!obj_request_img_data_test(obj_request));
2834
2835 /*
2836 * All we need from the object request is the original
2837 * request and the result of the STAT op. Grab those, then
2838 * we're done with the request.
2839 */
2840 orig_request = obj_request->obj_request;
2841 obj_request->obj_request = NULL;
2842 rbd_obj_request_put(orig_request);
2843 rbd_assert(orig_request);
2844 rbd_assert(orig_request->img_request);
2845
2846 result = obj_request->result;
2847 obj_request->result = 0;
2848
2849 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2850 obj_request, orig_request, result,
2851 obj_request->xferred, obj_request->length);
2852 rbd_obj_request_put(obj_request);
2853
2854 /*
2855 * If the overlap has become 0 (most likely because the
2856 * image has been flattened) we need to free the pages
2857 * and re-submit the original write request.
2858 */
2859 rbd_dev = orig_request->img_request->rbd_dev;
2860 if (!rbd_dev->parent_overlap) {
2861 struct ceph_osd_client *osdc;
2862
2863 osdc = &rbd_dev->rbd_client->client->osdc;
2864 result = rbd_obj_request_submit(osdc, orig_request);
2865 if (!result)
2866 return;
2867 }
2868
2869 /*
2870 * Our only purpose here is to determine whether the object
2871 * exists, and we don't want to treat the non-existence as
2872 * an error. If something else comes back, transfer the
2873 * error to the original request and complete it now.
2874 */
2875 if (!result) {
2876 obj_request_existence_set(orig_request, true);
2877 } else if (result == -ENOENT) {
2878 obj_request_existence_set(orig_request, false);
2879 } else if (result) {
2880 orig_request->result = result;
2881 goto out;
2882 }
2883
2884 /*
2885 * Resubmit the original request now that we have recorded
2886 * whether the target object exists.
2887 */
2888 orig_request->result = rbd_img_obj_request_submit(orig_request);
2889 out:
2890 if (orig_request->result)
2891 rbd_obj_request_complete(orig_request);
2892 }
2893
2894 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2895 {
2896 struct rbd_obj_request *stat_request;
2897 struct rbd_device *rbd_dev;
2898 struct ceph_osd_client *osdc;
2899 struct page **pages = NULL;
2900 u32 page_count;
2901 size_t size;
2902 int ret;
2903
2904 /*
2905 * The response data for a STAT call consists of:
2906 * le64 length;
2907 * struct {
2908 * le32 tv_sec;
2909 * le32 tv_nsec;
2910 * } mtime;
2911 */
2912 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2913 page_count = (u32)calc_pages_for(0, size);
2914 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2915 if (IS_ERR(pages))
2916 return PTR_ERR(pages);
2917
2918 ret = -ENOMEM;
2919 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2920 OBJ_REQUEST_PAGES);
2921 if (!stat_request)
2922 goto out;
2923
2924 rbd_obj_request_get(obj_request);
2925 stat_request->obj_request = obj_request;
2926 stat_request->pages = pages;
2927 stat_request->page_count = page_count;
2928
2929 rbd_assert(obj_request->img_request);
2930 rbd_dev = obj_request->img_request->rbd_dev;
2931 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2932 stat_request);
2933 if (!stat_request->osd_req)
2934 goto out;
2935 stat_request->callback = rbd_img_obj_exists_callback;
2936
2937 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2938 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2939 false, false);
2940 rbd_osd_req_format_read(stat_request);
2941
2942 osdc = &rbd_dev->rbd_client->client->osdc;
2943 ret = rbd_obj_request_submit(osdc, stat_request);
2944 out:
2945 if (ret)
2946 rbd_obj_request_put(obj_request);
2947
2948 return ret;
2949 }
2950
2951 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2952 {
2953 struct rbd_img_request *img_request;
2954 struct rbd_device *rbd_dev;
2955
2956 rbd_assert(obj_request_img_data_test(obj_request));
2957
2958 img_request = obj_request->img_request;
2959 rbd_assert(img_request);
2960 rbd_dev = img_request->rbd_dev;
2961
2962 /* Reads */
2963 if (!img_request_write_test(img_request) &&
2964 !img_request_discard_test(img_request))
2965 return true;
2966
2967 /* Non-layered writes */
2968 if (!img_request_layered_test(img_request))
2969 return true;
2970
2971 /*
2972 * Layered writes outside of the parent overlap range don't
2973 * share any data with the parent.
2974 */
2975 if (!obj_request_overlaps_parent(obj_request))
2976 return true;
2977
2978 /*
2979 * Entire-object layered writes - we will overwrite whatever
2980 * parent data there is anyway.
2981 */
2982 if (!obj_request->offset &&
2983 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2984 return true;
2985
2986 /*
2987 * If the object is known to already exist, its parent data has
2988 * already been copied.
2989 */
2990 if (obj_request_known_test(obj_request) &&
2991 obj_request_exists_test(obj_request))
2992 return true;
2993
2994 return false;
2995 }
2996
2997 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2998 {
2999 if (img_obj_request_simple(obj_request)) {
3000 struct rbd_device *rbd_dev;
3001 struct ceph_osd_client *osdc;
3002
3003 rbd_dev = obj_request->img_request->rbd_dev;
3004 osdc = &rbd_dev->rbd_client->client->osdc;
3005
3006 return rbd_obj_request_submit(osdc, obj_request);
3007 }
3008
3009 /*
3010 * It's a layered write. The target object might exist but
3011 * we may not know that yet. If we know it doesn't exist,
3012 * start by reading the data for the full target object from
3013 * the parent so we can use it for a copyup to the target.
3014 */
3015 if (obj_request_known_test(obj_request))
3016 return rbd_img_obj_parent_read_full(obj_request);
3017
3018 /* We don't know whether the target exists. Go find out. */
3019
3020 return rbd_img_obj_exists_submit(obj_request);
3021 }
3022
3023 static int rbd_img_request_submit(struct rbd_img_request *img_request)
3024 {
3025 struct rbd_obj_request *obj_request;
3026 struct rbd_obj_request *next_obj_request;
3027 int ret = 0;
3028
3029 dout("%s: img %p\n", __func__, img_request);
3030
3031 rbd_img_request_get(img_request);
3032 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
3033 ret = rbd_img_obj_request_submit(obj_request);
3034 if (ret)
3035 goto out_put_ireq;
3036 }
3037
3038 out_put_ireq:
3039 rbd_img_request_put(img_request);
3040 return ret;
3041 }
3042
3043 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
3044 {
3045 struct rbd_obj_request *obj_request;
3046 struct rbd_device *rbd_dev;
3047 u64 obj_end;
3048 u64 img_xferred;
3049 int img_result;
3050
3051 rbd_assert(img_request_child_test(img_request));
3052
3053 /* First get what we need from the image request and release it */
3054
3055 obj_request = img_request->obj_request;
3056 img_xferred = img_request->xferred;
3057 img_result = img_request->result;
3058 rbd_img_request_put(img_request);
3059
3060 /*
3061 * If the overlap has become 0 (most likely because the
3062 * image has been flattened) we need to re-submit the
3063 * original request.
3064 */
3065 rbd_assert(obj_request);
3066 rbd_assert(obj_request->img_request);
3067 rbd_dev = obj_request->img_request->rbd_dev;
3068 if (!rbd_dev->parent_overlap) {
3069 struct ceph_osd_client *osdc;
3070
3071 osdc = &rbd_dev->rbd_client->client->osdc;
3072 img_result = rbd_obj_request_submit(osdc, obj_request);
3073 if (!img_result)
3074 return;
3075 }
3076
3077 obj_request->result = img_result;
3078 if (obj_request->result)
3079 goto out;
3080
3081 /*
3082 * We need to zero anything beyond the parent overlap
3083 * boundary. Since rbd_img_obj_request_read_callback()
3084 * will zero anything beyond the end of a short read, an
3085 * easy way to do this is to pretend the data from the
3086 * parent came up short--ending at the overlap boundary.
3087 */
3088 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3089 obj_end = obj_request->img_offset + obj_request->length;
3090 if (obj_end > rbd_dev->parent_overlap) {
3091 u64 xferred = 0;
3092
3093 if (obj_request->img_offset < rbd_dev->parent_overlap)
3094 xferred = rbd_dev->parent_overlap -
3095 obj_request->img_offset;
3096
3097 obj_request->xferred = min(img_xferred, xferred);
3098 } else {
3099 obj_request->xferred = img_xferred;
3100 }
3101 out:
3102 rbd_img_obj_request_read_callback(obj_request);
3103 rbd_obj_request_complete(obj_request);
3104 }
3105
3106 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3107 {
3108 struct rbd_img_request *img_request;
3109 int result;
3110
3111 rbd_assert(obj_request_img_data_test(obj_request));
3112 rbd_assert(obj_request->img_request != NULL);
3113 rbd_assert(obj_request->result == (s32) -ENOENT);
3114 rbd_assert(obj_request_type_valid(obj_request->type));
3115
3116 /* rbd_read_finish(obj_request, obj_request->length); */
3117 img_request = rbd_parent_request_create(obj_request,
3118 obj_request->img_offset,
3119 obj_request->length);
3120 result = -ENOMEM;
3121 if (!img_request)
3122 goto out_err;
3123
3124 if (obj_request->type == OBJ_REQUEST_BIO)
3125 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3126 obj_request->bio_list);
3127 else
3128 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3129 obj_request->pages);
3130 if (result)
3131 goto out_err;
3132
3133 img_request->callback = rbd_img_parent_read_callback;
3134 result = rbd_img_request_submit(img_request);
3135 if (result)
3136 goto out_err;
3137
3138 return;
3139 out_err:
3140 if (img_request)
3141 rbd_img_request_put(img_request);
3142 obj_request->result = result;
3143 obj_request->xferred = 0;
3144 obj_request_done_set(obj_request);
3145 }
3146
3147 static const struct rbd_client_id rbd_empty_cid;
3148
3149 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3150 const struct rbd_client_id *rhs)
3151 {
3152 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3153 }
3154
3155 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3156 {
3157 struct rbd_client_id cid;
3158
3159 mutex_lock(&rbd_dev->watch_mutex);
3160 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3161 cid.handle = rbd_dev->watch_cookie;
3162 mutex_unlock(&rbd_dev->watch_mutex);
3163 return cid;
3164 }
3165
3166 /*
3167 * lock_rwsem must be held for write
3168 */
3169 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3170 const struct rbd_client_id *cid)
3171 {
3172 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3173 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3174 cid->gid, cid->handle);
3175 rbd_dev->owner_cid = *cid; /* struct */
3176 }
3177
3178 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3179 {
3180 mutex_lock(&rbd_dev->watch_mutex);
3181 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3182 mutex_unlock(&rbd_dev->watch_mutex);
3183 }
3184
3185 /*
3186 * lock_rwsem must be held for write
3187 */
3188 static int rbd_lock(struct rbd_device *rbd_dev)
3189 {
3190 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3191 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3192 char cookie[32];
3193 int ret;
3194
3195 WARN_ON(__rbd_is_lock_owner(rbd_dev));
3196
3197 format_lock_cookie(rbd_dev, cookie);
3198 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3199 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3200 RBD_LOCK_TAG, "", 0);
3201 if (ret)
3202 return ret;
3203
3204 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3205 rbd_set_owner_cid(rbd_dev, &cid);
3206 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3207 return 0;
3208 }
3209
3210 /*
3211 * lock_rwsem must be held for write
3212 */
3213 static int rbd_unlock(struct rbd_device *rbd_dev)
3214 {
3215 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3216 char cookie[32];
3217 int ret;
3218
3219 WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3220
3221 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3222
3223 format_lock_cookie(rbd_dev, cookie);
3224 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3225 RBD_LOCK_NAME, cookie);
3226 if (ret && ret != -ENOENT) {
3227 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3228 return ret;
3229 }
3230
3231 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3232 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3233 return 0;
3234 }
3235
3236 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3237 enum rbd_notify_op notify_op,
3238 struct page ***preply_pages,
3239 size_t *preply_len)
3240 {
3241 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3242 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3243 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3244 char buf[buf_size];
3245 void *p = buf;
3246
3247 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3248
3249 /* encode *LockPayload NotifyMessage (op + ClientId) */
3250 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3251 ceph_encode_32(&p, notify_op);
3252 ceph_encode_64(&p, cid.gid);
3253 ceph_encode_64(&p, cid.handle);
3254
3255 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3256 &rbd_dev->header_oloc, buf, buf_size,
3257 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3258 }
3259
3260 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3261 enum rbd_notify_op notify_op)
3262 {
3263 struct page **reply_pages;
3264 size_t reply_len;
3265
3266 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3267 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3268 }
3269
3270 static void rbd_notify_acquired_lock(struct work_struct *work)
3271 {
3272 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3273 acquired_lock_work);
3274
3275 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3276 }
3277
3278 static void rbd_notify_released_lock(struct work_struct *work)
3279 {
3280 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3281 released_lock_work);
3282
3283 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3284 }
3285
3286 static int rbd_request_lock(struct rbd_device *rbd_dev)
3287 {
3288 struct page **reply_pages;
3289 size_t reply_len;
3290 bool lock_owner_responded = false;
3291 int ret;
3292
3293 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3294
3295 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3296 &reply_pages, &reply_len);
3297 if (ret && ret != -ETIMEDOUT) {
3298 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3299 goto out;
3300 }
3301
3302 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3303 void *p = page_address(reply_pages[0]);
3304 void *const end = p + reply_len;
3305 u32 n;
3306
3307 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3308 while (n--) {
3309 u8 struct_v;
3310 u32 len;
3311
3312 ceph_decode_need(&p, end, 8 + 8, e_inval);
3313 p += 8 + 8; /* skip gid and cookie */
3314
3315 ceph_decode_32_safe(&p, end, len, e_inval);
3316 if (!len)
3317 continue;
3318
3319 if (lock_owner_responded) {
3320 rbd_warn(rbd_dev,
3321 "duplicate lock owners detected");
3322 ret = -EIO;
3323 goto out;
3324 }
3325
3326 lock_owner_responded = true;
3327 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3328 &struct_v, &len);
3329 if (ret) {
3330 rbd_warn(rbd_dev,
3331 "failed to decode ResponseMessage: %d",
3332 ret);
3333 goto e_inval;
3334 }
3335
3336 ret = ceph_decode_32(&p);
3337 }
3338 }
3339
3340 if (!lock_owner_responded) {
3341 rbd_warn(rbd_dev, "no lock owners detected");
3342 ret = -ETIMEDOUT;
3343 }
3344
3345 out:
3346 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3347 return ret;
3348
3349 e_inval:
3350 ret = -EINVAL;
3351 goto out;
3352 }
3353
3354 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3355 {
3356 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3357
3358 cancel_delayed_work(&rbd_dev->lock_dwork);
3359 if (wake_all)
3360 wake_up_all(&rbd_dev->lock_waitq);
3361 else
3362 wake_up(&rbd_dev->lock_waitq);
3363 }
3364
3365 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3366 struct ceph_locker **lockers, u32 *num_lockers)
3367 {
3368 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3369 u8 lock_type;
3370 char *lock_tag;
3371 int ret;
3372
3373 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3374
3375 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3376 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3377 &lock_type, &lock_tag, lockers, num_lockers);
3378 if (ret)
3379 return ret;
3380
3381 if (*num_lockers == 0) {
3382 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3383 goto out;
3384 }
3385
3386 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3387 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3388 lock_tag);
3389 ret = -EBUSY;
3390 goto out;
3391 }
3392
3393 if (lock_type == CEPH_CLS_LOCK_SHARED) {
3394 rbd_warn(rbd_dev, "shared lock type detected");
3395 ret = -EBUSY;
3396 goto out;
3397 }
3398
3399 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3400 strlen(RBD_LOCK_COOKIE_PREFIX))) {
3401 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3402 (*lockers)[0].id.cookie);
3403 ret = -EBUSY;
3404 goto out;
3405 }
3406
3407 out:
3408 kfree(lock_tag);
3409 return ret;
3410 }
3411
3412 static int find_watcher(struct rbd_device *rbd_dev,
3413 const struct ceph_locker *locker)
3414 {
3415 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3416 struct ceph_watch_item *watchers;
3417 u32 num_watchers;
3418 u64 cookie;
3419 int i;
3420 int ret;
3421
3422 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3423 &rbd_dev->header_oloc, &watchers,
3424 &num_watchers);
3425 if (ret)
3426 return ret;
3427
3428 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3429 for (i = 0; i < num_watchers; i++) {
3430 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3431 sizeof(locker->info.addr)) &&
3432 watchers[i].cookie == cookie) {
3433 struct rbd_client_id cid = {
3434 .gid = le64_to_cpu(watchers[i].name.num),
3435 .handle = cookie,
3436 };
3437
3438 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3439 rbd_dev, cid.gid, cid.handle);
3440 rbd_set_owner_cid(rbd_dev, &cid);
3441 ret = 1;
3442 goto out;
3443 }
3444 }
3445
3446 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3447 ret = 0;
3448 out:
3449 kfree(watchers);
3450 return ret;
3451 }
3452
3453 /*
3454 * lock_rwsem must be held for write
3455 */
3456 static int rbd_try_lock(struct rbd_device *rbd_dev)
3457 {
3458 struct ceph_client *client = rbd_dev->rbd_client->client;
3459 struct ceph_locker *lockers;
3460 u32 num_lockers;
3461 int ret;
3462
3463 for (;;) {
3464 ret = rbd_lock(rbd_dev);
3465 if (ret != -EBUSY)
3466 return ret;
3467
3468 /* determine if the current lock holder is still alive */
3469 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3470 if (ret)
3471 return ret;
3472
3473 if (num_lockers == 0)
3474 goto again;
3475
3476 ret = find_watcher(rbd_dev, lockers);
3477 if (ret) {
3478 if (ret > 0)
3479 ret = 0; /* have to request lock */
3480 goto out;
3481 }
3482
3483 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3484 ENTITY_NAME(lockers[0].id.name));
3485
3486 ret = ceph_monc_blacklist_add(&client->monc,
3487 &lockers[0].info.addr);
3488 if (ret) {
3489 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3490 ENTITY_NAME(lockers[0].id.name), ret);
3491 goto out;
3492 }
3493
3494 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3495 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3496 lockers[0].id.cookie,
3497 &lockers[0].id.name);
3498 if (ret && ret != -ENOENT)
3499 goto out;
3500
3501 again:
3502 ceph_free_lockers(lockers, num_lockers);
3503 }
3504
3505 out:
3506 ceph_free_lockers(lockers, num_lockers);
3507 return ret;
3508 }
3509
3510 /*
3511 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3512 */
3513 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3514 int *pret)
3515 {
3516 enum rbd_lock_state lock_state;
3517
3518 down_read(&rbd_dev->lock_rwsem);
3519 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3520 rbd_dev->lock_state);
3521 if (__rbd_is_lock_owner(rbd_dev)) {
3522 lock_state = rbd_dev->lock_state;
3523 up_read(&rbd_dev->lock_rwsem);
3524 return lock_state;
3525 }
3526
3527 up_read(&rbd_dev->lock_rwsem);
3528 down_write(&rbd_dev->lock_rwsem);
3529 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3530 rbd_dev->lock_state);
3531 if (!__rbd_is_lock_owner(rbd_dev)) {
3532 *pret = rbd_try_lock(rbd_dev);
3533 if (*pret)
3534 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3535 }
3536
3537 lock_state = rbd_dev->lock_state;
3538 up_write(&rbd_dev->lock_rwsem);
3539 return lock_state;
3540 }
3541
3542 static void rbd_acquire_lock(struct work_struct *work)
3543 {
3544 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3545 struct rbd_device, lock_dwork);
3546 enum rbd_lock_state lock_state;
3547 int ret;
3548
3549 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3550 again:
3551 lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3552 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3553 if (lock_state == RBD_LOCK_STATE_LOCKED)
3554 wake_requests(rbd_dev, true);
3555 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3556 rbd_dev, lock_state, ret);
3557 return;
3558 }
3559
3560 ret = rbd_request_lock(rbd_dev);
3561 if (ret == -ETIMEDOUT) {
3562 goto again; /* treat this as a dead client */
3563 } else if (ret < 0) {
3564 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3565 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3566 RBD_RETRY_DELAY);
3567 } else {
3568 /*
3569 * lock owner acked, but resend if we don't see them
3570 * release the lock
3571 */
3572 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3573 rbd_dev);
3574 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3575 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3576 }
3577 }
3578
3579 /*
3580 * lock_rwsem must be held for write
3581 */
3582 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3583 {
3584 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3585 rbd_dev->lock_state);
3586 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3587 return false;
3588
3589 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3590 downgrade_write(&rbd_dev->lock_rwsem);
3591 /*
3592 * Ensure that all in-flight IO is flushed.
3593 *
3594 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3595 * may be shared with other devices.
3596 */
3597 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3598 up_read(&rbd_dev->lock_rwsem);
3599
3600 down_write(&rbd_dev->lock_rwsem);
3601 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3602 rbd_dev->lock_state);
3603 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3604 return false;
3605
3606 if (!rbd_unlock(rbd_dev))
3607 /*
3608 * Give others a chance to grab the lock - we would re-acquire
3609 * almost immediately if we got new IO during ceph_osdc_sync()
3610 * otherwise. We need to ack our own notifications, so this
3611 * lock_dwork will be requeued from rbd_wait_state_locked()
3612 * after wake_requests() in rbd_handle_released_lock().
3613 */
3614 cancel_delayed_work(&rbd_dev->lock_dwork);
3615
3616 return true;
3617 }
3618
3619 static void rbd_release_lock_work(struct work_struct *work)
3620 {
3621 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3622 unlock_work);
3623
3624 down_write(&rbd_dev->lock_rwsem);
3625 rbd_release_lock(rbd_dev);
3626 up_write(&rbd_dev->lock_rwsem);
3627 }
3628
3629 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3630 void **p)
3631 {
3632 struct rbd_client_id cid = { 0 };
3633
3634 if (struct_v >= 2) {
3635 cid.gid = ceph_decode_64(p);
3636 cid.handle = ceph_decode_64(p);
3637 }
3638
3639 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3640 cid.handle);
3641 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3642 down_write(&rbd_dev->lock_rwsem);
3643 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3644 /*
3645 * we already know that the remote client is
3646 * the owner
3647 */
3648 up_write(&rbd_dev->lock_rwsem);
3649 return;
3650 }
3651
3652 rbd_set_owner_cid(rbd_dev, &cid);
3653 downgrade_write(&rbd_dev->lock_rwsem);
3654 } else {
3655 down_read(&rbd_dev->lock_rwsem);
3656 }
3657
3658 if (!__rbd_is_lock_owner(rbd_dev))
3659 wake_requests(rbd_dev, false);
3660 up_read(&rbd_dev->lock_rwsem);
3661 }
3662
3663 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3664 void **p)
3665 {
3666 struct rbd_client_id cid = { 0 };
3667
3668 if (struct_v >= 2) {
3669 cid.gid = ceph_decode_64(p);
3670 cid.handle = ceph_decode_64(p);
3671 }
3672
3673 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3674 cid.handle);
3675 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3676 down_write(&rbd_dev->lock_rwsem);
3677 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3678 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3679 __func__, rbd_dev, cid.gid, cid.handle,
3680 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3681 up_write(&rbd_dev->lock_rwsem);
3682 return;
3683 }
3684
3685 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3686 downgrade_write(&rbd_dev->lock_rwsem);
3687 } else {
3688 down_read(&rbd_dev->lock_rwsem);
3689 }
3690
3691 if (!__rbd_is_lock_owner(rbd_dev))
3692 wake_requests(rbd_dev, false);
3693 up_read(&rbd_dev->lock_rwsem);
3694 }
3695
3696 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3697 void **p)
3698 {
3699 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3700 struct rbd_client_id cid = { 0 };
3701 bool need_to_send;
3702
3703 if (struct_v >= 2) {
3704 cid.gid = ceph_decode_64(p);
3705 cid.handle = ceph_decode_64(p);
3706 }
3707
3708 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3709 cid.handle);
3710 if (rbd_cid_equal(&cid, &my_cid))
3711 return false;
3712
3713 down_read(&rbd_dev->lock_rwsem);
3714 need_to_send = __rbd_is_lock_owner(rbd_dev);
3715 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3716 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3717 dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3718 rbd_dev);
3719 queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3720 }
3721 }
3722 up_read(&rbd_dev->lock_rwsem);
3723 return need_to_send;
3724 }
3725
3726 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3727 u64 notify_id, u64 cookie, s32 *result)
3728 {
3729 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3730 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3731 char buf[buf_size];
3732 int ret;
3733
3734 if (result) {
3735 void *p = buf;
3736
3737 /* encode ResponseMessage */
3738 ceph_start_encoding(&p, 1, 1,
3739 buf_size - CEPH_ENCODING_START_BLK_LEN);
3740 ceph_encode_32(&p, *result);
3741 } else {
3742 buf_size = 0;
3743 }
3744
3745 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3746 &rbd_dev->header_oloc, notify_id, cookie,
3747 buf, buf_size);
3748 if (ret)
3749 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3750 }
3751
3752 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3753 u64 cookie)
3754 {
3755 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3756 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3757 }
3758
3759 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3760 u64 notify_id, u64 cookie, s32 result)
3761 {
3762 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3763 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3764 }
3765
3766 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3767 u64 notifier_id, void *data, size_t data_len)
3768 {
3769 struct rbd_device *rbd_dev = arg;
3770 void *p = data;
3771 void *const end = p + data_len;
3772 u8 struct_v;
3773 u32 len;
3774 u32 notify_op;
3775 int ret;
3776
3777 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3778 __func__, rbd_dev, cookie, notify_id, data_len);
3779 if (data_len) {
3780 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3781 &struct_v, &len);
3782 if (ret) {
3783 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3784 ret);
3785 return;
3786 }
3787
3788 notify_op = ceph_decode_32(&p);
3789 } else {
3790 /* legacy notification for header updates */
3791 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3792 len = 0;
3793 }
3794
3795 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3796 switch (notify_op) {
3797 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3798 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3799 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3800 break;
3801 case RBD_NOTIFY_OP_RELEASED_LOCK:
3802 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3803 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3804 break;
3805 case RBD_NOTIFY_OP_REQUEST_LOCK:
3806 if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3807 /*
3808 * send ResponseMessage(0) back so the client
3809 * can detect a missing owner
3810 */
3811 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3812 cookie, 0);
3813 else
3814 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3815 break;
3816 case RBD_NOTIFY_OP_HEADER_UPDATE:
3817 ret = rbd_dev_refresh(rbd_dev);
3818 if (ret)
3819 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3820
3821 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3822 break;
3823 default:
3824 if (rbd_is_lock_owner(rbd_dev))
3825 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3826 cookie, -EOPNOTSUPP);
3827 else
3828 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3829 break;
3830 }
3831 }
3832
3833 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3834
3835 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3836 {
3837 struct rbd_device *rbd_dev = arg;
3838
3839 rbd_warn(rbd_dev, "encountered watch error: %d", err);
3840
3841 down_write(&rbd_dev->lock_rwsem);
3842 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3843 up_write(&rbd_dev->lock_rwsem);
3844
3845 mutex_lock(&rbd_dev->watch_mutex);
3846 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3847 __rbd_unregister_watch(rbd_dev);
3848 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3849
3850 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3851 }
3852 mutex_unlock(&rbd_dev->watch_mutex);
3853 }
3854
3855 /*
3856 * watch_mutex must be locked
3857 */
3858 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3859 {
3860 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3861 struct ceph_osd_linger_request *handle;
3862
3863 rbd_assert(!rbd_dev->watch_handle);
3864 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3865
3866 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3867 &rbd_dev->header_oloc, rbd_watch_cb,
3868 rbd_watch_errcb, rbd_dev);
3869 if (IS_ERR(handle))
3870 return PTR_ERR(handle);
3871
3872 rbd_dev->watch_handle = handle;
3873 return 0;
3874 }
3875
3876 /*
3877 * watch_mutex must be locked
3878 */
3879 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3880 {
3881 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3882 int ret;
3883
3884 rbd_assert(rbd_dev->watch_handle);
3885 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3886
3887 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3888 if (ret)
3889 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3890
3891 rbd_dev->watch_handle = NULL;
3892 }
3893
3894 static int rbd_register_watch(struct rbd_device *rbd_dev)
3895 {
3896 int ret;
3897
3898 mutex_lock(&rbd_dev->watch_mutex);
3899 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3900 ret = __rbd_register_watch(rbd_dev);
3901 if (ret)
3902 goto out;
3903
3904 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3905 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3906
3907 out:
3908 mutex_unlock(&rbd_dev->watch_mutex);
3909 return ret;
3910 }
3911
3912 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3913 {
3914 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3915
3916 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3917 cancel_work_sync(&rbd_dev->acquired_lock_work);
3918 cancel_work_sync(&rbd_dev->released_lock_work);
3919 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3920 cancel_work_sync(&rbd_dev->unlock_work);
3921 }
3922
3923 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3924 {
3925 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3926 cancel_tasks_sync(rbd_dev);
3927
3928 mutex_lock(&rbd_dev->watch_mutex);
3929 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3930 __rbd_unregister_watch(rbd_dev);
3931 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3932 mutex_unlock(&rbd_dev->watch_mutex);
3933
3934 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3935 }
3936
3937 static void rbd_reregister_watch(struct work_struct *work)
3938 {
3939 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3940 struct rbd_device, watch_dwork);
3941 bool was_lock_owner = false;
3942 int ret;
3943
3944 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3945
3946 down_write(&rbd_dev->lock_rwsem);
3947 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3948 was_lock_owner = rbd_release_lock(rbd_dev);
3949
3950 mutex_lock(&rbd_dev->watch_mutex);
3951 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR)
3952 goto fail_unlock;
3953
3954 ret = __rbd_register_watch(rbd_dev);
3955 if (ret) {
3956 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3957 if (ret != -EBLACKLISTED)
3958 queue_delayed_work(rbd_dev->task_wq,
3959 &rbd_dev->watch_dwork,
3960 RBD_RETRY_DELAY);
3961 goto fail_unlock;
3962 }
3963
3964 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3965 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3966 mutex_unlock(&rbd_dev->watch_mutex);
3967
3968 ret = rbd_dev_refresh(rbd_dev);
3969 if (ret)
3970 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3971
3972 if (was_lock_owner) {
3973 ret = rbd_try_lock(rbd_dev);
3974 if (ret)
3975 rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3976 ret);
3977 }
3978
3979 up_write(&rbd_dev->lock_rwsem);
3980 wake_requests(rbd_dev, true);
3981 return;
3982
3983 fail_unlock:
3984 mutex_unlock(&rbd_dev->watch_mutex);
3985 up_write(&rbd_dev->lock_rwsem);
3986 }
3987
3988 /*
3989 * Synchronous osd object method call. Returns the number of bytes
3990 * returned in the outbound buffer, or a negative error code.
3991 */
3992 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3993 const char *object_name,
3994 const char *class_name,
3995 const char *method_name,
3996 const void *outbound,
3997 size_t outbound_size,
3998 void *inbound,
3999 size_t inbound_size)
4000 {
4001 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4002 struct rbd_obj_request *obj_request;
4003 struct page **pages;
4004 u32 page_count;
4005 int ret;
4006
4007 /*
4008 * Method calls are ultimately read operations. The result
4009 * should placed into the inbound buffer provided. They
4010 * also supply outbound data--parameters for the object
4011 * method. Currently if this is present it will be a
4012 * snapshot id.
4013 */
4014 page_count = (u32)calc_pages_for(0, inbound_size);
4015 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4016 if (IS_ERR(pages))
4017 return PTR_ERR(pages);
4018
4019 ret = -ENOMEM;
4020 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
4021 OBJ_REQUEST_PAGES);
4022 if (!obj_request)
4023 goto out;
4024
4025 obj_request->pages = pages;
4026 obj_request->page_count = page_count;
4027
4028 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4029 obj_request);
4030 if (!obj_request->osd_req)
4031 goto out;
4032
4033 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
4034 class_name, method_name);
4035 if (outbound_size) {
4036 struct ceph_pagelist *pagelist;
4037
4038 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
4039 if (!pagelist)
4040 goto out;
4041
4042 ceph_pagelist_init(pagelist);
4043 ceph_pagelist_append(pagelist, outbound, outbound_size);
4044 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
4045 pagelist);
4046 }
4047 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
4048 obj_request->pages, inbound_size,
4049 0, false, false);
4050 rbd_osd_req_format_read(obj_request);
4051
4052 ret = rbd_obj_request_submit(osdc, obj_request);
4053 if (ret)
4054 goto out;
4055 ret = rbd_obj_request_wait(obj_request);
4056 if (ret)
4057 goto out;
4058
4059 ret = obj_request->result;
4060 if (ret < 0)
4061 goto out;
4062
4063 rbd_assert(obj_request->xferred < (u64)INT_MAX);
4064 ret = (int)obj_request->xferred;
4065 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
4066 out:
4067 if (obj_request)
4068 rbd_obj_request_put(obj_request);
4069 else
4070 ceph_release_page_vector(pages, page_count);
4071
4072 return ret;
4073 }
4074
4075 /*
4076 * lock_rwsem must be held for read
4077 */
4078 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
4079 {
4080 DEFINE_WAIT(wait);
4081
4082 do {
4083 /*
4084 * Note the use of mod_delayed_work() in rbd_acquire_lock()
4085 * and cancel_delayed_work() in wake_requests().
4086 */
4087 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
4088 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4089 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
4090 TASK_UNINTERRUPTIBLE);
4091 up_read(&rbd_dev->lock_rwsem);
4092 schedule();
4093 down_read(&rbd_dev->lock_rwsem);
4094 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
4095 finish_wait(&rbd_dev->lock_waitq, &wait);
4096 }
4097
4098 static void rbd_queue_workfn(struct work_struct *work)
4099 {
4100 struct request *rq = blk_mq_rq_from_pdu(work);
4101 struct rbd_device *rbd_dev = rq->q->queuedata;
4102 struct rbd_img_request *img_request;
4103 struct ceph_snap_context *snapc = NULL;
4104 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4105 u64 length = blk_rq_bytes(rq);
4106 enum obj_operation_type op_type;
4107 u64 mapping_size;
4108 bool must_be_locked = false;
4109 int result;
4110
4111 if (rq->cmd_type != REQ_TYPE_FS) {
4112 dout("%s: non-fs request type %d\n", __func__,
4113 (int) rq->cmd_type);
4114 result = -EIO;
4115 goto err;
4116 }
4117
4118 if (req_op(rq) == REQ_OP_DISCARD)
4119 op_type = OBJ_OP_DISCARD;
4120 else if (req_op(rq) == REQ_OP_WRITE)
4121 op_type = OBJ_OP_WRITE;
4122 else
4123 op_type = OBJ_OP_READ;
4124
4125 /* Ignore/skip any zero-length requests */
4126
4127 if (!length) {
4128 dout("%s: zero-length request\n", __func__);
4129 result = 0;
4130 goto err_rq;
4131 }
4132
4133 /* Only reads are allowed to a read-only device */
4134
4135 if (op_type != OBJ_OP_READ) {
4136 if (rbd_dev->mapping.read_only) {
4137 result = -EROFS;
4138 goto err_rq;
4139 }
4140 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4141 }
4142
4143 /*
4144 * Quit early if the mapped snapshot no longer exists. It's
4145 * still possible the snapshot will have disappeared by the
4146 * time our request arrives at the osd, but there's no sense in
4147 * sending it if we already know.
4148 */
4149 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4150 dout("request for non-existent snapshot");
4151 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4152 result = -ENXIO;
4153 goto err_rq;
4154 }
4155
4156 if (offset && length > U64_MAX - offset + 1) {
4157 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4158 length);
4159 result = -EINVAL;
4160 goto err_rq; /* Shouldn't happen */
4161 }
4162
4163 blk_mq_start_request(rq);
4164
4165 down_read(&rbd_dev->header_rwsem);
4166 mapping_size = rbd_dev->mapping.size;
4167 if (op_type != OBJ_OP_READ) {
4168 snapc = rbd_dev->header.snapc;
4169 ceph_get_snap_context(snapc);
4170 must_be_locked = rbd_is_lock_supported(rbd_dev);
4171 }
4172 up_read(&rbd_dev->header_rwsem);
4173
4174 if (offset + length > mapping_size) {
4175 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4176 length, mapping_size);
4177 result = -EIO;
4178 goto err_rq;
4179 }
4180
4181 if (must_be_locked) {
4182 down_read(&rbd_dev->lock_rwsem);
4183 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4184 rbd_wait_state_locked(rbd_dev);
4185 }
4186
4187 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4188 snapc);
4189 if (!img_request) {
4190 result = -ENOMEM;
4191 goto err_unlock;
4192 }
4193 img_request->rq = rq;
4194 snapc = NULL; /* img_request consumes a ref */
4195
4196 if (op_type == OBJ_OP_DISCARD)
4197 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4198 NULL);
4199 else
4200 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4201 rq->bio);
4202 if (result)
4203 goto err_img_request;
4204
4205 result = rbd_img_request_submit(img_request);
4206 if (result)
4207 goto err_img_request;
4208
4209 if (must_be_locked)
4210 up_read(&rbd_dev->lock_rwsem);
4211 return;
4212
4213 err_img_request:
4214 rbd_img_request_put(img_request);
4215 err_unlock:
4216 if (must_be_locked)
4217 up_read(&rbd_dev->lock_rwsem);
4218 err_rq:
4219 if (result)
4220 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4221 obj_op_name(op_type), length, offset, result);
4222 ceph_put_snap_context(snapc);
4223 err:
4224 blk_mq_end_request(rq, result);
4225 }
4226
4227 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4228 const struct blk_mq_queue_data *bd)
4229 {
4230 struct request *rq = bd->rq;
4231 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4232
4233 queue_work(rbd_wq, work);
4234 return BLK_MQ_RQ_QUEUE_OK;
4235 }
4236
4237 static void rbd_free_disk(struct rbd_device *rbd_dev)
4238 {
4239 struct gendisk *disk = rbd_dev->disk;
4240
4241 if (!disk)
4242 return;
4243
4244 rbd_dev->disk = NULL;
4245 if (disk->flags & GENHD_FL_UP) {
4246 del_gendisk(disk);
4247 if (disk->queue)
4248 blk_cleanup_queue(disk->queue);
4249 blk_mq_free_tag_set(&rbd_dev->tag_set);
4250 }
4251 put_disk(disk);
4252 }
4253
4254 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4255 const char *object_name,
4256 u64 offset, u64 length, void *buf)
4257
4258 {
4259 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4260 struct rbd_obj_request *obj_request;
4261 struct page **pages = NULL;
4262 u32 page_count;
4263 size_t size;
4264 int ret;
4265
4266 page_count = (u32) calc_pages_for(offset, length);
4267 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4268 if (IS_ERR(pages))
4269 return PTR_ERR(pages);
4270
4271 ret = -ENOMEM;
4272 obj_request = rbd_obj_request_create(object_name, offset, length,
4273 OBJ_REQUEST_PAGES);
4274 if (!obj_request)
4275 goto out;
4276
4277 obj_request->pages = pages;
4278 obj_request->page_count = page_count;
4279
4280 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4281 obj_request);
4282 if (!obj_request->osd_req)
4283 goto out;
4284
4285 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
4286 offset, length, 0, 0);
4287 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
4288 obj_request->pages,
4289 obj_request->length,
4290 obj_request->offset & ~PAGE_MASK,
4291 false, false);
4292 rbd_osd_req_format_read(obj_request);
4293
4294 ret = rbd_obj_request_submit(osdc, obj_request);
4295 if (ret)
4296 goto out;
4297 ret = rbd_obj_request_wait(obj_request);
4298 if (ret)
4299 goto out;
4300
4301 ret = obj_request->result;
4302 if (ret < 0)
4303 goto out;
4304
4305 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
4306 size = (size_t) obj_request->xferred;
4307 ceph_copy_from_page_vector(pages, buf, 0, size);
4308 rbd_assert(size <= (size_t)INT_MAX);
4309 ret = (int)size;
4310 out:
4311 if (obj_request)
4312 rbd_obj_request_put(obj_request);
4313 else
4314 ceph_release_page_vector(pages, page_count);
4315
4316 return ret;
4317 }
4318
4319 /*
4320 * Read the complete header for the given rbd device. On successful
4321 * return, the rbd_dev->header field will contain up-to-date
4322 * information about the image.
4323 */
4324 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4325 {
4326 struct rbd_image_header_ondisk *ondisk = NULL;
4327 u32 snap_count = 0;
4328 u64 names_size = 0;
4329 u32 want_count;
4330 int ret;
4331
4332 /*
4333 * The complete header will include an array of its 64-bit
4334 * snapshot ids, followed by the names of those snapshots as
4335 * a contiguous block of NUL-terminated strings. Note that
4336 * the number of snapshots could change by the time we read
4337 * it in, in which case we re-read it.
4338 */
4339 do {
4340 size_t size;
4341
4342 kfree(ondisk);
4343
4344 size = sizeof (*ondisk);
4345 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4346 size += names_size;
4347 ondisk = kmalloc(size, GFP_KERNEL);
4348 if (!ondisk)
4349 return -ENOMEM;
4350
4351 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
4352 0, size, ondisk);
4353 if (ret < 0)
4354 goto out;
4355 if ((size_t)ret < size) {
4356 ret = -ENXIO;
4357 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4358 size, ret);
4359 goto out;
4360 }
4361 if (!rbd_dev_ondisk_valid(ondisk)) {
4362 ret = -ENXIO;
4363 rbd_warn(rbd_dev, "invalid header");
4364 goto out;
4365 }
4366
4367 names_size = le64_to_cpu(ondisk->snap_names_len);
4368 want_count = snap_count;
4369 snap_count = le32_to_cpu(ondisk->snap_count);
4370 } while (snap_count != want_count);
4371
4372 ret = rbd_header_from_disk(rbd_dev, ondisk);
4373 out:
4374 kfree(ondisk);
4375
4376 return ret;
4377 }
4378
4379 /*
4380 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4381 * has disappeared from the (just updated) snapshot context.
4382 */
4383 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4384 {
4385 u64 snap_id;
4386
4387 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4388 return;
4389
4390 snap_id = rbd_dev->spec->snap_id;
4391 if (snap_id == CEPH_NOSNAP)
4392 return;
4393
4394 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4395 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4396 }
4397
4398 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4399 {
4400 sector_t size;
4401
4402 /*
4403 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4404 * try to update its size. If REMOVING is set, updating size
4405 * is just useless work since the device can't be opened.
4406 */
4407 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4408 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4409 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4410 dout("setting size to %llu sectors", (unsigned long long)size);
4411 set_capacity(rbd_dev->disk, size);
4412 revalidate_disk(rbd_dev->disk);
4413 }
4414 }
4415
4416 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4417 {
4418 u64 mapping_size;
4419 int ret;
4420
4421 down_write(&rbd_dev->header_rwsem);
4422 mapping_size = rbd_dev->mapping.size;
4423
4424 ret = rbd_dev_header_info(rbd_dev);
4425 if (ret)
4426 goto out;
4427
4428 /*
4429 * If there is a parent, see if it has disappeared due to the
4430 * mapped image getting flattened.
4431 */
4432 if (rbd_dev->parent) {
4433 ret = rbd_dev_v2_parent_info(rbd_dev);
4434 if (ret)
4435 goto out;
4436 }
4437
4438 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4439 rbd_dev->mapping.size = rbd_dev->header.image_size;
4440 } else {
4441 /* validate mapped snapshot's EXISTS flag */
4442 rbd_exists_validate(rbd_dev);
4443 }
4444
4445 out:
4446 up_write(&rbd_dev->header_rwsem);
4447 if (!ret && mapping_size != rbd_dev->mapping.size)
4448 rbd_dev_update_size(rbd_dev);
4449
4450 return ret;
4451 }
4452
4453 static int rbd_init_request(void *data, struct request *rq,
4454 unsigned int hctx_idx, unsigned int request_idx,
4455 unsigned int numa_node)
4456 {
4457 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4458
4459 INIT_WORK(work, rbd_queue_workfn);
4460 return 0;
4461 }
4462
4463 static struct blk_mq_ops rbd_mq_ops = {
4464 .queue_rq = rbd_queue_rq,
4465 .map_queue = blk_mq_map_queue,
4466 .init_request = rbd_init_request,
4467 };
4468
4469 static int rbd_init_disk(struct rbd_device *rbd_dev)
4470 {
4471 struct gendisk *disk;
4472 struct request_queue *q;
4473 u64 segment_size;
4474 int err;
4475
4476 /* create gendisk info */
4477 disk = alloc_disk(single_major ?
4478 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4479 RBD_MINORS_PER_MAJOR);
4480 if (!disk)
4481 return -ENOMEM;
4482
4483 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4484 rbd_dev->dev_id);
4485 disk->major = rbd_dev->major;
4486 disk->first_minor = rbd_dev->minor;
4487 if (single_major)
4488 disk->flags |= GENHD_FL_EXT_DEVT;
4489 disk->fops = &rbd_bd_ops;
4490 disk->private_data = rbd_dev;
4491
4492 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4493 rbd_dev->tag_set.ops = &rbd_mq_ops;
4494 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4495 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4496 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4497 rbd_dev->tag_set.nr_hw_queues = 1;
4498 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4499
4500 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4501 if (err)
4502 goto out_disk;
4503
4504 q = blk_mq_init_queue(&rbd_dev->tag_set);
4505 if (IS_ERR(q)) {
4506 err = PTR_ERR(q);
4507 goto out_tag_set;
4508 }
4509
4510 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4511 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4512
4513 /* set io sizes to object size */
4514 segment_size = rbd_obj_bytes(&rbd_dev->header);
4515 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4516 q->limits.max_sectors = queue_max_hw_sectors(q);
4517 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4518 blk_queue_max_segment_size(q, segment_size);
4519 blk_queue_io_min(q, segment_size);
4520 blk_queue_io_opt(q, segment_size);
4521
4522 /* enable the discard support */
4523 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4524 q->limits.discard_granularity = segment_size;
4525 q->limits.discard_alignment = segment_size;
4526 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4527 q->limits.discard_zeroes_data = 1;
4528
4529 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4530 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
4531
4532 disk->queue = q;
4533
4534 q->queuedata = rbd_dev;
4535
4536 rbd_dev->disk = disk;
4537
4538 return 0;
4539 out_tag_set:
4540 blk_mq_free_tag_set(&rbd_dev->tag_set);
4541 out_disk:
4542 put_disk(disk);
4543 return err;
4544 }
4545
4546 /*
4547 sysfs
4548 */
4549
4550 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4551 {
4552 return container_of(dev, struct rbd_device, dev);
4553 }
4554
4555 static ssize_t rbd_size_show(struct device *dev,
4556 struct device_attribute *attr, char *buf)
4557 {
4558 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4559
4560 return sprintf(buf, "%llu\n",
4561 (unsigned long long)rbd_dev->mapping.size);
4562 }
4563
4564 /*
4565 * Note this shows the features for whatever's mapped, which is not
4566 * necessarily the base image.
4567 */
4568 static ssize_t rbd_features_show(struct device *dev,
4569 struct device_attribute *attr, char *buf)
4570 {
4571 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4572
4573 return sprintf(buf, "0x%016llx\n",
4574 (unsigned long long)rbd_dev->mapping.features);
4575 }
4576
4577 static ssize_t rbd_major_show(struct device *dev,
4578 struct device_attribute *attr, char *buf)
4579 {
4580 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4581
4582 if (rbd_dev->major)
4583 return sprintf(buf, "%d\n", rbd_dev->major);
4584
4585 return sprintf(buf, "(none)\n");
4586 }
4587
4588 static ssize_t rbd_minor_show(struct device *dev,
4589 struct device_attribute *attr, char *buf)
4590 {
4591 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4592
4593 return sprintf(buf, "%d\n", rbd_dev->minor);
4594 }
4595
4596 static ssize_t rbd_client_addr_show(struct device *dev,
4597 struct device_attribute *attr, char *buf)
4598 {
4599 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4600 struct ceph_entity_addr *client_addr =
4601 ceph_client_addr(rbd_dev->rbd_client->client);
4602
4603 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4604 le32_to_cpu(client_addr->nonce));
4605 }
4606
4607 static ssize_t rbd_client_id_show(struct device *dev,
4608 struct device_attribute *attr, char *buf)
4609 {
4610 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4611
4612 return sprintf(buf, "client%lld\n",
4613 ceph_client_gid(rbd_dev->rbd_client->client));
4614 }
4615
4616 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4617 struct device_attribute *attr, char *buf)
4618 {
4619 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4620
4621 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4622 }
4623
4624 static ssize_t rbd_config_info_show(struct device *dev,
4625 struct device_attribute *attr, char *buf)
4626 {
4627 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4628
4629 return sprintf(buf, "%s\n", rbd_dev->config_info);
4630 }
4631
4632 static ssize_t rbd_pool_show(struct device *dev,
4633 struct device_attribute *attr, char *buf)
4634 {
4635 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4636
4637 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4638 }
4639
4640 static ssize_t rbd_pool_id_show(struct device *dev,
4641 struct device_attribute *attr, char *buf)
4642 {
4643 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4644
4645 return sprintf(buf, "%llu\n",
4646 (unsigned long long) rbd_dev->spec->pool_id);
4647 }
4648
4649 static ssize_t rbd_name_show(struct device *dev,
4650 struct device_attribute *attr, char *buf)
4651 {
4652 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4653
4654 if (rbd_dev->spec->image_name)
4655 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4656
4657 return sprintf(buf, "(unknown)\n");
4658 }
4659
4660 static ssize_t rbd_image_id_show(struct device *dev,
4661 struct device_attribute *attr, char *buf)
4662 {
4663 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4664
4665 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4666 }
4667
4668 /*
4669 * Shows the name of the currently-mapped snapshot (or
4670 * RBD_SNAP_HEAD_NAME for the base image).
4671 */
4672 static ssize_t rbd_snap_show(struct device *dev,
4673 struct device_attribute *attr,
4674 char *buf)
4675 {
4676 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4677
4678 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4679 }
4680
4681 static ssize_t rbd_snap_id_show(struct device *dev,
4682 struct device_attribute *attr, char *buf)
4683 {
4684 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4685
4686 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4687 }
4688
4689 /*
4690 * For a v2 image, shows the chain of parent images, separated by empty
4691 * lines. For v1 images or if there is no parent, shows "(no parent
4692 * image)".
4693 */
4694 static ssize_t rbd_parent_show(struct device *dev,
4695 struct device_attribute *attr,
4696 char *buf)
4697 {
4698 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4699 ssize_t count = 0;
4700
4701 if (!rbd_dev->parent)
4702 return sprintf(buf, "(no parent image)\n");
4703
4704 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4705 struct rbd_spec *spec = rbd_dev->parent_spec;
4706
4707 count += sprintf(&buf[count], "%s"
4708 "pool_id %llu\npool_name %s\n"
4709 "image_id %s\nimage_name %s\n"
4710 "snap_id %llu\nsnap_name %s\n"
4711 "overlap %llu\n",
4712 !count ? "" : "\n", /* first? */
4713 spec->pool_id, spec->pool_name,
4714 spec->image_id, spec->image_name ?: "(unknown)",
4715 spec->snap_id, spec->snap_name,
4716 rbd_dev->parent_overlap);
4717 }
4718
4719 return count;
4720 }
4721
4722 static ssize_t rbd_image_refresh(struct device *dev,
4723 struct device_attribute *attr,
4724 const char *buf,
4725 size_t size)
4726 {
4727 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4728 int ret;
4729
4730 ret = rbd_dev_refresh(rbd_dev);
4731 if (ret)
4732 return ret;
4733
4734 return size;
4735 }
4736
4737 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4738 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4739 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4740 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4741 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4742 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4743 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4744 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4745 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4746 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4747 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4748 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4749 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4750 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4751 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4752 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4753
4754 static struct attribute *rbd_attrs[] = {
4755 &dev_attr_size.attr,
4756 &dev_attr_features.attr,
4757 &dev_attr_major.attr,
4758 &dev_attr_minor.attr,
4759 &dev_attr_client_addr.attr,
4760 &dev_attr_client_id.attr,
4761 &dev_attr_cluster_fsid.attr,
4762 &dev_attr_config_info.attr,
4763 &dev_attr_pool.attr,
4764 &dev_attr_pool_id.attr,
4765 &dev_attr_name.attr,
4766 &dev_attr_image_id.attr,
4767 &dev_attr_current_snap.attr,
4768 &dev_attr_snap_id.attr,
4769 &dev_attr_parent.attr,
4770 &dev_attr_refresh.attr,
4771 NULL
4772 };
4773
4774 static struct attribute_group rbd_attr_group = {
4775 .attrs = rbd_attrs,
4776 };
4777
4778 static const struct attribute_group *rbd_attr_groups[] = {
4779 &rbd_attr_group,
4780 NULL
4781 };
4782
4783 static void rbd_dev_release(struct device *dev);
4784
4785 static struct device_type rbd_device_type = {
4786 .name = "rbd",
4787 .groups = rbd_attr_groups,
4788 .release = rbd_dev_release,
4789 };
4790
4791 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4792 {
4793 kref_get(&spec->kref);
4794
4795 return spec;
4796 }
4797
4798 static void rbd_spec_free(struct kref *kref);
4799 static void rbd_spec_put(struct rbd_spec *spec)
4800 {
4801 if (spec)
4802 kref_put(&spec->kref, rbd_spec_free);
4803 }
4804
4805 static struct rbd_spec *rbd_spec_alloc(void)
4806 {
4807 struct rbd_spec *spec;
4808
4809 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4810 if (!spec)
4811 return NULL;
4812
4813 spec->pool_id = CEPH_NOPOOL;
4814 spec->snap_id = CEPH_NOSNAP;
4815 kref_init(&spec->kref);
4816
4817 return spec;
4818 }
4819
4820 static void rbd_spec_free(struct kref *kref)
4821 {
4822 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4823
4824 kfree(spec->pool_name);
4825 kfree(spec->image_id);
4826 kfree(spec->image_name);
4827 kfree(spec->snap_name);
4828 kfree(spec);
4829 }
4830
4831 static void rbd_dev_free(struct rbd_device *rbd_dev)
4832 {
4833 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4834 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4835
4836 ceph_oid_destroy(&rbd_dev->header_oid);
4837 ceph_oloc_destroy(&rbd_dev->header_oloc);
4838 kfree(rbd_dev->config_info);
4839
4840 rbd_put_client(rbd_dev->rbd_client);
4841 rbd_spec_put(rbd_dev->spec);
4842 kfree(rbd_dev->opts);
4843 kfree(rbd_dev);
4844 }
4845
4846 static void rbd_dev_release(struct device *dev)
4847 {
4848 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4849 bool need_put = !!rbd_dev->opts;
4850
4851 if (need_put) {
4852 destroy_workqueue(rbd_dev->task_wq);
4853 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4854 }
4855
4856 rbd_dev_free(rbd_dev);
4857
4858 /*
4859 * This is racy, but way better than putting module outside of
4860 * the release callback. The race window is pretty small, so
4861 * doing something similar to dm (dm-builtin.c) is overkill.
4862 */
4863 if (need_put)
4864 module_put(THIS_MODULE);
4865 }
4866
4867 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4868 struct rbd_spec *spec)
4869 {
4870 struct rbd_device *rbd_dev;
4871
4872 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4873 if (!rbd_dev)
4874 return NULL;
4875
4876 spin_lock_init(&rbd_dev->lock);
4877 INIT_LIST_HEAD(&rbd_dev->node);
4878 init_rwsem(&rbd_dev->header_rwsem);
4879
4880 ceph_oid_init(&rbd_dev->header_oid);
4881 ceph_oloc_init(&rbd_dev->header_oloc);
4882
4883 mutex_init(&rbd_dev->watch_mutex);
4884 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4885 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4886
4887 init_rwsem(&rbd_dev->lock_rwsem);
4888 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4889 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4890 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4891 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4892 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4893 init_waitqueue_head(&rbd_dev->lock_waitq);
4894
4895 rbd_dev->dev.bus = &rbd_bus_type;
4896 rbd_dev->dev.type = &rbd_device_type;
4897 rbd_dev->dev.parent = &rbd_root_dev;
4898 device_initialize(&rbd_dev->dev);
4899
4900 rbd_dev->rbd_client = rbdc;
4901 rbd_dev->spec = spec;
4902
4903 rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER;
4904 rbd_dev->layout.stripe_count = 1;
4905 rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER;
4906 rbd_dev->layout.pool_id = spec->pool_id;
4907 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
4908
4909 return rbd_dev;
4910 }
4911
4912 /*
4913 * Create a mapping rbd_dev.
4914 */
4915 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4916 struct rbd_spec *spec,
4917 struct rbd_options *opts)
4918 {
4919 struct rbd_device *rbd_dev;
4920
4921 rbd_dev = __rbd_dev_create(rbdc, spec);
4922 if (!rbd_dev)
4923 return NULL;
4924
4925 rbd_dev->opts = opts;
4926
4927 /* get an id and fill in device name */
4928 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4929 minor_to_rbd_dev_id(1 << MINORBITS),
4930 GFP_KERNEL);
4931 if (rbd_dev->dev_id < 0)
4932 goto fail_rbd_dev;
4933
4934 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4935 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4936 rbd_dev->name);
4937 if (!rbd_dev->task_wq)
4938 goto fail_dev_id;
4939
4940 /* we have a ref from do_rbd_add() */
4941 __module_get(THIS_MODULE);
4942
4943 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4944 return rbd_dev;
4945
4946 fail_dev_id:
4947 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4948 fail_rbd_dev:
4949 rbd_dev_free(rbd_dev);
4950 return NULL;
4951 }
4952
4953 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4954 {
4955 if (rbd_dev)
4956 put_device(&rbd_dev->dev);
4957 }
4958
4959 /*
4960 * Get the size and object order for an image snapshot, or if
4961 * snap_id is CEPH_NOSNAP, gets this information for the base
4962 * image.
4963 */
4964 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4965 u8 *order, u64 *snap_size)
4966 {
4967 __le64 snapid = cpu_to_le64(snap_id);
4968 int ret;
4969 struct {
4970 u8 order;
4971 __le64 size;
4972 } __attribute__ ((packed)) size_buf = { 0 };
4973
4974 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4975 "rbd", "get_size",
4976 &snapid, sizeof (snapid),
4977 &size_buf, sizeof (size_buf));
4978 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4979 if (ret < 0)
4980 return ret;
4981 if (ret < sizeof (size_buf))
4982 return -ERANGE;
4983
4984 if (order) {
4985 *order = size_buf.order;
4986 dout(" order %u", (unsigned int)*order);
4987 }
4988 *snap_size = le64_to_cpu(size_buf.size);
4989
4990 dout(" snap_id 0x%016llx snap_size = %llu\n",
4991 (unsigned long long)snap_id,
4992 (unsigned long long)*snap_size);
4993
4994 return 0;
4995 }
4996
4997 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4998 {
4999 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5000 &rbd_dev->header.obj_order,
5001 &rbd_dev->header.image_size);
5002 }
5003
5004 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5005 {
5006 void *reply_buf;
5007 int ret;
5008 void *p;
5009
5010 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
5011 if (!reply_buf)
5012 return -ENOMEM;
5013
5014 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5015 "rbd", "get_object_prefix", NULL, 0,
5016 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
5017 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5018 if (ret < 0)
5019 goto out;
5020
5021 p = reply_buf;
5022 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5023 p + ret, NULL, GFP_NOIO);
5024 ret = 0;
5025
5026 if (IS_ERR(rbd_dev->header.object_prefix)) {
5027 ret = PTR_ERR(rbd_dev->header.object_prefix);
5028 rbd_dev->header.object_prefix = NULL;
5029 } else {
5030 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
5031 }
5032 out:
5033 kfree(reply_buf);
5034
5035 return ret;
5036 }
5037
5038 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5039 u64 *snap_features)
5040 {
5041 __le64 snapid = cpu_to_le64(snap_id);
5042 struct {
5043 __le64 features;
5044 __le64 incompat;
5045 } __attribute__ ((packed)) features_buf = { 0 };
5046 u64 unsup;
5047 int ret;
5048
5049 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5050 "rbd", "get_features",
5051 &snapid, sizeof (snapid),
5052 &features_buf, sizeof (features_buf));
5053 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5054 if (ret < 0)
5055 return ret;
5056 if (ret < sizeof (features_buf))
5057 return -ERANGE;
5058
5059 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5060 if (unsup) {
5061 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5062 unsup);
5063 return -ENXIO;
5064 }
5065
5066 *snap_features = le64_to_cpu(features_buf.features);
5067
5068 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5069 (unsigned long long)snap_id,
5070 (unsigned long long)*snap_features,
5071 (unsigned long long)le64_to_cpu(features_buf.incompat));
5072
5073 return 0;
5074 }
5075
5076 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5077 {
5078 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5079 &rbd_dev->header.features);
5080 }
5081
5082 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5083 {
5084 struct rbd_spec *parent_spec;
5085 size_t size;
5086 void *reply_buf = NULL;
5087 __le64 snapid;
5088 void *p;
5089 void *end;
5090 u64 pool_id;
5091 char *image_id;
5092 u64 snap_id;
5093 u64 overlap;
5094 int ret;
5095
5096 parent_spec = rbd_spec_alloc();
5097 if (!parent_spec)
5098 return -ENOMEM;
5099
5100 size = sizeof (__le64) + /* pool_id */
5101 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
5102 sizeof (__le64) + /* snap_id */
5103 sizeof (__le64); /* overlap */
5104 reply_buf = kmalloc(size, GFP_KERNEL);
5105 if (!reply_buf) {
5106 ret = -ENOMEM;
5107 goto out_err;
5108 }
5109
5110 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5111 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5112 "rbd", "get_parent",
5113 &snapid, sizeof (snapid),
5114 reply_buf, size);
5115 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5116 if (ret < 0)
5117 goto out_err;
5118
5119 p = reply_buf;
5120 end = reply_buf + ret;
5121 ret = -ERANGE;
5122 ceph_decode_64_safe(&p, end, pool_id, out_err);
5123 if (pool_id == CEPH_NOPOOL) {
5124 /*
5125 * Either the parent never existed, or we have
5126 * record of it but the image got flattened so it no
5127 * longer has a parent. When the parent of a
5128 * layered image disappears we immediately set the
5129 * overlap to 0. The effect of this is that all new
5130 * requests will be treated as if the image had no
5131 * parent.
5132 */
5133 if (rbd_dev->parent_overlap) {
5134 rbd_dev->parent_overlap = 0;
5135 rbd_dev_parent_put(rbd_dev);
5136 pr_info("%s: clone image has been flattened\n",
5137 rbd_dev->disk->disk_name);
5138 }
5139
5140 goto out; /* No parent? No problem. */
5141 }
5142
5143 /* The ceph file layout needs to fit pool id in 32 bits */
5144
5145 ret = -EIO;
5146 if (pool_id > (u64)U32_MAX) {
5147 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5148 (unsigned long long)pool_id, U32_MAX);
5149 goto out_err;
5150 }
5151
5152 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5153 if (IS_ERR(image_id)) {
5154 ret = PTR_ERR(image_id);
5155 goto out_err;
5156 }
5157 ceph_decode_64_safe(&p, end, snap_id, out_err);
5158 ceph_decode_64_safe(&p, end, overlap, out_err);
5159
5160 /*
5161 * The parent won't change (except when the clone is
5162 * flattened, already handled that). So we only need to
5163 * record the parent spec we have not already done so.
5164 */
5165 if (!rbd_dev->parent_spec) {
5166 parent_spec->pool_id = pool_id;
5167 parent_spec->image_id = image_id;
5168 parent_spec->snap_id = snap_id;
5169 rbd_dev->parent_spec = parent_spec;
5170 parent_spec = NULL; /* rbd_dev now owns this */
5171 } else {
5172 kfree(image_id);
5173 }
5174
5175 /*
5176 * We always update the parent overlap. If it's zero we issue
5177 * a warning, as we will proceed as if there was no parent.
5178 */
5179 if (!overlap) {
5180 if (parent_spec) {
5181 /* refresh, careful to warn just once */
5182 if (rbd_dev->parent_overlap)
5183 rbd_warn(rbd_dev,
5184 "clone now standalone (overlap became 0)");
5185 } else {
5186 /* initial probe */
5187 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5188 }
5189 }
5190 rbd_dev->parent_overlap = overlap;
5191
5192 out:
5193 ret = 0;
5194 out_err:
5195 kfree(reply_buf);
5196 rbd_spec_put(parent_spec);
5197
5198 return ret;
5199 }
5200
5201 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5202 {
5203 struct {
5204 __le64 stripe_unit;
5205 __le64 stripe_count;
5206 } __attribute__ ((packed)) striping_info_buf = { 0 };
5207 size_t size = sizeof (striping_info_buf);
5208 void *p;
5209 u64 obj_size;
5210 u64 stripe_unit;
5211 u64 stripe_count;
5212 int ret;
5213
5214 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5215 "rbd", "get_stripe_unit_count", NULL, 0,
5216 (char *)&striping_info_buf, size);
5217 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5218 if (ret < 0)
5219 return ret;
5220 if (ret < size)
5221 return -ERANGE;
5222
5223 /*
5224 * We don't actually support the "fancy striping" feature
5225 * (STRIPINGV2) yet, but if the striping sizes are the
5226 * defaults the behavior is the same as before. So find
5227 * out, and only fail if the image has non-default values.
5228 */
5229 ret = -EINVAL;
5230 obj_size = (u64)1 << rbd_dev->header.obj_order;
5231 p = &striping_info_buf;
5232 stripe_unit = ceph_decode_64(&p);
5233 if (stripe_unit != obj_size) {
5234 rbd_warn(rbd_dev, "unsupported stripe unit "
5235 "(got %llu want %llu)",
5236 stripe_unit, obj_size);
5237 return -EINVAL;
5238 }
5239 stripe_count = ceph_decode_64(&p);
5240 if (stripe_count != 1) {
5241 rbd_warn(rbd_dev, "unsupported stripe count "
5242 "(got %llu want 1)", stripe_count);
5243 return -EINVAL;
5244 }
5245 rbd_dev->header.stripe_unit = stripe_unit;
5246 rbd_dev->header.stripe_count = stripe_count;
5247
5248 return 0;
5249 }
5250
5251 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5252 {
5253 size_t image_id_size;
5254 char *image_id;
5255 void *p;
5256 void *end;
5257 size_t size;
5258 void *reply_buf = NULL;
5259 size_t len = 0;
5260 char *image_name = NULL;
5261 int ret;
5262
5263 rbd_assert(!rbd_dev->spec->image_name);
5264
5265 len = strlen(rbd_dev->spec->image_id);
5266 image_id_size = sizeof (__le32) + len;
5267 image_id = kmalloc(image_id_size, GFP_KERNEL);
5268 if (!image_id)
5269 return NULL;
5270
5271 p = image_id;
5272 end = image_id + image_id_size;
5273 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5274
5275 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5276 reply_buf = kmalloc(size, GFP_KERNEL);
5277 if (!reply_buf)
5278 goto out;
5279
5280 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
5281 "rbd", "dir_get_name",
5282 image_id, image_id_size,
5283 reply_buf, size);
5284 if (ret < 0)
5285 goto out;
5286 p = reply_buf;
5287 end = reply_buf + ret;
5288
5289 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5290 if (IS_ERR(image_name))
5291 image_name = NULL;
5292 else
5293 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5294 out:
5295 kfree(reply_buf);
5296 kfree(image_id);
5297
5298 return image_name;
5299 }
5300
5301 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5302 {
5303 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5304 const char *snap_name;
5305 u32 which = 0;
5306
5307 /* Skip over names until we find the one we are looking for */
5308
5309 snap_name = rbd_dev->header.snap_names;
5310 while (which < snapc->num_snaps) {
5311 if (!strcmp(name, snap_name))
5312 return snapc->snaps[which];
5313 snap_name += strlen(snap_name) + 1;
5314 which++;
5315 }
5316 return CEPH_NOSNAP;
5317 }
5318
5319 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5320 {
5321 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5322 u32 which;
5323 bool found = false;
5324 u64 snap_id;
5325
5326 for (which = 0; !found && which < snapc->num_snaps; which++) {
5327 const char *snap_name;
5328
5329 snap_id = snapc->snaps[which];
5330 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5331 if (IS_ERR(snap_name)) {
5332 /* ignore no-longer existing snapshots */
5333 if (PTR_ERR(snap_name) == -ENOENT)
5334 continue;
5335 else
5336 break;
5337 }
5338 found = !strcmp(name, snap_name);
5339 kfree(snap_name);
5340 }
5341 return found ? snap_id : CEPH_NOSNAP;
5342 }
5343
5344 /*
5345 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5346 * no snapshot by that name is found, or if an error occurs.
5347 */
5348 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5349 {
5350 if (rbd_dev->image_format == 1)
5351 return rbd_v1_snap_id_by_name(rbd_dev, name);
5352
5353 return rbd_v2_snap_id_by_name(rbd_dev, name);
5354 }
5355
5356 /*
5357 * An image being mapped will have everything but the snap id.
5358 */
5359 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5360 {
5361 struct rbd_spec *spec = rbd_dev->spec;
5362
5363 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5364 rbd_assert(spec->image_id && spec->image_name);
5365 rbd_assert(spec->snap_name);
5366
5367 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5368 u64 snap_id;
5369
5370 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5371 if (snap_id == CEPH_NOSNAP)
5372 return -ENOENT;
5373
5374 spec->snap_id = snap_id;
5375 } else {
5376 spec->snap_id = CEPH_NOSNAP;
5377 }
5378
5379 return 0;
5380 }
5381
5382 /*
5383 * A parent image will have all ids but none of the names.
5384 *
5385 * All names in an rbd spec are dynamically allocated. It's OK if we
5386 * can't figure out the name for an image id.
5387 */
5388 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5389 {
5390 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5391 struct rbd_spec *spec = rbd_dev->spec;
5392 const char *pool_name;
5393 const char *image_name;
5394 const char *snap_name;
5395 int ret;
5396
5397 rbd_assert(spec->pool_id != CEPH_NOPOOL);
5398 rbd_assert(spec->image_id);
5399 rbd_assert(spec->snap_id != CEPH_NOSNAP);
5400
5401 /* Get the pool name; we have to make our own copy of this */
5402
5403 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5404 if (!pool_name) {
5405 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5406 return -EIO;
5407 }
5408 pool_name = kstrdup(pool_name, GFP_KERNEL);
5409 if (!pool_name)
5410 return -ENOMEM;
5411
5412 /* Fetch the image name; tolerate failure here */
5413
5414 image_name = rbd_dev_image_name(rbd_dev);
5415 if (!image_name)
5416 rbd_warn(rbd_dev, "unable to get image name");
5417
5418 /* Fetch the snapshot name */
5419
5420 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5421 if (IS_ERR(snap_name)) {
5422 ret = PTR_ERR(snap_name);
5423 goto out_err;
5424 }
5425
5426 spec->pool_name = pool_name;
5427 spec->image_name = image_name;
5428 spec->snap_name = snap_name;
5429
5430 return 0;
5431
5432 out_err:
5433 kfree(image_name);
5434 kfree(pool_name);
5435 return ret;
5436 }
5437
5438 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5439 {
5440 size_t size;
5441 int ret;
5442 void *reply_buf;
5443 void *p;
5444 void *end;
5445 u64 seq;
5446 u32 snap_count;
5447 struct ceph_snap_context *snapc;
5448 u32 i;
5449
5450 /*
5451 * We'll need room for the seq value (maximum snapshot id),
5452 * snapshot count, and array of that many snapshot ids.
5453 * For now we have a fixed upper limit on the number we're
5454 * prepared to receive.
5455 */
5456 size = sizeof (__le64) + sizeof (__le32) +
5457 RBD_MAX_SNAP_COUNT * sizeof (__le64);
5458 reply_buf = kzalloc(size, GFP_KERNEL);
5459 if (!reply_buf)
5460 return -ENOMEM;
5461
5462 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5463 "rbd", "get_snapcontext", NULL, 0,
5464 reply_buf, size);
5465 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5466 if (ret < 0)
5467 goto out;
5468
5469 p = reply_buf;
5470 end = reply_buf + ret;
5471 ret = -ERANGE;
5472 ceph_decode_64_safe(&p, end, seq, out);
5473 ceph_decode_32_safe(&p, end, snap_count, out);
5474
5475 /*
5476 * Make sure the reported number of snapshot ids wouldn't go
5477 * beyond the end of our buffer. But before checking that,
5478 * make sure the computed size of the snapshot context we
5479 * allocate is representable in a size_t.
5480 */
5481 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5482 / sizeof (u64)) {
5483 ret = -EINVAL;
5484 goto out;
5485 }
5486 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5487 goto out;
5488 ret = 0;
5489
5490 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5491 if (!snapc) {
5492 ret = -ENOMEM;
5493 goto out;
5494 }
5495 snapc->seq = seq;
5496 for (i = 0; i < snap_count; i++)
5497 snapc->snaps[i] = ceph_decode_64(&p);
5498
5499 ceph_put_snap_context(rbd_dev->header.snapc);
5500 rbd_dev->header.snapc = snapc;
5501
5502 dout(" snap context seq = %llu, snap_count = %u\n",
5503 (unsigned long long)seq, (unsigned int)snap_count);
5504 out:
5505 kfree(reply_buf);
5506
5507 return ret;
5508 }
5509
5510 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5511 u64 snap_id)
5512 {
5513 size_t size;
5514 void *reply_buf;
5515 __le64 snapid;
5516 int ret;
5517 void *p;
5518 void *end;
5519 char *snap_name;
5520
5521 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5522 reply_buf = kmalloc(size, GFP_KERNEL);
5523 if (!reply_buf)
5524 return ERR_PTR(-ENOMEM);
5525
5526 snapid = cpu_to_le64(snap_id);
5527 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5528 "rbd", "get_snapshot_name",
5529 &snapid, sizeof (snapid),
5530 reply_buf, size);
5531 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5532 if (ret < 0) {
5533 snap_name = ERR_PTR(ret);
5534 goto out;
5535 }
5536
5537 p = reply_buf;
5538 end = reply_buf + ret;
5539 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5540 if (IS_ERR(snap_name))
5541 goto out;
5542
5543 dout(" snap_id 0x%016llx snap_name = %s\n",
5544 (unsigned long long)snap_id, snap_name);
5545 out:
5546 kfree(reply_buf);
5547
5548 return snap_name;
5549 }
5550
5551 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5552 {
5553 bool first_time = rbd_dev->header.object_prefix == NULL;
5554 int ret;
5555
5556 ret = rbd_dev_v2_image_size(rbd_dev);
5557 if (ret)
5558 return ret;
5559
5560 if (first_time) {
5561 ret = rbd_dev_v2_header_onetime(rbd_dev);
5562 if (ret)
5563 return ret;
5564 }
5565
5566 ret = rbd_dev_v2_snap_context(rbd_dev);
5567 if (ret && first_time) {
5568 kfree(rbd_dev->header.object_prefix);
5569 rbd_dev->header.object_prefix = NULL;
5570 }
5571
5572 return ret;
5573 }
5574
5575 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5576 {
5577 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5578
5579 if (rbd_dev->image_format == 1)
5580 return rbd_dev_v1_header_info(rbd_dev);
5581
5582 return rbd_dev_v2_header_info(rbd_dev);
5583 }
5584
5585 /*
5586 * Skips over white space at *buf, and updates *buf to point to the
5587 * first found non-space character (if any). Returns the length of
5588 * the token (string of non-white space characters) found. Note
5589 * that *buf must be terminated with '\0'.
5590 */
5591 static inline size_t next_token(const char **buf)
5592 {
5593 /*
5594 * These are the characters that produce nonzero for
5595 * isspace() in the "C" and "POSIX" locales.
5596 */
5597 const char *spaces = " \f\n\r\t\v";
5598
5599 *buf += strspn(*buf, spaces); /* Find start of token */
5600
5601 return strcspn(*buf, spaces); /* Return token length */
5602 }
5603
5604 /*
5605 * Finds the next token in *buf, dynamically allocates a buffer big
5606 * enough to hold a copy of it, and copies the token into the new
5607 * buffer. The copy is guaranteed to be terminated with '\0'. Note
5608 * that a duplicate buffer is created even for a zero-length token.
5609 *
5610 * Returns a pointer to the newly-allocated duplicate, or a null
5611 * pointer if memory for the duplicate was not available. If
5612 * the lenp argument is a non-null pointer, the length of the token
5613 * (not including the '\0') is returned in *lenp.
5614 *
5615 * If successful, the *buf pointer will be updated to point beyond
5616 * the end of the found token.
5617 *
5618 * Note: uses GFP_KERNEL for allocation.
5619 */
5620 static inline char *dup_token(const char **buf, size_t *lenp)
5621 {
5622 char *dup;
5623 size_t len;
5624
5625 len = next_token(buf);
5626 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5627 if (!dup)
5628 return NULL;
5629 *(dup + len) = '\0';
5630 *buf += len;
5631
5632 if (lenp)
5633 *lenp = len;
5634
5635 return dup;
5636 }
5637
5638 /*
5639 * Parse the options provided for an "rbd add" (i.e., rbd image
5640 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
5641 * and the data written is passed here via a NUL-terminated buffer.
5642 * Returns 0 if successful or an error code otherwise.
5643 *
5644 * The information extracted from these options is recorded in
5645 * the other parameters which return dynamically-allocated
5646 * structures:
5647 * ceph_opts
5648 * The address of a pointer that will refer to a ceph options
5649 * structure. Caller must release the returned pointer using
5650 * ceph_destroy_options() when it is no longer needed.
5651 * rbd_opts
5652 * Address of an rbd options pointer. Fully initialized by
5653 * this function; caller must release with kfree().
5654 * spec
5655 * Address of an rbd image specification pointer. Fully
5656 * initialized by this function based on parsed options.
5657 * Caller must release with rbd_spec_put().
5658 *
5659 * The options passed take this form:
5660 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5661 * where:
5662 * <mon_addrs>
5663 * A comma-separated list of one or more monitor addresses.
5664 * A monitor address is an ip address, optionally followed
5665 * by a port number (separated by a colon).
5666 * I.e.: ip1[:port1][,ip2[:port2]...]
5667 * <options>
5668 * A comma-separated list of ceph and/or rbd options.
5669 * <pool_name>
5670 * The name of the rados pool containing the rbd image.
5671 * <image_name>
5672 * The name of the image in that pool to map.
5673 * <snap_id>
5674 * An optional snapshot id. If provided, the mapping will
5675 * present data from the image at the time that snapshot was
5676 * created. The image head is used if no snapshot id is
5677 * provided. Snapshot mappings are always read-only.
5678 */
5679 static int rbd_add_parse_args(const char *buf,
5680 struct ceph_options **ceph_opts,
5681 struct rbd_options **opts,
5682 struct rbd_spec **rbd_spec)
5683 {
5684 size_t len;
5685 char *options;
5686 const char *mon_addrs;
5687 char *snap_name;
5688 size_t mon_addrs_size;
5689 struct rbd_spec *spec = NULL;
5690 struct rbd_options *rbd_opts = NULL;
5691 struct ceph_options *copts;
5692 int ret;
5693
5694 /* The first four tokens are required */
5695
5696 len = next_token(&buf);
5697 if (!len) {
5698 rbd_warn(NULL, "no monitor address(es) provided");
5699 return -EINVAL;
5700 }
5701 mon_addrs = buf;
5702 mon_addrs_size = len + 1;
5703 buf += len;
5704
5705 ret = -EINVAL;
5706 options = dup_token(&buf, NULL);
5707 if (!options)
5708 return -ENOMEM;
5709 if (!*options) {
5710 rbd_warn(NULL, "no options provided");
5711 goto out_err;
5712 }
5713
5714 spec = rbd_spec_alloc();
5715 if (!spec)
5716 goto out_mem;
5717
5718 spec->pool_name = dup_token(&buf, NULL);
5719 if (!spec->pool_name)
5720 goto out_mem;
5721 if (!*spec->pool_name) {
5722 rbd_warn(NULL, "no pool name provided");
5723 goto out_err;
5724 }
5725
5726 spec->image_name = dup_token(&buf, NULL);
5727 if (!spec->image_name)
5728 goto out_mem;
5729 if (!*spec->image_name) {
5730 rbd_warn(NULL, "no image name provided");
5731 goto out_err;
5732 }
5733
5734 /*
5735 * Snapshot name is optional; default is to use "-"
5736 * (indicating the head/no snapshot).
5737 */
5738 len = next_token(&buf);
5739 if (!len) {
5740 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5741 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5742 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5743 ret = -ENAMETOOLONG;
5744 goto out_err;
5745 }
5746 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5747 if (!snap_name)
5748 goto out_mem;
5749 *(snap_name + len) = '\0';
5750 spec->snap_name = snap_name;
5751
5752 /* Initialize all rbd options to the defaults */
5753
5754 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5755 if (!rbd_opts)
5756 goto out_mem;
5757
5758 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5759 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5760
5761 copts = ceph_parse_options(options, mon_addrs,
5762 mon_addrs + mon_addrs_size - 1,
5763 parse_rbd_opts_token, rbd_opts);
5764 if (IS_ERR(copts)) {
5765 ret = PTR_ERR(copts);
5766 goto out_err;
5767 }
5768 kfree(options);
5769
5770 *ceph_opts = copts;
5771 *opts = rbd_opts;
5772 *rbd_spec = spec;
5773
5774 return 0;
5775 out_mem:
5776 ret = -ENOMEM;
5777 out_err:
5778 kfree(rbd_opts);
5779 rbd_spec_put(spec);
5780 kfree(options);
5781
5782 return ret;
5783 }
5784
5785 /*
5786 * Return pool id (>= 0) or a negative error code.
5787 */
5788 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5789 {
5790 struct ceph_options *opts = rbdc->client->options;
5791 u64 newest_epoch;
5792 int tries = 0;
5793 int ret;
5794
5795 again:
5796 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5797 if (ret == -ENOENT && tries++ < 1) {
5798 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5799 &newest_epoch);
5800 if (ret < 0)
5801 return ret;
5802
5803 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5804 ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5805 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5806 newest_epoch,
5807 opts->mount_timeout);
5808 goto again;
5809 } else {
5810 /* the osdmap we have is new enough */
5811 return -ENOENT;
5812 }
5813 }
5814
5815 return ret;
5816 }
5817
5818 /*
5819 * An rbd format 2 image has a unique identifier, distinct from the
5820 * name given to it by the user. Internally, that identifier is
5821 * what's used to specify the names of objects related to the image.
5822 *
5823 * A special "rbd id" object is used to map an rbd image name to its
5824 * id. If that object doesn't exist, then there is no v2 rbd image
5825 * with the supplied name.
5826 *
5827 * This function will record the given rbd_dev's image_id field if
5828 * it can be determined, and in that case will return 0. If any
5829 * errors occur a negative errno will be returned and the rbd_dev's
5830 * image_id field will be unchanged (and should be NULL).
5831 */
5832 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5833 {
5834 int ret;
5835 size_t size;
5836 char *object_name;
5837 void *response;
5838 char *image_id;
5839
5840 /*
5841 * When probing a parent image, the image id is already
5842 * known (and the image name likely is not). There's no
5843 * need to fetch the image id again in this case. We
5844 * do still need to set the image format though.
5845 */
5846 if (rbd_dev->spec->image_id) {
5847 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5848
5849 return 0;
5850 }
5851
5852 /*
5853 * First, see if the format 2 image id file exists, and if
5854 * so, get the image's persistent id from it.
5855 */
5856 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5857 object_name = kmalloc(size, GFP_NOIO);
5858 if (!object_name)
5859 return -ENOMEM;
5860 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5861 dout("rbd id object name is %s\n", object_name);
5862
5863 /* Response will be an encoded string, which includes a length */
5864
5865 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5866 response = kzalloc(size, GFP_NOIO);
5867 if (!response) {
5868 ret = -ENOMEM;
5869 goto out;
5870 }
5871
5872 /* If it doesn't exist we'll assume it's a format 1 image */
5873
5874 ret = rbd_obj_method_sync(rbd_dev, object_name,
5875 "rbd", "get_id", NULL, 0,
5876 response, RBD_IMAGE_ID_LEN_MAX);
5877 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5878 if (ret == -ENOENT) {
5879 image_id = kstrdup("", GFP_KERNEL);
5880 ret = image_id ? 0 : -ENOMEM;
5881 if (!ret)
5882 rbd_dev->image_format = 1;
5883 } else if (ret >= 0) {
5884 void *p = response;
5885
5886 image_id = ceph_extract_encoded_string(&p, p + ret,
5887 NULL, GFP_NOIO);
5888 ret = PTR_ERR_OR_ZERO(image_id);
5889 if (!ret)
5890 rbd_dev->image_format = 2;
5891 }
5892
5893 if (!ret) {
5894 rbd_dev->spec->image_id = image_id;
5895 dout("image_id is %s\n", image_id);
5896 }
5897 out:
5898 kfree(response);
5899 kfree(object_name);
5900
5901 return ret;
5902 }
5903
5904 /*
5905 * Undo whatever state changes are made by v1 or v2 header info
5906 * call.
5907 */
5908 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5909 {
5910 struct rbd_image_header *header;
5911
5912 rbd_dev_parent_put(rbd_dev);
5913
5914 /* Free dynamic fields from the header, then zero it out */
5915
5916 header = &rbd_dev->header;
5917 ceph_put_snap_context(header->snapc);
5918 kfree(header->snap_sizes);
5919 kfree(header->snap_names);
5920 kfree(header->object_prefix);
5921 memset(header, 0, sizeof (*header));
5922 }
5923
5924 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5925 {
5926 int ret;
5927
5928 ret = rbd_dev_v2_object_prefix(rbd_dev);
5929 if (ret)
5930 goto out_err;
5931
5932 /*
5933 * Get the and check features for the image. Currently the
5934 * features are assumed to never change.
5935 */
5936 ret = rbd_dev_v2_features(rbd_dev);
5937 if (ret)
5938 goto out_err;
5939
5940 /* If the image supports fancy striping, get its parameters */
5941
5942 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5943 ret = rbd_dev_v2_striping_info(rbd_dev);
5944 if (ret < 0)
5945 goto out_err;
5946 }
5947 /* No support for crypto and compression type format 2 images */
5948
5949 return 0;
5950 out_err:
5951 rbd_dev->header.features = 0;
5952 kfree(rbd_dev->header.object_prefix);
5953 rbd_dev->header.object_prefix = NULL;
5954
5955 return ret;
5956 }
5957
5958 /*
5959 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5960 * rbd_dev_image_probe() recursion depth, which means it's also the
5961 * length of the already discovered part of the parent chain.
5962 */
5963 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5964 {
5965 struct rbd_device *parent = NULL;
5966 int ret;
5967
5968 if (!rbd_dev->parent_spec)
5969 return 0;
5970
5971 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5972 pr_info("parent chain is too long (%d)\n", depth);
5973 ret = -EINVAL;
5974 goto out_err;
5975 }
5976
5977 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5978 if (!parent) {
5979 ret = -ENOMEM;
5980 goto out_err;
5981 }
5982
5983 /*
5984 * Images related by parent/child relationships always share
5985 * rbd_client and spec/parent_spec, so bump their refcounts.
5986 */
5987 __rbd_get_client(rbd_dev->rbd_client);
5988 rbd_spec_get(rbd_dev->parent_spec);
5989
5990 ret = rbd_dev_image_probe(parent, depth);
5991 if (ret < 0)
5992 goto out_err;
5993
5994 rbd_dev->parent = parent;
5995 atomic_set(&rbd_dev->parent_ref, 1);
5996 return 0;
5997
5998 out_err:
5999 rbd_dev_unparent(rbd_dev);
6000 rbd_dev_destroy(parent);
6001 return ret;
6002 }
6003
6004 /*
6005 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6006 * upon return.
6007 */
6008 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6009 {
6010 int ret;
6011
6012 /* Record our major and minor device numbers. */
6013
6014 if (!single_major) {
6015 ret = register_blkdev(0, rbd_dev->name);
6016 if (ret < 0)
6017 goto err_out_unlock;
6018
6019 rbd_dev->major = ret;
6020 rbd_dev->minor = 0;
6021 } else {
6022 rbd_dev->major = rbd_major;
6023 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6024 }
6025
6026 /* Set up the blkdev mapping. */
6027
6028 ret = rbd_init_disk(rbd_dev);
6029 if (ret)
6030 goto err_out_blkdev;
6031
6032 ret = rbd_dev_mapping_set(rbd_dev);
6033 if (ret)
6034 goto err_out_disk;
6035
6036 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6037 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
6038
6039 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6040 ret = device_add(&rbd_dev->dev);
6041 if (ret)
6042 goto err_out_mapping;
6043
6044 /* Everything's ready. Announce the disk to the world. */
6045
6046 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6047 up_write(&rbd_dev->header_rwsem);
6048
6049 spin_lock(&rbd_dev_list_lock);
6050 list_add_tail(&rbd_dev->node, &rbd_dev_list);
6051 spin_unlock(&rbd_dev_list_lock);
6052
6053 add_disk(rbd_dev->disk);
6054 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6055 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6056 rbd_dev->header.features);
6057
6058 return ret;
6059
6060 err_out_mapping:
6061 rbd_dev_mapping_clear(rbd_dev);
6062 err_out_disk:
6063 rbd_free_disk(rbd_dev);
6064 err_out_blkdev:
6065 if (!single_major)
6066 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6067 err_out_unlock:
6068 up_write(&rbd_dev->header_rwsem);
6069 return ret;
6070 }
6071
6072 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6073 {
6074 struct rbd_spec *spec = rbd_dev->spec;
6075 int ret;
6076
6077 /* Record the header object name for this rbd image. */
6078
6079 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6080
6081 rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id;
6082 if (rbd_dev->image_format == 1)
6083 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6084 spec->image_name, RBD_SUFFIX);
6085 else
6086 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6087 RBD_HEADER_PREFIX, spec->image_id);
6088
6089 return ret;
6090 }
6091
6092 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6093 {
6094 rbd_dev_unprobe(rbd_dev);
6095 rbd_dev->image_format = 0;
6096 kfree(rbd_dev->spec->image_id);
6097 rbd_dev->spec->image_id = NULL;
6098
6099 rbd_dev_destroy(rbd_dev);
6100 }
6101
6102 /*
6103 * Probe for the existence of the header object for the given rbd
6104 * device. If this image is the one being mapped (i.e., not a
6105 * parent), initiate a watch on its header object before using that
6106 * object to get detailed information about the rbd image.
6107 */
6108 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6109 {
6110 int ret;
6111
6112 /*
6113 * Get the id from the image id object. Unless there's an
6114 * error, rbd_dev->spec->image_id will be filled in with
6115 * a dynamically-allocated string, and rbd_dev->image_format
6116 * will be set to either 1 or 2.
6117 */
6118 ret = rbd_dev_image_id(rbd_dev);
6119 if (ret)
6120 return ret;
6121
6122 ret = rbd_dev_header_name(rbd_dev);
6123 if (ret)
6124 goto err_out_format;
6125
6126 if (!depth) {
6127 ret = rbd_register_watch(rbd_dev);
6128 if (ret) {
6129 if (ret == -ENOENT)
6130 pr_info("image %s/%s does not exist\n",
6131 rbd_dev->spec->pool_name,
6132 rbd_dev->spec->image_name);
6133 goto err_out_format;
6134 }
6135 }
6136
6137 ret = rbd_dev_header_info(rbd_dev);
6138 if (ret)
6139 goto err_out_watch;
6140
6141 /*
6142 * If this image is the one being mapped, we have pool name and
6143 * id, image name and id, and snap name - need to fill snap id.
6144 * Otherwise this is a parent image, identified by pool, image
6145 * and snap ids - need to fill in names for those ids.
6146 */
6147 if (!depth)
6148 ret = rbd_spec_fill_snap_id(rbd_dev);
6149 else
6150 ret = rbd_spec_fill_names(rbd_dev);
6151 if (ret) {
6152 if (ret == -ENOENT)
6153 pr_info("snap %s/%s@%s does not exist\n",
6154 rbd_dev->spec->pool_name,
6155 rbd_dev->spec->image_name,
6156 rbd_dev->spec->snap_name);
6157 goto err_out_probe;
6158 }
6159
6160 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6161 ret = rbd_dev_v2_parent_info(rbd_dev);
6162 if (ret)
6163 goto err_out_probe;
6164
6165 /*
6166 * Need to warn users if this image is the one being
6167 * mapped and has a parent.
6168 */
6169 if (!depth && rbd_dev->parent_spec)
6170 rbd_warn(rbd_dev,
6171 "WARNING: kernel layering is EXPERIMENTAL!");
6172 }
6173
6174 ret = rbd_dev_probe_parent(rbd_dev, depth);
6175 if (ret)
6176 goto err_out_probe;
6177
6178 dout("discovered format %u image, header name is %s\n",
6179 rbd_dev->image_format, rbd_dev->header_oid.name);
6180 return 0;
6181
6182 err_out_probe:
6183 rbd_dev_unprobe(rbd_dev);
6184 err_out_watch:
6185 if (!depth)
6186 rbd_unregister_watch(rbd_dev);
6187 err_out_format:
6188 rbd_dev->image_format = 0;
6189 kfree(rbd_dev->spec->image_id);
6190 rbd_dev->spec->image_id = NULL;
6191 return ret;
6192 }
6193
6194 static ssize_t do_rbd_add(struct bus_type *bus,
6195 const char *buf,
6196 size_t count)
6197 {
6198 struct rbd_device *rbd_dev = NULL;
6199 struct ceph_options *ceph_opts = NULL;
6200 struct rbd_options *rbd_opts = NULL;
6201 struct rbd_spec *spec = NULL;
6202 struct rbd_client *rbdc;
6203 bool read_only;
6204 int rc;
6205
6206 if (!try_module_get(THIS_MODULE))
6207 return -ENODEV;
6208
6209 /* parse add command */
6210 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6211 if (rc < 0)
6212 goto out;
6213
6214 rbdc = rbd_get_client(ceph_opts);
6215 if (IS_ERR(rbdc)) {
6216 rc = PTR_ERR(rbdc);
6217 goto err_out_args;
6218 }
6219
6220 /* pick the pool */
6221 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6222 if (rc < 0) {
6223 if (rc == -ENOENT)
6224 pr_info("pool %s does not exist\n", spec->pool_name);
6225 goto err_out_client;
6226 }
6227 spec->pool_id = (u64)rc;
6228
6229 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6230 if (!rbd_dev) {
6231 rc = -ENOMEM;
6232 goto err_out_client;
6233 }
6234 rbdc = NULL; /* rbd_dev now owns this */
6235 spec = NULL; /* rbd_dev now owns this */
6236 rbd_opts = NULL; /* rbd_dev now owns this */
6237
6238 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6239 if (!rbd_dev->config_info) {
6240 rc = -ENOMEM;
6241 goto err_out_rbd_dev;
6242 }
6243
6244 down_write(&rbd_dev->header_rwsem);
6245 rc = rbd_dev_image_probe(rbd_dev, 0);
6246 if (rc < 0) {
6247 up_write(&rbd_dev->header_rwsem);
6248 goto err_out_rbd_dev;
6249 }
6250
6251 /* If we are mapping a snapshot it must be marked read-only */
6252
6253 read_only = rbd_dev->opts->read_only;
6254 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6255 read_only = true;
6256 rbd_dev->mapping.read_only = read_only;
6257
6258 rc = rbd_dev_device_setup(rbd_dev);
6259 if (rc) {
6260 /*
6261 * rbd_unregister_watch() can't be moved into
6262 * rbd_dev_image_release() without refactoring, see
6263 * commit 1f3ef78861ac.
6264 */
6265 rbd_unregister_watch(rbd_dev);
6266 rbd_dev_image_release(rbd_dev);
6267 goto out;
6268 }
6269
6270 rc = count;
6271 out:
6272 module_put(THIS_MODULE);
6273 return rc;
6274
6275 err_out_rbd_dev:
6276 rbd_dev_destroy(rbd_dev);
6277 err_out_client:
6278 rbd_put_client(rbdc);
6279 err_out_args:
6280 rbd_spec_put(spec);
6281 kfree(rbd_opts);
6282 goto out;
6283 }
6284
6285 static ssize_t rbd_add(struct bus_type *bus,
6286 const char *buf,
6287 size_t count)
6288 {
6289 if (single_major)
6290 return -EINVAL;
6291
6292 return do_rbd_add(bus, buf, count);
6293 }
6294
6295 static ssize_t rbd_add_single_major(struct bus_type *bus,
6296 const char *buf,
6297 size_t count)
6298 {
6299 return do_rbd_add(bus, buf, count);
6300 }
6301
6302 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6303 {
6304 rbd_free_disk(rbd_dev);
6305
6306 spin_lock(&rbd_dev_list_lock);
6307 list_del_init(&rbd_dev->node);
6308 spin_unlock(&rbd_dev_list_lock);
6309
6310 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6311 device_del(&rbd_dev->dev);
6312 rbd_dev_mapping_clear(rbd_dev);
6313 if (!single_major)
6314 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6315 }
6316
6317 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6318 {
6319 while (rbd_dev->parent) {
6320 struct rbd_device *first = rbd_dev;
6321 struct rbd_device *second = first->parent;
6322 struct rbd_device *third;
6323
6324 /*
6325 * Follow to the parent with no grandparent and
6326 * remove it.
6327 */
6328 while (second && (third = second->parent)) {
6329 first = second;
6330 second = third;
6331 }
6332 rbd_assert(second);
6333 rbd_dev_image_release(second);
6334 first->parent = NULL;
6335 first->parent_overlap = 0;
6336
6337 rbd_assert(first->parent_spec);
6338 rbd_spec_put(first->parent_spec);
6339 first->parent_spec = NULL;
6340 }
6341 }
6342
6343 static ssize_t do_rbd_remove(struct bus_type *bus,
6344 const char *buf,
6345 size_t count)
6346 {
6347 struct rbd_device *rbd_dev = NULL;
6348 struct list_head *tmp;
6349 int dev_id;
6350 char opt_buf[6];
6351 bool already = false;
6352 bool force = false;
6353 int ret;
6354
6355 dev_id = -1;
6356 opt_buf[0] = '\0';
6357 sscanf(buf, "%d %5s", &dev_id, opt_buf);
6358 if (dev_id < 0) {
6359 pr_err("dev_id out of range\n");
6360 return -EINVAL;
6361 }
6362 if (opt_buf[0] != '\0') {
6363 if (!strcmp(opt_buf, "force")) {
6364 force = true;
6365 } else {
6366 pr_err("bad remove option at '%s'\n", opt_buf);
6367 return -EINVAL;
6368 }
6369 }
6370
6371 ret = -ENOENT;
6372 spin_lock(&rbd_dev_list_lock);
6373 list_for_each(tmp, &rbd_dev_list) {
6374 rbd_dev = list_entry(tmp, struct rbd_device, node);
6375 if (rbd_dev->dev_id == dev_id) {
6376 ret = 0;
6377 break;
6378 }
6379 }
6380 if (!ret) {
6381 spin_lock_irq(&rbd_dev->lock);
6382 if (rbd_dev->open_count && !force)
6383 ret = -EBUSY;
6384 else
6385 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6386 &rbd_dev->flags);
6387 spin_unlock_irq(&rbd_dev->lock);
6388 }
6389 spin_unlock(&rbd_dev_list_lock);
6390 if (ret < 0 || already)
6391 return ret;
6392
6393 if (force) {
6394 /*
6395 * Prevent new IO from being queued and wait for existing
6396 * IO to complete/fail.
6397 */
6398 blk_mq_freeze_queue(rbd_dev->disk->queue);
6399 blk_set_queue_dying(rbd_dev->disk->queue);
6400 }
6401
6402 down_write(&rbd_dev->lock_rwsem);
6403 if (__rbd_is_lock_owner(rbd_dev))
6404 rbd_unlock(rbd_dev);
6405 up_write(&rbd_dev->lock_rwsem);
6406 rbd_unregister_watch(rbd_dev);
6407
6408 /*
6409 * Don't free anything from rbd_dev->disk until after all
6410 * notifies are completely processed. Otherwise
6411 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
6412 * in a potential use after free of rbd_dev->disk or rbd_dev.
6413 */
6414 rbd_dev_device_release(rbd_dev);
6415 rbd_dev_image_release(rbd_dev);
6416
6417 return count;
6418 }
6419
6420 static ssize_t rbd_remove(struct bus_type *bus,
6421 const char *buf,
6422 size_t count)
6423 {
6424 if (single_major)
6425 return -EINVAL;
6426
6427 return do_rbd_remove(bus, buf, count);
6428 }
6429
6430 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6431 const char *buf,
6432 size_t count)
6433 {
6434 return do_rbd_remove(bus, buf, count);
6435 }
6436
6437 /*
6438 * create control files in sysfs
6439 * /sys/bus/rbd/...
6440 */
6441 static int rbd_sysfs_init(void)
6442 {
6443 int ret;
6444
6445 ret = device_register(&rbd_root_dev);
6446 if (ret < 0)
6447 return ret;
6448
6449 ret = bus_register(&rbd_bus_type);
6450 if (ret < 0)
6451 device_unregister(&rbd_root_dev);
6452
6453 return ret;
6454 }
6455
6456 static void rbd_sysfs_cleanup(void)
6457 {
6458 bus_unregister(&rbd_bus_type);
6459 device_unregister(&rbd_root_dev);
6460 }
6461
6462 static int rbd_slab_init(void)
6463 {
6464 rbd_assert(!rbd_img_request_cache);
6465 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6466 if (!rbd_img_request_cache)
6467 return -ENOMEM;
6468
6469 rbd_assert(!rbd_obj_request_cache);
6470 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6471 if (!rbd_obj_request_cache)
6472 goto out_err;
6473
6474 rbd_assert(!rbd_segment_name_cache);
6475 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
6476 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
6477 if (rbd_segment_name_cache)
6478 return 0;
6479 out_err:
6480 kmem_cache_destroy(rbd_obj_request_cache);
6481 rbd_obj_request_cache = NULL;
6482
6483 kmem_cache_destroy(rbd_img_request_cache);
6484 rbd_img_request_cache = NULL;
6485
6486 return -ENOMEM;
6487 }
6488
6489 static void rbd_slab_exit(void)
6490 {
6491 rbd_assert(rbd_segment_name_cache);
6492 kmem_cache_destroy(rbd_segment_name_cache);
6493 rbd_segment_name_cache = NULL;
6494
6495 rbd_assert(rbd_obj_request_cache);
6496 kmem_cache_destroy(rbd_obj_request_cache);
6497 rbd_obj_request_cache = NULL;
6498
6499 rbd_assert(rbd_img_request_cache);
6500 kmem_cache_destroy(rbd_img_request_cache);
6501 rbd_img_request_cache = NULL;
6502 }
6503
6504 static int __init rbd_init(void)
6505 {
6506 int rc;
6507
6508 if (!libceph_compatible(NULL)) {
6509 rbd_warn(NULL, "libceph incompatibility (quitting)");
6510 return -EINVAL;
6511 }
6512
6513 rc = rbd_slab_init();
6514 if (rc)
6515 return rc;
6516
6517 /*
6518 * The number of active work items is limited by the number of
6519 * rbd devices * queue depth, so leave @max_active at default.
6520 */
6521 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6522 if (!rbd_wq) {
6523 rc = -ENOMEM;
6524 goto err_out_slab;
6525 }
6526
6527 if (single_major) {
6528 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6529 if (rbd_major < 0) {
6530 rc = rbd_major;
6531 goto err_out_wq;
6532 }
6533 }
6534
6535 rc = rbd_sysfs_init();
6536 if (rc)
6537 goto err_out_blkdev;
6538
6539 if (single_major)
6540 pr_info("loaded (major %d)\n", rbd_major);
6541 else
6542 pr_info("loaded\n");
6543
6544 return 0;
6545
6546 err_out_blkdev:
6547 if (single_major)
6548 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6549 err_out_wq:
6550 destroy_workqueue(rbd_wq);
6551 err_out_slab:
6552 rbd_slab_exit();
6553 return rc;
6554 }
6555
6556 static void __exit rbd_exit(void)
6557 {
6558 ida_destroy(&rbd_dev_id_ida);
6559 rbd_sysfs_cleanup();
6560 if (single_major)
6561 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6562 destroy_workqueue(rbd_wq);
6563 rbd_slab_exit();
6564 }
6565
6566 module_init(rbd_init);
6567 module_exit(rbd_exit);
6568
6569 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6570 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6571 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6572 /* following authorship retained from original osdblk.c */
6573 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6574
6575 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6576 MODULE_LICENSE("GPL");
This page took 0.167336 seconds and 5 git commands to generate.