Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[deliverable/linux.git] / drivers / block / xen-blkfront.c
1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60
61 #include <asm/xen/hypervisor.h>
62
63 /*
64 * The minimal size of segment supported by the block framework is PAGE_SIZE.
65 * When Linux is using a different page size than Xen, it may not be possible
66 * to put all the data in a single segment.
67 * This can happen when the backend doesn't support indirect descriptor and
68 * therefore the maximum amount of data that a request can carry is
69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70 *
71 * Note that we only support one extra request. So the Linux page size
72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73 * 88KB.
74 */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76
77 enum blkif_state {
78 BLKIF_STATE_DISCONNECTED,
79 BLKIF_STATE_CONNECTED,
80 BLKIF_STATE_SUSPENDED,
81 };
82
83 struct grant {
84 grant_ref_t gref;
85 struct page *page;
86 struct list_head node;
87 };
88
89 enum blk_req_status {
90 REQ_WAITING,
91 REQ_DONE,
92 REQ_ERROR,
93 REQ_EOPNOTSUPP,
94 };
95
96 struct blk_shadow {
97 struct blkif_request req;
98 struct request *request;
99 struct grant **grants_used;
100 struct grant **indirect_grants;
101 struct scatterlist *sg;
102 unsigned int num_sg;
103 enum blk_req_status status;
104
105 #define NO_ASSOCIATED_ID ~0UL
106 /*
107 * Id of the sibling if we ever need 2 requests when handling a
108 * block I/O request
109 */
110 unsigned long associated_id;
111 };
112
113 struct split_bio {
114 struct bio *bio;
115 atomic_t pending;
116 };
117
118 static DEFINE_MUTEX(blkfront_mutex);
119 static const struct block_device_operations xlvbd_block_fops;
120
121 /*
122 * Maximum number of segments in indirect requests, the actual value used by
123 * the frontend driver is the minimum of this value and the value provided
124 * by the backend driver.
125 */
126
127 static unsigned int xen_blkif_max_segments = 32;
128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
129 S_IRUGO);
130 MODULE_PARM_DESC(max_indirect_segments,
131 "Maximum amount of segments in indirect requests (default is 32)");
132
133 static unsigned int xen_blkif_max_queues = 4;
134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
136
137 /*
138 * Maximum order of pages to be used for the shared ring between front and
139 * backend, 4KB page granularity is used.
140 */
141 static unsigned int xen_blkif_max_ring_order;
142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
144
145 #define BLK_RING_SIZE(info) \
146 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
147
148 #define BLK_MAX_RING_SIZE \
149 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
150
151 /*
152 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
153 * characters are enough. Define to 20 to keep consistent with backend.
154 */
155 #define RINGREF_NAME_LEN (20)
156 /*
157 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
158 */
159 #define QUEUE_NAME_LEN (17)
160
161 /*
162 * Per-ring info.
163 * Every blkfront device can associate with one or more blkfront_ring_info,
164 * depending on how many hardware queues/rings to be used.
165 */
166 struct blkfront_ring_info {
167 /* Lock to protect data in every ring buffer. */
168 spinlock_t ring_lock;
169 struct blkif_front_ring ring;
170 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
171 unsigned int evtchn, irq;
172 struct work_struct work;
173 struct gnttab_free_callback callback;
174 struct blk_shadow shadow[BLK_MAX_RING_SIZE];
175 struct list_head indirect_pages;
176 struct list_head grants;
177 unsigned int persistent_gnts_c;
178 unsigned long shadow_free;
179 struct blkfront_info *dev_info;
180 };
181
182 /*
183 * We have one of these per vbd, whether ide, scsi or 'other'. They
184 * hang in private_data off the gendisk structure. We may end up
185 * putting all kinds of interesting stuff here :-)
186 */
187 struct blkfront_info
188 {
189 struct mutex mutex;
190 struct xenbus_device *xbdev;
191 struct gendisk *gd;
192 int vdevice;
193 blkif_vdev_t handle;
194 enum blkif_state connected;
195 /* Number of pages per ring buffer. */
196 unsigned int nr_ring_pages;
197 struct request_queue *rq;
198 unsigned int feature_flush;
199 unsigned int feature_discard:1;
200 unsigned int feature_secdiscard:1;
201 unsigned int discard_granularity;
202 unsigned int discard_alignment;
203 unsigned int feature_persistent:1;
204 /* Number of 4KB segments handled */
205 unsigned int max_indirect_segments;
206 int is_ready;
207 struct blk_mq_tag_set tag_set;
208 struct blkfront_ring_info *rinfo;
209 unsigned int nr_rings;
210 };
211
212 static unsigned int nr_minors;
213 static unsigned long *minors;
214 static DEFINE_SPINLOCK(minor_lock);
215
216 #define GRANT_INVALID_REF 0
217
218 #define PARTS_PER_DISK 16
219 #define PARTS_PER_EXT_DISK 256
220
221 #define BLKIF_MAJOR(dev) ((dev)>>8)
222 #define BLKIF_MINOR(dev) ((dev) & 0xff)
223
224 #define EXT_SHIFT 28
225 #define EXTENDED (1<<EXT_SHIFT)
226 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
227 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
228 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
229 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
230 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
231 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
232
233 #define DEV_NAME "xvd" /* name in /dev */
234
235 /*
236 * Grants are always the same size as a Xen page (i.e 4KB).
237 * A physical segment is always the same size as a Linux page.
238 * Number of grants per physical segment
239 */
240 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
241
242 #define GRANTS_PER_INDIRECT_FRAME \
243 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
244
245 #define PSEGS_PER_INDIRECT_FRAME \
246 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
247
248 #define INDIRECT_GREFS(_grants) \
249 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
250
251 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG)
252
253 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
254 static void blkfront_gather_backend_features(struct blkfront_info *info);
255
256 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
257 {
258 unsigned long free = rinfo->shadow_free;
259
260 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
261 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
262 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
263 return free;
264 }
265
266 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
267 unsigned long id)
268 {
269 if (rinfo->shadow[id].req.u.rw.id != id)
270 return -EINVAL;
271 if (rinfo->shadow[id].request == NULL)
272 return -EINVAL;
273 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
274 rinfo->shadow[id].request = NULL;
275 rinfo->shadow_free = id;
276 return 0;
277 }
278
279 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
280 {
281 struct blkfront_info *info = rinfo->dev_info;
282 struct page *granted_page;
283 struct grant *gnt_list_entry, *n;
284 int i = 0;
285
286 while (i < num) {
287 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
288 if (!gnt_list_entry)
289 goto out_of_memory;
290
291 if (info->feature_persistent) {
292 granted_page = alloc_page(GFP_NOIO);
293 if (!granted_page) {
294 kfree(gnt_list_entry);
295 goto out_of_memory;
296 }
297 gnt_list_entry->page = granted_page;
298 }
299
300 gnt_list_entry->gref = GRANT_INVALID_REF;
301 list_add(&gnt_list_entry->node, &rinfo->grants);
302 i++;
303 }
304
305 return 0;
306
307 out_of_memory:
308 list_for_each_entry_safe(gnt_list_entry, n,
309 &rinfo->grants, node) {
310 list_del(&gnt_list_entry->node);
311 if (info->feature_persistent)
312 __free_page(gnt_list_entry->page);
313 kfree(gnt_list_entry);
314 i--;
315 }
316 BUG_ON(i != 0);
317 return -ENOMEM;
318 }
319
320 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
321 {
322 struct grant *gnt_list_entry;
323
324 BUG_ON(list_empty(&rinfo->grants));
325 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
326 node);
327 list_del(&gnt_list_entry->node);
328
329 if (gnt_list_entry->gref != GRANT_INVALID_REF)
330 rinfo->persistent_gnts_c--;
331
332 return gnt_list_entry;
333 }
334
335 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
336 const struct blkfront_info *info)
337 {
338 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
339 info->xbdev->otherend_id,
340 gnt_list_entry->page,
341 0);
342 }
343
344 static struct grant *get_grant(grant_ref_t *gref_head,
345 unsigned long gfn,
346 struct blkfront_ring_info *rinfo)
347 {
348 struct grant *gnt_list_entry = get_free_grant(rinfo);
349 struct blkfront_info *info = rinfo->dev_info;
350
351 if (gnt_list_entry->gref != GRANT_INVALID_REF)
352 return gnt_list_entry;
353
354 /* Assign a gref to this page */
355 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
356 BUG_ON(gnt_list_entry->gref == -ENOSPC);
357 if (info->feature_persistent)
358 grant_foreign_access(gnt_list_entry, info);
359 else {
360 /* Grant access to the GFN passed by the caller */
361 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
362 info->xbdev->otherend_id,
363 gfn, 0);
364 }
365
366 return gnt_list_entry;
367 }
368
369 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
370 struct blkfront_ring_info *rinfo)
371 {
372 struct grant *gnt_list_entry = get_free_grant(rinfo);
373 struct blkfront_info *info = rinfo->dev_info;
374
375 if (gnt_list_entry->gref != GRANT_INVALID_REF)
376 return gnt_list_entry;
377
378 /* Assign a gref to this page */
379 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
380 BUG_ON(gnt_list_entry->gref == -ENOSPC);
381 if (!info->feature_persistent) {
382 struct page *indirect_page;
383
384 /* Fetch a pre-allocated page to use for indirect grefs */
385 BUG_ON(list_empty(&rinfo->indirect_pages));
386 indirect_page = list_first_entry(&rinfo->indirect_pages,
387 struct page, lru);
388 list_del(&indirect_page->lru);
389 gnt_list_entry->page = indirect_page;
390 }
391 grant_foreign_access(gnt_list_entry, info);
392
393 return gnt_list_entry;
394 }
395
396 static const char *op_name(int op)
397 {
398 static const char *const names[] = {
399 [BLKIF_OP_READ] = "read",
400 [BLKIF_OP_WRITE] = "write",
401 [BLKIF_OP_WRITE_BARRIER] = "barrier",
402 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
403 [BLKIF_OP_DISCARD] = "discard" };
404
405 if (op < 0 || op >= ARRAY_SIZE(names))
406 return "unknown";
407
408 if (!names[op])
409 return "reserved";
410
411 return names[op];
412 }
413 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
414 {
415 unsigned int end = minor + nr;
416 int rc;
417
418 if (end > nr_minors) {
419 unsigned long *bitmap, *old;
420
421 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
422 GFP_KERNEL);
423 if (bitmap == NULL)
424 return -ENOMEM;
425
426 spin_lock(&minor_lock);
427 if (end > nr_minors) {
428 old = minors;
429 memcpy(bitmap, minors,
430 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
431 minors = bitmap;
432 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
433 } else
434 old = bitmap;
435 spin_unlock(&minor_lock);
436 kfree(old);
437 }
438
439 spin_lock(&minor_lock);
440 if (find_next_bit(minors, end, minor) >= end) {
441 bitmap_set(minors, minor, nr);
442 rc = 0;
443 } else
444 rc = -EBUSY;
445 spin_unlock(&minor_lock);
446
447 return rc;
448 }
449
450 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
451 {
452 unsigned int end = minor + nr;
453
454 BUG_ON(end > nr_minors);
455 spin_lock(&minor_lock);
456 bitmap_clear(minors, minor, nr);
457 spin_unlock(&minor_lock);
458 }
459
460 static void blkif_restart_queue_callback(void *arg)
461 {
462 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
463 schedule_work(&rinfo->work);
464 }
465
466 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
467 {
468 /* We don't have real geometry info, but let's at least return
469 values consistent with the size of the device */
470 sector_t nsect = get_capacity(bd->bd_disk);
471 sector_t cylinders = nsect;
472
473 hg->heads = 0xff;
474 hg->sectors = 0x3f;
475 sector_div(cylinders, hg->heads * hg->sectors);
476 hg->cylinders = cylinders;
477 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
478 hg->cylinders = 0xffff;
479 return 0;
480 }
481
482 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
483 unsigned command, unsigned long argument)
484 {
485 struct blkfront_info *info = bdev->bd_disk->private_data;
486 int i;
487
488 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
489 command, (long)argument);
490
491 switch (command) {
492 case CDROMMULTISESSION:
493 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
494 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
495 if (put_user(0, (char __user *)(argument + i)))
496 return -EFAULT;
497 return 0;
498
499 case CDROM_GET_CAPABILITY: {
500 struct gendisk *gd = info->gd;
501 if (gd->flags & GENHD_FL_CD)
502 return 0;
503 return -EINVAL;
504 }
505
506 default:
507 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
508 command);*/
509 return -EINVAL; /* same return as native Linux */
510 }
511
512 return 0;
513 }
514
515 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
516 struct request *req,
517 struct blkif_request **ring_req)
518 {
519 unsigned long id;
520
521 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
522 rinfo->ring.req_prod_pvt++;
523
524 id = get_id_from_freelist(rinfo);
525 rinfo->shadow[id].request = req;
526 rinfo->shadow[id].status = REQ_WAITING;
527 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
528
529 (*ring_req)->u.rw.id = id;
530
531 return id;
532 }
533
534 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
535 {
536 struct blkfront_info *info = rinfo->dev_info;
537 struct blkif_request *ring_req;
538 unsigned long id;
539
540 /* Fill out a communications ring structure. */
541 id = blkif_ring_get_request(rinfo, req, &ring_req);
542
543 ring_req->operation = BLKIF_OP_DISCARD;
544 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
545 ring_req->u.discard.id = id;
546 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
547 if ((req->cmd_flags & REQ_SECURE) && info->feature_secdiscard)
548 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
549 else
550 ring_req->u.discard.flag = 0;
551
552 /* Keep a private copy so we can reissue requests when recovering. */
553 rinfo->shadow[id].req = *ring_req;
554
555 return 0;
556 }
557
558 struct setup_rw_req {
559 unsigned int grant_idx;
560 struct blkif_request_segment *segments;
561 struct blkfront_ring_info *rinfo;
562 struct blkif_request *ring_req;
563 grant_ref_t gref_head;
564 unsigned int id;
565 /* Only used when persistent grant is used and it's a read request */
566 bool need_copy;
567 unsigned int bvec_off;
568 char *bvec_data;
569
570 bool require_extra_req;
571 struct blkif_request *extra_ring_req;
572 };
573
574 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
575 unsigned int len, void *data)
576 {
577 struct setup_rw_req *setup = data;
578 int n, ref;
579 struct grant *gnt_list_entry;
580 unsigned int fsect, lsect;
581 /* Convenient aliases */
582 unsigned int grant_idx = setup->grant_idx;
583 struct blkif_request *ring_req = setup->ring_req;
584 struct blkfront_ring_info *rinfo = setup->rinfo;
585 /*
586 * We always use the shadow of the first request to store the list
587 * of grant associated to the block I/O request. This made the
588 * completion more easy to handle even if the block I/O request is
589 * split.
590 */
591 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
592
593 if (unlikely(setup->require_extra_req &&
594 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
595 /*
596 * We are using the second request, setup grant_idx
597 * to be the index of the segment array.
598 */
599 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
600 ring_req = setup->extra_ring_req;
601 }
602
603 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
604 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
605 if (setup->segments)
606 kunmap_atomic(setup->segments);
607
608 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
609 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
610 shadow->indirect_grants[n] = gnt_list_entry;
611 setup->segments = kmap_atomic(gnt_list_entry->page);
612 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
613 }
614
615 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
616 ref = gnt_list_entry->gref;
617 /*
618 * All the grants are stored in the shadow of the first
619 * request. Therefore we have to use the global index.
620 */
621 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
622
623 if (setup->need_copy) {
624 void *shared_data;
625
626 shared_data = kmap_atomic(gnt_list_entry->page);
627 /*
628 * this does not wipe data stored outside the
629 * range sg->offset..sg->offset+sg->length.
630 * Therefore, blkback *could* see data from
631 * previous requests. This is OK as long as
632 * persistent grants are shared with just one
633 * domain. It may need refactoring if this
634 * changes
635 */
636 memcpy(shared_data + offset,
637 setup->bvec_data + setup->bvec_off,
638 len);
639
640 kunmap_atomic(shared_data);
641 setup->bvec_off += len;
642 }
643
644 fsect = offset >> 9;
645 lsect = fsect + (len >> 9) - 1;
646 if (ring_req->operation != BLKIF_OP_INDIRECT) {
647 ring_req->u.rw.seg[grant_idx] =
648 (struct blkif_request_segment) {
649 .gref = ref,
650 .first_sect = fsect,
651 .last_sect = lsect };
652 } else {
653 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
654 (struct blkif_request_segment) {
655 .gref = ref,
656 .first_sect = fsect,
657 .last_sect = lsect };
658 }
659
660 (setup->grant_idx)++;
661 }
662
663 static void blkif_setup_extra_req(struct blkif_request *first,
664 struct blkif_request *second)
665 {
666 uint16_t nr_segments = first->u.rw.nr_segments;
667
668 /*
669 * The second request is only present when the first request uses
670 * all its segments. It's always the continuity of the first one.
671 */
672 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
673
674 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
675 second->u.rw.sector_number = first->u.rw.sector_number +
676 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
677
678 second->u.rw.handle = first->u.rw.handle;
679 second->operation = first->operation;
680 }
681
682 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
683 {
684 struct blkfront_info *info = rinfo->dev_info;
685 struct blkif_request *ring_req, *extra_ring_req = NULL;
686 unsigned long id, extra_id = NO_ASSOCIATED_ID;
687 bool require_extra_req = false;
688 int i;
689 struct setup_rw_req setup = {
690 .grant_idx = 0,
691 .segments = NULL,
692 .rinfo = rinfo,
693 .need_copy = rq_data_dir(req) && info->feature_persistent,
694 };
695
696 /*
697 * Used to store if we are able to queue the request by just using
698 * existing persistent grants, or if we have to get new grants,
699 * as there are not sufficiently many free.
700 */
701 struct scatterlist *sg;
702 int num_sg, max_grefs, num_grant;
703
704 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
705 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
706 /*
707 * If we are using indirect segments we need to account
708 * for the indirect grefs used in the request.
709 */
710 max_grefs += INDIRECT_GREFS(max_grefs);
711
712 /*
713 * We have to reserve 'max_grefs' grants because persistent
714 * grants are shared by all rings.
715 */
716 if (max_grefs > 0)
717 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
718 gnttab_request_free_callback(
719 &rinfo->callback,
720 blkif_restart_queue_callback,
721 rinfo,
722 max_grefs);
723 return 1;
724 }
725
726 /* Fill out a communications ring structure. */
727 id = blkif_ring_get_request(rinfo, req, &ring_req);
728
729 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
730 num_grant = 0;
731 /* Calculate the number of grant used */
732 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
733 num_grant += gnttab_count_grant(sg->offset, sg->length);
734
735 require_extra_req = info->max_indirect_segments == 0 &&
736 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
737 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
738
739 rinfo->shadow[id].num_sg = num_sg;
740 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
741 likely(!require_extra_req)) {
742 /*
743 * The indirect operation can only be a BLKIF_OP_READ or
744 * BLKIF_OP_WRITE
745 */
746 BUG_ON(req->cmd_flags & (REQ_FLUSH | REQ_FUA));
747 ring_req->operation = BLKIF_OP_INDIRECT;
748 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
749 BLKIF_OP_WRITE : BLKIF_OP_READ;
750 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
751 ring_req->u.indirect.handle = info->handle;
752 ring_req->u.indirect.nr_segments = num_grant;
753 } else {
754 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
755 ring_req->u.rw.handle = info->handle;
756 ring_req->operation = rq_data_dir(req) ?
757 BLKIF_OP_WRITE : BLKIF_OP_READ;
758 if (req->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
759 /*
760 * Ideally we can do an unordered flush-to-disk.
761 * In case the backend onlysupports barriers, use that.
762 * A barrier request a superset of FUA, so we can
763 * implement it the same way. (It's also a FLUSH+FUA,
764 * since it is guaranteed ordered WRT previous writes.)
765 */
766 switch (info->feature_flush &
767 ((REQ_FLUSH|REQ_FUA))) {
768 case REQ_FLUSH|REQ_FUA:
769 ring_req->operation =
770 BLKIF_OP_WRITE_BARRIER;
771 break;
772 case REQ_FLUSH:
773 ring_req->operation =
774 BLKIF_OP_FLUSH_DISKCACHE;
775 break;
776 default:
777 ring_req->operation = 0;
778 }
779 }
780 ring_req->u.rw.nr_segments = num_grant;
781 if (unlikely(require_extra_req)) {
782 extra_id = blkif_ring_get_request(rinfo, req,
783 &extra_ring_req);
784 /*
785 * Only the first request contains the scatter-gather
786 * list.
787 */
788 rinfo->shadow[extra_id].num_sg = 0;
789
790 blkif_setup_extra_req(ring_req, extra_ring_req);
791
792 /* Link the 2 requests together */
793 rinfo->shadow[extra_id].associated_id = id;
794 rinfo->shadow[id].associated_id = extra_id;
795 }
796 }
797
798 setup.ring_req = ring_req;
799 setup.id = id;
800
801 setup.require_extra_req = require_extra_req;
802 if (unlikely(require_extra_req))
803 setup.extra_ring_req = extra_ring_req;
804
805 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
806 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
807
808 if (setup.need_copy) {
809 setup.bvec_off = sg->offset;
810 setup.bvec_data = kmap_atomic(sg_page(sg));
811 }
812
813 gnttab_foreach_grant_in_range(sg_page(sg),
814 sg->offset,
815 sg->length,
816 blkif_setup_rw_req_grant,
817 &setup);
818
819 if (setup.need_copy)
820 kunmap_atomic(setup.bvec_data);
821 }
822 if (setup.segments)
823 kunmap_atomic(setup.segments);
824
825 /* Keep a private copy so we can reissue requests when recovering. */
826 rinfo->shadow[id].req = *ring_req;
827 if (unlikely(require_extra_req))
828 rinfo->shadow[extra_id].req = *extra_ring_req;
829
830 if (max_grefs > 0)
831 gnttab_free_grant_references(setup.gref_head);
832
833 return 0;
834 }
835
836 /*
837 * Generate a Xen blkfront IO request from a blk layer request. Reads
838 * and writes are handled as expected.
839 *
840 * @req: a request struct
841 */
842 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
843 {
844 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
845 return 1;
846
847 if (unlikely(req->cmd_flags & (REQ_DISCARD | REQ_SECURE)))
848 return blkif_queue_discard_req(req, rinfo);
849 else
850 return blkif_queue_rw_req(req, rinfo);
851 }
852
853 static inline void flush_requests(struct blkfront_ring_info *rinfo)
854 {
855 int notify;
856
857 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
858
859 if (notify)
860 notify_remote_via_irq(rinfo->irq);
861 }
862
863 static inline bool blkif_request_flush_invalid(struct request *req,
864 struct blkfront_info *info)
865 {
866 return ((req->cmd_type != REQ_TYPE_FS) ||
867 ((req->cmd_flags & REQ_FLUSH) &&
868 !(info->feature_flush & REQ_FLUSH)) ||
869 ((req->cmd_flags & REQ_FUA) &&
870 !(info->feature_flush & REQ_FUA)));
871 }
872
873 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
874 const struct blk_mq_queue_data *qd)
875 {
876 unsigned long flags;
877 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)hctx->driver_data;
878
879 blk_mq_start_request(qd->rq);
880 spin_lock_irqsave(&rinfo->ring_lock, flags);
881 if (RING_FULL(&rinfo->ring))
882 goto out_busy;
883
884 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
885 goto out_err;
886
887 if (blkif_queue_request(qd->rq, rinfo))
888 goto out_busy;
889
890 flush_requests(rinfo);
891 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
892 return BLK_MQ_RQ_QUEUE_OK;
893
894 out_err:
895 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
896 return BLK_MQ_RQ_QUEUE_ERROR;
897
898 out_busy:
899 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
900 blk_mq_stop_hw_queue(hctx);
901 return BLK_MQ_RQ_QUEUE_BUSY;
902 }
903
904 static int blk_mq_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
905 unsigned int index)
906 {
907 struct blkfront_info *info = (struct blkfront_info *)data;
908
909 BUG_ON(info->nr_rings <= index);
910 hctx->driver_data = &info->rinfo[index];
911 return 0;
912 }
913
914 static struct blk_mq_ops blkfront_mq_ops = {
915 .queue_rq = blkif_queue_rq,
916 .map_queue = blk_mq_map_queue,
917 .init_hctx = blk_mq_init_hctx,
918 };
919
920 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
921 unsigned int physical_sector_size,
922 unsigned int segments)
923 {
924 struct request_queue *rq;
925 struct blkfront_info *info = gd->private_data;
926
927 memset(&info->tag_set, 0, sizeof(info->tag_set));
928 info->tag_set.ops = &blkfront_mq_ops;
929 info->tag_set.nr_hw_queues = info->nr_rings;
930 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
931 /*
932 * When indirect descriptior is not supported, the I/O request
933 * will be split between multiple request in the ring.
934 * To avoid problems when sending the request, divide by
935 * 2 the depth of the queue.
936 */
937 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
938 } else
939 info->tag_set.queue_depth = BLK_RING_SIZE(info);
940 info->tag_set.numa_node = NUMA_NO_NODE;
941 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
942 info->tag_set.cmd_size = 0;
943 info->tag_set.driver_data = info;
944
945 if (blk_mq_alloc_tag_set(&info->tag_set))
946 return -EINVAL;
947 rq = blk_mq_init_queue(&info->tag_set);
948 if (IS_ERR(rq)) {
949 blk_mq_free_tag_set(&info->tag_set);
950 return PTR_ERR(rq);
951 }
952
953 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
954
955 if (info->feature_discard) {
956 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
957 blk_queue_max_discard_sectors(rq, get_capacity(gd));
958 rq->limits.discard_granularity = info->discard_granularity;
959 rq->limits.discard_alignment = info->discard_alignment;
960 if (info->feature_secdiscard)
961 queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, rq);
962 }
963
964 /* Hard sector size and max sectors impersonate the equiv. hardware. */
965 blk_queue_logical_block_size(rq, sector_size);
966 blk_queue_physical_block_size(rq, physical_sector_size);
967 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
968
969 /* Each segment in a request is up to an aligned page in size. */
970 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
971 blk_queue_max_segment_size(rq, PAGE_SIZE);
972
973 /* Ensure a merged request will fit in a single I/O ring slot. */
974 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
975
976 /* Make sure buffer addresses are sector-aligned. */
977 blk_queue_dma_alignment(rq, 511);
978
979 /* Make sure we don't use bounce buffers. */
980 blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
981
982 gd->queue = rq;
983
984 return 0;
985 }
986
987 static const char *flush_info(unsigned int feature_flush)
988 {
989 switch (feature_flush & ((REQ_FLUSH | REQ_FUA))) {
990 case REQ_FLUSH|REQ_FUA:
991 return "barrier: enabled;";
992 case REQ_FLUSH:
993 return "flush diskcache: enabled;";
994 default:
995 return "barrier or flush: disabled;";
996 }
997 }
998
999 static void xlvbd_flush(struct blkfront_info *info)
1000 {
1001 blk_queue_flush(info->rq, info->feature_flush);
1002 pr_info("blkfront: %s: %s %s %s %s %s\n",
1003 info->gd->disk_name, flush_info(info->feature_flush),
1004 "persistent grants:", info->feature_persistent ?
1005 "enabled;" : "disabled;", "indirect descriptors:",
1006 info->max_indirect_segments ? "enabled;" : "disabled;");
1007 }
1008
1009 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1010 {
1011 int major;
1012 major = BLKIF_MAJOR(vdevice);
1013 *minor = BLKIF_MINOR(vdevice);
1014 switch (major) {
1015 case XEN_IDE0_MAJOR:
1016 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1017 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1018 EMULATED_HD_DISK_MINOR_OFFSET;
1019 break;
1020 case XEN_IDE1_MAJOR:
1021 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1022 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1023 EMULATED_HD_DISK_MINOR_OFFSET;
1024 break;
1025 case XEN_SCSI_DISK0_MAJOR:
1026 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1027 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1028 break;
1029 case XEN_SCSI_DISK1_MAJOR:
1030 case XEN_SCSI_DISK2_MAJOR:
1031 case XEN_SCSI_DISK3_MAJOR:
1032 case XEN_SCSI_DISK4_MAJOR:
1033 case XEN_SCSI_DISK5_MAJOR:
1034 case XEN_SCSI_DISK6_MAJOR:
1035 case XEN_SCSI_DISK7_MAJOR:
1036 *offset = (*minor / PARTS_PER_DISK) +
1037 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1038 EMULATED_SD_DISK_NAME_OFFSET;
1039 *minor = *minor +
1040 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1041 EMULATED_SD_DISK_MINOR_OFFSET;
1042 break;
1043 case XEN_SCSI_DISK8_MAJOR:
1044 case XEN_SCSI_DISK9_MAJOR:
1045 case XEN_SCSI_DISK10_MAJOR:
1046 case XEN_SCSI_DISK11_MAJOR:
1047 case XEN_SCSI_DISK12_MAJOR:
1048 case XEN_SCSI_DISK13_MAJOR:
1049 case XEN_SCSI_DISK14_MAJOR:
1050 case XEN_SCSI_DISK15_MAJOR:
1051 *offset = (*minor / PARTS_PER_DISK) +
1052 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1053 EMULATED_SD_DISK_NAME_OFFSET;
1054 *minor = *minor +
1055 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1056 EMULATED_SD_DISK_MINOR_OFFSET;
1057 break;
1058 case XENVBD_MAJOR:
1059 *offset = *minor / PARTS_PER_DISK;
1060 break;
1061 default:
1062 printk(KERN_WARNING "blkfront: your disk configuration is "
1063 "incorrect, please use an xvd device instead\n");
1064 return -ENODEV;
1065 }
1066 return 0;
1067 }
1068
1069 static char *encode_disk_name(char *ptr, unsigned int n)
1070 {
1071 if (n >= 26)
1072 ptr = encode_disk_name(ptr, n / 26 - 1);
1073 *ptr = 'a' + n % 26;
1074 return ptr + 1;
1075 }
1076
1077 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1078 struct blkfront_info *info,
1079 u16 vdisk_info, u16 sector_size,
1080 unsigned int physical_sector_size)
1081 {
1082 struct gendisk *gd;
1083 int nr_minors = 1;
1084 int err;
1085 unsigned int offset;
1086 int minor;
1087 int nr_parts;
1088 char *ptr;
1089
1090 BUG_ON(info->gd != NULL);
1091 BUG_ON(info->rq != NULL);
1092
1093 if ((info->vdevice>>EXT_SHIFT) > 1) {
1094 /* this is above the extended range; something is wrong */
1095 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1096 return -ENODEV;
1097 }
1098
1099 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1100 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1101 if (err)
1102 return err;
1103 nr_parts = PARTS_PER_DISK;
1104 } else {
1105 minor = BLKIF_MINOR_EXT(info->vdevice);
1106 nr_parts = PARTS_PER_EXT_DISK;
1107 offset = minor / nr_parts;
1108 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1109 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1110 "emulated IDE disks,\n\t choose an xvd device name"
1111 "from xvde on\n", info->vdevice);
1112 }
1113 if (minor >> MINORBITS) {
1114 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1115 info->vdevice, minor);
1116 return -ENODEV;
1117 }
1118
1119 if ((minor % nr_parts) == 0)
1120 nr_minors = nr_parts;
1121
1122 err = xlbd_reserve_minors(minor, nr_minors);
1123 if (err)
1124 goto out;
1125 err = -ENODEV;
1126
1127 gd = alloc_disk(nr_minors);
1128 if (gd == NULL)
1129 goto release;
1130
1131 strcpy(gd->disk_name, DEV_NAME);
1132 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1133 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1134 if (nr_minors > 1)
1135 *ptr = 0;
1136 else
1137 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1138 "%d", minor & (nr_parts - 1));
1139
1140 gd->major = XENVBD_MAJOR;
1141 gd->first_minor = minor;
1142 gd->fops = &xlvbd_block_fops;
1143 gd->private_data = info;
1144 gd->driverfs_dev = &(info->xbdev->dev);
1145 set_capacity(gd, capacity);
1146
1147 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size,
1148 info->max_indirect_segments ? :
1149 BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
1150 del_gendisk(gd);
1151 goto release;
1152 }
1153
1154 info->rq = gd->queue;
1155 info->gd = gd;
1156
1157 xlvbd_flush(info);
1158
1159 if (vdisk_info & VDISK_READONLY)
1160 set_disk_ro(gd, 1);
1161
1162 if (vdisk_info & VDISK_REMOVABLE)
1163 gd->flags |= GENHD_FL_REMOVABLE;
1164
1165 if (vdisk_info & VDISK_CDROM)
1166 gd->flags |= GENHD_FL_CD;
1167
1168 return 0;
1169
1170 release:
1171 xlbd_release_minors(minor, nr_minors);
1172 out:
1173 return err;
1174 }
1175
1176 static void xlvbd_release_gendisk(struct blkfront_info *info)
1177 {
1178 unsigned int minor, nr_minors, i;
1179
1180 if (info->rq == NULL)
1181 return;
1182
1183 /* No more blkif_request(). */
1184 blk_mq_stop_hw_queues(info->rq);
1185
1186 for (i = 0; i < info->nr_rings; i++) {
1187 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1188
1189 /* No more gnttab callback work. */
1190 gnttab_cancel_free_callback(&rinfo->callback);
1191
1192 /* Flush gnttab callback work. Must be done with no locks held. */
1193 flush_work(&rinfo->work);
1194 }
1195
1196 del_gendisk(info->gd);
1197
1198 minor = info->gd->first_minor;
1199 nr_minors = info->gd->minors;
1200 xlbd_release_minors(minor, nr_minors);
1201
1202 blk_cleanup_queue(info->rq);
1203 blk_mq_free_tag_set(&info->tag_set);
1204 info->rq = NULL;
1205
1206 put_disk(info->gd);
1207 info->gd = NULL;
1208 }
1209
1210 /* Already hold rinfo->ring_lock. */
1211 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1212 {
1213 if (!RING_FULL(&rinfo->ring))
1214 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1215 }
1216
1217 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1218 {
1219 unsigned long flags;
1220
1221 spin_lock_irqsave(&rinfo->ring_lock, flags);
1222 kick_pending_request_queues_locked(rinfo);
1223 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1224 }
1225
1226 static void blkif_restart_queue(struct work_struct *work)
1227 {
1228 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1229
1230 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1231 kick_pending_request_queues(rinfo);
1232 }
1233
1234 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1235 {
1236 struct grant *persistent_gnt, *n;
1237 struct blkfront_info *info = rinfo->dev_info;
1238 int i, j, segs;
1239
1240 /*
1241 * Remove indirect pages, this only happens when using indirect
1242 * descriptors but not persistent grants
1243 */
1244 if (!list_empty(&rinfo->indirect_pages)) {
1245 struct page *indirect_page, *n;
1246
1247 BUG_ON(info->feature_persistent);
1248 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1249 list_del(&indirect_page->lru);
1250 __free_page(indirect_page);
1251 }
1252 }
1253
1254 /* Remove all persistent grants. */
1255 if (!list_empty(&rinfo->grants)) {
1256 list_for_each_entry_safe(persistent_gnt, n,
1257 &rinfo->grants, node) {
1258 list_del(&persistent_gnt->node);
1259 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1260 gnttab_end_foreign_access(persistent_gnt->gref,
1261 0, 0UL);
1262 rinfo->persistent_gnts_c--;
1263 }
1264 if (info->feature_persistent)
1265 __free_page(persistent_gnt->page);
1266 kfree(persistent_gnt);
1267 }
1268 }
1269 BUG_ON(rinfo->persistent_gnts_c != 0);
1270
1271 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1272 /*
1273 * Clear persistent grants present in requests already
1274 * on the shared ring
1275 */
1276 if (!rinfo->shadow[i].request)
1277 goto free_shadow;
1278
1279 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1280 rinfo->shadow[i].req.u.indirect.nr_segments :
1281 rinfo->shadow[i].req.u.rw.nr_segments;
1282 for (j = 0; j < segs; j++) {
1283 persistent_gnt = rinfo->shadow[i].grants_used[j];
1284 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1285 if (info->feature_persistent)
1286 __free_page(persistent_gnt->page);
1287 kfree(persistent_gnt);
1288 }
1289
1290 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1291 /*
1292 * If this is not an indirect operation don't try to
1293 * free indirect segments
1294 */
1295 goto free_shadow;
1296
1297 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1298 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1299 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1300 __free_page(persistent_gnt->page);
1301 kfree(persistent_gnt);
1302 }
1303
1304 free_shadow:
1305 kfree(rinfo->shadow[i].grants_used);
1306 rinfo->shadow[i].grants_used = NULL;
1307 kfree(rinfo->shadow[i].indirect_grants);
1308 rinfo->shadow[i].indirect_grants = NULL;
1309 kfree(rinfo->shadow[i].sg);
1310 rinfo->shadow[i].sg = NULL;
1311 }
1312
1313 /* No more gnttab callback work. */
1314 gnttab_cancel_free_callback(&rinfo->callback);
1315
1316 /* Flush gnttab callback work. Must be done with no locks held. */
1317 flush_work(&rinfo->work);
1318
1319 /* Free resources associated with old device channel. */
1320 for (i = 0; i < info->nr_ring_pages; i++) {
1321 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1322 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1323 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1324 }
1325 }
1326 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * PAGE_SIZE));
1327 rinfo->ring.sring = NULL;
1328
1329 if (rinfo->irq)
1330 unbind_from_irqhandler(rinfo->irq, rinfo);
1331 rinfo->evtchn = rinfo->irq = 0;
1332 }
1333
1334 static void blkif_free(struct blkfront_info *info, int suspend)
1335 {
1336 unsigned int i;
1337
1338 /* Prevent new requests being issued until we fix things up. */
1339 info->connected = suspend ?
1340 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1341 /* No more blkif_request(). */
1342 if (info->rq)
1343 blk_mq_stop_hw_queues(info->rq);
1344
1345 for (i = 0; i < info->nr_rings; i++)
1346 blkif_free_ring(&info->rinfo[i]);
1347
1348 kfree(info->rinfo);
1349 info->rinfo = NULL;
1350 info->nr_rings = 0;
1351 }
1352
1353 struct copy_from_grant {
1354 const struct blk_shadow *s;
1355 unsigned int grant_idx;
1356 unsigned int bvec_offset;
1357 char *bvec_data;
1358 };
1359
1360 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1361 unsigned int len, void *data)
1362 {
1363 struct copy_from_grant *info = data;
1364 char *shared_data;
1365 /* Convenient aliases */
1366 const struct blk_shadow *s = info->s;
1367
1368 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1369
1370 memcpy(info->bvec_data + info->bvec_offset,
1371 shared_data + offset, len);
1372
1373 info->bvec_offset += len;
1374 info->grant_idx++;
1375
1376 kunmap_atomic(shared_data);
1377 }
1378
1379 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1380 {
1381 switch (rsp)
1382 {
1383 case BLKIF_RSP_OKAY:
1384 return REQ_DONE;
1385 case BLKIF_RSP_EOPNOTSUPP:
1386 return REQ_EOPNOTSUPP;
1387 case BLKIF_RSP_ERROR:
1388 /* Fallthrough. */
1389 default:
1390 return REQ_ERROR;
1391 }
1392 }
1393
1394 /*
1395 * Get the final status of the block request based on two ring response
1396 */
1397 static int blkif_get_final_status(enum blk_req_status s1,
1398 enum blk_req_status s2)
1399 {
1400 BUG_ON(s1 == REQ_WAITING);
1401 BUG_ON(s2 == REQ_WAITING);
1402
1403 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1404 return BLKIF_RSP_ERROR;
1405 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1406 return BLKIF_RSP_EOPNOTSUPP;
1407 return BLKIF_RSP_OKAY;
1408 }
1409
1410 static bool blkif_completion(unsigned long *id,
1411 struct blkfront_ring_info *rinfo,
1412 struct blkif_response *bret)
1413 {
1414 int i = 0;
1415 struct scatterlist *sg;
1416 int num_sg, num_grant;
1417 struct blkfront_info *info = rinfo->dev_info;
1418 struct blk_shadow *s = &rinfo->shadow[*id];
1419 struct copy_from_grant data = {
1420 .grant_idx = 0,
1421 };
1422
1423 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1424 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1425
1426 /* The I/O request may be split in two. */
1427 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1428 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1429
1430 /* Keep the status of the current response in shadow. */
1431 s->status = blkif_rsp_to_req_status(bret->status);
1432
1433 /* Wait the second response if not yet here. */
1434 if (s2->status == REQ_WAITING)
1435 return 0;
1436
1437 bret->status = blkif_get_final_status(s->status,
1438 s2->status);
1439
1440 /*
1441 * All the grants is stored in the first shadow in order
1442 * to make the completion code simpler.
1443 */
1444 num_grant += s2->req.u.rw.nr_segments;
1445
1446 /*
1447 * The two responses may not come in order. Only the
1448 * first request will store the scatter-gather list.
1449 */
1450 if (s2->num_sg != 0) {
1451 /* Update "id" with the ID of the first response. */
1452 *id = s->associated_id;
1453 s = s2;
1454 }
1455
1456 /*
1457 * We don't need anymore the second request, so recycling
1458 * it now.
1459 */
1460 if (add_id_to_freelist(rinfo, s->associated_id))
1461 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1462 info->gd->disk_name, s->associated_id);
1463 }
1464
1465 data.s = s;
1466 num_sg = s->num_sg;
1467
1468 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1469 for_each_sg(s->sg, sg, num_sg, i) {
1470 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1471
1472 data.bvec_offset = sg->offset;
1473 data.bvec_data = kmap_atomic(sg_page(sg));
1474
1475 gnttab_foreach_grant_in_range(sg_page(sg),
1476 sg->offset,
1477 sg->length,
1478 blkif_copy_from_grant,
1479 &data);
1480
1481 kunmap_atomic(data.bvec_data);
1482 }
1483 }
1484 /* Add the persistent grant into the list of free grants */
1485 for (i = 0; i < num_grant; i++) {
1486 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1487 /*
1488 * If the grant is still mapped by the backend (the
1489 * backend has chosen to make this grant persistent)
1490 * we add it at the head of the list, so it will be
1491 * reused first.
1492 */
1493 if (!info->feature_persistent)
1494 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1495 s->grants_used[i]->gref);
1496 list_add(&s->grants_used[i]->node, &rinfo->grants);
1497 rinfo->persistent_gnts_c++;
1498 } else {
1499 /*
1500 * If the grant is not mapped by the backend we end the
1501 * foreign access and add it to the tail of the list,
1502 * so it will not be picked again unless we run out of
1503 * persistent grants.
1504 */
1505 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1506 s->grants_used[i]->gref = GRANT_INVALID_REF;
1507 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1508 }
1509 }
1510 if (s->req.operation == BLKIF_OP_INDIRECT) {
1511 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1512 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1513 if (!info->feature_persistent)
1514 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1515 s->indirect_grants[i]->gref);
1516 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1517 rinfo->persistent_gnts_c++;
1518 } else {
1519 struct page *indirect_page;
1520
1521 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1522 /*
1523 * Add the used indirect page back to the list of
1524 * available pages for indirect grefs.
1525 */
1526 if (!info->feature_persistent) {
1527 indirect_page = s->indirect_grants[i]->page;
1528 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1529 }
1530 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1531 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1532 }
1533 }
1534 }
1535
1536 return 1;
1537 }
1538
1539 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1540 {
1541 struct request *req;
1542 struct blkif_response *bret;
1543 RING_IDX i, rp;
1544 unsigned long flags;
1545 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1546 struct blkfront_info *info = rinfo->dev_info;
1547 int error;
1548
1549 if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1550 return IRQ_HANDLED;
1551
1552 spin_lock_irqsave(&rinfo->ring_lock, flags);
1553 again:
1554 rp = rinfo->ring.sring->rsp_prod;
1555 rmb(); /* Ensure we see queued responses up to 'rp'. */
1556
1557 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1558 unsigned long id;
1559
1560 bret = RING_GET_RESPONSE(&rinfo->ring, i);
1561 id = bret->id;
1562 /*
1563 * The backend has messed up and given us an id that we would
1564 * never have given to it (we stamp it up to BLK_RING_SIZE -
1565 * look in get_id_from_freelist.
1566 */
1567 if (id >= BLK_RING_SIZE(info)) {
1568 WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1569 info->gd->disk_name, op_name(bret->operation), id);
1570 /* We can't safely get the 'struct request' as
1571 * the id is busted. */
1572 continue;
1573 }
1574 req = rinfo->shadow[id].request;
1575
1576 if (bret->operation != BLKIF_OP_DISCARD) {
1577 /*
1578 * We may need to wait for an extra response if the
1579 * I/O request is split in 2
1580 */
1581 if (!blkif_completion(&id, rinfo, bret))
1582 continue;
1583 }
1584
1585 if (add_id_to_freelist(rinfo, id)) {
1586 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1587 info->gd->disk_name, op_name(bret->operation), id);
1588 continue;
1589 }
1590
1591 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1592 switch (bret->operation) {
1593 case BLKIF_OP_DISCARD:
1594 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1595 struct request_queue *rq = info->rq;
1596 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1597 info->gd->disk_name, op_name(bret->operation));
1598 error = -EOPNOTSUPP;
1599 info->feature_discard = 0;
1600 info->feature_secdiscard = 0;
1601 queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1602 queue_flag_clear(QUEUE_FLAG_SECDISCARD, rq);
1603 }
1604 blk_mq_complete_request(req, error);
1605 break;
1606 case BLKIF_OP_FLUSH_DISKCACHE:
1607 case BLKIF_OP_WRITE_BARRIER:
1608 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1609 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1610 info->gd->disk_name, op_name(bret->operation));
1611 error = -EOPNOTSUPP;
1612 }
1613 if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1614 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1615 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1616 info->gd->disk_name, op_name(bret->operation));
1617 error = -EOPNOTSUPP;
1618 }
1619 if (unlikely(error)) {
1620 if (error == -EOPNOTSUPP)
1621 error = 0;
1622 info->feature_flush = 0;
1623 xlvbd_flush(info);
1624 }
1625 /* fall through */
1626 case BLKIF_OP_READ:
1627 case BLKIF_OP_WRITE:
1628 if (unlikely(bret->status != BLKIF_RSP_OKAY))
1629 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1630 "request: %x\n", bret->status);
1631
1632 blk_mq_complete_request(req, error);
1633 break;
1634 default:
1635 BUG();
1636 }
1637 }
1638
1639 rinfo->ring.rsp_cons = i;
1640
1641 if (i != rinfo->ring.req_prod_pvt) {
1642 int more_to_do;
1643 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1644 if (more_to_do)
1645 goto again;
1646 } else
1647 rinfo->ring.sring->rsp_event = i + 1;
1648
1649 kick_pending_request_queues_locked(rinfo);
1650
1651 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1652
1653 return IRQ_HANDLED;
1654 }
1655
1656
1657 static int setup_blkring(struct xenbus_device *dev,
1658 struct blkfront_ring_info *rinfo)
1659 {
1660 struct blkif_sring *sring;
1661 int err, i;
1662 struct blkfront_info *info = rinfo->dev_info;
1663 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1664 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1665
1666 for (i = 0; i < info->nr_ring_pages; i++)
1667 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1668
1669 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1670 get_order(ring_size));
1671 if (!sring) {
1672 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1673 return -ENOMEM;
1674 }
1675 SHARED_RING_INIT(sring);
1676 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1677
1678 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1679 if (err < 0) {
1680 free_pages((unsigned long)sring, get_order(ring_size));
1681 rinfo->ring.sring = NULL;
1682 goto fail;
1683 }
1684 for (i = 0; i < info->nr_ring_pages; i++)
1685 rinfo->ring_ref[i] = gref[i];
1686
1687 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1688 if (err)
1689 goto fail;
1690
1691 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1692 "blkif", rinfo);
1693 if (err <= 0) {
1694 xenbus_dev_fatal(dev, err,
1695 "bind_evtchn_to_irqhandler failed");
1696 goto fail;
1697 }
1698 rinfo->irq = err;
1699
1700 return 0;
1701 fail:
1702 blkif_free(info, 0);
1703 return err;
1704 }
1705
1706 /*
1707 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1708 * ring buffer may have multi pages depending on ->nr_ring_pages.
1709 */
1710 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1711 struct blkfront_ring_info *rinfo, const char *dir)
1712 {
1713 int err;
1714 unsigned int i;
1715 const char *message = NULL;
1716 struct blkfront_info *info = rinfo->dev_info;
1717
1718 if (info->nr_ring_pages == 1) {
1719 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1720 if (err) {
1721 message = "writing ring-ref";
1722 goto abort_transaction;
1723 }
1724 } else {
1725 for (i = 0; i < info->nr_ring_pages; i++) {
1726 char ring_ref_name[RINGREF_NAME_LEN];
1727
1728 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1729 err = xenbus_printf(xbt, dir, ring_ref_name,
1730 "%u", rinfo->ring_ref[i]);
1731 if (err) {
1732 message = "writing ring-ref";
1733 goto abort_transaction;
1734 }
1735 }
1736 }
1737
1738 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1739 if (err) {
1740 message = "writing event-channel";
1741 goto abort_transaction;
1742 }
1743
1744 return 0;
1745
1746 abort_transaction:
1747 xenbus_transaction_end(xbt, 1);
1748 if (message)
1749 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1750
1751 return err;
1752 }
1753
1754 /* Common code used when first setting up, and when resuming. */
1755 static int talk_to_blkback(struct xenbus_device *dev,
1756 struct blkfront_info *info)
1757 {
1758 const char *message = NULL;
1759 struct xenbus_transaction xbt;
1760 int err;
1761 unsigned int i, max_page_order = 0;
1762 unsigned int ring_page_order = 0;
1763
1764 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1765 "max-ring-page-order", "%u", &max_page_order);
1766 if (err != 1)
1767 info->nr_ring_pages = 1;
1768 else {
1769 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1770 info->nr_ring_pages = 1 << ring_page_order;
1771 }
1772
1773 for (i = 0; i < info->nr_rings; i++) {
1774 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1775
1776 /* Create shared ring, alloc event channel. */
1777 err = setup_blkring(dev, rinfo);
1778 if (err)
1779 goto destroy_blkring;
1780 }
1781
1782 again:
1783 err = xenbus_transaction_start(&xbt);
1784 if (err) {
1785 xenbus_dev_fatal(dev, err, "starting transaction");
1786 goto destroy_blkring;
1787 }
1788
1789 if (info->nr_ring_pages > 1) {
1790 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1791 ring_page_order);
1792 if (err) {
1793 message = "writing ring-page-order";
1794 goto abort_transaction;
1795 }
1796 }
1797
1798 /* We already got the number of queues/rings in _probe */
1799 if (info->nr_rings == 1) {
1800 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1801 if (err)
1802 goto destroy_blkring;
1803 } else {
1804 char *path;
1805 size_t pathsize;
1806
1807 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1808 info->nr_rings);
1809 if (err) {
1810 message = "writing multi-queue-num-queues";
1811 goto abort_transaction;
1812 }
1813
1814 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1815 path = kmalloc(pathsize, GFP_KERNEL);
1816 if (!path) {
1817 err = -ENOMEM;
1818 message = "ENOMEM while writing ring references";
1819 goto abort_transaction;
1820 }
1821
1822 for (i = 0; i < info->nr_rings; i++) {
1823 memset(path, 0, pathsize);
1824 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1825 err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1826 if (err) {
1827 kfree(path);
1828 goto destroy_blkring;
1829 }
1830 }
1831 kfree(path);
1832 }
1833 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1834 XEN_IO_PROTO_ABI_NATIVE);
1835 if (err) {
1836 message = "writing protocol";
1837 goto abort_transaction;
1838 }
1839 err = xenbus_printf(xbt, dev->nodename,
1840 "feature-persistent", "%u", 1);
1841 if (err)
1842 dev_warn(&dev->dev,
1843 "writing persistent grants feature to xenbus");
1844
1845 err = xenbus_transaction_end(xbt, 0);
1846 if (err) {
1847 if (err == -EAGAIN)
1848 goto again;
1849 xenbus_dev_fatal(dev, err, "completing transaction");
1850 goto destroy_blkring;
1851 }
1852
1853 for (i = 0; i < info->nr_rings; i++) {
1854 unsigned int j;
1855 struct blkfront_ring_info *rinfo = &info->rinfo[i];
1856
1857 for (j = 0; j < BLK_RING_SIZE(info); j++)
1858 rinfo->shadow[j].req.u.rw.id = j + 1;
1859 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1860 }
1861 xenbus_switch_state(dev, XenbusStateInitialised);
1862
1863 return 0;
1864
1865 abort_transaction:
1866 xenbus_transaction_end(xbt, 1);
1867 if (message)
1868 xenbus_dev_fatal(dev, err, "%s", message);
1869 destroy_blkring:
1870 blkif_free(info, 0);
1871
1872 kfree(info);
1873 dev_set_drvdata(&dev->dev, NULL);
1874
1875 return err;
1876 }
1877
1878 static int negotiate_mq(struct blkfront_info *info)
1879 {
1880 unsigned int backend_max_queues = 0;
1881 int err;
1882 unsigned int i;
1883
1884 BUG_ON(info->nr_rings);
1885
1886 /* Check if backend supports multiple queues. */
1887 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1888 "multi-queue-max-queues", "%u", &backend_max_queues);
1889 if (err < 0)
1890 backend_max_queues = 1;
1891
1892 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1893 /* We need at least one ring. */
1894 if (!info->nr_rings)
1895 info->nr_rings = 1;
1896
1897 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1898 if (!info->rinfo) {
1899 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1900 return -ENOMEM;
1901 }
1902
1903 for (i = 0; i < info->nr_rings; i++) {
1904 struct blkfront_ring_info *rinfo;
1905
1906 rinfo = &info->rinfo[i];
1907 INIT_LIST_HEAD(&rinfo->indirect_pages);
1908 INIT_LIST_HEAD(&rinfo->grants);
1909 rinfo->dev_info = info;
1910 INIT_WORK(&rinfo->work, blkif_restart_queue);
1911 spin_lock_init(&rinfo->ring_lock);
1912 }
1913 return 0;
1914 }
1915 /**
1916 * Entry point to this code when a new device is created. Allocate the basic
1917 * structures and the ring buffer for communication with the backend, and
1918 * inform the backend of the appropriate details for those. Switch to
1919 * Initialised state.
1920 */
1921 static int blkfront_probe(struct xenbus_device *dev,
1922 const struct xenbus_device_id *id)
1923 {
1924 int err, vdevice;
1925 struct blkfront_info *info;
1926
1927 /* FIXME: Use dynamic device id if this is not set. */
1928 err = xenbus_scanf(XBT_NIL, dev->nodename,
1929 "virtual-device", "%i", &vdevice);
1930 if (err != 1) {
1931 /* go looking in the extended area instead */
1932 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1933 "%i", &vdevice);
1934 if (err != 1) {
1935 xenbus_dev_fatal(dev, err, "reading virtual-device");
1936 return err;
1937 }
1938 }
1939
1940 if (xen_hvm_domain()) {
1941 char *type;
1942 int len;
1943 /* no unplug has been done: do not hook devices != xen vbds */
1944 if (xen_has_pv_and_legacy_disk_devices()) {
1945 int major;
1946
1947 if (!VDEV_IS_EXTENDED(vdevice))
1948 major = BLKIF_MAJOR(vdevice);
1949 else
1950 major = XENVBD_MAJOR;
1951
1952 if (major != XENVBD_MAJOR) {
1953 printk(KERN_INFO
1954 "%s: HVM does not support vbd %d as xen block device\n",
1955 __func__, vdevice);
1956 return -ENODEV;
1957 }
1958 }
1959 /* do not create a PV cdrom device if we are an HVM guest */
1960 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1961 if (IS_ERR(type))
1962 return -ENODEV;
1963 if (strncmp(type, "cdrom", 5) == 0) {
1964 kfree(type);
1965 return -ENODEV;
1966 }
1967 kfree(type);
1968 }
1969 info = kzalloc(sizeof(*info), GFP_KERNEL);
1970 if (!info) {
1971 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1972 return -ENOMEM;
1973 }
1974
1975 info->xbdev = dev;
1976 err = negotiate_mq(info);
1977 if (err) {
1978 kfree(info);
1979 return err;
1980 }
1981
1982 mutex_init(&info->mutex);
1983 info->vdevice = vdevice;
1984 info->connected = BLKIF_STATE_DISCONNECTED;
1985
1986 /* Front end dir is a number, which is used as the id. */
1987 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1988 dev_set_drvdata(&dev->dev, info);
1989
1990 return 0;
1991 }
1992
1993 static void split_bio_end(struct bio *bio)
1994 {
1995 struct split_bio *split_bio = bio->bi_private;
1996
1997 if (atomic_dec_and_test(&split_bio->pending)) {
1998 split_bio->bio->bi_phys_segments = 0;
1999 split_bio->bio->bi_error = bio->bi_error;
2000 bio_endio(split_bio->bio);
2001 kfree(split_bio);
2002 }
2003 bio_put(bio);
2004 }
2005
2006 static int blkif_recover(struct blkfront_info *info)
2007 {
2008 unsigned int i, r_index;
2009 struct request *req, *n;
2010 struct blk_shadow *copy;
2011 int rc;
2012 struct bio *bio, *cloned_bio;
2013 struct bio_list bio_list, merge_bio;
2014 unsigned int segs, offset;
2015 int pending, size;
2016 struct split_bio *split_bio;
2017 struct list_head requests;
2018
2019 blkfront_gather_backend_features(info);
2020 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2021 blk_queue_max_segments(info->rq, segs);
2022 bio_list_init(&bio_list);
2023 INIT_LIST_HEAD(&requests);
2024
2025 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2026 struct blkfront_ring_info *rinfo;
2027
2028 rinfo = &info->rinfo[r_index];
2029 /* Stage 1: Make a safe copy of the shadow state. */
2030 copy = kmemdup(rinfo->shadow, sizeof(rinfo->shadow),
2031 GFP_NOIO | __GFP_REPEAT | __GFP_HIGH);
2032 if (!copy)
2033 return -ENOMEM;
2034
2035 /* Stage 2: Set up free list. */
2036 memset(&rinfo->shadow, 0, sizeof(rinfo->shadow));
2037 for (i = 0; i < BLK_RING_SIZE(info); i++)
2038 rinfo->shadow[i].req.u.rw.id = i+1;
2039 rinfo->shadow_free = rinfo->ring.req_prod_pvt;
2040 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
2041
2042 rc = blkfront_setup_indirect(rinfo);
2043 if (rc) {
2044 kfree(copy);
2045 return rc;
2046 }
2047
2048 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2049 /* Not in use? */
2050 if (!copy[i].request)
2051 continue;
2052
2053 /*
2054 * Get the bios in the request so we can re-queue them.
2055 */
2056 if (copy[i].request->cmd_flags &
2057 (REQ_FLUSH | REQ_FUA | REQ_DISCARD | REQ_SECURE)) {
2058 /*
2059 * Flush operations don't contain bios, so
2060 * we need to requeue the whole request
2061 */
2062 list_add(&copy[i].request->queuelist, &requests);
2063 continue;
2064 }
2065 merge_bio.head = copy[i].request->bio;
2066 merge_bio.tail = copy[i].request->biotail;
2067 bio_list_merge(&bio_list, &merge_bio);
2068 copy[i].request->bio = NULL;
2069 blk_end_request_all(copy[i].request, 0);
2070 }
2071
2072 kfree(copy);
2073 }
2074 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2075
2076 /* Now safe for us to use the shared ring */
2077 info->connected = BLKIF_STATE_CONNECTED;
2078
2079 for (r_index = 0; r_index < info->nr_rings; r_index++) {
2080 struct blkfront_ring_info *rinfo;
2081
2082 rinfo = &info->rinfo[r_index];
2083 /* Kick any other new requests queued since we resumed */
2084 kick_pending_request_queues(rinfo);
2085 }
2086
2087 list_for_each_entry_safe(req, n, &requests, queuelist) {
2088 /* Requeue pending requests (flush or discard) */
2089 list_del_init(&req->queuelist);
2090 BUG_ON(req->nr_phys_segments > segs);
2091 blk_mq_requeue_request(req);
2092 }
2093 blk_mq_kick_requeue_list(info->rq);
2094
2095 while ((bio = bio_list_pop(&bio_list)) != NULL) {
2096 /* Traverse the list of pending bios and re-queue them */
2097 if (bio_segments(bio) > segs) {
2098 /*
2099 * This bio has more segments than what we can
2100 * handle, we have to split it.
2101 */
2102 pending = (bio_segments(bio) + segs - 1) / segs;
2103 split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
2104 BUG_ON(split_bio == NULL);
2105 atomic_set(&split_bio->pending, pending);
2106 split_bio->bio = bio;
2107 for (i = 0; i < pending; i++) {
2108 offset = (i * segs * XEN_PAGE_SIZE) >> 9;
2109 size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9,
2110 (unsigned int)bio_sectors(bio) - offset);
2111 cloned_bio = bio_clone(bio, GFP_NOIO);
2112 BUG_ON(cloned_bio == NULL);
2113 bio_trim(cloned_bio, offset, size);
2114 cloned_bio->bi_private = split_bio;
2115 cloned_bio->bi_end_io = split_bio_end;
2116 submit_bio(cloned_bio->bi_rw, cloned_bio);
2117 }
2118 /*
2119 * Now we have to wait for all those smaller bios to
2120 * end, so we can also end the "parent" bio.
2121 */
2122 continue;
2123 }
2124 /* We don't need to split this bio */
2125 submit_bio(bio->bi_rw, bio);
2126 }
2127
2128 return 0;
2129 }
2130
2131 /**
2132 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2133 * driver restart. We tear down our blkif structure and recreate it, but
2134 * leave the device-layer structures intact so that this is transparent to the
2135 * rest of the kernel.
2136 */
2137 static int blkfront_resume(struct xenbus_device *dev)
2138 {
2139 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2140 int err = 0;
2141
2142 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2143
2144 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2145
2146 err = negotiate_mq(info);
2147 if (err)
2148 return err;
2149
2150 err = talk_to_blkback(dev, info);
2151
2152 /*
2153 * We have to wait for the backend to switch to
2154 * connected state, since we want to read which
2155 * features it supports.
2156 */
2157
2158 return err;
2159 }
2160
2161 static void blkfront_closing(struct blkfront_info *info)
2162 {
2163 struct xenbus_device *xbdev = info->xbdev;
2164 struct block_device *bdev = NULL;
2165
2166 mutex_lock(&info->mutex);
2167
2168 if (xbdev->state == XenbusStateClosing) {
2169 mutex_unlock(&info->mutex);
2170 return;
2171 }
2172
2173 if (info->gd)
2174 bdev = bdget_disk(info->gd, 0);
2175
2176 mutex_unlock(&info->mutex);
2177
2178 if (!bdev) {
2179 xenbus_frontend_closed(xbdev);
2180 return;
2181 }
2182
2183 mutex_lock(&bdev->bd_mutex);
2184
2185 if (bdev->bd_openers) {
2186 xenbus_dev_error(xbdev, -EBUSY,
2187 "Device in use; refusing to close");
2188 xenbus_switch_state(xbdev, XenbusStateClosing);
2189 } else {
2190 xlvbd_release_gendisk(info);
2191 xenbus_frontend_closed(xbdev);
2192 }
2193
2194 mutex_unlock(&bdev->bd_mutex);
2195 bdput(bdev);
2196 }
2197
2198 static void blkfront_setup_discard(struct blkfront_info *info)
2199 {
2200 int err;
2201 unsigned int discard_granularity;
2202 unsigned int discard_alignment;
2203 unsigned int discard_secure;
2204
2205 info->feature_discard = 1;
2206 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2207 "discard-granularity", "%u", &discard_granularity,
2208 "discard-alignment", "%u", &discard_alignment,
2209 NULL);
2210 if (!err) {
2211 info->discard_granularity = discard_granularity;
2212 info->discard_alignment = discard_alignment;
2213 }
2214 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2215 "discard-secure", "%d", &discard_secure,
2216 NULL);
2217 if (!err)
2218 info->feature_secdiscard = !!discard_secure;
2219 }
2220
2221 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2222 {
2223 unsigned int psegs, grants;
2224 int err, i;
2225 struct blkfront_info *info = rinfo->dev_info;
2226
2227 if (info->max_indirect_segments == 0) {
2228 if (!HAS_EXTRA_REQ)
2229 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2230 else {
2231 /*
2232 * When an extra req is required, the maximum
2233 * grants supported is related to the size of the
2234 * Linux block segment.
2235 */
2236 grants = GRANTS_PER_PSEG;
2237 }
2238 }
2239 else
2240 grants = info->max_indirect_segments;
2241 psegs = grants / GRANTS_PER_PSEG;
2242
2243 err = fill_grant_buffer(rinfo,
2244 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2245 if (err)
2246 goto out_of_memory;
2247
2248 if (!info->feature_persistent && info->max_indirect_segments) {
2249 /*
2250 * We are using indirect descriptors but not persistent
2251 * grants, we need to allocate a set of pages that can be
2252 * used for mapping indirect grefs
2253 */
2254 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2255
2256 BUG_ON(!list_empty(&rinfo->indirect_pages));
2257 for (i = 0; i < num; i++) {
2258 struct page *indirect_page = alloc_page(GFP_NOIO);
2259 if (!indirect_page)
2260 goto out_of_memory;
2261 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2262 }
2263 }
2264
2265 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2266 rinfo->shadow[i].grants_used = kzalloc(
2267 sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2268 GFP_NOIO);
2269 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2270 if (info->max_indirect_segments)
2271 rinfo->shadow[i].indirect_grants = kzalloc(
2272 sizeof(rinfo->shadow[i].indirect_grants[0]) *
2273 INDIRECT_GREFS(grants),
2274 GFP_NOIO);
2275 if ((rinfo->shadow[i].grants_used == NULL) ||
2276 (rinfo->shadow[i].sg == NULL) ||
2277 (info->max_indirect_segments &&
2278 (rinfo->shadow[i].indirect_grants == NULL)))
2279 goto out_of_memory;
2280 sg_init_table(rinfo->shadow[i].sg, psegs);
2281 }
2282
2283
2284 return 0;
2285
2286 out_of_memory:
2287 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2288 kfree(rinfo->shadow[i].grants_used);
2289 rinfo->shadow[i].grants_used = NULL;
2290 kfree(rinfo->shadow[i].sg);
2291 rinfo->shadow[i].sg = NULL;
2292 kfree(rinfo->shadow[i].indirect_grants);
2293 rinfo->shadow[i].indirect_grants = NULL;
2294 }
2295 if (!list_empty(&rinfo->indirect_pages)) {
2296 struct page *indirect_page, *n;
2297 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2298 list_del(&indirect_page->lru);
2299 __free_page(indirect_page);
2300 }
2301 }
2302 return -ENOMEM;
2303 }
2304
2305 /*
2306 * Gather all backend feature-*
2307 */
2308 static void blkfront_gather_backend_features(struct blkfront_info *info)
2309 {
2310 int err;
2311 int barrier, flush, discard, persistent;
2312 unsigned int indirect_segments;
2313
2314 info->feature_flush = 0;
2315
2316 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2317 "feature-barrier", "%d", &barrier,
2318 NULL);
2319
2320 /*
2321 * If there's no "feature-barrier" defined, then it means
2322 * we're dealing with a very old backend which writes
2323 * synchronously; nothing to do.
2324 *
2325 * If there are barriers, then we use flush.
2326 */
2327 if (!err && barrier)
2328 info->feature_flush = REQ_FLUSH | REQ_FUA;
2329 /*
2330 * And if there is "feature-flush-cache" use that above
2331 * barriers.
2332 */
2333 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2334 "feature-flush-cache", "%d", &flush,
2335 NULL);
2336
2337 if (!err && flush)
2338 info->feature_flush = REQ_FLUSH;
2339
2340 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2341 "feature-discard", "%d", &discard,
2342 NULL);
2343
2344 if (!err && discard)
2345 blkfront_setup_discard(info);
2346
2347 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2348 "feature-persistent", "%u", &persistent,
2349 NULL);
2350 if (err)
2351 info->feature_persistent = 0;
2352 else
2353 info->feature_persistent = persistent;
2354
2355 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2356 "feature-max-indirect-segments", "%u", &indirect_segments,
2357 NULL);
2358 if (err)
2359 info->max_indirect_segments = 0;
2360 else
2361 info->max_indirect_segments = min(indirect_segments,
2362 xen_blkif_max_segments);
2363 }
2364
2365 /*
2366 * Invoked when the backend is finally 'ready' (and has told produced
2367 * the details about the physical device - #sectors, size, etc).
2368 */
2369 static void blkfront_connect(struct blkfront_info *info)
2370 {
2371 unsigned long long sectors;
2372 unsigned long sector_size;
2373 unsigned int physical_sector_size;
2374 unsigned int binfo;
2375 int err, i;
2376
2377 switch (info->connected) {
2378 case BLKIF_STATE_CONNECTED:
2379 /*
2380 * Potentially, the back-end may be signalling
2381 * a capacity change; update the capacity.
2382 */
2383 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2384 "sectors", "%Lu", &sectors);
2385 if (XENBUS_EXIST_ERR(err))
2386 return;
2387 printk(KERN_INFO "Setting capacity to %Lu\n",
2388 sectors);
2389 set_capacity(info->gd, sectors);
2390 revalidate_disk(info->gd);
2391
2392 return;
2393 case BLKIF_STATE_SUSPENDED:
2394 /*
2395 * If we are recovering from suspension, we need to wait
2396 * for the backend to announce it's features before
2397 * reconnecting, at least we need to know if the backend
2398 * supports indirect descriptors, and how many.
2399 */
2400 blkif_recover(info);
2401 return;
2402
2403 default:
2404 break;
2405 }
2406
2407 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2408 __func__, info->xbdev->otherend);
2409
2410 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2411 "sectors", "%llu", &sectors,
2412 "info", "%u", &binfo,
2413 "sector-size", "%lu", &sector_size,
2414 NULL);
2415 if (err) {
2416 xenbus_dev_fatal(info->xbdev, err,
2417 "reading backend fields at %s",
2418 info->xbdev->otherend);
2419 return;
2420 }
2421
2422 /*
2423 * physcial-sector-size is a newer field, so old backends may not
2424 * provide this. Assume physical sector size to be the same as
2425 * sector_size in that case.
2426 */
2427 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2428 "physical-sector-size", "%u", &physical_sector_size);
2429 if (err != 1)
2430 physical_sector_size = sector_size;
2431
2432 blkfront_gather_backend_features(info);
2433 for (i = 0; i < info->nr_rings; i++) {
2434 err = blkfront_setup_indirect(&info->rinfo[i]);
2435 if (err) {
2436 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2437 info->xbdev->otherend);
2438 blkif_free(info, 0);
2439 break;
2440 }
2441 }
2442
2443 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2444 physical_sector_size);
2445 if (err) {
2446 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2447 info->xbdev->otherend);
2448 return;
2449 }
2450
2451 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2452
2453 /* Kick pending requests. */
2454 info->connected = BLKIF_STATE_CONNECTED;
2455 for (i = 0; i < info->nr_rings; i++)
2456 kick_pending_request_queues(&info->rinfo[i]);
2457
2458 add_disk(info->gd);
2459
2460 info->is_ready = 1;
2461 }
2462
2463 /**
2464 * Callback received when the backend's state changes.
2465 */
2466 static void blkback_changed(struct xenbus_device *dev,
2467 enum xenbus_state backend_state)
2468 {
2469 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2470
2471 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2472
2473 switch (backend_state) {
2474 case XenbusStateInitWait:
2475 if (dev->state != XenbusStateInitialising)
2476 break;
2477 if (talk_to_blkback(dev, info))
2478 break;
2479 case XenbusStateInitialising:
2480 case XenbusStateInitialised:
2481 case XenbusStateReconfiguring:
2482 case XenbusStateReconfigured:
2483 case XenbusStateUnknown:
2484 break;
2485
2486 case XenbusStateConnected:
2487 if (dev->state != XenbusStateInitialised) {
2488 if (talk_to_blkback(dev, info))
2489 break;
2490 }
2491 blkfront_connect(info);
2492 break;
2493
2494 case XenbusStateClosed:
2495 if (dev->state == XenbusStateClosed)
2496 break;
2497 /* Missed the backend's Closing state -- fallthrough */
2498 case XenbusStateClosing:
2499 if (info)
2500 blkfront_closing(info);
2501 break;
2502 }
2503 }
2504
2505 static int blkfront_remove(struct xenbus_device *xbdev)
2506 {
2507 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2508 struct block_device *bdev = NULL;
2509 struct gendisk *disk;
2510
2511 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2512
2513 blkif_free(info, 0);
2514
2515 mutex_lock(&info->mutex);
2516
2517 disk = info->gd;
2518 if (disk)
2519 bdev = bdget_disk(disk, 0);
2520
2521 info->xbdev = NULL;
2522 mutex_unlock(&info->mutex);
2523
2524 if (!bdev) {
2525 kfree(info);
2526 return 0;
2527 }
2528
2529 /*
2530 * The xbdev was removed before we reached the Closed
2531 * state. See if it's safe to remove the disk. If the bdev
2532 * isn't closed yet, we let release take care of it.
2533 */
2534
2535 mutex_lock(&bdev->bd_mutex);
2536 info = disk->private_data;
2537
2538 dev_warn(disk_to_dev(disk),
2539 "%s was hot-unplugged, %d stale handles\n",
2540 xbdev->nodename, bdev->bd_openers);
2541
2542 if (info && !bdev->bd_openers) {
2543 xlvbd_release_gendisk(info);
2544 disk->private_data = NULL;
2545 kfree(info);
2546 }
2547
2548 mutex_unlock(&bdev->bd_mutex);
2549 bdput(bdev);
2550
2551 return 0;
2552 }
2553
2554 static int blkfront_is_ready(struct xenbus_device *dev)
2555 {
2556 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2557
2558 return info->is_ready && info->xbdev;
2559 }
2560
2561 static int blkif_open(struct block_device *bdev, fmode_t mode)
2562 {
2563 struct gendisk *disk = bdev->bd_disk;
2564 struct blkfront_info *info;
2565 int err = 0;
2566
2567 mutex_lock(&blkfront_mutex);
2568
2569 info = disk->private_data;
2570 if (!info) {
2571 /* xbdev gone */
2572 err = -ERESTARTSYS;
2573 goto out;
2574 }
2575
2576 mutex_lock(&info->mutex);
2577
2578 if (!info->gd)
2579 /* xbdev is closed */
2580 err = -ERESTARTSYS;
2581
2582 mutex_unlock(&info->mutex);
2583
2584 out:
2585 mutex_unlock(&blkfront_mutex);
2586 return err;
2587 }
2588
2589 static void blkif_release(struct gendisk *disk, fmode_t mode)
2590 {
2591 struct blkfront_info *info = disk->private_data;
2592 struct block_device *bdev;
2593 struct xenbus_device *xbdev;
2594
2595 mutex_lock(&blkfront_mutex);
2596
2597 bdev = bdget_disk(disk, 0);
2598
2599 if (!bdev) {
2600 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2601 goto out_mutex;
2602 }
2603 if (bdev->bd_openers)
2604 goto out;
2605
2606 /*
2607 * Check if we have been instructed to close. We will have
2608 * deferred this request, because the bdev was still open.
2609 */
2610
2611 mutex_lock(&info->mutex);
2612 xbdev = info->xbdev;
2613
2614 if (xbdev && xbdev->state == XenbusStateClosing) {
2615 /* pending switch to state closed */
2616 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2617 xlvbd_release_gendisk(info);
2618 xenbus_frontend_closed(info->xbdev);
2619 }
2620
2621 mutex_unlock(&info->mutex);
2622
2623 if (!xbdev) {
2624 /* sudden device removal */
2625 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2626 xlvbd_release_gendisk(info);
2627 disk->private_data = NULL;
2628 kfree(info);
2629 }
2630
2631 out:
2632 bdput(bdev);
2633 out_mutex:
2634 mutex_unlock(&blkfront_mutex);
2635 }
2636
2637 static const struct block_device_operations xlvbd_block_fops =
2638 {
2639 .owner = THIS_MODULE,
2640 .open = blkif_open,
2641 .release = blkif_release,
2642 .getgeo = blkif_getgeo,
2643 .ioctl = blkif_ioctl,
2644 };
2645
2646
2647 static const struct xenbus_device_id blkfront_ids[] = {
2648 { "vbd" },
2649 { "" }
2650 };
2651
2652 static struct xenbus_driver blkfront_driver = {
2653 .ids = blkfront_ids,
2654 .probe = blkfront_probe,
2655 .remove = blkfront_remove,
2656 .resume = blkfront_resume,
2657 .otherend_changed = blkback_changed,
2658 .is_ready = blkfront_is_ready,
2659 };
2660
2661 static int __init xlblk_init(void)
2662 {
2663 int ret;
2664 int nr_cpus = num_online_cpus();
2665
2666 if (!xen_domain())
2667 return -ENODEV;
2668
2669 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2670 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2671 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2672 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2673 }
2674
2675 if (xen_blkif_max_queues > nr_cpus) {
2676 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2677 xen_blkif_max_queues, nr_cpus);
2678 xen_blkif_max_queues = nr_cpus;
2679 }
2680
2681 if (!xen_has_pv_disk_devices())
2682 return -ENODEV;
2683
2684 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2685 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2686 XENVBD_MAJOR, DEV_NAME);
2687 return -ENODEV;
2688 }
2689
2690 ret = xenbus_register_frontend(&blkfront_driver);
2691 if (ret) {
2692 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2693 return ret;
2694 }
2695
2696 return 0;
2697 }
2698 module_init(xlblk_init);
2699
2700
2701 static void __exit xlblk_exit(void)
2702 {
2703 xenbus_unregister_driver(&blkfront_driver);
2704 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2705 kfree(minors);
2706 }
2707 module_exit(xlblk_exit);
2708
2709 MODULE_DESCRIPTION("Xen virtual block device frontend");
2710 MODULE_LICENSE("GPL");
2711 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2712 MODULE_ALIAS("xen:vbd");
2713 MODULE_ALIAS("xenblk");
This page took 0.087488 seconds and 5 git commands to generate.