Merge cpufreq fixes going into v4.6.
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
79 static int cpufreq_start_governor(struct cpufreq_policy *policy);
80
81 static inline int cpufreq_exit_governor(struct cpufreq_policy *policy)
82 {
83 return cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
84 }
85
86 /**
87 * Two notifier lists: the "policy" list is involved in the
88 * validation process for a new CPU frequency policy; the
89 * "transition" list for kernel code that needs to handle
90 * changes to devices when the CPU clock speed changes.
91 * The mutex locks both lists.
92 */
93 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
94 static struct srcu_notifier_head cpufreq_transition_notifier_list;
95
96 static bool init_cpufreq_transition_notifier_list_called;
97 static int __init init_cpufreq_transition_notifier_list(void)
98 {
99 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
100 init_cpufreq_transition_notifier_list_called = true;
101 return 0;
102 }
103 pure_initcall(init_cpufreq_transition_notifier_list);
104
105 static int off __read_mostly;
106 static int cpufreq_disabled(void)
107 {
108 return off;
109 }
110 void disable_cpufreq(void)
111 {
112 off = 1;
113 }
114 static DEFINE_MUTEX(cpufreq_governor_mutex);
115
116 bool have_governor_per_policy(void)
117 {
118 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
119 }
120 EXPORT_SYMBOL_GPL(have_governor_per_policy);
121
122 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
123 {
124 if (have_governor_per_policy())
125 return &policy->kobj;
126 else
127 return cpufreq_global_kobject;
128 }
129 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
130
131 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
132 {
133 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
134
135 return policy && !policy_is_inactive(policy) ?
136 policy->freq_table : NULL;
137 }
138 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
139
140 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
141 {
142 u64 idle_time;
143 u64 cur_wall_time;
144 u64 busy_time;
145
146 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
147
148 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
149 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
150 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
151 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
152 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
153 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
154
155 idle_time = cur_wall_time - busy_time;
156 if (wall)
157 *wall = cputime_to_usecs(cur_wall_time);
158
159 return cputime_to_usecs(idle_time);
160 }
161
162 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
163 {
164 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
165
166 if (idle_time == -1ULL)
167 return get_cpu_idle_time_jiffy(cpu, wall);
168 else if (!io_busy)
169 idle_time += get_cpu_iowait_time_us(cpu, wall);
170
171 return idle_time;
172 }
173 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
174
175 /*
176 * This is a generic cpufreq init() routine which can be used by cpufreq
177 * drivers of SMP systems. It will do following:
178 * - validate & show freq table passed
179 * - set policies transition latency
180 * - policy->cpus with all possible CPUs
181 */
182 int cpufreq_generic_init(struct cpufreq_policy *policy,
183 struct cpufreq_frequency_table *table,
184 unsigned int transition_latency)
185 {
186 int ret;
187
188 ret = cpufreq_table_validate_and_show(policy, table);
189 if (ret) {
190 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
191 return ret;
192 }
193
194 policy->cpuinfo.transition_latency = transition_latency;
195
196 /*
197 * The driver only supports the SMP configuration where all processors
198 * share the clock and voltage and clock.
199 */
200 cpumask_setall(policy->cpus);
201
202 return 0;
203 }
204 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
205
206 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
207 {
208 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
209
210 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
211 }
212 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
213
214 unsigned int cpufreq_generic_get(unsigned int cpu)
215 {
216 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
217
218 if (!policy || IS_ERR(policy->clk)) {
219 pr_err("%s: No %s associated to cpu: %d\n",
220 __func__, policy ? "clk" : "policy", cpu);
221 return 0;
222 }
223
224 return clk_get_rate(policy->clk) / 1000;
225 }
226 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
227
228 /**
229 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
230 *
231 * @cpu: cpu to find policy for.
232 *
233 * This returns policy for 'cpu', returns NULL if it doesn't exist.
234 * It also increments the kobject reference count to mark it busy and so would
235 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
236 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
237 * freed as that depends on the kobj count.
238 *
239 * Return: A valid policy on success, otherwise NULL on failure.
240 */
241 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
242 {
243 struct cpufreq_policy *policy = NULL;
244 unsigned long flags;
245
246 if (WARN_ON(cpu >= nr_cpu_ids))
247 return NULL;
248
249 /* get the cpufreq driver */
250 read_lock_irqsave(&cpufreq_driver_lock, flags);
251
252 if (cpufreq_driver) {
253 /* get the CPU */
254 policy = cpufreq_cpu_get_raw(cpu);
255 if (policy)
256 kobject_get(&policy->kobj);
257 }
258
259 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
260
261 return policy;
262 }
263 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
264
265 /**
266 * cpufreq_cpu_put: Decrements the usage count of a policy
267 *
268 * @policy: policy earlier returned by cpufreq_cpu_get().
269 *
270 * This decrements the kobject reference count incremented earlier by calling
271 * cpufreq_cpu_get().
272 */
273 void cpufreq_cpu_put(struct cpufreq_policy *policy)
274 {
275 kobject_put(&policy->kobj);
276 }
277 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
278
279 /*********************************************************************
280 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
281 *********************************************************************/
282
283 /**
284 * adjust_jiffies - adjust the system "loops_per_jiffy"
285 *
286 * This function alters the system "loops_per_jiffy" for the clock
287 * speed change. Note that loops_per_jiffy cannot be updated on SMP
288 * systems as each CPU might be scaled differently. So, use the arch
289 * per-CPU loops_per_jiffy value wherever possible.
290 */
291 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
292 {
293 #ifndef CONFIG_SMP
294 static unsigned long l_p_j_ref;
295 static unsigned int l_p_j_ref_freq;
296
297 if (ci->flags & CPUFREQ_CONST_LOOPS)
298 return;
299
300 if (!l_p_j_ref_freq) {
301 l_p_j_ref = loops_per_jiffy;
302 l_p_j_ref_freq = ci->old;
303 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
304 l_p_j_ref, l_p_j_ref_freq);
305 }
306 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
307 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
308 ci->new);
309 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
310 loops_per_jiffy, ci->new);
311 }
312 #endif
313 }
314
315 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
316 struct cpufreq_freqs *freqs, unsigned int state)
317 {
318 BUG_ON(irqs_disabled());
319
320 if (cpufreq_disabled())
321 return;
322
323 freqs->flags = cpufreq_driver->flags;
324 pr_debug("notification %u of frequency transition to %u kHz\n",
325 state, freqs->new);
326
327 switch (state) {
328
329 case CPUFREQ_PRECHANGE:
330 /* detect if the driver reported a value as "old frequency"
331 * which is not equal to what the cpufreq core thinks is
332 * "old frequency".
333 */
334 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
335 if ((policy) && (policy->cpu == freqs->cpu) &&
336 (policy->cur) && (policy->cur != freqs->old)) {
337 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
338 freqs->old, policy->cur);
339 freqs->old = policy->cur;
340 }
341 }
342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343 CPUFREQ_PRECHANGE, freqs);
344 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
345 break;
346
347 case CPUFREQ_POSTCHANGE:
348 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
349 pr_debug("FREQ: %lu - CPU: %lu\n",
350 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
351 trace_cpu_frequency(freqs->new, freqs->cpu);
352 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
353 CPUFREQ_POSTCHANGE, freqs);
354 if (likely(policy) && likely(policy->cpu == freqs->cpu))
355 policy->cur = freqs->new;
356 break;
357 }
358 }
359
360 /**
361 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
362 * on frequency transition.
363 *
364 * This function calls the transition notifiers and the "adjust_jiffies"
365 * function. It is called twice on all CPU frequency changes that have
366 * external effects.
367 */
368 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
369 struct cpufreq_freqs *freqs, unsigned int state)
370 {
371 for_each_cpu(freqs->cpu, policy->cpus)
372 __cpufreq_notify_transition(policy, freqs, state);
373 }
374
375 /* Do post notifications when there are chances that transition has failed */
376 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
377 struct cpufreq_freqs *freqs, int transition_failed)
378 {
379 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
380 if (!transition_failed)
381 return;
382
383 swap(freqs->old, freqs->new);
384 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
385 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
386 }
387
388 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
389 struct cpufreq_freqs *freqs)
390 {
391
392 /*
393 * Catch double invocations of _begin() which lead to self-deadlock.
394 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
395 * doesn't invoke _begin() on their behalf, and hence the chances of
396 * double invocations are very low. Moreover, there are scenarios
397 * where these checks can emit false-positive warnings in these
398 * drivers; so we avoid that by skipping them altogether.
399 */
400 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
401 && current == policy->transition_task);
402
403 wait:
404 wait_event(policy->transition_wait, !policy->transition_ongoing);
405
406 spin_lock(&policy->transition_lock);
407
408 if (unlikely(policy->transition_ongoing)) {
409 spin_unlock(&policy->transition_lock);
410 goto wait;
411 }
412
413 policy->transition_ongoing = true;
414 policy->transition_task = current;
415
416 spin_unlock(&policy->transition_lock);
417
418 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
419 }
420 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
421
422 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
423 struct cpufreq_freqs *freqs, int transition_failed)
424 {
425 if (unlikely(WARN_ON(!policy->transition_ongoing)))
426 return;
427
428 cpufreq_notify_post_transition(policy, freqs, transition_failed);
429
430 policy->transition_ongoing = false;
431 policy->transition_task = NULL;
432
433 wake_up(&policy->transition_wait);
434 }
435 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
436
437 /*
438 * Fast frequency switching status count. Positive means "enabled", negative
439 * means "disabled" and 0 means "not decided yet".
440 */
441 static int cpufreq_fast_switch_count;
442 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
443
444 static void cpufreq_list_transition_notifiers(void)
445 {
446 struct notifier_block *nb;
447
448 pr_info("Registered transition notifiers:\n");
449
450 mutex_lock(&cpufreq_transition_notifier_list.mutex);
451
452 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
453 pr_info("%pF\n", nb->notifier_call);
454
455 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
456 }
457
458 /**
459 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
460 * @policy: cpufreq policy to enable fast frequency switching for.
461 *
462 * Try to enable fast frequency switching for @policy.
463 *
464 * The attempt will fail if there is at least one transition notifier registered
465 * at this point, as fast frequency switching is quite fundamentally at odds
466 * with transition notifiers. Thus if successful, it will make registration of
467 * transition notifiers fail going forward.
468 */
469 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
470 {
471 lockdep_assert_held(&policy->rwsem);
472
473 if (!policy->fast_switch_possible)
474 return;
475
476 mutex_lock(&cpufreq_fast_switch_lock);
477 if (cpufreq_fast_switch_count >= 0) {
478 cpufreq_fast_switch_count++;
479 policy->fast_switch_enabled = true;
480 } else {
481 pr_warn("CPU%u: Fast frequency switching not enabled\n",
482 policy->cpu);
483 cpufreq_list_transition_notifiers();
484 }
485 mutex_unlock(&cpufreq_fast_switch_lock);
486 }
487 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
488
489 /**
490 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
491 * @policy: cpufreq policy to disable fast frequency switching for.
492 */
493 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
494 {
495 mutex_lock(&cpufreq_fast_switch_lock);
496 if (policy->fast_switch_enabled) {
497 policy->fast_switch_enabled = false;
498 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
499 cpufreq_fast_switch_count--;
500 }
501 mutex_unlock(&cpufreq_fast_switch_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
504
505 /*********************************************************************
506 * SYSFS INTERFACE *
507 *********************************************************************/
508 static ssize_t show_boost(struct kobject *kobj,
509 struct attribute *attr, char *buf)
510 {
511 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
512 }
513
514 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
515 const char *buf, size_t count)
516 {
517 int ret, enable;
518
519 ret = sscanf(buf, "%d", &enable);
520 if (ret != 1 || enable < 0 || enable > 1)
521 return -EINVAL;
522
523 if (cpufreq_boost_trigger_state(enable)) {
524 pr_err("%s: Cannot %s BOOST!\n",
525 __func__, enable ? "enable" : "disable");
526 return -EINVAL;
527 }
528
529 pr_debug("%s: cpufreq BOOST %s\n",
530 __func__, enable ? "enabled" : "disabled");
531
532 return count;
533 }
534 define_one_global_rw(boost);
535
536 static struct cpufreq_governor *find_governor(const char *str_governor)
537 {
538 struct cpufreq_governor *t;
539
540 for_each_governor(t)
541 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
542 return t;
543
544 return NULL;
545 }
546
547 /**
548 * cpufreq_parse_governor - parse a governor string
549 */
550 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
551 struct cpufreq_governor **governor)
552 {
553 int err = -EINVAL;
554
555 if (cpufreq_driver->setpolicy) {
556 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
557 *policy = CPUFREQ_POLICY_PERFORMANCE;
558 err = 0;
559 } else if (!strncasecmp(str_governor, "powersave",
560 CPUFREQ_NAME_LEN)) {
561 *policy = CPUFREQ_POLICY_POWERSAVE;
562 err = 0;
563 }
564 } else {
565 struct cpufreq_governor *t;
566
567 mutex_lock(&cpufreq_governor_mutex);
568
569 t = find_governor(str_governor);
570
571 if (t == NULL) {
572 int ret;
573
574 mutex_unlock(&cpufreq_governor_mutex);
575 ret = request_module("cpufreq_%s", str_governor);
576 mutex_lock(&cpufreq_governor_mutex);
577
578 if (ret == 0)
579 t = find_governor(str_governor);
580 }
581
582 if (t != NULL) {
583 *governor = t;
584 err = 0;
585 }
586
587 mutex_unlock(&cpufreq_governor_mutex);
588 }
589 return err;
590 }
591
592 /**
593 * cpufreq_per_cpu_attr_read() / show_##file_name() -
594 * print out cpufreq information
595 *
596 * Write out information from cpufreq_driver->policy[cpu]; object must be
597 * "unsigned int".
598 */
599
600 #define show_one(file_name, object) \
601 static ssize_t show_##file_name \
602 (struct cpufreq_policy *policy, char *buf) \
603 { \
604 return sprintf(buf, "%u\n", policy->object); \
605 }
606
607 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
608 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
609 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
610 show_one(scaling_min_freq, min);
611 show_one(scaling_max_freq, max);
612
613 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
614 {
615 ssize_t ret;
616
617 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
618 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
619 else
620 ret = sprintf(buf, "%u\n", policy->cur);
621 return ret;
622 }
623
624 static int cpufreq_set_policy(struct cpufreq_policy *policy,
625 struct cpufreq_policy *new_policy);
626
627 /**
628 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
629 */
630 #define store_one(file_name, object) \
631 static ssize_t store_##file_name \
632 (struct cpufreq_policy *policy, const char *buf, size_t count) \
633 { \
634 int ret, temp; \
635 struct cpufreq_policy new_policy; \
636 \
637 memcpy(&new_policy, policy, sizeof(*policy)); \
638 \
639 ret = sscanf(buf, "%u", &new_policy.object); \
640 if (ret != 1) \
641 return -EINVAL; \
642 \
643 temp = new_policy.object; \
644 ret = cpufreq_set_policy(policy, &new_policy); \
645 if (!ret) \
646 policy->user_policy.object = temp; \
647 \
648 return ret ? ret : count; \
649 }
650
651 store_one(scaling_min_freq, min);
652 store_one(scaling_max_freq, max);
653
654 /**
655 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
656 */
657 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
658 char *buf)
659 {
660 unsigned int cur_freq = __cpufreq_get(policy);
661 if (!cur_freq)
662 return sprintf(buf, "<unknown>");
663 return sprintf(buf, "%u\n", cur_freq);
664 }
665
666 /**
667 * show_scaling_governor - show the current policy for the specified CPU
668 */
669 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
670 {
671 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
672 return sprintf(buf, "powersave\n");
673 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
674 return sprintf(buf, "performance\n");
675 else if (policy->governor)
676 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
677 policy->governor->name);
678 return -EINVAL;
679 }
680
681 /**
682 * store_scaling_governor - store policy for the specified CPU
683 */
684 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
685 const char *buf, size_t count)
686 {
687 int ret;
688 char str_governor[16];
689 struct cpufreq_policy new_policy;
690
691 memcpy(&new_policy, policy, sizeof(*policy));
692
693 ret = sscanf(buf, "%15s", str_governor);
694 if (ret != 1)
695 return -EINVAL;
696
697 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
698 &new_policy.governor))
699 return -EINVAL;
700
701 ret = cpufreq_set_policy(policy, &new_policy);
702 return ret ? ret : count;
703 }
704
705 /**
706 * show_scaling_driver - show the cpufreq driver currently loaded
707 */
708 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
709 {
710 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
711 }
712
713 /**
714 * show_scaling_available_governors - show the available CPUfreq governors
715 */
716 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
717 char *buf)
718 {
719 ssize_t i = 0;
720 struct cpufreq_governor *t;
721
722 if (!has_target()) {
723 i += sprintf(buf, "performance powersave");
724 goto out;
725 }
726
727 for_each_governor(t) {
728 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
729 - (CPUFREQ_NAME_LEN + 2)))
730 goto out;
731 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
732 }
733 out:
734 i += sprintf(&buf[i], "\n");
735 return i;
736 }
737
738 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
739 {
740 ssize_t i = 0;
741 unsigned int cpu;
742
743 for_each_cpu(cpu, mask) {
744 if (i)
745 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
746 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
747 if (i >= (PAGE_SIZE - 5))
748 break;
749 }
750 i += sprintf(&buf[i], "\n");
751 return i;
752 }
753 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
754
755 /**
756 * show_related_cpus - show the CPUs affected by each transition even if
757 * hw coordination is in use
758 */
759 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
760 {
761 return cpufreq_show_cpus(policy->related_cpus, buf);
762 }
763
764 /**
765 * show_affected_cpus - show the CPUs affected by each transition
766 */
767 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
768 {
769 return cpufreq_show_cpus(policy->cpus, buf);
770 }
771
772 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
773 const char *buf, size_t count)
774 {
775 unsigned int freq = 0;
776 unsigned int ret;
777
778 if (!policy->governor || !policy->governor->store_setspeed)
779 return -EINVAL;
780
781 ret = sscanf(buf, "%u", &freq);
782 if (ret != 1)
783 return -EINVAL;
784
785 policy->governor->store_setspeed(policy, freq);
786
787 return count;
788 }
789
790 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
791 {
792 if (!policy->governor || !policy->governor->show_setspeed)
793 return sprintf(buf, "<unsupported>\n");
794
795 return policy->governor->show_setspeed(policy, buf);
796 }
797
798 /**
799 * show_bios_limit - show the current cpufreq HW/BIOS limitation
800 */
801 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
802 {
803 unsigned int limit;
804 int ret;
805 if (cpufreq_driver->bios_limit) {
806 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
807 if (!ret)
808 return sprintf(buf, "%u\n", limit);
809 }
810 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
811 }
812
813 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
814 cpufreq_freq_attr_ro(cpuinfo_min_freq);
815 cpufreq_freq_attr_ro(cpuinfo_max_freq);
816 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
817 cpufreq_freq_attr_ro(scaling_available_governors);
818 cpufreq_freq_attr_ro(scaling_driver);
819 cpufreq_freq_attr_ro(scaling_cur_freq);
820 cpufreq_freq_attr_ro(bios_limit);
821 cpufreq_freq_attr_ro(related_cpus);
822 cpufreq_freq_attr_ro(affected_cpus);
823 cpufreq_freq_attr_rw(scaling_min_freq);
824 cpufreq_freq_attr_rw(scaling_max_freq);
825 cpufreq_freq_attr_rw(scaling_governor);
826 cpufreq_freq_attr_rw(scaling_setspeed);
827
828 static struct attribute *default_attrs[] = {
829 &cpuinfo_min_freq.attr,
830 &cpuinfo_max_freq.attr,
831 &cpuinfo_transition_latency.attr,
832 &scaling_min_freq.attr,
833 &scaling_max_freq.attr,
834 &affected_cpus.attr,
835 &related_cpus.attr,
836 &scaling_governor.attr,
837 &scaling_driver.attr,
838 &scaling_available_governors.attr,
839 &scaling_setspeed.attr,
840 NULL
841 };
842
843 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
844 #define to_attr(a) container_of(a, struct freq_attr, attr)
845
846 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
847 {
848 struct cpufreq_policy *policy = to_policy(kobj);
849 struct freq_attr *fattr = to_attr(attr);
850 ssize_t ret;
851
852 down_read(&policy->rwsem);
853 ret = fattr->show(policy, buf);
854 up_read(&policy->rwsem);
855
856 return ret;
857 }
858
859 static ssize_t store(struct kobject *kobj, struct attribute *attr,
860 const char *buf, size_t count)
861 {
862 struct cpufreq_policy *policy = to_policy(kobj);
863 struct freq_attr *fattr = to_attr(attr);
864 ssize_t ret = -EINVAL;
865
866 get_online_cpus();
867
868 if (cpu_online(policy->cpu)) {
869 down_write(&policy->rwsem);
870 ret = fattr->store(policy, buf, count);
871 up_write(&policy->rwsem);
872 }
873
874 put_online_cpus();
875
876 return ret;
877 }
878
879 static void cpufreq_sysfs_release(struct kobject *kobj)
880 {
881 struct cpufreq_policy *policy = to_policy(kobj);
882 pr_debug("last reference is dropped\n");
883 complete(&policy->kobj_unregister);
884 }
885
886 static const struct sysfs_ops sysfs_ops = {
887 .show = show,
888 .store = store,
889 };
890
891 static struct kobj_type ktype_cpufreq = {
892 .sysfs_ops = &sysfs_ops,
893 .default_attrs = default_attrs,
894 .release = cpufreq_sysfs_release,
895 };
896
897 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
898 {
899 struct device *cpu_dev;
900
901 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
902
903 if (!policy)
904 return 0;
905
906 cpu_dev = get_cpu_device(cpu);
907 if (WARN_ON(!cpu_dev))
908 return 0;
909
910 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
911 }
912
913 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
914 {
915 struct device *cpu_dev;
916
917 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
918
919 cpu_dev = get_cpu_device(cpu);
920 if (WARN_ON(!cpu_dev))
921 return;
922
923 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
924 }
925
926 /* Add/remove symlinks for all related CPUs */
927 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
928 {
929 unsigned int j;
930 int ret = 0;
931
932 /* Some related CPUs might not be present (physically hotplugged) */
933 for_each_cpu(j, policy->real_cpus) {
934 ret = add_cpu_dev_symlink(policy, j);
935 if (ret)
936 break;
937 }
938
939 return ret;
940 }
941
942 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
943 {
944 unsigned int j;
945
946 /* Some related CPUs might not be present (physically hotplugged) */
947 for_each_cpu(j, policy->real_cpus)
948 remove_cpu_dev_symlink(policy, j);
949 }
950
951 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
952 {
953 struct freq_attr **drv_attr;
954 int ret = 0;
955
956 /* set up files for this cpu device */
957 drv_attr = cpufreq_driver->attr;
958 while (drv_attr && *drv_attr) {
959 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
960 if (ret)
961 return ret;
962 drv_attr++;
963 }
964 if (cpufreq_driver->get) {
965 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
966 if (ret)
967 return ret;
968 }
969
970 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
971 if (ret)
972 return ret;
973
974 if (cpufreq_driver->bios_limit) {
975 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
976 if (ret)
977 return ret;
978 }
979
980 return cpufreq_add_dev_symlink(policy);
981 }
982
983 __weak struct cpufreq_governor *cpufreq_default_governor(void)
984 {
985 return NULL;
986 }
987
988 static int cpufreq_init_policy(struct cpufreq_policy *policy)
989 {
990 struct cpufreq_governor *gov = NULL;
991 struct cpufreq_policy new_policy;
992
993 memcpy(&new_policy, policy, sizeof(*policy));
994
995 /* Update governor of new_policy to the governor used before hotplug */
996 gov = find_governor(policy->last_governor);
997 if (gov) {
998 pr_debug("Restoring governor %s for cpu %d\n",
999 policy->governor->name, policy->cpu);
1000 } else {
1001 gov = cpufreq_default_governor();
1002 if (!gov)
1003 return -ENODATA;
1004 }
1005
1006 new_policy.governor = gov;
1007
1008 /* Use the default policy if there is no last_policy. */
1009 if (cpufreq_driver->setpolicy) {
1010 if (policy->last_policy)
1011 new_policy.policy = policy->last_policy;
1012 else
1013 cpufreq_parse_governor(gov->name, &new_policy.policy,
1014 NULL);
1015 }
1016 /* set default policy */
1017 return cpufreq_set_policy(policy, &new_policy);
1018 }
1019
1020 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1021 {
1022 int ret = 0;
1023
1024 /* Has this CPU been taken care of already? */
1025 if (cpumask_test_cpu(cpu, policy->cpus))
1026 return 0;
1027
1028 down_write(&policy->rwsem);
1029 if (has_target()) {
1030 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1031 if (ret) {
1032 pr_err("%s: Failed to stop governor\n", __func__);
1033 goto unlock;
1034 }
1035 }
1036
1037 cpumask_set_cpu(cpu, policy->cpus);
1038
1039 if (has_target()) {
1040 ret = cpufreq_start_governor(policy);
1041 if (ret)
1042 pr_err("%s: Failed to start governor\n", __func__);
1043 }
1044
1045 unlock:
1046 up_write(&policy->rwsem);
1047 return ret;
1048 }
1049
1050 static void handle_update(struct work_struct *work)
1051 {
1052 struct cpufreq_policy *policy =
1053 container_of(work, struct cpufreq_policy, update);
1054 unsigned int cpu = policy->cpu;
1055 pr_debug("handle_update for cpu %u called\n", cpu);
1056 cpufreq_update_policy(cpu);
1057 }
1058
1059 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1060 {
1061 struct device *dev = get_cpu_device(cpu);
1062 struct cpufreq_policy *policy;
1063 int ret;
1064
1065 if (WARN_ON(!dev))
1066 return NULL;
1067
1068 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1069 if (!policy)
1070 return NULL;
1071
1072 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1073 goto err_free_policy;
1074
1075 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1076 goto err_free_cpumask;
1077
1078 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1079 goto err_free_rcpumask;
1080
1081 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1082 cpufreq_global_kobject, "policy%u", cpu);
1083 if (ret) {
1084 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1085 goto err_free_real_cpus;
1086 }
1087
1088 INIT_LIST_HEAD(&policy->policy_list);
1089 init_rwsem(&policy->rwsem);
1090 spin_lock_init(&policy->transition_lock);
1091 init_waitqueue_head(&policy->transition_wait);
1092 init_completion(&policy->kobj_unregister);
1093 INIT_WORK(&policy->update, handle_update);
1094
1095 policy->cpu = cpu;
1096 return policy;
1097
1098 err_free_real_cpus:
1099 free_cpumask_var(policy->real_cpus);
1100 err_free_rcpumask:
1101 free_cpumask_var(policy->related_cpus);
1102 err_free_cpumask:
1103 free_cpumask_var(policy->cpus);
1104 err_free_policy:
1105 kfree(policy);
1106
1107 return NULL;
1108 }
1109
1110 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1111 {
1112 struct kobject *kobj;
1113 struct completion *cmp;
1114
1115 if (notify)
1116 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1117 CPUFREQ_REMOVE_POLICY, policy);
1118
1119 down_write(&policy->rwsem);
1120 cpufreq_remove_dev_symlink(policy);
1121 kobj = &policy->kobj;
1122 cmp = &policy->kobj_unregister;
1123 up_write(&policy->rwsem);
1124 kobject_put(kobj);
1125
1126 /*
1127 * We need to make sure that the underlying kobj is
1128 * actually not referenced anymore by anybody before we
1129 * proceed with unloading.
1130 */
1131 pr_debug("waiting for dropping of refcount\n");
1132 wait_for_completion(cmp);
1133 pr_debug("wait complete\n");
1134 }
1135
1136 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1137 {
1138 unsigned long flags;
1139 int cpu;
1140
1141 /* Remove policy from list */
1142 write_lock_irqsave(&cpufreq_driver_lock, flags);
1143 list_del(&policy->policy_list);
1144
1145 for_each_cpu(cpu, policy->related_cpus)
1146 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1147 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1148
1149 cpufreq_policy_put_kobj(policy, notify);
1150 free_cpumask_var(policy->real_cpus);
1151 free_cpumask_var(policy->related_cpus);
1152 free_cpumask_var(policy->cpus);
1153 kfree(policy);
1154 }
1155
1156 static int cpufreq_online(unsigned int cpu)
1157 {
1158 struct cpufreq_policy *policy;
1159 bool new_policy;
1160 unsigned long flags;
1161 unsigned int j;
1162 int ret;
1163
1164 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1165
1166 /* Check if this CPU already has a policy to manage it */
1167 policy = per_cpu(cpufreq_cpu_data, cpu);
1168 if (policy) {
1169 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1170 if (!policy_is_inactive(policy))
1171 return cpufreq_add_policy_cpu(policy, cpu);
1172
1173 /* This is the only online CPU for the policy. Start over. */
1174 new_policy = false;
1175 down_write(&policy->rwsem);
1176 policy->cpu = cpu;
1177 policy->governor = NULL;
1178 up_write(&policy->rwsem);
1179 } else {
1180 new_policy = true;
1181 policy = cpufreq_policy_alloc(cpu);
1182 if (!policy)
1183 return -ENOMEM;
1184 }
1185
1186 cpumask_copy(policy->cpus, cpumask_of(cpu));
1187
1188 /* call driver. From then on the cpufreq must be able
1189 * to accept all calls to ->verify and ->setpolicy for this CPU
1190 */
1191 ret = cpufreq_driver->init(policy);
1192 if (ret) {
1193 pr_debug("initialization failed\n");
1194 goto out_free_policy;
1195 }
1196
1197 down_write(&policy->rwsem);
1198
1199 if (new_policy) {
1200 /* related_cpus should at least include policy->cpus. */
1201 cpumask_copy(policy->related_cpus, policy->cpus);
1202 /* Remember CPUs present at the policy creation time. */
1203 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1204 }
1205
1206 /*
1207 * affected cpus must always be the one, which are online. We aren't
1208 * managing offline cpus here.
1209 */
1210 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1211
1212 if (new_policy) {
1213 policy->user_policy.min = policy->min;
1214 policy->user_policy.max = policy->max;
1215
1216 write_lock_irqsave(&cpufreq_driver_lock, flags);
1217 for_each_cpu(j, policy->related_cpus)
1218 per_cpu(cpufreq_cpu_data, j) = policy;
1219 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1220 }
1221
1222 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1223 policy->cur = cpufreq_driver->get(policy->cpu);
1224 if (!policy->cur) {
1225 pr_err("%s: ->get() failed\n", __func__);
1226 goto out_exit_policy;
1227 }
1228 }
1229
1230 /*
1231 * Sometimes boot loaders set CPU frequency to a value outside of
1232 * frequency table present with cpufreq core. In such cases CPU might be
1233 * unstable if it has to run on that frequency for long duration of time
1234 * and so its better to set it to a frequency which is specified in
1235 * freq-table. This also makes cpufreq stats inconsistent as
1236 * cpufreq-stats would fail to register because current frequency of CPU
1237 * isn't found in freq-table.
1238 *
1239 * Because we don't want this change to effect boot process badly, we go
1240 * for the next freq which is >= policy->cur ('cur' must be set by now,
1241 * otherwise we will end up setting freq to lowest of the table as 'cur'
1242 * is initialized to zero).
1243 *
1244 * We are passing target-freq as "policy->cur - 1" otherwise
1245 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1246 * equal to target-freq.
1247 */
1248 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1249 && has_target()) {
1250 /* Are we running at unknown frequency ? */
1251 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1252 if (ret == -EINVAL) {
1253 /* Warn user and fix it */
1254 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1255 __func__, policy->cpu, policy->cur);
1256 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1257 CPUFREQ_RELATION_L);
1258
1259 /*
1260 * Reaching here after boot in a few seconds may not
1261 * mean that system will remain stable at "unknown"
1262 * frequency for longer duration. Hence, a BUG_ON().
1263 */
1264 BUG_ON(ret);
1265 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1266 __func__, policy->cpu, policy->cur);
1267 }
1268 }
1269
1270 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1271 CPUFREQ_START, policy);
1272
1273 if (new_policy) {
1274 ret = cpufreq_add_dev_interface(policy);
1275 if (ret)
1276 goto out_exit_policy;
1277 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1278 CPUFREQ_CREATE_POLICY, policy);
1279
1280 write_lock_irqsave(&cpufreq_driver_lock, flags);
1281 list_add(&policy->policy_list, &cpufreq_policy_list);
1282 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1283 }
1284
1285 ret = cpufreq_init_policy(policy);
1286 if (ret) {
1287 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1288 __func__, cpu, ret);
1289 /* cpufreq_policy_free() will notify based on this */
1290 new_policy = false;
1291 goto out_exit_policy;
1292 }
1293
1294 up_write(&policy->rwsem);
1295
1296 kobject_uevent(&policy->kobj, KOBJ_ADD);
1297
1298 /* Callback for handling stuff after policy is ready */
1299 if (cpufreq_driver->ready)
1300 cpufreq_driver->ready(policy);
1301
1302 pr_debug("initialization complete\n");
1303
1304 return 0;
1305
1306 out_exit_policy:
1307 up_write(&policy->rwsem);
1308
1309 if (cpufreq_driver->exit)
1310 cpufreq_driver->exit(policy);
1311 out_free_policy:
1312 cpufreq_policy_free(policy, !new_policy);
1313 return ret;
1314 }
1315
1316 /**
1317 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1318 * @dev: CPU device.
1319 * @sif: Subsystem interface structure pointer (not used)
1320 */
1321 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1322 {
1323 struct cpufreq_policy *policy;
1324 unsigned cpu = dev->id;
1325
1326 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1327
1328 if (cpu_online(cpu))
1329 return cpufreq_online(cpu);
1330
1331 /*
1332 * A hotplug notifier will follow and we will handle it as CPU online
1333 * then. For now, just create the sysfs link, unless there is no policy
1334 * or the link is already present.
1335 */
1336 policy = per_cpu(cpufreq_cpu_data, cpu);
1337 if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1338 return 0;
1339
1340 return add_cpu_dev_symlink(policy, cpu);
1341 }
1342
1343 static void cpufreq_offline(unsigned int cpu)
1344 {
1345 struct cpufreq_policy *policy;
1346 int ret;
1347
1348 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1349
1350 policy = cpufreq_cpu_get_raw(cpu);
1351 if (!policy) {
1352 pr_debug("%s: No cpu_data found\n", __func__);
1353 return;
1354 }
1355
1356 down_write(&policy->rwsem);
1357 if (has_target()) {
1358 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1359 if (ret)
1360 pr_err("%s: Failed to stop governor\n", __func__);
1361 }
1362
1363 cpumask_clear_cpu(cpu, policy->cpus);
1364
1365 if (policy_is_inactive(policy)) {
1366 if (has_target())
1367 strncpy(policy->last_governor, policy->governor->name,
1368 CPUFREQ_NAME_LEN);
1369 else
1370 policy->last_policy = policy->policy;
1371 } else if (cpu == policy->cpu) {
1372 /* Nominate new CPU */
1373 policy->cpu = cpumask_any(policy->cpus);
1374 }
1375
1376 /* Start governor again for active policy */
1377 if (!policy_is_inactive(policy)) {
1378 if (has_target()) {
1379 ret = cpufreq_start_governor(policy);
1380 if (ret)
1381 pr_err("%s: Failed to start governor\n", __func__);
1382 }
1383
1384 goto unlock;
1385 }
1386
1387 if (cpufreq_driver->stop_cpu)
1388 cpufreq_driver->stop_cpu(policy);
1389
1390 /* If cpu is last user of policy, free policy */
1391 if (has_target()) {
1392 ret = cpufreq_exit_governor(policy);
1393 if (ret)
1394 pr_err("%s: Failed to exit governor\n", __func__);
1395 }
1396
1397 /*
1398 * Perform the ->exit() even during light-weight tear-down,
1399 * since this is a core component, and is essential for the
1400 * subsequent light-weight ->init() to succeed.
1401 */
1402 if (cpufreq_driver->exit) {
1403 cpufreq_driver->exit(policy);
1404 policy->freq_table = NULL;
1405 }
1406
1407 unlock:
1408 up_write(&policy->rwsem);
1409 }
1410
1411 /**
1412 * cpufreq_remove_dev - remove a CPU device
1413 *
1414 * Removes the cpufreq interface for a CPU device.
1415 */
1416 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1417 {
1418 unsigned int cpu = dev->id;
1419 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1420
1421 if (!policy)
1422 return;
1423
1424 if (cpu_online(cpu))
1425 cpufreq_offline(cpu);
1426
1427 cpumask_clear_cpu(cpu, policy->real_cpus);
1428 remove_cpu_dev_symlink(policy, cpu);
1429
1430 if (cpumask_empty(policy->real_cpus))
1431 cpufreq_policy_free(policy, true);
1432 }
1433
1434 /**
1435 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1436 * in deep trouble.
1437 * @policy: policy managing CPUs
1438 * @new_freq: CPU frequency the CPU actually runs at
1439 *
1440 * We adjust to current frequency first, and need to clean up later.
1441 * So either call to cpufreq_update_policy() or schedule handle_update()).
1442 */
1443 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1444 unsigned int new_freq)
1445 {
1446 struct cpufreq_freqs freqs;
1447
1448 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1449 policy->cur, new_freq);
1450
1451 freqs.old = policy->cur;
1452 freqs.new = new_freq;
1453
1454 cpufreq_freq_transition_begin(policy, &freqs);
1455 cpufreq_freq_transition_end(policy, &freqs, 0);
1456 }
1457
1458 /**
1459 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1460 * @cpu: CPU number
1461 *
1462 * This is the last known freq, without actually getting it from the driver.
1463 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1464 */
1465 unsigned int cpufreq_quick_get(unsigned int cpu)
1466 {
1467 struct cpufreq_policy *policy;
1468 unsigned int ret_freq = 0;
1469 unsigned long flags;
1470
1471 read_lock_irqsave(&cpufreq_driver_lock, flags);
1472
1473 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1474 ret_freq = cpufreq_driver->get(cpu);
1475 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1476 return ret_freq;
1477 }
1478
1479 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1480
1481 policy = cpufreq_cpu_get(cpu);
1482 if (policy) {
1483 ret_freq = policy->cur;
1484 cpufreq_cpu_put(policy);
1485 }
1486
1487 return ret_freq;
1488 }
1489 EXPORT_SYMBOL(cpufreq_quick_get);
1490
1491 /**
1492 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1493 * @cpu: CPU number
1494 *
1495 * Just return the max possible frequency for a given CPU.
1496 */
1497 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1498 {
1499 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1500 unsigned int ret_freq = 0;
1501
1502 if (policy) {
1503 ret_freq = policy->max;
1504 cpufreq_cpu_put(policy);
1505 }
1506
1507 return ret_freq;
1508 }
1509 EXPORT_SYMBOL(cpufreq_quick_get_max);
1510
1511 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1512 {
1513 unsigned int ret_freq = 0;
1514
1515 if (!cpufreq_driver->get)
1516 return ret_freq;
1517
1518 ret_freq = cpufreq_driver->get(policy->cpu);
1519
1520 /*
1521 * Updating inactive policies is invalid, so avoid doing that. Also
1522 * if fast frequency switching is used with the given policy, the check
1523 * against policy->cur is pointless, so skip it in that case too.
1524 */
1525 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1526 return ret_freq;
1527
1528 if (ret_freq && policy->cur &&
1529 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1530 /* verify no discrepancy between actual and
1531 saved value exists */
1532 if (unlikely(ret_freq != policy->cur)) {
1533 cpufreq_out_of_sync(policy, ret_freq);
1534 schedule_work(&policy->update);
1535 }
1536 }
1537
1538 return ret_freq;
1539 }
1540
1541 /**
1542 * cpufreq_get - get the current CPU frequency (in kHz)
1543 * @cpu: CPU number
1544 *
1545 * Get the CPU current (static) CPU frequency
1546 */
1547 unsigned int cpufreq_get(unsigned int cpu)
1548 {
1549 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1550 unsigned int ret_freq = 0;
1551
1552 if (policy) {
1553 down_read(&policy->rwsem);
1554 ret_freq = __cpufreq_get(policy);
1555 up_read(&policy->rwsem);
1556
1557 cpufreq_cpu_put(policy);
1558 }
1559
1560 return ret_freq;
1561 }
1562 EXPORT_SYMBOL(cpufreq_get);
1563
1564 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1565 {
1566 unsigned int new_freq;
1567
1568 if (cpufreq_suspended)
1569 return 0;
1570
1571 new_freq = cpufreq_driver->get(policy->cpu);
1572 if (!new_freq)
1573 return 0;
1574
1575 if (!policy->cur) {
1576 pr_debug("cpufreq: Driver did not initialize current freq\n");
1577 policy->cur = new_freq;
1578 } else if (policy->cur != new_freq && has_target()) {
1579 cpufreq_out_of_sync(policy, new_freq);
1580 }
1581
1582 return new_freq;
1583 }
1584
1585 static struct subsys_interface cpufreq_interface = {
1586 .name = "cpufreq",
1587 .subsys = &cpu_subsys,
1588 .add_dev = cpufreq_add_dev,
1589 .remove_dev = cpufreq_remove_dev,
1590 };
1591
1592 /*
1593 * In case platform wants some specific frequency to be configured
1594 * during suspend..
1595 */
1596 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1597 {
1598 int ret;
1599
1600 if (!policy->suspend_freq) {
1601 pr_debug("%s: suspend_freq not defined\n", __func__);
1602 return 0;
1603 }
1604
1605 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1606 policy->suspend_freq);
1607
1608 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1609 CPUFREQ_RELATION_H);
1610 if (ret)
1611 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1612 __func__, policy->suspend_freq, ret);
1613
1614 return ret;
1615 }
1616 EXPORT_SYMBOL(cpufreq_generic_suspend);
1617
1618 /**
1619 * cpufreq_suspend() - Suspend CPUFreq governors
1620 *
1621 * Called during system wide Suspend/Hibernate cycles for suspending governors
1622 * as some platforms can't change frequency after this point in suspend cycle.
1623 * Because some of the devices (like: i2c, regulators, etc) they use for
1624 * changing frequency are suspended quickly after this point.
1625 */
1626 void cpufreq_suspend(void)
1627 {
1628 struct cpufreq_policy *policy;
1629 int ret;
1630
1631 if (!cpufreq_driver)
1632 return;
1633
1634 if (!has_target() && !cpufreq_driver->suspend)
1635 goto suspend;
1636
1637 pr_debug("%s: Suspending Governors\n", __func__);
1638
1639 for_each_active_policy(policy) {
1640 if (has_target()) {
1641 down_write(&policy->rwsem);
1642 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1643 up_write(&policy->rwsem);
1644
1645 if (ret) {
1646 pr_err("%s: Failed to stop governor for policy: %p\n",
1647 __func__, policy);
1648 continue;
1649 }
1650 }
1651
1652 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1653 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1654 policy);
1655 }
1656
1657 suspend:
1658 cpufreq_suspended = true;
1659 }
1660
1661 /**
1662 * cpufreq_resume() - Resume CPUFreq governors
1663 *
1664 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1665 * are suspended with cpufreq_suspend().
1666 */
1667 void cpufreq_resume(void)
1668 {
1669 struct cpufreq_policy *policy;
1670 int ret;
1671
1672 if (!cpufreq_driver)
1673 return;
1674
1675 cpufreq_suspended = false;
1676
1677 if (!has_target() && !cpufreq_driver->resume)
1678 return;
1679
1680 pr_debug("%s: Resuming Governors\n", __func__);
1681
1682 for_each_active_policy(policy) {
1683 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1684 pr_err("%s: Failed to resume driver: %p\n", __func__,
1685 policy);
1686 } else if (has_target()) {
1687 down_write(&policy->rwsem);
1688 ret = cpufreq_start_governor(policy);
1689 up_write(&policy->rwsem);
1690
1691 if (ret)
1692 pr_err("%s: Failed to start governor for policy: %p\n",
1693 __func__, policy);
1694 }
1695 }
1696 }
1697
1698 /**
1699 * cpufreq_get_current_driver - return current driver's name
1700 *
1701 * Return the name string of the currently loaded cpufreq driver
1702 * or NULL, if none.
1703 */
1704 const char *cpufreq_get_current_driver(void)
1705 {
1706 if (cpufreq_driver)
1707 return cpufreq_driver->name;
1708
1709 return NULL;
1710 }
1711 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1712
1713 /**
1714 * cpufreq_get_driver_data - return current driver data
1715 *
1716 * Return the private data of the currently loaded cpufreq
1717 * driver, or NULL if no cpufreq driver is loaded.
1718 */
1719 void *cpufreq_get_driver_data(void)
1720 {
1721 if (cpufreq_driver)
1722 return cpufreq_driver->driver_data;
1723
1724 return NULL;
1725 }
1726 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1727
1728 /*********************************************************************
1729 * NOTIFIER LISTS INTERFACE *
1730 *********************************************************************/
1731
1732 /**
1733 * cpufreq_register_notifier - register a driver with cpufreq
1734 * @nb: notifier function to register
1735 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1736 *
1737 * Add a driver to one of two lists: either a list of drivers that
1738 * are notified about clock rate changes (once before and once after
1739 * the transition), or a list of drivers that are notified about
1740 * changes in cpufreq policy.
1741 *
1742 * This function may sleep, and has the same return conditions as
1743 * blocking_notifier_chain_register.
1744 */
1745 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1746 {
1747 int ret;
1748
1749 if (cpufreq_disabled())
1750 return -EINVAL;
1751
1752 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1753
1754 switch (list) {
1755 case CPUFREQ_TRANSITION_NOTIFIER:
1756 mutex_lock(&cpufreq_fast_switch_lock);
1757
1758 if (cpufreq_fast_switch_count > 0) {
1759 mutex_unlock(&cpufreq_fast_switch_lock);
1760 return -EBUSY;
1761 }
1762 ret = srcu_notifier_chain_register(
1763 &cpufreq_transition_notifier_list, nb);
1764 if (!ret)
1765 cpufreq_fast_switch_count--;
1766
1767 mutex_unlock(&cpufreq_fast_switch_lock);
1768 break;
1769 case CPUFREQ_POLICY_NOTIFIER:
1770 ret = blocking_notifier_chain_register(
1771 &cpufreq_policy_notifier_list, nb);
1772 break;
1773 default:
1774 ret = -EINVAL;
1775 }
1776
1777 return ret;
1778 }
1779 EXPORT_SYMBOL(cpufreq_register_notifier);
1780
1781 /**
1782 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1783 * @nb: notifier block to be unregistered
1784 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1785 *
1786 * Remove a driver from the CPU frequency notifier list.
1787 *
1788 * This function may sleep, and has the same return conditions as
1789 * blocking_notifier_chain_unregister.
1790 */
1791 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1792 {
1793 int ret;
1794
1795 if (cpufreq_disabled())
1796 return -EINVAL;
1797
1798 switch (list) {
1799 case CPUFREQ_TRANSITION_NOTIFIER:
1800 mutex_lock(&cpufreq_fast_switch_lock);
1801
1802 ret = srcu_notifier_chain_unregister(
1803 &cpufreq_transition_notifier_list, nb);
1804 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1805 cpufreq_fast_switch_count++;
1806
1807 mutex_unlock(&cpufreq_fast_switch_lock);
1808 break;
1809 case CPUFREQ_POLICY_NOTIFIER:
1810 ret = blocking_notifier_chain_unregister(
1811 &cpufreq_policy_notifier_list, nb);
1812 break;
1813 default:
1814 ret = -EINVAL;
1815 }
1816
1817 return ret;
1818 }
1819 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1820
1821
1822 /*********************************************************************
1823 * GOVERNORS *
1824 *********************************************************************/
1825
1826 /**
1827 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1828 * @policy: cpufreq policy to switch the frequency for.
1829 * @target_freq: New frequency to set (may be approximate).
1830 *
1831 * Carry out a fast frequency switch without sleeping.
1832 *
1833 * The driver's ->fast_switch() callback invoked by this function must be
1834 * suitable for being called from within RCU-sched read-side critical sections
1835 * and it is expected to select the minimum available frequency greater than or
1836 * equal to @target_freq (CPUFREQ_RELATION_L).
1837 *
1838 * This function must not be called if policy->fast_switch_enabled is unset.
1839 *
1840 * Governors calling this function must guarantee that it will never be invoked
1841 * twice in parallel for the same policy and that it will never be called in
1842 * parallel with either ->target() or ->target_index() for the same policy.
1843 *
1844 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1845 * callback to indicate an error condition, the hardware configuration must be
1846 * preserved.
1847 */
1848 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1849 unsigned int target_freq)
1850 {
1851 clamp_val(target_freq, policy->min, policy->max);
1852
1853 return cpufreq_driver->fast_switch(policy, target_freq);
1854 }
1855 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1856
1857 /* Must set freqs->new to intermediate frequency */
1858 static int __target_intermediate(struct cpufreq_policy *policy,
1859 struct cpufreq_freqs *freqs, int index)
1860 {
1861 int ret;
1862
1863 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1864
1865 /* We don't need to switch to intermediate freq */
1866 if (!freqs->new)
1867 return 0;
1868
1869 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1870 __func__, policy->cpu, freqs->old, freqs->new);
1871
1872 cpufreq_freq_transition_begin(policy, freqs);
1873 ret = cpufreq_driver->target_intermediate(policy, index);
1874 cpufreq_freq_transition_end(policy, freqs, ret);
1875
1876 if (ret)
1877 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1878 __func__, ret);
1879
1880 return ret;
1881 }
1882
1883 static int __target_index(struct cpufreq_policy *policy,
1884 struct cpufreq_frequency_table *freq_table, int index)
1885 {
1886 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1887 unsigned int intermediate_freq = 0;
1888 int retval = -EINVAL;
1889 bool notify;
1890
1891 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1892 if (notify) {
1893 /* Handle switching to intermediate frequency */
1894 if (cpufreq_driver->get_intermediate) {
1895 retval = __target_intermediate(policy, &freqs, index);
1896 if (retval)
1897 return retval;
1898
1899 intermediate_freq = freqs.new;
1900 /* Set old freq to intermediate */
1901 if (intermediate_freq)
1902 freqs.old = freqs.new;
1903 }
1904
1905 freqs.new = freq_table[index].frequency;
1906 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1907 __func__, policy->cpu, freqs.old, freqs.new);
1908
1909 cpufreq_freq_transition_begin(policy, &freqs);
1910 }
1911
1912 retval = cpufreq_driver->target_index(policy, index);
1913 if (retval)
1914 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1915 retval);
1916
1917 if (notify) {
1918 cpufreq_freq_transition_end(policy, &freqs, retval);
1919
1920 /*
1921 * Failed after setting to intermediate freq? Driver should have
1922 * reverted back to initial frequency and so should we. Check
1923 * here for intermediate_freq instead of get_intermediate, in
1924 * case we haven't switched to intermediate freq at all.
1925 */
1926 if (unlikely(retval && intermediate_freq)) {
1927 freqs.old = intermediate_freq;
1928 freqs.new = policy->restore_freq;
1929 cpufreq_freq_transition_begin(policy, &freqs);
1930 cpufreq_freq_transition_end(policy, &freqs, 0);
1931 }
1932 }
1933
1934 return retval;
1935 }
1936
1937 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1938 unsigned int target_freq,
1939 unsigned int relation)
1940 {
1941 unsigned int old_target_freq = target_freq;
1942 struct cpufreq_frequency_table *freq_table;
1943 int index, retval;
1944
1945 if (cpufreq_disabled())
1946 return -ENODEV;
1947
1948 /* Make sure that target_freq is within supported range */
1949 if (target_freq > policy->max)
1950 target_freq = policy->max;
1951 if (target_freq < policy->min)
1952 target_freq = policy->min;
1953
1954 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1955 policy->cpu, target_freq, relation, old_target_freq);
1956
1957 /*
1958 * This might look like a redundant call as we are checking it again
1959 * after finding index. But it is left intentionally for cases where
1960 * exactly same freq is called again and so we can save on few function
1961 * calls.
1962 */
1963 if (target_freq == policy->cur)
1964 return 0;
1965
1966 /* Save last value to restore later on errors */
1967 policy->restore_freq = policy->cur;
1968
1969 if (cpufreq_driver->target)
1970 return cpufreq_driver->target(policy, target_freq, relation);
1971
1972 if (!cpufreq_driver->target_index)
1973 return -EINVAL;
1974
1975 freq_table = cpufreq_frequency_get_table(policy->cpu);
1976 if (unlikely(!freq_table)) {
1977 pr_err("%s: Unable to find freq_table\n", __func__);
1978 return -EINVAL;
1979 }
1980
1981 retval = cpufreq_frequency_table_target(policy, freq_table, target_freq,
1982 relation, &index);
1983 if (unlikely(retval)) {
1984 pr_err("%s: Unable to find matching freq\n", __func__);
1985 return retval;
1986 }
1987
1988 if (freq_table[index].frequency == policy->cur)
1989 return 0;
1990
1991 return __target_index(policy, freq_table, index);
1992 }
1993 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1994
1995 int cpufreq_driver_target(struct cpufreq_policy *policy,
1996 unsigned int target_freq,
1997 unsigned int relation)
1998 {
1999 int ret = -EINVAL;
2000
2001 down_write(&policy->rwsem);
2002
2003 ret = __cpufreq_driver_target(policy, target_freq, relation);
2004
2005 up_write(&policy->rwsem);
2006
2007 return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2010
2011 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2012 {
2013 return NULL;
2014 }
2015
2016 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
2017 {
2018 int ret;
2019
2020 /* Don't start any governor operations if we are entering suspend */
2021 if (cpufreq_suspended)
2022 return 0;
2023 /*
2024 * Governor might not be initiated here if ACPI _PPC changed
2025 * notification happened, so check it.
2026 */
2027 if (!policy->governor)
2028 return -EINVAL;
2029
2030 if (policy->governor->max_transition_latency &&
2031 policy->cpuinfo.transition_latency >
2032 policy->governor->max_transition_latency) {
2033 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2034
2035 if (gov) {
2036 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2037 policy->governor->name, gov->name);
2038 policy->governor = gov;
2039 } else {
2040 return -EINVAL;
2041 }
2042 }
2043
2044 if (event == CPUFREQ_GOV_POLICY_INIT)
2045 if (!try_module_get(policy->governor->owner))
2046 return -EINVAL;
2047
2048 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
2049
2050 ret = policy->governor->governor(policy, event);
2051
2052 if (!ret) {
2053 if (event == CPUFREQ_GOV_POLICY_INIT)
2054 policy->governor->initialized++;
2055 else if (event == CPUFREQ_GOV_POLICY_EXIT)
2056 policy->governor->initialized--;
2057 }
2058
2059 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2060 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2061 module_put(policy->governor->owner);
2062
2063 return ret;
2064 }
2065
2066 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2067 {
2068 int ret;
2069
2070 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2071 cpufreq_update_current_freq(policy);
2072
2073 ret = cpufreq_governor(policy, CPUFREQ_GOV_START);
2074 return ret ? ret : cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2075 }
2076
2077 int cpufreq_register_governor(struct cpufreq_governor *governor)
2078 {
2079 int err;
2080
2081 if (!governor)
2082 return -EINVAL;
2083
2084 if (cpufreq_disabled())
2085 return -ENODEV;
2086
2087 mutex_lock(&cpufreq_governor_mutex);
2088
2089 governor->initialized = 0;
2090 err = -EBUSY;
2091 if (!find_governor(governor->name)) {
2092 err = 0;
2093 list_add(&governor->governor_list, &cpufreq_governor_list);
2094 }
2095
2096 mutex_unlock(&cpufreq_governor_mutex);
2097 return err;
2098 }
2099 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2100
2101 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2102 {
2103 struct cpufreq_policy *policy;
2104 unsigned long flags;
2105
2106 if (!governor)
2107 return;
2108
2109 if (cpufreq_disabled())
2110 return;
2111
2112 /* clear last_governor for all inactive policies */
2113 read_lock_irqsave(&cpufreq_driver_lock, flags);
2114 for_each_inactive_policy(policy) {
2115 if (!strcmp(policy->last_governor, governor->name)) {
2116 policy->governor = NULL;
2117 strcpy(policy->last_governor, "\0");
2118 }
2119 }
2120 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2121
2122 mutex_lock(&cpufreq_governor_mutex);
2123 list_del(&governor->governor_list);
2124 mutex_unlock(&cpufreq_governor_mutex);
2125 return;
2126 }
2127 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2128
2129
2130 /*********************************************************************
2131 * POLICY INTERFACE *
2132 *********************************************************************/
2133
2134 /**
2135 * cpufreq_get_policy - get the current cpufreq_policy
2136 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2137 * is written
2138 *
2139 * Reads the current cpufreq policy.
2140 */
2141 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2142 {
2143 struct cpufreq_policy *cpu_policy;
2144 if (!policy)
2145 return -EINVAL;
2146
2147 cpu_policy = cpufreq_cpu_get(cpu);
2148 if (!cpu_policy)
2149 return -EINVAL;
2150
2151 memcpy(policy, cpu_policy, sizeof(*policy));
2152
2153 cpufreq_cpu_put(cpu_policy);
2154 return 0;
2155 }
2156 EXPORT_SYMBOL(cpufreq_get_policy);
2157
2158 /*
2159 * policy : current policy.
2160 * new_policy: policy to be set.
2161 */
2162 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2163 struct cpufreq_policy *new_policy)
2164 {
2165 struct cpufreq_governor *old_gov;
2166 int ret;
2167
2168 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2169 new_policy->cpu, new_policy->min, new_policy->max);
2170
2171 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2172
2173 /*
2174 * This check works well when we store new min/max freq attributes,
2175 * because new_policy is a copy of policy with one field updated.
2176 */
2177 if (new_policy->min > new_policy->max)
2178 return -EINVAL;
2179
2180 /* verify the cpu speed can be set within this limit */
2181 ret = cpufreq_driver->verify(new_policy);
2182 if (ret)
2183 return ret;
2184
2185 /* adjust if necessary - all reasons */
2186 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2187 CPUFREQ_ADJUST, new_policy);
2188
2189 /*
2190 * verify the cpu speed can be set within this limit, which might be
2191 * different to the first one
2192 */
2193 ret = cpufreq_driver->verify(new_policy);
2194 if (ret)
2195 return ret;
2196
2197 /* notification of the new policy */
2198 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2199 CPUFREQ_NOTIFY, new_policy);
2200
2201 policy->min = new_policy->min;
2202 policy->max = new_policy->max;
2203
2204 pr_debug("new min and max freqs are %u - %u kHz\n",
2205 policy->min, policy->max);
2206
2207 if (cpufreq_driver->setpolicy) {
2208 policy->policy = new_policy->policy;
2209 pr_debug("setting range\n");
2210 return cpufreq_driver->setpolicy(new_policy);
2211 }
2212
2213 if (new_policy->governor == policy->governor) {
2214 pr_debug("cpufreq: governor limits update\n");
2215 return cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2216 }
2217
2218 pr_debug("governor switch\n");
2219
2220 /* save old, working values */
2221 old_gov = policy->governor;
2222 /* end old governor */
2223 if (old_gov) {
2224 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2225 if (ret) {
2226 /* This can happen due to race with other operations */
2227 pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2228 __func__, old_gov->name, ret);
2229 return ret;
2230 }
2231
2232 ret = cpufreq_exit_governor(policy);
2233 if (ret) {
2234 pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2235 __func__, old_gov->name, ret);
2236 return ret;
2237 }
2238 }
2239
2240 /* start new governor */
2241 policy->governor = new_policy->governor;
2242 ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2243 if (!ret) {
2244 ret = cpufreq_start_governor(policy);
2245 if (!ret) {
2246 pr_debug("cpufreq: governor change\n");
2247 return 0;
2248 }
2249 cpufreq_exit_governor(policy);
2250 }
2251
2252 /* new governor failed, so re-start old one */
2253 pr_debug("starting governor %s failed\n", policy->governor->name);
2254 if (old_gov) {
2255 policy->governor = old_gov;
2256 if (cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2257 policy->governor = NULL;
2258 else
2259 cpufreq_start_governor(policy);
2260 }
2261
2262 return ret;
2263 }
2264
2265 /**
2266 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2267 * @cpu: CPU which shall be re-evaluated
2268 *
2269 * Useful for policy notifiers which have different necessities
2270 * at different times.
2271 */
2272 int cpufreq_update_policy(unsigned int cpu)
2273 {
2274 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2275 struct cpufreq_policy new_policy;
2276 int ret;
2277
2278 if (!policy)
2279 return -ENODEV;
2280
2281 down_write(&policy->rwsem);
2282
2283 pr_debug("updating policy for CPU %u\n", cpu);
2284 memcpy(&new_policy, policy, sizeof(*policy));
2285 new_policy.min = policy->user_policy.min;
2286 new_policy.max = policy->user_policy.max;
2287
2288 /*
2289 * BIOS might change freq behind our back
2290 * -> ask driver for current freq and notify governors about a change
2291 */
2292 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2293 new_policy.cur = cpufreq_update_current_freq(policy);
2294 if (WARN_ON(!new_policy.cur)) {
2295 ret = -EIO;
2296 goto unlock;
2297 }
2298 }
2299
2300 ret = cpufreq_set_policy(policy, &new_policy);
2301
2302 unlock:
2303 up_write(&policy->rwsem);
2304
2305 cpufreq_cpu_put(policy);
2306 return ret;
2307 }
2308 EXPORT_SYMBOL(cpufreq_update_policy);
2309
2310 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2311 unsigned long action, void *hcpu)
2312 {
2313 unsigned int cpu = (unsigned long)hcpu;
2314
2315 switch (action & ~CPU_TASKS_FROZEN) {
2316 case CPU_ONLINE:
2317 case CPU_DOWN_FAILED:
2318 cpufreq_online(cpu);
2319 break;
2320
2321 case CPU_DOWN_PREPARE:
2322 cpufreq_offline(cpu);
2323 break;
2324 }
2325 return NOTIFY_OK;
2326 }
2327
2328 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2329 .notifier_call = cpufreq_cpu_callback,
2330 };
2331
2332 /*********************************************************************
2333 * BOOST *
2334 *********************************************************************/
2335 static int cpufreq_boost_set_sw(int state)
2336 {
2337 struct cpufreq_frequency_table *freq_table;
2338 struct cpufreq_policy *policy;
2339 int ret = -EINVAL;
2340
2341 for_each_active_policy(policy) {
2342 freq_table = cpufreq_frequency_get_table(policy->cpu);
2343 if (freq_table) {
2344 ret = cpufreq_frequency_table_cpuinfo(policy,
2345 freq_table);
2346 if (ret) {
2347 pr_err("%s: Policy frequency update failed\n",
2348 __func__);
2349 break;
2350 }
2351
2352 down_write(&policy->rwsem);
2353 policy->user_policy.max = policy->max;
2354 cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2355 up_write(&policy->rwsem);
2356 }
2357 }
2358
2359 return ret;
2360 }
2361
2362 int cpufreq_boost_trigger_state(int state)
2363 {
2364 unsigned long flags;
2365 int ret = 0;
2366
2367 if (cpufreq_driver->boost_enabled == state)
2368 return 0;
2369
2370 write_lock_irqsave(&cpufreq_driver_lock, flags);
2371 cpufreq_driver->boost_enabled = state;
2372 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2373
2374 ret = cpufreq_driver->set_boost(state);
2375 if (ret) {
2376 write_lock_irqsave(&cpufreq_driver_lock, flags);
2377 cpufreq_driver->boost_enabled = !state;
2378 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2379
2380 pr_err("%s: Cannot %s BOOST\n",
2381 __func__, state ? "enable" : "disable");
2382 }
2383
2384 return ret;
2385 }
2386
2387 static bool cpufreq_boost_supported(void)
2388 {
2389 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2390 }
2391
2392 static int create_boost_sysfs_file(void)
2393 {
2394 int ret;
2395
2396 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2397 if (ret)
2398 pr_err("%s: cannot register global BOOST sysfs file\n",
2399 __func__);
2400
2401 return ret;
2402 }
2403
2404 static void remove_boost_sysfs_file(void)
2405 {
2406 if (cpufreq_boost_supported())
2407 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2408 }
2409
2410 int cpufreq_enable_boost_support(void)
2411 {
2412 if (!cpufreq_driver)
2413 return -EINVAL;
2414
2415 if (cpufreq_boost_supported())
2416 return 0;
2417
2418 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2419
2420 /* This will get removed on driver unregister */
2421 return create_boost_sysfs_file();
2422 }
2423 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2424
2425 int cpufreq_boost_enabled(void)
2426 {
2427 return cpufreq_driver->boost_enabled;
2428 }
2429 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2430
2431 /*********************************************************************
2432 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2433 *********************************************************************/
2434
2435 /**
2436 * cpufreq_register_driver - register a CPU Frequency driver
2437 * @driver_data: A struct cpufreq_driver containing the values#
2438 * submitted by the CPU Frequency driver.
2439 *
2440 * Registers a CPU Frequency driver to this core code. This code
2441 * returns zero on success, -EEXIST when another driver got here first
2442 * (and isn't unregistered in the meantime).
2443 *
2444 */
2445 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2446 {
2447 unsigned long flags;
2448 int ret;
2449
2450 if (cpufreq_disabled())
2451 return -ENODEV;
2452
2453 if (!driver_data || !driver_data->verify || !driver_data->init ||
2454 !(driver_data->setpolicy || driver_data->target_index ||
2455 driver_data->target) ||
2456 (driver_data->setpolicy && (driver_data->target_index ||
2457 driver_data->target)) ||
2458 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2459 return -EINVAL;
2460
2461 pr_debug("trying to register driver %s\n", driver_data->name);
2462
2463 /* Protect against concurrent CPU online/offline. */
2464 get_online_cpus();
2465
2466 write_lock_irqsave(&cpufreq_driver_lock, flags);
2467 if (cpufreq_driver) {
2468 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2469 ret = -EEXIST;
2470 goto out;
2471 }
2472 cpufreq_driver = driver_data;
2473 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2474
2475 if (driver_data->setpolicy)
2476 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2477
2478 if (cpufreq_boost_supported()) {
2479 ret = create_boost_sysfs_file();
2480 if (ret)
2481 goto err_null_driver;
2482 }
2483
2484 ret = subsys_interface_register(&cpufreq_interface);
2485 if (ret)
2486 goto err_boost_unreg;
2487
2488 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2489 list_empty(&cpufreq_policy_list)) {
2490 /* if all ->init() calls failed, unregister */
2491 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2492 driver_data->name);
2493 goto err_if_unreg;
2494 }
2495
2496 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2497 pr_debug("driver %s up and running\n", driver_data->name);
2498
2499 out:
2500 put_online_cpus();
2501 return ret;
2502
2503 err_if_unreg:
2504 subsys_interface_unregister(&cpufreq_interface);
2505 err_boost_unreg:
2506 remove_boost_sysfs_file();
2507 err_null_driver:
2508 write_lock_irqsave(&cpufreq_driver_lock, flags);
2509 cpufreq_driver = NULL;
2510 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2511 goto out;
2512 }
2513 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2514
2515 /**
2516 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2517 *
2518 * Unregister the current CPUFreq driver. Only call this if you have
2519 * the right to do so, i.e. if you have succeeded in initialising before!
2520 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2521 * currently not initialised.
2522 */
2523 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2524 {
2525 unsigned long flags;
2526
2527 if (!cpufreq_driver || (driver != cpufreq_driver))
2528 return -EINVAL;
2529
2530 pr_debug("unregistering driver %s\n", driver->name);
2531
2532 /* Protect against concurrent cpu hotplug */
2533 get_online_cpus();
2534 subsys_interface_unregister(&cpufreq_interface);
2535 remove_boost_sysfs_file();
2536 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2537
2538 write_lock_irqsave(&cpufreq_driver_lock, flags);
2539
2540 cpufreq_driver = NULL;
2541
2542 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2543 put_online_cpus();
2544
2545 return 0;
2546 }
2547 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2548
2549 /*
2550 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2551 * or mutexes when secondary CPUs are halted.
2552 */
2553 static struct syscore_ops cpufreq_syscore_ops = {
2554 .shutdown = cpufreq_suspend,
2555 };
2556
2557 struct kobject *cpufreq_global_kobject;
2558 EXPORT_SYMBOL(cpufreq_global_kobject);
2559
2560 static int __init cpufreq_core_init(void)
2561 {
2562 if (cpufreq_disabled())
2563 return -ENODEV;
2564
2565 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2566 BUG_ON(!cpufreq_global_kobject);
2567
2568 register_syscore_ops(&cpufreq_syscore_ops);
2569
2570 return 0;
2571 }
2572 core_initcall(cpufreq_core_init);
This page took 0.087786 seconds and 5 git commands to generate.