Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
51
52 /*
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
57 */
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60
61 /*
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
66 */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 unsigned int counter;
70
71 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 if (counter <= (unsigned int)INT_MAX)
73 return (int)counter;
74
75 atomic_dec(v);
76
77 return -EINVAL;
78 }
79
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 int counter;
84
85 counter = atomic_dec_return(v);
86 if (counter >= 0)
87 return counter;
88
89 atomic_inc(v);
90
91 return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98
99 #define RBD_MAX_PARENT_CHAIN_LEN 16
100
101 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
102 #define RBD_MAX_SNAP_NAME_LEN \
103 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104
105 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
106
107 #define RBD_SNAP_HEAD_NAME "-"
108
109 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
110
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX 64
114
115 #define RBD_OBJ_PREFIX_LEN_MAX 64
116
117 /* Feature bits */
118
119 #define RBD_FEATURE_LAYERING (1<<0)
120 #define RBD_FEATURE_STRIPINGV2 (1<<1)
121 #define RBD_FEATURES_ALL \
122 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123
124 /* Features supported by this (client software) implementation. */
125
126 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
127
128 /*
129 * An RBD device name will be "rbd#", where the "rbd" comes from
130 * RBD_DRV_NAME above, and # is a unique integer identifier.
131 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132 * enough to hold all possible device names.
133 */
134 #define DEV_NAME_LEN 32
135 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
136
137 /*
138 * block device image metadata (in-memory version)
139 */
140 struct rbd_image_header {
141 /* These six fields never change for a given rbd image */
142 char *object_prefix;
143 __u8 obj_order;
144 __u8 crypt_type;
145 __u8 comp_type;
146 u64 stripe_unit;
147 u64 stripe_count;
148 u64 features; /* Might be changeable someday? */
149
150 /* The remaining fields need to be updated occasionally */
151 u64 image_size;
152 struct ceph_snap_context *snapc;
153 char *snap_names; /* format 1 only */
154 u64 *snap_sizes; /* format 1 only */
155 };
156
157 /*
158 * An rbd image specification.
159 *
160 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161 * identify an image. Each rbd_dev structure includes a pointer to
162 * an rbd_spec structure that encapsulates this identity.
163 *
164 * Each of the id's in an rbd_spec has an associated name. For a
165 * user-mapped image, the names are supplied and the id's associated
166 * with them are looked up. For a layered image, a parent image is
167 * defined by the tuple, and the names are looked up.
168 *
169 * An rbd_dev structure contains a parent_spec pointer which is
170 * non-null if the image it represents is a child in a layered
171 * image. This pointer will refer to the rbd_spec structure used
172 * by the parent rbd_dev for its own identity (i.e., the structure
173 * is shared between the parent and child).
174 *
175 * Since these structures are populated once, during the discovery
176 * phase of image construction, they are effectively immutable so
177 * we make no effort to synchronize access to them.
178 *
179 * Note that code herein does not assume the image name is known (it
180 * could be a null pointer).
181 */
182 struct rbd_spec {
183 u64 pool_id;
184 const char *pool_name;
185
186 const char *image_id;
187 const char *image_name;
188
189 u64 snap_id;
190 const char *snap_name;
191
192 struct kref kref;
193 };
194
195 /*
196 * an instance of the client. multiple devices may share an rbd client.
197 */
198 struct rbd_client {
199 struct ceph_client *client;
200 struct kref kref;
201 struct list_head node;
202 };
203
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206
207 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
208
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211
212 enum obj_request_type {
213 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215
216 enum obj_operation_type {
217 OBJ_OP_WRITE,
218 OBJ_OP_READ,
219 OBJ_OP_DISCARD,
220 };
221
222 enum obj_req_flags {
223 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
224 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
225 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
226 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
227 };
228
229 struct rbd_obj_request {
230 const char *object_name;
231 u64 offset; /* object start byte */
232 u64 length; /* bytes from offset */
233 unsigned long flags;
234
235 /*
236 * An object request associated with an image will have its
237 * img_data flag set; a standalone object request will not.
238 *
239 * A standalone object request will have which == BAD_WHICH
240 * and a null obj_request pointer.
241 *
242 * An object request initiated in support of a layered image
243 * object (to check for its existence before a write) will
244 * have which == BAD_WHICH and a non-null obj_request pointer.
245 *
246 * Finally, an object request for rbd image data will have
247 * which != BAD_WHICH, and will have a non-null img_request
248 * pointer. The value of which will be in the range
249 * 0..(img_request->obj_request_count-1).
250 */
251 union {
252 struct rbd_obj_request *obj_request; /* STAT op */
253 struct {
254 struct rbd_img_request *img_request;
255 u64 img_offset;
256 /* links for img_request->obj_requests list */
257 struct list_head links;
258 };
259 };
260 u32 which; /* posn image request list */
261
262 enum obj_request_type type;
263 union {
264 struct bio *bio_list;
265 struct {
266 struct page **pages;
267 u32 page_count;
268 };
269 };
270 struct page **copyup_pages;
271 u32 copyup_page_count;
272
273 struct ceph_osd_request *osd_req;
274
275 u64 xferred; /* bytes transferred */
276 int result;
277
278 rbd_obj_callback_t callback;
279 struct completion completion;
280
281 struct kref kref;
282 };
283
284 enum img_req_flags {
285 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
286 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
287 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
288 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
289 };
290
291 struct rbd_img_request {
292 struct rbd_device *rbd_dev;
293 u64 offset; /* starting image byte offset */
294 u64 length; /* byte count from offset */
295 unsigned long flags;
296 union {
297 u64 snap_id; /* for reads */
298 struct ceph_snap_context *snapc; /* for writes */
299 };
300 union {
301 struct request *rq; /* block request */
302 struct rbd_obj_request *obj_request; /* obj req initiator */
303 };
304 struct page **copyup_pages;
305 u32 copyup_page_count;
306 spinlock_t completion_lock;/* protects next_completion */
307 u32 next_completion;
308 rbd_img_callback_t callback;
309 u64 xferred;/* aggregate bytes transferred */
310 int result; /* first nonzero obj_request result */
311
312 u32 obj_request_count;
313 struct list_head obj_requests; /* rbd_obj_request structs */
314
315 struct kref kref;
316 };
317
318 #define for_each_obj_request(ireq, oreq) \
319 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324
325 struct rbd_mapping {
326 u64 size;
327 u64 features;
328 bool read_only;
329 };
330
331 /*
332 * a single device
333 */
334 struct rbd_device {
335 int dev_id; /* blkdev unique id */
336
337 int major; /* blkdev assigned major */
338 int minor;
339 struct gendisk *disk; /* blkdev's gendisk and rq */
340
341 u32 image_format; /* Either 1 or 2 */
342 struct rbd_client *rbd_client;
343
344 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345
346 spinlock_t lock; /* queue, flags, open_count */
347
348 struct rbd_image_header header;
349 unsigned long flags; /* possibly lock protected */
350 struct rbd_spec *spec;
351 struct rbd_options *opts;
352
353 struct ceph_object_id header_oid;
354 struct ceph_object_locator header_oloc;
355
356 struct ceph_file_layout layout;
357
358 struct ceph_osd_linger_request *watch_handle;
359
360 struct rbd_spec *parent_spec;
361 u64 parent_overlap;
362 atomic_t parent_ref;
363 struct rbd_device *parent;
364
365 /* Block layer tags. */
366 struct blk_mq_tag_set tag_set;
367
368 /* protects updating the header */
369 struct rw_semaphore header_rwsem;
370
371 struct rbd_mapping mapping;
372
373 struct list_head node;
374
375 /* sysfs related */
376 struct device dev;
377 unsigned long open_count; /* protected by lock */
378 };
379
380 /*
381 * Flag bits for rbd_dev->flags. If atomicity is required,
382 * rbd_dev->lock is used to protect access.
383 *
384 * Currently, only the "removing" flag (which is coupled with the
385 * "open_count" field) requires atomic access.
386 */
387 enum rbd_dev_flags {
388 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
389 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
390 };
391
392 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
393
394 static LIST_HEAD(rbd_dev_list); /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396
397 static LIST_HEAD(rbd_client_list); /* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399
400 /* Slab caches for frequently-allocated structures */
401
402 static struct kmem_cache *rbd_img_request_cache;
403 static struct kmem_cache *rbd_obj_request_cache;
404 static struct kmem_cache *rbd_segment_name_cache;
405
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408
409 static struct workqueue_struct *rbd_wq;
410
411 /*
412 * Default to false for now, as single-major requires >= 0.75 version of
413 * userspace rbd utility.
414 */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448 &bus_attr_add.attr,
449 &bus_attr_remove.attr,
450 &bus_attr_add_single_major.attr,
451 &bus_attr_remove_single_major.attr,
452 NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 struct attribute *attr, int index)
457 {
458 if (!single_major &&
459 (attr == &bus_attr_add_single_major.attr ||
460 attr == &bus_attr_remove_single_major.attr))
461 return 0;
462
463 return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467 .attrs = rbd_bus_attrs,
468 .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473 .name = "rbd",
474 .bus_groups = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482 .init_name = "rbd",
483 .release = rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 struct va_format vaf;
490 va_list args;
491
492 va_start(args, fmt);
493 vaf.fmt = fmt;
494 vaf.va = &args;
495
496 if (!rbd_dev)
497 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 else if (rbd_dev->disk)
499 printk(KERN_WARNING "%s: %s: %pV\n",
500 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 printk(KERN_WARNING "%s: image %s: %pV\n",
503 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 printk(KERN_WARNING "%s: id %s: %pV\n",
506 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 else /* punt */
508 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 RBD_DRV_NAME, rbd_dev, &vaf);
510 va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr) \
515 if (unlikely(!(expr))) { \
516 printk(KERN_ERR "\nAssertion failure in %s() " \
517 "at line %d:\n\n" \
518 "\trbd_assert(%s);\n\n", \
519 __func__, __LINE__, #expr); \
520 BUG(); \
521 }
522 #else /* !RBD_DEBUG */
523 # define rbd_assert(expr) ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536 u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538 u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540 u64 *snap_features);
541
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545 bool removing = false;
546
547 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548 return -EROFS;
549
550 spin_lock_irq(&rbd_dev->lock);
551 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552 removing = true;
553 else
554 rbd_dev->open_count++;
555 spin_unlock_irq(&rbd_dev->lock);
556 if (removing)
557 return -ENOENT;
558
559 (void) get_device(&rbd_dev->dev);
560
561 return 0;
562 }
563
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566 struct rbd_device *rbd_dev = disk->private_data;
567 unsigned long open_count_before;
568
569 spin_lock_irq(&rbd_dev->lock);
570 open_count_before = rbd_dev->open_count--;
571 spin_unlock_irq(&rbd_dev->lock);
572 rbd_assert(open_count_before > 0);
573
574 put_device(&rbd_dev->dev);
575 }
576
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579 int ret = 0;
580 int val;
581 bool ro;
582 bool ro_changed = false;
583
584 /* get_user() may sleep, so call it before taking rbd_dev->lock */
585 if (get_user(val, (int __user *)(arg)))
586 return -EFAULT;
587
588 ro = val ? true : false;
589 /* Snapshot doesn't allow to write*/
590 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591 return -EROFS;
592
593 spin_lock_irq(&rbd_dev->lock);
594 /* prevent others open this device */
595 if (rbd_dev->open_count > 1) {
596 ret = -EBUSY;
597 goto out;
598 }
599
600 if (rbd_dev->mapping.read_only != ro) {
601 rbd_dev->mapping.read_only = ro;
602 ro_changed = true;
603 }
604
605 out:
606 spin_unlock_irq(&rbd_dev->lock);
607 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608 if (ret == 0 && ro_changed)
609 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610
611 return ret;
612 }
613
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615 unsigned int cmd, unsigned long arg)
616 {
617 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618 int ret = 0;
619
620 switch (cmd) {
621 case BLKROSET:
622 ret = rbd_ioctl_set_ro(rbd_dev, arg);
623 break;
624 default:
625 ret = -ENOTTY;
626 }
627
628 return ret;
629 }
630
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633 unsigned int cmd, unsigned long arg)
634 {
635 return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638
639 static const struct block_device_operations rbd_bd_ops = {
640 .owner = THIS_MODULE,
641 .open = rbd_open,
642 .release = rbd_release,
643 .ioctl = rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645 .compat_ioctl = rbd_compat_ioctl,
646 #endif
647 };
648
649 /*
650 * Initialize an rbd client instance. Success or not, this function
651 * consumes ceph_opts. Caller holds client_mutex.
652 */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655 struct rbd_client *rbdc;
656 int ret = -ENOMEM;
657
658 dout("%s:\n", __func__);
659 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660 if (!rbdc)
661 goto out_opt;
662
663 kref_init(&rbdc->kref);
664 INIT_LIST_HEAD(&rbdc->node);
665
666 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667 if (IS_ERR(rbdc->client))
668 goto out_rbdc;
669 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670
671 ret = ceph_open_session(rbdc->client);
672 if (ret < 0)
673 goto out_client;
674
675 spin_lock(&rbd_client_list_lock);
676 list_add_tail(&rbdc->node, &rbd_client_list);
677 spin_unlock(&rbd_client_list_lock);
678
679 dout("%s: rbdc %p\n", __func__, rbdc);
680
681 return rbdc;
682 out_client:
683 ceph_destroy_client(rbdc->client);
684 out_rbdc:
685 kfree(rbdc);
686 out_opt:
687 if (ceph_opts)
688 ceph_destroy_options(ceph_opts);
689 dout("%s: error %d\n", __func__, ret);
690
691 return ERR_PTR(ret);
692 }
693
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696 kref_get(&rbdc->kref);
697
698 return rbdc;
699 }
700
701 /*
702 * Find a ceph client with specific addr and configuration. If
703 * found, bump its reference count.
704 */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707 struct rbd_client *client_node;
708 bool found = false;
709
710 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711 return NULL;
712
713 spin_lock(&rbd_client_list_lock);
714 list_for_each_entry(client_node, &rbd_client_list, node) {
715 if (!ceph_compare_options(ceph_opts, client_node->client)) {
716 __rbd_get_client(client_node);
717
718 found = true;
719 break;
720 }
721 }
722 spin_unlock(&rbd_client_list_lock);
723
724 return found ? client_node : NULL;
725 }
726
727 /*
728 * (Per device) rbd map options
729 */
730 enum {
731 Opt_queue_depth,
732 Opt_last_int,
733 /* int args above */
734 Opt_last_string,
735 /* string args above */
736 Opt_read_only,
737 Opt_read_write,
738 Opt_err
739 };
740
741 static match_table_t rbd_opts_tokens = {
742 {Opt_queue_depth, "queue_depth=%d"},
743 /* int args above */
744 /* string args above */
745 {Opt_read_only, "read_only"},
746 {Opt_read_only, "ro"}, /* Alternate spelling */
747 {Opt_read_write, "read_write"},
748 {Opt_read_write, "rw"}, /* Alternate spelling */
749 {Opt_err, NULL}
750 };
751
752 struct rbd_options {
753 int queue_depth;
754 bool read_only;
755 };
756
757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT false
759
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762 struct rbd_options *rbd_opts = private;
763 substring_t argstr[MAX_OPT_ARGS];
764 int token, intval, ret;
765
766 token = match_token(c, rbd_opts_tokens, argstr);
767 if (token < Opt_last_int) {
768 ret = match_int(&argstr[0], &intval);
769 if (ret < 0) {
770 pr_err("bad mount option arg (not int) at '%s'\n", c);
771 return ret;
772 }
773 dout("got int token %d val %d\n", token, intval);
774 } else if (token > Opt_last_int && token < Opt_last_string) {
775 dout("got string token %d val %s\n", token, argstr[0].from);
776 } else {
777 dout("got token %d\n", token);
778 }
779
780 switch (token) {
781 case Opt_queue_depth:
782 if (intval < 1) {
783 pr_err("queue_depth out of range\n");
784 return -EINVAL;
785 }
786 rbd_opts->queue_depth = intval;
787 break;
788 case Opt_read_only:
789 rbd_opts->read_only = true;
790 break;
791 case Opt_read_write:
792 rbd_opts->read_only = false;
793 break;
794 default:
795 /* libceph prints "bad option" msg */
796 return -EINVAL;
797 }
798
799 return 0;
800 }
801
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804 switch (op_type) {
805 case OBJ_OP_READ:
806 return "read";
807 case OBJ_OP_WRITE:
808 return "write";
809 case OBJ_OP_DISCARD:
810 return "discard";
811 default:
812 return "???";
813 }
814 }
815
816 /*
817 * Get a ceph client with specific addr and configuration, if one does
818 * not exist create it. Either way, ceph_opts is consumed by this
819 * function.
820 */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823 struct rbd_client *rbdc;
824
825 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826 rbdc = rbd_client_find(ceph_opts);
827 if (rbdc) /* using an existing client */
828 ceph_destroy_options(ceph_opts);
829 else
830 rbdc = rbd_client_create(ceph_opts);
831 mutex_unlock(&client_mutex);
832
833 return rbdc;
834 }
835
836 /*
837 * Destroy ceph client
838 *
839 * Caller must hold rbd_client_list_lock.
840 */
841 static void rbd_client_release(struct kref *kref)
842 {
843 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844
845 dout("%s: rbdc %p\n", __func__, rbdc);
846 spin_lock(&rbd_client_list_lock);
847 list_del(&rbdc->node);
848 spin_unlock(&rbd_client_list_lock);
849
850 ceph_destroy_client(rbdc->client);
851 kfree(rbdc);
852 }
853
854 /*
855 * Drop reference to ceph client node. If it's not referenced anymore, release
856 * it.
857 */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860 if (rbdc)
861 kref_put(&rbdc->kref, rbd_client_release);
862 }
863
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866 return image_format == 1 || image_format == 2;
867 }
868
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871 size_t size;
872 u32 snap_count;
873
874 /* The header has to start with the magic rbd header text */
875 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876 return false;
877
878 /* The bio layer requires at least sector-sized I/O */
879
880 if (ondisk->options.order < SECTOR_SHIFT)
881 return false;
882
883 /* If we use u64 in a few spots we may be able to loosen this */
884
885 if (ondisk->options.order > 8 * sizeof (int) - 1)
886 return false;
887
888 /*
889 * The size of a snapshot header has to fit in a size_t, and
890 * that limits the number of snapshots.
891 */
892 snap_count = le32_to_cpu(ondisk->snap_count);
893 size = SIZE_MAX - sizeof (struct ceph_snap_context);
894 if (snap_count > size / sizeof (__le64))
895 return false;
896
897 /*
898 * Not only that, but the size of the entire the snapshot
899 * header must also be representable in a size_t.
900 */
901 size -= snap_count * sizeof (__le64);
902 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903 return false;
904
905 return true;
906 }
907
908 /*
909 * Fill an rbd image header with information from the given format 1
910 * on-disk header.
911 */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913 struct rbd_image_header_ondisk *ondisk)
914 {
915 struct rbd_image_header *header = &rbd_dev->header;
916 bool first_time = header->object_prefix == NULL;
917 struct ceph_snap_context *snapc;
918 char *object_prefix = NULL;
919 char *snap_names = NULL;
920 u64 *snap_sizes = NULL;
921 u32 snap_count;
922 size_t size;
923 int ret = -ENOMEM;
924 u32 i;
925
926 /* Allocate this now to avoid having to handle failure below */
927
928 if (first_time) {
929 size_t len;
930
931 len = strnlen(ondisk->object_prefix,
932 sizeof (ondisk->object_prefix));
933 object_prefix = kmalloc(len + 1, GFP_KERNEL);
934 if (!object_prefix)
935 return -ENOMEM;
936 memcpy(object_prefix, ondisk->object_prefix, len);
937 object_prefix[len] = '\0';
938 }
939
940 /* Allocate the snapshot context and fill it in */
941
942 snap_count = le32_to_cpu(ondisk->snap_count);
943 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944 if (!snapc)
945 goto out_err;
946 snapc->seq = le64_to_cpu(ondisk->snap_seq);
947 if (snap_count) {
948 struct rbd_image_snap_ondisk *snaps;
949 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950
951 /* We'll keep a copy of the snapshot names... */
952
953 if (snap_names_len > (u64)SIZE_MAX)
954 goto out_2big;
955 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956 if (!snap_names)
957 goto out_err;
958
959 /* ...as well as the array of their sizes. */
960
961 size = snap_count * sizeof (*header->snap_sizes);
962 snap_sizes = kmalloc(size, GFP_KERNEL);
963 if (!snap_sizes)
964 goto out_err;
965
966 /*
967 * Copy the names, and fill in each snapshot's id
968 * and size.
969 *
970 * Note that rbd_dev_v1_header_info() guarantees the
971 * ondisk buffer we're working with has
972 * snap_names_len bytes beyond the end of the
973 * snapshot id array, this memcpy() is safe.
974 */
975 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976 snaps = ondisk->snaps;
977 for (i = 0; i < snap_count; i++) {
978 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980 }
981 }
982
983 /* We won't fail any more, fill in the header */
984
985 if (first_time) {
986 header->object_prefix = object_prefix;
987 header->obj_order = ondisk->options.order;
988 header->crypt_type = ondisk->options.crypt_type;
989 header->comp_type = ondisk->options.comp_type;
990 /* The rest aren't used for format 1 images */
991 header->stripe_unit = 0;
992 header->stripe_count = 0;
993 header->features = 0;
994 } else {
995 ceph_put_snap_context(header->snapc);
996 kfree(header->snap_names);
997 kfree(header->snap_sizes);
998 }
999
1000 /* The remaining fields always get updated (when we refresh) */
1001
1002 header->image_size = le64_to_cpu(ondisk->image_size);
1003 header->snapc = snapc;
1004 header->snap_names = snap_names;
1005 header->snap_sizes = snap_sizes;
1006
1007 return 0;
1008 out_2big:
1009 ret = -EIO;
1010 out_err:
1011 kfree(snap_sizes);
1012 kfree(snap_names);
1013 ceph_put_snap_context(snapc);
1014 kfree(object_prefix);
1015
1016 return ret;
1017 }
1018
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021 const char *snap_name;
1022
1023 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024
1025 /* Skip over names until we find the one we are looking for */
1026
1027 snap_name = rbd_dev->header.snap_names;
1028 while (which--)
1029 snap_name += strlen(snap_name) + 1;
1030
1031 return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033
1034 /*
1035 * Snapshot id comparison function for use with qsort()/bsearch().
1036 * Note that result is for snapshots in *descending* order.
1037 */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040 u64 snap_id1 = *(u64 *)s1;
1041 u64 snap_id2 = *(u64 *)s2;
1042
1043 if (snap_id1 < snap_id2)
1044 return 1;
1045 return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047
1048 /*
1049 * Search a snapshot context to see if the given snapshot id is
1050 * present.
1051 *
1052 * Returns the position of the snapshot id in the array if it's found,
1053 * or BAD_SNAP_INDEX otherwise.
1054 *
1055 * Note: The snapshot array is in kept sorted (by the osd) in
1056 * reverse order, highest snapshot id first.
1057 */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061 u64 *found;
1062
1063 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064 sizeof (snap_id), snapid_compare_reverse);
1065
1066 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070 u64 snap_id)
1071 {
1072 u32 which;
1073 const char *snap_name;
1074
1075 which = rbd_dev_snap_index(rbd_dev, snap_id);
1076 if (which == BAD_SNAP_INDEX)
1077 return ERR_PTR(-ENOENT);
1078
1079 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085 if (snap_id == CEPH_NOSNAP)
1086 return RBD_SNAP_HEAD_NAME;
1087
1088 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089 if (rbd_dev->image_format == 1)
1090 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091
1092 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096 u64 *snap_size)
1097 {
1098 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099 if (snap_id == CEPH_NOSNAP) {
1100 *snap_size = rbd_dev->header.image_size;
1101 } else if (rbd_dev->image_format == 1) {
1102 u32 which;
1103
1104 which = rbd_dev_snap_index(rbd_dev, snap_id);
1105 if (which == BAD_SNAP_INDEX)
1106 return -ENOENT;
1107
1108 *snap_size = rbd_dev->header.snap_sizes[which];
1109 } else {
1110 u64 size = 0;
1111 int ret;
1112
1113 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114 if (ret)
1115 return ret;
1116
1117 *snap_size = size;
1118 }
1119 return 0;
1120 }
1121
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123 u64 *snap_features)
1124 {
1125 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126 if (snap_id == CEPH_NOSNAP) {
1127 *snap_features = rbd_dev->header.features;
1128 } else if (rbd_dev->image_format == 1) {
1129 *snap_features = 0; /* No features for format 1 */
1130 } else {
1131 u64 features = 0;
1132 int ret;
1133
1134 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135 if (ret)
1136 return ret;
1137
1138 *snap_features = features;
1139 }
1140 return 0;
1141 }
1142
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145 u64 snap_id = rbd_dev->spec->snap_id;
1146 u64 size = 0;
1147 u64 features = 0;
1148 int ret;
1149
1150 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151 if (ret)
1152 return ret;
1153 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154 if (ret)
1155 return ret;
1156
1157 rbd_dev->mapping.size = size;
1158 rbd_dev->mapping.features = features;
1159
1160 return 0;
1161 }
1162
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165 rbd_dev->mapping.size = 0;
1166 rbd_dev->mapping.features = 0;
1167 }
1168
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171 /* The explicit cast here is needed to drop the const qualifier */
1172
1173 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178 char *name;
1179 u64 segment;
1180 int ret;
1181 char *name_format;
1182
1183 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184 if (!name)
1185 return NULL;
1186 segment = offset >> rbd_dev->header.obj_order;
1187 name_format = "%s.%012llx";
1188 if (rbd_dev->image_format == 2)
1189 name_format = "%s.%016llx";
1190 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191 rbd_dev->header.object_prefix, segment);
1192 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193 pr_err("error formatting segment name for #%llu (%d)\n",
1194 segment, ret);
1195 rbd_segment_name_free(name);
1196 name = NULL;
1197 }
1198
1199 return name;
1200 }
1201
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205
1206 return offset & (segment_size - 1);
1207 }
1208
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210 u64 offset, u64 length)
1211 {
1212 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213
1214 offset &= segment_size - 1;
1215
1216 rbd_assert(length <= U64_MAX - offset);
1217 if (offset + length > segment_size)
1218 length = segment_size - offset;
1219
1220 return length;
1221 }
1222
1223 /*
1224 * returns the size of an object in the image
1225 */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228 return 1 << header->obj_order;
1229 }
1230
1231 /*
1232 * bio helpers
1233 */
1234
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237 struct bio *tmp;
1238
1239 while (chain) {
1240 tmp = chain;
1241 chain = chain->bi_next;
1242 bio_put(tmp);
1243 }
1244 }
1245
1246 /*
1247 * zeros a bio chain, starting at specific offset
1248 */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251 struct bio_vec bv;
1252 struct bvec_iter iter;
1253 unsigned long flags;
1254 void *buf;
1255 int pos = 0;
1256
1257 while (chain) {
1258 bio_for_each_segment(bv, chain, iter) {
1259 if (pos + bv.bv_len > start_ofs) {
1260 int remainder = max(start_ofs - pos, 0);
1261 buf = bvec_kmap_irq(&bv, &flags);
1262 memset(buf + remainder, 0,
1263 bv.bv_len - remainder);
1264 flush_dcache_page(bv.bv_page);
1265 bvec_kunmap_irq(buf, &flags);
1266 }
1267 pos += bv.bv_len;
1268 }
1269
1270 chain = chain->bi_next;
1271 }
1272 }
1273
1274 /*
1275 * similar to zero_bio_chain(), zeros data defined by a page array,
1276 * starting at the given byte offset from the start of the array and
1277 * continuing up to the given end offset. The pages array is
1278 * assumed to be big enough to hold all bytes up to the end.
1279 */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282 struct page **page = &pages[offset >> PAGE_SHIFT];
1283
1284 rbd_assert(end > offset);
1285 rbd_assert(end - offset <= (u64)SIZE_MAX);
1286 while (offset < end) {
1287 size_t page_offset;
1288 size_t length;
1289 unsigned long flags;
1290 void *kaddr;
1291
1292 page_offset = offset & ~PAGE_MASK;
1293 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294 local_irq_save(flags);
1295 kaddr = kmap_atomic(*page);
1296 memset(kaddr + page_offset, 0, length);
1297 flush_dcache_page(*page);
1298 kunmap_atomic(kaddr);
1299 local_irq_restore(flags);
1300
1301 offset += length;
1302 page++;
1303 }
1304 }
1305
1306 /*
1307 * Clone a portion of a bio, starting at the given byte offset
1308 * and continuing for the number of bytes indicated.
1309 */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311 unsigned int offset,
1312 unsigned int len,
1313 gfp_t gfpmask)
1314 {
1315 struct bio *bio;
1316
1317 bio = bio_clone(bio_src, gfpmask);
1318 if (!bio)
1319 return NULL; /* ENOMEM */
1320
1321 bio_advance(bio, offset);
1322 bio->bi_iter.bi_size = len;
1323
1324 return bio;
1325 }
1326
1327 /*
1328 * Clone a portion of a bio chain, starting at the given byte offset
1329 * into the first bio in the source chain and continuing for the
1330 * number of bytes indicated. The result is another bio chain of
1331 * exactly the given length, or a null pointer on error.
1332 *
1333 * The bio_src and offset parameters are both in-out. On entry they
1334 * refer to the first source bio and the offset into that bio where
1335 * the start of data to be cloned is located.
1336 *
1337 * On return, bio_src is updated to refer to the bio in the source
1338 * chain that contains first un-cloned byte, and *offset will
1339 * contain the offset of that byte within that bio.
1340 */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342 unsigned int *offset,
1343 unsigned int len,
1344 gfp_t gfpmask)
1345 {
1346 struct bio *bi = *bio_src;
1347 unsigned int off = *offset;
1348 struct bio *chain = NULL;
1349 struct bio **end;
1350
1351 /* Build up a chain of clone bios up to the limit */
1352
1353 if (!bi || off >= bi->bi_iter.bi_size || !len)
1354 return NULL; /* Nothing to clone */
1355
1356 end = &chain;
1357 while (len) {
1358 unsigned int bi_size;
1359 struct bio *bio;
1360
1361 if (!bi) {
1362 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363 goto out_err; /* EINVAL; ran out of bio's */
1364 }
1365 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367 if (!bio)
1368 goto out_err; /* ENOMEM */
1369
1370 *end = bio;
1371 end = &bio->bi_next;
1372
1373 off += bi_size;
1374 if (off == bi->bi_iter.bi_size) {
1375 bi = bi->bi_next;
1376 off = 0;
1377 }
1378 len -= bi_size;
1379 }
1380 *bio_src = bi;
1381 *offset = off;
1382
1383 return chain;
1384 out_err:
1385 bio_chain_put(chain);
1386
1387 return NULL;
1388 }
1389
1390 /*
1391 * The default/initial value for all object request flags is 0. For
1392 * each flag, once its value is set to 1 it is never reset to 0
1393 * again.
1394 */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398 struct rbd_device *rbd_dev;
1399
1400 rbd_dev = obj_request->img_request->rbd_dev;
1401 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402 obj_request);
1403 }
1404 }
1405
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408 smp_mb();
1409 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415 struct rbd_device *rbd_dev = NULL;
1416
1417 if (obj_request_img_data_test(obj_request))
1418 rbd_dev = obj_request->img_request->rbd_dev;
1419 rbd_warn(rbd_dev, "obj_request %p already marked done",
1420 obj_request);
1421 }
1422 }
1423
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426 smp_mb();
1427 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429
1430 /*
1431 * This sets the KNOWN flag after (possibly) setting the EXISTS
1432 * flag. The latter is set based on the "exists" value provided.
1433 *
1434 * Note that for our purposes once an object exists it never goes
1435 * away again. It's possible that the response from two existence
1436 * checks are separated by the creation of the target object, and
1437 * the first ("doesn't exist") response arrives *after* the second
1438 * ("does exist"). In that case we ignore the second one.
1439 */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441 bool exists)
1442 {
1443 if (exists)
1444 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446 smp_mb();
1447 }
1448
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451 smp_mb();
1452 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457 smp_mb();
1458 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464
1465 return obj_request->img_offset <
1466 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472 atomic_read(&obj_request->kref.refcount));
1473 kref_get(&obj_request->kref);
1474 }
1475
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479 rbd_assert(obj_request != NULL);
1480 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481 atomic_read(&obj_request->kref.refcount));
1482 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487 dout("%s: img %p (was %d)\n", __func__, img_request,
1488 atomic_read(&img_request->kref.refcount));
1489 kref_get(&img_request->kref);
1490 }
1491
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497 rbd_assert(img_request != NULL);
1498 dout("%s: img %p (was %d)\n", __func__, img_request,
1499 atomic_read(&img_request->kref.refcount));
1500 if (img_request_child_test(img_request))
1501 kref_put(&img_request->kref, rbd_parent_request_destroy);
1502 else
1503 kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507 struct rbd_obj_request *obj_request)
1508 {
1509 rbd_assert(obj_request->img_request == NULL);
1510
1511 /* Image request now owns object's original reference */
1512 obj_request->img_request = img_request;
1513 obj_request->which = img_request->obj_request_count;
1514 rbd_assert(!obj_request_img_data_test(obj_request));
1515 obj_request_img_data_set(obj_request);
1516 rbd_assert(obj_request->which != BAD_WHICH);
1517 img_request->obj_request_count++;
1518 list_add_tail(&obj_request->links, &img_request->obj_requests);
1519 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520 obj_request->which);
1521 }
1522
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524 struct rbd_obj_request *obj_request)
1525 {
1526 rbd_assert(obj_request->which != BAD_WHICH);
1527
1528 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529 obj_request->which);
1530 list_del(&obj_request->links);
1531 rbd_assert(img_request->obj_request_count > 0);
1532 img_request->obj_request_count--;
1533 rbd_assert(obj_request->which == img_request->obj_request_count);
1534 obj_request->which = BAD_WHICH;
1535 rbd_assert(obj_request_img_data_test(obj_request));
1536 rbd_assert(obj_request->img_request == img_request);
1537 obj_request->img_request = NULL;
1538 obj_request->callback = NULL;
1539 rbd_obj_request_put(obj_request);
1540 }
1541
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544 switch (type) {
1545 case OBJ_REQUEST_NODATA:
1546 case OBJ_REQUEST_BIO:
1547 case OBJ_REQUEST_PAGES:
1548 return true;
1549 default:
1550 return false;
1551 }
1552 }
1553
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555 struct rbd_obj_request *obj_request)
1556 {
1557 dout("%s %p\n", __func__, obj_request);
1558 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563 dout("%s %p\n", __func__, obj_request);
1564 ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566
1567 /*
1568 * Wait for an object request to complete. If interrupted, cancel the
1569 * underlying osd request.
1570 *
1571 * @timeout: in jiffies, 0 means "wait forever"
1572 */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574 unsigned long timeout)
1575 {
1576 long ret;
1577
1578 dout("%s %p\n", __func__, obj_request);
1579 ret = wait_for_completion_interruptible_timeout(
1580 &obj_request->completion,
1581 ceph_timeout_jiffies(timeout));
1582 if (ret <= 0) {
1583 if (ret == 0)
1584 ret = -ETIMEDOUT;
1585 rbd_obj_request_end(obj_request);
1586 } else {
1587 ret = 0;
1588 }
1589
1590 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591 return ret;
1592 }
1593
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596 return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598
1599 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1600 {
1601
1602 dout("%s: img %p\n", __func__, img_request);
1603
1604 /*
1605 * If no error occurred, compute the aggregate transfer
1606 * count for the image request. We could instead use
1607 * atomic64_cmpxchg() to update it as each object request
1608 * completes; not clear which way is better off hand.
1609 */
1610 if (!img_request->result) {
1611 struct rbd_obj_request *obj_request;
1612 u64 xferred = 0;
1613
1614 for_each_obj_request(img_request, obj_request)
1615 xferred += obj_request->xferred;
1616 img_request->xferred = xferred;
1617 }
1618
1619 if (img_request->callback)
1620 img_request->callback(img_request);
1621 else
1622 rbd_img_request_put(img_request);
1623 }
1624
1625 /*
1626 * The default/initial value for all image request flags is 0. Each
1627 * is conditionally set to 1 at image request initialization time
1628 * and currently never change thereafter.
1629 */
1630 static void img_request_write_set(struct rbd_img_request *img_request)
1631 {
1632 set_bit(IMG_REQ_WRITE, &img_request->flags);
1633 smp_mb();
1634 }
1635
1636 static bool img_request_write_test(struct rbd_img_request *img_request)
1637 {
1638 smp_mb();
1639 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1640 }
1641
1642 /*
1643 * Set the discard flag when the img_request is an discard request
1644 */
1645 static void img_request_discard_set(struct rbd_img_request *img_request)
1646 {
1647 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1648 smp_mb();
1649 }
1650
1651 static bool img_request_discard_test(struct rbd_img_request *img_request)
1652 {
1653 smp_mb();
1654 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1655 }
1656
1657 static void img_request_child_set(struct rbd_img_request *img_request)
1658 {
1659 set_bit(IMG_REQ_CHILD, &img_request->flags);
1660 smp_mb();
1661 }
1662
1663 static void img_request_child_clear(struct rbd_img_request *img_request)
1664 {
1665 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1666 smp_mb();
1667 }
1668
1669 static bool img_request_child_test(struct rbd_img_request *img_request)
1670 {
1671 smp_mb();
1672 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1673 }
1674
1675 static void img_request_layered_set(struct rbd_img_request *img_request)
1676 {
1677 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1678 smp_mb();
1679 }
1680
1681 static void img_request_layered_clear(struct rbd_img_request *img_request)
1682 {
1683 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1684 smp_mb();
1685 }
1686
1687 static bool img_request_layered_test(struct rbd_img_request *img_request)
1688 {
1689 smp_mb();
1690 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1691 }
1692
1693 static enum obj_operation_type
1694 rbd_img_request_op_type(struct rbd_img_request *img_request)
1695 {
1696 if (img_request_write_test(img_request))
1697 return OBJ_OP_WRITE;
1698 else if (img_request_discard_test(img_request))
1699 return OBJ_OP_DISCARD;
1700 else
1701 return OBJ_OP_READ;
1702 }
1703
1704 static void
1705 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1706 {
1707 u64 xferred = obj_request->xferred;
1708 u64 length = obj_request->length;
1709
1710 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1711 obj_request, obj_request->img_request, obj_request->result,
1712 xferred, length);
1713 /*
1714 * ENOENT means a hole in the image. We zero-fill the entire
1715 * length of the request. A short read also implies zero-fill
1716 * to the end of the request. An error requires the whole
1717 * length of the request to be reported finished with an error
1718 * to the block layer. In each case we update the xferred
1719 * count to indicate the whole request was satisfied.
1720 */
1721 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1722 if (obj_request->result == -ENOENT) {
1723 if (obj_request->type == OBJ_REQUEST_BIO)
1724 zero_bio_chain(obj_request->bio_list, 0);
1725 else
1726 zero_pages(obj_request->pages, 0, length);
1727 obj_request->result = 0;
1728 } else if (xferred < length && !obj_request->result) {
1729 if (obj_request->type == OBJ_REQUEST_BIO)
1730 zero_bio_chain(obj_request->bio_list, xferred);
1731 else
1732 zero_pages(obj_request->pages, xferred, length);
1733 }
1734 obj_request->xferred = length;
1735 obj_request_done_set(obj_request);
1736 }
1737
1738 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1739 {
1740 dout("%s: obj %p cb %p\n", __func__, obj_request,
1741 obj_request->callback);
1742 if (obj_request->callback)
1743 obj_request->callback(obj_request);
1744 else
1745 complete_all(&obj_request->completion);
1746 }
1747
1748 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1749 {
1750 struct rbd_img_request *img_request = NULL;
1751 struct rbd_device *rbd_dev = NULL;
1752 bool layered = false;
1753
1754 if (obj_request_img_data_test(obj_request)) {
1755 img_request = obj_request->img_request;
1756 layered = img_request && img_request_layered_test(img_request);
1757 rbd_dev = img_request->rbd_dev;
1758 }
1759
1760 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1761 obj_request, img_request, obj_request->result,
1762 obj_request->xferred, obj_request->length);
1763 if (layered && obj_request->result == -ENOENT &&
1764 obj_request->img_offset < rbd_dev->parent_overlap)
1765 rbd_img_parent_read(obj_request);
1766 else if (img_request)
1767 rbd_img_obj_request_read_callback(obj_request);
1768 else
1769 obj_request_done_set(obj_request);
1770 }
1771
1772 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1773 {
1774 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1775 obj_request->result, obj_request->length);
1776 /*
1777 * There is no such thing as a successful short write. Set
1778 * it to our originally-requested length.
1779 */
1780 obj_request->xferred = obj_request->length;
1781 obj_request_done_set(obj_request);
1782 }
1783
1784 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1785 {
1786 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787 obj_request->result, obj_request->length);
1788 /*
1789 * There is no such thing as a successful short discard. Set
1790 * it to our originally-requested length.
1791 */
1792 obj_request->xferred = obj_request->length;
1793 /* discarding a non-existent object is not a problem */
1794 if (obj_request->result == -ENOENT)
1795 obj_request->result = 0;
1796 obj_request_done_set(obj_request);
1797 }
1798
1799 /*
1800 * For a simple stat call there's nothing to do. We'll do more if
1801 * this is part of a write sequence for a layered image.
1802 */
1803 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1804 {
1805 dout("%s: obj %p\n", __func__, obj_request);
1806 obj_request_done_set(obj_request);
1807 }
1808
1809 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1810 {
1811 dout("%s: obj %p\n", __func__, obj_request);
1812
1813 if (obj_request_img_data_test(obj_request))
1814 rbd_osd_copyup_callback(obj_request);
1815 else
1816 obj_request_done_set(obj_request);
1817 }
1818
1819 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1820 {
1821 struct rbd_obj_request *obj_request = osd_req->r_priv;
1822 u16 opcode;
1823
1824 dout("%s: osd_req %p\n", __func__, osd_req);
1825 rbd_assert(osd_req == obj_request->osd_req);
1826 if (obj_request_img_data_test(obj_request)) {
1827 rbd_assert(obj_request->img_request);
1828 rbd_assert(obj_request->which != BAD_WHICH);
1829 } else {
1830 rbd_assert(obj_request->which == BAD_WHICH);
1831 }
1832
1833 if (osd_req->r_result < 0)
1834 obj_request->result = osd_req->r_result;
1835
1836 /*
1837 * We support a 64-bit length, but ultimately it has to be
1838 * passed to the block layer, which just supports a 32-bit
1839 * length field.
1840 */
1841 obj_request->xferred = osd_req->r_ops[0].outdata_len;
1842 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1843
1844 opcode = osd_req->r_ops[0].op;
1845 switch (opcode) {
1846 case CEPH_OSD_OP_READ:
1847 rbd_osd_read_callback(obj_request);
1848 break;
1849 case CEPH_OSD_OP_SETALLOCHINT:
1850 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1851 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1852 /* fall through */
1853 case CEPH_OSD_OP_WRITE:
1854 case CEPH_OSD_OP_WRITEFULL:
1855 rbd_osd_write_callback(obj_request);
1856 break;
1857 case CEPH_OSD_OP_STAT:
1858 rbd_osd_stat_callback(obj_request);
1859 break;
1860 case CEPH_OSD_OP_DELETE:
1861 case CEPH_OSD_OP_TRUNCATE:
1862 case CEPH_OSD_OP_ZERO:
1863 rbd_osd_discard_callback(obj_request);
1864 break;
1865 case CEPH_OSD_OP_CALL:
1866 rbd_osd_call_callback(obj_request);
1867 break;
1868 default:
1869 rbd_warn(NULL, "%s: unsupported op %hu",
1870 obj_request->object_name, (unsigned short) opcode);
1871 break;
1872 }
1873
1874 if (obj_request_done_test(obj_request))
1875 rbd_obj_request_complete(obj_request);
1876 }
1877
1878 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1879 {
1880 struct rbd_img_request *img_request = obj_request->img_request;
1881 struct ceph_osd_request *osd_req = obj_request->osd_req;
1882
1883 if (img_request)
1884 osd_req->r_snapid = img_request->snap_id;
1885 }
1886
1887 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1888 {
1889 struct ceph_osd_request *osd_req = obj_request->osd_req;
1890
1891 osd_req->r_mtime = CURRENT_TIME;
1892 osd_req->r_data_offset = obj_request->offset;
1893 }
1894
1895 /*
1896 * Create an osd request. A read request has one osd op (read).
1897 * A write request has either one (watch) or two (hint+write) osd ops.
1898 * (All rbd data writes are prefixed with an allocation hint op, but
1899 * technically osd watch is a write request, hence this distinction.)
1900 */
1901 static struct ceph_osd_request *rbd_osd_req_create(
1902 struct rbd_device *rbd_dev,
1903 enum obj_operation_type op_type,
1904 unsigned int num_ops,
1905 struct rbd_obj_request *obj_request)
1906 {
1907 struct ceph_snap_context *snapc = NULL;
1908 struct ceph_osd_client *osdc;
1909 struct ceph_osd_request *osd_req;
1910
1911 if (obj_request_img_data_test(obj_request) &&
1912 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1913 struct rbd_img_request *img_request = obj_request->img_request;
1914 if (op_type == OBJ_OP_WRITE) {
1915 rbd_assert(img_request_write_test(img_request));
1916 } else {
1917 rbd_assert(img_request_discard_test(img_request));
1918 }
1919 snapc = img_request->snapc;
1920 }
1921
1922 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1923
1924 /* Allocate and initialize the request, for the num_ops ops */
1925
1926 osdc = &rbd_dev->rbd_client->client->osdc;
1927 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1928 GFP_NOIO);
1929 if (!osd_req)
1930 goto fail;
1931
1932 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1933 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1934 else
1935 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1936
1937 osd_req->r_callback = rbd_osd_req_callback;
1938 osd_req->r_priv = obj_request;
1939
1940 osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1941 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
1942 obj_request->object_name))
1943 goto fail;
1944
1945 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
1946 goto fail;
1947
1948 return osd_req;
1949
1950 fail:
1951 ceph_osdc_put_request(osd_req);
1952 return NULL;
1953 }
1954
1955 /*
1956 * Create a copyup osd request based on the information in the object
1957 * request supplied. A copyup request has two or three osd ops, a
1958 * copyup method call, potentially a hint op, and a write or truncate
1959 * or zero op.
1960 */
1961 static struct ceph_osd_request *
1962 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1963 {
1964 struct rbd_img_request *img_request;
1965 struct ceph_snap_context *snapc;
1966 struct rbd_device *rbd_dev;
1967 struct ceph_osd_client *osdc;
1968 struct ceph_osd_request *osd_req;
1969 int num_osd_ops = 3;
1970
1971 rbd_assert(obj_request_img_data_test(obj_request));
1972 img_request = obj_request->img_request;
1973 rbd_assert(img_request);
1974 rbd_assert(img_request_write_test(img_request) ||
1975 img_request_discard_test(img_request));
1976
1977 if (img_request_discard_test(img_request))
1978 num_osd_ops = 2;
1979
1980 /* Allocate and initialize the request, for all the ops */
1981
1982 snapc = img_request->snapc;
1983 rbd_dev = img_request->rbd_dev;
1984 osdc = &rbd_dev->rbd_client->client->osdc;
1985 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1986 false, GFP_NOIO);
1987 if (!osd_req)
1988 goto fail;
1989
1990 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1991 osd_req->r_callback = rbd_osd_req_callback;
1992 osd_req->r_priv = obj_request;
1993
1994 osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1995 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
1996 obj_request->object_name))
1997 goto fail;
1998
1999 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2000 goto fail;
2001
2002 return osd_req;
2003
2004 fail:
2005 ceph_osdc_put_request(osd_req);
2006 return NULL;
2007 }
2008
2009
2010 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2011 {
2012 ceph_osdc_put_request(osd_req);
2013 }
2014
2015 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2016
2017 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2018 u64 offset, u64 length,
2019 enum obj_request_type type)
2020 {
2021 struct rbd_obj_request *obj_request;
2022 size_t size;
2023 char *name;
2024
2025 rbd_assert(obj_request_type_valid(type));
2026
2027 size = strlen(object_name) + 1;
2028 name = kmalloc(size, GFP_NOIO);
2029 if (!name)
2030 return NULL;
2031
2032 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2033 if (!obj_request) {
2034 kfree(name);
2035 return NULL;
2036 }
2037
2038 obj_request->object_name = memcpy(name, object_name, size);
2039 obj_request->offset = offset;
2040 obj_request->length = length;
2041 obj_request->flags = 0;
2042 obj_request->which = BAD_WHICH;
2043 obj_request->type = type;
2044 INIT_LIST_HEAD(&obj_request->links);
2045 init_completion(&obj_request->completion);
2046 kref_init(&obj_request->kref);
2047
2048 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2049 offset, length, (int)type, obj_request);
2050
2051 return obj_request;
2052 }
2053
2054 static void rbd_obj_request_destroy(struct kref *kref)
2055 {
2056 struct rbd_obj_request *obj_request;
2057
2058 obj_request = container_of(kref, struct rbd_obj_request, kref);
2059
2060 dout("%s: obj %p\n", __func__, obj_request);
2061
2062 rbd_assert(obj_request->img_request == NULL);
2063 rbd_assert(obj_request->which == BAD_WHICH);
2064
2065 if (obj_request->osd_req)
2066 rbd_osd_req_destroy(obj_request->osd_req);
2067
2068 rbd_assert(obj_request_type_valid(obj_request->type));
2069 switch (obj_request->type) {
2070 case OBJ_REQUEST_NODATA:
2071 break; /* Nothing to do */
2072 case OBJ_REQUEST_BIO:
2073 if (obj_request->bio_list)
2074 bio_chain_put(obj_request->bio_list);
2075 break;
2076 case OBJ_REQUEST_PAGES:
2077 if (obj_request->pages)
2078 ceph_release_page_vector(obj_request->pages,
2079 obj_request->page_count);
2080 break;
2081 }
2082
2083 kfree(obj_request->object_name);
2084 obj_request->object_name = NULL;
2085 kmem_cache_free(rbd_obj_request_cache, obj_request);
2086 }
2087
2088 /* It's OK to call this for a device with no parent */
2089
2090 static void rbd_spec_put(struct rbd_spec *spec);
2091 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2092 {
2093 rbd_dev_remove_parent(rbd_dev);
2094 rbd_spec_put(rbd_dev->parent_spec);
2095 rbd_dev->parent_spec = NULL;
2096 rbd_dev->parent_overlap = 0;
2097 }
2098
2099 /*
2100 * Parent image reference counting is used to determine when an
2101 * image's parent fields can be safely torn down--after there are no
2102 * more in-flight requests to the parent image. When the last
2103 * reference is dropped, cleaning them up is safe.
2104 */
2105 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2106 {
2107 int counter;
2108
2109 if (!rbd_dev->parent_spec)
2110 return;
2111
2112 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2113 if (counter > 0)
2114 return;
2115
2116 /* Last reference; clean up parent data structures */
2117
2118 if (!counter)
2119 rbd_dev_unparent(rbd_dev);
2120 else
2121 rbd_warn(rbd_dev, "parent reference underflow");
2122 }
2123
2124 /*
2125 * If an image has a non-zero parent overlap, get a reference to its
2126 * parent.
2127 *
2128 * Returns true if the rbd device has a parent with a non-zero
2129 * overlap and a reference for it was successfully taken, or
2130 * false otherwise.
2131 */
2132 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2133 {
2134 int counter = 0;
2135
2136 if (!rbd_dev->parent_spec)
2137 return false;
2138
2139 down_read(&rbd_dev->header_rwsem);
2140 if (rbd_dev->parent_overlap)
2141 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2142 up_read(&rbd_dev->header_rwsem);
2143
2144 if (counter < 0)
2145 rbd_warn(rbd_dev, "parent reference overflow");
2146
2147 return counter > 0;
2148 }
2149
2150 /*
2151 * Caller is responsible for filling in the list of object requests
2152 * that comprises the image request, and the Linux request pointer
2153 * (if there is one).
2154 */
2155 static struct rbd_img_request *rbd_img_request_create(
2156 struct rbd_device *rbd_dev,
2157 u64 offset, u64 length,
2158 enum obj_operation_type op_type,
2159 struct ceph_snap_context *snapc)
2160 {
2161 struct rbd_img_request *img_request;
2162
2163 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2164 if (!img_request)
2165 return NULL;
2166
2167 img_request->rq = NULL;
2168 img_request->rbd_dev = rbd_dev;
2169 img_request->offset = offset;
2170 img_request->length = length;
2171 img_request->flags = 0;
2172 if (op_type == OBJ_OP_DISCARD) {
2173 img_request_discard_set(img_request);
2174 img_request->snapc = snapc;
2175 } else if (op_type == OBJ_OP_WRITE) {
2176 img_request_write_set(img_request);
2177 img_request->snapc = snapc;
2178 } else {
2179 img_request->snap_id = rbd_dev->spec->snap_id;
2180 }
2181 if (rbd_dev_parent_get(rbd_dev))
2182 img_request_layered_set(img_request);
2183 spin_lock_init(&img_request->completion_lock);
2184 img_request->next_completion = 0;
2185 img_request->callback = NULL;
2186 img_request->result = 0;
2187 img_request->obj_request_count = 0;
2188 INIT_LIST_HEAD(&img_request->obj_requests);
2189 kref_init(&img_request->kref);
2190
2191 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2192 obj_op_name(op_type), offset, length, img_request);
2193
2194 return img_request;
2195 }
2196
2197 static void rbd_img_request_destroy(struct kref *kref)
2198 {
2199 struct rbd_img_request *img_request;
2200 struct rbd_obj_request *obj_request;
2201 struct rbd_obj_request *next_obj_request;
2202
2203 img_request = container_of(kref, struct rbd_img_request, kref);
2204
2205 dout("%s: img %p\n", __func__, img_request);
2206
2207 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2208 rbd_img_obj_request_del(img_request, obj_request);
2209 rbd_assert(img_request->obj_request_count == 0);
2210
2211 if (img_request_layered_test(img_request)) {
2212 img_request_layered_clear(img_request);
2213 rbd_dev_parent_put(img_request->rbd_dev);
2214 }
2215
2216 if (img_request_write_test(img_request) ||
2217 img_request_discard_test(img_request))
2218 ceph_put_snap_context(img_request->snapc);
2219
2220 kmem_cache_free(rbd_img_request_cache, img_request);
2221 }
2222
2223 static struct rbd_img_request *rbd_parent_request_create(
2224 struct rbd_obj_request *obj_request,
2225 u64 img_offset, u64 length)
2226 {
2227 struct rbd_img_request *parent_request;
2228 struct rbd_device *rbd_dev;
2229
2230 rbd_assert(obj_request->img_request);
2231 rbd_dev = obj_request->img_request->rbd_dev;
2232
2233 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2234 length, OBJ_OP_READ, NULL);
2235 if (!parent_request)
2236 return NULL;
2237
2238 img_request_child_set(parent_request);
2239 rbd_obj_request_get(obj_request);
2240 parent_request->obj_request = obj_request;
2241
2242 return parent_request;
2243 }
2244
2245 static void rbd_parent_request_destroy(struct kref *kref)
2246 {
2247 struct rbd_img_request *parent_request;
2248 struct rbd_obj_request *orig_request;
2249
2250 parent_request = container_of(kref, struct rbd_img_request, kref);
2251 orig_request = parent_request->obj_request;
2252
2253 parent_request->obj_request = NULL;
2254 rbd_obj_request_put(orig_request);
2255 img_request_child_clear(parent_request);
2256
2257 rbd_img_request_destroy(kref);
2258 }
2259
2260 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2261 {
2262 struct rbd_img_request *img_request;
2263 unsigned int xferred;
2264 int result;
2265 bool more;
2266
2267 rbd_assert(obj_request_img_data_test(obj_request));
2268 img_request = obj_request->img_request;
2269
2270 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2271 xferred = (unsigned int)obj_request->xferred;
2272 result = obj_request->result;
2273 if (result) {
2274 struct rbd_device *rbd_dev = img_request->rbd_dev;
2275 enum obj_operation_type op_type;
2276
2277 if (img_request_discard_test(img_request))
2278 op_type = OBJ_OP_DISCARD;
2279 else if (img_request_write_test(img_request))
2280 op_type = OBJ_OP_WRITE;
2281 else
2282 op_type = OBJ_OP_READ;
2283
2284 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2285 obj_op_name(op_type), obj_request->length,
2286 obj_request->img_offset, obj_request->offset);
2287 rbd_warn(rbd_dev, " result %d xferred %x",
2288 result, xferred);
2289 if (!img_request->result)
2290 img_request->result = result;
2291 /*
2292 * Need to end I/O on the entire obj_request worth of
2293 * bytes in case of error.
2294 */
2295 xferred = obj_request->length;
2296 }
2297
2298 /* Image object requests don't own their page array */
2299
2300 if (obj_request->type == OBJ_REQUEST_PAGES) {
2301 obj_request->pages = NULL;
2302 obj_request->page_count = 0;
2303 }
2304
2305 if (img_request_child_test(img_request)) {
2306 rbd_assert(img_request->obj_request != NULL);
2307 more = obj_request->which < img_request->obj_request_count - 1;
2308 } else {
2309 rbd_assert(img_request->rq != NULL);
2310
2311 more = blk_update_request(img_request->rq, result, xferred);
2312 if (!more)
2313 __blk_mq_end_request(img_request->rq, result);
2314 }
2315
2316 return more;
2317 }
2318
2319 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2320 {
2321 struct rbd_img_request *img_request;
2322 u32 which = obj_request->which;
2323 bool more = true;
2324
2325 rbd_assert(obj_request_img_data_test(obj_request));
2326 img_request = obj_request->img_request;
2327
2328 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2329 rbd_assert(img_request != NULL);
2330 rbd_assert(img_request->obj_request_count > 0);
2331 rbd_assert(which != BAD_WHICH);
2332 rbd_assert(which < img_request->obj_request_count);
2333
2334 spin_lock_irq(&img_request->completion_lock);
2335 if (which != img_request->next_completion)
2336 goto out;
2337
2338 for_each_obj_request_from(img_request, obj_request) {
2339 rbd_assert(more);
2340 rbd_assert(which < img_request->obj_request_count);
2341
2342 if (!obj_request_done_test(obj_request))
2343 break;
2344 more = rbd_img_obj_end_request(obj_request);
2345 which++;
2346 }
2347
2348 rbd_assert(more ^ (which == img_request->obj_request_count));
2349 img_request->next_completion = which;
2350 out:
2351 spin_unlock_irq(&img_request->completion_lock);
2352 rbd_img_request_put(img_request);
2353
2354 if (!more)
2355 rbd_img_request_complete(img_request);
2356 }
2357
2358 /*
2359 * Add individual osd ops to the given ceph_osd_request and prepare
2360 * them for submission. num_ops is the current number of
2361 * osd operations already to the object request.
2362 */
2363 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2364 struct ceph_osd_request *osd_request,
2365 enum obj_operation_type op_type,
2366 unsigned int num_ops)
2367 {
2368 struct rbd_img_request *img_request = obj_request->img_request;
2369 struct rbd_device *rbd_dev = img_request->rbd_dev;
2370 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2371 u64 offset = obj_request->offset;
2372 u64 length = obj_request->length;
2373 u64 img_end;
2374 u16 opcode;
2375
2376 if (op_type == OBJ_OP_DISCARD) {
2377 if (!offset && length == object_size &&
2378 (!img_request_layered_test(img_request) ||
2379 !obj_request_overlaps_parent(obj_request))) {
2380 opcode = CEPH_OSD_OP_DELETE;
2381 } else if ((offset + length == object_size)) {
2382 opcode = CEPH_OSD_OP_TRUNCATE;
2383 } else {
2384 down_read(&rbd_dev->header_rwsem);
2385 img_end = rbd_dev->header.image_size;
2386 up_read(&rbd_dev->header_rwsem);
2387
2388 if (obj_request->img_offset + length == img_end)
2389 opcode = CEPH_OSD_OP_TRUNCATE;
2390 else
2391 opcode = CEPH_OSD_OP_ZERO;
2392 }
2393 } else if (op_type == OBJ_OP_WRITE) {
2394 if (!offset && length == object_size)
2395 opcode = CEPH_OSD_OP_WRITEFULL;
2396 else
2397 opcode = CEPH_OSD_OP_WRITE;
2398 osd_req_op_alloc_hint_init(osd_request, num_ops,
2399 object_size, object_size);
2400 num_ops++;
2401 } else {
2402 opcode = CEPH_OSD_OP_READ;
2403 }
2404
2405 if (opcode == CEPH_OSD_OP_DELETE)
2406 osd_req_op_init(osd_request, num_ops, opcode, 0);
2407 else
2408 osd_req_op_extent_init(osd_request, num_ops, opcode,
2409 offset, length, 0, 0);
2410
2411 if (obj_request->type == OBJ_REQUEST_BIO)
2412 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2413 obj_request->bio_list, length);
2414 else if (obj_request->type == OBJ_REQUEST_PAGES)
2415 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2416 obj_request->pages, length,
2417 offset & ~PAGE_MASK, false, false);
2418
2419 /* Discards are also writes */
2420 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2421 rbd_osd_req_format_write(obj_request);
2422 else
2423 rbd_osd_req_format_read(obj_request);
2424 }
2425
2426 /*
2427 * Split up an image request into one or more object requests, each
2428 * to a different object. The "type" parameter indicates whether
2429 * "data_desc" is the pointer to the head of a list of bio
2430 * structures, or the base of a page array. In either case this
2431 * function assumes data_desc describes memory sufficient to hold
2432 * all data described by the image request.
2433 */
2434 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2435 enum obj_request_type type,
2436 void *data_desc)
2437 {
2438 struct rbd_device *rbd_dev = img_request->rbd_dev;
2439 struct rbd_obj_request *obj_request = NULL;
2440 struct rbd_obj_request *next_obj_request;
2441 struct bio *bio_list = NULL;
2442 unsigned int bio_offset = 0;
2443 struct page **pages = NULL;
2444 enum obj_operation_type op_type;
2445 u64 img_offset;
2446 u64 resid;
2447
2448 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2449 (int)type, data_desc);
2450
2451 img_offset = img_request->offset;
2452 resid = img_request->length;
2453 rbd_assert(resid > 0);
2454 op_type = rbd_img_request_op_type(img_request);
2455
2456 if (type == OBJ_REQUEST_BIO) {
2457 bio_list = data_desc;
2458 rbd_assert(img_offset ==
2459 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2460 } else if (type == OBJ_REQUEST_PAGES) {
2461 pages = data_desc;
2462 }
2463
2464 while (resid) {
2465 struct ceph_osd_request *osd_req;
2466 const char *object_name;
2467 u64 offset;
2468 u64 length;
2469
2470 object_name = rbd_segment_name(rbd_dev, img_offset);
2471 if (!object_name)
2472 goto out_unwind;
2473 offset = rbd_segment_offset(rbd_dev, img_offset);
2474 length = rbd_segment_length(rbd_dev, img_offset, resid);
2475 obj_request = rbd_obj_request_create(object_name,
2476 offset, length, type);
2477 /* object request has its own copy of the object name */
2478 rbd_segment_name_free(object_name);
2479 if (!obj_request)
2480 goto out_unwind;
2481
2482 /*
2483 * set obj_request->img_request before creating the
2484 * osd_request so that it gets the right snapc
2485 */
2486 rbd_img_obj_request_add(img_request, obj_request);
2487
2488 if (type == OBJ_REQUEST_BIO) {
2489 unsigned int clone_size;
2490
2491 rbd_assert(length <= (u64)UINT_MAX);
2492 clone_size = (unsigned int)length;
2493 obj_request->bio_list =
2494 bio_chain_clone_range(&bio_list,
2495 &bio_offset,
2496 clone_size,
2497 GFP_NOIO);
2498 if (!obj_request->bio_list)
2499 goto out_unwind;
2500 } else if (type == OBJ_REQUEST_PAGES) {
2501 unsigned int page_count;
2502
2503 obj_request->pages = pages;
2504 page_count = (u32)calc_pages_for(offset, length);
2505 obj_request->page_count = page_count;
2506 if ((offset + length) & ~PAGE_MASK)
2507 page_count--; /* more on last page */
2508 pages += page_count;
2509 }
2510
2511 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2512 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2513 obj_request);
2514 if (!osd_req)
2515 goto out_unwind;
2516
2517 obj_request->osd_req = osd_req;
2518 obj_request->callback = rbd_img_obj_callback;
2519 obj_request->img_offset = img_offset;
2520
2521 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2522
2523 rbd_img_request_get(img_request);
2524
2525 img_offset += length;
2526 resid -= length;
2527 }
2528
2529 return 0;
2530
2531 out_unwind:
2532 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2533 rbd_img_obj_request_del(img_request, obj_request);
2534
2535 return -ENOMEM;
2536 }
2537
2538 static void
2539 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2540 {
2541 struct rbd_img_request *img_request;
2542 struct rbd_device *rbd_dev;
2543 struct page **pages;
2544 u32 page_count;
2545
2546 dout("%s: obj %p\n", __func__, obj_request);
2547
2548 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2549 obj_request->type == OBJ_REQUEST_NODATA);
2550 rbd_assert(obj_request_img_data_test(obj_request));
2551 img_request = obj_request->img_request;
2552 rbd_assert(img_request);
2553
2554 rbd_dev = img_request->rbd_dev;
2555 rbd_assert(rbd_dev);
2556
2557 pages = obj_request->copyup_pages;
2558 rbd_assert(pages != NULL);
2559 obj_request->copyup_pages = NULL;
2560 page_count = obj_request->copyup_page_count;
2561 rbd_assert(page_count);
2562 obj_request->copyup_page_count = 0;
2563 ceph_release_page_vector(pages, page_count);
2564
2565 /*
2566 * We want the transfer count to reflect the size of the
2567 * original write request. There is no such thing as a
2568 * successful short write, so if the request was successful
2569 * we can just set it to the originally-requested length.
2570 */
2571 if (!obj_request->result)
2572 obj_request->xferred = obj_request->length;
2573
2574 obj_request_done_set(obj_request);
2575 }
2576
2577 static void
2578 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2579 {
2580 struct rbd_obj_request *orig_request;
2581 struct ceph_osd_request *osd_req;
2582 struct ceph_osd_client *osdc;
2583 struct rbd_device *rbd_dev;
2584 struct page **pages;
2585 enum obj_operation_type op_type;
2586 u32 page_count;
2587 int img_result;
2588 u64 parent_length;
2589
2590 rbd_assert(img_request_child_test(img_request));
2591
2592 /* First get what we need from the image request */
2593
2594 pages = img_request->copyup_pages;
2595 rbd_assert(pages != NULL);
2596 img_request->copyup_pages = NULL;
2597 page_count = img_request->copyup_page_count;
2598 rbd_assert(page_count);
2599 img_request->copyup_page_count = 0;
2600
2601 orig_request = img_request->obj_request;
2602 rbd_assert(orig_request != NULL);
2603 rbd_assert(obj_request_type_valid(orig_request->type));
2604 img_result = img_request->result;
2605 parent_length = img_request->length;
2606 rbd_assert(parent_length == img_request->xferred);
2607 rbd_img_request_put(img_request);
2608
2609 rbd_assert(orig_request->img_request);
2610 rbd_dev = orig_request->img_request->rbd_dev;
2611 rbd_assert(rbd_dev);
2612
2613 /*
2614 * If the overlap has become 0 (most likely because the
2615 * image has been flattened) we need to free the pages
2616 * and re-submit the original write request.
2617 */
2618 if (!rbd_dev->parent_overlap) {
2619 struct ceph_osd_client *osdc;
2620
2621 ceph_release_page_vector(pages, page_count);
2622 osdc = &rbd_dev->rbd_client->client->osdc;
2623 img_result = rbd_obj_request_submit(osdc, orig_request);
2624 if (!img_result)
2625 return;
2626 }
2627
2628 if (img_result)
2629 goto out_err;
2630
2631 /*
2632 * The original osd request is of no use to use any more.
2633 * We need a new one that can hold the three ops in a copyup
2634 * request. Allocate the new copyup osd request for the
2635 * original request, and release the old one.
2636 */
2637 img_result = -ENOMEM;
2638 osd_req = rbd_osd_req_create_copyup(orig_request);
2639 if (!osd_req)
2640 goto out_err;
2641 rbd_osd_req_destroy(orig_request->osd_req);
2642 orig_request->osd_req = osd_req;
2643 orig_request->copyup_pages = pages;
2644 orig_request->copyup_page_count = page_count;
2645
2646 /* Initialize the copyup op */
2647
2648 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2649 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2650 false, false);
2651
2652 /* Add the other op(s) */
2653
2654 op_type = rbd_img_request_op_type(orig_request->img_request);
2655 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2656
2657 /* All set, send it off. */
2658
2659 osdc = &rbd_dev->rbd_client->client->osdc;
2660 img_result = rbd_obj_request_submit(osdc, orig_request);
2661 if (!img_result)
2662 return;
2663 out_err:
2664 /* Record the error code and complete the request */
2665
2666 orig_request->result = img_result;
2667 orig_request->xferred = 0;
2668 obj_request_done_set(orig_request);
2669 rbd_obj_request_complete(orig_request);
2670 }
2671
2672 /*
2673 * Read from the parent image the range of data that covers the
2674 * entire target of the given object request. This is used for
2675 * satisfying a layered image write request when the target of an
2676 * object request from the image request does not exist.
2677 *
2678 * A page array big enough to hold the returned data is allocated
2679 * and supplied to rbd_img_request_fill() as the "data descriptor."
2680 * When the read completes, this page array will be transferred to
2681 * the original object request for the copyup operation.
2682 *
2683 * If an error occurs, record it as the result of the original
2684 * object request and mark it done so it gets completed.
2685 */
2686 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2687 {
2688 struct rbd_img_request *img_request = NULL;
2689 struct rbd_img_request *parent_request = NULL;
2690 struct rbd_device *rbd_dev;
2691 u64 img_offset;
2692 u64 length;
2693 struct page **pages = NULL;
2694 u32 page_count;
2695 int result;
2696
2697 rbd_assert(obj_request_img_data_test(obj_request));
2698 rbd_assert(obj_request_type_valid(obj_request->type));
2699
2700 img_request = obj_request->img_request;
2701 rbd_assert(img_request != NULL);
2702 rbd_dev = img_request->rbd_dev;
2703 rbd_assert(rbd_dev->parent != NULL);
2704
2705 /*
2706 * Determine the byte range covered by the object in the
2707 * child image to which the original request was to be sent.
2708 */
2709 img_offset = obj_request->img_offset - obj_request->offset;
2710 length = (u64)1 << rbd_dev->header.obj_order;
2711
2712 /*
2713 * There is no defined parent data beyond the parent
2714 * overlap, so limit what we read at that boundary if
2715 * necessary.
2716 */
2717 if (img_offset + length > rbd_dev->parent_overlap) {
2718 rbd_assert(img_offset < rbd_dev->parent_overlap);
2719 length = rbd_dev->parent_overlap - img_offset;
2720 }
2721
2722 /*
2723 * Allocate a page array big enough to receive the data read
2724 * from the parent.
2725 */
2726 page_count = (u32)calc_pages_for(0, length);
2727 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2728 if (IS_ERR(pages)) {
2729 result = PTR_ERR(pages);
2730 pages = NULL;
2731 goto out_err;
2732 }
2733
2734 result = -ENOMEM;
2735 parent_request = rbd_parent_request_create(obj_request,
2736 img_offset, length);
2737 if (!parent_request)
2738 goto out_err;
2739
2740 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2741 if (result)
2742 goto out_err;
2743 parent_request->copyup_pages = pages;
2744 parent_request->copyup_page_count = page_count;
2745
2746 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2747 result = rbd_img_request_submit(parent_request);
2748 if (!result)
2749 return 0;
2750
2751 parent_request->copyup_pages = NULL;
2752 parent_request->copyup_page_count = 0;
2753 parent_request->obj_request = NULL;
2754 rbd_obj_request_put(obj_request);
2755 out_err:
2756 if (pages)
2757 ceph_release_page_vector(pages, page_count);
2758 if (parent_request)
2759 rbd_img_request_put(parent_request);
2760 obj_request->result = result;
2761 obj_request->xferred = 0;
2762 obj_request_done_set(obj_request);
2763
2764 return result;
2765 }
2766
2767 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2768 {
2769 struct rbd_obj_request *orig_request;
2770 struct rbd_device *rbd_dev;
2771 int result;
2772
2773 rbd_assert(!obj_request_img_data_test(obj_request));
2774
2775 /*
2776 * All we need from the object request is the original
2777 * request and the result of the STAT op. Grab those, then
2778 * we're done with the request.
2779 */
2780 orig_request = obj_request->obj_request;
2781 obj_request->obj_request = NULL;
2782 rbd_obj_request_put(orig_request);
2783 rbd_assert(orig_request);
2784 rbd_assert(orig_request->img_request);
2785
2786 result = obj_request->result;
2787 obj_request->result = 0;
2788
2789 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2790 obj_request, orig_request, result,
2791 obj_request->xferred, obj_request->length);
2792 rbd_obj_request_put(obj_request);
2793
2794 /*
2795 * If the overlap has become 0 (most likely because the
2796 * image has been flattened) we need to free the pages
2797 * and re-submit the original write request.
2798 */
2799 rbd_dev = orig_request->img_request->rbd_dev;
2800 if (!rbd_dev->parent_overlap) {
2801 struct ceph_osd_client *osdc;
2802
2803 osdc = &rbd_dev->rbd_client->client->osdc;
2804 result = rbd_obj_request_submit(osdc, orig_request);
2805 if (!result)
2806 return;
2807 }
2808
2809 /*
2810 * Our only purpose here is to determine whether the object
2811 * exists, and we don't want to treat the non-existence as
2812 * an error. If something else comes back, transfer the
2813 * error to the original request and complete it now.
2814 */
2815 if (!result) {
2816 obj_request_existence_set(orig_request, true);
2817 } else if (result == -ENOENT) {
2818 obj_request_existence_set(orig_request, false);
2819 } else if (result) {
2820 orig_request->result = result;
2821 goto out;
2822 }
2823
2824 /*
2825 * Resubmit the original request now that we have recorded
2826 * whether the target object exists.
2827 */
2828 orig_request->result = rbd_img_obj_request_submit(orig_request);
2829 out:
2830 if (orig_request->result)
2831 rbd_obj_request_complete(orig_request);
2832 }
2833
2834 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2835 {
2836 struct rbd_obj_request *stat_request;
2837 struct rbd_device *rbd_dev;
2838 struct ceph_osd_client *osdc;
2839 struct page **pages = NULL;
2840 u32 page_count;
2841 size_t size;
2842 int ret;
2843
2844 /*
2845 * The response data for a STAT call consists of:
2846 * le64 length;
2847 * struct {
2848 * le32 tv_sec;
2849 * le32 tv_nsec;
2850 * } mtime;
2851 */
2852 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2853 page_count = (u32)calc_pages_for(0, size);
2854 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2855 if (IS_ERR(pages))
2856 return PTR_ERR(pages);
2857
2858 ret = -ENOMEM;
2859 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2860 OBJ_REQUEST_PAGES);
2861 if (!stat_request)
2862 goto out;
2863
2864 rbd_obj_request_get(obj_request);
2865 stat_request->obj_request = obj_request;
2866 stat_request->pages = pages;
2867 stat_request->page_count = page_count;
2868
2869 rbd_assert(obj_request->img_request);
2870 rbd_dev = obj_request->img_request->rbd_dev;
2871 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2872 stat_request);
2873 if (!stat_request->osd_req)
2874 goto out;
2875 stat_request->callback = rbd_img_obj_exists_callback;
2876
2877 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2878 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2879 false, false);
2880 rbd_osd_req_format_read(stat_request);
2881
2882 osdc = &rbd_dev->rbd_client->client->osdc;
2883 ret = rbd_obj_request_submit(osdc, stat_request);
2884 out:
2885 if (ret)
2886 rbd_obj_request_put(obj_request);
2887
2888 return ret;
2889 }
2890
2891 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2892 {
2893 struct rbd_img_request *img_request;
2894 struct rbd_device *rbd_dev;
2895
2896 rbd_assert(obj_request_img_data_test(obj_request));
2897
2898 img_request = obj_request->img_request;
2899 rbd_assert(img_request);
2900 rbd_dev = img_request->rbd_dev;
2901
2902 /* Reads */
2903 if (!img_request_write_test(img_request) &&
2904 !img_request_discard_test(img_request))
2905 return true;
2906
2907 /* Non-layered writes */
2908 if (!img_request_layered_test(img_request))
2909 return true;
2910
2911 /*
2912 * Layered writes outside of the parent overlap range don't
2913 * share any data with the parent.
2914 */
2915 if (!obj_request_overlaps_parent(obj_request))
2916 return true;
2917
2918 /*
2919 * Entire-object layered writes - we will overwrite whatever
2920 * parent data there is anyway.
2921 */
2922 if (!obj_request->offset &&
2923 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2924 return true;
2925
2926 /*
2927 * If the object is known to already exist, its parent data has
2928 * already been copied.
2929 */
2930 if (obj_request_known_test(obj_request) &&
2931 obj_request_exists_test(obj_request))
2932 return true;
2933
2934 return false;
2935 }
2936
2937 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2938 {
2939 if (img_obj_request_simple(obj_request)) {
2940 struct rbd_device *rbd_dev;
2941 struct ceph_osd_client *osdc;
2942
2943 rbd_dev = obj_request->img_request->rbd_dev;
2944 osdc = &rbd_dev->rbd_client->client->osdc;
2945
2946 return rbd_obj_request_submit(osdc, obj_request);
2947 }
2948
2949 /*
2950 * It's a layered write. The target object might exist but
2951 * we may not know that yet. If we know it doesn't exist,
2952 * start by reading the data for the full target object from
2953 * the parent so we can use it for a copyup to the target.
2954 */
2955 if (obj_request_known_test(obj_request))
2956 return rbd_img_obj_parent_read_full(obj_request);
2957
2958 /* We don't know whether the target exists. Go find out. */
2959
2960 return rbd_img_obj_exists_submit(obj_request);
2961 }
2962
2963 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2964 {
2965 struct rbd_obj_request *obj_request;
2966 struct rbd_obj_request *next_obj_request;
2967 int ret = 0;
2968
2969 dout("%s: img %p\n", __func__, img_request);
2970
2971 rbd_img_request_get(img_request);
2972 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2973 ret = rbd_img_obj_request_submit(obj_request);
2974 if (ret)
2975 goto out_put_ireq;
2976 }
2977
2978 out_put_ireq:
2979 rbd_img_request_put(img_request);
2980 return ret;
2981 }
2982
2983 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2984 {
2985 struct rbd_obj_request *obj_request;
2986 struct rbd_device *rbd_dev;
2987 u64 obj_end;
2988 u64 img_xferred;
2989 int img_result;
2990
2991 rbd_assert(img_request_child_test(img_request));
2992
2993 /* First get what we need from the image request and release it */
2994
2995 obj_request = img_request->obj_request;
2996 img_xferred = img_request->xferred;
2997 img_result = img_request->result;
2998 rbd_img_request_put(img_request);
2999
3000 /*
3001 * If the overlap has become 0 (most likely because the
3002 * image has been flattened) we need to re-submit the
3003 * original request.
3004 */
3005 rbd_assert(obj_request);
3006 rbd_assert(obj_request->img_request);
3007 rbd_dev = obj_request->img_request->rbd_dev;
3008 if (!rbd_dev->parent_overlap) {
3009 struct ceph_osd_client *osdc;
3010
3011 osdc = &rbd_dev->rbd_client->client->osdc;
3012 img_result = rbd_obj_request_submit(osdc, obj_request);
3013 if (!img_result)
3014 return;
3015 }
3016
3017 obj_request->result = img_result;
3018 if (obj_request->result)
3019 goto out;
3020
3021 /*
3022 * We need to zero anything beyond the parent overlap
3023 * boundary. Since rbd_img_obj_request_read_callback()
3024 * will zero anything beyond the end of a short read, an
3025 * easy way to do this is to pretend the data from the
3026 * parent came up short--ending at the overlap boundary.
3027 */
3028 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3029 obj_end = obj_request->img_offset + obj_request->length;
3030 if (obj_end > rbd_dev->parent_overlap) {
3031 u64 xferred = 0;
3032
3033 if (obj_request->img_offset < rbd_dev->parent_overlap)
3034 xferred = rbd_dev->parent_overlap -
3035 obj_request->img_offset;
3036
3037 obj_request->xferred = min(img_xferred, xferred);
3038 } else {
3039 obj_request->xferred = img_xferred;
3040 }
3041 out:
3042 rbd_img_obj_request_read_callback(obj_request);
3043 rbd_obj_request_complete(obj_request);
3044 }
3045
3046 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3047 {
3048 struct rbd_img_request *img_request;
3049 int result;
3050
3051 rbd_assert(obj_request_img_data_test(obj_request));
3052 rbd_assert(obj_request->img_request != NULL);
3053 rbd_assert(obj_request->result == (s32) -ENOENT);
3054 rbd_assert(obj_request_type_valid(obj_request->type));
3055
3056 /* rbd_read_finish(obj_request, obj_request->length); */
3057 img_request = rbd_parent_request_create(obj_request,
3058 obj_request->img_offset,
3059 obj_request->length);
3060 result = -ENOMEM;
3061 if (!img_request)
3062 goto out_err;
3063
3064 if (obj_request->type == OBJ_REQUEST_BIO)
3065 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3066 obj_request->bio_list);
3067 else
3068 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3069 obj_request->pages);
3070 if (result)
3071 goto out_err;
3072
3073 img_request->callback = rbd_img_parent_read_callback;
3074 result = rbd_img_request_submit(img_request);
3075 if (result)
3076 goto out_err;
3077
3078 return;
3079 out_err:
3080 if (img_request)
3081 rbd_img_request_put(img_request);
3082 obj_request->result = result;
3083 obj_request->xferred = 0;
3084 obj_request_done_set(obj_request);
3085 }
3086
3087 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev);
3088 static void __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev);
3089
3090 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3091 u64 notifier_id, void *data, size_t data_len)
3092 {
3093 struct rbd_device *rbd_dev = arg;
3094 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3095 int ret;
3096
3097 dout("%s rbd_dev %p cookie %llu notify_id %llu\n", __func__, rbd_dev,
3098 cookie, notify_id);
3099
3100 /*
3101 * Until adequate refresh error handling is in place, there is
3102 * not much we can do here, except warn.
3103 *
3104 * See http://tracker.ceph.com/issues/5040
3105 */
3106 ret = rbd_dev_refresh(rbd_dev);
3107 if (ret)
3108 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3109
3110 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3111 &rbd_dev->header_oloc, notify_id, cookie,
3112 NULL, 0);
3113 if (ret)
3114 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3115 }
3116
3117 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3118 {
3119 struct rbd_device *rbd_dev = arg;
3120 int ret;
3121
3122 rbd_warn(rbd_dev, "encountered watch error: %d", err);
3123
3124 __rbd_dev_header_unwatch_sync(rbd_dev);
3125
3126 ret = rbd_dev_header_watch_sync(rbd_dev);
3127 if (ret) {
3128 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3129 return;
3130 }
3131
3132 ret = rbd_dev_refresh(rbd_dev);
3133 if (ret)
3134 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3135 }
3136
3137 /*
3138 * Initiate a watch request, synchronously.
3139 */
3140 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3141 {
3142 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3143 struct ceph_osd_linger_request *handle;
3144
3145 rbd_assert(!rbd_dev->watch_handle);
3146
3147 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3148 &rbd_dev->header_oloc, rbd_watch_cb,
3149 rbd_watch_errcb, rbd_dev);
3150 if (IS_ERR(handle))
3151 return PTR_ERR(handle);
3152
3153 rbd_dev->watch_handle = handle;
3154 return 0;
3155 }
3156
3157 static void __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3158 {
3159 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3160 int ret;
3161
3162 if (!rbd_dev->watch_handle)
3163 return;
3164
3165 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3166 if (ret)
3167 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3168
3169 rbd_dev->watch_handle = NULL;
3170 }
3171
3172 /*
3173 * Tear down a watch request, synchronously.
3174 */
3175 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3176 {
3177 __rbd_dev_header_unwatch_sync(rbd_dev);
3178
3179 dout("%s flushing notifies\n", __func__);
3180 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3181 }
3182
3183 /*
3184 * Synchronous osd object method call. Returns the number of bytes
3185 * returned in the outbound buffer, or a negative error code.
3186 */
3187 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3188 const char *object_name,
3189 const char *class_name,
3190 const char *method_name,
3191 const void *outbound,
3192 size_t outbound_size,
3193 void *inbound,
3194 size_t inbound_size)
3195 {
3196 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3197 struct rbd_obj_request *obj_request;
3198 struct page **pages;
3199 u32 page_count;
3200 int ret;
3201
3202 /*
3203 * Method calls are ultimately read operations. The result
3204 * should placed into the inbound buffer provided. They
3205 * also supply outbound data--parameters for the object
3206 * method. Currently if this is present it will be a
3207 * snapshot id.
3208 */
3209 page_count = (u32)calc_pages_for(0, inbound_size);
3210 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3211 if (IS_ERR(pages))
3212 return PTR_ERR(pages);
3213
3214 ret = -ENOMEM;
3215 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3216 OBJ_REQUEST_PAGES);
3217 if (!obj_request)
3218 goto out;
3219
3220 obj_request->pages = pages;
3221 obj_request->page_count = page_count;
3222
3223 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3224 obj_request);
3225 if (!obj_request->osd_req)
3226 goto out;
3227
3228 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3229 class_name, method_name);
3230 if (outbound_size) {
3231 struct ceph_pagelist *pagelist;
3232
3233 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3234 if (!pagelist)
3235 goto out;
3236
3237 ceph_pagelist_init(pagelist);
3238 ceph_pagelist_append(pagelist, outbound, outbound_size);
3239 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3240 pagelist);
3241 }
3242 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3243 obj_request->pages, inbound_size,
3244 0, false, false);
3245 rbd_osd_req_format_read(obj_request);
3246
3247 ret = rbd_obj_request_submit(osdc, obj_request);
3248 if (ret)
3249 goto out;
3250 ret = rbd_obj_request_wait(obj_request);
3251 if (ret)
3252 goto out;
3253
3254 ret = obj_request->result;
3255 if (ret < 0)
3256 goto out;
3257
3258 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3259 ret = (int)obj_request->xferred;
3260 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3261 out:
3262 if (obj_request)
3263 rbd_obj_request_put(obj_request);
3264 else
3265 ceph_release_page_vector(pages, page_count);
3266
3267 return ret;
3268 }
3269
3270 static void rbd_queue_workfn(struct work_struct *work)
3271 {
3272 struct request *rq = blk_mq_rq_from_pdu(work);
3273 struct rbd_device *rbd_dev = rq->q->queuedata;
3274 struct rbd_img_request *img_request;
3275 struct ceph_snap_context *snapc = NULL;
3276 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3277 u64 length = blk_rq_bytes(rq);
3278 enum obj_operation_type op_type;
3279 u64 mapping_size;
3280 int result;
3281
3282 if (rq->cmd_type != REQ_TYPE_FS) {
3283 dout("%s: non-fs request type %d\n", __func__,
3284 (int) rq->cmd_type);
3285 result = -EIO;
3286 goto err;
3287 }
3288
3289 if (req_op(rq) == REQ_OP_DISCARD)
3290 op_type = OBJ_OP_DISCARD;
3291 else if (req_op(rq) == REQ_OP_WRITE)
3292 op_type = OBJ_OP_WRITE;
3293 else
3294 op_type = OBJ_OP_READ;
3295
3296 /* Ignore/skip any zero-length requests */
3297
3298 if (!length) {
3299 dout("%s: zero-length request\n", __func__);
3300 result = 0;
3301 goto err_rq;
3302 }
3303
3304 /* Only reads are allowed to a read-only device */
3305
3306 if (op_type != OBJ_OP_READ) {
3307 if (rbd_dev->mapping.read_only) {
3308 result = -EROFS;
3309 goto err_rq;
3310 }
3311 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3312 }
3313
3314 /*
3315 * Quit early if the mapped snapshot no longer exists. It's
3316 * still possible the snapshot will have disappeared by the
3317 * time our request arrives at the osd, but there's no sense in
3318 * sending it if we already know.
3319 */
3320 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3321 dout("request for non-existent snapshot");
3322 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3323 result = -ENXIO;
3324 goto err_rq;
3325 }
3326
3327 if (offset && length > U64_MAX - offset + 1) {
3328 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3329 length);
3330 result = -EINVAL;
3331 goto err_rq; /* Shouldn't happen */
3332 }
3333
3334 blk_mq_start_request(rq);
3335
3336 down_read(&rbd_dev->header_rwsem);
3337 mapping_size = rbd_dev->mapping.size;
3338 if (op_type != OBJ_OP_READ) {
3339 snapc = rbd_dev->header.snapc;
3340 ceph_get_snap_context(snapc);
3341 }
3342 up_read(&rbd_dev->header_rwsem);
3343
3344 if (offset + length > mapping_size) {
3345 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3346 length, mapping_size);
3347 result = -EIO;
3348 goto err_rq;
3349 }
3350
3351 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3352 snapc);
3353 if (!img_request) {
3354 result = -ENOMEM;
3355 goto err_rq;
3356 }
3357 img_request->rq = rq;
3358 snapc = NULL; /* img_request consumes a ref */
3359
3360 if (op_type == OBJ_OP_DISCARD)
3361 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3362 NULL);
3363 else
3364 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3365 rq->bio);
3366 if (result)
3367 goto err_img_request;
3368
3369 result = rbd_img_request_submit(img_request);
3370 if (result)
3371 goto err_img_request;
3372
3373 return;
3374
3375 err_img_request:
3376 rbd_img_request_put(img_request);
3377 err_rq:
3378 if (result)
3379 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3380 obj_op_name(op_type), length, offset, result);
3381 ceph_put_snap_context(snapc);
3382 err:
3383 blk_mq_end_request(rq, result);
3384 }
3385
3386 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3387 const struct blk_mq_queue_data *bd)
3388 {
3389 struct request *rq = bd->rq;
3390 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3391
3392 queue_work(rbd_wq, work);
3393 return BLK_MQ_RQ_QUEUE_OK;
3394 }
3395
3396 static void rbd_free_disk(struct rbd_device *rbd_dev)
3397 {
3398 struct gendisk *disk = rbd_dev->disk;
3399
3400 if (!disk)
3401 return;
3402
3403 rbd_dev->disk = NULL;
3404 if (disk->flags & GENHD_FL_UP) {
3405 del_gendisk(disk);
3406 if (disk->queue)
3407 blk_cleanup_queue(disk->queue);
3408 blk_mq_free_tag_set(&rbd_dev->tag_set);
3409 }
3410 put_disk(disk);
3411 }
3412
3413 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3414 const char *object_name,
3415 u64 offset, u64 length, void *buf)
3416
3417 {
3418 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3419 struct rbd_obj_request *obj_request;
3420 struct page **pages = NULL;
3421 u32 page_count;
3422 size_t size;
3423 int ret;
3424
3425 page_count = (u32) calc_pages_for(offset, length);
3426 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3427 if (IS_ERR(pages))
3428 return PTR_ERR(pages);
3429
3430 ret = -ENOMEM;
3431 obj_request = rbd_obj_request_create(object_name, offset, length,
3432 OBJ_REQUEST_PAGES);
3433 if (!obj_request)
3434 goto out;
3435
3436 obj_request->pages = pages;
3437 obj_request->page_count = page_count;
3438
3439 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3440 obj_request);
3441 if (!obj_request->osd_req)
3442 goto out;
3443
3444 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3445 offset, length, 0, 0);
3446 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3447 obj_request->pages,
3448 obj_request->length,
3449 obj_request->offset & ~PAGE_MASK,
3450 false, false);
3451 rbd_osd_req_format_read(obj_request);
3452
3453 ret = rbd_obj_request_submit(osdc, obj_request);
3454 if (ret)
3455 goto out;
3456 ret = rbd_obj_request_wait(obj_request);
3457 if (ret)
3458 goto out;
3459
3460 ret = obj_request->result;
3461 if (ret < 0)
3462 goto out;
3463
3464 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3465 size = (size_t) obj_request->xferred;
3466 ceph_copy_from_page_vector(pages, buf, 0, size);
3467 rbd_assert(size <= (size_t)INT_MAX);
3468 ret = (int)size;
3469 out:
3470 if (obj_request)
3471 rbd_obj_request_put(obj_request);
3472 else
3473 ceph_release_page_vector(pages, page_count);
3474
3475 return ret;
3476 }
3477
3478 /*
3479 * Read the complete header for the given rbd device. On successful
3480 * return, the rbd_dev->header field will contain up-to-date
3481 * information about the image.
3482 */
3483 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3484 {
3485 struct rbd_image_header_ondisk *ondisk = NULL;
3486 u32 snap_count = 0;
3487 u64 names_size = 0;
3488 u32 want_count;
3489 int ret;
3490
3491 /*
3492 * The complete header will include an array of its 64-bit
3493 * snapshot ids, followed by the names of those snapshots as
3494 * a contiguous block of NUL-terminated strings. Note that
3495 * the number of snapshots could change by the time we read
3496 * it in, in which case we re-read it.
3497 */
3498 do {
3499 size_t size;
3500
3501 kfree(ondisk);
3502
3503 size = sizeof (*ondisk);
3504 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3505 size += names_size;
3506 ondisk = kmalloc(size, GFP_KERNEL);
3507 if (!ondisk)
3508 return -ENOMEM;
3509
3510 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
3511 0, size, ondisk);
3512 if (ret < 0)
3513 goto out;
3514 if ((size_t)ret < size) {
3515 ret = -ENXIO;
3516 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3517 size, ret);
3518 goto out;
3519 }
3520 if (!rbd_dev_ondisk_valid(ondisk)) {
3521 ret = -ENXIO;
3522 rbd_warn(rbd_dev, "invalid header");
3523 goto out;
3524 }
3525
3526 names_size = le64_to_cpu(ondisk->snap_names_len);
3527 want_count = snap_count;
3528 snap_count = le32_to_cpu(ondisk->snap_count);
3529 } while (snap_count != want_count);
3530
3531 ret = rbd_header_from_disk(rbd_dev, ondisk);
3532 out:
3533 kfree(ondisk);
3534
3535 return ret;
3536 }
3537
3538 /*
3539 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3540 * has disappeared from the (just updated) snapshot context.
3541 */
3542 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3543 {
3544 u64 snap_id;
3545
3546 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3547 return;
3548
3549 snap_id = rbd_dev->spec->snap_id;
3550 if (snap_id == CEPH_NOSNAP)
3551 return;
3552
3553 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3554 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3555 }
3556
3557 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3558 {
3559 sector_t size;
3560
3561 /*
3562 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3563 * try to update its size. If REMOVING is set, updating size
3564 * is just useless work since the device can't be opened.
3565 */
3566 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3567 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3568 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3569 dout("setting size to %llu sectors", (unsigned long long)size);
3570 set_capacity(rbd_dev->disk, size);
3571 revalidate_disk(rbd_dev->disk);
3572 }
3573 }
3574
3575 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3576 {
3577 u64 mapping_size;
3578 int ret;
3579
3580 down_write(&rbd_dev->header_rwsem);
3581 mapping_size = rbd_dev->mapping.size;
3582
3583 ret = rbd_dev_header_info(rbd_dev);
3584 if (ret)
3585 goto out;
3586
3587 /*
3588 * If there is a parent, see if it has disappeared due to the
3589 * mapped image getting flattened.
3590 */
3591 if (rbd_dev->parent) {
3592 ret = rbd_dev_v2_parent_info(rbd_dev);
3593 if (ret)
3594 goto out;
3595 }
3596
3597 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3598 rbd_dev->mapping.size = rbd_dev->header.image_size;
3599 } else {
3600 /* validate mapped snapshot's EXISTS flag */
3601 rbd_exists_validate(rbd_dev);
3602 }
3603
3604 out:
3605 up_write(&rbd_dev->header_rwsem);
3606 if (!ret && mapping_size != rbd_dev->mapping.size)
3607 rbd_dev_update_size(rbd_dev);
3608
3609 return ret;
3610 }
3611
3612 static int rbd_init_request(void *data, struct request *rq,
3613 unsigned int hctx_idx, unsigned int request_idx,
3614 unsigned int numa_node)
3615 {
3616 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3617
3618 INIT_WORK(work, rbd_queue_workfn);
3619 return 0;
3620 }
3621
3622 static struct blk_mq_ops rbd_mq_ops = {
3623 .queue_rq = rbd_queue_rq,
3624 .map_queue = blk_mq_map_queue,
3625 .init_request = rbd_init_request,
3626 };
3627
3628 static int rbd_init_disk(struct rbd_device *rbd_dev)
3629 {
3630 struct gendisk *disk;
3631 struct request_queue *q;
3632 u64 segment_size;
3633 int err;
3634
3635 /* create gendisk info */
3636 disk = alloc_disk(single_major ?
3637 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3638 RBD_MINORS_PER_MAJOR);
3639 if (!disk)
3640 return -ENOMEM;
3641
3642 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3643 rbd_dev->dev_id);
3644 disk->major = rbd_dev->major;
3645 disk->first_minor = rbd_dev->minor;
3646 if (single_major)
3647 disk->flags |= GENHD_FL_EXT_DEVT;
3648 disk->fops = &rbd_bd_ops;
3649 disk->private_data = rbd_dev;
3650
3651 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3652 rbd_dev->tag_set.ops = &rbd_mq_ops;
3653 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3654 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3655 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3656 rbd_dev->tag_set.nr_hw_queues = 1;
3657 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3658
3659 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3660 if (err)
3661 goto out_disk;
3662
3663 q = blk_mq_init_queue(&rbd_dev->tag_set);
3664 if (IS_ERR(q)) {
3665 err = PTR_ERR(q);
3666 goto out_tag_set;
3667 }
3668
3669 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3670 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3671
3672 /* set io sizes to object size */
3673 segment_size = rbd_obj_bytes(&rbd_dev->header);
3674 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3675 q->limits.max_sectors = queue_max_hw_sectors(q);
3676 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3677 blk_queue_max_segment_size(q, segment_size);
3678 blk_queue_io_min(q, segment_size);
3679 blk_queue_io_opt(q, segment_size);
3680
3681 /* enable the discard support */
3682 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3683 q->limits.discard_granularity = segment_size;
3684 q->limits.discard_alignment = segment_size;
3685 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3686 q->limits.discard_zeroes_data = 1;
3687
3688 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3689 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3690
3691 disk->queue = q;
3692
3693 q->queuedata = rbd_dev;
3694
3695 rbd_dev->disk = disk;
3696
3697 return 0;
3698 out_tag_set:
3699 blk_mq_free_tag_set(&rbd_dev->tag_set);
3700 out_disk:
3701 put_disk(disk);
3702 return err;
3703 }
3704
3705 /*
3706 sysfs
3707 */
3708
3709 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3710 {
3711 return container_of(dev, struct rbd_device, dev);
3712 }
3713
3714 static ssize_t rbd_size_show(struct device *dev,
3715 struct device_attribute *attr, char *buf)
3716 {
3717 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3718
3719 return sprintf(buf, "%llu\n",
3720 (unsigned long long)rbd_dev->mapping.size);
3721 }
3722
3723 /*
3724 * Note this shows the features for whatever's mapped, which is not
3725 * necessarily the base image.
3726 */
3727 static ssize_t rbd_features_show(struct device *dev,
3728 struct device_attribute *attr, char *buf)
3729 {
3730 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3731
3732 return sprintf(buf, "0x%016llx\n",
3733 (unsigned long long)rbd_dev->mapping.features);
3734 }
3735
3736 static ssize_t rbd_major_show(struct device *dev,
3737 struct device_attribute *attr, char *buf)
3738 {
3739 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3740
3741 if (rbd_dev->major)
3742 return sprintf(buf, "%d\n", rbd_dev->major);
3743
3744 return sprintf(buf, "(none)\n");
3745 }
3746
3747 static ssize_t rbd_minor_show(struct device *dev,
3748 struct device_attribute *attr, char *buf)
3749 {
3750 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3751
3752 return sprintf(buf, "%d\n", rbd_dev->minor);
3753 }
3754
3755 static ssize_t rbd_client_id_show(struct device *dev,
3756 struct device_attribute *attr, char *buf)
3757 {
3758 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3759
3760 return sprintf(buf, "client%lld\n",
3761 ceph_client_id(rbd_dev->rbd_client->client));
3762 }
3763
3764 static ssize_t rbd_pool_show(struct device *dev,
3765 struct device_attribute *attr, char *buf)
3766 {
3767 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3768
3769 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3770 }
3771
3772 static ssize_t rbd_pool_id_show(struct device *dev,
3773 struct device_attribute *attr, char *buf)
3774 {
3775 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3776
3777 return sprintf(buf, "%llu\n",
3778 (unsigned long long) rbd_dev->spec->pool_id);
3779 }
3780
3781 static ssize_t rbd_name_show(struct device *dev,
3782 struct device_attribute *attr, char *buf)
3783 {
3784 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3785
3786 if (rbd_dev->spec->image_name)
3787 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3788
3789 return sprintf(buf, "(unknown)\n");
3790 }
3791
3792 static ssize_t rbd_image_id_show(struct device *dev,
3793 struct device_attribute *attr, char *buf)
3794 {
3795 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3796
3797 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3798 }
3799
3800 /*
3801 * Shows the name of the currently-mapped snapshot (or
3802 * RBD_SNAP_HEAD_NAME for the base image).
3803 */
3804 static ssize_t rbd_snap_show(struct device *dev,
3805 struct device_attribute *attr,
3806 char *buf)
3807 {
3808 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3809
3810 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3811 }
3812
3813 /*
3814 * For a v2 image, shows the chain of parent images, separated by empty
3815 * lines. For v1 images or if there is no parent, shows "(no parent
3816 * image)".
3817 */
3818 static ssize_t rbd_parent_show(struct device *dev,
3819 struct device_attribute *attr,
3820 char *buf)
3821 {
3822 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823 ssize_t count = 0;
3824
3825 if (!rbd_dev->parent)
3826 return sprintf(buf, "(no parent image)\n");
3827
3828 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3829 struct rbd_spec *spec = rbd_dev->parent_spec;
3830
3831 count += sprintf(&buf[count], "%s"
3832 "pool_id %llu\npool_name %s\n"
3833 "image_id %s\nimage_name %s\n"
3834 "snap_id %llu\nsnap_name %s\n"
3835 "overlap %llu\n",
3836 !count ? "" : "\n", /* first? */
3837 spec->pool_id, spec->pool_name,
3838 spec->image_id, spec->image_name ?: "(unknown)",
3839 spec->snap_id, spec->snap_name,
3840 rbd_dev->parent_overlap);
3841 }
3842
3843 return count;
3844 }
3845
3846 static ssize_t rbd_image_refresh(struct device *dev,
3847 struct device_attribute *attr,
3848 const char *buf,
3849 size_t size)
3850 {
3851 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3852 int ret;
3853
3854 ret = rbd_dev_refresh(rbd_dev);
3855 if (ret)
3856 return ret;
3857
3858 return size;
3859 }
3860
3861 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3862 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3863 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3864 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3865 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3866 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3867 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3868 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3869 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3870 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3871 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3872 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3873
3874 static struct attribute *rbd_attrs[] = {
3875 &dev_attr_size.attr,
3876 &dev_attr_features.attr,
3877 &dev_attr_major.attr,
3878 &dev_attr_minor.attr,
3879 &dev_attr_client_id.attr,
3880 &dev_attr_pool.attr,
3881 &dev_attr_pool_id.attr,
3882 &dev_attr_name.attr,
3883 &dev_attr_image_id.attr,
3884 &dev_attr_current_snap.attr,
3885 &dev_attr_parent.attr,
3886 &dev_attr_refresh.attr,
3887 NULL
3888 };
3889
3890 static struct attribute_group rbd_attr_group = {
3891 .attrs = rbd_attrs,
3892 };
3893
3894 static const struct attribute_group *rbd_attr_groups[] = {
3895 &rbd_attr_group,
3896 NULL
3897 };
3898
3899 static void rbd_dev_release(struct device *dev);
3900
3901 static struct device_type rbd_device_type = {
3902 .name = "rbd",
3903 .groups = rbd_attr_groups,
3904 .release = rbd_dev_release,
3905 };
3906
3907 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3908 {
3909 kref_get(&spec->kref);
3910
3911 return spec;
3912 }
3913
3914 static void rbd_spec_free(struct kref *kref);
3915 static void rbd_spec_put(struct rbd_spec *spec)
3916 {
3917 if (spec)
3918 kref_put(&spec->kref, rbd_spec_free);
3919 }
3920
3921 static struct rbd_spec *rbd_spec_alloc(void)
3922 {
3923 struct rbd_spec *spec;
3924
3925 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3926 if (!spec)
3927 return NULL;
3928
3929 spec->pool_id = CEPH_NOPOOL;
3930 spec->snap_id = CEPH_NOSNAP;
3931 kref_init(&spec->kref);
3932
3933 return spec;
3934 }
3935
3936 static void rbd_spec_free(struct kref *kref)
3937 {
3938 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3939
3940 kfree(spec->pool_name);
3941 kfree(spec->image_id);
3942 kfree(spec->image_name);
3943 kfree(spec->snap_name);
3944 kfree(spec);
3945 }
3946
3947 static void rbd_dev_release(struct device *dev)
3948 {
3949 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3950 bool need_put = !!rbd_dev->opts;
3951
3952 ceph_oid_destroy(&rbd_dev->header_oid);
3953 ceph_oloc_destroy(&rbd_dev->header_oloc);
3954
3955 rbd_put_client(rbd_dev->rbd_client);
3956 rbd_spec_put(rbd_dev->spec);
3957 kfree(rbd_dev->opts);
3958 kfree(rbd_dev);
3959
3960 /*
3961 * This is racy, but way better than putting module outside of
3962 * the release callback. The race window is pretty small, so
3963 * doing something similar to dm (dm-builtin.c) is overkill.
3964 */
3965 if (need_put)
3966 module_put(THIS_MODULE);
3967 }
3968
3969 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3970 struct rbd_spec *spec,
3971 struct rbd_options *opts)
3972 {
3973 struct rbd_device *rbd_dev;
3974
3975 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3976 if (!rbd_dev)
3977 return NULL;
3978
3979 spin_lock_init(&rbd_dev->lock);
3980 rbd_dev->flags = 0;
3981 atomic_set(&rbd_dev->parent_ref, 0);
3982 INIT_LIST_HEAD(&rbd_dev->node);
3983 init_rwsem(&rbd_dev->header_rwsem);
3984
3985 ceph_oid_init(&rbd_dev->header_oid);
3986 ceph_oloc_init(&rbd_dev->header_oloc);
3987
3988 rbd_dev->dev.bus = &rbd_bus_type;
3989 rbd_dev->dev.type = &rbd_device_type;
3990 rbd_dev->dev.parent = &rbd_root_dev;
3991 device_initialize(&rbd_dev->dev);
3992
3993 rbd_dev->rbd_client = rbdc;
3994 rbd_dev->spec = spec;
3995 rbd_dev->opts = opts;
3996
3997 /* Initialize the layout used for all rbd requests */
3998
3999 rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER;
4000 rbd_dev->layout.stripe_count = 1;
4001 rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER;
4002 rbd_dev->layout.pool_id = spec->pool_id;
4003 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
4004
4005 /*
4006 * If this is a mapping rbd_dev (as opposed to a parent one),
4007 * pin our module. We have a ref from do_rbd_add(), so use
4008 * __module_get().
4009 */
4010 if (rbd_dev->opts)
4011 __module_get(THIS_MODULE);
4012
4013 return rbd_dev;
4014 }
4015
4016 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4017 {
4018 if (rbd_dev)
4019 put_device(&rbd_dev->dev);
4020 }
4021
4022 /*
4023 * Get the size and object order for an image snapshot, or if
4024 * snap_id is CEPH_NOSNAP, gets this information for the base
4025 * image.
4026 */
4027 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4028 u8 *order, u64 *snap_size)
4029 {
4030 __le64 snapid = cpu_to_le64(snap_id);
4031 int ret;
4032 struct {
4033 u8 order;
4034 __le64 size;
4035 } __attribute__ ((packed)) size_buf = { 0 };
4036
4037 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4038 "rbd", "get_size",
4039 &snapid, sizeof (snapid),
4040 &size_buf, sizeof (size_buf));
4041 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4042 if (ret < 0)
4043 return ret;
4044 if (ret < sizeof (size_buf))
4045 return -ERANGE;
4046
4047 if (order) {
4048 *order = size_buf.order;
4049 dout(" order %u", (unsigned int)*order);
4050 }
4051 *snap_size = le64_to_cpu(size_buf.size);
4052
4053 dout(" snap_id 0x%016llx snap_size = %llu\n",
4054 (unsigned long long)snap_id,
4055 (unsigned long long)*snap_size);
4056
4057 return 0;
4058 }
4059
4060 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4061 {
4062 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4063 &rbd_dev->header.obj_order,
4064 &rbd_dev->header.image_size);
4065 }
4066
4067 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4068 {
4069 void *reply_buf;
4070 int ret;
4071 void *p;
4072
4073 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4074 if (!reply_buf)
4075 return -ENOMEM;
4076
4077 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4078 "rbd", "get_object_prefix", NULL, 0,
4079 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4080 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4081 if (ret < 0)
4082 goto out;
4083
4084 p = reply_buf;
4085 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4086 p + ret, NULL, GFP_NOIO);
4087 ret = 0;
4088
4089 if (IS_ERR(rbd_dev->header.object_prefix)) {
4090 ret = PTR_ERR(rbd_dev->header.object_prefix);
4091 rbd_dev->header.object_prefix = NULL;
4092 } else {
4093 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4094 }
4095 out:
4096 kfree(reply_buf);
4097
4098 return ret;
4099 }
4100
4101 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4102 u64 *snap_features)
4103 {
4104 __le64 snapid = cpu_to_le64(snap_id);
4105 struct {
4106 __le64 features;
4107 __le64 incompat;
4108 } __attribute__ ((packed)) features_buf = { 0 };
4109 u64 unsup;
4110 int ret;
4111
4112 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4113 "rbd", "get_features",
4114 &snapid, sizeof (snapid),
4115 &features_buf, sizeof (features_buf));
4116 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4117 if (ret < 0)
4118 return ret;
4119 if (ret < sizeof (features_buf))
4120 return -ERANGE;
4121
4122 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4123 if (unsup) {
4124 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4125 unsup);
4126 return -ENXIO;
4127 }
4128
4129 *snap_features = le64_to_cpu(features_buf.features);
4130
4131 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4132 (unsigned long long)snap_id,
4133 (unsigned long long)*snap_features,
4134 (unsigned long long)le64_to_cpu(features_buf.incompat));
4135
4136 return 0;
4137 }
4138
4139 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4140 {
4141 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4142 &rbd_dev->header.features);
4143 }
4144
4145 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4146 {
4147 struct rbd_spec *parent_spec;
4148 size_t size;
4149 void *reply_buf = NULL;
4150 __le64 snapid;
4151 void *p;
4152 void *end;
4153 u64 pool_id;
4154 char *image_id;
4155 u64 snap_id;
4156 u64 overlap;
4157 int ret;
4158
4159 parent_spec = rbd_spec_alloc();
4160 if (!parent_spec)
4161 return -ENOMEM;
4162
4163 size = sizeof (__le64) + /* pool_id */
4164 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4165 sizeof (__le64) + /* snap_id */
4166 sizeof (__le64); /* overlap */
4167 reply_buf = kmalloc(size, GFP_KERNEL);
4168 if (!reply_buf) {
4169 ret = -ENOMEM;
4170 goto out_err;
4171 }
4172
4173 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4174 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4175 "rbd", "get_parent",
4176 &snapid, sizeof (snapid),
4177 reply_buf, size);
4178 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4179 if (ret < 0)
4180 goto out_err;
4181
4182 p = reply_buf;
4183 end = reply_buf + ret;
4184 ret = -ERANGE;
4185 ceph_decode_64_safe(&p, end, pool_id, out_err);
4186 if (pool_id == CEPH_NOPOOL) {
4187 /*
4188 * Either the parent never existed, or we have
4189 * record of it but the image got flattened so it no
4190 * longer has a parent. When the parent of a
4191 * layered image disappears we immediately set the
4192 * overlap to 0. The effect of this is that all new
4193 * requests will be treated as if the image had no
4194 * parent.
4195 */
4196 if (rbd_dev->parent_overlap) {
4197 rbd_dev->parent_overlap = 0;
4198 rbd_dev_parent_put(rbd_dev);
4199 pr_info("%s: clone image has been flattened\n",
4200 rbd_dev->disk->disk_name);
4201 }
4202
4203 goto out; /* No parent? No problem. */
4204 }
4205
4206 /* The ceph file layout needs to fit pool id in 32 bits */
4207
4208 ret = -EIO;
4209 if (pool_id > (u64)U32_MAX) {
4210 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4211 (unsigned long long)pool_id, U32_MAX);
4212 goto out_err;
4213 }
4214
4215 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4216 if (IS_ERR(image_id)) {
4217 ret = PTR_ERR(image_id);
4218 goto out_err;
4219 }
4220 ceph_decode_64_safe(&p, end, snap_id, out_err);
4221 ceph_decode_64_safe(&p, end, overlap, out_err);
4222
4223 /*
4224 * The parent won't change (except when the clone is
4225 * flattened, already handled that). So we only need to
4226 * record the parent spec we have not already done so.
4227 */
4228 if (!rbd_dev->parent_spec) {
4229 parent_spec->pool_id = pool_id;
4230 parent_spec->image_id = image_id;
4231 parent_spec->snap_id = snap_id;
4232 rbd_dev->parent_spec = parent_spec;
4233 parent_spec = NULL; /* rbd_dev now owns this */
4234 } else {
4235 kfree(image_id);
4236 }
4237
4238 /*
4239 * We always update the parent overlap. If it's zero we issue
4240 * a warning, as we will proceed as if there was no parent.
4241 */
4242 if (!overlap) {
4243 if (parent_spec) {
4244 /* refresh, careful to warn just once */
4245 if (rbd_dev->parent_overlap)
4246 rbd_warn(rbd_dev,
4247 "clone now standalone (overlap became 0)");
4248 } else {
4249 /* initial probe */
4250 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4251 }
4252 }
4253 rbd_dev->parent_overlap = overlap;
4254
4255 out:
4256 ret = 0;
4257 out_err:
4258 kfree(reply_buf);
4259 rbd_spec_put(parent_spec);
4260
4261 return ret;
4262 }
4263
4264 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4265 {
4266 struct {
4267 __le64 stripe_unit;
4268 __le64 stripe_count;
4269 } __attribute__ ((packed)) striping_info_buf = { 0 };
4270 size_t size = sizeof (striping_info_buf);
4271 void *p;
4272 u64 obj_size;
4273 u64 stripe_unit;
4274 u64 stripe_count;
4275 int ret;
4276
4277 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4278 "rbd", "get_stripe_unit_count", NULL, 0,
4279 (char *)&striping_info_buf, size);
4280 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4281 if (ret < 0)
4282 return ret;
4283 if (ret < size)
4284 return -ERANGE;
4285
4286 /*
4287 * We don't actually support the "fancy striping" feature
4288 * (STRIPINGV2) yet, but if the striping sizes are the
4289 * defaults the behavior is the same as before. So find
4290 * out, and only fail if the image has non-default values.
4291 */
4292 ret = -EINVAL;
4293 obj_size = (u64)1 << rbd_dev->header.obj_order;
4294 p = &striping_info_buf;
4295 stripe_unit = ceph_decode_64(&p);
4296 if (stripe_unit != obj_size) {
4297 rbd_warn(rbd_dev, "unsupported stripe unit "
4298 "(got %llu want %llu)",
4299 stripe_unit, obj_size);
4300 return -EINVAL;
4301 }
4302 stripe_count = ceph_decode_64(&p);
4303 if (stripe_count != 1) {
4304 rbd_warn(rbd_dev, "unsupported stripe count "
4305 "(got %llu want 1)", stripe_count);
4306 return -EINVAL;
4307 }
4308 rbd_dev->header.stripe_unit = stripe_unit;
4309 rbd_dev->header.stripe_count = stripe_count;
4310
4311 return 0;
4312 }
4313
4314 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4315 {
4316 size_t image_id_size;
4317 char *image_id;
4318 void *p;
4319 void *end;
4320 size_t size;
4321 void *reply_buf = NULL;
4322 size_t len = 0;
4323 char *image_name = NULL;
4324 int ret;
4325
4326 rbd_assert(!rbd_dev->spec->image_name);
4327
4328 len = strlen(rbd_dev->spec->image_id);
4329 image_id_size = sizeof (__le32) + len;
4330 image_id = kmalloc(image_id_size, GFP_KERNEL);
4331 if (!image_id)
4332 return NULL;
4333
4334 p = image_id;
4335 end = image_id + image_id_size;
4336 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4337
4338 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4339 reply_buf = kmalloc(size, GFP_KERNEL);
4340 if (!reply_buf)
4341 goto out;
4342
4343 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4344 "rbd", "dir_get_name",
4345 image_id, image_id_size,
4346 reply_buf, size);
4347 if (ret < 0)
4348 goto out;
4349 p = reply_buf;
4350 end = reply_buf + ret;
4351
4352 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4353 if (IS_ERR(image_name))
4354 image_name = NULL;
4355 else
4356 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4357 out:
4358 kfree(reply_buf);
4359 kfree(image_id);
4360
4361 return image_name;
4362 }
4363
4364 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4365 {
4366 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4367 const char *snap_name;
4368 u32 which = 0;
4369
4370 /* Skip over names until we find the one we are looking for */
4371
4372 snap_name = rbd_dev->header.snap_names;
4373 while (which < snapc->num_snaps) {
4374 if (!strcmp(name, snap_name))
4375 return snapc->snaps[which];
4376 snap_name += strlen(snap_name) + 1;
4377 which++;
4378 }
4379 return CEPH_NOSNAP;
4380 }
4381
4382 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4383 {
4384 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4385 u32 which;
4386 bool found = false;
4387 u64 snap_id;
4388
4389 for (which = 0; !found && which < snapc->num_snaps; which++) {
4390 const char *snap_name;
4391
4392 snap_id = snapc->snaps[which];
4393 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4394 if (IS_ERR(snap_name)) {
4395 /* ignore no-longer existing snapshots */
4396 if (PTR_ERR(snap_name) == -ENOENT)
4397 continue;
4398 else
4399 break;
4400 }
4401 found = !strcmp(name, snap_name);
4402 kfree(snap_name);
4403 }
4404 return found ? snap_id : CEPH_NOSNAP;
4405 }
4406
4407 /*
4408 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4409 * no snapshot by that name is found, or if an error occurs.
4410 */
4411 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4412 {
4413 if (rbd_dev->image_format == 1)
4414 return rbd_v1_snap_id_by_name(rbd_dev, name);
4415
4416 return rbd_v2_snap_id_by_name(rbd_dev, name);
4417 }
4418
4419 /*
4420 * An image being mapped will have everything but the snap id.
4421 */
4422 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4423 {
4424 struct rbd_spec *spec = rbd_dev->spec;
4425
4426 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4427 rbd_assert(spec->image_id && spec->image_name);
4428 rbd_assert(spec->snap_name);
4429
4430 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4431 u64 snap_id;
4432
4433 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4434 if (snap_id == CEPH_NOSNAP)
4435 return -ENOENT;
4436
4437 spec->snap_id = snap_id;
4438 } else {
4439 spec->snap_id = CEPH_NOSNAP;
4440 }
4441
4442 return 0;
4443 }
4444
4445 /*
4446 * A parent image will have all ids but none of the names.
4447 *
4448 * All names in an rbd spec are dynamically allocated. It's OK if we
4449 * can't figure out the name for an image id.
4450 */
4451 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4452 {
4453 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4454 struct rbd_spec *spec = rbd_dev->spec;
4455 const char *pool_name;
4456 const char *image_name;
4457 const char *snap_name;
4458 int ret;
4459
4460 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4461 rbd_assert(spec->image_id);
4462 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4463
4464 /* Get the pool name; we have to make our own copy of this */
4465
4466 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4467 if (!pool_name) {
4468 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4469 return -EIO;
4470 }
4471 pool_name = kstrdup(pool_name, GFP_KERNEL);
4472 if (!pool_name)
4473 return -ENOMEM;
4474
4475 /* Fetch the image name; tolerate failure here */
4476
4477 image_name = rbd_dev_image_name(rbd_dev);
4478 if (!image_name)
4479 rbd_warn(rbd_dev, "unable to get image name");
4480
4481 /* Fetch the snapshot name */
4482
4483 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4484 if (IS_ERR(snap_name)) {
4485 ret = PTR_ERR(snap_name);
4486 goto out_err;
4487 }
4488
4489 spec->pool_name = pool_name;
4490 spec->image_name = image_name;
4491 spec->snap_name = snap_name;
4492
4493 return 0;
4494
4495 out_err:
4496 kfree(image_name);
4497 kfree(pool_name);
4498 return ret;
4499 }
4500
4501 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4502 {
4503 size_t size;
4504 int ret;
4505 void *reply_buf;
4506 void *p;
4507 void *end;
4508 u64 seq;
4509 u32 snap_count;
4510 struct ceph_snap_context *snapc;
4511 u32 i;
4512
4513 /*
4514 * We'll need room for the seq value (maximum snapshot id),
4515 * snapshot count, and array of that many snapshot ids.
4516 * For now we have a fixed upper limit on the number we're
4517 * prepared to receive.
4518 */
4519 size = sizeof (__le64) + sizeof (__le32) +
4520 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4521 reply_buf = kzalloc(size, GFP_KERNEL);
4522 if (!reply_buf)
4523 return -ENOMEM;
4524
4525 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4526 "rbd", "get_snapcontext", NULL, 0,
4527 reply_buf, size);
4528 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4529 if (ret < 0)
4530 goto out;
4531
4532 p = reply_buf;
4533 end = reply_buf + ret;
4534 ret = -ERANGE;
4535 ceph_decode_64_safe(&p, end, seq, out);
4536 ceph_decode_32_safe(&p, end, snap_count, out);
4537
4538 /*
4539 * Make sure the reported number of snapshot ids wouldn't go
4540 * beyond the end of our buffer. But before checking that,
4541 * make sure the computed size of the snapshot context we
4542 * allocate is representable in a size_t.
4543 */
4544 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4545 / sizeof (u64)) {
4546 ret = -EINVAL;
4547 goto out;
4548 }
4549 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4550 goto out;
4551 ret = 0;
4552
4553 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4554 if (!snapc) {
4555 ret = -ENOMEM;
4556 goto out;
4557 }
4558 snapc->seq = seq;
4559 for (i = 0; i < snap_count; i++)
4560 snapc->snaps[i] = ceph_decode_64(&p);
4561
4562 ceph_put_snap_context(rbd_dev->header.snapc);
4563 rbd_dev->header.snapc = snapc;
4564
4565 dout(" snap context seq = %llu, snap_count = %u\n",
4566 (unsigned long long)seq, (unsigned int)snap_count);
4567 out:
4568 kfree(reply_buf);
4569
4570 return ret;
4571 }
4572
4573 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4574 u64 snap_id)
4575 {
4576 size_t size;
4577 void *reply_buf;
4578 __le64 snapid;
4579 int ret;
4580 void *p;
4581 void *end;
4582 char *snap_name;
4583
4584 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4585 reply_buf = kmalloc(size, GFP_KERNEL);
4586 if (!reply_buf)
4587 return ERR_PTR(-ENOMEM);
4588
4589 snapid = cpu_to_le64(snap_id);
4590 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4591 "rbd", "get_snapshot_name",
4592 &snapid, sizeof (snapid),
4593 reply_buf, size);
4594 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4595 if (ret < 0) {
4596 snap_name = ERR_PTR(ret);
4597 goto out;
4598 }
4599
4600 p = reply_buf;
4601 end = reply_buf + ret;
4602 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4603 if (IS_ERR(snap_name))
4604 goto out;
4605
4606 dout(" snap_id 0x%016llx snap_name = %s\n",
4607 (unsigned long long)snap_id, snap_name);
4608 out:
4609 kfree(reply_buf);
4610
4611 return snap_name;
4612 }
4613
4614 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4615 {
4616 bool first_time = rbd_dev->header.object_prefix == NULL;
4617 int ret;
4618
4619 ret = rbd_dev_v2_image_size(rbd_dev);
4620 if (ret)
4621 return ret;
4622
4623 if (first_time) {
4624 ret = rbd_dev_v2_header_onetime(rbd_dev);
4625 if (ret)
4626 return ret;
4627 }
4628
4629 ret = rbd_dev_v2_snap_context(rbd_dev);
4630 if (ret && first_time) {
4631 kfree(rbd_dev->header.object_prefix);
4632 rbd_dev->header.object_prefix = NULL;
4633 }
4634
4635 return ret;
4636 }
4637
4638 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4639 {
4640 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4641
4642 if (rbd_dev->image_format == 1)
4643 return rbd_dev_v1_header_info(rbd_dev);
4644
4645 return rbd_dev_v2_header_info(rbd_dev);
4646 }
4647
4648 /*
4649 * Get a unique rbd identifier for the given new rbd_dev, and add
4650 * the rbd_dev to the global list.
4651 */
4652 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4653 {
4654 int new_dev_id;
4655
4656 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4657 0, minor_to_rbd_dev_id(1 << MINORBITS),
4658 GFP_KERNEL);
4659 if (new_dev_id < 0)
4660 return new_dev_id;
4661
4662 rbd_dev->dev_id = new_dev_id;
4663
4664 spin_lock(&rbd_dev_list_lock);
4665 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4666 spin_unlock(&rbd_dev_list_lock);
4667
4668 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4669
4670 return 0;
4671 }
4672
4673 /*
4674 * Remove an rbd_dev from the global list, and record that its
4675 * identifier is no longer in use.
4676 */
4677 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4678 {
4679 spin_lock(&rbd_dev_list_lock);
4680 list_del_init(&rbd_dev->node);
4681 spin_unlock(&rbd_dev_list_lock);
4682
4683 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4684
4685 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4686 }
4687
4688 /*
4689 * Skips over white space at *buf, and updates *buf to point to the
4690 * first found non-space character (if any). Returns the length of
4691 * the token (string of non-white space characters) found. Note
4692 * that *buf must be terminated with '\0'.
4693 */
4694 static inline size_t next_token(const char **buf)
4695 {
4696 /*
4697 * These are the characters that produce nonzero for
4698 * isspace() in the "C" and "POSIX" locales.
4699 */
4700 const char *spaces = " \f\n\r\t\v";
4701
4702 *buf += strspn(*buf, spaces); /* Find start of token */
4703
4704 return strcspn(*buf, spaces); /* Return token length */
4705 }
4706
4707 /*
4708 * Finds the next token in *buf, dynamically allocates a buffer big
4709 * enough to hold a copy of it, and copies the token into the new
4710 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4711 * that a duplicate buffer is created even for a zero-length token.
4712 *
4713 * Returns a pointer to the newly-allocated duplicate, or a null
4714 * pointer if memory for the duplicate was not available. If
4715 * the lenp argument is a non-null pointer, the length of the token
4716 * (not including the '\0') is returned in *lenp.
4717 *
4718 * If successful, the *buf pointer will be updated to point beyond
4719 * the end of the found token.
4720 *
4721 * Note: uses GFP_KERNEL for allocation.
4722 */
4723 static inline char *dup_token(const char **buf, size_t *lenp)
4724 {
4725 char *dup;
4726 size_t len;
4727
4728 len = next_token(buf);
4729 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4730 if (!dup)
4731 return NULL;
4732 *(dup + len) = '\0';
4733 *buf += len;
4734
4735 if (lenp)
4736 *lenp = len;
4737
4738 return dup;
4739 }
4740
4741 /*
4742 * Parse the options provided for an "rbd add" (i.e., rbd image
4743 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4744 * and the data written is passed here via a NUL-terminated buffer.
4745 * Returns 0 if successful or an error code otherwise.
4746 *
4747 * The information extracted from these options is recorded in
4748 * the other parameters which return dynamically-allocated
4749 * structures:
4750 * ceph_opts
4751 * The address of a pointer that will refer to a ceph options
4752 * structure. Caller must release the returned pointer using
4753 * ceph_destroy_options() when it is no longer needed.
4754 * rbd_opts
4755 * Address of an rbd options pointer. Fully initialized by
4756 * this function; caller must release with kfree().
4757 * spec
4758 * Address of an rbd image specification pointer. Fully
4759 * initialized by this function based on parsed options.
4760 * Caller must release with rbd_spec_put().
4761 *
4762 * The options passed take this form:
4763 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4764 * where:
4765 * <mon_addrs>
4766 * A comma-separated list of one or more monitor addresses.
4767 * A monitor address is an ip address, optionally followed
4768 * by a port number (separated by a colon).
4769 * I.e.: ip1[:port1][,ip2[:port2]...]
4770 * <options>
4771 * A comma-separated list of ceph and/or rbd options.
4772 * <pool_name>
4773 * The name of the rados pool containing the rbd image.
4774 * <image_name>
4775 * The name of the image in that pool to map.
4776 * <snap_id>
4777 * An optional snapshot id. If provided, the mapping will
4778 * present data from the image at the time that snapshot was
4779 * created. The image head is used if no snapshot id is
4780 * provided. Snapshot mappings are always read-only.
4781 */
4782 static int rbd_add_parse_args(const char *buf,
4783 struct ceph_options **ceph_opts,
4784 struct rbd_options **opts,
4785 struct rbd_spec **rbd_spec)
4786 {
4787 size_t len;
4788 char *options;
4789 const char *mon_addrs;
4790 char *snap_name;
4791 size_t mon_addrs_size;
4792 struct rbd_spec *spec = NULL;
4793 struct rbd_options *rbd_opts = NULL;
4794 struct ceph_options *copts;
4795 int ret;
4796
4797 /* The first four tokens are required */
4798
4799 len = next_token(&buf);
4800 if (!len) {
4801 rbd_warn(NULL, "no monitor address(es) provided");
4802 return -EINVAL;
4803 }
4804 mon_addrs = buf;
4805 mon_addrs_size = len + 1;
4806 buf += len;
4807
4808 ret = -EINVAL;
4809 options = dup_token(&buf, NULL);
4810 if (!options)
4811 return -ENOMEM;
4812 if (!*options) {
4813 rbd_warn(NULL, "no options provided");
4814 goto out_err;
4815 }
4816
4817 spec = rbd_spec_alloc();
4818 if (!spec)
4819 goto out_mem;
4820
4821 spec->pool_name = dup_token(&buf, NULL);
4822 if (!spec->pool_name)
4823 goto out_mem;
4824 if (!*spec->pool_name) {
4825 rbd_warn(NULL, "no pool name provided");
4826 goto out_err;
4827 }
4828
4829 spec->image_name = dup_token(&buf, NULL);
4830 if (!spec->image_name)
4831 goto out_mem;
4832 if (!*spec->image_name) {
4833 rbd_warn(NULL, "no image name provided");
4834 goto out_err;
4835 }
4836
4837 /*
4838 * Snapshot name is optional; default is to use "-"
4839 * (indicating the head/no snapshot).
4840 */
4841 len = next_token(&buf);
4842 if (!len) {
4843 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4844 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4845 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4846 ret = -ENAMETOOLONG;
4847 goto out_err;
4848 }
4849 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4850 if (!snap_name)
4851 goto out_mem;
4852 *(snap_name + len) = '\0';
4853 spec->snap_name = snap_name;
4854
4855 /* Initialize all rbd options to the defaults */
4856
4857 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4858 if (!rbd_opts)
4859 goto out_mem;
4860
4861 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4862 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4863
4864 copts = ceph_parse_options(options, mon_addrs,
4865 mon_addrs + mon_addrs_size - 1,
4866 parse_rbd_opts_token, rbd_opts);
4867 if (IS_ERR(copts)) {
4868 ret = PTR_ERR(copts);
4869 goto out_err;
4870 }
4871 kfree(options);
4872
4873 *ceph_opts = copts;
4874 *opts = rbd_opts;
4875 *rbd_spec = spec;
4876
4877 return 0;
4878 out_mem:
4879 ret = -ENOMEM;
4880 out_err:
4881 kfree(rbd_opts);
4882 rbd_spec_put(spec);
4883 kfree(options);
4884
4885 return ret;
4886 }
4887
4888 /*
4889 * Return pool id (>= 0) or a negative error code.
4890 */
4891 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4892 {
4893 struct ceph_options *opts = rbdc->client->options;
4894 u64 newest_epoch;
4895 int tries = 0;
4896 int ret;
4897
4898 again:
4899 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4900 if (ret == -ENOENT && tries++ < 1) {
4901 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
4902 &newest_epoch);
4903 if (ret < 0)
4904 return ret;
4905
4906 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4907 ceph_osdc_maybe_request_map(&rbdc->client->osdc);
4908 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4909 newest_epoch,
4910 opts->mount_timeout);
4911 goto again;
4912 } else {
4913 /* the osdmap we have is new enough */
4914 return -ENOENT;
4915 }
4916 }
4917
4918 return ret;
4919 }
4920
4921 /*
4922 * An rbd format 2 image has a unique identifier, distinct from the
4923 * name given to it by the user. Internally, that identifier is
4924 * what's used to specify the names of objects related to the image.
4925 *
4926 * A special "rbd id" object is used to map an rbd image name to its
4927 * id. If that object doesn't exist, then there is no v2 rbd image
4928 * with the supplied name.
4929 *
4930 * This function will record the given rbd_dev's image_id field if
4931 * it can be determined, and in that case will return 0. If any
4932 * errors occur a negative errno will be returned and the rbd_dev's
4933 * image_id field will be unchanged (and should be NULL).
4934 */
4935 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4936 {
4937 int ret;
4938 size_t size;
4939 char *object_name;
4940 void *response;
4941 char *image_id;
4942
4943 /*
4944 * When probing a parent image, the image id is already
4945 * known (and the image name likely is not). There's no
4946 * need to fetch the image id again in this case. We
4947 * do still need to set the image format though.
4948 */
4949 if (rbd_dev->spec->image_id) {
4950 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4951
4952 return 0;
4953 }
4954
4955 /*
4956 * First, see if the format 2 image id file exists, and if
4957 * so, get the image's persistent id from it.
4958 */
4959 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4960 object_name = kmalloc(size, GFP_NOIO);
4961 if (!object_name)
4962 return -ENOMEM;
4963 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4964 dout("rbd id object name is %s\n", object_name);
4965
4966 /* Response will be an encoded string, which includes a length */
4967
4968 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4969 response = kzalloc(size, GFP_NOIO);
4970 if (!response) {
4971 ret = -ENOMEM;
4972 goto out;
4973 }
4974
4975 /* If it doesn't exist we'll assume it's a format 1 image */
4976
4977 ret = rbd_obj_method_sync(rbd_dev, object_name,
4978 "rbd", "get_id", NULL, 0,
4979 response, RBD_IMAGE_ID_LEN_MAX);
4980 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4981 if (ret == -ENOENT) {
4982 image_id = kstrdup("", GFP_KERNEL);
4983 ret = image_id ? 0 : -ENOMEM;
4984 if (!ret)
4985 rbd_dev->image_format = 1;
4986 } else if (ret >= 0) {
4987 void *p = response;
4988
4989 image_id = ceph_extract_encoded_string(&p, p + ret,
4990 NULL, GFP_NOIO);
4991 ret = PTR_ERR_OR_ZERO(image_id);
4992 if (!ret)
4993 rbd_dev->image_format = 2;
4994 }
4995
4996 if (!ret) {
4997 rbd_dev->spec->image_id = image_id;
4998 dout("image_id is %s\n", image_id);
4999 }
5000 out:
5001 kfree(response);
5002 kfree(object_name);
5003
5004 return ret;
5005 }
5006
5007 /*
5008 * Undo whatever state changes are made by v1 or v2 header info
5009 * call.
5010 */
5011 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5012 {
5013 struct rbd_image_header *header;
5014
5015 rbd_dev_parent_put(rbd_dev);
5016
5017 /* Free dynamic fields from the header, then zero it out */
5018
5019 header = &rbd_dev->header;
5020 ceph_put_snap_context(header->snapc);
5021 kfree(header->snap_sizes);
5022 kfree(header->snap_names);
5023 kfree(header->object_prefix);
5024 memset(header, 0, sizeof (*header));
5025 }
5026
5027 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5028 {
5029 int ret;
5030
5031 ret = rbd_dev_v2_object_prefix(rbd_dev);
5032 if (ret)
5033 goto out_err;
5034
5035 /*
5036 * Get the and check features for the image. Currently the
5037 * features are assumed to never change.
5038 */
5039 ret = rbd_dev_v2_features(rbd_dev);
5040 if (ret)
5041 goto out_err;
5042
5043 /* If the image supports fancy striping, get its parameters */
5044
5045 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5046 ret = rbd_dev_v2_striping_info(rbd_dev);
5047 if (ret < 0)
5048 goto out_err;
5049 }
5050 /* No support for crypto and compression type format 2 images */
5051
5052 return 0;
5053 out_err:
5054 rbd_dev->header.features = 0;
5055 kfree(rbd_dev->header.object_prefix);
5056 rbd_dev->header.object_prefix = NULL;
5057
5058 return ret;
5059 }
5060
5061 /*
5062 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5063 * rbd_dev_image_probe() recursion depth, which means it's also the
5064 * length of the already discovered part of the parent chain.
5065 */
5066 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5067 {
5068 struct rbd_device *parent = NULL;
5069 int ret;
5070
5071 if (!rbd_dev->parent_spec)
5072 return 0;
5073
5074 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5075 pr_info("parent chain is too long (%d)\n", depth);
5076 ret = -EINVAL;
5077 goto out_err;
5078 }
5079
5080 parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5081 NULL);
5082 if (!parent) {
5083 ret = -ENOMEM;
5084 goto out_err;
5085 }
5086
5087 /*
5088 * Images related by parent/child relationships always share
5089 * rbd_client and spec/parent_spec, so bump their refcounts.
5090 */
5091 __rbd_get_client(rbd_dev->rbd_client);
5092 rbd_spec_get(rbd_dev->parent_spec);
5093
5094 ret = rbd_dev_image_probe(parent, depth);
5095 if (ret < 0)
5096 goto out_err;
5097
5098 rbd_dev->parent = parent;
5099 atomic_set(&rbd_dev->parent_ref, 1);
5100 return 0;
5101
5102 out_err:
5103 rbd_dev_unparent(rbd_dev);
5104 rbd_dev_destroy(parent);
5105 return ret;
5106 }
5107
5108 /*
5109 * rbd_dev->header_rwsem must be locked for write and will be unlocked
5110 * upon return.
5111 */
5112 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5113 {
5114 int ret;
5115
5116 /* Get an id and fill in device name. */
5117
5118 ret = rbd_dev_id_get(rbd_dev);
5119 if (ret)
5120 goto err_out_unlock;
5121
5122 BUILD_BUG_ON(DEV_NAME_LEN
5123 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5124 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5125
5126 /* Record our major and minor device numbers. */
5127
5128 if (!single_major) {
5129 ret = register_blkdev(0, rbd_dev->name);
5130 if (ret < 0)
5131 goto err_out_id;
5132
5133 rbd_dev->major = ret;
5134 rbd_dev->minor = 0;
5135 } else {
5136 rbd_dev->major = rbd_major;
5137 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5138 }
5139
5140 /* Set up the blkdev mapping. */
5141
5142 ret = rbd_init_disk(rbd_dev);
5143 if (ret)
5144 goto err_out_blkdev;
5145
5146 ret = rbd_dev_mapping_set(rbd_dev);
5147 if (ret)
5148 goto err_out_disk;
5149
5150 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5151 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5152
5153 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5154 ret = device_add(&rbd_dev->dev);
5155 if (ret)
5156 goto err_out_mapping;
5157
5158 /* Everything's ready. Announce the disk to the world. */
5159
5160 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5161 up_write(&rbd_dev->header_rwsem);
5162
5163 add_disk(rbd_dev->disk);
5164 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5165 (unsigned long long) rbd_dev->mapping.size);
5166
5167 return ret;
5168
5169 err_out_mapping:
5170 rbd_dev_mapping_clear(rbd_dev);
5171 err_out_disk:
5172 rbd_free_disk(rbd_dev);
5173 err_out_blkdev:
5174 if (!single_major)
5175 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5176 err_out_id:
5177 rbd_dev_id_put(rbd_dev);
5178 err_out_unlock:
5179 up_write(&rbd_dev->header_rwsem);
5180 return ret;
5181 }
5182
5183 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5184 {
5185 struct rbd_spec *spec = rbd_dev->spec;
5186 int ret;
5187
5188 /* Record the header object name for this rbd image. */
5189
5190 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5191
5192 rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id;
5193 if (rbd_dev->image_format == 1)
5194 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5195 spec->image_name, RBD_SUFFIX);
5196 else
5197 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5198 RBD_HEADER_PREFIX, spec->image_id);
5199
5200 return ret;
5201 }
5202
5203 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5204 {
5205 rbd_dev_unprobe(rbd_dev);
5206 rbd_dev->image_format = 0;
5207 kfree(rbd_dev->spec->image_id);
5208 rbd_dev->spec->image_id = NULL;
5209
5210 rbd_dev_destroy(rbd_dev);
5211 }
5212
5213 /*
5214 * Probe for the existence of the header object for the given rbd
5215 * device. If this image is the one being mapped (i.e., not a
5216 * parent), initiate a watch on its header object before using that
5217 * object to get detailed information about the rbd image.
5218 */
5219 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5220 {
5221 int ret;
5222
5223 /*
5224 * Get the id from the image id object. Unless there's an
5225 * error, rbd_dev->spec->image_id will be filled in with
5226 * a dynamically-allocated string, and rbd_dev->image_format
5227 * will be set to either 1 or 2.
5228 */
5229 ret = rbd_dev_image_id(rbd_dev);
5230 if (ret)
5231 return ret;
5232
5233 ret = rbd_dev_header_name(rbd_dev);
5234 if (ret)
5235 goto err_out_format;
5236
5237 if (!depth) {
5238 ret = rbd_dev_header_watch_sync(rbd_dev);
5239 if (ret) {
5240 if (ret == -ENOENT)
5241 pr_info("image %s/%s does not exist\n",
5242 rbd_dev->spec->pool_name,
5243 rbd_dev->spec->image_name);
5244 goto err_out_format;
5245 }
5246 }
5247
5248 ret = rbd_dev_header_info(rbd_dev);
5249 if (ret)
5250 goto err_out_watch;
5251
5252 /*
5253 * If this image is the one being mapped, we have pool name and
5254 * id, image name and id, and snap name - need to fill snap id.
5255 * Otherwise this is a parent image, identified by pool, image
5256 * and snap ids - need to fill in names for those ids.
5257 */
5258 if (!depth)
5259 ret = rbd_spec_fill_snap_id(rbd_dev);
5260 else
5261 ret = rbd_spec_fill_names(rbd_dev);
5262 if (ret) {
5263 if (ret == -ENOENT)
5264 pr_info("snap %s/%s@%s does not exist\n",
5265 rbd_dev->spec->pool_name,
5266 rbd_dev->spec->image_name,
5267 rbd_dev->spec->snap_name);
5268 goto err_out_probe;
5269 }
5270
5271 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5272 ret = rbd_dev_v2_parent_info(rbd_dev);
5273 if (ret)
5274 goto err_out_probe;
5275
5276 /*
5277 * Need to warn users if this image is the one being
5278 * mapped and has a parent.
5279 */
5280 if (!depth && rbd_dev->parent_spec)
5281 rbd_warn(rbd_dev,
5282 "WARNING: kernel layering is EXPERIMENTAL!");
5283 }
5284
5285 ret = rbd_dev_probe_parent(rbd_dev, depth);
5286 if (ret)
5287 goto err_out_probe;
5288
5289 dout("discovered format %u image, header name is %s\n",
5290 rbd_dev->image_format, rbd_dev->header_oid.name);
5291 return 0;
5292
5293 err_out_probe:
5294 rbd_dev_unprobe(rbd_dev);
5295 err_out_watch:
5296 if (!depth)
5297 rbd_dev_header_unwatch_sync(rbd_dev);
5298 err_out_format:
5299 rbd_dev->image_format = 0;
5300 kfree(rbd_dev->spec->image_id);
5301 rbd_dev->spec->image_id = NULL;
5302 return ret;
5303 }
5304
5305 static ssize_t do_rbd_add(struct bus_type *bus,
5306 const char *buf,
5307 size_t count)
5308 {
5309 struct rbd_device *rbd_dev = NULL;
5310 struct ceph_options *ceph_opts = NULL;
5311 struct rbd_options *rbd_opts = NULL;
5312 struct rbd_spec *spec = NULL;
5313 struct rbd_client *rbdc;
5314 bool read_only;
5315 int rc;
5316
5317 if (!try_module_get(THIS_MODULE))
5318 return -ENODEV;
5319
5320 /* parse add command */
5321 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5322 if (rc < 0)
5323 goto out;
5324
5325 rbdc = rbd_get_client(ceph_opts);
5326 if (IS_ERR(rbdc)) {
5327 rc = PTR_ERR(rbdc);
5328 goto err_out_args;
5329 }
5330
5331 /* pick the pool */
5332 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5333 if (rc < 0) {
5334 if (rc == -ENOENT)
5335 pr_info("pool %s does not exist\n", spec->pool_name);
5336 goto err_out_client;
5337 }
5338 spec->pool_id = (u64)rc;
5339
5340 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5341 if (!rbd_dev) {
5342 rc = -ENOMEM;
5343 goto err_out_client;
5344 }
5345 rbdc = NULL; /* rbd_dev now owns this */
5346 spec = NULL; /* rbd_dev now owns this */
5347 rbd_opts = NULL; /* rbd_dev now owns this */
5348
5349 down_write(&rbd_dev->header_rwsem);
5350 rc = rbd_dev_image_probe(rbd_dev, 0);
5351 if (rc < 0)
5352 goto err_out_rbd_dev;
5353
5354 /* If we are mapping a snapshot it must be marked read-only */
5355
5356 read_only = rbd_dev->opts->read_only;
5357 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5358 read_only = true;
5359 rbd_dev->mapping.read_only = read_only;
5360
5361 rc = rbd_dev_device_setup(rbd_dev);
5362 if (rc) {
5363 /*
5364 * rbd_dev_header_unwatch_sync() can't be moved into
5365 * rbd_dev_image_release() without refactoring, see
5366 * commit 1f3ef78861ac.
5367 */
5368 rbd_dev_header_unwatch_sync(rbd_dev);
5369 rbd_dev_image_release(rbd_dev);
5370 goto out;
5371 }
5372
5373 rc = count;
5374 out:
5375 module_put(THIS_MODULE);
5376 return rc;
5377
5378 err_out_rbd_dev:
5379 up_write(&rbd_dev->header_rwsem);
5380 rbd_dev_destroy(rbd_dev);
5381 err_out_client:
5382 rbd_put_client(rbdc);
5383 err_out_args:
5384 rbd_spec_put(spec);
5385 kfree(rbd_opts);
5386 goto out;
5387 }
5388
5389 static ssize_t rbd_add(struct bus_type *bus,
5390 const char *buf,
5391 size_t count)
5392 {
5393 if (single_major)
5394 return -EINVAL;
5395
5396 return do_rbd_add(bus, buf, count);
5397 }
5398
5399 static ssize_t rbd_add_single_major(struct bus_type *bus,
5400 const char *buf,
5401 size_t count)
5402 {
5403 return do_rbd_add(bus, buf, count);
5404 }
5405
5406 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5407 {
5408 rbd_free_disk(rbd_dev);
5409 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5410 device_del(&rbd_dev->dev);
5411 rbd_dev_mapping_clear(rbd_dev);
5412 if (!single_major)
5413 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5414 rbd_dev_id_put(rbd_dev);
5415 }
5416
5417 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5418 {
5419 while (rbd_dev->parent) {
5420 struct rbd_device *first = rbd_dev;
5421 struct rbd_device *second = first->parent;
5422 struct rbd_device *third;
5423
5424 /*
5425 * Follow to the parent with no grandparent and
5426 * remove it.
5427 */
5428 while (second && (third = second->parent)) {
5429 first = second;
5430 second = third;
5431 }
5432 rbd_assert(second);
5433 rbd_dev_image_release(second);
5434 first->parent = NULL;
5435 first->parent_overlap = 0;
5436
5437 rbd_assert(first->parent_spec);
5438 rbd_spec_put(first->parent_spec);
5439 first->parent_spec = NULL;
5440 }
5441 }
5442
5443 static ssize_t do_rbd_remove(struct bus_type *bus,
5444 const char *buf,
5445 size_t count)
5446 {
5447 struct rbd_device *rbd_dev = NULL;
5448 struct list_head *tmp;
5449 int dev_id;
5450 unsigned long ul;
5451 bool already = false;
5452 int ret;
5453
5454 ret = kstrtoul(buf, 10, &ul);
5455 if (ret)
5456 return ret;
5457
5458 /* convert to int; abort if we lost anything in the conversion */
5459 dev_id = (int)ul;
5460 if (dev_id != ul)
5461 return -EINVAL;
5462
5463 ret = -ENOENT;
5464 spin_lock(&rbd_dev_list_lock);
5465 list_for_each(tmp, &rbd_dev_list) {
5466 rbd_dev = list_entry(tmp, struct rbd_device, node);
5467 if (rbd_dev->dev_id == dev_id) {
5468 ret = 0;
5469 break;
5470 }
5471 }
5472 if (!ret) {
5473 spin_lock_irq(&rbd_dev->lock);
5474 if (rbd_dev->open_count)
5475 ret = -EBUSY;
5476 else
5477 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5478 &rbd_dev->flags);
5479 spin_unlock_irq(&rbd_dev->lock);
5480 }
5481 spin_unlock(&rbd_dev_list_lock);
5482 if (ret < 0 || already)
5483 return ret;
5484
5485 rbd_dev_header_unwatch_sync(rbd_dev);
5486
5487 /*
5488 * Don't free anything from rbd_dev->disk until after all
5489 * notifies are completely processed. Otherwise
5490 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5491 * in a potential use after free of rbd_dev->disk or rbd_dev.
5492 */
5493 rbd_dev_device_release(rbd_dev);
5494 rbd_dev_image_release(rbd_dev);
5495
5496 return count;
5497 }
5498
5499 static ssize_t rbd_remove(struct bus_type *bus,
5500 const char *buf,
5501 size_t count)
5502 {
5503 if (single_major)
5504 return -EINVAL;
5505
5506 return do_rbd_remove(bus, buf, count);
5507 }
5508
5509 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5510 const char *buf,
5511 size_t count)
5512 {
5513 return do_rbd_remove(bus, buf, count);
5514 }
5515
5516 /*
5517 * create control files in sysfs
5518 * /sys/bus/rbd/...
5519 */
5520 static int rbd_sysfs_init(void)
5521 {
5522 int ret;
5523
5524 ret = device_register(&rbd_root_dev);
5525 if (ret < 0)
5526 return ret;
5527
5528 ret = bus_register(&rbd_bus_type);
5529 if (ret < 0)
5530 device_unregister(&rbd_root_dev);
5531
5532 return ret;
5533 }
5534
5535 static void rbd_sysfs_cleanup(void)
5536 {
5537 bus_unregister(&rbd_bus_type);
5538 device_unregister(&rbd_root_dev);
5539 }
5540
5541 static int rbd_slab_init(void)
5542 {
5543 rbd_assert(!rbd_img_request_cache);
5544 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5545 if (!rbd_img_request_cache)
5546 return -ENOMEM;
5547
5548 rbd_assert(!rbd_obj_request_cache);
5549 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5550 if (!rbd_obj_request_cache)
5551 goto out_err;
5552
5553 rbd_assert(!rbd_segment_name_cache);
5554 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5555 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5556 if (rbd_segment_name_cache)
5557 return 0;
5558 out_err:
5559 kmem_cache_destroy(rbd_obj_request_cache);
5560 rbd_obj_request_cache = NULL;
5561
5562 kmem_cache_destroy(rbd_img_request_cache);
5563 rbd_img_request_cache = NULL;
5564
5565 return -ENOMEM;
5566 }
5567
5568 static void rbd_slab_exit(void)
5569 {
5570 rbd_assert(rbd_segment_name_cache);
5571 kmem_cache_destroy(rbd_segment_name_cache);
5572 rbd_segment_name_cache = NULL;
5573
5574 rbd_assert(rbd_obj_request_cache);
5575 kmem_cache_destroy(rbd_obj_request_cache);
5576 rbd_obj_request_cache = NULL;
5577
5578 rbd_assert(rbd_img_request_cache);
5579 kmem_cache_destroy(rbd_img_request_cache);
5580 rbd_img_request_cache = NULL;
5581 }
5582
5583 static int __init rbd_init(void)
5584 {
5585 int rc;
5586
5587 if (!libceph_compatible(NULL)) {
5588 rbd_warn(NULL, "libceph incompatibility (quitting)");
5589 return -EINVAL;
5590 }
5591
5592 rc = rbd_slab_init();
5593 if (rc)
5594 return rc;
5595
5596 /*
5597 * The number of active work items is limited by the number of
5598 * rbd devices * queue depth, so leave @max_active at default.
5599 */
5600 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5601 if (!rbd_wq) {
5602 rc = -ENOMEM;
5603 goto err_out_slab;
5604 }
5605
5606 if (single_major) {
5607 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5608 if (rbd_major < 0) {
5609 rc = rbd_major;
5610 goto err_out_wq;
5611 }
5612 }
5613
5614 rc = rbd_sysfs_init();
5615 if (rc)
5616 goto err_out_blkdev;
5617
5618 if (single_major)
5619 pr_info("loaded (major %d)\n", rbd_major);
5620 else
5621 pr_info("loaded\n");
5622
5623 return 0;
5624
5625 err_out_blkdev:
5626 if (single_major)
5627 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5628 err_out_wq:
5629 destroy_workqueue(rbd_wq);
5630 err_out_slab:
5631 rbd_slab_exit();
5632 return rc;
5633 }
5634
5635 static void __exit rbd_exit(void)
5636 {
5637 ida_destroy(&rbd_dev_id_ida);
5638 rbd_sysfs_cleanup();
5639 if (single_major)
5640 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5641 destroy_workqueue(rbd_wq);
5642 rbd_slab_exit();
5643 }
5644
5645 module_init(rbd_init);
5646 module_exit(rbd_exit);
5647
5648 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5649 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5650 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5651 /* following authorship retained from original osdblk.c */
5652 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5653
5654 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5655 MODULE_LICENSE("GPL");
This page took 0.149499 seconds and 5 git commands to generate.