Merge remote-tracking branches 'regulator/topic/tps65218' and 'regulator/topic/tps800...
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 init_cpufreq_transition_notifier_list_called = true;
99 return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 return off;
107 }
108 void disable_cpufreq(void)
109 {
110 off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113
114 bool have_governor_per_policy(void)
115 {
116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 u64 idle_time;
132 u64 cur_wall_time;
133 u64 busy_time;
134
135 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
136
137 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143
144 idle_time = cur_wall_time - busy_time;
145 if (wall)
146 *wall = cputime_to_usecs(cur_wall_time);
147
148 return cputime_to_usecs(idle_time);
149 }
150
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154
155 if (idle_time == -1ULL)
156 return get_cpu_idle_time_jiffy(cpu, wall);
157 else if (!io_busy)
158 idle_time += get_cpu_iowait_time_us(cpu, wall);
159
160 return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163
164 /*
165 * This is a generic cpufreq init() routine which can be used by cpufreq
166 * drivers of SMP systems. It will do following:
167 * - validate & show freq table passed
168 * - set policies transition latency
169 * - policy->cpus with all possible CPUs
170 */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172 struct cpufreq_frequency_table *table,
173 unsigned int transition_latency)
174 {
175 int ret;
176
177 ret = cpufreq_table_validate_and_show(policy, table);
178 if (ret) {
179 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180 return ret;
181 }
182
183 policy->cpuinfo.transition_latency = transition_latency;
184
185 /*
186 * The driver only supports the SMP configuration where all processors
187 * share the clock and voltage and clock.
188 */
189 cpumask_setall(policy->cpus);
190
191 return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198
199 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206
207 if (!policy || IS_ERR(policy->clk)) {
208 pr_err("%s: No %s associated to cpu: %d\n",
209 __func__, policy ? "clk" : "policy", cpu);
210 return 0;
211 }
212
213 return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216
217 /**
218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219 *
220 * @cpu: cpu to find policy for.
221 *
222 * This returns policy for 'cpu', returns NULL if it doesn't exist.
223 * It also increments the kobject reference count to mark it busy and so would
224 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226 * freed as that depends on the kobj count.
227 *
228 * Return: A valid policy on success, otherwise NULL on failure.
229 */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232 struct cpufreq_policy *policy = NULL;
233 unsigned long flags;
234
235 if (WARN_ON(cpu >= nr_cpu_ids))
236 return NULL;
237
238 /* get the cpufreq driver */
239 read_lock_irqsave(&cpufreq_driver_lock, flags);
240
241 if (cpufreq_driver) {
242 /* get the CPU */
243 policy = cpufreq_cpu_get_raw(cpu);
244 if (policy)
245 kobject_get(&policy->kobj);
246 }
247
248 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249
250 return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253
254 /**
255 * cpufreq_cpu_put: Decrements the usage count of a policy
256 *
257 * @policy: policy earlier returned by cpufreq_cpu_get().
258 *
259 * This decrements the kobject reference count incremented earlier by calling
260 * cpufreq_cpu_get().
261 */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264 kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267
268 /*********************************************************************
269 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
270 *********************************************************************/
271
272 /**
273 * adjust_jiffies - adjust the system "loops_per_jiffy"
274 *
275 * This function alters the system "loops_per_jiffy" for the clock
276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
277 * systems as each CPU might be scaled differently. So, use the arch
278 * per-CPU loops_per_jiffy value wherever possible.
279 */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283 static unsigned long l_p_j_ref;
284 static unsigned int l_p_j_ref_freq;
285
286 if (ci->flags & CPUFREQ_CONST_LOOPS)
287 return;
288
289 if (!l_p_j_ref_freq) {
290 l_p_j_ref = loops_per_jiffy;
291 l_p_j_ref_freq = ci->old;
292 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293 l_p_j_ref, l_p_j_ref_freq);
294 }
295 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 ci->new);
298 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299 loops_per_jiffy, ci->new);
300 }
301 #endif
302 }
303
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305 struct cpufreq_freqs *freqs, unsigned int state)
306 {
307 BUG_ON(irqs_disabled());
308
309 if (cpufreq_disabled())
310 return;
311
312 freqs->flags = cpufreq_driver->flags;
313 pr_debug("notification %u of frequency transition to %u kHz\n",
314 state, freqs->new);
315
316 switch (state) {
317
318 case CPUFREQ_PRECHANGE:
319 /* detect if the driver reported a value as "old frequency"
320 * which is not equal to what the cpufreq core thinks is
321 * "old frequency".
322 */
323 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324 if ((policy) && (policy->cpu == freqs->cpu) &&
325 (policy->cur) && (policy->cur != freqs->old)) {
326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 freqs->old, policy->cur);
328 freqs->old = policy->cur;
329 }
330 }
331 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332 CPUFREQ_PRECHANGE, freqs);
333 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334 break;
335
336 case CPUFREQ_POSTCHANGE:
337 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338 pr_debug("FREQ: %lu - CPU: %lu\n",
339 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340 trace_cpu_frequency(freqs->new, freqs->cpu);
341 cpufreq_stats_record_transition(policy, freqs->new);
342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343 CPUFREQ_POSTCHANGE, freqs);
344 if (likely(policy) && likely(policy->cpu == freqs->cpu))
345 policy->cur = freqs->new;
346 break;
347 }
348 }
349
350 /**
351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352 * on frequency transition.
353 *
354 * This function calls the transition notifiers and the "adjust_jiffies"
355 * function. It is called twice on all CPU frequency changes that have
356 * external effects.
357 */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359 struct cpufreq_freqs *freqs, unsigned int state)
360 {
361 for_each_cpu(freqs->cpu, policy->cpus)
362 __cpufreq_notify_transition(policy, freqs, state);
363 }
364
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367 struct cpufreq_freqs *freqs, int transition_failed)
368 {
369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 if (!transition_failed)
371 return;
372
373 swap(freqs->old, freqs->new);
374 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379 struct cpufreq_freqs *freqs)
380 {
381
382 /*
383 * Catch double invocations of _begin() which lead to self-deadlock.
384 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385 * doesn't invoke _begin() on their behalf, and hence the chances of
386 * double invocations are very low. Moreover, there are scenarios
387 * where these checks can emit false-positive warnings in these
388 * drivers; so we avoid that by skipping them altogether.
389 */
390 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391 && current == policy->transition_task);
392
393 wait:
394 wait_event(policy->transition_wait, !policy->transition_ongoing);
395
396 spin_lock(&policy->transition_lock);
397
398 if (unlikely(policy->transition_ongoing)) {
399 spin_unlock(&policy->transition_lock);
400 goto wait;
401 }
402
403 policy->transition_ongoing = true;
404 policy->transition_task = current;
405
406 spin_unlock(&policy->transition_lock);
407
408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413 struct cpufreq_freqs *freqs, int transition_failed)
414 {
415 if (unlikely(WARN_ON(!policy->transition_ongoing)))
416 return;
417
418 cpufreq_notify_post_transition(policy, freqs, transition_failed);
419
420 policy->transition_ongoing = false;
421 policy->transition_task = NULL;
422
423 wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428 * Fast frequency switching status count. Positive means "enabled", negative
429 * means "disabled" and 0 means "not decided yet".
430 */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
434 static void cpufreq_list_transition_notifiers(void)
435 {
436 struct notifier_block *nb;
437
438 pr_info("Registered transition notifiers:\n");
439
440 mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 pr_info("%pF\n", nb->notifier_call);
444
445 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450 * @policy: cpufreq policy to enable fast frequency switching for.
451 *
452 * Try to enable fast frequency switching for @policy.
453 *
454 * The attempt will fail if there is at least one transition notifier registered
455 * at this point, as fast frequency switching is quite fundamentally at odds
456 * with transition notifiers. Thus if successful, it will make registration of
457 * transition notifiers fail going forward.
458 */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 lockdep_assert_held(&policy->rwsem);
462
463 if (!policy->fast_switch_possible)
464 return;
465
466 mutex_lock(&cpufreq_fast_switch_lock);
467 if (cpufreq_fast_switch_count >= 0) {
468 cpufreq_fast_switch_count++;
469 policy->fast_switch_enabled = true;
470 } else {
471 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 policy->cpu);
473 cpufreq_list_transition_notifiers();
474 }
475 mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481 * @policy: cpufreq policy to disable fast frequency switching for.
482 */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 mutex_lock(&cpufreq_fast_switch_lock);
486 if (policy->fast_switch_enabled) {
487 policy->fast_switch_enabled = false;
488 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 cpufreq_fast_switch_count--;
490 }
491 mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
495 /**
496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497 * one.
498 * @target_freq: target frequency to resolve.
499 *
500 * The target to driver frequency mapping is cached in the policy.
501 *
502 * Return: Lowest driver-supported frequency greater than or equal to the
503 * given target_freq, subject to policy (min/max) and driver limitations.
504 */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506 unsigned int target_freq)
507 {
508 target_freq = clamp_val(target_freq, policy->min, policy->max);
509 policy->cached_target_freq = target_freq;
510
511 if (cpufreq_driver->target_index) {
512 int idx;
513
514 idx = cpufreq_frequency_table_target(policy, target_freq,
515 CPUFREQ_RELATION_L);
516 policy->cached_resolved_idx = idx;
517 return policy->freq_table[idx].frequency;
518 }
519
520 if (cpufreq_driver->resolve_freq)
521 return cpufreq_driver->resolve_freq(policy, target_freq);
522
523 return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526
527 /*********************************************************************
528 * SYSFS INTERFACE *
529 *********************************************************************/
530 static ssize_t show_boost(struct kobject *kobj,
531 struct attribute *attr, char *buf)
532 {
533 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
534 }
535
536 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
537 const char *buf, size_t count)
538 {
539 int ret, enable;
540
541 ret = sscanf(buf, "%d", &enable);
542 if (ret != 1 || enable < 0 || enable > 1)
543 return -EINVAL;
544
545 if (cpufreq_boost_trigger_state(enable)) {
546 pr_err("%s: Cannot %s BOOST!\n",
547 __func__, enable ? "enable" : "disable");
548 return -EINVAL;
549 }
550
551 pr_debug("%s: cpufreq BOOST %s\n",
552 __func__, enable ? "enabled" : "disabled");
553
554 return count;
555 }
556 define_one_global_rw(boost);
557
558 static struct cpufreq_governor *find_governor(const char *str_governor)
559 {
560 struct cpufreq_governor *t;
561
562 for_each_governor(t)
563 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
564 return t;
565
566 return NULL;
567 }
568
569 /**
570 * cpufreq_parse_governor - parse a governor string
571 */
572 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
573 struct cpufreq_governor **governor)
574 {
575 int err = -EINVAL;
576
577 if (cpufreq_driver->setpolicy) {
578 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
579 *policy = CPUFREQ_POLICY_PERFORMANCE;
580 err = 0;
581 } else if (!strncasecmp(str_governor, "powersave",
582 CPUFREQ_NAME_LEN)) {
583 *policy = CPUFREQ_POLICY_POWERSAVE;
584 err = 0;
585 }
586 } else {
587 struct cpufreq_governor *t;
588
589 mutex_lock(&cpufreq_governor_mutex);
590
591 t = find_governor(str_governor);
592
593 if (t == NULL) {
594 int ret;
595
596 mutex_unlock(&cpufreq_governor_mutex);
597 ret = request_module("cpufreq_%s", str_governor);
598 mutex_lock(&cpufreq_governor_mutex);
599
600 if (ret == 0)
601 t = find_governor(str_governor);
602 }
603
604 if (t != NULL) {
605 *governor = t;
606 err = 0;
607 }
608
609 mutex_unlock(&cpufreq_governor_mutex);
610 }
611 return err;
612 }
613
614 /**
615 * cpufreq_per_cpu_attr_read() / show_##file_name() -
616 * print out cpufreq information
617 *
618 * Write out information from cpufreq_driver->policy[cpu]; object must be
619 * "unsigned int".
620 */
621
622 #define show_one(file_name, object) \
623 static ssize_t show_##file_name \
624 (struct cpufreq_policy *policy, char *buf) \
625 { \
626 return sprintf(buf, "%u\n", policy->object); \
627 }
628
629 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
630 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
631 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
632 show_one(scaling_min_freq, min);
633 show_one(scaling_max_freq, max);
634
635 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
636 {
637 ssize_t ret;
638
639 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
640 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
641 else
642 ret = sprintf(buf, "%u\n", policy->cur);
643 return ret;
644 }
645
646 static int cpufreq_set_policy(struct cpufreq_policy *policy,
647 struct cpufreq_policy *new_policy);
648
649 /**
650 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
651 */
652 #define store_one(file_name, object) \
653 static ssize_t store_##file_name \
654 (struct cpufreq_policy *policy, const char *buf, size_t count) \
655 { \
656 int ret, temp; \
657 struct cpufreq_policy new_policy; \
658 \
659 memcpy(&new_policy, policy, sizeof(*policy)); \
660 \
661 ret = sscanf(buf, "%u", &new_policy.object); \
662 if (ret != 1) \
663 return -EINVAL; \
664 \
665 temp = new_policy.object; \
666 ret = cpufreq_set_policy(policy, &new_policy); \
667 if (!ret) \
668 policy->user_policy.object = temp; \
669 \
670 return ret ? ret : count; \
671 }
672
673 store_one(scaling_min_freq, min);
674 store_one(scaling_max_freq, max);
675
676 /**
677 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
678 */
679 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
680 char *buf)
681 {
682 unsigned int cur_freq = __cpufreq_get(policy);
683 if (!cur_freq)
684 return sprintf(buf, "<unknown>");
685 return sprintf(buf, "%u\n", cur_freq);
686 }
687
688 /**
689 * show_scaling_governor - show the current policy for the specified CPU
690 */
691 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
692 {
693 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
694 return sprintf(buf, "powersave\n");
695 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
696 return sprintf(buf, "performance\n");
697 else if (policy->governor)
698 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
699 policy->governor->name);
700 return -EINVAL;
701 }
702
703 /**
704 * store_scaling_governor - store policy for the specified CPU
705 */
706 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
707 const char *buf, size_t count)
708 {
709 int ret;
710 char str_governor[16];
711 struct cpufreq_policy new_policy;
712
713 memcpy(&new_policy, policy, sizeof(*policy));
714
715 ret = sscanf(buf, "%15s", str_governor);
716 if (ret != 1)
717 return -EINVAL;
718
719 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
720 &new_policy.governor))
721 return -EINVAL;
722
723 ret = cpufreq_set_policy(policy, &new_policy);
724 return ret ? ret : count;
725 }
726
727 /**
728 * show_scaling_driver - show the cpufreq driver currently loaded
729 */
730 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
731 {
732 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
733 }
734
735 /**
736 * show_scaling_available_governors - show the available CPUfreq governors
737 */
738 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
739 char *buf)
740 {
741 ssize_t i = 0;
742 struct cpufreq_governor *t;
743
744 if (!has_target()) {
745 i += sprintf(buf, "performance powersave");
746 goto out;
747 }
748
749 for_each_governor(t) {
750 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
751 - (CPUFREQ_NAME_LEN + 2)))
752 goto out;
753 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
754 }
755 out:
756 i += sprintf(&buf[i], "\n");
757 return i;
758 }
759
760 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
761 {
762 ssize_t i = 0;
763 unsigned int cpu;
764
765 for_each_cpu(cpu, mask) {
766 if (i)
767 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
768 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
769 if (i >= (PAGE_SIZE - 5))
770 break;
771 }
772 i += sprintf(&buf[i], "\n");
773 return i;
774 }
775 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
776
777 /**
778 * show_related_cpus - show the CPUs affected by each transition even if
779 * hw coordination is in use
780 */
781 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
782 {
783 return cpufreq_show_cpus(policy->related_cpus, buf);
784 }
785
786 /**
787 * show_affected_cpus - show the CPUs affected by each transition
788 */
789 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
790 {
791 return cpufreq_show_cpus(policy->cpus, buf);
792 }
793
794 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
795 const char *buf, size_t count)
796 {
797 unsigned int freq = 0;
798 unsigned int ret;
799
800 if (!policy->governor || !policy->governor->store_setspeed)
801 return -EINVAL;
802
803 ret = sscanf(buf, "%u", &freq);
804 if (ret != 1)
805 return -EINVAL;
806
807 policy->governor->store_setspeed(policy, freq);
808
809 return count;
810 }
811
812 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
813 {
814 if (!policy->governor || !policy->governor->show_setspeed)
815 return sprintf(buf, "<unsupported>\n");
816
817 return policy->governor->show_setspeed(policy, buf);
818 }
819
820 /**
821 * show_bios_limit - show the current cpufreq HW/BIOS limitation
822 */
823 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
824 {
825 unsigned int limit;
826 int ret;
827 if (cpufreq_driver->bios_limit) {
828 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
829 if (!ret)
830 return sprintf(buf, "%u\n", limit);
831 }
832 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
833 }
834
835 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
836 cpufreq_freq_attr_ro(cpuinfo_min_freq);
837 cpufreq_freq_attr_ro(cpuinfo_max_freq);
838 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
839 cpufreq_freq_attr_ro(scaling_available_governors);
840 cpufreq_freq_attr_ro(scaling_driver);
841 cpufreq_freq_attr_ro(scaling_cur_freq);
842 cpufreq_freq_attr_ro(bios_limit);
843 cpufreq_freq_attr_ro(related_cpus);
844 cpufreq_freq_attr_ro(affected_cpus);
845 cpufreq_freq_attr_rw(scaling_min_freq);
846 cpufreq_freq_attr_rw(scaling_max_freq);
847 cpufreq_freq_attr_rw(scaling_governor);
848 cpufreq_freq_attr_rw(scaling_setspeed);
849
850 static struct attribute *default_attrs[] = {
851 &cpuinfo_min_freq.attr,
852 &cpuinfo_max_freq.attr,
853 &cpuinfo_transition_latency.attr,
854 &scaling_min_freq.attr,
855 &scaling_max_freq.attr,
856 &affected_cpus.attr,
857 &related_cpus.attr,
858 &scaling_governor.attr,
859 &scaling_driver.attr,
860 &scaling_available_governors.attr,
861 &scaling_setspeed.attr,
862 NULL
863 };
864
865 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
866 #define to_attr(a) container_of(a, struct freq_attr, attr)
867
868 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
869 {
870 struct cpufreq_policy *policy = to_policy(kobj);
871 struct freq_attr *fattr = to_attr(attr);
872 ssize_t ret;
873
874 down_read(&policy->rwsem);
875 ret = fattr->show(policy, buf);
876 up_read(&policy->rwsem);
877
878 return ret;
879 }
880
881 static ssize_t store(struct kobject *kobj, struct attribute *attr,
882 const char *buf, size_t count)
883 {
884 struct cpufreq_policy *policy = to_policy(kobj);
885 struct freq_attr *fattr = to_attr(attr);
886 ssize_t ret = -EINVAL;
887
888 get_online_cpus();
889
890 if (cpu_online(policy->cpu)) {
891 down_write(&policy->rwsem);
892 ret = fattr->store(policy, buf, count);
893 up_write(&policy->rwsem);
894 }
895
896 put_online_cpus();
897
898 return ret;
899 }
900
901 static void cpufreq_sysfs_release(struct kobject *kobj)
902 {
903 struct cpufreq_policy *policy = to_policy(kobj);
904 pr_debug("last reference is dropped\n");
905 complete(&policy->kobj_unregister);
906 }
907
908 static const struct sysfs_ops sysfs_ops = {
909 .show = show,
910 .store = store,
911 };
912
913 static struct kobj_type ktype_cpufreq = {
914 .sysfs_ops = &sysfs_ops,
915 .default_attrs = default_attrs,
916 .release = cpufreq_sysfs_release,
917 };
918
919 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
920 {
921 struct device *cpu_dev;
922
923 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
924
925 if (!policy)
926 return 0;
927
928 cpu_dev = get_cpu_device(cpu);
929 if (WARN_ON(!cpu_dev))
930 return 0;
931
932 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
933 }
934
935 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
936 {
937 struct device *cpu_dev;
938
939 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
940
941 cpu_dev = get_cpu_device(cpu);
942 if (WARN_ON(!cpu_dev))
943 return;
944
945 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
946 }
947
948 /* Add/remove symlinks for all related CPUs */
949 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
950 {
951 unsigned int j;
952 int ret = 0;
953
954 /* Some related CPUs might not be present (physically hotplugged) */
955 for_each_cpu(j, policy->real_cpus) {
956 ret = add_cpu_dev_symlink(policy, j);
957 if (ret)
958 break;
959 }
960
961 return ret;
962 }
963
964 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
965 {
966 unsigned int j;
967
968 /* Some related CPUs might not be present (physically hotplugged) */
969 for_each_cpu(j, policy->real_cpus)
970 remove_cpu_dev_symlink(policy, j);
971 }
972
973 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
974 {
975 struct freq_attr **drv_attr;
976 int ret = 0;
977
978 /* set up files for this cpu device */
979 drv_attr = cpufreq_driver->attr;
980 while (drv_attr && *drv_attr) {
981 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
982 if (ret)
983 return ret;
984 drv_attr++;
985 }
986 if (cpufreq_driver->get) {
987 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
988 if (ret)
989 return ret;
990 }
991
992 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
993 if (ret)
994 return ret;
995
996 if (cpufreq_driver->bios_limit) {
997 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
998 if (ret)
999 return ret;
1000 }
1001
1002 return cpufreq_add_dev_symlink(policy);
1003 }
1004
1005 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1006 {
1007 return NULL;
1008 }
1009
1010 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1011 {
1012 struct cpufreq_governor *gov = NULL;
1013 struct cpufreq_policy new_policy;
1014
1015 memcpy(&new_policy, policy, sizeof(*policy));
1016
1017 /* Update governor of new_policy to the governor used before hotplug */
1018 gov = find_governor(policy->last_governor);
1019 if (gov) {
1020 pr_debug("Restoring governor %s for cpu %d\n",
1021 policy->governor->name, policy->cpu);
1022 } else {
1023 gov = cpufreq_default_governor();
1024 if (!gov)
1025 return -ENODATA;
1026 }
1027
1028 new_policy.governor = gov;
1029
1030 /* Use the default policy if there is no last_policy. */
1031 if (cpufreq_driver->setpolicy) {
1032 if (policy->last_policy)
1033 new_policy.policy = policy->last_policy;
1034 else
1035 cpufreq_parse_governor(gov->name, &new_policy.policy,
1036 NULL);
1037 }
1038 /* set default policy */
1039 return cpufreq_set_policy(policy, &new_policy);
1040 }
1041
1042 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1043 {
1044 int ret = 0;
1045
1046 /* Has this CPU been taken care of already? */
1047 if (cpumask_test_cpu(cpu, policy->cpus))
1048 return 0;
1049
1050 down_write(&policy->rwsem);
1051 if (has_target())
1052 cpufreq_stop_governor(policy);
1053
1054 cpumask_set_cpu(cpu, policy->cpus);
1055
1056 if (has_target()) {
1057 ret = cpufreq_start_governor(policy);
1058 if (ret)
1059 pr_err("%s: Failed to start governor\n", __func__);
1060 }
1061 up_write(&policy->rwsem);
1062 return ret;
1063 }
1064
1065 static void handle_update(struct work_struct *work)
1066 {
1067 struct cpufreq_policy *policy =
1068 container_of(work, struct cpufreq_policy, update);
1069 unsigned int cpu = policy->cpu;
1070 pr_debug("handle_update for cpu %u called\n", cpu);
1071 cpufreq_update_policy(cpu);
1072 }
1073
1074 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1075 {
1076 struct device *dev = get_cpu_device(cpu);
1077 struct cpufreq_policy *policy;
1078 int ret;
1079
1080 if (WARN_ON(!dev))
1081 return NULL;
1082
1083 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1084 if (!policy)
1085 return NULL;
1086
1087 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1088 goto err_free_policy;
1089
1090 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1091 goto err_free_cpumask;
1092
1093 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1094 goto err_free_rcpumask;
1095
1096 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1097 cpufreq_global_kobject, "policy%u", cpu);
1098 if (ret) {
1099 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1100 goto err_free_real_cpus;
1101 }
1102
1103 INIT_LIST_HEAD(&policy->policy_list);
1104 init_rwsem(&policy->rwsem);
1105 spin_lock_init(&policy->transition_lock);
1106 init_waitqueue_head(&policy->transition_wait);
1107 init_completion(&policy->kobj_unregister);
1108 INIT_WORK(&policy->update, handle_update);
1109
1110 policy->cpu = cpu;
1111 return policy;
1112
1113 err_free_real_cpus:
1114 free_cpumask_var(policy->real_cpus);
1115 err_free_rcpumask:
1116 free_cpumask_var(policy->related_cpus);
1117 err_free_cpumask:
1118 free_cpumask_var(policy->cpus);
1119 err_free_policy:
1120 kfree(policy);
1121
1122 return NULL;
1123 }
1124
1125 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1126 {
1127 struct kobject *kobj;
1128 struct completion *cmp;
1129
1130 if (notify)
1131 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1132 CPUFREQ_REMOVE_POLICY, policy);
1133
1134 down_write(&policy->rwsem);
1135 cpufreq_stats_free_table(policy);
1136 cpufreq_remove_dev_symlink(policy);
1137 kobj = &policy->kobj;
1138 cmp = &policy->kobj_unregister;
1139 up_write(&policy->rwsem);
1140 kobject_put(kobj);
1141
1142 /*
1143 * We need to make sure that the underlying kobj is
1144 * actually not referenced anymore by anybody before we
1145 * proceed with unloading.
1146 */
1147 pr_debug("waiting for dropping of refcount\n");
1148 wait_for_completion(cmp);
1149 pr_debug("wait complete\n");
1150 }
1151
1152 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1153 {
1154 unsigned long flags;
1155 int cpu;
1156
1157 /* Remove policy from list */
1158 write_lock_irqsave(&cpufreq_driver_lock, flags);
1159 list_del(&policy->policy_list);
1160
1161 for_each_cpu(cpu, policy->related_cpus)
1162 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1163 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1164
1165 cpufreq_policy_put_kobj(policy, notify);
1166 free_cpumask_var(policy->real_cpus);
1167 free_cpumask_var(policy->related_cpus);
1168 free_cpumask_var(policy->cpus);
1169 kfree(policy);
1170 }
1171
1172 static int cpufreq_online(unsigned int cpu)
1173 {
1174 struct cpufreq_policy *policy;
1175 bool new_policy;
1176 unsigned long flags;
1177 unsigned int j;
1178 int ret;
1179
1180 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1181
1182 /* Check if this CPU already has a policy to manage it */
1183 policy = per_cpu(cpufreq_cpu_data, cpu);
1184 if (policy) {
1185 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1186 if (!policy_is_inactive(policy))
1187 return cpufreq_add_policy_cpu(policy, cpu);
1188
1189 /* This is the only online CPU for the policy. Start over. */
1190 new_policy = false;
1191 down_write(&policy->rwsem);
1192 policy->cpu = cpu;
1193 policy->governor = NULL;
1194 up_write(&policy->rwsem);
1195 } else {
1196 new_policy = true;
1197 policy = cpufreq_policy_alloc(cpu);
1198 if (!policy)
1199 return -ENOMEM;
1200 }
1201
1202 cpumask_copy(policy->cpus, cpumask_of(cpu));
1203
1204 /* call driver. From then on the cpufreq must be able
1205 * to accept all calls to ->verify and ->setpolicy for this CPU
1206 */
1207 ret = cpufreq_driver->init(policy);
1208 if (ret) {
1209 pr_debug("initialization failed\n");
1210 goto out_free_policy;
1211 }
1212
1213 down_write(&policy->rwsem);
1214
1215 if (new_policy) {
1216 /* related_cpus should at least include policy->cpus. */
1217 cpumask_copy(policy->related_cpus, policy->cpus);
1218 /* Remember CPUs present at the policy creation time. */
1219 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1220 }
1221
1222 /*
1223 * affected cpus must always be the one, which are online. We aren't
1224 * managing offline cpus here.
1225 */
1226 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1227
1228 if (new_policy) {
1229 policy->user_policy.min = policy->min;
1230 policy->user_policy.max = policy->max;
1231
1232 write_lock_irqsave(&cpufreq_driver_lock, flags);
1233 for_each_cpu(j, policy->related_cpus)
1234 per_cpu(cpufreq_cpu_data, j) = policy;
1235 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1236 }
1237
1238 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1239 policy->cur = cpufreq_driver->get(policy->cpu);
1240 if (!policy->cur) {
1241 pr_err("%s: ->get() failed\n", __func__);
1242 goto out_exit_policy;
1243 }
1244 }
1245
1246 /*
1247 * Sometimes boot loaders set CPU frequency to a value outside of
1248 * frequency table present with cpufreq core. In such cases CPU might be
1249 * unstable if it has to run on that frequency for long duration of time
1250 * and so its better to set it to a frequency which is specified in
1251 * freq-table. This also makes cpufreq stats inconsistent as
1252 * cpufreq-stats would fail to register because current frequency of CPU
1253 * isn't found in freq-table.
1254 *
1255 * Because we don't want this change to effect boot process badly, we go
1256 * for the next freq which is >= policy->cur ('cur' must be set by now,
1257 * otherwise we will end up setting freq to lowest of the table as 'cur'
1258 * is initialized to zero).
1259 *
1260 * We are passing target-freq as "policy->cur - 1" otherwise
1261 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1262 * equal to target-freq.
1263 */
1264 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1265 && has_target()) {
1266 /* Are we running at unknown frequency ? */
1267 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1268 if (ret == -EINVAL) {
1269 /* Warn user and fix it */
1270 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1271 __func__, policy->cpu, policy->cur);
1272 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1273 CPUFREQ_RELATION_L);
1274
1275 /*
1276 * Reaching here after boot in a few seconds may not
1277 * mean that system will remain stable at "unknown"
1278 * frequency for longer duration. Hence, a BUG_ON().
1279 */
1280 BUG_ON(ret);
1281 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1282 __func__, policy->cpu, policy->cur);
1283 }
1284 }
1285
1286 if (new_policy) {
1287 ret = cpufreq_add_dev_interface(policy);
1288 if (ret)
1289 goto out_exit_policy;
1290
1291 cpufreq_stats_create_table(policy);
1292 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1293 CPUFREQ_CREATE_POLICY, policy);
1294
1295 write_lock_irqsave(&cpufreq_driver_lock, flags);
1296 list_add(&policy->policy_list, &cpufreq_policy_list);
1297 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1298 }
1299
1300 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1301 CPUFREQ_START, policy);
1302
1303 ret = cpufreq_init_policy(policy);
1304 if (ret) {
1305 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1306 __func__, cpu, ret);
1307 /* cpufreq_policy_free() will notify based on this */
1308 new_policy = false;
1309 goto out_exit_policy;
1310 }
1311
1312 up_write(&policy->rwsem);
1313
1314 kobject_uevent(&policy->kobj, KOBJ_ADD);
1315
1316 /* Callback for handling stuff after policy is ready */
1317 if (cpufreq_driver->ready)
1318 cpufreq_driver->ready(policy);
1319
1320 pr_debug("initialization complete\n");
1321
1322 return 0;
1323
1324 out_exit_policy:
1325 up_write(&policy->rwsem);
1326
1327 if (cpufreq_driver->exit)
1328 cpufreq_driver->exit(policy);
1329 out_free_policy:
1330 cpufreq_policy_free(policy, !new_policy);
1331 return ret;
1332 }
1333
1334 /**
1335 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1336 * @dev: CPU device.
1337 * @sif: Subsystem interface structure pointer (not used)
1338 */
1339 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1340 {
1341 struct cpufreq_policy *policy;
1342 unsigned cpu = dev->id;
1343
1344 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1345
1346 if (cpu_online(cpu))
1347 return cpufreq_online(cpu);
1348
1349 /*
1350 * A hotplug notifier will follow and we will handle it as CPU online
1351 * then. For now, just create the sysfs link, unless there is no policy
1352 * or the link is already present.
1353 */
1354 policy = per_cpu(cpufreq_cpu_data, cpu);
1355 if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1356 return 0;
1357
1358 return add_cpu_dev_symlink(policy, cpu);
1359 }
1360
1361 static void cpufreq_offline(unsigned int cpu)
1362 {
1363 struct cpufreq_policy *policy;
1364 int ret;
1365
1366 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1367
1368 policy = cpufreq_cpu_get_raw(cpu);
1369 if (!policy) {
1370 pr_debug("%s: No cpu_data found\n", __func__);
1371 return;
1372 }
1373
1374 down_write(&policy->rwsem);
1375 if (has_target())
1376 cpufreq_stop_governor(policy);
1377
1378 cpumask_clear_cpu(cpu, policy->cpus);
1379
1380 if (policy_is_inactive(policy)) {
1381 if (has_target())
1382 strncpy(policy->last_governor, policy->governor->name,
1383 CPUFREQ_NAME_LEN);
1384 else
1385 policy->last_policy = policy->policy;
1386 } else if (cpu == policy->cpu) {
1387 /* Nominate new CPU */
1388 policy->cpu = cpumask_any(policy->cpus);
1389 }
1390
1391 /* Start governor again for active policy */
1392 if (!policy_is_inactive(policy)) {
1393 if (has_target()) {
1394 ret = cpufreq_start_governor(policy);
1395 if (ret)
1396 pr_err("%s: Failed to start governor\n", __func__);
1397 }
1398
1399 goto unlock;
1400 }
1401
1402 if (cpufreq_driver->stop_cpu)
1403 cpufreq_driver->stop_cpu(policy);
1404
1405 if (has_target())
1406 cpufreq_exit_governor(policy);
1407
1408 /*
1409 * Perform the ->exit() even during light-weight tear-down,
1410 * since this is a core component, and is essential for the
1411 * subsequent light-weight ->init() to succeed.
1412 */
1413 if (cpufreq_driver->exit) {
1414 cpufreq_driver->exit(policy);
1415 policy->freq_table = NULL;
1416 }
1417
1418 unlock:
1419 up_write(&policy->rwsem);
1420 }
1421
1422 /**
1423 * cpufreq_remove_dev - remove a CPU device
1424 *
1425 * Removes the cpufreq interface for a CPU device.
1426 */
1427 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1428 {
1429 unsigned int cpu = dev->id;
1430 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1431
1432 if (!policy)
1433 return;
1434
1435 if (cpu_online(cpu))
1436 cpufreq_offline(cpu);
1437
1438 cpumask_clear_cpu(cpu, policy->real_cpus);
1439 remove_cpu_dev_symlink(policy, cpu);
1440
1441 if (cpumask_empty(policy->real_cpus))
1442 cpufreq_policy_free(policy, true);
1443 }
1444
1445 /**
1446 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1447 * in deep trouble.
1448 * @policy: policy managing CPUs
1449 * @new_freq: CPU frequency the CPU actually runs at
1450 *
1451 * We adjust to current frequency first, and need to clean up later.
1452 * So either call to cpufreq_update_policy() or schedule handle_update()).
1453 */
1454 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1455 unsigned int new_freq)
1456 {
1457 struct cpufreq_freqs freqs;
1458
1459 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1460 policy->cur, new_freq);
1461
1462 freqs.old = policy->cur;
1463 freqs.new = new_freq;
1464
1465 cpufreq_freq_transition_begin(policy, &freqs);
1466 cpufreq_freq_transition_end(policy, &freqs, 0);
1467 }
1468
1469 /**
1470 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1471 * @cpu: CPU number
1472 *
1473 * This is the last known freq, without actually getting it from the driver.
1474 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1475 */
1476 unsigned int cpufreq_quick_get(unsigned int cpu)
1477 {
1478 struct cpufreq_policy *policy;
1479 unsigned int ret_freq = 0;
1480 unsigned long flags;
1481
1482 read_lock_irqsave(&cpufreq_driver_lock, flags);
1483
1484 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1485 ret_freq = cpufreq_driver->get(cpu);
1486 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1487 return ret_freq;
1488 }
1489
1490 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1491
1492 policy = cpufreq_cpu_get(cpu);
1493 if (policy) {
1494 ret_freq = policy->cur;
1495 cpufreq_cpu_put(policy);
1496 }
1497
1498 return ret_freq;
1499 }
1500 EXPORT_SYMBOL(cpufreq_quick_get);
1501
1502 /**
1503 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1504 * @cpu: CPU number
1505 *
1506 * Just return the max possible frequency for a given CPU.
1507 */
1508 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1509 {
1510 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1511 unsigned int ret_freq = 0;
1512
1513 if (policy) {
1514 ret_freq = policy->max;
1515 cpufreq_cpu_put(policy);
1516 }
1517
1518 return ret_freq;
1519 }
1520 EXPORT_SYMBOL(cpufreq_quick_get_max);
1521
1522 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1523 {
1524 unsigned int ret_freq = 0;
1525
1526 if (!cpufreq_driver->get)
1527 return ret_freq;
1528
1529 ret_freq = cpufreq_driver->get(policy->cpu);
1530
1531 /*
1532 * Updating inactive policies is invalid, so avoid doing that. Also
1533 * if fast frequency switching is used with the given policy, the check
1534 * against policy->cur is pointless, so skip it in that case too.
1535 */
1536 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1537 return ret_freq;
1538
1539 if (ret_freq && policy->cur &&
1540 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1541 /* verify no discrepancy between actual and
1542 saved value exists */
1543 if (unlikely(ret_freq != policy->cur)) {
1544 cpufreq_out_of_sync(policy, ret_freq);
1545 schedule_work(&policy->update);
1546 }
1547 }
1548
1549 return ret_freq;
1550 }
1551
1552 /**
1553 * cpufreq_get - get the current CPU frequency (in kHz)
1554 * @cpu: CPU number
1555 *
1556 * Get the CPU current (static) CPU frequency
1557 */
1558 unsigned int cpufreq_get(unsigned int cpu)
1559 {
1560 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1561 unsigned int ret_freq = 0;
1562
1563 if (policy) {
1564 down_read(&policy->rwsem);
1565 ret_freq = __cpufreq_get(policy);
1566 up_read(&policy->rwsem);
1567
1568 cpufreq_cpu_put(policy);
1569 }
1570
1571 return ret_freq;
1572 }
1573 EXPORT_SYMBOL(cpufreq_get);
1574
1575 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1576 {
1577 unsigned int new_freq;
1578
1579 new_freq = cpufreq_driver->get(policy->cpu);
1580 if (!new_freq)
1581 return 0;
1582
1583 if (!policy->cur) {
1584 pr_debug("cpufreq: Driver did not initialize current freq\n");
1585 policy->cur = new_freq;
1586 } else if (policy->cur != new_freq && has_target()) {
1587 cpufreq_out_of_sync(policy, new_freq);
1588 }
1589
1590 return new_freq;
1591 }
1592
1593 static struct subsys_interface cpufreq_interface = {
1594 .name = "cpufreq",
1595 .subsys = &cpu_subsys,
1596 .add_dev = cpufreq_add_dev,
1597 .remove_dev = cpufreq_remove_dev,
1598 };
1599
1600 /*
1601 * In case platform wants some specific frequency to be configured
1602 * during suspend..
1603 */
1604 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1605 {
1606 int ret;
1607
1608 if (!policy->suspend_freq) {
1609 pr_debug("%s: suspend_freq not defined\n", __func__);
1610 return 0;
1611 }
1612
1613 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1614 policy->suspend_freq);
1615
1616 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1617 CPUFREQ_RELATION_H);
1618 if (ret)
1619 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1620 __func__, policy->suspend_freq, ret);
1621
1622 return ret;
1623 }
1624 EXPORT_SYMBOL(cpufreq_generic_suspend);
1625
1626 /**
1627 * cpufreq_suspend() - Suspend CPUFreq governors
1628 *
1629 * Called during system wide Suspend/Hibernate cycles for suspending governors
1630 * as some platforms can't change frequency after this point in suspend cycle.
1631 * Because some of the devices (like: i2c, regulators, etc) they use for
1632 * changing frequency are suspended quickly after this point.
1633 */
1634 void cpufreq_suspend(void)
1635 {
1636 struct cpufreq_policy *policy;
1637
1638 if (!cpufreq_driver)
1639 return;
1640
1641 if (!has_target() && !cpufreq_driver->suspend)
1642 goto suspend;
1643
1644 pr_debug("%s: Suspending Governors\n", __func__);
1645
1646 for_each_active_policy(policy) {
1647 if (has_target()) {
1648 down_write(&policy->rwsem);
1649 cpufreq_stop_governor(policy);
1650 up_write(&policy->rwsem);
1651 }
1652
1653 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1654 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1655 policy);
1656 }
1657
1658 suspend:
1659 cpufreq_suspended = true;
1660 }
1661
1662 /**
1663 * cpufreq_resume() - Resume CPUFreq governors
1664 *
1665 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1666 * are suspended with cpufreq_suspend().
1667 */
1668 void cpufreq_resume(void)
1669 {
1670 struct cpufreq_policy *policy;
1671 int ret;
1672
1673 if (!cpufreq_driver)
1674 return;
1675
1676 cpufreq_suspended = false;
1677
1678 if (!has_target() && !cpufreq_driver->resume)
1679 return;
1680
1681 pr_debug("%s: Resuming Governors\n", __func__);
1682
1683 for_each_active_policy(policy) {
1684 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1685 pr_err("%s: Failed to resume driver: %p\n", __func__,
1686 policy);
1687 } else if (has_target()) {
1688 down_write(&policy->rwsem);
1689 ret = cpufreq_start_governor(policy);
1690 up_write(&policy->rwsem);
1691
1692 if (ret)
1693 pr_err("%s: Failed to start governor for policy: %p\n",
1694 __func__, policy);
1695 }
1696 }
1697 }
1698
1699 /**
1700 * cpufreq_get_current_driver - return current driver's name
1701 *
1702 * Return the name string of the currently loaded cpufreq driver
1703 * or NULL, if none.
1704 */
1705 const char *cpufreq_get_current_driver(void)
1706 {
1707 if (cpufreq_driver)
1708 return cpufreq_driver->name;
1709
1710 return NULL;
1711 }
1712 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1713
1714 /**
1715 * cpufreq_get_driver_data - return current driver data
1716 *
1717 * Return the private data of the currently loaded cpufreq
1718 * driver, or NULL if no cpufreq driver is loaded.
1719 */
1720 void *cpufreq_get_driver_data(void)
1721 {
1722 if (cpufreq_driver)
1723 return cpufreq_driver->driver_data;
1724
1725 return NULL;
1726 }
1727 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1728
1729 /*********************************************************************
1730 * NOTIFIER LISTS INTERFACE *
1731 *********************************************************************/
1732
1733 /**
1734 * cpufreq_register_notifier - register a driver with cpufreq
1735 * @nb: notifier function to register
1736 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1737 *
1738 * Add a driver to one of two lists: either a list of drivers that
1739 * are notified about clock rate changes (once before and once after
1740 * the transition), or a list of drivers that are notified about
1741 * changes in cpufreq policy.
1742 *
1743 * This function may sleep, and has the same return conditions as
1744 * blocking_notifier_chain_register.
1745 */
1746 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1747 {
1748 int ret;
1749
1750 if (cpufreq_disabled())
1751 return -EINVAL;
1752
1753 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1754
1755 switch (list) {
1756 case CPUFREQ_TRANSITION_NOTIFIER:
1757 mutex_lock(&cpufreq_fast_switch_lock);
1758
1759 if (cpufreq_fast_switch_count > 0) {
1760 mutex_unlock(&cpufreq_fast_switch_lock);
1761 return -EBUSY;
1762 }
1763 ret = srcu_notifier_chain_register(
1764 &cpufreq_transition_notifier_list, nb);
1765 if (!ret)
1766 cpufreq_fast_switch_count--;
1767
1768 mutex_unlock(&cpufreq_fast_switch_lock);
1769 break;
1770 case CPUFREQ_POLICY_NOTIFIER:
1771 ret = blocking_notifier_chain_register(
1772 &cpufreq_policy_notifier_list, nb);
1773 break;
1774 default:
1775 ret = -EINVAL;
1776 }
1777
1778 return ret;
1779 }
1780 EXPORT_SYMBOL(cpufreq_register_notifier);
1781
1782 /**
1783 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1784 * @nb: notifier block to be unregistered
1785 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1786 *
1787 * Remove a driver from the CPU frequency notifier list.
1788 *
1789 * This function may sleep, and has the same return conditions as
1790 * blocking_notifier_chain_unregister.
1791 */
1792 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1793 {
1794 int ret;
1795
1796 if (cpufreq_disabled())
1797 return -EINVAL;
1798
1799 switch (list) {
1800 case CPUFREQ_TRANSITION_NOTIFIER:
1801 mutex_lock(&cpufreq_fast_switch_lock);
1802
1803 ret = srcu_notifier_chain_unregister(
1804 &cpufreq_transition_notifier_list, nb);
1805 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1806 cpufreq_fast_switch_count++;
1807
1808 mutex_unlock(&cpufreq_fast_switch_lock);
1809 break;
1810 case CPUFREQ_POLICY_NOTIFIER:
1811 ret = blocking_notifier_chain_unregister(
1812 &cpufreq_policy_notifier_list, nb);
1813 break;
1814 default:
1815 ret = -EINVAL;
1816 }
1817
1818 return ret;
1819 }
1820 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1821
1822
1823 /*********************************************************************
1824 * GOVERNORS *
1825 *********************************************************************/
1826
1827 /**
1828 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1829 * @policy: cpufreq policy to switch the frequency for.
1830 * @target_freq: New frequency to set (may be approximate).
1831 *
1832 * Carry out a fast frequency switch without sleeping.
1833 *
1834 * The driver's ->fast_switch() callback invoked by this function must be
1835 * suitable for being called from within RCU-sched read-side critical sections
1836 * and it is expected to select the minimum available frequency greater than or
1837 * equal to @target_freq (CPUFREQ_RELATION_L).
1838 *
1839 * This function must not be called if policy->fast_switch_enabled is unset.
1840 *
1841 * Governors calling this function must guarantee that it will never be invoked
1842 * twice in parallel for the same policy and that it will never be called in
1843 * parallel with either ->target() or ->target_index() for the same policy.
1844 *
1845 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1846 * callback to indicate an error condition, the hardware configuration must be
1847 * preserved.
1848 */
1849 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1850 unsigned int target_freq)
1851 {
1852 target_freq = clamp_val(target_freq, policy->min, policy->max);
1853
1854 return cpufreq_driver->fast_switch(policy, target_freq);
1855 }
1856 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1857
1858 /* Must set freqs->new to intermediate frequency */
1859 static int __target_intermediate(struct cpufreq_policy *policy,
1860 struct cpufreq_freqs *freqs, int index)
1861 {
1862 int ret;
1863
1864 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1865
1866 /* We don't need to switch to intermediate freq */
1867 if (!freqs->new)
1868 return 0;
1869
1870 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1871 __func__, policy->cpu, freqs->old, freqs->new);
1872
1873 cpufreq_freq_transition_begin(policy, freqs);
1874 ret = cpufreq_driver->target_intermediate(policy, index);
1875 cpufreq_freq_transition_end(policy, freqs, ret);
1876
1877 if (ret)
1878 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1879 __func__, ret);
1880
1881 return ret;
1882 }
1883
1884 static int __target_index(struct cpufreq_policy *policy, int index)
1885 {
1886 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1887 unsigned int intermediate_freq = 0;
1888 unsigned int newfreq = policy->freq_table[index].frequency;
1889 int retval = -EINVAL;
1890 bool notify;
1891
1892 if (newfreq == policy->cur)
1893 return 0;
1894
1895 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1896 if (notify) {
1897 /* Handle switching to intermediate frequency */
1898 if (cpufreq_driver->get_intermediate) {
1899 retval = __target_intermediate(policy, &freqs, index);
1900 if (retval)
1901 return retval;
1902
1903 intermediate_freq = freqs.new;
1904 /* Set old freq to intermediate */
1905 if (intermediate_freq)
1906 freqs.old = freqs.new;
1907 }
1908
1909 freqs.new = newfreq;
1910 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1911 __func__, policy->cpu, freqs.old, freqs.new);
1912
1913 cpufreq_freq_transition_begin(policy, &freqs);
1914 }
1915
1916 retval = cpufreq_driver->target_index(policy, index);
1917 if (retval)
1918 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1919 retval);
1920
1921 if (notify) {
1922 cpufreq_freq_transition_end(policy, &freqs, retval);
1923
1924 /*
1925 * Failed after setting to intermediate freq? Driver should have
1926 * reverted back to initial frequency and so should we. Check
1927 * here for intermediate_freq instead of get_intermediate, in
1928 * case we haven't switched to intermediate freq at all.
1929 */
1930 if (unlikely(retval && intermediate_freq)) {
1931 freqs.old = intermediate_freq;
1932 freqs.new = policy->restore_freq;
1933 cpufreq_freq_transition_begin(policy, &freqs);
1934 cpufreq_freq_transition_end(policy, &freqs, 0);
1935 }
1936 }
1937
1938 return retval;
1939 }
1940
1941 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1942 unsigned int target_freq,
1943 unsigned int relation)
1944 {
1945 unsigned int old_target_freq = target_freq;
1946 int index;
1947
1948 if (cpufreq_disabled())
1949 return -ENODEV;
1950
1951 /* Make sure that target_freq is within supported range */
1952 target_freq = clamp_val(target_freq, policy->min, policy->max);
1953
1954 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1955 policy->cpu, target_freq, relation, old_target_freq);
1956
1957 /*
1958 * This might look like a redundant call as we are checking it again
1959 * after finding index. But it is left intentionally for cases where
1960 * exactly same freq is called again and so we can save on few function
1961 * calls.
1962 */
1963 if (target_freq == policy->cur)
1964 return 0;
1965
1966 /* Save last value to restore later on errors */
1967 policy->restore_freq = policy->cur;
1968
1969 if (cpufreq_driver->target)
1970 return cpufreq_driver->target(policy, target_freq, relation);
1971
1972 if (!cpufreq_driver->target_index)
1973 return -EINVAL;
1974
1975 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1976
1977 return __target_index(policy, index);
1978 }
1979 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1980
1981 int cpufreq_driver_target(struct cpufreq_policy *policy,
1982 unsigned int target_freq,
1983 unsigned int relation)
1984 {
1985 int ret = -EINVAL;
1986
1987 down_write(&policy->rwsem);
1988
1989 ret = __cpufreq_driver_target(policy, target_freq, relation);
1990
1991 up_write(&policy->rwsem);
1992
1993 return ret;
1994 }
1995 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1996
1997 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1998 {
1999 return NULL;
2000 }
2001
2002 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2003 {
2004 int ret;
2005
2006 /* Don't start any governor operations if we are entering suspend */
2007 if (cpufreq_suspended)
2008 return 0;
2009 /*
2010 * Governor might not be initiated here if ACPI _PPC changed
2011 * notification happened, so check it.
2012 */
2013 if (!policy->governor)
2014 return -EINVAL;
2015
2016 if (policy->governor->max_transition_latency &&
2017 policy->cpuinfo.transition_latency >
2018 policy->governor->max_transition_latency) {
2019 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2020
2021 if (gov) {
2022 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2023 policy->governor->name, gov->name);
2024 policy->governor = gov;
2025 } else {
2026 return -EINVAL;
2027 }
2028 }
2029
2030 if (!try_module_get(policy->governor->owner))
2031 return -EINVAL;
2032
2033 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2034
2035 if (policy->governor->init) {
2036 ret = policy->governor->init(policy);
2037 if (ret) {
2038 module_put(policy->governor->owner);
2039 return ret;
2040 }
2041 }
2042
2043 return 0;
2044 }
2045
2046 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2047 {
2048 if (cpufreq_suspended || !policy->governor)
2049 return;
2050
2051 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2052
2053 if (policy->governor->exit)
2054 policy->governor->exit(policy);
2055
2056 module_put(policy->governor->owner);
2057 }
2058
2059 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2060 {
2061 int ret;
2062
2063 if (cpufreq_suspended)
2064 return 0;
2065
2066 if (!policy->governor)
2067 return -EINVAL;
2068
2069 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2070
2071 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2072 cpufreq_update_current_freq(policy);
2073
2074 if (policy->governor->start) {
2075 ret = policy->governor->start(policy);
2076 if (ret)
2077 return ret;
2078 }
2079
2080 if (policy->governor->limits)
2081 policy->governor->limits(policy);
2082
2083 return 0;
2084 }
2085
2086 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2087 {
2088 if (cpufreq_suspended || !policy->governor)
2089 return;
2090
2091 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2092
2093 if (policy->governor->stop)
2094 policy->governor->stop(policy);
2095 }
2096
2097 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2098 {
2099 if (cpufreq_suspended || !policy->governor)
2100 return;
2101
2102 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2103
2104 if (policy->governor->limits)
2105 policy->governor->limits(policy);
2106 }
2107
2108 int cpufreq_register_governor(struct cpufreq_governor *governor)
2109 {
2110 int err;
2111
2112 if (!governor)
2113 return -EINVAL;
2114
2115 if (cpufreq_disabled())
2116 return -ENODEV;
2117
2118 mutex_lock(&cpufreq_governor_mutex);
2119
2120 err = -EBUSY;
2121 if (!find_governor(governor->name)) {
2122 err = 0;
2123 list_add(&governor->governor_list, &cpufreq_governor_list);
2124 }
2125
2126 mutex_unlock(&cpufreq_governor_mutex);
2127 return err;
2128 }
2129 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2130
2131 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2132 {
2133 struct cpufreq_policy *policy;
2134 unsigned long flags;
2135
2136 if (!governor)
2137 return;
2138
2139 if (cpufreq_disabled())
2140 return;
2141
2142 /* clear last_governor for all inactive policies */
2143 read_lock_irqsave(&cpufreq_driver_lock, flags);
2144 for_each_inactive_policy(policy) {
2145 if (!strcmp(policy->last_governor, governor->name)) {
2146 policy->governor = NULL;
2147 strcpy(policy->last_governor, "\0");
2148 }
2149 }
2150 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2151
2152 mutex_lock(&cpufreq_governor_mutex);
2153 list_del(&governor->governor_list);
2154 mutex_unlock(&cpufreq_governor_mutex);
2155 return;
2156 }
2157 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2158
2159
2160 /*********************************************************************
2161 * POLICY INTERFACE *
2162 *********************************************************************/
2163
2164 /**
2165 * cpufreq_get_policy - get the current cpufreq_policy
2166 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2167 * is written
2168 *
2169 * Reads the current cpufreq policy.
2170 */
2171 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2172 {
2173 struct cpufreq_policy *cpu_policy;
2174 if (!policy)
2175 return -EINVAL;
2176
2177 cpu_policy = cpufreq_cpu_get(cpu);
2178 if (!cpu_policy)
2179 return -EINVAL;
2180
2181 memcpy(policy, cpu_policy, sizeof(*policy));
2182
2183 cpufreq_cpu_put(cpu_policy);
2184 return 0;
2185 }
2186 EXPORT_SYMBOL(cpufreq_get_policy);
2187
2188 /*
2189 * policy : current policy.
2190 * new_policy: policy to be set.
2191 */
2192 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2193 struct cpufreq_policy *new_policy)
2194 {
2195 struct cpufreq_governor *old_gov;
2196 int ret;
2197
2198 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2199 new_policy->cpu, new_policy->min, new_policy->max);
2200
2201 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2202
2203 /*
2204 * This check works well when we store new min/max freq attributes,
2205 * because new_policy is a copy of policy with one field updated.
2206 */
2207 if (new_policy->min > new_policy->max)
2208 return -EINVAL;
2209
2210 /* verify the cpu speed can be set within this limit */
2211 ret = cpufreq_driver->verify(new_policy);
2212 if (ret)
2213 return ret;
2214
2215 /* adjust if necessary - all reasons */
2216 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2217 CPUFREQ_ADJUST, new_policy);
2218
2219 /*
2220 * verify the cpu speed can be set within this limit, which might be
2221 * different to the first one
2222 */
2223 ret = cpufreq_driver->verify(new_policy);
2224 if (ret)
2225 return ret;
2226
2227 /* notification of the new policy */
2228 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2229 CPUFREQ_NOTIFY, new_policy);
2230
2231 policy->min = new_policy->min;
2232 policy->max = new_policy->max;
2233
2234 policy->cached_target_freq = UINT_MAX;
2235
2236 pr_debug("new min and max freqs are %u - %u kHz\n",
2237 policy->min, policy->max);
2238
2239 if (cpufreq_driver->setpolicy) {
2240 policy->policy = new_policy->policy;
2241 pr_debug("setting range\n");
2242 return cpufreq_driver->setpolicy(new_policy);
2243 }
2244
2245 if (new_policy->governor == policy->governor) {
2246 pr_debug("cpufreq: governor limits update\n");
2247 cpufreq_governor_limits(policy);
2248 return 0;
2249 }
2250
2251 pr_debug("governor switch\n");
2252
2253 /* save old, working values */
2254 old_gov = policy->governor;
2255 /* end old governor */
2256 if (old_gov) {
2257 cpufreq_stop_governor(policy);
2258 cpufreq_exit_governor(policy);
2259 }
2260
2261 /* start new governor */
2262 policy->governor = new_policy->governor;
2263 ret = cpufreq_init_governor(policy);
2264 if (!ret) {
2265 ret = cpufreq_start_governor(policy);
2266 if (!ret) {
2267 pr_debug("cpufreq: governor change\n");
2268 return 0;
2269 }
2270 cpufreq_exit_governor(policy);
2271 }
2272
2273 /* new governor failed, so re-start old one */
2274 pr_debug("starting governor %s failed\n", policy->governor->name);
2275 if (old_gov) {
2276 policy->governor = old_gov;
2277 if (cpufreq_init_governor(policy))
2278 policy->governor = NULL;
2279 else
2280 cpufreq_start_governor(policy);
2281 }
2282
2283 return ret;
2284 }
2285
2286 /**
2287 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2288 * @cpu: CPU which shall be re-evaluated
2289 *
2290 * Useful for policy notifiers which have different necessities
2291 * at different times.
2292 */
2293 int cpufreq_update_policy(unsigned int cpu)
2294 {
2295 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2296 struct cpufreq_policy new_policy;
2297 int ret;
2298
2299 if (!policy)
2300 return -ENODEV;
2301
2302 down_write(&policy->rwsem);
2303
2304 pr_debug("updating policy for CPU %u\n", cpu);
2305 memcpy(&new_policy, policy, sizeof(*policy));
2306 new_policy.min = policy->user_policy.min;
2307 new_policy.max = policy->user_policy.max;
2308
2309 /*
2310 * BIOS might change freq behind our back
2311 * -> ask driver for current freq and notify governors about a change
2312 */
2313 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2314 if (cpufreq_suspended) {
2315 ret = -EAGAIN;
2316 goto unlock;
2317 }
2318 new_policy.cur = cpufreq_update_current_freq(policy);
2319 if (WARN_ON(!new_policy.cur)) {
2320 ret = -EIO;
2321 goto unlock;
2322 }
2323 }
2324
2325 ret = cpufreq_set_policy(policy, &new_policy);
2326
2327 unlock:
2328 up_write(&policy->rwsem);
2329
2330 cpufreq_cpu_put(policy);
2331 return ret;
2332 }
2333 EXPORT_SYMBOL(cpufreq_update_policy);
2334
2335 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2336 unsigned long action, void *hcpu)
2337 {
2338 unsigned int cpu = (unsigned long)hcpu;
2339
2340 switch (action & ~CPU_TASKS_FROZEN) {
2341 case CPU_ONLINE:
2342 case CPU_DOWN_FAILED:
2343 cpufreq_online(cpu);
2344 break;
2345
2346 case CPU_DOWN_PREPARE:
2347 cpufreq_offline(cpu);
2348 break;
2349 }
2350 return NOTIFY_OK;
2351 }
2352
2353 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2354 .notifier_call = cpufreq_cpu_callback,
2355 };
2356
2357 /*********************************************************************
2358 * BOOST *
2359 *********************************************************************/
2360 static int cpufreq_boost_set_sw(int state)
2361 {
2362 struct cpufreq_policy *policy;
2363 int ret = -EINVAL;
2364
2365 for_each_active_policy(policy) {
2366 if (!policy->freq_table)
2367 continue;
2368
2369 ret = cpufreq_frequency_table_cpuinfo(policy,
2370 policy->freq_table);
2371 if (ret) {
2372 pr_err("%s: Policy frequency update failed\n",
2373 __func__);
2374 break;
2375 }
2376
2377 down_write(&policy->rwsem);
2378 policy->user_policy.max = policy->max;
2379 cpufreq_governor_limits(policy);
2380 up_write(&policy->rwsem);
2381 }
2382
2383 return ret;
2384 }
2385
2386 int cpufreq_boost_trigger_state(int state)
2387 {
2388 unsigned long flags;
2389 int ret = 0;
2390
2391 if (cpufreq_driver->boost_enabled == state)
2392 return 0;
2393
2394 write_lock_irqsave(&cpufreq_driver_lock, flags);
2395 cpufreq_driver->boost_enabled = state;
2396 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2397
2398 ret = cpufreq_driver->set_boost(state);
2399 if (ret) {
2400 write_lock_irqsave(&cpufreq_driver_lock, flags);
2401 cpufreq_driver->boost_enabled = !state;
2402 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2403
2404 pr_err("%s: Cannot %s BOOST\n",
2405 __func__, state ? "enable" : "disable");
2406 }
2407
2408 return ret;
2409 }
2410
2411 static bool cpufreq_boost_supported(void)
2412 {
2413 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2414 }
2415
2416 static int create_boost_sysfs_file(void)
2417 {
2418 int ret;
2419
2420 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2421 if (ret)
2422 pr_err("%s: cannot register global BOOST sysfs file\n",
2423 __func__);
2424
2425 return ret;
2426 }
2427
2428 static void remove_boost_sysfs_file(void)
2429 {
2430 if (cpufreq_boost_supported())
2431 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2432 }
2433
2434 int cpufreq_enable_boost_support(void)
2435 {
2436 if (!cpufreq_driver)
2437 return -EINVAL;
2438
2439 if (cpufreq_boost_supported())
2440 return 0;
2441
2442 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2443
2444 /* This will get removed on driver unregister */
2445 return create_boost_sysfs_file();
2446 }
2447 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2448
2449 int cpufreq_boost_enabled(void)
2450 {
2451 return cpufreq_driver->boost_enabled;
2452 }
2453 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2454
2455 /*********************************************************************
2456 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2457 *********************************************************************/
2458
2459 /**
2460 * cpufreq_register_driver - register a CPU Frequency driver
2461 * @driver_data: A struct cpufreq_driver containing the values#
2462 * submitted by the CPU Frequency driver.
2463 *
2464 * Registers a CPU Frequency driver to this core code. This code
2465 * returns zero on success, -EEXIST when another driver got here first
2466 * (and isn't unregistered in the meantime).
2467 *
2468 */
2469 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2470 {
2471 unsigned long flags;
2472 int ret;
2473
2474 if (cpufreq_disabled())
2475 return -ENODEV;
2476
2477 if (!driver_data || !driver_data->verify || !driver_data->init ||
2478 !(driver_data->setpolicy || driver_data->target_index ||
2479 driver_data->target) ||
2480 (driver_data->setpolicy && (driver_data->target_index ||
2481 driver_data->target)) ||
2482 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2483 return -EINVAL;
2484
2485 pr_debug("trying to register driver %s\n", driver_data->name);
2486
2487 /* Protect against concurrent CPU online/offline. */
2488 get_online_cpus();
2489
2490 write_lock_irqsave(&cpufreq_driver_lock, flags);
2491 if (cpufreq_driver) {
2492 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2493 ret = -EEXIST;
2494 goto out;
2495 }
2496 cpufreq_driver = driver_data;
2497 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2498
2499 if (driver_data->setpolicy)
2500 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2501
2502 if (cpufreq_boost_supported()) {
2503 ret = create_boost_sysfs_file();
2504 if (ret)
2505 goto err_null_driver;
2506 }
2507
2508 ret = subsys_interface_register(&cpufreq_interface);
2509 if (ret)
2510 goto err_boost_unreg;
2511
2512 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2513 list_empty(&cpufreq_policy_list)) {
2514 /* if all ->init() calls failed, unregister */
2515 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2516 driver_data->name);
2517 goto err_if_unreg;
2518 }
2519
2520 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2521 pr_debug("driver %s up and running\n", driver_data->name);
2522 goto out;
2523
2524 err_if_unreg:
2525 subsys_interface_unregister(&cpufreq_interface);
2526 err_boost_unreg:
2527 remove_boost_sysfs_file();
2528 err_null_driver:
2529 write_lock_irqsave(&cpufreq_driver_lock, flags);
2530 cpufreq_driver = NULL;
2531 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2532 out:
2533 put_online_cpus();
2534 return ret;
2535 }
2536 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2537
2538 /**
2539 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2540 *
2541 * Unregister the current CPUFreq driver. Only call this if you have
2542 * the right to do so, i.e. if you have succeeded in initialising before!
2543 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2544 * currently not initialised.
2545 */
2546 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2547 {
2548 unsigned long flags;
2549
2550 if (!cpufreq_driver || (driver != cpufreq_driver))
2551 return -EINVAL;
2552
2553 pr_debug("unregistering driver %s\n", driver->name);
2554
2555 /* Protect against concurrent cpu hotplug */
2556 get_online_cpus();
2557 subsys_interface_unregister(&cpufreq_interface);
2558 remove_boost_sysfs_file();
2559 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2560
2561 write_lock_irqsave(&cpufreq_driver_lock, flags);
2562
2563 cpufreq_driver = NULL;
2564
2565 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2566 put_online_cpus();
2567
2568 return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2571
2572 /*
2573 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2574 * or mutexes when secondary CPUs are halted.
2575 */
2576 static struct syscore_ops cpufreq_syscore_ops = {
2577 .shutdown = cpufreq_suspend,
2578 };
2579
2580 struct kobject *cpufreq_global_kobject;
2581 EXPORT_SYMBOL(cpufreq_global_kobject);
2582
2583 static int __init cpufreq_core_init(void)
2584 {
2585 if (cpufreq_disabled())
2586 return -ENODEV;
2587
2588 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2589 BUG_ON(!cpufreq_global_kobject);
2590
2591 register_syscore_ops(&cpufreq_syscore_ops);
2592
2593 return 0;
2594 }
2595 core_initcall(cpufreq_core_init);
This page took 0.084729 seconds and 5 git commands to generate.