e92e9eab7c6c9e32b5d85a73d1d053814a30dc6a
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 static bool suitable_policy(struct cpufreq_policy *policy, bool active)
42 {
43 return active == !policy_is_inactive(policy);
44 }
45
46 /* Finds Next Acive/Inactive policy */
47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy,
48 bool active)
49 {
50 do {
51 /* No more policies in the list */
52 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
53 return NULL;
54
55 policy = list_next_entry(policy, policy_list);
56 } while (!suitable_policy(policy, active));
57
58 return policy;
59 }
60
61 static struct cpufreq_policy *first_policy(bool active)
62 {
63 struct cpufreq_policy *policy;
64
65 /* No policies in the list */
66 if (list_empty(&cpufreq_policy_list))
67 return NULL;
68
69 policy = list_first_entry(&cpufreq_policy_list, typeof(*policy),
70 policy_list);
71
72 if (!suitable_policy(policy, active))
73 policy = next_policy(policy, active);
74
75 return policy;
76 }
77
78 /* Macros to iterate over CPU policies */
79 #define for_each_suitable_policy(__policy, __active) \
80 for (__policy = first_policy(__active); \
81 __policy; \
82 __policy = next_policy(__policy, __active))
83
84 #define for_each_active_policy(__policy) \
85 for_each_suitable_policy(__policy, true)
86 #define for_each_inactive_policy(__policy) \
87 for_each_suitable_policy(__policy, false)
88
89 #define for_each_policy(__policy) \
90 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
91
92 /* Iterate over governors */
93 static LIST_HEAD(cpufreq_governor_list);
94 #define for_each_governor(__governor) \
95 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
96
97 /**
98 * The "cpufreq driver" - the arch- or hardware-dependent low
99 * level driver of CPUFreq support, and its spinlock. This lock
100 * also protects the cpufreq_cpu_data array.
101 */
102 static struct cpufreq_driver *cpufreq_driver;
103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
104 static DEFINE_RWLOCK(cpufreq_driver_lock);
105
106 static DEFINE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
107
108 /**
109 * cpufreq_set_update_util_data - Populate the CPU's update_util_data pointer.
110 * @cpu: The CPU to set the pointer for.
111 * @data: New pointer value.
112 *
113 * Set and publish the update_util_data pointer for the given CPU. That pointer
114 * points to a struct update_util_data object containing a callback function
115 * to call from cpufreq_update_util(). That function will be called from an RCU
116 * read-side critical section, so it must not sleep.
117 *
118 * Callers must use RCU callbacks to free any memory that might be accessed
119 * via the old update_util_data pointer or invoke synchronize_rcu() right after
120 * this function to avoid use-after-free.
121 */
122 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data)
123 {
124 rcu_assign_pointer(per_cpu(cpufreq_update_util_data, cpu), data);
125 }
126 EXPORT_SYMBOL_GPL(cpufreq_set_update_util_data);
127
128 /**
129 * cpufreq_update_util - Take a note about CPU utilization changes.
130 * @time: Current time.
131 * @util: Current utilization.
132 * @max: Utilization ceiling.
133 *
134 * This function is called by the scheduler on every invocation of
135 * update_load_avg() on the CPU whose utilization is being updated.
136 */
137 void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
138 {
139 struct update_util_data *data;
140
141 rcu_read_lock();
142
143 data = rcu_dereference(*this_cpu_ptr(&cpufreq_update_util_data));
144 if (data && data->func)
145 data->func(data, time, util, max);
146
147 rcu_read_unlock();
148 }
149
150 DEFINE_MUTEX(cpufreq_governor_lock);
151
152 /* Flag to suspend/resume CPUFreq governors */
153 static bool cpufreq_suspended;
154
155 static inline bool has_target(void)
156 {
157 return cpufreq_driver->target_index || cpufreq_driver->target;
158 }
159
160 /* internal prototypes */
161 static int __cpufreq_governor(struct cpufreq_policy *policy,
162 unsigned int event);
163 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
164 static void handle_update(struct work_struct *work);
165
166 /**
167 * Two notifier lists: the "policy" list is involved in the
168 * validation process for a new CPU frequency policy; the
169 * "transition" list for kernel code that needs to handle
170 * changes to devices when the CPU clock speed changes.
171 * The mutex locks both lists.
172 */
173 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
174 static struct srcu_notifier_head cpufreq_transition_notifier_list;
175
176 static bool init_cpufreq_transition_notifier_list_called;
177 static int __init init_cpufreq_transition_notifier_list(void)
178 {
179 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
180 init_cpufreq_transition_notifier_list_called = true;
181 return 0;
182 }
183 pure_initcall(init_cpufreq_transition_notifier_list);
184
185 static int off __read_mostly;
186 static int cpufreq_disabled(void)
187 {
188 return off;
189 }
190 void disable_cpufreq(void)
191 {
192 off = 1;
193 }
194 static DEFINE_MUTEX(cpufreq_governor_mutex);
195
196 bool have_governor_per_policy(void)
197 {
198 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
199 }
200 EXPORT_SYMBOL_GPL(have_governor_per_policy);
201
202 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
203 {
204 if (have_governor_per_policy())
205 return &policy->kobj;
206 else
207 return cpufreq_global_kobject;
208 }
209 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
210
211 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
212 {
213 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
214
215 return policy && !policy_is_inactive(policy) ?
216 policy->freq_table : NULL;
217 }
218 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
219
220 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
221 {
222 u64 idle_time;
223 u64 cur_wall_time;
224 u64 busy_time;
225
226 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
227
228 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
229 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
230 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
231 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
232 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
233 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
234
235 idle_time = cur_wall_time - busy_time;
236 if (wall)
237 *wall = cputime_to_usecs(cur_wall_time);
238
239 return cputime_to_usecs(idle_time);
240 }
241
242 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
243 {
244 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
245
246 if (idle_time == -1ULL)
247 return get_cpu_idle_time_jiffy(cpu, wall);
248 else if (!io_busy)
249 idle_time += get_cpu_iowait_time_us(cpu, wall);
250
251 return idle_time;
252 }
253 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
254
255 /*
256 * This is a generic cpufreq init() routine which can be used by cpufreq
257 * drivers of SMP systems. It will do following:
258 * - validate & show freq table passed
259 * - set policies transition latency
260 * - policy->cpus with all possible CPUs
261 */
262 int cpufreq_generic_init(struct cpufreq_policy *policy,
263 struct cpufreq_frequency_table *table,
264 unsigned int transition_latency)
265 {
266 int ret;
267
268 ret = cpufreq_table_validate_and_show(policy, table);
269 if (ret) {
270 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
271 return ret;
272 }
273
274 policy->cpuinfo.transition_latency = transition_latency;
275
276 /*
277 * The driver only supports the SMP configuration where all processors
278 * share the clock and voltage and clock.
279 */
280 cpumask_setall(policy->cpus);
281
282 return 0;
283 }
284 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
285
286 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
287 {
288 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
289
290 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
291 }
292 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
293
294 unsigned int cpufreq_generic_get(unsigned int cpu)
295 {
296 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
297
298 if (!policy || IS_ERR(policy->clk)) {
299 pr_err("%s: No %s associated to cpu: %d\n",
300 __func__, policy ? "clk" : "policy", cpu);
301 return 0;
302 }
303
304 return clk_get_rate(policy->clk) / 1000;
305 }
306 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
307
308 /**
309 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
310 *
311 * @cpu: cpu to find policy for.
312 *
313 * This returns policy for 'cpu', returns NULL if it doesn't exist.
314 * It also increments the kobject reference count to mark it busy and so would
315 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
316 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
317 * freed as that depends on the kobj count.
318 *
319 * Return: A valid policy on success, otherwise NULL on failure.
320 */
321 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
322 {
323 struct cpufreq_policy *policy = NULL;
324 unsigned long flags;
325
326 if (WARN_ON(cpu >= nr_cpu_ids))
327 return NULL;
328
329 /* get the cpufreq driver */
330 read_lock_irqsave(&cpufreq_driver_lock, flags);
331
332 if (cpufreq_driver) {
333 /* get the CPU */
334 policy = cpufreq_cpu_get_raw(cpu);
335 if (policy)
336 kobject_get(&policy->kobj);
337 }
338
339 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
340
341 return policy;
342 }
343 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
344
345 /**
346 * cpufreq_cpu_put: Decrements the usage count of a policy
347 *
348 * @policy: policy earlier returned by cpufreq_cpu_get().
349 *
350 * This decrements the kobject reference count incremented earlier by calling
351 * cpufreq_cpu_get().
352 */
353 void cpufreq_cpu_put(struct cpufreq_policy *policy)
354 {
355 kobject_put(&policy->kobj);
356 }
357 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
358
359 /*********************************************************************
360 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
361 *********************************************************************/
362
363 /**
364 * adjust_jiffies - adjust the system "loops_per_jiffy"
365 *
366 * This function alters the system "loops_per_jiffy" for the clock
367 * speed change. Note that loops_per_jiffy cannot be updated on SMP
368 * systems as each CPU might be scaled differently. So, use the arch
369 * per-CPU loops_per_jiffy value wherever possible.
370 */
371 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
372 {
373 #ifndef CONFIG_SMP
374 static unsigned long l_p_j_ref;
375 static unsigned int l_p_j_ref_freq;
376
377 if (ci->flags & CPUFREQ_CONST_LOOPS)
378 return;
379
380 if (!l_p_j_ref_freq) {
381 l_p_j_ref = loops_per_jiffy;
382 l_p_j_ref_freq = ci->old;
383 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
384 l_p_j_ref, l_p_j_ref_freq);
385 }
386 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
387 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
388 ci->new);
389 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
390 loops_per_jiffy, ci->new);
391 }
392 #endif
393 }
394
395 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
396 struct cpufreq_freqs *freqs, unsigned int state)
397 {
398 BUG_ON(irqs_disabled());
399
400 if (cpufreq_disabled())
401 return;
402
403 freqs->flags = cpufreq_driver->flags;
404 pr_debug("notification %u of frequency transition to %u kHz\n",
405 state, freqs->new);
406
407 switch (state) {
408
409 case CPUFREQ_PRECHANGE:
410 /* detect if the driver reported a value as "old frequency"
411 * which is not equal to what the cpufreq core thinks is
412 * "old frequency".
413 */
414 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
415 if ((policy) && (policy->cpu == freqs->cpu) &&
416 (policy->cur) && (policy->cur != freqs->old)) {
417 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
418 freqs->old, policy->cur);
419 freqs->old = policy->cur;
420 }
421 }
422 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
423 CPUFREQ_PRECHANGE, freqs);
424 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
425 break;
426
427 case CPUFREQ_POSTCHANGE:
428 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
429 pr_debug("FREQ: %lu - CPU: %lu\n",
430 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
431 trace_cpu_frequency(freqs->new, freqs->cpu);
432 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
433 CPUFREQ_POSTCHANGE, freqs);
434 if (likely(policy) && likely(policy->cpu == freqs->cpu))
435 policy->cur = freqs->new;
436 break;
437 }
438 }
439
440 /**
441 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
442 * on frequency transition.
443 *
444 * This function calls the transition notifiers and the "adjust_jiffies"
445 * function. It is called twice on all CPU frequency changes that have
446 * external effects.
447 */
448 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
449 struct cpufreq_freqs *freqs, unsigned int state)
450 {
451 for_each_cpu(freqs->cpu, policy->cpus)
452 __cpufreq_notify_transition(policy, freqs, state);
453 }
454
455 /* Do post notifications when there are chances that transition has failed */
456 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
457 struct cpufreq_freqs *freqs, int transition_failed)
458 {
459 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
460 if (!transition_failed)
461 return;
462
463 swap(freqs->old, freqs->new);
464 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
465 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
466 }
467
468 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
469 struct cpufreq_freqs *freqs)
470 {
471
472 /*
473 * Catch double invocations of _begin() which lead to self-deadlock.
474 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
475 * doesn't invoke _begin() on their behalf, and hence the chances of
476 * double invocations are very low. Moreover, there are scenarios
477 * where these checks can emit false-positive warnings in these
478 * drivers; so we avoid that by skipping them altogether.
479 */
480 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
481 && current == policy->transition_task);
482
483 wait:
484 wait_event(policy->transition_wait, !policy->transition_ongoing);
485
486 spin_lock(&policy->transition_lock);
487
488 if (unlikely(policy->transition_ongoing)) {
489 spin_unlock(&policy->transition_lock);
490 goto wait;
491 }
492
493 policy->transition_ongoing = true;
494 policy->transition_task = current;
495
496 spin_unlock(&policy->transition_lock);
497
498 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
499 }
500 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
501
502 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
503 struct cpufreq_freqs *freqs, int transition_failed)
504 {
505 if (unlikely(WARN_ON(!policy->transition_ongoing)))
506 return;
507
508 cpufreq_notify_post_transition(policy, freqs, transition_failed);
509
510 policy->transition_ongoing = false;
511 policy->transition_task = NULL;
512
513 wake_up(&policy->transition_wait);
514 }
515 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
516
517
518 /*********************************************************************
519 * SYSFS INTERFACE *
520 *********************************************************************/
521 static ssize_t show_boost(struct kobject *kobj,
522 struct attribute *attr, char *buf)
523 {
524 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
525 }
526
527 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
528 const char *buf, size_t count)
529 {
530 int ret, enable;
531
532 ret = sscanf(buf, "%d", &enable);
533 if (ret != 1 || enable < 0 || enable > 1)
534 return -EINVAL;
535
536 if (cpufreq_boost_trigger_state(enable)) {
537 pr_err("%s: Cannot %s BOOST!\n",
538 __func__, enable ? "enable" : "disable");
539 return -EINVAL;
540 }
541
542 pr_debug("%s: cpufreq BOOST %s\n",
543 __func__, enable ? "enabled" : "disabled");
544
545 return count;
546 }
547 define_one_global_rw(boost);
548
549 static struct cpufreq_governor *find_governor(const char *str_governor)
550 {
551 struct cpufreq_governor *t;
552
553 for_each_governor(t)
554 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
555 return t;
556
557 return NULL;
558 }
559
560 /**
561 * cpufreq_parse_governor - parse a governor string
562 */
563 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
564 struct cpufreq_governor **governor)
565 {
566 int err = -EINVAL;
567
568 if (cpufreq_driver->setpolicy) {
569 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
570 *policy = CPUFREQ_POLICY_PERFORMANCE;
571 err = 0;
572 } else if (!strncasecmp(str_governor, "powersave",
573 CPUFREQ_NAME_LEN)) {
574 *policy = CPUFREQ_POLICY_POWERSAVE;
575 err = 0;
576 }
577 } else {
578 struct cpufreq_governor *t;
579
580 mutex_lock(&cpufreq_governor_mutex);
581
582 t = find_governor(str_governor);
583
584 if (t == NULL) {
585 int ret;
586
587 mutex_unlock(&cpufreq_governor_mutex);
588 ret = request_module("cpufreq_%s", str_governor);
589 mutex_lock(&cpufreq_governor_mutex);
590
591 if (ret == 0)
592 t = find_governor(str_governor);
593 }
594
595 if (t != NULL) {
596 *governor = t;
597 err = 0;
598 }
599
600 mutex_unlock(&cpufreq_governor_mutex);
601 }
602 return err;
603 }
604
605 /**
606 * cpufreq_per_cpu_attr_read() / show_##file_name() -
607 * print out cpufreq information
608 *
609 * Write out information from cpufreq_driver->policy[cpu]; object must be
610 * "unsigned int".
611 */
612
613 #define show_one(file_name, object) \
614 static ssize_t show_##file_name \
615 (struct cpufreq_policy *policy, char *buf) \
616 { \
617 return sprintf(buf, "%u\n", policy->object); \
618 }
619
620 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
621 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
622 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
623 show_one(scaling_min_freq, min);
624 show_one(scaling_max_freq, max);
625
626 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
627 {
628 ssize_t ret;
629
630 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
631 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
632 else
633 ret = sprintf(buf, "%u\n", policy->cur);
634 return ret;
635 }
636
637 static int cpufreq_set_policy(struct cpufreq_policy *policy,
638 struct cpufreq_policy *new_policy);
639
640 /**
641 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
642 */
643 #define store_one(file_name, object) \
644 static ssize_t store_##file_name \
645 (struct cpufreq_policy *policy, const char *buf, size_t count) \
646 { \
647 int ret, temp; \
648 struct cpufreq_policy new_policy; \
649 \
650 memcpy(&new_policy, policy, sizeof(*policy)); \
651 \
652 ret = sscanf(buf, "%u", &new_policy.object); \
653 if (ret != 1) \
654 return -EINVAL; \
655 \
656 temp = new_policy.object; \
657 ret = cpufreq_set_policy(policy, &new_policy); \
658 if (!ret) \
659 policy->user_policy.object = temp; \
660 \
661 return ret ? ret : count; \
662 }
663
664 store_one(scaling_min_freq, min);
665 store_one(scaling_max_freq, max);
666
667 /**
668 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
669 */
670 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
671 char *buf)
672 {
673 unsigned int cur_freq = __cpufreq_get(policy);
674 if (!cur_freq)
675 return sprintf(buf, "<unknown>");
676 return sprintf(buf, "%u\n", cur_freq);
677 }
678
679 /**
680 * show_scaling_governor - show the current policy for the specified CPU
681 */
682 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
683 {
684 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
685 return sprintf(buf, "powersave\n");
686 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
687 return sprintf(buf, "performance\n");
688 else if (policy->governor)
689 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
690 policy->governor->name);
691 return -EINVAL;
692 }
693
694 /**
695 * store_scaling_governor - store policy for the specified CPU
696 */
697 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
698 const char *buf, size_t count)
699 {
700 int ret;
701 char str_governor[16];
702 struct cpufreq_policy new_policy;
703
704 memcpy(&new_policy, policy, sizeof(*policy));
705
706 ret = sscanf(buf, "%15s", str_governor);
707 if (ret != 1)
708 return -EINVAL;
709
710 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
711 &new_policy.governor))
712 return -EINVAL;
713
714 ret = cpufreq_set_policy(policy, &new_policy);
715 return ret ? ret : count;
716 }
717
718 /**
719 * show_scaling_driver - show the cpufreq driver currently loaded
720 */
721 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
722 {
723 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
724 }
725
726 /**
727 * show_scaling_available_governors - show the available CPUfreq governors
728 */
729 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
730 char *buf)
731 {
732 ssize_t i = 0;
733 struct cpufreq_governor *t;
734
735 if (!has_target()) {
736 i += sprintf(buf, "performance powersave");
737 goto out;
738 }
739
740 for_each_governor(t) {
741 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
742 - (CPUFREQ_NAME_LEN + 2)))
743 goto out;
744 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
745 }
746 out:
747 i += sprintf(&buf[i], "\n");
748 return i;
749 }
750
751 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
752 {
753 ssize_t i = 0;
754 unsigned int cpu;
755
756 for_each_cpu(cpu, mask) {
757 if (i)
758 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
759 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
760 if (i >= (PAGE_SIZE - 5))
761 break;
762 }
763 i += sprintf(&buf[i], "\n");
764 return i;
765 }
766 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
767
768 /**
769 * show_related_cpus - show the CPUs affected by each transition even if
770 * hw coordination is in use
771 */
772 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
773 {
774 return cpufreq_show_cpus(policy->related_cpus, buf);
775 }
776
777 /**
778 * show_affected_cpus - show the CPUs affected by each transition
779 */
780 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
781 {
782 return cpufreq_show_cpus(policy->cpus, buf);
783 }
784
785 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
786 const char *buf, size_t count)
787 {
788 unsigned int freq = 0;
789 unsigned int ret;
790
791 if (!policy->governor || !policy->governor->store_setspeed)
792 return -EINVAL;
793
794 ret = sscanf(buf, "%u", &freq);
795 if (ret != 1)
796 return -EINVAL;
797
798 policy->governor->store_setspeed(policy, freq);
799
800 return count;
801 }
802
803 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
804 {
805 if (!policy->governor || !policy->governor->show_setspeed)
806 return sprintf(buf, "<unsupported>\n");
807
808 return policy->governor->show_setspeed(policy, buf);
809 }
810
811 /**
812 * show_bios_limit - show the current cpufreq HW/BIOS limitation
813 */
814 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
815 {
816 unsigned int limit;
817 int ret;
818 if (cpufreq_driver->bios_limit) {
819 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
820 if (!ret)
821 return sprintf(buf, "%u\n", limit);
822 }
823 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
824 }
825
826 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
827 cpufreq_freq_attr_ro(cpuinfo_min_freq);
828 cpufreq_freq_attr_ro(cpuinfo_max_freq);
829 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
830 cpufreq_freq_attr_ro(scaling_available_governors);
831 cpufreq_freq_attr_ro(scaling_driver);
832 cpufreq_freq_attr_ro(scaling_cur_freq);
833 cpufreq_freq_attr_ro(bios_limit);
834 cpufreq_freq_attr_ro(related_cpus);
835 cpufreq_freq_attr_ro(affected_cpus);
836 cpufreq_freq_attr_rw(scaling_min_freq);
837 cpufreq_freq_attr_rw(scaling_max_freq);
838 cpufreq_freq_attr_rw(scaling_governor);
839 cpufreq_freq_attr_rw(scaling_setspeed);
840
841 static struct attribute *default_attrs[] = {
842 &cpuinfo_min_freq.attr,
843 &cpuinfo_max_freq.attr,
844 &cpuinfo_transition_latency.attr,
845 &scaling_min_freq.attr,
846 &scaling_max_freq.attr,
847 &affected_cpus.attr,
848 &related_cpus.attr,
849 &scaling_governor.attr,
850 &scaling_driver.attr,
851 &scaling_available_governors.attr,
852 &scaling_setspeed.attr,
853 NULL
854 };
855
856 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
857 #define to_attr(a) container_of(a, struct freq_attr, attr)
858
859 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
860 {
861 struct cpufreq_policy *policy = to_policy(kobj);
862 struct freq_attr *fattr = to_attr(attr);
863 ssize_t ret;
864
865 down_read(&policy->rwsem);
866
867 if (fattr->show)
868 ret = fattr->show(policy, buf);
869 else
870 ret = -EIO;
871
872 up_read(&policy->rwsem);
873
874 return ret;
875 }
876
877 static ssize_t store(struct kobject *kobj, struct attribute *attr,
878 const char *buf, size_t count)
879 {
880 struct cpufreq_policy *policy = to_policy(kobj);
881 struct freq_attr *fattr = to_attr(attr);
882 ssize_t ret = -EINVAL;
883
884 get_online_cpus();
885
886 if (!cpu_online(policy->cpu))
887 goto unlock;
888
889 down_write(&policy->rwsem);
890
891 if (fattr->store)
892 ret = fattr->store(policy, buf, count);
893 else
894 ret = -EIO;
895
896 up_write(&policy->rwsem);
897 unlock:
898 put_online_cpus();
899
900 return ret;
901 }
902
903 static void cpufreq_sysfs_release(struct kobject *kobj)
904 {
905 struct cpufreq_policy *policy = to_policy(kobj);
906 pr_debug("last reference is dropped\n");
907 complete(&policy->kobj_unregister);
908 }
909
910 static const struct sysfs_ops sysfs_ops = {
911 .show = show,
912 .store = store,
913 };
914
915 static struct kobj_type ktype_cpufreq = {
916 .sysfs_ops = &sysfs_ops,
917 .default_attrs = default_attrs,
918 .release = cpufreq_sysfs_release,
919 };
920
921 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
922 {
923 struct device *cpu_dev;
924
925 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
926
927 if (!policy)
928 return 0;
929
930 cpu_dev = get_cpu_device(cpu);
931 if (WARN_ON(!cpu_dev))
932 return 0;
933
934 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
935 }
936
937 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
938 {
939 struct device *cpu_dev;
940
941 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
942
943 cpu_dev = get_cpu_device(cpu);
944 if (WARN_ON(!cpu_dev))
945 return;
946
947 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
948 }
949
950 /* Add/remove symlinks for all related CPUs */
951 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
952 {
953 unsigned int j;
954 int ret = 0;
955
956 /* Some related CPUs might not be present (physically hotplugged) */
957 for_each_cpu(j, policy->real_cpus) {
958 ret = add_cpu_dev_symlink(policy, j);
959 if (ret)
960 break;
961 }
962
963 return ret;
964 }
965
966 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
967 {
968 unsigned int j;
969
970 /* Some related CPUs might not be present (physically hotplugged) */
971 for_each_cpu(j, policy->real_cpus)
972 remove_cpu_dev_symlink(policy, j);
973 }
974
975 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
976 {
977 struct freq_attr **drv_attr;
978 int ret = 0;
979
980 /* set up files for this cpu device */
981 drv_attr = cpufreq_driver->attr;
982 while (drv_attr && *drv_attr) {
983 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
984 if (ret)
985 return ret;
986 drv_attr++;
987 }
988 if (cpufreq_driver->get) {
989 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
990 if (ret)
991 return ret;
992 }
993
994 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
995 if (ret)
996 return ret;
997
998 if (cpufreq_driver->bios_limit) {
999 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1000 if (ret)
1001 return ret;
1002 }
1003
1004 return cpufreq_add_dev_symlink(policy);
1005 }
1006
1007 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1008 {
1009 return NULL;
1010 }
1011
1012 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1013 {
1014 struct cpufreq_governor *gov = NULL;
1015 struct cpufreq_policy new_policy;
1016
1017 memcpy(&new_policy, policy, sizeof(*policy));
1018
1019 /* Update governor of new_policy to the governor used before hotplug */
1020 gov = find_governor(policy->last_governor);
1021 if (gov) {
1022 pr_debug("Restoring governor %s for cpu %d\n",
1023 policy->governor->name, policy->cpu);
1024 } else {
1025 gov = cpufreq_default_governor();
1026 if (!gov)
1027 return -ENODATA;
1028 }
1029
1030 new_policy.governor = gov;
1031
1032 /* Use the default policy if there is no last_policy. */
1033 if (cpufreq_driver->setpolicy) {
1034 if (policy->last_policy)
1035 new_policy.policy = policy->last_policy;
1036 else
1037 cpufreq_parse_governor(gov->name, &new_policy.policy,
1038 NULL);
1039 }
1040 /* set default policy */
1041 return cpufreq_set_policy(policy, &new_policy);
1042 }
1043
1044 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1045 {
1046 int ret = 0;
1047
1048 /* Has this CPU been taken care of already? */
1049 if (cpumask_test_cpu(cpu, policy->cpus))
1050 return 0;
1051
1052 if (has_target()) {
1053 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1054 if (ret) {
1055 pr_err("%s: Failed to stop governor\n", __func__);
1056 return ret;
1057 }
1058 }
1059
1060 down_write(&policy->rwsem);
1061 cpumask_set_cpu(cpu, policy->cpus);
1062 up_write(&policy->rwsem);
1063
1064 if (has_target()) {
1065 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1066 if (!ret)
1067 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1068
1069 if (ret) {
1070 pr_err("%s: Failed to start governor\n", __func__);
1071 return ret;
1072 }
1073 }
1074
1075 return 0;
1076 }
1077
1078 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1079 {
1080 struct device *dev = get_cpu_device(cpu);
1081 struct cpufreq_policy *policy;
1082
1083 if (WARN_ON(!dev))
1084 return NULL;
1085
1086 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1087 if (!policy)
1088 return NULL;
1089
1090 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1091 goto err_free_policy;
1092
1093 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1094 goto err_free_cpumask;
1095
1096 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1097 goto err_free_rcpumask;
1098
1099 kobject_init(&policy->kobj, &ktype_cpufreq);
1100 INIT_LIST_HEAD(&policy->policy_list);
1101 init_rwsem(&policy->rwsem);
1102 spin_lock_init(&policy->transition_lock);
1103 init_waitqueue_head(&policy->transition_wait);
1104 init_completion(&policy->kobj_unregister);
1105 INIT_WORK(&policy->update, handle_update);
1106
1107 policy->cpu = cpu;
1108 return policy;
1109
1110 err_free_rcpumask:
1111 free_cpumask_var(policy->related_cpus);
1112 err_free_cpumask:
1113 free_cpumask_var(policy->cpus);
1114 err_free_policy:
1115 kfree(policy);
1116
1117 return NULL;
1118 }
1119
1120 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1121 {
1122 struct kobject *kobj;
1123 struct completion *cmp;
1124
1125 if (notify)
1126 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1127 CPUFREQ_REMOVE_POLICY, policy);
1128
1129 down_write(&policy->rwsem);
1130 cpufreq_remove_dev_symlink(policy);
1131 kobj = &policy->kobj;
1132 cmp = &policy->kobj_unregister;
1133 up_write(&policy->rwsem);
1134 kobject_put(kobj);
1135
1136 /*
1137 * We need to make sure that the underlying kobj is
1138 * actually not referenced anymore by anybody before we
1139 * proceed with unloading.
1140 */
1141 pr_debug("waiting for dropping of refcount\n");
1142 wait_for_completion(cmp);
1143 pr_debug("wait complete\n");
1144 }
1145
1146 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1147 {
1148 unsigned long flags;
1149 int cpu;
1150
1151 /* Remove policy from list */
1152 write_lock_irqsave(&cpufreq_driver_lock, flags);
1153 list_del(&policy->policy_list);
1154
1155 for_each_cpu(cpu, policy->related_cpus)
1156 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1157 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1158
1159 cpufreq_policy_put_kobj(policy, notify);
1160 free_cpumask_var(policy->real_cpus);
1161 free_cpumask_var(policy->related_cpus);
1162 free_cpumask_var(policy->cpus);
1163 kfree(policy);
1164 }
1165
1166 static int cpufreq_online(unsigned int cpu)
1167 {
1168 struct cpufreq_policy *policy;
1169 bool new_policy;
1170 unsigned long flags;
1171 unsigned int j;
1172 int ret;
1173
1174 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1175
1176 /* Check if this CPU already has a policy to manage it */
1177 policy = per_cpu(cpufreq_cpu_data, cpu);
1178 if (policy) {
1179 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1180 if (!policy_is_inactive(policy))
1181 return cpufreq_add_policy_cpu(policy, cpu);
1182
1183 /* This is the only online CPU for the policy. Start over. */
1184 new_policy = false;
1185 down_write(&policy->rwsem);
1186 policy->cpu = cpu;
1187 policy->governor = NULL;
1188 up_write(&policy->rwsem);
1189 } else {
1190 new_policy = true;
1191 policy = cpufreq_policy_alloc(cpu);
1192 if (!policy)
1193 return -ENOMEM;
1194 }
1195
1196 cpumask_copy(policy->cpus, cpumask_of(cpu));
1197
1198 /* call driver. From then on the cpufreq must be able
1199 * to accept all calls to ->verify and ->setpolicy for this CPU
1200 */
1201 ret = cpufreq_driver->init(policy);
1202 if (ret) {
1203 pr_debug("initialization failed\n");
1204 goto out_free_policy;
1205 }
1206
1207 down_write(&policy->rwsem);
1208
1209 if (new_policy) {
1210 /* related_cpus should at least include policy->cpus. */
1211 cpumask_copy(policy->related_cpus, policy->cpus);
1212 /* Remember CPUs present at the policy creation time. */
1213 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1214
1215 /* Name and add the kobject */
1216 ret = kobject_add(&policy->kobj, cpufreq_global_kobject,
1217 "policy%u",
1218 cpumask_first(policy->related_cpus));
1219 if (ret) {
1220 pr_err("%s: failed to add policy->kobj: %d\n", __func__,
1221 ret);
1222 goto out_exit_policy;
1223 }
1224 }
1225
1226 /*
1227 * affected cpus must always be the one, which are online. We aren't
1228 * managing offline cpus here.
1229 */
1230 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1231
1232 if (new_policy) {
1233 policy->user_policy.min = policy->min;
1234 policy->user_policy.max = policy->max;
1235
1236 write_lock_irqsave(&cpufreq_driver_lock, flags);
1237 for_each_cpu(j, policy->related_cpus)
1238 per_cpu(cpufreq_cpu_data, j) = policy;
1239 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1240 }
1241
1242 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1243 policy->cur = cpufreq_driver->get(policy->cpu);
1244 if (!policy->cur) {
1245 pr_err("%s: ->get() failed\n", __func__);
1246 goto out_exit_policy;
1247 }
1248 }
1249
1250 /*
1251 * Sometimes boot loaders set CPU frequency to a value outside of
1252 * frequency table present with cpufreq core. In such cases CPU might be
1253 * unstable if it has to run on that frequency for long duration of time
1254 * and so its better to set it to a frequency which is specified in
1255 * freq-table. This also makes cpufreq stats inconsistent as
1256 * cpufreq-stats would fail to register because current frequency of CPU
1257 * isn't found in freq-table.
1258 *
1259 * Because we don't want this change to effect boot process badly, we go
1260 * for the next freq which is >= policy->cur ('cur' must be set by now,
1261 * otherwise we will end up setting freq to lowest of the table as 'cur'
1262 * is initialized to zero).
1263 *
1264 * We are passing target-freq as "policy->cur - 1" otherwise
1265 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1266 * equal to target-freq.
1267 */
1268 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1269 && has_target()) {
1270 /* Are we running at unknown frequency ? */
1271 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1272 if (ret == -EINVAL) {
1273 /* Warn user and fix it */
1274 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1275 __func__, policy->cpu, policy->cur);
1276 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1277 CPUFREQ_RELATION_L);
1278
1279 /*
1280 * Reaching here after boot in a few seconds may not
1281 * mean that system will remain stable at "unknown"
1282 * frequency for longer duration. Hence, a BUG_ON().
1283 */
1284 BUG_ON(ret);
1285 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1286 __func__, policy->cpu, policy->cur);
1287 }
1288 }
1289
1290 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1291 CPUFREQ_START, policy);
1292
1293 if (new_policy) {
1294 ret = cpufreq_add_dev_interface(policy);
1295 if (ret)
1296 goto out_exit_policy;
1297 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1298 CPUFREQ_CREATE_POLICY, policy);
1299
1300 write_lock_irqsave(&cpufreq_driver_lock, flags);
1301 list_add(&policy->policy_list, &cpufreq_policy_list);
1302 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1303 }
1304
1305 ret = cpufreq_init_policy(policy);
1306 if (ret) {
1307 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1308 __func__, cpu, ret);
1309 /* cpufreq_policy_free() will notify based on this */
1310 new_policy = false;
1311 goto out_exit_policy;
1312 }
1313
1314 up_write(&policy->rwsem);
1315
1316 kobject_uevent(&policy->kobj, KOBJ_ADD);
1317
1318 /* Callback for handling stuff after policy is ready */
1319 if (cpufreq_driver->ready)
1320 cpufreq_driver->ready(policy);
1321
1322 pr_debug("initialization complete\n");
1323
1324 return 0;
1325
1326 out_exit_policy:
1327 up_write(&policy->rwsem);
1328
1329 if (cpufreq_driver->exit)
1330 cpufreq_driver->exit(policy);
1331 out_free_policy:
1332 cpufreq_policy_free(policy, !new_policy);
1333 return ret;
1334 }
1335
1336 /**
1337 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1338 * @dev: CPU device.
1339 * @sif: Subsystem interface structure pointer (not used)
1340 */
1341 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1342 {
1343 unsigned cpu = dev->id;
1344 int ret;
1345
1346 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1347
1348 if (cpu_online(cpu)) {
1349 ret = cpufreq_online(cpu);
1350 } else {
1351 /*
1352 * A hotplug notifier will follow and we will handle it as CPU
1353 * online then. For now, just create the sysfs link, unless
1354 * there is no policy or the link is already present.
1355 */
1356 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1357
1358 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1359 ? add_cpu_dev_symlink(policy, cpu) : 0;
1360 }
1361
1362 return ret;
1363 }
1364
1365 static void cpufreq_offline_prepare(unsigned int cpu)
1366 {
1367 struct cpufreq_policy *policy;
1368
1369 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1370
1371 policy = cpufreq_cpu_get_raw(cpu);
1372 if (!policy) {
1373 pr_debug("%s: No cpu_data found\n", __func__);
1374 return;
1375 }
1376
1377 if (has_target()) {
1378 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1379 if (ret)
1380 pr_err("%s: Failed to stop governor\n", __func__);
1381 }
1382
1383 down_write(&policy->rwsem);
1384 cpumask_clear_cpu(cpu, policy->cpus);
1385
1386 if (policy_is_inactive(policy)) {
1387 if (has_target())
1388 strncpy(policy->last_governor, policy->governor->name,
1389 CPUFREQ_NAME_LEN);
1390 else
1391 policy->last_policy = policy->policy;
1392 } else if (cpu == policy->cpu) {
1393 /* Nominate new CPU */
1394 policy->cpu = cpumask_any(policy->cpus);
1395 }
1396 up_write(&policy->rwsem);
1397
1398 /* Start governor again for active policy */
1399 if (!policy_is_inactive(policy)) {
1400 if (has_target()) {
1401 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1402 if (!ret)
1403 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1404
1405 if (ret)
1406 pr_err("%s: Failed to start governor\n", __func__);
1407 }
1408 } else if (cpufreq_driver->stop_cpu) {
1409 cpufreq_driver->stop_cpu(policy);
1410 }
1411 }
1412
1413 static void cpufreq_offline_finish(unsigned int cpu)
1414 {
1415 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1416
1417 if (!policy) {
1418 pr_debug("%s: No cpu_data found\n", __func__);
1419 return;
1420 }
1421
1422 /* Only proceed for inactive policies */
1423 if (!policy_is_inactive(policy))
1424 return;
1425
1426 /* If cpu is last user of policy, free policy */
1427 if (has_target()) {
1428 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1429 if (ret)
1430 pr_err("%s: Failed to exit governor\n", __func__);
1431 }
1432
1433 /*
1434 * Perform the ->exit() even during light-weight tear-down,
1435 * since this is a core component, and is essential for the
1436 * subsequent light-weight ->init() to succeed.
1437 */
1438 if (cpufreq_driver->exit) {
1439 cpufreq_driver->exit(policy);
1440 policy->freq_table = NULL;
1441 }
1442 }
1443
1444 /**
1445 * cpufreq_remove_dev - remove a CPU device
1446 *
1447 * Removes the cpufreq interface for a CPU device.
1448 */
1449 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1450 {
1451 unsigned int cpu = dev->id;
1452 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1453
1454 if (!policy)
1455 return;
1456
1457 if (cpu_online(cpu)) {
1458 cpufreq_offline_prepare(cpu);
1459 cpufreq_offline_finish(cpu);
1460 }
1461
1462 cpumask_clear_cpu(cpu, policy->real_cpus);
1463 remove_cpu_dev_symlink(policy, cpu);
1464
1465 if (cpumask_empty(policy->real_cpus))
1466 cpufreq_policy_free(policy, true);
1467 }
1468
1469 static void handle_update(struct work_struct *work)
1470 {
1471 struct cpufreq_policy *policy =
1472 container_of(work, struct cpufreq_policy, update);
1473 unsigned int cpu = policy->cpu;
1474 pr_debug("handle_update for cpu %u called\n", cpu);
1475 cpufreq_update_policy(cpu);
1476 }
1477
1478 /**
1479 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1480 * in deep trouble.
1481 * @policy: policy managing CPUs
1482 * @new_freq: CPU frequency the CPU actually runs at
1483 *
1484 * We adjust to current frequency first, and need to clean up later.
1485 * So either call to cpufreq_update_policy() or schedule handle_update()).
1486 */
1487 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1488 unsigned int new_freq)
1489 {
1490 struct cpufreq_freqs freqs;
1491
1492 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1493 policy->cur, new_freq);
1494
1495 freqs.old = policy->cur;
1496 freqs.new = new_freq;
1497
1498 cpufreq_freq_transition_begin(policy, &freqs);
1499 cpufreq_freq_transition_end(policy, &freqs, 0);
1500 }
1501
1502 /**
1503 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1504 * @cpu: CPU number
1505 *
1506 * This is the last known freq, without actually getting it from the driver.
1507 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1508 */
1509 unsigned int cpufreq_quick_get(unsigned int cpu)
1510 {
1511 struct cpufreq_policy *policy;
1512 unsigned int ret_freq = 0;
1513
1514 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1515 return cpufreq_driver->get(cpu);
1516
1517 policy = cpufreq_cpu_get(cpu);
1518 if (policy) {
1519 ret_freq = policy->cur;
1520 cpufreq_cpu_put(policy);
1521 }
1522
1523 return ret_freq;
1524 }
1525 EXPORT_SYMBOL(cpufreq_quick_get);
1526
1527 /**
1528 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1529 * @cpu: CPU number
1530 *
1531 * Just return the max possible frequency for a given CPU.
1532 */
1533 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1534 {
1535 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1536 unsigned int ret_freq = 0;
1537
1538 if (policy) {
1539 ret_freq = policy->max;
1540 cpufreq_cpu_put(policy);
1541 }
1542
1543 return ret_freq;
1544 }
1545 EXPORT_SYMBOL(cpufreq_quick_get_max);
1546
1547 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1548 {
1549 unsigned int ret_freq = 0;
1550
1551 if (!cpufreq_driver->get)
1552 return ret_freq;
1553
1554 ret_freq = cpufreq_driver->get(policy->cpu);
1555
1556 /* Updating inactive policies is invalid, so avoid doing that. */
1557 if (unlikely(policy_is_inactive(policy)))
1558 return ret_freq;
1559
1560 if (ret_freq && policy->cur &&
1561 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1562 /* verify no discrepancy between actual and
1563 saved value exists */
1564 if (unlikely(ret_freq != policy->cur)) {
1565 cpufreq_out_of_sync(policy, ret_freq);
1566 schedule_work(&policy->update);
1567 }
1568 }
1569
1570 return ret_freq;
1571 }
1572
1573 /**
1574 * cpufreq_get - get the current CPU frequency (in kHz)
1575 * @cpu: CPU number
1576 *
1577 * Get the CPU current (static) CPU frequency
1578 */
1579 unsigned int cpufreq_get(unsigned int cpu)
1580 {
1581 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1582 unsigned int ret_freq = 0;
1583
1584 if (policy) {
1585 down_read(&policy->rwsem);
1586 ret_freq = __cpufreq_get(policy);
1587 up_read(&policy->rwsem);
1588
1589 cpufreq_cpu_put(policy);
1590 }
1591
1592 return ret_freq;
1593 }
1594 EXPORT_SYMBOL(cpufreq_get);
1595
1596 static struct subsys_interface cpufreq_interface = {
1597 .name = "cpufreq",
1598 .subsys = &cpu_subsys,
1599 .add_dev = cpufreq_add_dev,
1600 .remove_dev = cpufreq_remove_dev,
1601 };
1602
1603 /*
1604 * In case platform wants some specific frequency to be configured
1605 * during suspend..
1606 */
1607 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1608 {
1609 int ret;
1610
1611 if (!policy->suspend_freq) {
1612 pr_debug("%s: suspend_freq not defined\n", __func__);
1613 return 0;
1614 }
1615
1616 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1617 policy->suspend_freq);
1618
1619 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1620 CPUFREQ_RELATION_H);
1621 if (ret)
1622 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1623 __func__, policy->suspend_freq, ret);
1624
1625 return ret;
1626 }
1627 EXPORT_SYMBOL(cpufreq_generic_suspend);
1628
1629 /**
1630 * cpufreq_suspend() - Suspend CPUFreq governors
1631 *
1632 * Called during system wide Suspend/Hibernate cycles for suspending governors
1633 * as some platforms can't change frequency after this point in suspend cycle.
1634 * Because some of the devices (like: i2c, regulators, etc) they use for
1635 * changing frequency are suspended quickly after this point.
1636 */
1637 void cpufreq_suspend(void)
1638 {
1639 struct cpufreq_policy *policy;
1640
1641 if (!cpufreq_driver)
1642 return;
1643
1644 if (!has_target())
1645 goto suspend;
1646
1647 pr_debug("%s: Suspending Governors\n", __func__);
1648
1649 for_each_active_policy(policy) {
1650 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1651 pr_err("%s: Failed to stop governor for policy: %p\n",
1652 __func__, policy);
1653 else if (cpufreq_driver->suspend
1654 && cpufreq_driver->suspend(policy))
1655 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1656 policy);
1657 }
1658
1659 suspend:
1660 cpufreq_suspended = true;
1661 }
1662
1663 /**
1664 * cpufreq_resume() - Resume CPUFreq governors
1665 *
1666 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1667 * are suspended with cpufreq_suspend().
1668 */
1669 void cpufreq_resume(void)
1670 {
1671 struct cpufreq_policy *policy;
1672
1673 if (!cpufreq_driver)
1674 return;
1675
1676 cpufreq_suspended = false;
1677
1678 if (!has_target())
1679 return;
1680
1681 pr_debug("%s: Resuming Governors\n", __func__);
1682
1683 for_each_active_policy(policy) {
1684 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1685 pr_err("%s: Failed to resume driver: %p\n", __func__,
1686 policy);
1687 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1688 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1689 pr_err("%s: Failed to start governor for policy: %p\n",
1690 __func__, policy);
1691 }
1692
1693 /*
1694 * schedule call cpufreq_update_policy() for first-online CPU, as that
1695 * wouldn't be hotplugged-out on suspend. It will verify that the
1696 * current freq is in sync with what we believe it to be.
1697 */
1698 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask));
1699 if (WARN_ON(!policy))
1700 return;
1701
1702 schedule_work(&policy->update);
1703 }
1704
1705 /**
1706 * cpufreq_get_current_driver - return current driver's name
1707 *
1708 * Return the name string of the currently loaded cpufreq driver
1709 * or NULL, if none.
1710 */
1711 const char *cpufreq_get_current_driver(void)
1712 {
1713 if (cpufreq_driver)
1714 return cpufreq_driver->name;
1715
1716 return NULL;
1717 }
1718 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1719
1720 /**
1721 * cpufreq_get_driver_data - return current driver data
1722 *
1723 * Return the private data of the currently loaded cpufreq
1724 * driver, or NULL if no cpufreq driver is loaded.
1725 */
1726 void *cpufreq_get_driver_data(void)
1727 {
1728 if (cpufreq_driver)
1729 return cpufreq_driver->driver_data;
1730
1731 return NULL;
1732 }
1733 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1734
1735 /*********************************************************************
1736 * NOTIFIER LISTS INTERFACE *
1737 *********************************************************************/
1738
1739 /**
1740 * cpufreq_register_notifier - register a driver with cpufreq
1741 * @nb: notifier function to register
1742 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1743 *
1744 * Add a driver to one of two lists: either a list of drivers that
1745 * are notified about clock rate changes (once before and once after
1746 * the transition), or a list of drivers that are notified about
1747 * changes in cpufreq policy.
1748 *
1749 * This function may sleep, and has the same return conditions as
1750 * blocking_notifier_chain_register.
1751 */
1752 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1753 {
1754 int ret;
1755
1756 if (cpufreq_disabled())
1757 return -EINVAL;
1758
1759 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1760
1761 switch (list) {
1762 case CPUFREQ_TRANSITION_NOTIFIER:
1763 ret = srcu_notifier_chain_register(
1764 &cpufreq_transition_notifier_list, nb);
1765 break;
1766 case CPUFREQ_POLICY_NOTIFIER:
1767 ret = blocking_notifier_chain_register(
1768 &cpufreq_policy_notifier_list, nb);
1769 break;
1770 default:
1771 ret = -EINVAL;
1772 }
1773
1774 return ret;
1775 }
1776 EXPORT_SYMBOL(cpufreq_register_notifier);
1777
1778 /**
1779 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1780 * @nb: notifier block to be unregistered
1781 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1782 *
1783 * Remove a driver from the CPU frequency notifier list.
1784 *
1785 * This function may sleep, and has the same return conditions as
1786 * blocking_notifier_chain_unregister.
1787 */
1788 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1789 {
1790 int ret;
1791
1792 if (cpufreq_disabled())
1793 return -EINVAL;
1794
1795 switch (list) {
1796 case CPUFREQ_TRANSITION_NOTIFIER:
1797 ret = srcu_notifier_chain_unregister(
1798 &cpufreq_transition_notifier_list, nb);
1799 break;
1800 case CPUFREQ_POLICY_NOTIFIER:
1801 ret = blocking_notifier_chain_unregister(
1802 &cpufreq_policy_notifier_list, nb);
1803 break;
1804 default:
1805 ret = -EINVAL;
1806 }
1807
1808 return ret;
1809 }
1810 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1811
1812
1813 /*********************************************************************
1814 * GOVERNORS *
1815 *********************************************************************/
1816
1817 /* Must set freqs->new to intermediate frequency */
1818 static int __target_intermediate(struct cpufreq_policy *policy,
1819 struct cpufreq_freqs *freqs, int index)
1820 {
1821 int ret;
1822
1823 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1824
1825 /* We don't need to switch to intermediate freq */
1826 if (!freqs->new)
1827 return 0;
1828
1829 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1830 __func__, policy->cpu, freqs->old, freqs->new);
1831
1832 cpufreq_freq_transition_begin(policy, freqs);
1833 ret = cpufreq_driver->target_intermediate(policy, index);
1834 cpufreq_freq_transition_end(policy, freqs, ret);
1835
1836 if (ret)
1837 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1838 __func__, ret);
1839
1840 return ret;
1841 }
1842
1843 static int __target_index(struct cpufreq_policy *policy,
1844 struct cpufreq_frequency_table *freq_table, int index)
1845 {
1846 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1847 unsigned int intermediate_freq = 0;
1848 int retval = -EINVAL;
1849 bool notify;
1850
1851 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1852 if (notify) {
1853 /* Handle switching to intermediate frequency */
1854 if (cpufreq_driver->get_intermediate) {
1855 retval = __target_intermediate(policy, &freqs, index);
1856 if (retval)
1857 return retval;
1858
1859 intermediate_freq = freqs.new;
1860 /* Set old freq to intermediate */
1861 if (intermediate_freq)
1862 freqs.old = freqs.new;
1863 }
1864
1865 freqs.new = freq_table[index].frequency;
1866 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869 cpufreq_freq_transition_begin(policy, &freqs);
1870 }
1871
1872 retval = cpufreq_driver->target_index(policy, index);
1873 if (retval)
1874 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1875 retval);
1876
1877 if (notify) {
1878 cpufreq_freq_transition_end(policy, &freqs, retval);
1879
1880 /*
1881 * Failed after setting to intermediate freq? Driver should have
1882 * reverted back to initial frequency and so should we. Check
1883 * here for intermediate_freq instead of get_intermediate, in
1884 * case we haven't switched to intermediate freq at all.
1885 */
1886 if (unlikely(retval && intermediate_freq)) {
1887 freqs.old = intermediate_freq;
1888 freqs.new = policy->restore_freq;
1889 cpufreq_freq_transition_begin(policy, &freqs);
1890 cpufreq_freq_transition_end(policy, &freqs, 0);
1891 }
1892 }
1893
1894 return retval;
1895 }
1896
1897 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1898 unsigned int target_freq,
1899 unsigned int relation)
1900 {
1901 unsigned int old_target_freq = target_freq;
1902 int retval = -EINVAL;
1903
1904 if (cpufreq_disabled())
1905 return -ENODEV;
1906
1907 /* Make sure that target_freq is within supported range */
1908 if (target_freq > policy->max)
1909 target_freq = policy->max;
1910 if (target_freq < policy->min)
1911 target_freq = policy->min;
1912
1913 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1914 policy->cpu, target_freq, relation, old_target_freq);
1915
1916 /*
1917 * This might look like a redundant call as we are checking it again
1918 * after finding index. But it is left intentionally for cases where
1919 * exactly same freq is called again and so we can save on few function
1920 * calls.
1921 */
1922 if (target_freq == policy->cur)
1923 return 0;
1924
1925 /* Save last value to restore later on errors */
1926 policy->restore_freq = policy->cur;
1927
1928 if (cpufreq_driver->target)
1929 retval = cpufreq_driver->target(policy, target_freq, relation);
1930 else if (cpufreq_driver->target_index) {
1931 struct cpufreq_frequency_table *freq_table;
1932 int index;
1933
1934 freq_table = cpufreq_frequency_get_table(policy->cpu);
1935 if (unlikely(!freq_table)) {
1936 pr_err("%s: Unable to find freq_table\n", __func__);
1937 goto out;
1938 }
1939
1940 retval = cpufreq_frequency_table_target(policy, freq_table,
1941 target_freq, relation, &index);
1942 if (unlikely(retval)) {
1943 pr_err("%s: Unable to find matching freq\n", __func__);
1944 goto out;
1945 }
1946
1947 if (freq_table[index].frequency == policy->cur) {
1948 retval = 0;
1949 goto out;
1950 }
1951
1952 retval = __target_index(policy, freq_table, index);
1953 }
1954
1955 out:
1956 return retval;
1957 }
1958 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1959
1960 int cpufreq_driver_target(struct cpufreq_policy *policy,
1961 unsigned int target_freq,
1962 unsigned int relation)
1963 {
1964 int ret = -EINVAL;
1965
1966 down_write(&policy->rwsem);
1967
1968 ret = __cpufreq_driver_target(policy, target_freq, relation);
1969
1970 up_write(&policy->rwsem);
1971
1972 return ret;
1973 }
1974 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1975
1976 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1977 {
1978 return NULL;
1979 }
1980
1981 static int __cpufreq_governor(struct cpufreq_policy *policy,
1982 unsigned int event)
1983 {
1984 int ret;
1985
1986 /* Don't start any governor operations if we are entering suspend */
1987 if (cpufreq_suspended)
1988 return 0;
1989 /*
1990 * Governor might not be initiated here if ACPI _PPC changed
1991 * notification happened, so check it.
1992 */
1993 if (!policy->governor)
1994 return -EINVAL;
1995
1996 if (policy->governor->max_transition_latency &&
1997 policy->cpuinfo.transition_latency >
1998 policy->governor->max_transition_latency) {
1999 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2000
2001 if (gov) {
2002 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2003 policy->governor->name, gov->name);
2004 policy->governor = gov;
2005 } else {
2006 return -EINVAL;
2007 }
2008 }
2009
2010 if (event == CPUFREQ_GOV_POLICY_INIT)
2011 if (!try_module_get(policy->governor->owner))
2012 return -EINVAL;
2013
2014 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
2015
2016 mutex_lock(&cpufreq_governor_lock);
2017 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
2018 || (!policy->governor_enabled
2019 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
2020 mutex_unlock(&cpufreq_governor_lock);
2021 return -EBUSY;
2022 }
2023
2024 if (event == CPUFREQ_GOV_STOP)
2025 policy->governor_enabled = false;
2026 else if (event == CPUFREQ_GOV_START)
2027 policy->governor_enabled = true;
2028
2029 mutex_unlock(&cpufreq_governor_lock);
2030
2031 ret = policy->governor->governor(policy, event);
2032
2033 if (!ret) {
2034 if (event == CPUFREQ_GOV_POLICY_INIT)
2035 policy->governor->initialized++;
2036 else if (event == CPUFREQ_GOV_POLICY_EXIT)
2037 policy->governor->initialized--;
2038 } else {
2039 /* Restore original values */
2040 mutex_lock(&cpufreq_governor_lock);
2041 if (event == CPUFREQ_GOV_STOP)
2042 policy->governor_enabled = true;
2043 else if (event == CPUFREQ_GOV_START)
2044 policy->governor_enabled = false;
2045 mutex_unlock(&cpufreq_governor_lock);
2046 }
2047
2048 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2049 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2050 module_put(policy->governor->owner);
2051
2052 return ret;
2053 }
2054
2055 int cpufreq_register_governor(struct cpufreq_governor *governor)
2056 {
2057 int err;
2058
2059 if (!governor)
2060 return -EINVAL;
2061
2062 if (cpufreq_disabled())
2063 return -ENODEV;
2064
2065 mutex_lock(&cpufreq_governor_mutex);
2066
2067 governor->initialized = 0;
2068 err = -EBUSY;
2069 if (!find_governor(governor->name)) {
2070 err = 0;
2071 list_add(&governor->governor_list, &cpufreq_governor_list);
2072 }
2073
2074 mutex_unlock(&cpufreq_governor_mutex);
2075 return err;
2076 }
2077 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2078
2079 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2080 {
2081 struct cpufreq_policy *policy;
2082 unsigned long flags;
2083
2084 if (!governor)
2085 return;
2086
2087 if (cpufreq_disabled())
2088 return;
2089
2090 /* clear last_governor for all inactive policies */
2091 read_lock_irqsave(&cpufreq_driver_lock, flags);
2092 for_each_inactive_policy(policy) {
2093 if (!strcmp(policy->last_governor, governor->name)) {
2094 policy->governor = NULL;
2095 strcpy(policy->last_governor, "\0");
2096 }
2097 }
2098 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2099
2100 mutex_lock(&cpufreq_governor_mutex);
2101 list_del(&governor->governor_list);
2102 mutex_unlock(&cpufreq_governor_mutex);
2103 return;
2104 }
2105 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2106
2107
2108 /*********************************************************************
2109 * POLICY INTERFACE *
2110 *********************************************************************/
2111
2112 /**
2113 * cpufreq_get_policy - get the current cpufreq_policy
2114 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2115 * is written
2116 *
2117 * Reads the current cpufreq policy.
2118 */
2119 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2120 {
2121 struct cpufreq_policy *cpu_policy;
2122 if (!policy)
2123 return -EINVAL;
2124
2125 cpu_policy = cpufreq_cpu_get(cpu);
2126 if (!cpu_policy)
2127 return -EINVAL;
2128
2129 memcpy(policy, cpu_policy, sizeof(*policy));
2130
2131 cpufreq_cpu_put(cpu_policy);
2132 return 0;
2133 }
2134 EXPORT_SYMBOL(cpufreq_get_policy);
2135
2136 /*
2137 * policy : current policy.
2138 * new_policy: policy to be set.
2139 */
2140 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2141 struct cpufreq_policy *new_policy)
2142 {
2143 struct cpufreq_governor *old_gov;
2144 int ret;
2145
2146 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2147 new_policy->cpu, new_policy->min, new_policy->max);
2148
2149 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2150
2151 /*
2152 * This check works well when we store new min/max freq attributes,
2153 * because new_policy is a copy of policy with one field updated.
2154 */
2155 if (new_policy->min > new_policy->max)
2156 return -EINVAL;
2157
2158 /* verify the cpu speed can be set within this limit */
2159 ret = cpufreq_driver->verify(new_policy);
2160 if (ret)
2161 return ret;
2162
2163 /* adjust if necessary - all reasons */
2164 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2165 CPUFREQ_ADJUST, new_policy);
2166
2167 /*
2168 * verify the cpu speed can be set within this limit, which might be
2169 * different to the first one
2170 */
2171 ret = cpufreq_driver->verify(new_policy);
2172 if (ret)
2173 return ret;
2174
2175 /* notification of the new policy */
2176 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2177 CPUFREQ_NOTIFY, new_policy);
2178
2179 policy->min = new_policy->min;
2180 policy->max = new_policy->max;
2181
2182 pr_debug("new min and max freqs are %u - %u kHz\n",
2183 policy->min, policy->max);
2184
2185 if (cpufreq_driver->setpolicy) {
2186 policy->policy = new_policy->policy;
2187 pr_debug("setting range\n");
2188 return cpufreq_driver->setpolicy(new_policy);
2189 }
2190
2191 if (new_policy->governor == policy->governor)
2192 goto out;
2193
2194 pr_debug("governor switch\n");
2195
2196 /* save old, working values */
2197 old_gov = policy->governor;
2198 /* end old governor */
2199 if (old_gov) {
2200 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2201 if (ret) {
2202 /* This can happen due to race with other operations */
2203 pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2204 __func__, old_gov->name, ret);
2205 return ret;
2206 }
2207
2208 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2209 if (ret) {
2210 pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2211 __func__, old_gov->name, ret);
2212 return ret;
2213 }
2214 }
2215
2216 /* start new governor */
2217 policy->governor = new_policy->governor;
2218 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2219 if (!ret) {
2220 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
2221 if (!ret)
2222 goto out;
2223
2224 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2225 }
2226
2227 /* new governor failed, so re-start old one */
2228 pr_debug("starting governor %s failed\n", policy->governor->name);
2229 if (old_gov) {
2230 policy->governor = old_gov;
2231 if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2232 policy->governor = NULL;
2233 else
2234 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2235 }
2236
2237 return ret;
2238
2239 out:
2240 pr_debug("governor: change or update limits\n");
2241 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2242 }
2243
2244 /**
2245 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2246 * @cpu: CPU which shall be re-evaluated
2247 *
2248 * Useful for policy notifiers which have different necessities
2249 * at different times.
2250 */
2251 int cpufreq_update_policy(unsigned int cpu)
2252 {
2253 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2254 struct cpufreq_policy new_policy;
2255 int ret;
2256
2257 if (!policy)
2258 return -ENODEV;
2259
2260 down_write(&policy->rwsem);
2261
2262 pr_debug("updating policy for CPU %u\n", cpu);
2263 memcpy(&new_policy, policy, sizeof(*policy));
2264 new_policy.min = policy->user_policy.min;
2265 new_policy.max = policy->user_policy.max;
2266
2267 /*
2268 * BIOS might change freq behind our back
2269 * -> ask driver for current freq and notify governors about a change
2270 */
2271 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2272 new_policy.cur = cpufreq_driver->get(cpu);
2273 if (WARN_ON(!new_policy.cur)) {
2274 ret = -EIO;
2275 goto unlock;
2276 }
2277
2278 if (!policy->cur) {
2279 pr_debug("Driver did not initialize current freq\n");
2280 policy->cur = new_policy.cur;
2281 } else {
2282 if (policy->cur != new_policy.cur && has_target())
2283 cpufreq_out_of_sync(policy, new_policy.cur);
2284 }
2285 }
2286
2287 ret = cpufreq_set_policy(policy, &new_policy);
2288
2289 unlock:
2290 up_write(&policy->rwsem);
2291
2292 cpufreq_cpu_put(policy);
2293 return ret;
2294 }
2295 EXPORT_SYMBOL(cpufreq_update_policy);
2296
2297 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2298 unsigned long action, void *hcpu)
2299 {
2300 unsigned int cpu = (unsigned long)hcpu;
2301
2302 switch (action & ~CPU_TASKS_FROZEN) {
2303 case CPU_ONLINE:
2304 cpufreq_online(cpu);
2305 break;
2306
2307 case CPU_DOWN_PREPARE:
2308 cpufreq_offline_prepare(cpu);
2309 break;
2310
2311 case CPU_POST_DEAD:
2312 cpufreq_offline_finish(cpu);
2313 break;
2314
2315 case CPU_DOWN_FAILED:
2316 cpufreq_online(cpu);
2317 break;
2318 }
2319 return NOTIFY_OK;
2320 }
2321
2322 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2323 .notifier_call = cpufreq_cpu_callback,
2324 };
2325
2326 /*********************************************************************
2327 * BOOST *
2328 *********************************************************************/
2329 static int cpufreq_boost_set_sw(int state)
2330 {
2331 struct cpufreq_frequency_table *freq_table;
2332 struct cpufreq_policy *policy;
2333 int ret = -EINVAL;
2334
2335 for_each_active_policy(policy) {
2336 freq_table = cpufreq_frequency_get_table(policy->cpu);
2337 if (freq_table) {
2338 ret = cpufreq_frequency_table_cpuinfo(policy,
2339 freq_table);
2340 if (ret) {
2341 pr_err("%s: Policy frequency update failed\n",
2342 __func__);
2343 break;
2344 }
2345 policy->user_policy.max = policy->max;
2346 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2347 }
2348 }
2349
2350 return ret;
2351 }
2352
2353 int cpufreq_boost_trigger_state(int state)
2354 {
2355 unsigned long flags;
2356 int ret = 0;
2357
2358 if (cpufreq_driver->boost_enabled == state)
2359 return 0;
2360
2361 write_lock_irqsave(&cpufreq_driver_lock, flags);
2362 cpufreq_driver->boost_enabled = state;
2363 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2364
2365 ret = cpufreq_driver->set_boost(state);
2366 if (ret) {
2367 write_lock_irqsave(&cpufreq_driver_lock, flags);
2368 cpufreq_driver->boost_enabled = !state;
2369 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2370
2371 pr_err("%s: Cannot %s BOOST\n",
2372 __func__, state ? "enable" : "disable");
2373 }
2374
2375 return ret;
2376 }
2377
2378 static bool cpufreq_boost_supported(void)
2379 {
2380 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2381 }
2382
2383 static int create_boost_sysfs_file(void)
2384 {
2385 int ret;
2386
2387 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2388 if (ret)
2389 pr_err("%s: cannot register global BOOST sysfs file\n",
2390 __func__);
2391
2392 return ret;
2393 }
2394
2395 static void remove_boost_sysfs_file(void)
2396 {
2397 if (cpufreq_boost_supported())
2398 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2399 }
2400
2401 int cpufreq_enable_boost_support(void)
2402 {
2403 if (!cpufreq_driver)
2404 return -EINVAL;
2405
2406 if (cpufreq_boost_supported())
2407 return 0;
2408
2409 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2410
2411 /* This will get removed on driver unregister */
2412 return create_boost_sysfs_file();
2413 }
2414 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2415
2416 int cpufreq_boost_enabled(void)
2417 {
2418 return cpufreq_driver->boost_enabled;
2419 }
2420 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2421
2422 /*********************************************************************
2423 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2424 *********************************************************************/
2425
2426 /**
2427 * cpufreq_register_driver - register a CPU Frequency driver
2428 * @driver_data: A struct cpufreq_driver containing the values#
2429 * submitted by the CPU Frequency driver.
2430 *
2431 * Registers a CPU Frequency driver to this core code. This code
2432 * returns zero on success, -EBUSY when another driver got here first
2433 * (and isn't unregistered in the meantime).
2434 *
2435 */
2436 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2437 {
2438 unsigned long flags;
2439 int ret;
2440
2441 if (cpufreq_disabled())
2442 return -ENODEV;
2443
2444 if (!driver_data || !driver_data->verify || !driver_data->init ||
2445 !(driver_data->setpolicy || driver_data->target_index ||
2446 driver_data->target) ||
2447 (driver_data->setpolicy && (driver_data->target_index ||
2448 driver_data->target)) ||
2449 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2450 return -EINVAL;
2451
2452 pr_debug("trying to register driver %s\n", driver_data->name);
2453
2454 /* Protect against concurrent CPU online/offline. */
2455 get_online_cpus();
2456
2457 write_lock_irqsave(&cpufreq_driver_lock, flags);
2458 if (cpufreq_driver) {
2459 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2460 ret = -EEXIST;
2461 goto out;
2462 }
2463 cpufreq_driver = driver_data;
2464 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2465
2466 if (driver_data->setpolicy)
2467 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2468
2469 if (cpufreq_boost_supported()) {
2470 ret = create_boost_sysfs_file();
2471 if (ret)
2472 goto err_null_driver;
2473 }
2474
2475 ret = subsys_interface_register(&cpufreq_interface);
2476 if (ret)
2477 goto err_boost_unreg;
2478
2479 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2480 list_empty(&cpufreq_policy_list)) {
2481 /* if all ->init() calls failed, unregister */
2482 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2483 driver_data->name);
2484 goto err_if_unreg;
2485 }
2486
2487 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2488 pr_debug("driver %s up and running\n", driver_data->name);
2489
2490 out:
2491 put_online_cpus();
2492 return ret;
2493
2494 err_if_unreg:
2495 subsys_interface_unregister(&cpufreq_interface);
2496 err_boost_unreg:
2497 remove_boost_sysfs_file();
2498 err_null_driver:
2499 write_lock_irqsave(&cpufreq_driver_lock, flags);
2500 cpufreq_driver = NULL;
2501 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2502 goto out;
2503 }
2504 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2505
2506 /**
2507 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2508 *
2509 * Unregister the current CPUFreq driver. Only call this if you have
2510 * the right to do so, i.e. if you have succeeded in initialising before!
2511 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2512 * currently not initialised.
2513 */
2514 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2515 {
2516 unsigned long flags;
2517
2518 if (!cpufreq_driver || (driver != cpufreq_driver))
2519 return -EINVAL;
2520
2521 pr_debug("unregistering driver %s\n", driver->name);
2522
2523 /* Protect against concurrent cpu hotplug */
2524 get_online_cpus();
2525 subsys_interface_unregister(&cpufreq_interface);
2526 remove_boost_sysfs_file();
2527 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2528
2529 write_lock_irqsave(&cpufreq_driver_lock, flags);
2530
2531 cpufreq_driver = NULL;
2532
2533 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2534 put_online_cpus();
2535
2536 return 0;
2537 }
2538 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2539
2540 /*
2541 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2542 * or mutexes when secondary CPUs are halted.
2543 */
2544 static struct syscore_ops cpufreq_syscore_ops = {
2545 .shutdown = cpufreq_suspend,
2546 };
2547
2548 struct kobject *cpufreq_global_kobject;
2549 EXPORT_SYMBOL(cpufreq_global_kobject);
2550
2551 static int __init cpufreq_core_init(void)
2552 {
2553 if (cpufreq_disabled())
2554 return -ENODEV;
2555
2556 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2557 BUG_ON(!cpufreq_global_kobject);
2558
2559 register_syscore_ops(&cpufreq_syscore_ops);
2560
2561 return 0;
2562 }
2563 core_initcall(cpufreq_core_init);
This page took 0.080916 seconds and 4 git commands to generate.