Merge remote-tracking branch 'staging/staging-next'
[deliverable/linux.git] / drivers / char / mem.c
1 /*
2 * linux/drivers/char/mem.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Added devfs support.
7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8 * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/miscdevice.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mman.h>
16 #include <linux/random.h>
17 #include <linux/init.h>
18 #include <linux/raw.h>
19 #include <linux/tty.h>
20 #include <linux/capability.h>
21 #include <linux/ptrace.h>
22 #include <linux/device.h>
23 #include <linux/highmem.h>
24 #include <linux/backing-dev.h>
25 #include <linux/shmem_fs.h>
26 #include <linux/splice.h>
27 #include <linux/pfn.h>
28 #include <linux/export.h>
29 #include <linux/io.h>
30 #include <linux/uio.h>
31
32 #include <linux/uaccess.h>
33
34 #ifdef CONFIG_IA64
35 # include <linux/efi.h>
36 #endif
37
38 #define DEVPORT_MINOR 4
39
40 static inline unsigned long size_inside_page(unsigned long start,
41 unsigned long size)
42 {
43 unsigned long sz;
44
45 sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
46
47 return min(sz, size);
48 }
49
50 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
51 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
52 {
53 return addr + count <= __pa(high_memory);
54 }
55
56 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
57 {
58 return 1;
59 }
60 #endif
61
62 #ifdef CONFIG_STRICT_DEVMEM
63 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
64 {
65 u64 from = ((u64)pfn) << PAGE_SHIFT;
66 u64 to = from + size;
67 u64 cursor = from;
68
69 while (cursor < to) {
70 if (!devmem_is_allowed(pfn))
71 return 0;
72 cursor += PAGE_SIZE;
73 pfn++;
74 }
75 return 1;
76 }
77 #else
78 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
79 {
80 return 1;
81 }
82 #endif
83
84 #ifndef unxlate_dev_mem_ptr
85 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
86 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
87 {
88 }
89 #endif
90
91 /*
92 * This funcion reads the *physical* memory. The f_pos points directly to the
93 * memory location.
94 */
95 static ssize_t read_mem(struct file *file, char __user *buf,
96 size_t count, loff_t *ppos)
97 {
98 phys_addr_t p = *ppos;
99 ssize_t read, sz;
100 void *ptr;
101
102 if (p != *ppos)
103 return 0;
104
105 if (!valid_phys_addr_range(p, count))
106 return -EFAULT;
107 read = 0;
108 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
109 /* we don't have page 0 mapped on sparc and m68k.. */
110 if (p < PAGE_SIZE) {
111 sz = size_inside_page(p, count);
112 if (sz > 0) {
113 if (clear_user(buf, sz))
114 return -EFAULT;
115 buf += sz;
116 p += sz;
117 count -= sz;
118 read += sz;
119 }
120 }
121 #endif
122
123 while (count > 0) {
124 unsigned long remaining;
125
126 sz = size_inside_page(p, count);
127
128 if (!range_is_allowed(p >> PAGE_SHIFT, count))
129 return -EPERM;
130
131 /*
132 * On ia64 if a page has been mapped somewhere as uncached, then
133 * it must also be accessed uncached by the kernel or data
134 * corruption may occur.
135 */
136 ptr = xlate_dev_mem_ptr(p);
137 if (!ptr)
138 return -EFAULT;
139
140 remaining = copy_to_user(buf, ptr, sz);
141 unxlate_dev_mem_ptr(p, ptr);
142 if (remaining)
143 return -EFAULT;
144
145 buf += sz;
146 p += sz;
147 count -= sz;
148 read += sz;
149 }
150
151 *ppos += read;
152 return read;
153 }
154
155 static ssize_t write_mem(struct file *file, const char __user *buf,
156 size_t count, loff_t *ppos)
157 {
158 phys_addr_t p = *ppos;
159 ssize_t written, sz;
160 unsigned long copied;
161 void *ptr;
162
163 if (p != *ppos)
164 return -EFBIG;
165
166 if (!valid_phys_addr_range(p, count))
167 return -EFAULT;
168
169 written = 0;
170
171 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
172 /* we don't have page 0 mapped on sparc and m68k.. */
173 if (p < PAGE_SIZE) {
174 sz = size_inside_page(p, count);
175 /* Hmm. Do something? */
176 buf += sz;
177 p += sz;
178 count -= sz;
179 written += sz;
180 }
181 #endif
182
183 while (count > 0) {
184 sz = size_inside_page(p, count);
185
186 if (!range_is_allowed(p >> PAGE_SHIFT, sz))
187 return -EPERM;
188
189 /*
190 * On ia64 if a page has been mapped somewhere as uncached, then
191 * it must also be accessed uncached by the kernel or data
192 * corruption may occur.
193 */
194 ptr = xlate_dev_mem_ptr(p);
195 if (!ptr) {
196 if (written)
197 break;
198 return -EFAULT;
199 }
200
201 copied = copy_from_user(ptr, buf, sz);
202 unxlate_dev_mem_ptr(p, ptr);
203 if (copied) {
204 written += sz - copied;
205 if (written)
206 break;
207 return -EFAULT;
208 }
209
210 buf += sz;
211 p += sz;
212 count -= sz;
213 written += sz;
214 }
215
216 *ppos += written;
217 return written;
218 }
219
220 int __weak phys_mem_access_prot_allowed(struct file *file,
221 unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
222 {
223 return 1;
224 }
225
226 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
227
228 /*
229 * Architectures vary in how they handle caching for addresses
230 * outside of main memory.
231 *
232 */
233 #ifdef pgprot_noncached
234 static int uncached_access(struct file *file, phys_addr_t addr)
235 {
236 #if defined(CONFIG_IA64)
237 /*
238 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
239 * attribute aliases.
240 */
241 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
242 #elif defined(CONFIG_MIPS)
243 {
244 extern int __uncached_access(struct file *file,
245 unsigned long addr);
246
247 return __uncached_access(file, addr);
248 }
249 #else
250 /*
251 * Accessing memory above the top the kernel knows about or through a
252 * file pointer
253 * that was marked O_DSYNC will be done non-cached.
254 */
255 if (file->f_flags & O_DSYNC)
256 return 1;
257 return addr >= __pa(high_memory);
258 #endif
259 }
260 #endif
261
262 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
263 unsigned long size, pgprot_t vma_prot)
264 {
265 #ifdef pgprot_noncached
266 phys_addr_t offset = pfn << PAGE_SHIFT;
267
268 if (uncached_access(file, offset))
269 return pgprot_noncached(vma_prot);
270 #endif
271 return vma_prot;
272 }
273 #endif
274
275 #ifndef CONFIG_MMU
276 static unsigned long get_unmapped_area_mem(struct file *file,
277 unsigned long addr,
278 unsigned long len,
279 unsigned long pgoff,
280 unsigned long flags)
281 {
282 if (!valid_mmap_phys_addr_range(pgoff, len))
283 return (unsigned long) -EINVAL;
284 return pgoff << PAGE_SHIFT;
285 }
286
287 /* permit direct mmap, for read, write or exec */
288 static unsigned memory_mmap_capabilities(struct file *file)
289 {
290 return NOMMU_MAP_DIRECT |
291 NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
292 }
293
294 static unsigned zero_mmap_capabilities(struct file *file)
295 {
296 return NOMMU_MAP_COPY;
297 }
298
299 /* can't do an in-place private mapping if there's no MMU */
300 static inline int private_mapping_ok(struct vm_area_struct *vma)
301 {
302 return vma->vm_flags & VM_MAYSHARE;
303 }
304 #else
305
306 static inline int private_mapping_ok(struct vm_area_struct *vma)
307 {
308 return 1;
309 }
310 #endif
311
312 static const struct vm_operations_struct mmap_mem_ops = {
313 #ifdef CONFIG_HAVE_IOREMAP_PROT
314 .access = generic_access_phys
315 #endif
316 };
317
318 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
319 {
320 size_t size = vma->vm_end - vma->vm_start;
321
322 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
323 return -EINVAL;
324
325 if (!private_mapping_ok(vma))
326 return -ENOSYS;
327
328 if (!range_is_allowed(vma->vm_pgoff, size))
329 return -EPERM;
330
331 if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
332 &vma->vm_page_prot))
333 return -EINVAL;
334
335 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
336 size,
337 vma->vm_page_prot);
338
339 vma->vm_ops = &mmap_mem_ops;
340
341 /* Remap-pfn-range will mark the range VM_IO */
342 if (remap_pfn_range(vma,
343 vma->vm_start,
344 vma->vm_pgoff,
345 size,
346 vma->vm_page_prot)) {
347 return -EAGAIN;
348 }
349 return 0;
350 }
351
352 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
353 {
354 unsigned long pfn;
355
356 /* Turn a kernel-virtual address into a physical page frame */
357 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
358
359 /*
360 * RED-PEN: on some architectures there is more mapped memory than
361 * available in mem_map which pfn_valid checks for. Perhaps should add a
362 * new macro here.
363 *
364 * RED-PEN: vmalloc is not supported right now.
365 */
366 if (!pfn_valid(pfn))
367 return -EIO;
368
369 vma->vm_pgoff = pfn;
370 return mmap_mem(file, vma);
371 }
372
373 /*
374 * This function reads the *virtual* memory as seen by the kernel.
375 */
376 static ssize_t read_kmem(struct file *file, char __user *buf,
377 size_t count, loff_t *ppos)
378 {
379 unsigned long p = *ppos;
380 ssize_t low_count, read, sz;
381 char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
382 int err = 0;
383
384 read = 0;
385 if (p < (unsigned long) high_memory) {
386 low_count = count;
387 if (count > (unsigned long)high_memory - p)
388 low_count = (unsigned long)high_memory - p;
389
390 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
391 /* we don't have page 0 mapped on sparc and m68k.. */
392 if (p < PAGE_SIZE && low_count > 0) {
393 sz = size_inside_page(p, low_count);
394 if (clear_user(buf, sz))
395 return -EFAULT;
396 buf += sz;
397 p += sz;
398 read += sz;
399 low_count -= sz;
400 count -= sz;
401 }
402 #endif
403 while (low_count > 0) {
404 sz = size_inside_page(p, low_count);
405
406 /*
407 * On ia64 if a page has been mapped somewhere as
408 * uncached, then it must also be accessed uncached
409 * by the kernel or data corruption may occur
410 */
411 kbuf = xlate_dev_kmem_ptr((void *)p);
412
413 if (copy_to_user(buf, kbuf, sz))
414 return -EFAULT;
415 buf += sz;
416 p += sz;
417 read += sz;
418 low_count -= sz;
419 count -= sz;
420 }
421 }
422
423 if (count > 0) {
424 kbuf = (char *)__get_free_page(GFP_KERNEL);
425 if (!kbuf)
426 return -ENOMEM;
427 while (count > 0) {
428 sz = size_inside_page(p, count);
429 if (!is_vmalloc_or_module_addr((void *)p)) {
430 err = -ENXIO;
431 break;
432 }
433 sz = vread(kbuf, (char *)p, sz);
434 if (!sz)
435 break;
436 if (copy_to_user(buf, kbuf, sz)) {
437 err = -EFAULT;
438 break;
439 }
440 count -= sz;
441 buf += sz;
442 read += sz;
443 p += sz;
444 }
445 free_page((unsigned long)kbuf);
446 }
447 *ppos = p;
448 return read ? read : err;
449 }
450
451
452 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
453 size_t count, loff_t *ppos)
454 {
455 ssize_t written, sz;
456 unsigned long copied;
457
458 written = 0;
459 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
460 /* we don't have page 0 mapped on sparc and m68k.. */
461 if (p < PAGE_SIZE) {
462 sz = size_inside_page(p, count);
463 /* Hmm. Do something? */
464 buf += sz;
465 p += sz;
466 count -= sz;
467 written += sz;
468 }
469 #endif
470
471 while (count > 0) {
472 void *ptr;
473
474 sz = size_inside_page(p, count);
475
476 /*
477 * On ia64 if a page has been mapped somewhere as uncached, then
478 * it must also be accessed uncached by the kernel or data
479 * corruption may occur.
480 */
481 ptr = xlate_dev_kmem_ptr((void *)p);
482
483 copied = copy_from_user(ptr, buf, sz);
484 if (copied) {
485 written += sz - copied;
486 if (written)
487 break;
488 return -EFAULT;
489 }
490 buf += sz;
491 p += sz;
492 count -= sz;
493 written += sz;
494 }
495
496 *ppos += written;
497 return written;
498 }
499
500 /*
501 * This function writes to the *virtual* memory as seen by the kernel.
502 */
503 static ssize_t write_kmem(struct file *file, const char __user *buf,
504 size_t count, loff_t *ppos)
505 {
506 unsigned long p = *ppos;
507 ssize_t wrote = 0;
508 ssize_t virtr = 0;
509 char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
510 int err = 0;
511
512 if (p < (unsigned long) high_memory) {
513 unsigned long to_write = min_t(unsigned long, count,
514 (unsigned long)high_memory - p);
515 wrote = do_write_kmem(p, buf, to_write, ppos);
516 if (wrote != to_write)
517 return wrote;
518 p += wrote;
519 buf += wrote;
520 count -= wrote;
521 }
522
523 if (count > 0) {
524 kbuf = (char *)__get_free_page(GFP_KERNEL);
525 if (!kbuf)
526 return wrote ? wrote : -ENOMEM;
527 while (count > 0) {
528 unsigned long sz = size_inside_page(p, count);
529 unsigned long n;
530
531 if (!is_vmalloc_or_module_addr((void *)p)) {
532 err = -ENXIO;
533 break;
534 }
535 n = copy_from_user(kbuf, buf, sz);
536 if (n) {
537 err = -EFAULT;
538 break;
539 }
540 vwrite(kbuf, (char *)p, sz);
541 count -= sz;
542 buf += sz;
543 virtr += sz;
544 p += sz;
545 }
546 free_page((unsigned long)kbuf);
547 }
548
549 *ppos = p;
550 return virtr + wrote ? : err;
551 }
552
553 static ssize_t read_port(struct file *file, char __user *buf,
554 size_t count, loff_t *ppos)
555 {
556 unsigned long i = *ppos;
557 char __user *tmp = buf;
558
559 if (!access_ok(VERIFY_WRITE, buf, count))
560 return -EFAULT;
561 while (count-- > 0 && i < 65536) {
562 if (__put_user(inb(i), tmp) < 0)
563 return -EFAULT;
564 i++;
565 tmp++;
566 }
567 *ppos = i;
568 return tmp-buf;
569 }
570
571 static ssize_t write_port(struct file *file, const char __user *buf,
572 size_t count, loff_t *ppos)
573 {
574 unsigned long i = *ppos;
575 const char __user *tmp = buf;
576
577 if (!access_ok(VERIFY_READ, buf, count))
578 return -EFAULT;
579 while (count-- > 0 && i < 65536) {
580 char c;
581
582 if (__get_user(c, tmp)) {
583 if (tmp > buf)
584 break;
585 return -EFAULT;
586 }
587 outb(c, i);
588 i++;
589 tmp++;
590 }
591 *ppos = i;
592 return tmp-buf;
593 }
594
595 static ssize_t read_null(struct file *file, char __user *buf,
596 size_t count, loff_t *ppos)
597 {
598 return 0;
599 }
600
601 static ssize_t write_null(struct file *file, const char __user *buf,
602 size_t count, loff_t *ppos)
603 {
604 return count;
605 }
606
607 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
608 {
609 return 0;
610 }
611
612 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
613 {
614 size_t count = iov_iter_count(from);
615 iov_iter_advance(from, count);
616 return count;
617 }
618
619 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
620 struct splice_desc *sd)
621 {
622 return sd->len;
623 }
624
625 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
626 loff_t *ppos, size_t len, unsigned int flags)
627 {
628 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
629 }
630
631 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
632 {
633 size_t written = 0;
634
635 while (iov_iter_count(iter)) {
636 size_t chunk = iov_iter_count(iter), n;
637
638 if (chunk > PAGE_SIZE)
639 chunk = PAGE_SIZE; /* Just for latency reasons */
640 n = iov_iter_zero(chunk, iter);
641 if (!n && iov_iter_count(iter))
642 return written ? written : -EFAULT;
643 written += n;
644 if (signal_pending(current))
645 return written ? written : -ERESTARTSYS;
646 cond_resched();
647 }
648 return written;
649 }
650
651 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
652 {
653 #ifndef CONFIG_MMU
654 return -ENOSYS;
655 #endif
656 if (vma->vm_flags & VM_SHARED)
657 return shmem_zero_setup(vma);
658 return 0;
659 }
660
661 static unsigned long get_unmapped_area_zero(struct file *file,
662 unsigned long addr, unsigned long len,
663 unsigned long pgoff, unsigned long flags)
664 {
665 #ifdef CONFIG_MMU
666 if (flags & MAP_SHARED) {
667 /*
668 * mmap_zero() will call shmem_zero_setup() to create a file,
669 * so use shmem's get_unmapped_area in case it can be huge;
670 * and pass NULL for file as in mmap.c's get_unmapped_area(),
671 * so as not to confuse shmem with our handle on "/dev/zero".
672 */
673 return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
674 }
675
676 /* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
677 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
678 #else
679 return -ENOSYS;
680 #endif
681 }
682
683 static ssize_t write_full(struct file *file, const char __user *buf,
684 size_t count, loff_t *ppos)
685 {
686 return -ENOSPC;
687 }
688
689 /*
690 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
691 * can fopen() both devices with "a" now. This was previously impossible.
692 * -- SRB.
693 */
694 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
695 {
696 return file->f_pos = 0;
697 }
698
699 /*
700 * The memory devices use the full 32/64 bits of the offset, and so we cannot
701 * check against negative addresses: they are ok. The return value is weird,
702 * though, in that case (0).
703 *
704 * also note that seeking relative to the "end of file" isn't supported:
705 * it has no meaning, so it returns -EINVAL.
706 */
707 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
708 {
709 loff_t ret;
710
711 inode_lock(file_inode(file));
712 switch (orig) {
713 case SEEK_CUR:
714 offset += file->f_pos;
715 case SEEK_SET:
716 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
717 if ((unsigned long long)offset >= -MAX_ERRNO) {
718 ret = -EOVERFLOW;
719 break;
720 }
721 file->f_pos = offset;
722 ret = file->f_pos;
723 force_successful_syscall_return();
724 break;
725 default:
726 ret = -EINVAL;
727 }
728 inode_unlock(file_inode(file));
729 return ret;
730 }
731
732 static int open_port(struct inode *inode, struct file *filp)
733 {
734 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
735 }
736
737 #define zero_lseek null_lseek
738 #define full_lseek null_lseek
739 #define write_zero write_null
740 #define write_iter_zero write_iter_null
741 #define open_mem open_port
742 #define open_kmem open_mem
743
744 static const struct file_operations __maybe_unused mem_fops = {
745 .llseek = memory_lseek,
746 .read = read_mem,
747 .write = write_mem,
748 .mmap = mmap_mem,
749 .open = open_mem,
750 #ifndef CONFIG_MMU
751 .get_unmapped_area = get_unmapped_area_mem,
752 .mmap_capabilities = memory_mmap_capabilities,
753 #endif
754 };
755
756 static const struct file_operations __maybe_unused kmem_fops = {
757 .llseek = memory_lseek,
758 .read = read_kmem,
759 .write = write_kmem,
760 .mmap = mmap_kmem,
761 .open = open_kmem,
762 #ifndef CONFIG_MMU
763 .get_unmapped_area = get_unmapped_area_mem,
764 .mmap_capabilities = memory_mmap_capabilities,
765 #endif
766 };
767
768 static const struct file_operations null_fops = {
769 .llseek = null_lseek,
770 .read = read_null,
771 .write = write_null,
772 .read_iter = read_iter_null,
773 .write_iter = write_iter_null,
774 .splice_write = splice_write_null,
775 };
776
777 static const struct file_operations __maybe_unused port_fops = {
778 .llseek = memory_lseek,
779 .read = read_port,
780 .write = write_port,
781 .open = open_port,
782 };
783
784 static const struct file_operations zero_fops = {
785 .llseek = zero_lseek,
786 .write = write_zero,
787 .read_iter = read_iter_zero,
788 .write_iter = write_iter_zero,
789 .mmap = mmap_zero,
790 .get_unmapped_area = get_unmapped_area_zero,
791 #ifndef CONFIG_MMU
792 .mmap_capabilities = zero_mmap_capabilities,
793 #endif
794 };
795
796 static const struct file_operations full_fops = {
797 .llseek = full_lseek,
798 .read_iter = read_iter_zero,
799 .write = write_full,
800 };
801
802 static const struct memdev {
803 const char *name;
804 umode_t mode;
805 const struct file_operations *fops;
806 fmode_t fmode;
807 } devlist[] = {
808 #ifdef CONFIG_DEVMEM
809 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
810 #endif
811 #ifdef CONFIG_DEVKMEM
812 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
813 #endif
814 [3] = { "null", 0666, &null_fops, 0 },
815 #ifdef CONFIG_DEVPORT
816 [4] = { "port", 0, &port_fops, 0 },
817 #endif
818 [5] = { "zero", 0666, &zero_fops, 0 },
819 [7] = { "full", 0666, &full_fops, 0 },
820 [8] = { "random", 0666, &random_fops, 0 },
821 [9] = { "urandom", 0666, &urandom_fops, 0 },
822 #ifdef CONFIG_PRINTK
823 [11] = { "kmsg", 0644, &kmsg_fops, 0 },
824 #endif
825 };
826
827 static int memory_open(struct inode *inode, struct file *filp)
828 {
829 int minor;
830 const struct memdev *dev;
831
832 minor = iminor(inode);
833 if (minor >= ARRAY_SIZE(devlist))
834 return -ENXIO;
835
836 dev = &devlist[minor];
837 if (!dev->fops)
838 return -ENXIO;
839
840 filp->f_op = dev->fops;
841 filp->f_mode |= dev->fmode;
842
843 if (dev->fops->open)
844 return dev->fops->open(inode, filp);
845
846 return 0;
847 }
848
849 static const struct file_operations memory_fops = {
850 .open = memory_open,
851 .llseek = noop_llseek,
852 };
853
854 static char *mem_devnode(struct device *dev, umode_t *mode)
855 {
856 if (mode && devlist[MINOR(dev->devt)].mode)
857 *mode = devlist[MINOR(dev->devt)].mode;
858 return NULL;
859 }
860
861 static struct class *mem_class;
862
863 static int __init chr_dev_init(void)
864 {
865 int minor;
866
867 if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
868 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
869
870 mem_class = class_create(THIS_MODULE, "mem");
871 if (IS_ERR(mem_class))
872 return PTR_ERR(mem_class);
873
874 mem_class->devnode = mem_devnode;
875 for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
876 if (!devlist[minor].name)
877 continue;
878
879 /*
880 * Create /dev/port?
881 */
882 if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
883 continue;
884
885 device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
886 NULL, devlist[minor].name);
887 }
888
889 return tty_init();
890 }
891
892 fs_initcall(chr_dev_init);
This page took 0.067408 seconds and 5 git commands to generate.