cpufreq: Use cpumask_copy instead of cpumask_or to copy a mask
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 static bool suitable_policy(struct cpufreq_policy *policy, bool active)
42 {
43 return active == !policy_is_inactive(policy);
44 }
45
46 /* Finds Next Acive/Inactive policy */
47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy,
48 bool active)
49 {
50 do {
51 policy = list_next_entry(policy, policy_list);
52
53 /* No more policies in the list */
54 if (&policy->policy_list == &cpufreq_policy_list)
55 return NULL;
56 } while (!suitable_policy(policy, active));
57
58 return policy;
59 }
60
61 static struct cpufreq_policy *first_policy(bool active)
62 {
63 struct cpufreq_policy *policy;
64
65 /* No policies in the list */
66 if (list_empty(&cpufreq_policy_list))
67 return NULL;
68
69 policy = list_first_entry(&cpufreq_policy_list, typeof(*policy),
70 policy_list);
71
72 if (!suitable_policy(policy, active))
73 policy = next_policy(policy, active);
74
75 return policy;
76 }
77
78 /* Macros to iterate over CPU policies */
79 #define for_each_suitable_policy(__policy, __active) \
80 for (__policy = first_policy(__active); \
81 __policy; \
82 __policy = next_policy(__policy, __active))
83
84 #define for_each_active_policy(__policy) \
85 for_each_suitable_policy(__policy, true)
86 #define for_each_inactive_policy(__policy) \
87 for_each_suitable_policy(__policy, false)
88
89 #define for_each_policy(__policy) \
90 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
91
92 /* Iterate over governors */
93 static LIST_HEAD(cpufreq_governor_list);
94 #define for_each_governor(__governor) \
95 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
96
97 /**
98 * The "cpufreq driver" - the arch- or hardware-dependent low
99 * level driver of CPUFreq support, and its spinlock. This lock
100 * also protects the cpufreq_cpu_data array.
101 */
102 static struct cpufreq_driver *cpufreq_driver;
103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
104 static DEFINE_RWLOCK(cpufreq_driver_lock);
105 DEFINE_MUTEX(cpufreq_governor_lock);
106
107 /* Flag to suspend/resume CPUFreq governors */
108 static bool cpufreq_suspended;
109
110 static inline bool has_target(void)
111 {
112 return cpufreq_driver->target_index || cpufreq_driver->target;
113 }
114
115 /* internal prototypes */
116 static int __cpufreq_governor(struct cpufreq_policy *policy,
117 unsigned int event);
118 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
119 static void handle_update(struct work_struct *work);
120
121 /**
122 * Two notifier lists: the "policy" list is involved in the
123 * validation process for a new CPU frequency policy; the
124 * "transition" list for kernel code that needs to handle
125 * changes to devices when the CPU clock speed changes.
126 * The mutex locks both lists.
127 */
128 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
129 static struct srcu_notifier_head cpufreq_transition_notifier_list;
130
131 static bool init_cpufreq_transition_notifier_list_called;
132 static int __init init_cpufreq_transition_notifier_list(void)
133 {
134 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
135 init_cpufreq_transition_notifier_list_called = true;
136 return 0;
137 }
138 pure_initcall(init_cpufreq_transition_notifier_list);
139
140 static int off __read_mostly;
141 static int cpufreq_disabled(void)
142 {
143 return off;
144 }
145 void disable_cpufreq(void)
146 {
147 off = 1;
148 }
149 static DEFINE_MUTEX(cpufreq_governor_mutex);
150
151 bool have_governor_per_policy(void)
152 {
153 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
154 }
155 EXPORT_SYMBOL_GPL(have_governor_per_policy);
156
157 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
158 {
159 if (have_governor_per_policy())
160 return &policy->kobj;
161 else
162 return cpufreq_global_kobject;
163 }
164 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
165
166 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
167 {
168 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
169
170 return policy && !policy_is_inactive(policy) ?
171 policy->freq_table : NULL;
172 }
173 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
174
175 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
176 {
177 u64 idle_time;
178 u64 cur_wall_time;
179 u64 busy_time;
180
181 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
182
183 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
184 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
185 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
186 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
187 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
188 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
189
190 idle_time = cur_wall_time - busy_time;
191 if (wall)
192 *wall = cputime_to_usecs(cur_wall_time);
193
194 return cputime_to_usecs(idle_time);
195 }
196
197 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
198 {
199 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
200
201 if (idle_time == -1ULL)
202 return get_cpu_idle_time_jiffy(cpu, wall);
203 else if (!io_busy)
204 idle_time += get_cpu_iowait_time_us(cpu, wall);
205
206 return idle_time;
207 }
208 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
209
210 /*
211 * This is a generic cpufreq init() routine which can be used by cpufreq
212 * drivers of SMP systems. It will do following:
213 * - validate & show freq table passed
214 * - set policies transition latency
215 * - policy->cpus with all possible CPUs
216 */
217 int cpufreq_generic_init(struct cpufreq_policy *policy,
218 struct cpufreq_frequency_table *table,
219 unsigned int transition_latency)
220 {
221 int ret;
222
223 ret = cpufreq_table_validate_and_show(policy, table);
224 if (ret) {
225 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
226 return ret;
227 }
228
229 policy->cpuinfo.transition_latency = transition_latency;
230
231 /*
232 * The driver only supports the SMP configuration where all processors
233 * share the clock and voltage and clock.
234 */
235 cpumask_setall(policy->cpus);
236
237 return 0;
238 }
239 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
240
241 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
242 {
243 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
244
245 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
248
249 unsigned int cpufreq_generic_get(unsigned int cpu)
250 {
251 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
252
253 if (!policy || IS_ERR(policy->clk)) {
254 pr_err("%s: No %s associated to cpu: %d\n",
255 __func__, policy ? "clk" : "policy", cpu);
256 return 0;
257 }
258
259 return clk_get_rate(policy->clk) / 1000;
260 }
261 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
262
263 /**
264 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
265 *
266 * @cpu: cpu to find policy for.
267 *
268 * This returns policy for 'cpu', returns NULL if it doesn't exist.
269 * It also increments the kobject reference count to mark it busy and so would
270 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
271 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
272 * freed as that depends on the kobj count.
273 *
274 * Return: A valid policy on success, otherwise NULL on failure.
275 */
276 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
277 {
278 struct cpufreq_policy *policy = NULL;
279 unsigned long flags;
280
281 if (WARN_ON(cpu >= nr_cpu_ids))
282 return NULL;
283
284 /* get the cpufreq driver */
285 read_lock_irqsave(&cpufreq_driver_lock, flags);
286
287 if (cpufreq_driver) {
288 /* get the CPU */
289 policy = cpufreq_cpu_get_raw(cpu);
290 if (policy)
291 kobject_get(&policy->kobj);
292 }
293
294 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
295
296 return policy;
297 }
298 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
299
300 /**
301 * cpufreq_cpu_put: Decrements the usage count of a policy
302 *
303 * @policy: policy earlier returned by cpufreq_cpu_get().
304 *
305 * This decrements the kobject reference count incremented earlier by calling
306 * cpufreq_cpu_get().
307 */
308 void cpufreq_cpu_put(struct cpufreq_policy *policy)
309 {
310 kobject_put(&policy->kobj);
311 }
312 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
313
314 /*********************************************************************
315 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
316 *********************************************************************/
317
318 /**
319 * adjust_jiffies - adjust the system "loops_per_jiffy"
320 *
321 * This function alters the system "loops_per_jiffy" for the clock
322 * speed change. Note that loops_per_jiffy cannot be updated on SMP
323 * systems as each CPU might be scaled differently. So, use the arch
324 * per-CPU loops_per_jiffy value wherever possible.
325 */
326 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
327 {
328 #ifndef CONFIG_SMP
329 static unsigned long l_p_j_ref;
330 static unsigned int l_p_j_ref_freq;
331
332 if (ci->flags & CPUFREQ_CONST_LOOPS)
333 return;
334
335 if (!l_p_j_ref_freq) {
336 l_p_j_ref = loops_per_jiffy;
337 l_p_j_ref_freq = ci->old;
338 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
339 l_p_j_ref, l_p_j_ref_freq);
340 }
341 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
342 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
343 ci->new);
344 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
345 loops_per_jiffy, ci->new);
346 }
347 #endif
348 }
349
350 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
351 struct cpufreq_freqs *freqs, unsigned int state)
352 {
353 BUG_ON(irqs_disabled());
354
355 if (cpufreq_disabled())
356 return;
357
358 freqs->flags = cpufreq_driver->flags;
359 pr_debug("notification %u of frequency transition to %u kHz\n",
360 state, freqs->new);
361
362 switch (state) {
363
364 case CPUFREQ_PRECHANGE:
365 /* detect if the driver reported a value as "old frequency"
366 * which is not equal to what the cpufreq core thinks is
367 * "old frequency".
368 */
369 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
370 if ((policy) && (policy->cpu == freqs->cpu) &&
371 (policy->cur) && (policy->cur != freqs->old)) {
372 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
373 freqs->old, policy->cur);
374 freqs->old = policy->cur;
375 }
376 }
377 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
378 CPUFREQ_PRECHANGE, freqs);
379 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
380 break;
381
382 case CPUFREQ_POSTCHANGE:
383 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
384 pr_debug("FREQ: %lu - CPU: %lu\n",
385 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
386 trace_cpu_frequency(freqs->new, freqs->cpu);
387 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
388 CPUFREQ_POSTCHANGE, freqs);
389 if (likely(policy) && likely(policy->cpu == freqs->cpu))
390 policy->cur = freqs->new;
391 break;
392 }
393 }
394
395 /**
396 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
397 * on frequency transition.
398 *
399 * This function calls the transition notifiers and the "adjust_jiffies"
400 * function. It is called twice on all CPU frequency changes that have
401 * external effects.
402 */
403 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
404 struct cpufreq_freqs *freqs, unsigned int state)
405 {
406 for_each_cpu(freqs->cpu, policy->cpus)
407 __cpufreq_notify_transition(policy, freqs, state);
408 }
409
410 /* Do post notifications when there are chances that transition has failed */
411 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
412 struct cpufreq_freqs *freqs, int transition_failed)
413 {
414 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
415 if (!transition_failed)
416 return;
417
418 swap(freqs->old, freqs->new);
419 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
420 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
421 }
422
423 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
424 struct cpufreq_freqs *freqs)
425 {
426
427 /*
428 * Catch double invocations of _begin() which lead to self-deadlock.
429 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
430 * doesn't invoke _begin() on their behalf, and hence the chances of
431 * double invocations are very low. Moreover, there are scenarios
432 * where these checks can emit false-positive warnings in these
433 * drivers; so we avoid that by skipping them altogether.
434 */
435 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
436 && current == policy->transition_task);
437
438 wait:
439 wait_event(policy->transition_wait, !policy->transition_ongoing);
440
441 spin_lock(&policy->transition_lock);
442
443 if (unlikely(policy->transition_ongoing)) {
444 spin_unlock(&policy->transition_lock);
445 goto wait;
446 }
447
448 policy->transition_ongoing = true;
449 policy->transition_task = current;
450
451 spin_unlock(&policy->transition_lock);
452
453 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
454 }
455 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
456
457 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
458 struct cpufreq_freqs *freqs, int transition_failed)
459 {
460 if (unlikely(WARN_ON(!policy->transition_ongoing)))
461 return;
462
463 cpufreq_notify_post_transition(policy, freqs, transition_failed);
464
465 policy->transition_ongoing = false;
466 policy->transition_task = NULL;
467
468 wake_up(&policy->transition_wait);
469 }
470 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
471
472
473 /*********************************************************************
474 * SYSFS INTERFACE *
475 *********************************************************************/
476 static ssize_t show_boost(struct kobject *kobj,
477 struct attribute *attr, char *buf)
478 {
479 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
480 }
481
482 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
483 const char *buf, size_t count)
484 {
485 int ret, enable;
486
487 ret = sscanf(buf, "%d", &enable);
488 if (ret != 1 || enable < 0 || enable > 1)
489 return -EINVAL;
490
491 if (cpufreq_boost_trigger_state(enable)) {
492 pr_err("%s: Cannot %s BOOST!\n",
493 __func__, enable ? "enable" : "disable");
494 return -EINVAL;
495 }
496
497 pr_debug("%s: cpufreq BOOST %s\n",
498 __func__, enable ? "enabled" : "disabled");
499
500 return count;
501 }
502 define_one_global_rw(boost);
503
504 static struct cpufreq_governor *find_governor(const char *str_governor)
505 {
506 struct cpufreq_governor *t;
507
508 for_each_governor(t)
509 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
510 return t;
511
512 return NULL;
513 }
514
515 /**
516 * cpufreq_parse_governor - parse a governor string
517 */
518 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
519 struct cpufreq_governor **governor)
520 {
521 int err = -EINVAL;
522
523 if (cpufreq_driver->setpolicy) {
524 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
525 *policy = CPUFREQ_POLICY_PERFORMANCE;
526 err = 0;
527 } else if (!strncasecmp(str_governor, "powersave",
528 CPUFREQ_NAME_LEN)) {
529 *policy = CPUFREQ_POLICY_POWERSAVE;
530 err = 0;
531 }
532 } else {
533 struct cpufreq_governor *t;
534
535 mutex_lock(&cpufreq_governor_mutex);
536
537 t = find_governor(str_governor);
538
539 if (t == NULL) {
540 int ret;
541
542 mutex_unlock(&cpufreq_governor_mutex);
543 ret = request_module("cpufreq_%s", str_governor);
544 mutex_lock(&cpufreq_governor_mutex);
545
546 if (ret == 0)
547 t = find_governor(str_governor);
548 }
549
550 if (t != NULL) {
551 *governor = t;
552 err = 0;
553 }
554
555 mutex_unlock(&cpufreq_governor_mutex);
556 }
557 return err;
558 }
559
560 /**
561 * cpufreq_per_cpu_attr_read() / show_##file_name() -
562 * print out cpufreq information
563 *
564 * Write out information from cpufreq_driver->policy[cpu]; object must be
565 * "unsigned int".
566 */
567
568 #define show_one(file_name, object) \
569 static ssize_t show_##file_name \
570 (struct cpufreq_policy *policy, char *buf) \
571 { \
572 return sprintf(buf, "%u\n", policy->object); \
573 }
574
575 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
576 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
577 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
578 show_one(scaling_min_freq, min);
579 show_one(scaling_max_freq, max);
580
581 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
582 {
583 ssize_t ret;
584
585 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
586 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
587 else
588 ret = sprintf(buf, "%u\n", policy->cur);
589 return ret;
590 }
591
592 static int cpufreq_set_policy(struct cpufreq_policy *policy,
593 struct cpufreq_policy *new_policy);
594
595 /**
596 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
597 */
598 #define store_one(file_name, object) \
599 static ssize_t store_##file_name \
600 (struct cpufreq_policy *policy, const char *buf, size_t count) \
601 { \
602 int ret, temp; \
603 struct cpufreq_policy new_policy; \
604 \
605 memcpy(&new_policy, policy, sizeof(*policy)); \
606 \
607 ret = sscanf(buf, "%u", &new_policy.object); \
608 if (ret != 1) \
609 return -EINVAL; \
610 \
611 temp = new_policy.object; \
612 ret = cpufreq_set_policy(policy, &new_policy); \
613 if (!ret) \
614 policy->user_policy.object = temp; \
615 \
616 return ret ? ret : count; \
617 }
618
619 store_one(scaling_min_freq, min);
620 store_one(scaling_max_freq, max);
621
622 /**
623 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
624 */
625 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
626 char *buf)
627 {
628 unsigned int cur_freq = __cpufreq_get(policy);
629 if (!cur_freq)
630 return sprintf(buf, "<unknown>");
631 return sprintf(buf, "%u\n", cur_freq);
632 }
633
634 /**
635 * show_scaling_governor - show the current policy for the specified CPU
636 */
637 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
638 {
639 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
640 return sprintf(buf, "powersave\n");
641 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
642 return sprintf(buf, "performance\n");
643 else if (policy->governor)
644 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
645 policy->governor->name);
646 return -EINVAL;
647 }
648
649 /**
650 * store_scaling_governor - store policy for the specified CPU
651 */
652 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
653 const char *buf, size_t count)
654 {
655 int ret;
656 char str_governor[16];
657 struct cpufreq_policy new_policy;
658
659 memcpy(&new_policy, policy, sizeof(*policy));
660
661 ret = sscanf(buf, "%15s", str_governor);
662 if (ret != 1)
663 return -EINVAL;
664
665 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
666 &new_policy.governor))
667 return -EINVAL;
668
669 ret = cpufreq_set_policy(policy, &new_policy);
670 return ret ? ret : count;
671 }
672
673 /**
674 * show_scaling_driver - show the cpufreq driver currently loaded
675 */
676 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
677 {
678 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
679 }
680
681 /**
682 * show_scaling_available_governors - show the available CPUfreq governors
683 */
684 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
685 char *buf)
686 {
687 ssize_t i = 0;
688 struct cpufreq_governor *t;
689
690 if (!has_target()) {
691 i += sprintf(buf, "performance powersave");
692 goto out;
693 }
694
695 for_each_governor(t) {
696 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
697 - (CPUFREQ_NAME_LEN + 2)))
698 goto out;
699 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
700 }
701 out:
702 i += sprintf(&buf[i], "\n");
703 return i;
704 }
705
706 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
707 {
708 ssize_t i = 0;
709 unsigned int cpu;
710
711 for_each_cpu(cpu, mask) {
712 if (i)
713 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
714 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
715 if (i >= (PAGE_SIZE - 5))
716 break;
717 }
718 i += sprintf(&buf[i], "\n");
719 return i;
720 }
721 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
722
723 /**
724 * show_related_cpus - show the CPUs affected by each transition even if
725 * hw coordination is in use
726 */
727 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
728 {
729 return cpufreq_show_cpus(policy->related_cpus, buf);
730 }
731
732 /**
733 * show_affected_cpus - show the CPUs affected by each transition
734 */
735 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
736 {
737 return cpufreq_show_cpus(policy->cpus, buf);
738 }
739
740 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
741 const char *buf, size_t count)
742 {
743 unsigned int freq = 0;
744 unsigned int ret;
745
746 if (!policy->governor || !policy->governor->store_setspeed)
747 return -EINVAL;
748
749 ret = sscanf(buf, "%u", &freq);
750 if (ret != 1)
751 return -EINVAL;
752
753 policy->governor->store_setspeed(policy, freq);
754
755 return count;
756 }
757
758 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
759 {
760 if (!policy->governor || !policy->governor->show_setspeed)
761 return sprintf(buf, "<unsupported>\n");
762
763 return policy->governor->show_setspeed(policy, buf);
764 }
765
766 /**
767 * show_bios_limit - show the current cpufreq HW/BIOS limitation
768 */
769 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
770 {
771 unsigned int limit;
772 int ret;
773 if (cpufreq_driver->bios_limit) {
774 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
775 if (!ret)
776 return sprintf(buf, "%u\n", limit);
777 }
778 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
779 }
780
781 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
782 cpufreq_freq_attr_ro(cpuinfo_min_freq);
783 cpufreq_freq_attr_ro(cpuinfo_max_freq);
784 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
785 cpufreq_freq_attr_ro(scaling_available_governors);
786 cpufreq_freq_attr_ro(scaling_driver);
787 cpufreq_freq_attr_ro(scaling_cur_freq);
788 cpufreq_freq_attr_ro(bios_limit);
789 cpufreq_freq_attr_ro(related_cpus);
790 cpufreq_freq_attr_ro(affected_cpus);
791 cpufreq_freq_attr_rw(scaling_min_freq);
792 cpufreq_freq_attr_rw(scaling_max_freq);
793 cpufreq_freq_attr_rw(scaling_governor);
794 cpufreq_freq_attr_rw(scaling_setspeed);
795
796 static struct attribute *default_attrs[] = {
797 &cpuinfo_min_freq.attr,
798 &cpuinfo_max_freq.attr,
799 &cpuinfo_transition_latency.attr,
800 &scaling_min_freq.attr,
801 &scaling_max_freq.attr,
802 &affected_cpus.attr,
803 &related_cpus.attr,
804 &scaling_governor.attr,
805 &scaling_driver.attr,
806 &scaling_available_governors.attr,
807 &scaling_setspeed.attr,
808 NULL
809 };
810
811 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
812 #define to_attr(a) container_of(a, struct freq_attr, attr)
813
814 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
815 {
816 struct cpufreq_policy *policy = to_policy(kobj);
817 struct freq_attr *fattr = to_attr(attr);
818 ssize_t ret;
819
820 down_read(&policy->rwsem);
821
822 if (fattr->show)
823 ret = fattr->show(policy, buf);
824 else
825 ret = -EIO;
826
827 up_read(&policy->rwsem);
828
829 return ret;
830 }
831
832 static ssize_t store(struct kobject *kobj, struct attribute *attr,
833 const char *buf, size_t count)
834 {
835 struct cpufreq_policy *policy = to_policy(kobj);
836 struct freq_attr *fattr = to_attr(attr);
837 ssize_t ret = -EINVAL;
838
839 get_online_cpus();
840
841 if (!cpu_online(policy->cpu))
842 goto unlock;
843
844 down_write(&policy->rwsem);
845
846 if (fattr->store)
847 ret = fattr->store(policy, buf, count);
848 else
849 ret = -EIO;
850
851 up_write(&policy->rwsem);
852 unlock:
853 put_online_cpus();
854
855 return ret;
856 }
857
858 static void cpufreq_sysfs_release(struct kobject *kobj)
859 {
860 struct cpufreq_policy *policy = to_policy(kobj);
861 pr_debug("last reference is dropped\n");
862 complete(&policy->kobj_unregister);
863 }
864
865 static const struct sysfs_ops sysfs_ops = {
866 .show = show,
867 .store = store,
868 };
869
870 static struct kobj_type ktype_cpufreq = {
871 .sysfs_ops = &sysfs_ops,
872 .default_attrs = default_attrs,
873 .release = cpufreq_sysfs_release,
874 };
875
876 struct kobject *cpufreq_global_kobject;
877 EXPORT_SYMBOL(cpufreq_global_kobject);
878
879 static int cpufreq_global_kobject_usage;
880
881 int cpufreq_get_global_kobject(void)
882 {
883 if (!cpufreq_global_kobject_usage++)
884 return kobject_add(cpufreq_global_kobject,
885 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
886
887 return 0;
888 }
889 EXPORT_SYMBOL(cpufreq_get_global_kobject);
890
891 void cpufreq_put_global_kobject(void)
892 {
893 if (!--cpufreq_global_kobject_usage)
894 kobject_del(cpufreq_global_kobject);
895 }
896 EXPORT_SYMBOL(cpufreq_put_global_kobject);
897
898 int cpufreq_sysfs_create_file(const struct attribute *attr)
899 {
900 int ret = cpufreq_get_global_kobject();
901
902 if (!ret) {
903 ret = sysfs_create_file(cpufreq_global_kobject, attr);
904 if (ret)
905 cpufreq_put_global_kobject();
906 }
907
908 return ret;
909 }
910 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
911
912 void cpufreq_sysfs_remove_file(const struct attribute *attr)
913 {
914 sysfs_remove_file(cpufreq_global_kobject, attr);
915 cpufreq_put_global_kobject();
916 }
917 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
918
919 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
920 {
921 struct device *cpu_dev;
922
923 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
924
925 if (!policy)
926 return 0;
927
928 cpu_dev = get_cpu_device(cpu);
929 if (WARN_ON(!cpu_dev))
930 return 0;
931
932 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
933 }
934
935 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
936 {
937 struct device *cpu_dev;
938
939 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
940
941 cpu_dev = get_cpu_device(cpu);
942 if (WARN_ON(!cpu_dev))
943 return;
944
945 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
946 }
947
948 /* Add/remove symlinks for all related CPUs */
949 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
950 {
951 unsigned int j;
952 int ret = 0;
953
954 /* Some related CPUs might not be present (physically hotplugged) */
955 for_each_cpu(j, policy->real_cpus) {
956 if (j == policy->kobj_cpu)
957 continue;
958
959 ret = add_cpu_dev_symlink(policy, j);
960 if (ret)
961 break;
962 }
963
964 return ret;
965 }
966
967 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
968 {
969 unsigned int j;
970
971 /* Some related CPUs might not be present (physically hotplugged) */
972 for_each_cpu(j, policy->real_cpus) {
973 if (j == policy->kobj_cpu)
974 continue;
975
976 remove_cpu_dev_symlink(policy, j);
977 }
978 }
979
980 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
981 {
982 struct freq_attr **drv_attr;
983 int ret = 0;
984
985 /* set up files for this cpu device */
986 drv_attr = cpufreq_driver->attr;
987 while (drv_attr && *drv_attr) {
988 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
989 if (ret)
990 return ret;
991 drv_attr++;
992 }
993 if (cpufreq_driver->get) {
994 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
995 if (ret)
996 return ret;
997 }
998
999 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1000 if (ret)
1001 return ret;
1002
1003 if (cpufreq_driver->bios_limit) {
1004 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1005 if (ret)
1006 return ret;
1007 }
1008
1009 return cpufreq_add_dev_symlink(policy);
1010 }
1011
1012 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1013 {
1014 struct cpufreq_governor *gov = NULL;
1015 struct cpufreq_policy new_policy;
1016
1017 memcpy(&new_policy, policy, sizeof(*policy));
1018
1019 /* Update governor of new_policy to the governor used before hotplug */
1020 gov = find_governor(policy->last_governor);
1021 if (gov)
1022 pr_debug("Restoring governor %s for cpu %d\n",
1023 policy->governor->name, policy->cpu);
1024 else
1025 gov = CPUFREQ_DEFAULT_GOVERNOR;
1026
1027 new_policy.governor = gov;
1028
1029 /* Use the default policy if its valid. */
1030 if (cpufreq_driver->setpolicy)
1031 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
1032
1033 /* set default policy */
1034 return cpufreq_set_policy(policy, &new_policy);
1035 }
1036
1037 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1038 {
1039 int ret = 0;
1040
1041 /* Has this CPU been taken care of already? */
1042 if (cpumask_test_cpu(cpu, policy->cpus))
1043 return 0;
1044
1045 if (has_target()) {
1046 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1047 if (ret) {
1048 pr_err("%s: Failed to stop governor\n", __func__);
1049 return ret;
1050 }
1051 }
1052
1053 down_write(&policy->rwsem);
1054 cpumask_set_cpu(cpu, policy->cpus);
1055 up_write(&policy->rwsem);
1056
1057 if (has_target()) {
1058 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1059 if (!ret)
1060 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1061
1062 if (ret) {
1063 pr_err("%s: Failed to start governor\n", __func__);
1064 return ret;
1065 }
1066 }
1067
1068 return 0;
1069 }
1070
1071 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1072 {
1073 struct device *dev = get_cpu_device(cpu);
1074 struct cpufreq_policy *policy;
1075 int ret;
1076
1077 if (WARN_ON(!dev))
1078 return NULL;
1079
1080 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1081 if (!policy)
1082 return NULL;
1083
1084 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1085 goto err_free_policy;
1086
1087 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1088 goto err_free_cpumask;
1089
1090 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1091 goto err_free_rcpumask;
1092
1093 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &dev->kobj,
1094 "cpufreq");
1095 if (ret) {
1096 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1097 goto err_free_real_cpus;
1098 }
1099
1100 INIT_LIST_HEAD(&policy->policy_list);
1101 init_rwsem(&policy->rwsem);
1102 spin_lock_init(&policy->transition_lock);
1103 init_waitqueue_head(&policy->transition_wait);
1104 init_completion(&policy->kobj_unregister);
1105 INIT_WORK(&policy->update, handle_update);
1106
1107 policy->cpu = cpu;
1108
1109 /* Set this once on allocation */
1110 policy->kobj_cpu = cpu;
1111
1112 return policy;
1113
1114 err_free_real_cpus:
1115 free_cpumask_var(policy->real_cpus);
1116 err_free_rcpumask:
1117 free_cpumask_var(policy->related_cpus);
1118 err_free_cpumask:
1119 free_cpumask_var(policy->cpus);
1120 err_free_policy:
1121 kfree(policy);
1122
1123 return NULL;
1124 }
1125
1126 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1127 {
1128 struct kobject *kobj;
1129 struct completion *cmp;
1130
1131 if (notify)
1132 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1133 CPUFREQ_REMOVE_POLICY, policy);
1134
1135 down_write(&policy->rwsem);
1136 cpufreq_remove_dev_symlink(policy);
1137 kobj = &policy->kobj;
1138 cmp = &policy->kobj_unregister;
1139 up_write(&policy->rwsem);
1140 kobject_put(kobj);
1141
1142 /*
1143 * We need to make sure that the underlying kobj is
1144 * actually not referenced anymore by anybody before we
1145 * proceed with unloading.
1146 */
1147 pr_debug("waiting for dropping of refcount\n");
1148 wait_for_completion(cmp);
1149 pr_debug("wait complete\n");
1150 }
1151
1152 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1153 {
1154 unsigned long flags;
1155 int cpu;
1156
1157 /* Remove policy from list */
1158 write_lock_irqsave(&cpufreq_driver_lock, flags);
1159 list_del(&policy->policy_list);
1160
1161 for_each_cpu(cpu, policy->related_cpus)
1162 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1163 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1164
1165 cpufreq_policy_put_kobj(policy, notify);
1166 free_cpumask_var(policy->real_cpus);
1167 free_cpumask_var(policy->related_cpus);
1168 free_cpumask_var(policy->cpus);
1169 kfree(policy);
1170 }
1171
1172 static int cpufreq_online(unsigned int cpu)
1173 {
1174 struct cpufreq_policy *policy;
1175 bool new_policy;
1176 unsigned long flags;
1177 unsigned int j;
1178 int ret;
1179
1180 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1181
1182 /* Check if this CPU already has a policy to manage it */
1183 policy = per_cpu(cpufreq_cpu_data, cpu);
1184 if (policy) {
1185 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1186 if (!policy_is_inactive(policy))
1187 return cpufreq_add_policy_cpu(policy, cpu);
1188
1189 /* This is the only online CPU for the policy. Start over. */
1190 new_policy = false;
1191 down_write(&policy->rwsem);
1192 policy->cpu = cpu;
1193 policy->governor = NULL;
1194 up_write(&policy->rwsem);
1195 } else {
1196 new_policy = true;
1197 policy = cpufreq_policy_alloc(cpu);
1198 if (!policy)
1199 return -ENOMEM;
1200 }
1201
1202 cpumask_copy(policy->cpus, cpumask_of(cpu));
1203
1204 /* call driver. From then on the cpufreq must be able
1205 * to accept all calls to ->verify and ->setpolicy for this CPU
1206 */
1207 ret = cpufreq_driver->init(policy);
1208 if (ret) {
1209 pr_debug("initialization failed\n");
1210 goto out_free_policy;
1211 }
1212
1213 down_write(&policy->rwsem);
1214
1215 if (new_policy) {
1216 /* related_cpus should at least include policy->cpus. */
1217 cpumask_copy(policy->related_cpus, policy->cpus);
1218 /* Remember CPUs present at the policy creation time. */
1219 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1220 }
1221
1222 /*
1223 * affected cpus must always be the one, which are online. We aren't
1224 * managing offline cpus here.
1225 */
1226 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1227
1228 if (new_policy) {
1229 policy->user_policy.min = policy->min;
1230 policy->user_policy.max = policy->max;
1231
1232 write_lock_irqsave(&cpufreq_driver_lock, flags);
1233 for_each_cpu(j, policy->related_cpus)
1234 per_cpu(cpufreq_cpu_data, j) = policy;
1235 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1236 }
1237
1238 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1239 policy->cur = cpufreq_driver->get(policy->cpu);
1240 if (!policy->cur) {
1241 pr_err("%s: ->get() failed\n", __func__);
1242 goto out_exit_policy;
1243 }
1244 }
1245
1246 /*
1247 * Sometimes boot loaders set CPU frequency to a value outside of
1248 * frequency table present with cpufreq core. In such cases CPU might be
1249 * unstable if it has to run on that frequency for long duration of time
1250 * and so its better to set it to a frequency which is specified in
1251 * freq-table. This also makes cpufreq stats inconsistent as
1252 * cpufreq-stats would fail to register because current frequency of CPU
1253 * isn't found in freq-table.
1254 *
1255 * Because we don't want this change to effect boot process badly, we go
1256 * for the next freq which is >= policy->cur ('cur' must be set by now,
1257 * otherwise we will end up setting freq to lowest of the table as 'cur'
1258 * is initialized to zero).
1259 *
1260 * We are passing target-freq as "policy->cur - 1" otherwise
1261 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1262 * equal to target-freq.
1263 */
1264 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1265 && has_target()) {
1266 /* Are we running at unknown frequency ? */
1267 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1268 if (ret == -EINVAL) {
1269 /* Warn user and fix it */
1270 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1271 __func__, policy->cpu, policy->cur);
1272 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1273 CPUFREQ_RELATION_L);
1274
1275 /*
1276 * Reaching here after boot in a few seconds may not
1277 * mean that system will remain stable at "unknown"
1278 * frequency for longer duration. Hence, a BUG_ON().
1279 */
1280 BUG_ON(ret);
1281 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1282 __func__, policy->cpu, policy->cur);
1283 }
1284 }
1285
1286 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1287 CPUFREQ_START, policy);
1288
1289 if (new_policy) {
1290 ret = cpufreq_add_dev_interface(policy);
1291 if (ret)
1292 goto out_exit_policy;
1293 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1294 CPUFREQ_CREATE_POLICY, policy);
1295
1296 write_lock_irqsave(&cpufreq_driver_lock, flags);
1297 list_add(&policy->policy_list, &cpufreq_policy_list);
1298 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1299 }
1300
1301 ret = cpufreq_init_policy(policy);
1302 if (ret) {
1303 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1304 __func__, cpu, ret);
1305 /* cpufreq_policy_free() will notify based on this */
1306 new_policy = false;
1307 goto out_exit_policy;
1308 }
1309
1310 up_write(&policy->rwsem);
1311
1312 kobject_uevent(&policy->kobj, KOBJ_ADD);
1313
1314 /* Callback for handling stuff after policy is ready */
1315 if (cpufreq_driver->ready)
1316 cpufreq_driver->ready(policy);
1317
1318 pr_debug("initialization complete\n");
1319
1320 return 0;
1321
1322 out_exit_policy:
1323 up_write(&policy->rwsem);
1324
1325 if (cpufreq_driver->exit)
1326 cpufreq_driver->exit(policy);
1327 out_free_policy:
1328 cpufreq_policy_free(policy, !new_policy);
1329 return ret;
1330 }
1331
1332 /**
1333 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1334 * @dev: CPU device.
1335 * @sif: Subsystem interface structure pointer (not used)
1336 */
1337 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1338 {
1339 unsigned cpu = dev->id;
1340 int ret;
1341
1342 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1343
1344 if (cpu_online(cpu)) {
1345 ret = cpufreq_online(cpu);
1346 } else {
1347 /*
1348 * A hotplug notifier will follow and we will handle it as CPU
1349 * online then. For now, just create the sysfs link, unless
1350 * there is no policy or the link is already present.
1351 */
1352 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1353
1354 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1355 ? add_cpu_dev_symlink(policy, cpu) : 0;
1356 }
1357
1358 return ret;
1359 }
1360
1361 static void cpufreq_offline_prepare(unsigned int cpu)
1362 {
1363 struct cpufreq_policy *policy;
1364
1365 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1366
1367 policy = cpufreq_cpu_get_raw(cpu);
1368 if (!policy) {
1369 pr_debug("%s: No cpu_data found\n", __func__);
1370 return;
1371 }
1372
1373 if (has_target()) {
1374 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1375 if (ret)
1376 pr_err("%s: Failed to stop governor\n", __func__);
1377 }
1378
1379 down_write(&policy->rwsem);
1380 cpumask_clear_cpu(cpu, policy->cpus);
1381
1382 if (policy_is_inactive(policy)) {
1383 if (has_target())
1384 strncpy(policy->last_governor, policy->governor->name,
1385 CPUFREQ_NAME_LEN);
1386 } else if (cpu == policy->cpu) {
1387 /* Nominate new CPU */
1388 policy->cpu = cpumask_any(policy->cpus);
1389 }
1390 up_write(&policy->rwsem);
1391
1392 /* Start governor again for active policy */
1393 if (!policy_is_inactive(policy)) {
1394 if (has_target()) {
1395 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1396 if (!ret)
1397 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1398
1399 if (ret)
1400 pr_err("%s: Failed to start governor\n", __func__);
1401 }
1402 } else if (cpufreq_driver->stop_cpu) {
1403 cpufreq_driver->stop_cpu(policy);
1404 }
1405 }
1406
1407 static void cpufreq_offline_finish(unsigned int cpu)
1408 {
1409 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1410
1411 if (!policy) {
1412 pr_debug("%s: No cpu_data found\n", __func__);
1413 return;
1414 }
1415
1416 /* Only proceed for inactive policies */
1417 if (!policy_is_inactive(policy))
1418 return;
1419
1420 /* If cpu is last user of policy, free policy */
1421 if (has_target()) {
1422 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1423 if (ret)
1424 pr_err("%s: Failed to exit governor\n", __func__);
1425 }
1426
1427 /*
1428 * Perform the ->exit() even during light-weight tear-down,
1429 * since this is a core component, and is essential for the
1430 * subsequent light-weight ->init() to succeed.
1431 */
1432 if (cpufreq_driver->exit) {
1433 cpufreq_driver->exit(policy);
1434 policy->freq_table = NULL;
1435 }
1436 }
1437
1438 /**
1439 * cpufreq_remove_dev - remove a CPU device
1440 *
1441 * Removes the cpufreq interface for a CPU device.
1442 */
1443 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1444 {
1445 unsigned int cpu = dev->id;
1446 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1447
1448 if (!policy)
1449 return;
1450
1451 if (cpu_online(cpu)) {
1452 cpufreq_offline_prepare(cpu);
1453 cpufreq_offline_finish(cpu);
1454 }
1455
1456 cpumask_clear_cpu(cpu, policy->real_cpus);
1457
1458 if (cpumask_empty(policy->real_cpus)) {
1459 cpufreq_policy_free(policy, true);
1460 return;
1461 }
1462
1463 if (cpu != policy->kobj_cpu) {
1464 remove_cpu_dev_symlink(policy, cpu);
1465 } else {
1466 /*
1467 * The CPU owning the policy object is going away. Move it to
1468 * another suitable CPU.
1469 */
1470 unsigned int new_cpu = cpumask_first(policy->real_cpus);
1471 struct device *new_dev = get_cpu_device(new_cpu);
1472
1473 dev_dbg(dev, "%s: Moving policy object to CPU%u\n", __func__, new_cpu);
1474
1475 sysfs_remove_link(&new_dev->kobj, "cpufreq");
1476 policy->kobj_cpu = new_cpu;
1477 WARN_ON(kobject_move(&policy->kobj, &new_dev->kobj));
1478 }
1479 }
1480
1481 static void handle_update(struct work_struct *work)
1482 {
1483 struct cpufreq_policy *policy =
1484 container_of(work, struct cpufreq_policy, update);
1485 unsigned int cpu = policy->cpu;
1486 pr_debug("handle_update for cpu %u called\n", cpu);
1487 cpufreq_update_policy(cpu);
1488 }
1489
1490 /**
1491 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1492 * in deep trouble.
1493 * @policy: policy managing CPUs
1494 * @new_freq: CPU frequency the CPU actually runs at
1495 *
1496 * We adjust to current frequency first, and need to clean up later.
1497 * So either call to cpufreq_update_policy() or schedule handle_update()).
1498 */
1499 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1500 unsigned int new_freq)
1501 {
1502 struct cpufreq_freqs freqs;
1503
1504 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1505 policy->cur, new_freq);
1506
1507 freqs.old = policy->cur;
1508 freqs.new = new_freq;
1509
1510 cpufreq_freq_transition_begin(policy, &freqs);
1511 cpufreq_freq_transition_end(policy, &freqs, 0);
1512 }
1513
1514 /**
1515 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1516 * @cpu: CPU number
1517 *
1518 * This is the last known freq, without actually getting it from the driver.
1519 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1520 */
1521 unsigned int cpufreq_quick_get(unsigned int cpu)
1522 {
1523 struct cpufreq_policy *policy;
1524 unsigned int ret_freq = 0;
1525
1526 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1527 return cpufreq_driver->get(cpu);
1528
1529 policy = cpufreq_cpu_get(cpu);
1530 if (policy) {
1531 ret_freq = policy->cur;
1532 cpufreq_cpu_put(policy);
1533 }
1534
1535 return ret_freq;
1536 }
1537 EXPORT_SYMBOL(cpufreq_quick_get);
1538
1539 /**
1540 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1541 * @cpu: CPU number
1542 *
1543 * Just return the max possible frequency for a given CPU.
1544 */
1545 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1546 {
1547 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1548 unsigned int ret_freq = 0;
1549
1550 if (policy) {
1551 ret_freq = policy->max;
1552 cpufreq_cpu_put(policy);
1553 }
1554
1555 return ret_freq;
1556 }
1557 EXPORT_SYMBOL(cpufreq_quick_get_max);
1558
1559 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1560 {
1561 unsigned int ret_freq = 0;
1562
1563 if (!cpufreq_driver->get)
1564 return ret_freq;
1565
1566 ret_freq = cpufreq_driver->get(policy->cpu);
1567
1568 /* Updating inactive policies is invalid, so avoid doing that. */
1569 if (unlikely(policy_is_inactive(policy)))
1570 return ret_freq;
1571
1572 if (ret_freq && policy->cur &&
1573 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1574 /* verify no discrepancy between actual and
1575 saved value exists */
1576 if (unlikely(ret_freq != policy->cur)) {
1577 cpufreq_out_of_sync(policy, ret_freq);
1578 schedule_work(&policy->update);
1579 }
1580 }
1581
1582 return ret_freq;
1583 }
1584
1585 /**
1586 * cpufreq_get - get the current CPU frequency (in kHz)
1587 * @cpu: CPU number
1588 *
1589 * Get the CPU current (static) CPU frequency
1590 */
1591 unsigned int cpufreq_get(unsigned int cpu)
1592 {
1593 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1594 unsigned int ret_freq = 0;
1595
1596 if (policy) {
1597 down_read(&policy->rwsem);
1598 ret_freq = __cpufreq_get(policy);
1599 up_read(&policy->rwsem);
1600
1601 cpufreq_cpu_put(policy);
1602 }
1603
1604 return ret_freq;
1605 }
1606 EXPORT_SYMBOL(cpufreq_get);
1607
1608 static struct subsys_interface cpufreq_interface = {
1609 .name = "cpufreq",
1610 .subsys = &cpu_subsys,
1611 .add_dev = cpufreq_add_dev,
1612 .remove_dev = cpufreq_remove_dev,
1613 };
1614
1615 /*
1616 * In case platform wants some specific frequency to be configured
1617 * during suspend..
1618 */
1619 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1620 {
1621 int ret;
1622
1623 if (!policy->suspend_freq) {
1624 pr_debug("%s: suspend_freq not defined\n", __func__);
1625 return 0;
1626 }
1627
1628 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1629 policy->suspend_freq);
1630
1631 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1632 CPUFREQ_RELATION_H);
1633 if (ret)
1634 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1635 __func__, policy->suspend_freq, ret);
1636
1637 return ret;
1638 }
1639 EXPORT_SYMBOL(cpufreq_generic_suspend);
1640
1641 /**
1642 * cpufreq_suspend() - Suspend CPUFreq governors
1643 *
1644 * Called during system wide Suspend/Hibernate cycles for suspending governors
1645 * as some platforms can't change frequency after this point in suspend cycle.
1646 * Because some of the devices (like: i2c, regulators, etc) they use for
1647 * changing frequency are suspended quickly after this point.
1648 */
1649 void cpufreq_suspend(void)
1650 {
1651 struct cpufreq_policy *policy;
1652
1653 if (!cpufreq_driver)
1654 return;
1655
1656 if (!has_target())
1657 goto suspend;
1658
1659 pr_debug("%s: Suspending Governors\n", __func__);
1660
1661 for_each_active_policy(policy) {
1662 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1663 pr_err("%s: Failed to stop governor for policy: %p\n",
1664 __func__, policy);
1665 else if (cpufreq_driver->suspend
1666 && cpufreq_driver->suspend(policy))
1667 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1668 policy);
1669 }
1670
1671 suspend:
1672 cpufreq_suspended = true;
1673 }
1674
1675 /**
1676 * cpufreq_resume() - Resume CPUFreq governors
1677 *
1678 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1679 * are suspended with cpufreq_suspend().
1680 */
1681 void cpufreq_resume(void)
1682 {
1683 struct cpufreq_policy *policy;
1684
1685 if (!cpufreq_driver)
1686 return;
1687
1688 cpufreq_suspended = false;
1689
1690 if (!has_target())
1691 return;
1692
1693 pr_debug("%s: Resuming Governors\n", __func__);
1694
1695 for_each_active_policy(policy) {
1696 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1697 pr_err("%s: Failed to resume driver: %p\n", __func__,
1698 policy);
1699 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1700 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1701 pr_err("%s: Failed to start governor for policy: %p\n",
1702 __func__, policy);
1703 }
1704
1705 /*
1706 * schedule call cpufreq_update_policy() for first-online CPU, as that
1707 * wouldn't be hotplugged-out on suspend. It will verify that the
1708 * current freq is in sync with what we believe it to be.
1709 */
1710 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask));
1711 if (WARN_ON(!policy))
1712 return;
1713
1714 schedule_work(&policy->update);
1715 }
1716
1717 /**
1718 * cpufreq_get_current_driver - return current driver's name
1719 *
1720 * Return the name string of the currently loaded cpufreq driver
1721 * or NULL, if none.
1722 */
1723 const char *cpufreq_get_current_driver(void)
1724 {
1725 if (cpufreq_driver)
1726 return cpufreq_driver->name;
1727
1728 return NULL;
1729 }
1730 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1731
1732 /**
1733 * cpufreq_get_driver_data - return current driver data
1734 *
1735 * Return the private data of the currently loaded cpufreq
1736 * driver, or NULL if no cpufreq driver is loaded.
1737 */
1738 void *cpufreq_get_driver_data(void)
1739 {
1740 if (cpufreq_driver)
1741 return cpufreq_driver->driver_data;
1742
1743 return NULL;
1744 }
1745 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1746
1747 /*********************************************************************
1748 * NOTIFIER LISTS INTERFACE *
1749 *********************************************************************/
1750
1751 /**
1752 * cpufreq_register_notifier - register a driver with cpufreq
1753 * @nb: notifier function to register
1754 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1755 *
1756 * Add a driver to one of two lists: either a list of drivers that
1757 * are notified about clock rate changes (once before and once after
1758 * the transition), or a list of drivers that are notified about
1759 * changes in cpufreq policy.
1760 *
1761 * This function may sleep, and has the same return conditions as
1762 * blocking_notifier_chain_register.
1763 */
1764 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1765 {
1766 int ret;
1767
1768 if (cpufreq_disabled())
1769 return -EINVAL;
1770
1771 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1772
1773 switch (list) {
1774 case CPUFREQ_TRANSITION_NOTIFIER:
1775 ret = srcu_notifier_chain_register(
1776 &cpufreq_transition_notifier_list, nb);
1777 break;
1778 case CPUFREQ_POLICY_NOTIFIER:
1779 ret = blocking_notifier_chain_register(
1780 &cpufreq_policy_notifier_list, nb);
1781 break;
1782 default:
1783 ret = -EINVAL;
1784 }
1785
1786 return ret;
1787 }
1788 EXPORT_SYMBOL(cpufreq_register_notifier);
1789
1790 /**
1791 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1792 * @nb: notifier block to be unregistered
1793 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1794 *
1795 * Remove a driver from the CPU frequency notifier list.
1796 *
1797 * This function may sleep, and has the same return conditions as
1798 * blocking_notifier_chain_unregister.
1799 */
1800 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1801 {
1802 int ret;
1803
1804 if (cpufreq_disabled())
1805 return -EINVAL;
1806
1807 switch (list) {
1808 case CPUFREQ_TRANSITION_NOTIFIER:
1809 ret = srcu_notifier_chain_unregister(
1810 &cpufreq_transition_notifier_list, nb);
1811 break;
1812 case CPUFREQ_POLICY_NOTIFIER:
1813 ret = blocking_notifier_chain_unregister(
1814 &cpufreq_policy_notifier_list, nb);
1815 break;
1816 default:
1817 ret = -EINVAL;
1818 }
1819
1820 return ret;
1821 }
1822 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1823
1824
1825 /*********************************************************************
1826 * GOVERNORS *
1827 *********************************************************************/
1828
1829 /* Must set freqs->new to intermediate frequency */
1830 static int __target_intermediate(struct cpufreq_policy *policy,
1831 struct cpufreq_freqs *freqs, int index)
1832 {
1833 int ret;
1834
1835 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1836
1837 /* We don't need to switch to intermediate freq */
1838 if (!freqs->new)
1839 return 0;
1840
1841 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1842 __func__, policy->cpu, freqs->old, freqs->new);
1843
1844 cpufreq_freq_transition_begin(policy, freqs);
1845 ret = cpufreq_driver->target_intermediate(policy, index);
1846 cpufreq_freq_transition_end(policy, freqs, ret);
1847
1848 if (ret)
1849 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1850 __func__, ret);
1851
1852 return ret;
1853 }
1854
1855 static int __target_index(struct cpufreq_policy *policy,
1856 struct cpufreq_frequency_table *freq_table, int index)
1857 {
1858 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1859 unsigned int intermediate_freq = 0;
1860 int retval = -EINVAL;
1861 bool notify;
1862
1863 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1864 if (notify) {
1865 /* Handle switching to intermediate frequency */
1866 if (cpufreq_driver->get_intermediate) {
1867 retval = __target_intermediate(policy, &freqs, index);
1868 if (retval)
1869 return retval;
1870
1871 intermediate_freq = freqs.new;
1872 /* Set old freq to intermediate */
1873 if (intermediate_freq)
1874 freqs.old = freqs.new;
1875 }
1876
1877 freqs.new = freq_table[index].frequency;
1878 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1879 __func__, policy->cpu, freqs.old, freqs.new);
1880
1881 cpufreq_freq_transition_begin(policy, &freqs);
1882 }
1883
1884 retval = cpufreq_driver->target_index(policy, index);
1885 if (retval)
1886 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1887 retval);
1888
1889 if (notify) {
1890 cpufreq_freq_transition_end(policy, &freqs, retval);
1891
1892 /*
1893 * Failed after setting to intermediate freq? Driver should have
1894 * reverted back to initial frequency and so should we. Check
1895 * here for intermediate_freq instead of get_intermediate, in
1896 * case we haven't switched to intermediate freq at all.
1897 */
1898 if (unlikely(retval && intermediate_freq)) {
1899 freqs.old = intermediate_freq;
1900 freqs.new = policy->restore_freq;
1901 cpufreq_freq_transition_begin(policy, &freqs);
1902 cpufreq_freq_transition_end(policy, &freqs, 0);
1903 }
1904 }
1905
1906 return retval;
1907 }
1908
1909 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1910 unsigned int target_freq,
1911 unsigned int relation)
1912 {
1913 unsigned int old_target_freq = target_freq;
1914 int retval = -EINVAL;
1915
1916 if (cpufreq_disabled())
1917 return -ENODEV;
1918
1919 /* Make sure that target_freq is within supported range */
1920 if (target_freq > policy->max)
1921 target_freq = policy->max;
1922 if (target_freq < policy->min)
1923 target_freq = policy->min;
1924
1925 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1926 policy->cpu, target_freq, relation, old_target_freq);
1927
1928 /*
1929 * This might look like a redundant call as we are checking it again
1930 * after finding index. But it is left intentionally for cases where
1931 * exactly same freq is called again and so we can save on few function
1932 * calls.
1933 */
1934 if (target_freq == policy->cur)
1935 return 0;
1936
1937 /* Save last value to restore later on errors */
1938 policy->restore_freq = policy->cur;
1939
1940 if (cpufreq_driver->target)
1941 retval = cpufreq_driver->target(policy, target_freq, relation);
1942 else if (cpufreq_driver->target_index) {
1943 struct cpufreq_frequency_table *freq_table;
1944 int index;
1945
1946 freq_table = cpufreq_frequency_get_table(policy->cpu);
1947 if (unlikely(!freq_table)) {
1948 pr_err("%s: Unable to find freq_table\n", __func__);
1949 goto out;
1950 }
1951
1952 retval = cpufreq_frequency_table_target(policy, freq_table,
1953 target_freq, relation, &index);
1954 if (unlikely(retval)) {
1955 pr_err("%s: Unable to find matching freq\n", __func__);
1956 goto out;
1957 }
1958
1959 if (freq_table[index].frequency == policy->cur) {
1960 retval = 0;
1961 goto out;
1962 }
1963
1964 retval = __target_index(policy, freq_table, index);
1965 }
1966
1967 out:
1968 return retval;
1969 }
1970 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1971
1972 int cpufreq_driver_target(struct cpufreq_policy *policy,
1973 unsigned int target_freq,
1974 unsigned int relation)
1975 {
1976 int ret = -EINVAL;
1977
1978 down_write(&policy->rwsem);
1979
1980 ret = __cpufreq_driver_target(policy, target_freq, relation);
1981
1982 up_write(&policy->rwsem);
1983
1984 return ret;
1985 }
1986 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1987
1988 static int __cpufreq_governor(struct cpufreq_policy *policy,
1989 unsigned int event)
1990 {
1991 int ret;
1992
1993 /* Only must be defined when default governor is known to have latency
1994 restrictions, like e.g. conservative or ondemand.
1995 That this is the case is already ensured in Kconfig
1996 */
1997 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1998 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1999 #else
2000 struct cpufreq_governor *gov = NULL;
2001 #endif
2002
2003 /* Don't start any governor operations if we are entering suspend */
2004 if (cpufreq_suspended)
2005 return 0;
2006 /*
2007 * Governor might not be initiated here if ACPI _PPC changed
2008 * notification happened, so check it.
2009 */
2010 if (!policy->governor)
2011 return -EINVAL;
2012
2013 if (policy->governor->max_transition_latency &&
2014 policy->cpuinfo.transition_latency >
2015 policy->governor->max_transition_latency) {
2016 if (!gov)
2017 return -EINVAL;
2018 else {
2019 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2020 policy->governor->name, gov->name);
2021 policy->governor = gov;
2022 }
2023 }
2024
2025 if (event == CPUFREQ_GOV_POLICY_INIT)
2026 if (!try_module_get(policy->governor->owner))
2027 return -EINVAL;
2028
2029 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
2030
2031 mutex_lock(&cpufreq_governor_lock);
2032 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
2033 || (!policy->governor_enabled
2034 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
2035 mutex_unlock(&cpufreq_governor_lock);
2036 return -EBUSY;
2037 }
2038
2039 if (event == CPUFREQ_GOV_STOP)
2040 policy->governor_enabled = false;
2041 else if (event == CPUFREQ_GOV_START)
2042 policy->governor_enabled = true;
2043
2044 mutex_unlock(&cpufreq_governor_lock);
2045
2046 ret = policy->governor->governor(policy, event);
2047
2048 if (!ret) {
2049 if (event == CPUFREQ_GOV_POLICY_INIT)
2050 policy->governor->initialized++;
2051 else if (event == CPUFREQ_GOV_POLICY_EXIT)
2052 policy->governor->initialized--;
2053 } else {
2054 /* Restore original values */
2055 mutex_lock(&cpufreq_governor_lock);
2056 if (event == CPUFREQ_GOV_STOP)
2057 policy->governor_enabled = true;
2058 else if (event == CPUFREQ_GOV_START)
2059 policy->governor_enabled = false;
2060 mutex_unlock(&cpufreq_governor_lock);
2061 }
2062
2063 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2064 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2065 module_put(policy->governor->owner);
2066
2067 return ret;
2068 }
2069
2070 int cpufreq_register_governor(struct cpufreq_governor *governor)
2071 {
2072 int err;
2073
2074 if (!governor)
2075 return -EINVAL;
2076
2077 if (cpufreq_disabled())
2078 return -ENODEV;
2079
2080 mutex_lock(&cpufreq_governor_mutex);
2081
2082 governor->initialized = 0;
2083 err = -EBUSY;
2084 if (!find_governor(governor->name)) {
2085 err = 0;
2086 list_add(&governor->governor_list, &cpufreq_governor_list);
2087 }
2088
2089 mutex_unlock(&cpufreq_governor_mutex);
2090 return err;
2091 }
2092 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2093
2094 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2095 {
2096 struct cpufreq_policy *policy;
2097 unsigned long flags;
2098
2099 if (!governor)
2100 return;
2101
2102 if (cpufreq_disabled())
2103 return;
2104
2105 /* clear last_governor for all inactive policies */
2106 read_lock_irqsave(&cpufreq_driver_lock, flags);
2107 for_each_inactive_policy(policy) {
2108 if (!strcmp(policy->last_governor, governor->name)) {
2109 policy->governor = NULL;
2110 strcpy(policy->last_governor, "\0");
2111 }
2112 }
2113 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2114
2115 mutex_lock(&cpufreq_governor_mutex);
2116 list_del(&governor->governor_list);
2117 mutex_unlock(&cpufreq_governor_mutex);
2118 return;
2119 }
2120 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2121
2122
2123 /*********************************************************************
2124 * POLICY INTERFACE *
2125 *********************************************************************/
2126
2127 /**
2128 * cpufreq_get_policy - get the current cpufreq_policy
2129 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2130 * is written
2131 *
2132 * Reads the current cpufreq policy.
2133 */
2134 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2135 {
2136 struct cpufreq_policy *cpu_policy;
2137 if (!policy)
2138 return -EINVAL;
2139
2140 cpu_policy = cpufreq_cpu_get(cpu);
2141 if (!cpu_policy)
2142 return -EINVAL;
2143
2144 memcpy(policy, cpu_policy, sizeof(*policy));
2145
2146 cpufreq_cpu_put(cpu_policy);
2147 return 0;
2148 }
2149 EXPORT_SYMBOL(cpufreq_get_policy);
2150
2151 /*
2152 * policy : current policy.
2153 * new_policy: policy to be set.
2154 */
2155 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2156 struct cpufreq_policy *new_policy)
2157 {
2158 struct cpufreq_governor *old_gov;
2159 int ret;
2160
2161 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2162 new_policy->cpu, new_policy->min, new_policy->max);
2163
2164 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2165
2166 /*
2167 * This check works well when we store new min/max freq attributes,
2168 * because new_policy is a copy of policy with one field updated.
2169 */
2170 if (new_policy->min > new_policy->max)
2171 return -EINVAL;
2172
2173 /* verify the cpu speed can be set within this limit */
2174 ret = cpufreq_driver->verify(new_policy);
2175 if (ret)
2176 return ret;
2177
2178 /* adjust if necessary - all reasons */
2179 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2180 CPUFREQ_ADJUST, new_policy);
2181
2182 /*
2183 * verify the cpu speed can be set within this limit, which might be
2184 * different to the first one
2185 */
2186 ret = cpufreq_driver->verify(new_policy);
2187 if (ret)
2188 return ret;
2189
2190 /* notification of the new policy */
2191 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2192 CPUFREQ_NOTIFY, new_policy);
2193
2194 policy->min = new_policy->min;
2195 policy->max = new_policy->max;
2196
2197 pr_debug("new min and max freqs are %u - %u kHz\n",
2198 policy->min, policy->max);
2199
2200 if (cpufreq_driver->setpolicy) {
2201 policy->policy = new_policy->policy;
2202 pr_debug("setting range\n");
2203 return cpufreq_driver->setpolicy(new_policy);
2204 }
2205
2206 if (new_policy->governor == policy->governor)
2207 goto out;
2208
2209 pr_debug("governor switch\n");
2210
2211 /* save old, working values */
2212 old_gov = policy->governor;
2213 /* end old governor */
2214 if (old_gov) {
2215 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2216 if (ret) {
2217 /* This can happen due to race with other operations */
2218 pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2219 __func__, old_gov->name, ret);
2220 return ret;
2221 }
2222
2223 up_write(&policy->rwsem);
2224 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2225 down_write(&policy->rwsem);
2226
2227 if (ret) {
2228 pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2229 __func__, old_gov->name, ret);
2230 return ret;
2231 }
2232 }
2233
2234 /* start new governor */
2235 policy->governor = new_policy->governor;
2236 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2237 if (!ret) {
2238 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
2239 if (!ret)
2240 goto out;
2241
2242 up_write(&policy->rwsem);
2243 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2244 down_write(&policy->rwsem);
2245 }
2246
2247 /* new governor failed, so re-start old one */
2248 pr_debug("starting governor %s failed\n", policy->governor->name);
2249 if (old_gov) {
2250 policy->governor = old_gov;
2251 if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2252 policy->governor = NULL;
2253 else
2254 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2255 }
2256
2257 return ret;
2258
2259 out:
2260 pr_debug("governor: change or update limits\n");
2261 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2262 }
2263
2264 /**
2265 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2266 * @cpu: CPU which shall be re-evaluated
2267 *
2268 * Useful for policy notifiers which have different necessities
2269 * at different times.
2270 */
2271 int cpufreq_update_policy(unsigned int cpu)
2272 {
2273 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2274 struct cpufreq_policy new_policy;
2275 int ret;
2276
2277 if (!policy)
2278 return -ENODEV;
2279
2280 down_write(&policy->rwsem);
2281
2282 pr_debug("updating policy for CPU %u\n", cpu);
2283 memcpy(&new_policy, policy, sizeof(*policy));
2284 new_policy.min = policy->user_policy.min;
2285 new_policy.max = policy->user_policy.max;
2286
2287 /*
2288 * BIOS might change freq behind our back
2289 * -> ask driver for current freq and notify governors about a change
2290 */
2291 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2292 new_policy.cur = cpufreq_driver->get(cpu);
2293 if (WARN_ON(!new_policy.cur)) {
2294 ret = -EIO;
2295 goto unlock;
2296 }
2297
2298 if (!policy->cur) {
2299 pr_debug("Driver did not initialize current freq\n");
2300 policy->cur = new_policy.cur;
2301 } else {
2302 if (policy->cur != new_policy.cur && has_target())
2303 cpufreq_out_of_sync(policy, new_policy.cur);
2304 }
2305 }
2306
2307 ret = cpufreq_set_policy(policy, &new_policy);
2308
2309 unlock:
2310 up_write(&policy->rwsem);
2311
2312 cpufreq_cpu_put(policy);
2313 return ret;
2314 }
2315 EXPORT_SYMBOL(cpufreq_update_policy);
2316
2317 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2318 unsigned long action, void *hcpu)
2319 {
2320 unsigned int cpu = (unsigned long)hcpu;
2321
2322 switch (action & ~CPU_TASKS_FROZEN) {
2323 case CPU_ONLINE:
2324 cpufreq_online(cpu);
2325 break;
2326
2327 case CPU_DOWN_PREPARE:
2328 cpufreq_offline_prepare(cpu);
2329 break;
2330
2331 case CPU_POST_DEAD:
2332 cpufreq_offline_finish(cpu);
2333 break;
2334
2335 case CPU_DOWN_FAILED:
2336 cpufreq_online(cpu);
2337 break;
2338 }
2339 return NOTIFY_OK;
2340 }
2341
2342 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2343 .notifier_call = cpufreq_cpu_callback,
2344 };
2345
2346 /*********************************************************************
2347 * BOOST *
2348 *********************************************************************/
2349 static int cpufreq_boost_set_sw(int state)
2350 {
2351 struct cpufreq_frequency_table *freq_table;
2352 struct cpufreq_policy *policy;
2353 int ret = -EINVAL;
2354
2355 for_each_active_policy(policy) {
2356 freq_table = cpufreq_frequency_get_table(policy->cpu);
2357 if (freq_table) {
2358 ret = cpufreq_frequency_table_cpuinfo(policy,
2359 freq_table);
2360 if (ret) {
2361 pr_err("%s: Policy frequency update failed\n",
2362 __func__);
2363 break;
2364 }
2365 policy->user_policy.max = policy->max;
2366 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2367 }
2368 }
2369
2370 return ret;
2371 }
2372
2373 int cpufreq_boost_trigger_state(int state)
2374 {
2375 unsigned long flags;
2376 int ret = 0;
2377
2378 if (cpufreq_driver->boost_enabled == state)
2379 return 0;
2380
2381 write_lock_irqsave(&cpufreq_driver_lock, flags);
2382 cpufreq_driver->boost_enabled = state;
2383 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2384
2385 ret = cpufreq_driver->set_boost(state);
2386 if (ret) {
2387 write_lock_irqsave(&cpufreq_driver_lock, flags);
2388 cpufreq_driver->boost_enabled = !state;
2389 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2390
2391 pr_err("%s: Cannot %s BOOST\n",
2392 __func__, state ? "enable" : "disable");
2393 }
2394
2395 return ret;
2396 }
2397
2398 int cpufreq_boost_supported(void)
2399 {
2400 if (likely(cpufreq_driver))
2401 return cpufreq_driver->boost_supported;
2402
2403 return 0;
2404 }
2405 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2406
2407 static int create_boost_sysfs_file(void)
2408 {
2409 int ret;
2410
2411 if (!cpufreq_boost_supported())
2412 return 0;
2413
2414 /*
2415 * Check if driver provides function to enable boost -
2416 * if not, use cpufreq_boost_set_sw as default
2417 */
2418 if (!cpufreq_driver->set_boost)
2419 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2420
2421 ret = cpufreq_sysfs_create_file(&boost.attr);
2422 if (ret)
2423 pr_err("%s: cannot register global BOOST sysfs file\n",
2424 __func__);
2425
2426 return ret;
2427 }
2428
2429 static void remove_boost_sysfs_file(void)
2430 {
2431 if (cpufreq_boost_supported())
2432 cpufreq_sysfs_remove_file(&boost.attr);
2433 }
2434
2435 int cpufreq_enable_boost_support(void)
2436 {
2437 if (!cpufreq_driver)
2438 return -EINVAL;
2439
2440 if (cpufreq_boost_supported())
2441 return 0;
2442
2443 cpufreq_driver->boost_supported = true;
2444
2445 /* This will get removed on driver unregister */
2446 return create_boost_sysfs_file();
2447 }
2448 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2449
2450 int cpufreq_boost_enabled(void)
2451 {
2452 return cpufreq_driver->boost_enabled;
2453 }
2454 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2455
2456 /*********************************************************************
2457 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2458 *********************************************************************/
2459
2460 /**
2461 * cpufreq_register_driver - register a CPU Frequency driver
2462 * @driver_data: A struct cpufreq_driver containing the values#
2463 * submitted by the CPU Frequency driver.
2464 *
2465 * Registers a CPU Frequency driver to this core code. This code
2466 * returns zero on success, -EBUSY when another driver got here first
2467 * (and isn't unregistered in the meantime).
2468 *
2469 */
2470 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2471 {
2472 unsigned long flags;
2473 int ret;
2474
2475 if (cpufreq_disabled())
2476 return -ENODEV;
2477
2478 if (!driver_data || !driver_data->verify || !driver_data->init ||
2479 !(driver_data->setpolicy || driver_data->target_index ||
2480 driver_data->target) ||
2481 (driver_data->setpolicy && (driver_data->target_index ||
2482 driver_data->target)) ||
2483 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2484 return -EINVAL;
2485
2486 pr_debug("trying to register driver %s\n", driver_data->name);
2487
2488 /* Protect against concurrent CPU online/offline. */
2489 get_online_cpus();
2490
2491 write_lock_irqsave(&cpufreq_driver_lock, flags);
2492 if (cpufreq_driver) {
2493 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2494 ret = -EEXIST;
2495 goto out;
2496 }
2497 cpufreq_driver = driver_data;
2498 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2499
2500 if (driver_data->setpolicy)
2501 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2502
2503 ret = create_boost_sysfs_file();
2504 if (ret)
2505 goto err_null_driver;
2506
2507 ret = subsys_interface_register(&cpufreq_interface);
2508 if (ret)
2509 goto err_boost_unreg;
2510
2511 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2512 list_empty(&cpufreq_policy_list)) {
2513 /* if all ->init() calls failed, unregister */
2514 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2515 driver_data->name);
2516 goto err_if_unreg;
2517 }
2518
2519 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2520 pr_debug("driver %s up and running\n", driver_data->name);
2521
2522 out:
2523 put_online_cpus();
2524 return ret;
2525
2526 err_if_unreg:
2527 subsys_interface_unregister(&cpufreq_interface);
2528 err_boost_unreg:
2529 remove_boost_sysfs_file();
2530 err_null_driver:
2531 write_lock_irqsave(&cpufreq_driver_lock, flags);
2532 cpufreq_driver = NULL;
2533 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2534 goto out;
2535 }
2536 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2537
2538 /**
2539 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2540 *
2541 * Unregister the current CPUFreq driver. Only call this if you have
2542 * the right to do so, i.e. if you have succeeded in initialising before!
2543 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2544 * currently not initialised.
2545 */
2546 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2547 {
2548 unsigned long flags;
2549
2550 if (!cpufreq_driver || (driver != cpufreq_driver))
2551 return -EINVAL;
2552
2553 pr_debug("unregistering driver %s\n", driver->name);
2554
2555 /* Protect against concurrent cpu hotplug */
2556 get_online_cpus();
2557 subsys_interface_unregister(&cpufreq_interface);
2558 remove_boost_sysfs_file();
2559 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2560
2561 write_lock_irqsave(&cpufreq_driver_lock, flags);
2562
2563 cpufreq_driver = NULL;
2564
2565 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2566 put_online_cpus();
2567
2568 return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2571
2572 /*
2573 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2574 * or mutexes when secondary CPUs are halted.
2575 */
2576 static struct syscore_ops cpufreq_syscore_ops = {
2577 .shutdown = cpufreq_suspend,
2578 };
2579
2580 static int __init cpufreq_core_init(void)
2581 {
2582 if (cpufreq_disabled())
2583 return -ENODEV;
2584
2585 cpufreq_global_kobject = kobject_create();
2586 BUG_ON(!cpufreq_global_kobject);
2587
2588 register_syscore_ops(&cpufreq_syscore_ops);
2589
2590 return 0;
2591 }
2592 core_initcall(cpufreq_core_init);
This page took 0.116547 seconds and 5 git commands to generate.