Merge remote-tracking branch 'spi/for-next'
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 init_cpufreq_transition_notifier_list_called = true;
99 return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 return off;
107 }
108 void disable_cpufreq(void)
109 {
110 off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113
114 bool have_governor_per_policy(void)
115 {
116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 u64 idle_time;
132 u64 cur_wall_time;
133 u64 busy_time;
134
135 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
136
137 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143
144 idle_time = cur_wall_time - busy_time;
145 if (wall)
146 *wall = cputime_to_usecs(cur_wall_time);
147
148 return cputime_to_usecs(idle_time);
149 }
150
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154
155 if (idle_time == -1ULL)
156 return get_cpu_idle_time_jiffy(cpu, wall);
157 else if (!io_busy)
158 idle_time += get_cpu_iowait_time_us(cpu, wall);
159
160 return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163
164 /*
165 * This is a generic cpufreq init() routine which can be used by cpufreq
166 * drivers of SMP systems. It will do following:
167 * - validate & show freq table passed
168 * - set policies transition latency
169 * - policy->cpus with all possible CPUs
170 */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172 struct cpufreq_frequency_table *table,
173 unsigned int transition_latency)
174 {
175 int ret;
176
177 ret = cpufreq_table_validate_and_show(policy, table);
178 if (ret) {
179 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180 return ret;
181 }
182
183 policy->cpuinfo.transition_latency = transition_latency;
184
185 /*
186 * The driver only supports the SMP configuration where all processors
187 * share the clock and voltage and clock.
188 */
189 cpumask_setall(policy->cpus);
190
191 return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198
199 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206
207 if (!policy || IS_ERR(policy->clk)) {
208 pr_err("%s: No %s associated to cpu: %d\n",
209 __func__, policy ? "clk" : "policy", cpu);
210 return 0;
211 }
212
213 return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216
217 /**
218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219 *
220 * @cpu: cpu to find policy for.
221 *
222 * This returns policy for 'cpu', returns NULL if it doesn't exist.
223 * It also increments the kobject reference count to mark it busy and so would
224 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226 * freed as that depends on the kobj count.
227 *
228 * Return: A valid policy on success, otherwise NULL on failure.
229 */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232 struct cpufreq_policy *policy = NULL;
233 unsigned long flags;
234
235 if (WARN_ON(cpu >= nr_cpu_ids))
236 return NULL;
237
238 /* get the cpufreq driver */
239 read_lock_irqsave(&cpufreq_driver_lock, flags);
240
241 if (cpufreq_driver) {
242 /* get the CPU */
243 policy = cpufreq_cpu_get_raw(cpu);
244 if (policy)
245 kobject_get(&policy->kobj);
246 }
247
248 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249
250 return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253
254 /**
255 * cpufreq_cpu_put: Decrements the usage count of a policy
256 *
257 * @policy: policy earlier returned by cpufreq_cpu_get().
258 *
259 * This decrements the kobject reference count incremented earlier by calling
260 * cpufreq_cpu_get().
261 */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264 kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267
268 /*********************************************************************
269 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
270 *********************************************************************/
271
272 /**
273 * adjust_jiffies - adjust the system "loops_per_jiffy"
274 *
275 * This function alters the system "loops_per_jiffy" for the clock
276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
277 * systems as each CPU might be scaled differently. So, use the arch
278 * per-CPU loops_per_jiffy value wherever possible.
279 */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283 static unsigned long l_p_j_ref;
284 static unsigned int l_p_j_ref_freq;
285
286 if (ci->flags & CPUFREQ_CONST_LOOPS)
287 return;
288
289 if (!l_p_j_ref_freq) {
290 l_p_j_ref = loops_per_jiffy;
291 l_p_j_ref_freq = ci->old;
292 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293 l_p_j_ref, l_p_j_ref_freq);
294 }
295 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 ci->new);
298 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299 loops_per_jiffy, ci->new);
300 }
301 #endif
302 }
303
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305 struct cpufreq_freqs *freqs, unsigned int state)
306 {
307 BUG_ON(irqs_disabled());
308
309 if (cpufreq_disabled())
310 return;
311
312 freqs->flags = cpufreq_driver->flags;
313 pr_debug("notification %u of frequency transition to %u kHz\n",
314 state, freqs->new);
315
316 switch (state) {
317
318 case CPUFREQ_PRECHANGE:
319 /* detect if the driver reported a value as "old frequency"
320 * which is not equal to what the cpufreq core thinks is
321 * "old frequency".
322 */
323 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324 if ((policy) && (policy->cpu == freqs->cpu) &&
325 (policy->cur) && (policy->cur != freqs->old)) {
326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 freqs->old, policy->cur);
328 freqs->old = policy->cur;
329 }
330 }
331 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332 CPUFREQ_PRECHANGE, freqs);
333 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334 break;
335
336 case CPUFREQ_POSTCHANGE:
337 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338 pr_debug("FREQ: %lu - CPU: %lu\n",
339 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340 trace_cpu_frequency(freqs->new, freqs->cpu);
341 cpufreq_stats_record_transition(policy, freqs->new);
342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343 CPUFREQ_POSTCHANGE, freqs);
344 if (likely(policy) && likely(policy->cpu == freqs->cpu))
345 policy->cur = freqs->new;
346 break;
347 }
348 }
349
350 /**
351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352 * on frequency transition.
353 *
354 * This function calls the transition notifiers and the "adjust_jiffies"
355 * function. It is called twice on all CPU frequency changes that have
356 * external effects.
357 */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359 struct cpufreq_freqs *freqs, unsigned int state)
360 {
361 for_each_cpu(freqs->cpu, policy->cpus)
362 __cpufreq_notify_transition(policy, freqs, state);
363 }
364
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367 struct cpufreq_freqs *freqs, int transition_failed)
368 {
369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 if (!transition_failed)
371 return;
372
373 swap(freqs->old, freqs->new);
374 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379 struct cpufreq_freqs *freqs)
380 {
381
382 /*
383 * Catch double invocations of _begin() which lead to self-deadlock.
384 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385 * doesn't invoke _begin() on their behalf, and hence the chances of
386 * double invocations are very low. Moreover, there are scenarios
387 * where these checks can emit false-positive warnings in these
388 * drivers; so we avoid that by skipping them altogether.
389 */
390 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391 && current == policy->transition_task);
392
393 wait:
394 wait_event(policy->transition_wait, !policy->transition_ongoing);
395
396 spin_lock(&policy->transition_lock);
397
398 if (unlikely(policy->transition_ongoing)) {
399 spin_unlock(&policy->transition_lock);
400 goto wait;
401 }
402
403 policy->transition_ongoing = true;
404 policy->transition_task = current;
405
406 spin_unlock(&policy->transition_lock);
407
408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413 struct cpufreq_freqs *freqs, int transition_failed)
414 {
415 if (unlikely(WARN_ON(!policy->transition_ongoing)))
416 return;
417
418 cpufreq_notify_post_transition(policy, freqs, transition_failed);
419
420 policy->transition_ongoing = false;
421 policy->transition_task = NULL;
422
423 wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428 * Fast frequency switching status count. Positive means "enabled", negative
429 * means "disabled" and 0 means "not decided yet".
430 */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
434 static void cpufreq_list_transition_notifiers(void)
435 {
436 struct notifier_block *nb;
437
438 pr_info("Registered transition notifiers:\n");
439
440 mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 pr_info("%pF\n", nb->notifier_call);
444
445 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450 * @policy: cpufreq policy to enable fast frequency switching for.
451 *
452 * Try to enable fast frequency switching for @policy.
453 *
454 * The attempt will fail if there is at least one transition notifier registered
455 * at this point, as fast frequency switching is quite fundamentally at odds
456 * with transition notifiers. Thus if successful, it will make registration of
457 * transition notifiers fail going forward.
458 */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 lockdep_assert_held(&policy->rwsem);
462
463 if (!policy->fast_switch_possible)
464 return;
465
466 mutex_lock(&cpufreq_fast_switch_lock);
467 if (cpufreq_fast_switch_count >= 0) {
468 cpufreq_fast_switch_count++;
469 policy->fast_switch_enabled = true;
470 } else {
471 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 policy->cpu);
473 cpufreq_list_transition_notifiers();
474 }
475 mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481 * @policy: cpufreq policy to disable fast frequency switching for.
482 */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 mutex_lock(&cpufreq_fast_switch_lock);
486 if (policy->fast_switch_enabled) {
487 policy->fast_switch_enabled = false;
488 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 cpufreq_fast_switch_count--;
490 }
491 mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
495 /**
496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497 * one.
498 * @target_freq: target frequency to resolve.
499 *
500 * The target to driver frequency mapping is cached in the policy.
501 *
502 * Return: Lowest driver-supported frequency greater than or equal to the
503 * given target_freq, subject to policy (min/max) and driver limitations.
504 */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506 unsigned int target_freq)
507 {
508 target_freq = clamp_val(target_freq, policy->min, policy->max);
509 policy->cached_target_freq = target_freq;
510
511 if (cpufreq_driver->target_index) {
512 int idx;
513
514 idx = cpufreq_frequency_table_target(policy, target_freq,
515 CPUFREQ_RELATION_L);
516 policy->cached_resolved_idx = idx;
517 return policy->freq_table[idx].frequency;
518 }
519
520 if (cpufreq_driver->resolve_freq)
521 return cpufreq_driver->resolve_freq(policy, target_freq);
522
523 return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526
527 /*********************************************************************
528 * SYSFS INTERFACE *
529 *********************************************************************/
530 static ssize_t show_boost(struct kobject *kobj,
531 struct attribute *attr, char *buf)
532 {
533 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
534 }
535
536 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
537 const char *buf, size_t count)
538 {
539 int ret, enable;
540
541 ret = sscanf(buf, "%d", &enable);
542 if (ret != 1 || enable < 0 || enable > 1)
543 return -EINVAL;
544
545 if (cpufreq_boost_trigger_state(enable)) {
546 pr_err("%s: Cannot %s BOOST!\n",
547 __func__, enable ? "enable" : "disable");
548 return -EINVAL;
549 }
550
551 pr_debug("%s: cpufreq BOOST %s\n",
552 __func__, enable ? "enabled" : "disabled");
553
554 return count;
555 }
556 define_one_global_rw(boost);
557
558 static struct cpufreq_governor *find_governor(const char *str_governor)
559 {
560 struct cpufreq_governor *t;
561
562 for_each_governor(t)
563 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
564 return t;
565
566 return NULL;
567 }
568
569 /**
570 * cpufreq_parse_governor - parse a governor string
571 */
572 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
573 struct cpufreq_governor **governor)
574 {
575 int err = -EINVAL;
576
577 if (cpufreq_driver->setpolicy) {
578 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
579 *policy = CPUFREQ_POLICY_PERFORMANCE;
580 err = 0;
581 } else if (!strncasecmp(str_governor, "powersave",
582 CPUFREQ_NAME_LEN)) {
583 *policy = CPUFREQ_POLICY_POWERSAVE;
584 err = 0;
585 }
586 } else {
587 struct cpufreq_governor *t;
588
589 mutex_lock(&cpufreq_governor_mutex);
590
591 t = find_governor(str_governor);
592
593 if (t == NULL) {
594 int ret;
595
596 mutex_unlock(&cpufreq_governor_mutex);
597 ret = request_module("cpufreq_%s", str_governor);
598 mutex_lock(&cpufreq_governor_mutex);
599
600 if (ret == 0)
601 t = find_governor(str_governor);
602 }
603
604 if (t != NULL) {
605 *governor = t;
606 err = 0;
607 }
608
609 mutex_unlock(&cpufreq_governor_mutex);
610 }
611 return err;
612 }
613
614 /**
615 * cpufreq_per_cpu_attr_read() / show_##file_name() -
616 * print out cpufreq information
617 *
618 * Write out information from cpufreq_driver->policy[cpu]; object must be
619 * "unsigned int".
620 */
621
622 #define show_one(file_name, object) \
623 static ssize_t show_##file_name \
624 (struct cpufreq_policy *policy, char *buf) \
625 { \
626 return sprintf(buf, "%u\n", policy->object); \
627 }
628
629 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
630 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
631 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
632 show_one(scaling_min_freq, min);
633 show_one(scaling_max_freq, max);
634
635 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
636 {
637 ssize_t ret;
638
639 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
640 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
641 else
642 ret = sprintf(buf, "%u\n", policy->cur);
643 return ret;
644 }
645
646 static int cpufreq_set_policy(struct cpufreq_policy *policy,
647 struct cpufreq_policy *new_policy);
648
649 /**
650 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
651 */
652 #define store_one(file_name, object) \
653 static ssize_t store_##file_name \
654 (struct cpufreq_policy *policy, const char *buf, size_t count) \
655 { \
656 int ret, temp; \
657 struct cpufreq_policy new_policy; \
658 \
659 memcpy(&new_policy, policy, sizeof(*policy)); \
660 \
661 ret = sscanf(buf, "%u", &new_policy.object); \
662 if (ret != 1) \
663 return -EINVAL; \
664 \
665 temp = new_policy.object; \
666 ret = cpufreq_set_policy(policy, &new_policy); \
667 if (!ret) \
668 policy->user_policy.object = temp; \
669 \
670 return ret ? ret : count; \
671 }
672
673 store_one(scaling_min_freq, min);
674 store_one(scaling_max_freq, max);
675
676 /**
677 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
678 */
679 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
680 char *buf)
681 {
682 unsigned int cur_freq = __cpufreq_get(policy);
683 if (!cur_freq)
684 return sprintf(buf, "<unknown>");
685 return sprintf(buf, "%u\n", cur_freq);
686 }
687
688 /**
689 * show_scaling_governor - show the current policy for the specified CPU
690 */
691 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
692 {
693 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
694 return sprintf(buf, "powersave\n");
695 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
696 return sprintf(buf, "performance\n");
697 else if (policy->governor)
698 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
699 policy->governor->name);
700 return -EINVAL;
701 }
702
703 /**
704 * store_scaling_governor - store policy for the specified CPU
705 */
706 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
707 const char *buf, size_t count)
708 {
709 int ret;
710 char str_governor[16];
711 struct cpufreq_policy new_policy;
712
713 memcpy(&new_policy, policy, sizeof(*policy));
714
715 ret = sscanf(buf, "%15s", str_governor);
716 if (ret != 1)
717 return -EINVAL;
718
719 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
720 &new_policy.governor))
721 return -EINVAL;
722
723 ret = cpufreq_set_policy(policy, &new_policy);
724 return ret ? ret : count;
725 }
726
727 /**
728 * show_scaling_driver - show the cpufreq driver currently loaded
729 */
730 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
731 {
732 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
733 }
734
735 /**
736 * show_scaling_available_governors - show the available CPUfreq governors
737 */
738 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
739 char *buf)
740 {
741 ssize_t i = 0;
742 struct cpufreq_governor *t;
743
744 if (!has_target()) {
745 i += sprintf(buf, "performance powersave");
746 goto out;
747 }
748
749 for_each_governor(t) {
750 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
751 - (CPUFREQ_NAME_LEN + 2)))
752 goto out;
753 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
754 }
755 out:
756 i += sprintf(&buf[i], "\n");
757 return i;
758 }
759
760 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
761 {
762 ssize_t i = 0;
763 unsigned int cpu;
764
765 for_each_cpu(cpu, mask) {
766 if (i)
767 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
768 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
769 if (i >= (PAGE_SIZE - 5))
770 break;
771 }
772 i += sprintf(&buf[i], "\n");
773 return i;
774 }
775 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
776
777 /**
778 * show_related_cpus - show the CPUs affected by each transition even if
779 * hw coordination is in use
780 */
781 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
782 {
783 return cpufreq_show_cpus(policy->related_cpus, buf);
784 }
785
786 /**
787 * show_affected_cpus - show the CPUs affected by each transition
788 */
789 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
790 {
791 return cpufreq_show_cpus(policy->cpus, buf);
792 }
793
794 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
795 const char *buf, size_t count)
796 {
797 unsigned int freq = 0;
798 unsigned int ret;
799
800 if (!policy->governor || !policy->governor->store_setspeed)
801 return -EINVAL;
802
803 ret = sscanf(buf, "%u", &freq);
804 if (ret != 1)
805 return -EINVAL;
806
807 policy->governor->store_setspeed(policy, freq);
808
809 return count;
810 }
811
812 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
813 {
814 if (!policy->governor || !policy->governor->show_setspeed)
815 return sprintf(buf, "<unsupported>\n");
816
817 return policy->governor->show_setspeed(policy, buf);
818 }
819
820 /**
821 * show_bios_limit - show the current cpufreq HW/BIOS limitation
822 */
823 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
824 {
825 unsigned int limit;
826 int ret;
827 if (cpufreq_driver->bios_limit) {
828 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
829 if (!ret)
830 return sprintf(buf, "%u\n", limit);
831 }
832 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
833 }
834
835 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
836 cpufreq_freq_attr_ro(cpuinfo_min_freq);
837 cpufreq_freq_attr_ro(cpuinfo_max_freq);
838 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
839 cpufreq_freq_attr_ro(scaling_available_governors);
840 cpufreq_freq_attr_ro(scaling_driver);
841 cpufreq_freq_attr_ro(scaling_cur_freq);
842 cpufreq_freq_attr_ro(bios_limit);
843 cpufreq_freq_attr_ro(related_cpus);
844 cpufreq_freq_attr_ro(affected_cpus);
845 cpufreq_freq_attr_rw(scaling_min_freq);
846 cpufreq_freq_attr_rw(scaling_max_freq);
847 cpufreq_freq_attr_rw(scaling_governor);
848 cpufreq_freq_attr_rw(scaling_setspeed);
849
850 static struct attribute *default_attrs[] = {
851 &cpuinfo_min_freq.attr,
852 &cpuinfo_max_freq.attr,
853 &cpuinfo_transition_latency.attr,
854 &scaling_min_freq.attr,
855 &scaling_max_freq.attr,
856 &affected_cpus.attr,
857 &related_cpus.attr,
858 &scaling_governor.attr,
859 &scaling_driver.attr,
860 &scaling_available_governors.attr,
861 &scaling_setspeed.attr,
862 NULL
863 };
864
865 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
866 #define to_attr(a) container_of(a, struct freq_attr, attr)
867
868 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
869 {
870 struct cpufreq_policy *policy = to_policy(kobj);
871 struct freq_attr *fattr = to_attr(attr);
872 ssize_t ret;
873
874 down_read(&policy->rwsem);
875 ret = fattr->show(policy, buf);
876 up_read(&policy->rwsem);
877
878 return ret;
879 }
880
881 static ssize_t store(struct kobject *kobj, struct attribute *attr,
882 const char *buf, size_t count)
883 {
884 struct cpufreq_policy *policy = to_policy(kobj);
885 struct freq_attr *fattr = to_attr(attr);
886 ssize_t ret = -EINVAL;
887
888 get_online_cpus();
889
890 if (cpu_online(policy->cpu)) {
891 down_write(&policy->rwsem);
892 ret = fattr->store(policy, buf, count);
893 up_write(&policy->rwsem);
894 }
895
896 put_online_cpus();
897
898 return ret;
899 }
900
901 static void cpufreq_sysfs_release(struct kobject *kobj)
902 {
903 struct cpufreq_policy *policy = to_policy(kobj);
904 pr_debug("last reference is dropped\n");
905 complete(&policy->kobj_unregister);
906 }
907
908 static const struct sysfs_ops sysfs_ops = {
909 .show = show,
910 .store = store,
911 };
912
913 static struct kobj_type ktype_cpufreq = {
914 .sysfs_ops = &sysfs_ops,
915 .default_attrs = default_attrs,
916 .release = cpufreq_sysfs_release,
917 };
918
919 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
920 {
921 struct device *cpu_dev;
922
923 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
924
925 if (!policy)
926 return 0;
927
928 cpu_dev = get_cpu_device(cpu);
929 if (WARN_ON(!cpu_dev))
930 return 0;
931
932 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
933 }
934
935 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
936 {
937 struct device *cpu_dev;
938
939 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
940
941 cpu_dev = get_cpu_device(cpu);
942 if (WARN_ON(!cpu_dev))
943 return;
944
945 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
946 }
947
948 /* Add/remove symlinks for all related CPUs */
949 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
950 {
951 unsigned int j;
952 int ret = 0;
953
954 /* Some related CPUs might not be present (physically hotplugged) */
955 for_each_cpu(j, policy->real_cpus) {
956 ret = add_cpu_dev_symlink(policy, j);
957 if (ret)
958 break;
959 }
960
961 return ret;
962 }
963
964 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
965 {
966 unsigned int j;
967
968 /* Some related CPUs might not be present (physically hotplugged) */
969 for_each_cpu(j, policy->real_cpus)
970 remove_cpu_dev_symlink(policy, j);
971 }
972
973 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
974 {
975 struct freq_attr **drv_attr;
976 int ret = 0;
977
978 /* set up files for this cpu device */
979 drv_attr = cpufreq_driver->attr;
980 while (drv_attr && *drv_attr) {
981 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
982 if (ret)
983 return ret;
984 drv_attr++;
985 }
986 if (cpufreq_driver->get) {
987 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
988 if (ret)
989 return ret;
990 }
991
992 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
993 if (ret)
994 return ret;
995
996 if (cpufreq_driver->bios_limit) {
997 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
998 if (ret)
999 return ret;
1000 }
1001
1002 return cpufreq_add_dev_symlink(policy);
1003 }
1004
1005 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1006 {
1007 return NULL;
1008 }
1009
1010 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1011 {
1012 struct cpufreq_governor *gov = NULL;
1013 struct cpufreq_policy new_policy;
1014
1015 memcpy(&new_policy, policy, sizeof(*policy));
1016
1017 /* Update governor of new_policy to the governor used before hotplug */
1018 gov = find_governor(policy->last_governor);
1019 if (gov) {
1020 pr_debug("Restoring governor %s for cpu %d\n",
1021 policy->governor->name, policy->cpu);
1022 } else {
1023 gov = cpufreq_default_governor();
1024 if (!gov)
1025 return -ENODATA;
1026 }
1027
1028 new_policy.governor = gov;
1029
1030 /* Use the default policy if there is no last_policy. */
1031 if (cpufreq_driver->setpolicy) {
1032 if (policy->last_policy)
1033 new_policy.policy = policy->last_policy;
1034 else
1035 cpufreq_parse_governor(gov->name, &new_policy.policy,
1036 NULL);
1037 }
1038 /* set default policy */
1039 return cpufreq_set_policy(policy, &new_policy);
1040 }
1041
1042 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1043 {
1044 int ret = 0;
1045
1046 /* Has this CPU been taken care of already? */
1047 if (cpumask_test_cpu(cpu, policy->cpus))
1048 return 0;
1049
1050 down_write(&policy->rwsem);
1051 if (has_target())
1052 cpufreq_stop_governor(policy);
1053
1054 cpumask_set_cpu(cpu, policy->cpus);
1055
1056 if (has_target()) {
1057 ret = cpufreq_start_governor(policy);
1058 if (ret)
1059 pr_err("%s: Failed to start governor\n", __func__);
1060 }
1061 up_write(&policy->rwsem);
1062 return ret;
1063 }
1064
1065 static void handle_update(struct work_struct *work)
1066 {
1067 struct cpufreq_policy *policy =
1068 container_of(work, struct cpufreq_policy, update);
1069 unsigned int cpu = policy->cpu;
1070 pr_debug("handle_update for cpu %u called\n", cpu);
1071 cpufreq_update_policy(cpu);
1072 }
1073
1074 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1075 {
1076 struct cpufreq_policy *policy;
1077 int ret;
1078
1079 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1080 if (!policy)
1081 return NULL;
1082
1083 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1084 goto err_free_policy;
1085
1086 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1087 goto err_free_cpumask;
1088
1089 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1090 goto err_free_rcpumask;
1091
1092 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1093 cpufreq_global_kobject, "policy%u", cpu);
1094 if (ret) {
1095 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1096 goto err_free_real_cpus;
1097 }
1098
1099 INIT_LIST_HEAD(&policy->policy_list);
1100 init_rwsem(&policy->rwsem);
1101 spin_lock_init(&policy->transition_lock);
1102 init_waitqueue_head(&policy->transition_wait);
1103 init_completion(&policy->kobj_unregister);
1104 INIT_WORK(&policy->update, handle_update);
1105
1106 policy->cpu = cpu;
1107 return policy;
1108
1109 err_free_real_cpus:
1110 free_cpumask_var(policy->real_cpus);
1111 err_free_rcpumask:
1112 free_cpumask_var(policy->related_cpus);
1113 err_free_cpumask:
1114 free_cpumask_var(policy->cpus);
1115 err_free_policy:
1116 kfree(policy);
1117
1118 return NULL;
1119 }
1120
1121 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1122 {
1123 struct kobject *kobj;
1124 struct completion *cmp;
1125
1126 if (notify)
1127 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1128 CPUFREQ_REMOVE_POLICY, policy);
1129
1130 down_write(&policy->rwsem);
1131 cpufreq_stats_free_table(policy);
1132 cpufreq_remove_dev_symlink(policy);
1133 kobj = &policy->kobj;
1134 cmp = &policy->kobj_unregister;
1135 up_write(&policy->rwsem);
1136 kobject_put(kobj);
1137
1138 /*
1139 * We need to make sure that the underlying kobj is
1140 * actually not referenced anymore by anybody before we
1141 * proceed with unloading.
1142 */
1143 pr_debug("waiting for dropping of refcount\n");
1144 wait_for_completion(cmp);
1145 pr_debug("wait complete\n");
1146 }
1147
1148 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1149 {
1150 unsigned long flags;
1151 int cpu;
1152
1153 /* Remove policy from list */
1154 write_lock_irqsave(&cpufreq_driver_lock, flags);
1155 list_del(&policy->policy_list);
1156
1157 for_each_cpu(cpu, policy->related_cpus)
1158 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1159 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1160
1161 cpufreq_policy_put_kobj(policy, notify);
1162 free_cpumask_var(policy->real_cpus);
1163 free_cpumask_var(policy->related_cpus);
1164 free_cpumask_var(policy->cpus);
1165 kfree(policy);
1166 }
1167
1168 static int cpufreq_online(unsigned int cpu)
1169 {
1170 struct cpufreq_policy *policy;
1171 bool new_policy;
1172 unsigned long flags;
1173 unsigned int j;
1174 int ret;
1175
1176 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1177
1178 /* Check if this CPU already has a policy to manage it */
1179 policy = per_cpu(cpufreq_cpu_data, cpu);
1180 if (policy) {
1181 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1182 if (!policy_is_inactive(policy))
1183 return cpufreq_add_policy_cpu(policy, cpu);
1184
1185 /* This is the only online CPU for the policy. Start over. */
1186 new_policy = false;
1187 down_write(&policy->rwsem);
1188 policy->cpu = cpu;
1189 policy->governor = NULL;
1190 up_write(&policy->rwsem);
1191 } else {
1192 new_policy = true;
1193 policy = cpufreq_policy_alloc(cpu);
1194 if (!policy)
1195 return -ENOMEM;
1196 }
1197
1198 cpumask_copy(policy->cpus, cpumask_of(cpu));
1199
1200 /* call driver. From then on the cpufreq must be able
1201 * to accept all calls to ->verify and ->setpolicy for this CPU
1202 */
1203 ret = cpufreq_driver->init(policy);
1204 if (ret) {
1205 pr_debug("initialization failed\n");
1206 goto out_free_policy;
1207 }
1208
1209 down_write(&policy->rwsem);
1210
1211 if (new_policy) {
1212 /* related_cpus should at least include policy->cpus. */
1213 cpumask_copy(policy->related_cpus, policy->cpus);
1214 /* Remember CPUs present at the policy creation time. */
1215 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1216 }
1217
1218 /*
1219 * affected cpus must always be the one, which are online. We aren't
1220 * managing offline cpus here.
1221 */
1222 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1223
1224 if (new_policy) {
1225 policy->user_policy.min = policy->min;
1226 policy->user_policy.max = policy->max;
1227
1228 write_lock_irqsave(&cpufreq_driver_lock, flags);
1229 for_each_cpu(j, policy->related_cpus)
1230 per_cpu(cpufreq_cpu_data, j) = policy;
1231 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1232 }
1233
1234 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1235 policy->cur = cpufreq_driver->get(policy->cpu);
1236 if (!policy->cur) {
1237 pr_err("%s: ->get() failed\n", __func__);
1238 goto out_exit_policy;
1239 }
1240 }
1241
1242 /*
1243 * Sometimes boot loaders set CPU frequency to a value outside of
1244 * frequency table present with cpufreq core. In such cases CPU might be
1245 * unstable if it has to run on that frequency for long duration of time
1246 * and so its better to set it to a frequency which is specified in
1247 * freq-table. This also makes cpufreq stats inconsistent as
1248 * cpufreq-stats would fail to register because current frequency of CPU
1249 * isn't found in freq-table.
1250 *
1251 * Because we don't want this change to effect boot process badly, we go
1252 * for the next freq which is >= policy->cur ('cur' must be set by now,
1253 * otherwise we will end up setting freq to lowest of the table as 'cur'
1254 * is initialized to zero).
1255 *
1256 * We are passing target-freq as "policy->cur - 1" otherwise
1257 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1258 * equal to target-freq.
1259 */
1260 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1261 && has_target()) {
1262 /* Are we running at unknown frequency ? */
1263 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1264 if (ret == -EINVAL) {
1265 /* Warn user and fix it */
1266 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1267 __func__, policy->cpu, policy->cur);
1268 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1269 CPUFREQ_RELATION_L);
1270
1271 /*
1272 * Reaching here after boot in a few seconds may not
1273 * mean that system will remain stable at "unknown"
1274 * frequency for longer duration. Hence, a BUG_ON().
1275 */
1276 BUG_ON(ret);
1277 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1278 __func__, policy->cpu, policy->cur);
1279 }
1280 }
1281
1282 if (new_policy) {
1283 ret = cpufreq_add_dev_interface(policy);
1284 if (ret)
1285 goto out_exit_policy;
1286
1287 cpufreq_stats_create_table(policy);
1288 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1289 CPUFREQ_CREATE_POLICY, policy);
1290
1291 write_lock_irqsave(&cpufreq_driver_lock, flags);
1292 list_add(&policy->policy_list, &cpufreq_policy_list);
1293 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1294 }
1295
1296 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1297 CPUFREQ_START, policy);
1298
1299 ret = cpufreq_init_policy(policy);
1300 if (ret) {
1301 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1302 __func__, cpu, ret);
1303 /* cpufreq_policy_free() will notify based on this */
1304 new_policy = false;
1305 goto out_exit_policy;
1306 }
1307
1308 up_write(&policy->rwsem);
1309
1310 kobject_uevent(&policy->kobj, KOBJ_ADD);
1311
1312 /* Callback for handling stuff after policy is ready */
1313 if (cpufreq_driver->ready)
1314 cpufreq_driver->ready(policy);
1315
1316 pr_debug("initialization complete\n");
1317
1318 return 0;
1319
1320 out_exit_policy:
1321 up_write(&policy->rwsem);
1322
1323 if (cpufreq_driver->exit)
1324 cpufreq_driver->exit(policy);
1325 out_free_policy:
1326 cpufreq_policy_free(policy, !new_policy);
1327 return ret;
1328 }
1329
1330 /**
1331 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1332 * @dev: CPU device.
1333 * @sif: Subsystem interface structure pointer (not used)
1334 */
1335 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1336 {
1337 struct cpufreq_policy *policy;
1338 unsigned cpu = dev->id;
1339
1340 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1341
1342 if (cpu_online(cpu))
1343 return cpufreq_online(cpu);
1344
1345 /*
1346 * A hotplug notifier will follow and we will handle it as CPU online
1347 * then. For now, just create the sysfs link, unless there is no policy
1348 * or the link is already present.
1349 */
1350 policy = per_cpu(cpufreq_cpu_data, cpu);
1351 if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1352 return 0;
1353
1354 return add_cpu_dev_symlink(policy, cpu);
1355 }
1356
1357 static void cpufreq_offline(unsigned int cpu)
1358 {
1359 struct cpufreq_policy *policy;
1360 int ret;
1361
1362 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1363
1364 policy = cpufreq_cpu_get_raw(cpu);
1365 if (!policy) {
1366 pr_debug("%s: No cpu_data found\n", __func__);
1367 return;
1368 }
1369
1370 down_write(&policy->rwsem);
1371 if (has_target())
1372 cpufreq_stop_governor(policy);
1373
1374 cpumask_clear_cpu(cpu, policy->cpus);
1375
1376 if (policy_is_inactive(policy)) {
1377 if (has_target())
1378 strncpy(policy->last_governor, policy->governor->name,
1379 CPUFREQ_NAME_LEN);
1380 else
1381 policy->last_policy = policy->policy;
1382 } else if (cpu == policy->cpu) {
1383 /* Nominate new CPU */
1384 policy->cpu = cpumask_any(policy->cpus);
1385 }
1386
1387 /* Start governor again for active policy */
1388 if (!policy_is_inactive(policy)) {
1389 if (has_target()) {
1390 ret = cpufreq_start_governor(policy);
1391 if (ret)
1392 pr_err("%s: Failed to start governor\n", __func__);
1393 }
1394
1395 goto unlock;
1396 }
1397
1398 if (cpufreq_driver->stop_cpu)
1399 cpufreq_driver->stop_cpu(policy);
1400
1401 if (has_target())
1402 cpufreq_exit_governor(policy);
1403
1404 /*
1405 * Perform the ->exit() even during light-weight tear-down,
1406 * since this is a core component, and is essential for the
1407 * subsequent light-weight ->init() to succeed.
1408 */
1409 if (cpufreq_driver->exit) {
1410 cpufreq_driver->exit(policy);
1411 policy->freq_table = NULL;
1412 }
1413
1414 unlock:
1415 up_write(&policy->rwsem);
1416 }
1417
1418 /**
1419 * cpufreq_remove_dev - remove a CPU device
1420 *
1421 * Removes the cpufreq interface for a CPU device.
1422 */
1423 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1424 {
1425 unsigned int cpu = dev->id;
1426 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1427
1428 if (!policy)
1429 return;
1430
1431 if (cpu_online(cpu))
1432 cpufreq_offline(cpu);
1433
1434 cpumask_clear_cpu(cpu, policy->real_cpus);
1435 remove_cpu_dev_symlink(policy, cpu);
1436
1437 if (cpumask_empty(policy->real_cpus))
1438 cpufreq_policy_free(policy, true);
1439 }
1440
1441 /**
1442 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1443 * in deep trouble.
1444 * @policy: policy managing CPUs
1445 * @new_freq: CPU frequency the CPU actually runs at
1446 *
1447 * We adjust to current frequency first, and need to clean up later.
1448 * So either call to cpufreq_update_policy() or schedule handle_update()).
1449 */
1450 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1451 unsigned int new_freq)
1452 {
1453 struct cpufreq_freqs freqs;
1454
1455 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1456 policy->cur, new_freq);
1457
1458 freqs.old = policy->cur;
1459 freqs.new = new_freq;
1460
1461 cpufreq_freq_transition_begin(policy, &freqs);
1462 cpufreq_freq_transition_end(policy, &freqs, 0);
1463 }
1464
1465 /**
1466 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1467 * @cpu: CPU number
1468 *
1469 * This is the last known freq, without actually getting it from the driver.
1470 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1471 */
1472 unsigned int cpufreq_quick_get(unsigned int cpu)
1473 {
1474 struct cpufreq_policy *policy;
1475 unsigned int ret_freq = 0;
1476 unsigned long flags;
1477
1478 read_lock_irqsave(&cpufreq_driver_lock, flags);
1479
1480 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1481 ret_freq = cpufreq_driver->get(cpu);
1482 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1483 return ret_freq;
1484 }
1485
1486 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1487
1488 policy = cpufreq_cpu_get(cpu);
1489 if (policy) {
1490 ret_freq = policy->cur;
1491 cpufreq_cpu_put(policy);
1492 }
1493
1494 return ret_freq;
1495 }
1496 EXPORT_SYMBOL(cpufreq_quick_get);
1497
1498 /**
1499 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1500 * @cpu: CPU number
1501 *
1502 * Just return the max possible frequency for a given CPU.
1503 */
1504 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1505 {
1506 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1507 unsigned int ret_freq = 0;
1508
1509 if (policy) {
1510 ret_freq = policy->max;
1511 cpufreq_cpu_put(policy);
1512 }
1513
1514 return ret_freq;
1515 }
1516 EXPORT_SYMBOL(cpufreq_quick_get_max);
1517
1518 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1519 {
1520 unsigned int ret_freq = 0;
1521
1522 if (!cpufreq_driver->get)
1523 return ret_freq;
1524
1525 ret_freq = cpufreq_driver->get(policy->cpu);
1526
1527 /*
1528 * Updating inactive policies is invalid, so avoid doing that. Also
1529 * if fast frequency switching is used with the given policy, the check
1530 * against policy->cur is pointless, so skip it in that case too.
1531 */
1532 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1533 return ret_freq;
1534
1535 if (ret_freq && policy->cur &&
1536 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1537 /* verify no discrepancy between actual and
1538 saved value exists */
1539 if (unlikely(ret_freq != policy->cur)) {
1540 cpufreq_out_of_sync(policy, ret_freq);
1541 schedule_work(&policy->update);
1542 }
1543 }
1544
1545 return ret_freq;
1546 }
1547
1548 /**
1549 * cpufreq_get - get the current CPU frequency (in kHz)
1550 * @cpu: CPU number
1551 *
1552 * Get the CPU current (static) CPU frequency
1553 */
1554 unsigned int cpufreq_get(unsigned int cpu)
1555 {
1556 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1557 unsigned int ret_freq = 0;
1558
1559 if (policy) {
1560 down_read(&policy->rwsem);
1561 ret_freq = __cpufreq_get(policy);
1562 up_read(&policy->rwsem);
1563
1564 cpufreq_cpu_put(policy);
1565 }
1566
1567 return ret_freq;
1568 }
1569 EXPORT_SYMBOL(cpufreq_get);
1570
1571 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1572 {
1573 unsigned int new_freq;
1574
1575 new_freq = cpufreq_driver->get(policy->cpu);
1576 if (!new_freq)
1577 return 0;
1578
1579 if (!policy->cur) {
1580 pr_debug("cpufreq: Driver did not initialize current freq\n");
1581 policy->cur = new_freq;
1582 } else if (policy->cur != new_freq && has_target()) {
1583 cpufreq_out_of_sync(policy, new_freq);
1584 }
1585
1586 return new_freq;
1587 }
1588
1589 static struct subsys_interface cpufreq_interface = {
1590 .name = "cpufreq",
1591 .subsys = &cpu_subsys,
1592 .add_dev = cpufreq_add_dev,
1593 .remove_dev = cpufreq_remove_dev,
1594 };
1595
1596 /*
1597 * In case platform wants some specific frequency to be configured
1598 * during suspend..
1599 */
1600 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1601 {
1602 int ret;
1603
1604 if (!policy->suspend_freq) {
1605 pr_debug("%s: suspend_freq not defined\n", __func__);
1606 return 0;
1607 }
1608
1609 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1610 policy->suspend_freq);
1611
1612 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1613 CPUFREQ_RELATION_H);
1614 if (ret)
1615 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1616 __func__, policy->suspend_freq, ret);
1617
1618 return ret;
1619 }
1620 EXPORT_SYMBOL(cpufreq_generic_suspend);
1621
1622 /**
1623 * cpufreq_suspend() - Suspend CPUFreq governors
1624 *
1625 * Called during system wide Suspend/Hibernate cycles for suspending governors
1626 * as some platforms can't change frequency after this point in suspend cycle.
1627 * Because some of the devices (like: i2c, regulators, etc) they use for
1628 * changing frequency are suspended quickly after this point.
1629 */
1630 void cpufreq_suspend(void)
1631 {
1632 struct cpufreq_policy *policy;
1633
1634 if (!cpufreq_driver)
1635 return;
1636
1637 if (!has_target() && !cpufreq_driver->suspend)
1638 goto suspend;
1639
1640 pr_debug("%s: Suspending Governors\n", __func__);
1641
1642 for_each_active_policy(policy) {
1643 if (has_target()) {
1644 down_write(&policy->rwsem);
1645 cpufreq_stop_governor(policy);
1646 up_write(&policy->rwsem);
1647 }
1648
1649 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1650 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1651 policy);
1652 }
1653
1654 suspend:
1655 cpufreq_suspended = true;
1656 }
1657
1658 /**
1659 * cpufreq_resume() - Resume CPUFreq governors
1660 *
1661 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1662 * are suspended with cpufreq_suspend().
1663 */
1664 void cpufreq_resume(void)
1665 {
1666 struct cpufreq_policy *policy;
1667 int ret;
1668
1669 if (!cpufreq_driver)
1670 return;
1671
1672 cpufreq_suspended = false;
1673
1674 if (!has_target() && !cpufreq_driver->resume)
1675 return;
1676
1677 pr_debug("%s: Resuming Governors\n", __func__);
1678
1679 for_each_active_policy(policy) {
1680 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1681 pr_err("%s: Failed to resume driver: %p\n", __func__,
1682 policy);
1683 } else if (has_target()) {
1684 down_write(&policy->rwsem);
1685 ret = cpufreq_start_governor(policy);
1686 up_write(&policy->rwsem);
1687
1688 if (ret)
1689 pr_err("%s: Failed to start governor for policy: %p\n",
1690 __func__, policy);
1691 }
1692 }
1693 }
1694
1695 /**
1696 * cpufreq_get_current_driver - return current driver's name
1697 *
1698 * Return the name string of the currently loaded cpufreq driver
1699 * or NULL, if none.
1700 */
1701 const char *cpufreq_get_current_driver(void)
1702 {
1703 if (cpufreq_driver)
1704 return cpufreq_driver->name;
1705
1706 return NULL;
1707 }
1708 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1709
1710 /**
1711 * cpufreq_get_driver_data - return current driver data
1712 *
1713 * Return the private data of the currently loaded cpufreq
1714 * driver, or NULL if no cpufreq driver is loaded.
1715 */
1716 void *cpufreq_get_driver_data(void)
1717 {
1718 if (cpufreq_driver)
1719 return cpufreq_driver->driver_data;
1720
1721 return NULL;
1722 }
1723 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1724
1725 /*********************************************************************
1726 * NOTIFIER LISTS INTERFACE *
1727 *********************************************************************/
1728
1729 /**
1730 * cpufreq_register_notifier - register a driver with cpufreq
1731 * @nb: notifier function to register
1732 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1733 *
1734 * Add a driver to one of two lists: either a list of drivers that
1735 * are notified about clock rate changes (once before and once after
1736 * the transition), or a list of drivers that are notified about
1737 * changes in cpufreq policy.
1738 *
1739 * This function may sleep, and has the same return conditions as
1740 * blocking_notifier_chain_register.
1741 */
1742 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1743 {
1744 int ret;
1745
1746 if (cpufreq_disabled())
1747 return -EINVAL;
1748
1749 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1750
1751 switch (list) {
1752 case CPUFREQ_TRANSITION_NOTIFIER:
1753 mutex_lock(&cpufreq_fast_switch_lock);
1754
1755 if (cpufreq_fast_switch_count > 0) {
1756 mutex_unlock(&cpufreq_fast_switch_lock);
1757 return -EBUSY;
1758 }
1759 ret = srcu_notifier_chain_register(
1760 &cpufreq_transition_notifier_list, nb);
1761 if (!ret)
1762 cpufreq_fast_switch_count--;
1763
1764 mutex_unlock(&cpufreq_fast_switch_lock);
1765 break;
1766 case CPUFREQ_POLICY_NOTIFIER:
1767 ret = blocking_notifier_chain_register(
1768 &cpufreq_policy_notifier_list, nb);
1769 break;
1770 default:
1771 ret = -EINVAL;
1772 }
1773
1774 return ret;
1775 }
1776 EXPORT_SYMBOL(cpufreq_register_notifier);
1777
1778 /**
1779 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1780 * @nb: notifier block to be unregistered
1781 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1782 *
1783 * Remove a driver from the CPU frequency notifier list.
1784 *
1785 * This function may sleep, and has the same return conditions as
1786 * blocking_notifier_chain_unregister.
1787 */
1788 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1789 {
1790 int ret;
1791
1792 if (cpufreq_disabled())
1793 return -EINVAL;
1794
1795 switch (list) {
1796 case CPUFREQ_TRANSITION_NOTIFIER:
1797 mutex_lock(&cpufreq_fast_switch_lock);
1798
1799 ret = srcu_notifier_chain_unregister(
1800 &cpufreq_transition_notifier_list, nb);
1801 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1802 cpufreq_fast_switch_count++;
1803
1804 mutex_unlock(&cpufreq_fast_switch_lock);
1805 break;
1806 case CPUFREQ_POLICY_NOTIFIER:
1807 ret = blocking_notifier_chain_unregister(
1808 &cpufreq_policy_notifier_list, nb);
1809 break;
1810 default:
1811 ret = -EINVAL;
1812 }
1813
1814 return ret;
1815 }
1816 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1817
1818
1819 /*********************************************************************
1820 * GOVERNORS *
1821 *********************************************************************/
1822
1823 /**
1824 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1825 * @policy: cpufreq policy to switch the frequency for.
1826 * @target_freq: New frequency to set (may be approximate).
1827 *
1828 * Carry out a fast frequency switch without sleeping.
1829 *
1830 * The driver's ->fast_switch() callback invoked by this function must be
1831 * suitable for being called from within RCU-sched read-side critical sections
1832 * and it is expected to select the minimum available frequency greater than or
1833 * equal to @target_freq (CPUFREQ_RELATION_L).
1834 *
1835 * This function must not be called if policy->fast_switch_enabled is unset.
1836 *
1837 * Governors calling this function must guarantee that it will never be invoked
1838 * twice in parallel for the same policy and that it will never be called in
1839 * parallel with either ->target() or ->target_index() for the same policy.
1840 *
1841 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1842 * callback to indicate an error condition, the hardware configuration must be
1843 * preserved.
1844 */
1845 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1846 unsigned int target_freq)
1847 {
1848 target_freq = clamp_val(target_freq, policy->min, policy->max);
1849
1850 return cpufreq_driver->fast_switch(policy, target_freq);
1851 }
1852 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1853
1854 /* Must set freqs->new to intermediate frequency */
1855 static int __target_intermediate(struct cpufreq_policy *policy,
1856 struct cpufreq_freqs *freqs, int index)
1857 {
1858 int ret;
1859
1860 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1861
1862 /* We don't need to switch to intermediate freq */
1863 if (!freqs->new)
1864 return 0;
1865
1866 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1867 __func__, policy->cpu, freqs->old, freqs->new);
1868
1869 cpufreq_freq_transition_begin(policy, freqs);
1870 ret = cpufreq_driver->target_intermediate(policy, index);
1871 cpufreq_freq_transition_end(policy, freqs, ret);
1872
1873 if (ret)
1874 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1875 __func__, ret);
1876
1877 return ret;
1878 }
1879
1880 static int __target_index(struct cpufreq_policy *policy, int index)
1881 {
1882 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1883 unsigned int intermediate_freq = 0;
1884 unsigned int newfreq = policy->freq_table[index].frequency;
1885 int retval = -EINVAL;
1886 bool notify;
1887
1888 if (newfreq == policy->cur)
1889 return 0;
1890
1891 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1892 if (notify) {
1893 /* Handle switching to intermediate frequency */
1894 if (cpufreq_driver->get_intermediate) {
1895 retval = __target_intermediate(policy, &freqs, index);
1896 if (retval)
1897 return retval;
1898
1899 intermediate_freq = freqs.new;
1900 /* Set old freq to intermediate */
1901 if (intermediate_freq)
1902 freqs.old = freqs.new;
1903 }
1904
1905 freqs.new = newfreq;
1906 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1907 __func__, policy->cpu, freqs.old, freqs.new);
1908
1909 cpufreq_freq_transition_begin(policy, &freqs);
1910 }
1911
1912 retval = cpufreq_driver->target_index(policy, index);
1913 if (retval)
1914 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1915 retval);
1916
1917 if (notify) {
1918 cpufreq_freq_transition_end(policy, &freqs, retval);
1919
1920 /*
1921 * Failed after setting to intermediate freq? Driver should have
1922 * reverted back to initial frequency and so should we. Check
1923 * here for intermediate_freq instead of get_intermediate, in
1924 * case we haven't switched to intermediate freq at all.
1925 */
1926 if (unlikely(retval && intermediate_freq)) {
1927 freqs.old = intermediate_freq;
1928 freqs.new = policy->restore_freq;
1929 cpufreq_freq_transition_begin(policy, &freqs);
1930 cpufreq_freq_transition_end(policy, &freqs, 0);
1931 }
1932 }
1933
1934 return retval;
1935 }
1936
1937 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1938 unsigned int target_freq,
1939 unsigned int relation)
1940 {
1941 unsigned int old_target_freq = target_freq;
1942 int index;
1943
1944 if (cpufreq_disabled())
1945 return -ENODEV;
1946
1947 /* Make sure that target_freq is within supported range */
1948 target_freq = clamp_val(target_freq, policy->min, policy->max);
1949
1950 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1951 policy->cpu, target_freq, relation, old_target_freq);
1952
1953 /*
1954 * This might look like a redundant call as we are checking it again
1955 * after finding index. But it is left intentionally for cases where
1956 * exactly same freq is called again and so we can save on few function
1957 * calls.
1958 */
1959 if (target_freq == policy->cur)
1960 return 0;
1961
1962 /* Save last value to restore later on errors */
1963 policy->restore_freq = policy->cur;
1964
1965 if (cpufreq_driver->target)
1966 return cpufreq_driver->target(policy, target_freq, relation);
1967
1968 if (!cpufreq_driver->target_index)
1969 return -EINVAL;
1970
1971 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1972
1973 return __target_index(policy, index);
1974 }
1975 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1976
1977 int cpufreq_driver_target(struct cpufreq_policy *policy,
1978 unsigned int target_freq,
1979 unsigned int relation)
1980 {
1981 int ret = -EINVAL;
1982
1983 down_write(&policy->rwsem);
1984
1985 ret = __cpufreq_driver_target(policy, target_freq, relation);
1986
1987 up_write(&policy->rwsem);
1988
1989 return ret;
1990 }
1991 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1992
1993 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1994 {
1995 return NULL;
1996 }
1997
1998 static int cpufreq_init_governor(struct cpufreq_policy *policy)
1999 {
2000 int ret;
2001
2002 /* Don't start any governor operations if we are entering suspend */
2003 if (cpufreq_suspended)
2004 return 0;
2005 /*
2006 * Governor might not be initiated here if ACPI _PPC changed
2007 * notification happened, so check it.
2008 */
2009 if (!policy->governor)
2010 return -EINVAL;
2011
2012 if (policy->governor->max_transition_latency &&
2013 policy->cpuinfo.transition_latency >
2014 policy->governor->max_transition_latency) {
2015 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2016
2017 if (gov) {
2018 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2019 policy->governor->name, gov->name);
2020 policy->governor = gov;
2021 } else {
2022 return -EINVAL;
2023 }
2024 }
2025
2026 if (!try_module_get(policy->governor->owner))
2027 return -EINVAL;
2028
2029 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2030
2031 if (policy->governor->init) {
2032 ret = policy->governor->init(policy);
2033 if (ret) {
2034 module_put(policy->governor->owner);
2035 return ret;
2036 }
2037 }
2038
2039 return 0;
2040 }
2041
2042 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2043 {
2044 if (cpufreq_suspended || !policy->governor)
2045 return;
2046
2047 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2048
2049 if (policy->governor->exit)
2050 policy->governor->exit(policy);
2051
2052 module_put(policy->governor->owner);
2053 }
2054
2055 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2056 {
2057 int ret;
2058
2059 if (cpufreq_suspended)
2060 return 0;
2061
2062 if (!policy->governor)
2063 return -EINVAL;
2064
2065 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2066
2067 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2068 cpufreq_update_current_freq(policy);
2069
2070 if (policy->governor->start) {
2071 ret = policy->governor->start(policy);
2072 if (ret)
2073 return ret;
2074 }
2075
2076 if (policy->governor->limits)
2077 policy->governor->limits(policy);
2078
2079 return 0;
2080 }
2081
2082 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2083 {
2084 if (cpufreq_suspended || !policy->governor)
2085 return;
2086
2087 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2088
2089 if (policy->governor->stop)
2090 policy->governor->stop(policy);
2091 }
2092
2093 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2094 {
2095 if (cpufreq_suspended || !policy->governor)
2096 return;
2097
2098 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2099
2100 if (policy->governor->limits)
2101 policy->governor->limits(policy);
2102 }
2103
2104 int cpufreq_register_governor(struct cpufreq_governor *governor)
2105 {
2106 int err;
2107
2108 if (!governor)
2109 return -EINVAL;
2110
2111 if (cpufreq_disabled())
2112 return -ENODEV;
2113
2114 mutex_lock(&cpufreq_governor_mutex);
2115
2116 err = -EBUSY;
2117 if (!find_governor(governor->name)) {
2118 err = 0;
2119 list_add(&governor->governor_list, &cpufreq_governor_list);
2120 }
2121
2122 mutex_unlock(&cpufreq_governor_mutex);
2123 return err;
2124 }
2125 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2126
2127 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2128 {
2129 struct cpufreq_policy *policy;
2130 unsigned long flags;
2131
2132 if (!governor)
2133 return;
2134
2135 if (cpufreq_disabled())
2136 return;
2137
2138 /* clear last_governor for all inactive policies */
2139 read_lock_irqsave(&cpufreq_driver_lock, flags);
2140 for_each_inactive_policy(policy) {
2141 if (!strcmp(policy->last_governor, governor->name)) {
2142 policy->governor = NULL;
2143 strcpy(policy->last_governor, "\0");
2144 }
2145 }
2146 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2147
2148 mutex_lock(&cpufreq_governor_mutex);
2149 list_del(&governor->governor_list);
2150 mutex_unlock(&cpufreq_governor_mutex);
2151 return;
2152 }
2153 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2154
2155
2156 /*********************************************************************
2157 * POLICY INTERFACE *
2158 *********************************************************************/
2159
2160 /**
2161 * cpufreq_get_policy - get the current cpufreq_policy
2162 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2163 * is written
2164 *
2165 * Reads the current cpufreq policy.
2166 */
2167 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2168 {
2169 struct cpufreq_policy *cpu_policy;
2170 if (!policy)
2171 return -EINVAL;
2172
2173 cpu_policy = cpufreq_cpu_get(cpu);
2174 if (!cpu_policy)
2175 return -EINVAL;
2176
2177 memcpy(policy, cpu_policy, sizeof(*policy));
2178
2179 cpufreq_cpu_put(cpu_policy);
2180 return 0;
2181 }
2182 EXPORT_SYMBOL(cpufreq_get_policy);
2183
2184 /*
2185 * policy : current policy.
2186 * new_policy: policy to be set.
2187 */
2188 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2189 struct cpufreq_policy *new_policy)
2190 {
2191 struct cpufreq_governor *old_gov;
2192 int ret;
2193
2194 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2195 new_policy->cpu, new_policy->min, new_policy->max);
2196
2197 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2198
2199 /*
2200 * This check works well when we store new min/max freq attributes,
2201 * because new_policy is a copy of policy with one field updated.
2202 */
2203 if (new_policy->min > new_policy->max)
2204 return -EINVAL;
2205
2206 /* verify the cpu speed can be set within this limit */
2207 ret = cpufreq_driver->verify(new_policy);
2208 if (ret)
2209 return ret;
2210
2211 /* adjust if necessary - all reasons */
2212 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2213 CPUFREQ_ADJUST, new_policy);
2214
2215 /*
2216 * verify the cpu speed can be set within this limit, which might be
2217 * different to the first one
2218 */
2219 ret = cpufreq_driver->verify(new_policy);
2220 if (ret)
2221 return ret;
2222
2223 /* notification of the new policy */
2224 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2225 CPUFREQ_NOTIFY, new_policy);
2226
2227 policy->min = new_policy->min;
2228 policy->max = new_policy->max;
2229
2230 policy->cached_target_freq = UINT_MAX;
2231
2232 pr_debug("new min and max freqs are %u - %u kHz\n",
2233 policy->min, policy->max);
2234
2235 if (cpufreq_driver->setpolicy) {
2236 policy->policy = new_policy->policy;
2237 pr_debug("setting range\n");
2238 return cpufreq_driver->setpolicy(new_policy);
2239 }
2240
2241 if (new_policy->governor == policy->governor) {
2242 pr_debug("cpufreq: governor limits update\n");
2243 cpufreq_governor_limits(policy);
2244 return 0;
2245 }
2246
2247 pr_debug("governor switch\n");
2248
2249 /* save old, working values */
2250 old_gov = policy->governor;
2251 /* end old governor */
2252 if (old_gov) {
2253 cpufreq_stop_governor(policy);
2254 cpufreq_exit_governor(policy);
2255 }
2256
2257 /* start new governor */
2258 policy->governor = new_policy->governor;
2259 ret = cpufreq_init_governor(policy);
2260 if (!ret) {
2261 ret = cpufreq_start_governor(policy);
2262 if (!ret) {
2263 pr_debug("cpufreq: governor change\n");
2264 return 0;
2265 }
2266 cpufreq_exit_governor(policy);
2267 }
2268
2269 /* new governor failed, so re-start old one */
2270 pr_debug("starting governor %s failed\n", policy->governor->name);
2271 if (old_gov) {
2272 policy->governor = old_gov;
2273 if (cpufreq_init_governor(policy))
2274 policy->governor = NULL;
2275 else
2276 cpufreq_start_governor(policy);
2277 }
2278
2279 return ret;
2280 }
2281
2282 /**
2283 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2284 * @cpu: CPU which shall be re-evaluated
2285 *
2286 * Useful for policy notifiers which have different necessities
2287 * at different times.
2288 */
2289 int cpufreq_update_policy(unsigned int cpu)
2290 {
2291 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2292 struct cpufreq_policy new_policy;
2293 int ret;
2294
2295 if (!policy)
2296 return -ENODEV;
2297
2298 down_write(&policy->rwsem);
2299
2300 pr_debug("updating policy for CPU %u\n", cpu);
2301 memcpy(&new_policy, policy, sizeof(*policy));
2302 new_policy.min = policy->user_policy.min;
2303 new_policy.max = policy->user_policy.max;
2304
2305 /*
2306 * BIOS might change freq behind our back
2307 * -> ask driver for current freq and notify governors about a change
2308 */
2309 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2310 if (cpufreq_suspended) {
2311 ret = -EAGAIN;
2312 goto unlock;
2313 }
2314 new_policy.cur = cpufreq_update_current_freq(policy);
2315 if (WARN_ON(!new_policy.cur)) {
2316 ret = -EIO;
2317 goto unlock;
2318 }
2319 }
2320
2321 ret = cpufreq_set_policy(policy, &new_policy);
2322
2323 unlock:
2324 up_write(&policy->rwsem);
2325
2326 cpufreq_cpu_put(policy);
2327 return ret;
2328 }
2329 EXPORT_SYMBOL(cpufreq_update_policy);
2330
2331 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2332 unsigned long action, void *hcpu)
2333 {
2334 unsigned int cpu = (unsigned long)hcpu;
2335
2336 switch (action & ~CPU_TASKS_FROZEN) {
2337 case CPU_ONLINE:
2338 case CPU_DOWN_FAILED:
2339 cpufreq_online(cpu);
2340 break;
2341
2342 case CPU_DOWN_PREPARE:
2343 cpufreq_offline(cpu);
2344 break;
2345 }
2346 return NOTIFY_OK;
2347 }
2348
2349 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2350 .notifier_call = cpufreq_cpu_callback,
2351 };
2352
2353 /*********************************************************************
2354 * BOOST *
2355 *********************************************************************/
2356 static int cpufreq_boost_set_sw(int state)
2357 {
2358 struct cpufreq_policy *policy;
2359 int ret = -EINVAL;
2360
2361 for_each_active_policy(policy) {
2362 if (!policy->freq_table)
2363 continue;
2364
2365 ret = cpufreq_frequency_table_cpuinfo(policy,
2366 policy->freq_table);
2367 if (ret) {
2368 pr_err("%s: Policy frequency update failed\n",
2369 __func__);
2370 break;
2371 }
2372
2373 down_write(&policy->rwsem);
2374 policy->user_policy.max = policy->max;
2375 cpufreq_governor_limits(policy);
2376 up_write(&policy->rwsem);
2377 }
2378
2379 return ret;
2380 }
2381
2382 int cpufreq_boost_trigger_state(int state)
2383 {
2384 unsigned long flags;
2385 int ret = 0;
2386
2387 if (cpufreq_driver->boost_enabled == state)
2388 return 0;
2389
2390 write_lock_irqsave(&cpufreq_driver_lock, flags);
2391 cpufreq_driver->boost_enabled = state;
2392 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2393
2394 ret = cpufreq_driver->set_boost(state);
2395 if (ret) {
2396 write_lock_irqsave(&cpufreq_driver_lock, flags);
2397 cpufreq_driver->boost_enabled = !state;
2398 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2399
2400 pr_err("%s: Cannot %s BOOST\n",
2401 __func__, state ? "enable" : "disable");
2402 }
2403
2404 return ret;
2405 }
2406
2407 static bool cpufreq_boost_supported(void)
2408 {
2409 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2410 }
2411
2412 static int create_boost_sysfs_file(void)
2413 {
2414 int ret;
2415
2416 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2417 if (ret)
2418 pr_err("%s: cannot register global BOOST sysfs file\n",
2419 __func__);
2420
2421 return ret;
2422 }
2423
2424 static void remove_boost_sysfs_file(void)
2425 {
2426 if (cpufreq_boost_supported())
2427 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2428 }
2429
2430 int cpufreq_enable_boost_support(void)
2431 {
2432 if (!cpufreq_driver)
2433 return -EINVAL;
2434
2435 if (cpufreq_boost_supported())
2436 return 0;
2437
2438 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2439
2440 /* This will get removed on driver unregister */
2441 return create_boost_sysfs_file();
2442 }
2443 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2444
2445 int cpufreq_boost_enabled(void)
2446 {
2447 return cpufreq_driver->boost_enabled;
2448 }
2449 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2450
2451 /*********************************************************************
2452 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2453 *********************************************************************/
2454
2455 /**
2456 * cpufreq_register_driver - register a CPU Frequency driver
2457 * @driver_data: A struct cpufreq_driver containing the values#
2458 * submitted by the CPU Frequency driver.
2459 *
2460 * Registers a CPU Frequency driver to this core code. This code
2461 * returns zero on success, -EEXIST when another driver got here first
2462 * (and isn't unregistered in the meantime).
2463 *
2464 */
2465 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2466 {
2467 unsigned long flags;
2468 int ret;
2469
2470 if (cpufreq_disabled())
2471 return -ENODEV;
2472
2473 if (!driver_data || !driver_data->verify || !driver_data->init ||
2474 !(driver_data->setpolicy || driver_data->target_index ||
2475 driver_data->target) ||
2476 (driver_data->setpolicy && (driver_data->target_index ||
2477 driver_data->target)) ||
2478 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2479 return -EINVAL;
2480
2481 pr_debug("trying to register driver %s\n", driver_data->name);
2482
2483 /* Protect against concurrent CPU online/offline. */
2484 get_online_cpus();
2485
2486 write_lock_irqsave(&cpufreq_driver_lock, flags);
2487 if (cpufreq_driver) {
2488 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2489 ret = -EEXIST;
2490 goto out;
2491 }
2492 cpufreq_driver = driver_data;
2493 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2494
2495 if (driver_data->setpolicy)
2496 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2497
2498 if (cpufreq_boost_supported()) {
2499 ret = create_boost_sysfs_file();
2500 if (ret)
2501 goto err_null_driver;
2502 }
2503
2504 ret = subsys_interface_register(&cpufreq_interface);
2505 if (ret)
2506 goto err_boost_unreg;
2507
2508 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2509 list_empty(&cpufreq_policy_list)) {
2510 /* if all ->init() calls failed, unregister */
2511 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2512 driver_data->name);
2513 goto err_if_unreg;
2514 }
2515
2516 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2517 pr_debug("driver %s up and running\n", driver_data->name);
2518 goto out;
2519
2520 err_if_unreg:
2521 subsys_interface_unregister(&cpufreq_interface);
2522 err_boost_unreg:
2523 remove_boost_sysfs_file();
2524 err_null_driver:
2525 write_lock_irqsave(&cpufreq_driver_lock, flags);
2526 cpufreq_driver = NULL;
2527 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2528 out:
2529 put_online_cpus();
2530 return ret;
2531 }
2532 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2533
2534 /**
2535 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2536 *
2537 * Unregister the current CPUFreq driver. Only call this if you have
2538 * the right to do so, i.e. if you have succeeded in initialising before!
2539 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2540 * currently not initialised.
2541 */
2542 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2543 {
2544 unsigned long flags;
2545
2546 if (!cpufreq_driver || (driver != cpufreq_driver))
2547 return -EINVAL;
2548
2549 pr_debug("unregistering driver %s\n", driver->name);
2550
2551 /* Protect against concurrent cpu hotplug */
2552 get_online_cpus();
2553 subsys_interface_unregister(&cpufreq_interface);
2554 remove_boost_sysfs_file();
2555 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2556
2557 write_lock_irqsave(&cpufreq_driver_lock, flags);
2558
2559 cpufreq_driver = NULL;
2560
2561 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2562 put_online_cpus();
2563
2564 return 0;
2565 }
2566 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2567
2568 /*
2569 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2570 * or mutexes when secondary CPUs are halted.
2571 */
2572 static struct syscore_ops cpufreq_syscore_ops = {
2573 .shutdown = cpufreq_suspend,
2574 };
2575
2576 struct kobject *cpufreq_global_kobject;
2577 EXPORT_SYMBOL(cpufreq_global_kobject);
2578
2579 static int __init cpufreq_core_init(void)
2580 {
2581 if (cpufreq_disabled())
2582 return -ENODEV;
2583
2584 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2585 BUG_ON(!cpufreq_global_kobject);
2586
2587 register_syscore_ops(&cpufreq_syscore_ops);
2588
2589 return 0;
2590 }
2591 core_initcall(cpufreq_core_init);
This page took 0.088622 seconds and 5 git commands to generate.