Merge cpufreq fixes going into v4.6.
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38
39 #define ATOM_RATIOS 0x66a
40 #define ATOM_VIDS 0x66b
41 #define ATOM_TURBO_RATIOS 0x66c
42 #define ATOM_TURBO_VIDS 0x66d
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 static inline int32_t mul_fp(int32_t x, int32_t y)
53 {
54 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
55 }
56
57 static inline int32_t div_fp(s64 x, s64 y)
58 {
59 return div64_s64((int64_t)x << FRAC_BITS, y);
60 }
61
62 static inline int ceiling_fp(int32_t x)
63 {
64 int mask, ret;
65
66 ret = fp_toint(x);
67 mask = (1 << FRAC_BITS) - 1;
68 if (x & mask)
69 ret += 1;
70 return ret;
71 }
72
73 /**
74 * struct sample - Store performance sample
75 * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual
76 * performance during last sample period
77 * @busy_scaled: Scaled busy value which is used to calculate next
78 * P state. This can be different than core_pct_busy
79 * to account for cpu idle period
80 * @aperf: Difference of actual performance frequency clock count
81 * read from APERF MSR between last and current sample
82 * @mperf: Difference of maximum performance frequency clock count
83 * read from MPERF MSR between last and current sample
84 * @tsc: Difference of time stamp counter between last and
85 * current sample
86 * @freq: Effective frequency calculated from APERF/MPERF
87 * @time: Current time from scheduler
88 *
89 * This structure is used in the cpudata structure to store performance sample
90 * data for choosing next P State.
91 */
92 struct sample {
93 int32_t core_pct_busy;
94 int32_t busy_scaled;
95 u64 aperf;
96 u64 mperf;
97 u64 tsc;
98 int freq;
99 u64 time;
100 };
101
102 /**
103 * struct pstate_data - Store P state data
104 * @current_pstate: Current requested P state
105 * @min_pstate: Min P state possible for this platform
106 * @max_pstate: Max P state possible for this platform
107 * @max_pstate_physical:This is physical Max P state for a processor
108 * This can be higher than the max_pstate which can
109 * be limited by platform thermal design power limits
110 * @scaling: Scaling factor to convert frequency to cpufreq
111 * frequency units
112 * @turbo_pstate: Max Turbo P state possible for this platform
113 *
114 * Stores the per cpu model P state limits and current P state.
115 */
116 struct pstate_data {
117 int current_pstate;
118 int min_pstate;
119 int max_pstate;
120 int max_pstate_physical;
121 int scaling;
122 int turbo_pstate;
123 };
124
125 /**
126 * struct vid_data - Stores voltage information data
127 * @min: VID data for this platform corresponding to
128 * the lowest P state
129 * @max: VID data corresponding to the highest P State.
130 * @turbo: VID data for turbo P state
131 * @ratio: Ratio of (vid max - vid min) /
132 * (max P state - Min P State)
133 *
134 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
135 * This data is used in Atom platforms, where in addition to target P state,
136 * the voltage data needs to be specified to select next P State.
137 */
138 struct vid_data {
139 int min;
140 int max;
141 int turbo;
142 int32_t ratio;
143 };
144
145 /**
146 * struct _pid - Stores PID data
147 * @setpoint: Target set point for busyness or performance
148 * @integral: Storage for accumulated error values
149 * @p_gain: PID proportional gain
150 * @i_gain: PID integral gain
151 * @d_gain: PID derivative gain
152 * @deadband: PID deadband
153 * @last_err: Last error storage for integral part of PID calculation
154 *
155 * Stores PID coefficients and last error for PID controller.
156 */
157 struct _pid {
158 int setpoint;
159 int32_t integral;
160 int32_t p_gain;
161 int32_t i_gain;
162 int32_t d_gain;
163 int deadband;
164 int32_t last_err;
165 };
166
167 /**
168 * struct cpudata - Per CPU instance data storage
169 * @cpu: CPU number for this instance data
170 * @update_util: CPUFreq utility callback information
171 * @pstate: Stores P state limits for this CPU
172 * @vid: Stores VID limits for this CPU
173 * @pid: Stores PID parameters for this CPU
174 * @last_sample_time: Last Sample time
175 * @prev_aperf: Last APERF value read from APERF MSR
176 * @prev_mperf: Last MPERF value read from MPERF MSR
177 * @prev_tsc: Last timestamp counter (TSC) value
178 * @prev_cummulative_iowait: IO Wait time difference from last and
179 * current sample
180 * @sample: Storage for storing last Sample data
181 * @acpi_perf_data: Stores ACPI perf information read from _PSS
182 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
183 *
184 * This structure stores per CPU instance data for all CPUs.
185 */
186 struct cpudata {
187 int cpu;
188
189 struct update_util_data update_util;
190
191 struct pstate_data pstate;
192 struct vid_data vid;
193 struct _pid pid;
194
195 u64 last_sample_time;
196 u64 prev_aperf;
197 u64 prev_mperf;
198 u64 prev_tsc;
199 u64 prev_cummulative_iowait;
200 struct sample sample;
201 #ifdef CONFIG_ACPI
202 struct acpi_processor_performance acpi_perf_data;
203 bool valid_pss_table;
204 #endif
205 };
206
207 static struct cpudata **all_cpu_data;
208
209 /**
210 * struct pid_adjust_policy - Stores static PID configuration data
211 * @sample_rate_ms: PID calculation sample rate in ms
212 * @sample_rate_ns: Sample rate calculation in ns
213 * @deadband: PID deadband
214 * @setpoint: PID Setpoint
215 * @p_gain_pct: PID proportional gain
216 * @i_gain_pct: PID integral gain
217 * @d_gain_pct: PID derivative gain
218 *
219 * Stores per CPU model static PID configuration data.
220 */
221 struct pstate_adjust_policy {
222 int sample_rate_ms;
223 s64 sample_rate_ns;
224 int deadband;
225 int setpoint;
226 int p_gain_pct;
227 int d_gain_pct;
228 int i_gain_pct;
229 };
230
231 /**
232 * struct pstate_funcs - Per CPU model specific callbacks
233 * @get_max: Callback to get maximum non turbo effective P state
234 * @get_max_physical: Callback to get maximum non turbo physical P state
235 * @get_min: Callback to get minimum P state
236 * @get_turbo: Callback to get turbo P state
237 * @get_scaling: Callback to get frequency scaling factor
238 * @get_val: Callback to convert P state to actual MSR write value
239 * @get_vid: Callback to get VID data for Atom platforms
240 * @get_target_pstate: Callback to a function to calculate next P state to use
241 *
242 * Core and Atom CPU models have different way to get P State limits. This
243 * structure is used to store those callbacks.
244 */
245 struct pstate_funcs {
246 int (*get_max)(void);
247 int (*get_max_physical)(void);
248 int (*get_min)(void);
249 int (*get_turbo)(void);
250 int (*get_scaling)(void);
251 u64 (*get_val)(struct cpudata*, int pstate);
252 void (*get_vid)(struct cpudata *);
253 int32_t (*get_target_pstate)(struct cpudata *);
254 };
255
256 /**
257 * struct cpu_defaults- Per CPU model default config data
258 * @pid_policy: PID config data
259 * @funcs: Callback function data
260 */
261 struct cpu_defaults {
262 struct pstate_adjust_policy pid_policy;
263 struct pstate_funcs funcs;
264 };
265
266 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
267 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
268
269 static struct pstate_adjust_policy pid_params;
270 static struct pstate_funcs pstate_funcs;
271 static int hwp_active;
272
273 #ifdef CONFIG_ACPI
274 static bool acpi_ppc;
275 #endif
276
277 /**
278 * struct perf_limits - Store user and policy limits
279 * @no_turbo: User requested turbo state from intel_pstate sysfs
280 * @turbo_disabled: Platform turbo status either from msr
281 * MSR_IA32_MISC_ENABLE or when maximum available pstate
282 * matches the maximum turbo pstate
283 * @max_perf_pct: Effective maximum performance limit in percentage, this
284 * is minimum of either limits enforced by cpufreq policy
285 * or limits from user set limits via intel_pstate sysfs
286 * @min_perf_pct: Effective minimum performance limit in percentage, this
287 * is maximum of either limits enforced by cpufreq policy
288 * or limits from user set limits via intel_pstate sysfs
289 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
290 * This value is used to limit max pstate
291 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
292 * This value is used to limit min pstate
293 * @max_policy_pct: The maximum performance in percentage enforced by
294 * cpufreq setpolicy interface
295 * @max_sysfs_pct: The maximum performance in percentage enforced by
296 * intel pstate sysfs interface
297 * @min_policy_pct: The minimum performance in percentage enforced by
298 * cpufreq setpolicy interface
299 * @min_sysfs_pct: The minimum performance in percentage enforced by
300 * intel pstate sysfs interface
301 *
302 * Storage for user and policy defined limits.
303 */
304 struct perf_limits {
305 int no_turbo;
306 int turbo_disabled;
307 int max_perf_pct;
308 int min_perf_pct;
309 int32_t max_perf;
310 int32_t min_perf;
311 int max_policy_pct;
312 int max_sysfs_pct;
313 int min_policy_pct;
314 int min_sysfs_pct;
315 };
316
317 static struct perf_limits performance_limits = {
318 .no_turbo = 0,
319 .turbo_disabled = 0,
320 .max_perf_pct = 100,
321 .max_perf = int_tofp(1),
322 .min_perf_pct = 100,
323 .min_perf = int_tofp(1),
324 .max_policy_pct = 100,
325 .max_sysfs_pct = 100,
326 .min_policy_pct = 0,
327 .min_sysfs_pct = 0,
328 };
329
330 static struct perf_limits powersave_limits = {
331 .no_turbo = 0,
332 .turbo_disabled = 0,
333 .max_perf_pct = 100,
334 .max_perf = int_tofp(1),
335 .min_perf_pct = 0,
336 .min_perf = 0,
337 .max_policy_pct = 100,
338 .max_sysfs_pct = 100,
339 .min_policy_pct = 0,
340 .min_sysfs_pct = 0,
341 };
342
343 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
344 static struct perf_limits *limits = &performance_limits;
345 #else
346 static struct perf_limits *limits = &powersave_limits;
347 #endif
348
349 #ifdef CONFIG_ACPI
350
351 static bool intel_pstate_get_ppc_enable_status(void)
352 {
353 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
354 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
355 return true;
356
357 return acpi_ppc;
358 }
359
360 /*
361 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
362 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
363 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
364 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
365 * target ratio 0x17. The _PSS control value stores in a format which can be
366 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
367 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
368 * This function converts the _PSS control value to intel pstate driver format
369 * for comparison and assignment.
370 */
371 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
372 {
373 return cpu->acpi_perf_data.states[index].control >> 8;
374 }
375
376 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377 {
378 struct cpudata *cpu;
379 int turbo_pss_ctl;
380 int ret;
381 int i;
382
383 if (hwp_active)
384 return;
385
386 if (!intel_pstate_get_ppc_enable_status())
387 return;
388
389 cpu = all_cpu_data[policy->cpu];
390
391 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
392 policy->cpu);
393 if (ret)
394 return;
395
396 /*
397 * Check if the control value in _PSS is for PERF_CTL MSR, which should
398 * guarantee that the states returned by it map to the states in our
399 * list directly.
400 */
401 if (cpu->acpi_perf_data.control_register.space_id !=
402 ACPI_ADR_SPACE_FIXED_HARDWARE)
403 goto err;
404
405 /*
406 * If there is only one entry _PSS, simply ignore _PSS and continue as
407 * usual without taking _PSS into account
408 */
409 if (cpu->acpi_perf_data.state_count < 2)
410 goto err;
411
412 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
413 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
414 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
415 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
416 (u32) cpu->acpi_perf_data.states[i].core_frequency,
417 (u32) cpu->acpi_perf_data.states[i].power,
418 (u32) cpu->acpi_perf_data.states[i].control);
419 }
420
421 /*
422 * The _PSS table doesn't contain whole turbo frequency range.
423 * This just contains +1 MHZ above the max non turbo frequency,
424 * with control value corresponding to max turbo ratio. But
425 * when cpufreq set policy is called, it will call with this
426 * max frequency, which will cause a reduced performance as
427 * this driver uses real max turbo frequency as the max
428 * frequency. So correct this frequency in _PSS table to
429 * correct max turbo frequency based on the turbo ratio.
430 * Also need to convert to MHz as _PSS freq is in MHz.
431 */
432 turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
433 if (turbo_pss_ctl > cpu->pstate.max_pstate)
434 cpu->acpi_perf_data.states[0].core_frequency =
435 policy->cpuinfo.max_freq / 1000;
436 cpu->valid_pss_table = true;
437 pr_info("_PPC limits will be enforced\n");
438
439 return;
440
441 err:
442 cpu->valid_pss_table = false;
443 acpi_processor_unregister_performance(policy->cpu);
444 }
445
446 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
447 {
448 struct cpudata *cpu;
449
450 cpu = all_cpu_data[policy->cpu];
451 if (!cpu->valid_pss_table)
452 return;
453
454 acpi_processor_unregister_performance(policy->cpu);
455 }
456
457 #else
458 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461
462 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
463 {
464 }
465 #endif
466
467 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
468 int deadband, int integral) {
469 pid->setpoint = int_tofp(setpoint);
470 pid->deadband = int_tofp(deadband);
471 pid->integral = int_tofp(integral);
472 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
473 }
474
475 static inline void pid_p_gain_set(struct _pid *pid, int percent)
476 {
477 pid->p_gain = div_fp(percent, 100);
478 }
479
480 static inline void pid_i_gain_set(struct _pid *pid, int percent)
481 {
482 pid->i_gain = div_fp(percent, 100);
483 }
484
485 static inline void pid_d_gain_set(struct _pid *pid, int percent)
486 {
487 pid->d_gain = div_fp(percent, 100);
488 }
489
490 static signed int pid_calc(struct _pid *pid, int32_t busy)
491 {
492 signed int result;
493 int32_t pterm, dterm, fp_error;
494 int32_t integral_limit;
495
496 fp_error = pid->setpoint - busy;
497
498 if (abs(fp_error) <= pid->deadband)
499 return 0;
500
501 pterm = mul_fp(pid->p_gain, fp_error);
502
503 pid->integral += fp_error;
504
505 /*
506 * We limit the integral here so that it will never
507 * get higher than 30. This prevents it from becoming
508 * too large an input over long periods of time and allows
509 * it to get factored out sooner.
510 *
511 * The value of 30 was chosen through experimentation.
512 */
513 integral_limit = int_tofp(30);
514 if (pid->integral > integral_limit)
515 pid->integral = integral_limit;
516 if (pid->integral < -integral_limit)
517 pid->integral = -integral_limit;
518
519 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
520 pid->last_err = fp_error;
521
522 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
523 result = result + (1 << (FRAC_BITS-1));
524 return (signed int)fp_toint(result);
525 }
526
527 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
528 {
529 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
530 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
531 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
532
533 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
534 }
535
536 static inline void intel_pstate_reset_all_pid(void)
537 {
538 unsigned int cpu;
539
540 for_each_online_cpu(cpu) {
541 if (all_cpu_data[cpu])
542 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
543 }
544 }
545
546 static inline void update_turbo_state(void)
547 {
548 u64 misc_en;
549 struct cpudata *cpu;
550
551 cpu = all_cpu_data[0];
552 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
553 limits->turbo_disabled =
554 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
555 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
556 }
557
558 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
559 {
560 int min, hw_min, max, hw_max, cpu, range, adj_range;
561 u64 value, cap;
562
563 rdmsrl(MSR_HWP_CAPABILITIES, cap);
564 hw_min = HWP_LOWEST_PERF(cap);
565 hw_max = HWP_HIGHEST_PERF(cap);
566 range = hw_max - hw_min;
567
568 for_each_cpu(cpu, cpumask) {
569 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
570 adj_range = limits->min_perf_pct * range / 100;
571 min = hw_min + adj_range;
572 value &= ~HWP_MIN_PERF(~0L);
573 value |= HWP_MIN_PERF(min);
574
575 adj_range = limits->max_perf_pct * range / 100;
576 max = hw_min + adj_range;
577 if (limits->no_turbo) {
578 hw_max = HWP_GUARANTEED_PERF(cap);
579 if (hw_max < max)
580 max = hw_max;
581 }
582
583 value &= ~HWP_MAX_PERF(~0L);
584 value |= HWP_MAX_PERF(max);
585 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
586 }
587 }
588
589 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
590 {
591 if (hwp_active)
592 intel_pstate_hwp_set(policy->cpus);
593
594 return 0;
595 }
596
597 static void intel_pstate_hwp_set_online_cpus(void)
598 {
599 get_online_cpus();
600 intel_pstate_hwp_set(cpu_online_mask);
601 put_online_cpus();
602 }
603
604 /************************** debugfs begin ************************/
605 static int pid_param_set(void *data, u64 val)
606 {
607 *(u32 *)data = val;
608 intel_pstate_reset_all_pid();
609 return 0;
610 }
611
612 static int pid_param_get(void *data, u64 *val)
613 {
614 *val = *(u32 *)data;
615 return 0;
616 }
617 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
618
619 struct pid_param {
620 char *name;
621 void *value;
622 };
623
624 static struct pid_param pid_files[] = {
625 {"sample_rate_ms", &pid_params.sample_rate_ms},
626 {"d_gain_pct", &pid_params.d_gain_pct},
627 {"i_gain_pct", &pid_params.i_gain_pct},
628 {"deadband", &pid_params.deadband},
629 {"setpoint", &pid_params.setpoint},
630 {"p_gain_pct", &pid_params.p_gain_pct},
631 {NULL, NULL}
632 };
633
634 static void __init intel_pstate_debug_expose_params(void)
635 {
636 struct dentry *debugfs_parent;
637 int i = 0;
638
639 if (hwp_active)
640 return;
641 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
642 if (IS_ERR_OR_NULL(debugfs_parent))
643 return;
644 while (pid_files[i].name) {
645 debugfs_create_file(pid_files[i].name, 0660,
646 debugfs_parent, pid_files[i].value,
647 &fops_pid_param);
648 i++;
649 }
650 }
651
652 /************************** debugfs end ************************/
653
654 /************************** sysfs begin ************************/
655 #define show_one(file_name, object) \
656 static ssize_t show_##file_name \
657 (struct kobject *kobj, struct attribute *attr, char *buf) \
658 { \
659 return sprintf(buf, "%u\n", limits->object); \
660 }
661
662 static ssize_t show_turbo_pct(struct kobject *kobj,
663 struct attribute *attr, char *buf)
664 {
665 struct cpudata *cpu;
666 int total, no_turbo, turbo_pct;
667 uint32_t turbo_fp;
668
669 cpu = all_cpu_data[0];
670
671 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
672 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
673 turbo_fp = div_fp(no_turbo, total);
674 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
675 return sprintf(buf, "%u\n", turbo_pct);
676 }
677
678 static ssize_t show_num_pstates(struct kobject *kobj,
679 struct attribute *attr, char *buf)
680 {
681 struct cpudata *cpu;
682 int total;
683
684 cpu = all_cpu_data[0];
685 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
686 return sprintf(buf, "%u\n", total);
687 }
688
689 static ssize_t show_no_turbo(struct kobject *kobj,
690 struct attribute *attr, char *buf)
691 {
692 ssize_t ret;
693
694 update_turbo_state();
695 if (limits->turbo_disabled)
696 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
697 else
698 ret = sprintf(buf, "%u\n", limits->no_turbo);
699
700 return ret;
701 }
702
703 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
704 const char *buf, size_t count)
705 {
706 unsigned int input;
707 int ret;
708
709 ret = sscanf(buf, "%u", &input);
710 if (ret != 1)
711 return -EINVAL;
712
713 update_turbo_state();
714 if (limits->turbo_disabled) {
715 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
716 return -EPERM;
717 }
718
719 limits->no_turbo = clamp_t(int, input, 0, 1);
720
721 if (hwp_active)
722 intel_pstate_hwp_set_online_cpus();
723
724 return count;
725 }
726
727 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
728 const char *buf, size_t count)
729 {
730 unsigned int input;
731 int ret;
732
733 ret = sscanf(buf, "%u", &input);
734 if (ret != 1)
735 return -EINVAL;
736
737 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
738 limits->max_perf_pct = min(limits->max_policy_pct,
739 limits->max_sysfs_pct);
740 limits->max_perf_pct = max(limits->min_policy_pct,
741 limits->max_perf_pct);
742 limits->max_perf_pct = max(limits->min_perf_pct,
743 limits->max_perf_pct);
744 limits->max_perf = div_fp(limits->max_perf_pct, 100);
745
746 if (hwp_active)
747 intel_pstate_hwp_set_online_cpus();
748 return count;
749 }
750
751 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
752 const char *buf, size_t count)
753 {
754 unsigned int input;
755 int ret;
756
757 ret = sscanf(buf, "%u", &input);
758 if (ret != 1)
759 return -EINVAL;
760
761 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
762 limits->min_perf_pct = max(limits->min_policy_pct,
763 limits->min_sysfs_pct);
764 limits->min_perf_pct = min(limits->max_policy_pct,
765 limits->min_perf_pct);
766 limits->min_perf_pct = min(limits->max_perf_pct,
767 limits->min_perf_pct);
768 limits->min_perf = div_fp(limits->min_perf_pct, 100);
769
770 if (hwp_active)
771 intel_pstate_hwp_set_online_cpus();
772 return count;
773 }
774
775 show_one(max_perf_pct, max_perf_pct);
776 show_one(min_perf_pct, min_perf_pct);
777
778 define_one_global_rw(no_turbo);
779 define_one_global_rw(max_perf_pct);
780 define_one_global_rw(min_perf_pct);
781 define_one_global_ro(turbo_pct);
782 define_one_global_ro(num_pstates);
783
784 static struct attribute *intel_pstate_attributes[] = {
785 &no_turbo.attr,
786 &max_perf_pct.attr,
787 &min_perf_pct.attr,
788 &turbo_pct.attr,
789 &num_pstates.attr,
790 NULL
791 };
792
793 static struct attribute_group intel_pstate_attr_group = {
794 .attrs = intel_pstate_attributes,
795 };
796
797 static void __init intel_pstate_sysfs_expose_params(void)
798 {
799 struct kobject *intel_pstate_kobject;
800 int rc;
801
802 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
803 &cpu_subsys.dev_root->kobj);
804 BUG_ON(!intel_pstate_kobject);
805 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
806 BUG_ON(rc);
807 }
808 /************************** sysfs end ************************/
809
810 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
811 {
812 /* First disable HWP notification interrupt as we don't process them */
813 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
814
815 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
816 }
817
818 static int atom_get_min_pstate(void)
819 {
820 u64 value;
821
822 rdmsrl(ATOM_RATIOS, value);
823 return (value >> 8) & 0x7F;
824 }
825
826 static int atom_get_max_pstate(void)
827 {
828 u64 value;
829
830 rdmsrl(ATOM_RATIOS, value);
831 return (value >> 16) & 0x7F;
832 }
833
834 static int atom_get_turbo_pstate(void)
835 {
836 u64 value;
837
838 rdmsrl(ATOM_TURBO_RATIOS, value);
839 return value & 0x7F;
840 }
841
842 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
843 {
844 u64 val;
845 int32_t vid_fp;
846 u32 vid;
847
848 val = (u64)pstate << 8;
849 if (limits->no_turbo && !limits->turbo_disabled)
850 val |= (u64)1 << 32;
851
852 vid_fp = cpudata->vid.min + mul_fp(
853 int_tofp(pstate - cpudata->pstate.min_pstate),
854 cpudata->vid.ratio);
855
856 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
857 vid = ceiling_fp(vid_fp);
858
859 if (pstate > cpudata->pstate.max_pstate)
860 vid = cpudata->vid.turbo;
861
862 return val | vid;
863 }
864
865 static int silvermont_get_scaling(void)
866 {
867 u64 value;
868 int i;
869 /* Defined in Table 35-6 from SDM (Sept 2015) */
870 static int silvermont_freq_table[] = {
871 83300, 100000, 133300, 116700, 80000};
872
873 rdmsrl(MSR_FSB_FREQ, value);
874 i = value & 0x7;
875 WARN_ON(i > 4);
876
877 return silvermont_freq_table[i];
878 }
879
880 static int airmont_get_scaling(void)
881 {
882 u64 value;
883 int i;
884 /* Defined in Table 35-10 from SDM (Sept 2015) */
885 static int airmont_freq_table[] = {
886 83300, 100000, 133300, 116700, 80000,
887 93300, 90000, 88900, 87500};
888
889 rdmsrl(MSR_FSB_FREQ, value);
890 i = value & 0xF;
891 WARN_ON(i > 8);
892
893 return airmont_freq_table[i];
894 }
895
896 static void atom_get_vid(struct cpudata *cpudata)
897 {
898 u64 value;
899
900 rdmsrl(ATOM_VIDS, value);
901 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
902 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
903 cpudata->vid.ratio = div_fp(
904 cpudata->vid.max - cpudata->vid.min,
905 int_tofp(cpudata->pstate.max_pstate -
906 cpudata->pstate.min_pstate));
907
908 rdmsrl(ATOM_TURBO_VIDS, value);
909 cpudata->vid.turbo = value & 0x7f;
910 }
911
912 static int core_get_min_pstate(void)
913 {
914 u64 value;
915
916 rdmsrl(MSR_PLATFORM_INFO, value);
917 return (value >> 40) & 0xFF;
918 }
919
920 static int core_get_max_pstate_physical(void)
921 {
922 u64 value;
923
924 rdmsrl(MSR_PLATFORM_INFO, value);
925 return (value >> 8) & 0xFF;
926 }
927
928 static int core_get_max_pstate(void)
929 {
930 u64 tar;
931 u64 plat_info;
932 int max_pstate;
933 int err;
934
935 rdmsrl(MSR_PLATFORM_INFO, plat_info);
936 max_pstate = (plat_info >> 8) & 0xFF;
937
938 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
939 if (!err) {
940 /* Do some sanity checking for safety */
941 if (plat_info & 0x600000000) {
942 u64 tdp_ctrl;
943 u64 tdp_ratio;
944 int tdp_msr;
945
946 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
947 if (err)
948 goto skip_tar;
949
950 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
951 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
952 if (err)
953 goto skip_tar;
954
955 /* For level 1 and 2, bits[23:16] contain the ratio */
956 if (tdp_ctrl)
957 tdp_ratio >>= 16;
958
959 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
960 if (tdp_ratio - 1 == tar) {
961 max_pstate = tar;
962 pr_debug("max_pstate=TAC %x\n", max_pstate);
963 } else {
964 goto skip_tar;
965 }
966 }
967 }
968
969 skip_tar:
970 return max_pstate;
971 }
972
973 static int core_get_turbo_pstate(void)
974 {
975 u64 value;
976 int nont, ret;
977
978 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
979 nont = core_get_max_pstate();
980 ret = (value) & 255;
981 if (ret <= nont)
982 ret = nont;
983 return ret;
984 }
985
986 static inline int core_get_scaling(void)
987 {
988 return 100000;
989 }
990
991 static u64 core_get_val(struct cpudata *cpudata, int pstate)
992 {
993 u64 val;
994
995 val = (u64)pstate << 8;
996 if (limits->no_turbo && !limits->turbo_disabled)
997 val |= (u64)1 << 32;
998
999 return val;
1000 }
1001
1002 static int knl_get_turbo_pstate(void)
1003 {
1004 u64 value;
1005 int nont, ret;
1006
1007 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1008 nont = core_get_max_pstate();
1009 ret = (((value) >> 8) & 0xFF);
1010 if (ret <= nont)
1011 ret = nont;
1012 return ret;
1013 }
1014
1015 static struct cpu_defaults core_params = {
1016 .pid_policy = {
1017 .sample_rate_ms = 10,
1018 .deadband = 0,
1019 .setpoint = 97,
1020 .p_gain_pct = 20,
1021 .d_gain_pct = 0,
1022 .i_gain_pct = 0,
1023 },
1024 .funcs = {
1025 .get_max = core_get_max_pstate,
1026 .get_max_physical = core_get_max_pstate_physical,
1027 .get_min = core_get_min_pstate,
1028 .get_turbo = core_get_turbo_pstate,
1029 .get_scaling = core_get_scaling,
1030 .get_val = core_get_val,
1031 .get_target_pstate = get_target_pstate_use_performance,
1032 },
1033 };
1034
1035 static struct cpu_defaults silvermont_params = {
1036 .pid_policy = {
1037 .sample_rate_ms = 10,
1038 .deadband = 0,
1039 .setpoint = 60,
1040 .p_gain_pct = 14,
1041 .d_gain_pct = 0,
1042 .i_gain_pct = 4,
1043 },
1044 .funcs = {
1045 .get_max = atom_get_max_pstate,
1046 .get_max_physical = atom_get_max_pstate,
1047 .get_min = atom_get_min_pstate,
1048 .get_turbo = atom_get_turbo_pstate,
1049 .get_val = atom_get_val,
1050 .get_scaling = silvermont_get_scaling,
1051 .get_vid = atom_get_vid,
1052 .get_target_pstate = get_target_pstate_use_cpu_load,
1053 },
1054 };
1055
1056 static struct cpu_defaults airmont_params = {
1057 .pid_policy = {
1058 .sample_rate_ms = 10,
1059 .deadband = 0,
1060 .setpoint = 60,
1061 .p_gain_pct = 14,
1062 .d_gain_pct = 0,
1063 .i_gain_pct = 4,
1064 },
1065 .funcs = {
1066 .get_max = atom_get_max_pstate,
1067 .get_max_physical = atom_get_max_pstate,
1068 .get_min = atom_get_min_pstate,
1069 .get_turbo = atom_get_turbo_pstate,
1070 .get_val = atom_get_val,
1071 .get_scaling = airmont_get_scaling,
1072 .get_vid = atom_get_vid,
1073 .get_target_pstate = get_target_pstate_use_cpu_load,
1074 },
1075 };
1076
1077 static struct cpu_defaults knl_params = {
1078 .pid_policy = {
1079 .sample_rate_ms = 10,
1080 .deadband = 0,
1081 .setpoint = 97,
1082 .p_gain_pct = 20,
1083 .d_gain_pct = 0,
1084 .i_gain_pct = 0,
1085 },
1086 .funcs = {
1087 .get_max = core_get_max_pstate,
1088 .get_max_physical = core_get_max_pstate_physical,
1089 .get_min = core_get_min_pstate,
1090 .get_turbo = knl_get_turbo_pstate,
1091 .get_scaling = core_get_scaling,
1092 .get_val = core_get_val,
1093 .get_target_pstate = get_target_pstate_use_performance,
1094 },
1095 };
1096
1097 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1098 {
1099 int max_perf = cpu->pstate.turbo_pstate;
1100 int max_perf_adj;
1101 int min_perf;
1102
1103 if (limits->no_turbo || limits->turbo_disabled)
1104 max_perf = cpu->pstate.max_pstate;
1105
1106 /*
1107 * performance can be limited by user through sysfs, by cpufreq
1108 * policy, or by cpu specific default values determined through
1109 * experimentation.
1110 */
1111 max_perf_adj = fp_toint(max_perf * limits->max_perf);
1112 *max = clamp_t(int, max_perf_adj,
1113 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1114
1115 min_perf = fp_toint(max_perf * limits->min_perf);
1116 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1117 }
1118
1119 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1120 {
1121 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1122 cpu->pstate.current_pstate = pstate;
1123 }
1124
1125 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1126 {
1127 int pstate = cpu->pstate.min_pstate;
1128
1129 intel_pstate_record_pstate(cpu, pstate);
1130 /*
1131 * Generally, there is no guarantee that this code will always run on
1132 * the CPU being updated, so force the register update to run on the
1133 * right CPU.
1134 */
1135 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1136 pstate_funcs.get_val(cpu, pstate));
1137 }
1138
1139 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1140 {
1141 cpu->pstate.min_pstate = pstate_funcs.get_min();
1142 cpu->pstate.max_pstate = pstate_funcs.get_max();
1143 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1144 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1145 cpu->pstate.scaling = pstate_funcs.get_scaling();
1146
1147 if (pstate_funcs.get_vid)
1148 pstate_funcs.get_vid(cpu);
1149
1150 intel_pstate_set_min_pstate(cpu);
1151 }
1152
1153 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1154 {
1155 struct sample *sample = &cpu->sample;
1156 int64_t core_pct;
1157
1158 core_pct = sample->aperf * int_tofp(100);
1159 core_pct = div64_u64(core_pct, sample->mperf);
1160
1161 sample->core_pct_busy = (int32_t)core_pct;
1162 }
1163
1164 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1165 {
1166 u64 aperf, mperf;
1167 unsigned long flags;
1168 u64 tsc;
1169
1170 local_irq_save(flags);
1171 rdmsrl(MSR_IA32_APERF, aperf);
1172 rdmsrl(MSR_IA32_MPERF, mperf);
1173 tsc = rdtsc();
1174 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1175 local_irq_restore(flags);
1176 return false;
1177 }
1178 local_irq_restore(flags);
1179
1180 cpu->last_sample_time = cpu->sample.time;
1181 cpu->sample.time = time;
1182 cpu->sample.aperf = aperf;
1183 cpu->sample.mperf = mperf;
1184 cpu->sample.tsc = tsc;
1185 cpu->sample.aperf -= cpu->prev_aperf;
1186 cpu->sample.mperf -= cpu->prev_mperf;
1187 cpu->sample.tsc -= cpu->prev_tsc;
1188
1189 cpu->prev_aperf = aperf;
1190 cpu->prev_mperf = mperf;
1191 cpu->prev_tsc = tsc;
1192 /*
1193 * First time this function is invoked in a given cycle, all of the
1194 * previous sample data fields are equal to zero or stale and they must
1195 * be populated with meaningful numbers for things to work, so assume
1196 * that sample.time will always be reset before setting the utilization
1197 * update hook and make the caller skip the sample then.
1198 */
1199 return !!cpu->last_sample_time;
1200 }
1201
1202 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1203 {
1204 return fp_toint(mul_fp(cpu->sample.core_pct_busy,
1205 int_tofp(cpu->pstate.max_pstate_physical *
1206 cpu->pstate.scaling / 100)));
1207 }
1208
1209 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1210 {
1211 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
1212 cpu->sample.mperf);
1213 }
1214
1215 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1216 {
1217 struct sample *sample = &cpu->sample;
1218 u64 cummulative_iowait, delta_iowait_us;
1219 u64 delta_iowait_mperf;
1220 u64 mperf, now;
1221 int32_t cpu_load;
1222
1223 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1224
1225 /*
1226 * Convert iowait time into number of IO cycles spent at max_freq.
1227 * IO is considered as busy only for the cpu_load algorithm. For
1228 * performance this is not needed since we always try to reach the
1229 * maximum P-State, so we are already boosting the IOs.
1230 */
1231 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1232 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1233 cpu->pstate.max_pstate, MSEC_PER_SEC);
1234
1235 mperf = cpu->sample.mperf + delta_iowait_mperf;
1236 cpu->prev_cummulative_iowait = cummulative_iowait;
1237
1238 /*
1239 * The load can be estimated as the ratio of the mperf counter
1240 * running at a constant frequency during active periods
1241 * (C0) and the time stamp counter running at the same frequency
1242 * also during C-states.
1243 */
1244 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1245 cpu->sample.busy_scaled = cpu_load;
1246
1247 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1248 }
1249
1250 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1251 {
1252 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1253 u64 duration_ns;
1254
1255 /*
1256 * core_busy is the ratio of actual performance to max
1257 * max_pstate is the max non turbo pstate available
1258 * current_pstate was the pstate that was requested during
1259 * the last sample period.
1260 *
1261 * We normalize core_busy, which was our actual percent
1262 * performance to what we requested during the last sample
1263 * period. The result will be a percentage of busy at a
1264 * specified pstate.
1265 */
1266 core_busy = cpu->sample.core_pct_busy;
1267 max_pstate = cpu->pstate.max_pstate_physical;
1268 current_pstate = cpu->pstate.current_pstate;
1269 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1270
1271 /*
1272 * Since our utilization update callback will not run unless we are
1273 * in C0, check if the actual elapsed time is significantly greater (3x)
1274 * than our sample interval. If it is, then we were idle for a long
1275 * enough period of time to adjust our busyness.
1276 */
1277 duration_ns = cpu->sample.time - cpu->last_sample_time;
1278 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1279 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1280 core_busy = mul_fp(core_busy, sample_ratio);
1281 } else {
1282 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1283 if (sample_ratio < int_tofp(1))
1284 core_busy = 0;
1285 }
1286
1287 cpu->sample.busy_scaled = core_busy;
1288 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1289 }
1290
1291 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1292 {
1293 int max_perf, min_perf;
1294
1295 update_turbo_state();
1296
1297 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1298 pstate = clamp_t(int, pstate, min_perf, max_perf);
1299 if (pstate == cpu->pstate.current_pstate)
1300 return;
1301
1302 intel_pstate_record_pstate(cpu, pstate);
1303 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1304 }
1305
1306 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1307 {
1308 int from, target_pstate;
1309 struct sample *sample;
1310
1311 from = cpu->pstate.current_pstate;
1312
1313 target_pstate = pstate_funcs.get_target_pstate(cpu);
1314
1315 intel_pstate_update_pstate(cpu, target_pstate);
1316
1317 sample = &cpu->sample;
1318 trace_pstate_sample(fp_toint(sample->core_pct_busy),
1319 fp_toint(sample->busy_scaled),
1320 from,
1321 cpu->pstate.current_pstate,
1322 sample->mperf,
1323 sample->aperf,
1324 sample->tsc,
1325 get_avg_frequency(cpu));
1326 }
1327
1328 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1329 unsigned long util, unsigned long max)
1330 {
1331 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1332 u64 delta_ns = time - cpu->sample.time;
1333
1334 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1335 bool sample_taken = intel_pstate_sample(cpu, time);
1336
1337 if (sample_taken) {
1338 intel_pstate_calc_busy(cpu);
1339 if (!hwp_active)
1340 intel_pstate_adjust_busy_pstate(cpu);
1341 }
1342 }
1343 }
1344
1345 #define ICPU(model, policy) \
1346 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1347 (unsigned long)&policy }
1348
1349 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1350 ICPU(0x2a, core_params),
1351 ICPU(0x2d, core_params),
1352 ICPU(0x37, silvermont_params),
1353 ICPU(0x3a, core_params),
1354 ICPU(0x3c, core_params),
1355 ICPU(0x3d, core_params),
1356 ICPU(0x3e, core_params),
1357 ICPU(0x3f, core_params),
1358 ICPU(0x45, core_params),
1359 ICPU(0x46, core_params),
1360 ICPU(0x47, core_params),
1361 ICPU(0x4c, airmont_params),
1362 ICPU(0x4e, core_params),
1363 ICPU(0x4f, core_params),
1364 ICPU(0x5e, core_params),
1365 ICPU(0x56, core_params),
1366 ICPU(0x57, knl_params),
1367 {}
1368 };
1369 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1370
1371 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1372 ICPU(0x56, core_params),
1373 {}
1374 };
1375
1376 static int intel_pstate_init_cpu(unsigned int cpunum)
1377 {
1378 struct cpudata *cpu;
1379
1380 if (!all_cpu_data[cpunum])
1381 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1382 GFP_KERNEL);
1383 if (!all_cpu_data[cpunum])
1384 return -ENOMEM;
1385
1386 cpu = all_cpu_data[cpunum];
1387
1388 cpu->cpu = cpunum;
1389
1390 if (hwp_active) {
1391 intel_pstate_hwp_enable(cpu);
1392 pid_params.sample_rate_ms = 50;
1393 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1394 }
1395
1396 intel_pstate_get_cpu_pstates(cpu);
1397
1398 intel_pstate_busy_pid_reset(cpu);
1399
1400 pr_debug("controlling: cpu %d\n", cpunum);
1401
1402 return 0;
1403 }
1404
1405 static unsigned int intel_pstate_get(unsigned int cpu_num)
1406 {
1407 struct sample *sample;
1408 struct cpudata *cpu;
1409
1410 cpu = all_cpu_data[cpu_num];
1411 if (!cpu)
1412 return 0;
1413 sample = &cpu->sample;
1414 return get_avg_frequency(cpu);
1415 }
1416
1417 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1418 {
1419 struct cpudata *cpu = all_cpu_data[cpu_num];
1420
1421 /* Prevent intel_pstate_update_util() from using stale data. */
1422 cpu->sample.time = 0;
1423 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1424 intel_pstate_update_util);
1425 }
1426
1427 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1428 {
1429 cpufreq_remove_update_util_hook(cpu);
1430 synchronize_sched();
1431 }
1432
1433 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1434 {
1435 limits->no_turbo = 0;
1436 limits->turbo_disabled = 0;
1437 limits->max_perf_pct = 100;
1438 limits->max_perf = int_tofp(1);
1439 limits->min_perf_pct = 100;
1440 limits->min_perf = int_tofp(1);
1441 limits->max_policy_pct = 100;
1442 limits->max_sysfs_pct = 100;
1443 limits->min_policy_pct = 0;
1444 limits->min_sysfs_pct = 0;
1445 }
1446
1447 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1448 {
1449 struct cpudata *cpu;
1450
1451 if (!policy->cpuinfo.max_freq)
1452 return -ENODEV;
1453
1454 intel_pstate_clear_update_util_hook(policy->cpu);
1455
1456 cpu = all_cpu_data[0];
1457 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate) {
1458 if (policy->max < policy->cpuinfo.max_freq &&
1459 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1460 pr_debug("policy->max > max non turbo frequency\n");
1461 policy->max = policy->cpuinfo.max_freq;
1462 }
1463 }
1464
1465 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1466 limits = &performance_limits;
1467 if (policy->max >= policy->cpuinfo.max_freq) {
1468 pr_debug("set performance\n");
1469 intel_pstate_set_performance_limits(limits);
1470 goto out;
1471 }
1472 } else {
1473 pr_debug("set powersave\n");
1474 limits = &powersave_limits;
1475 }
1476
1477 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1478 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1479 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1480 policy->cpuinfo.max_freq);
1481 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1482
1483 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1484 limits->min_perf_pct = max(limits->min_policy_pct,
1485 limits->min_sysfs_pct);
1486 limits->min_perf_pct = min(limits->max_policy_pct,
1487 limits->min_perf_pct);
1488 limits->max_perf_pct = min(limits->max_policy_pct,
1489 limits->max_sysfs_pct);
1490 limits->max_perf_pct = max(limits->min_policy_pct,
1491 limits->max_perf_pct);
1492 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1493
1494 /* Make sure min_perf_pct <= max_perf_pct */
1495 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1496
1497 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1498 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1499
1500 out:
1501 intel_pstate_set_update_util_hook(policy->cpu);
1502
1503 intel_pstate_hwp_set_policy(policy);
1504
1505 return 0;
1506 }
1507
1508 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1509 {
1510 cpufreq_verify_within_cpu_limits(policy);
1511
1512 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1513 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1514 return -EINVAL;
1515
1516 return 0;
1517 }
1518
1519 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1520 {
1521 int cpu_num = policy->cpu;
1522 struct cpudata *cpu = all_cpu_data[cpu_num];
1523
1524 pr_debug("CPU %d exiting\n", cpu_num);
1525
1526 intel_pstate_clear_update_util_hook(cpu_num);
1527
1528 if (hwp_active)
1529 return;
1530
1531 intel_pstate_set_min_pstate(cpu);
1532 }
1533
1534 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1535 {
1536 struct cpudata *cpu;
1537 int rc;
1538
1539 rc = intel_pstate_init_cpu(policy->cpu);
1540 if (rc)
1541 return rc;
1542
1543 cpu = all_cpu_data[policy->cpu];
1544
1545 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1546 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1547 else
1548 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1549
1550 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1551 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1552
1553 /* cpuinfo and default policy values */
1554 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1555 policy->cpuinfo.max_freq =
1556 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1557 intel_pstate_init_acpi_perf_limits(policy);
1558 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1559 cpumask_set_cpu(policy->cpu, policy->cpus);
1560
1561 return 0;
1562 }
1563
1564 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1565 {
1566 intel_pstate_exit_perf_limits(policy);
1567
1568 return 0;
1569 }
1570
1571 static struct cpufreq_driver intel_pstate_driver = {
1572 .flags = CPUFREQ_CONST_LOOPS,
1573 .verify = intel_pstate_verify_policy,
1574 .setpolicy = intel_pstate_set_policy,
1575 .resume = intel_pstate_hwp_set_policy,
1576 .get = intel_pstate_get,
1577 .init = intel_pstate_cpu_init,
1578 .exit = intel_pstate_cpu_exit,
1579 .stop_cpu = intel_pstate_stop_cpu,
1580 .name = "intel_pstate",
1581 };
1582
1583 static int __initdata no_load;
1584 static int __initdata no_hwp;
1585 static int __initdata hwp_only;
1586 static unsigned int force_load;
1587
1588 static int intel_pstate_msrs_not_valid(void)
1589 {
1590 if (!pstate_funcs.get_max() ||
1591 !pstate_funcs.get_min() ||
1592 !pstate_funcs.get_turbo())
1593 return -ENODEV;
1594
1595 return 0;
1596 }
1597
1598 static void copy_pid_params(struct pstate_adjust_policy *policy)
1599 {
1600 pid_params.sample_rate_ms = policy->sample_rate_ms;
1601 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1602 pid_params.p_gain_pct = policy->p_gain_pct;
1603 pid_params.i_gain_pct = policy->i_gain_pct;
1604 pid_params.d_gain_pct = policy->d_gain_pct;
1605 pid_params.deadband = policy->deadband;
1606 pid_params.setpoint = policy->setpoint;
1607 }
1608
1609 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1610 {
1611 pstate_funcs.get_max = funcs->get_max;
1612 pstate_funcs.get_max_physical = funcs->get_max_physical;
1613 pstate_funcs.get_min = funcs->get_min;
1614 pstate_funcs.get_turbo = funcs->get_turbo;
1615 pstate_funcs.get_scaling = funcs->get_scaling;
1616 pstate_funcs.get_val = funcs->get_val;
1617 pstate_funcs.get_vid = funcs->get_vid;
1618 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1619
1620 }
1621
1622 #ifdef CONFIG_ACPI
1623
1624 static bool intel_pstate_no_acpi_pss(void)
1625 {
1626 int i;
1627
1628 for_each_possible_cpu(i) {
1629 acpi_status status;
1630 union acpi_object *pss;
1631 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1632 struct acpi_processor *pr = per_cpu(processors, i);
1633
1634 if (!pr)
1635 continue;
1636
1637 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1638 if (ACPI_FAILURE(status))
1639 continue;
1640
1641 pss = buffer.pointer;
1642 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1643 kfree(pss);
1644 return false;
1645 }
1646
1647 kfree(pss);
1648 }
1649
1650 return true;
1651 }
1652
1653 static bool intel_pstate_has_acpi_ppc(void)
1654 {
1655 int i;
1656
1657 for_each_possible_cpu(i) {
1658 struct acpi_processor *pr = per_cpu(processors, i);
1659
1660 if (!pr)
1661 continue;
1662 if (acpi_has_method(pr->handle, "_PPC"))
1663 return true;
1664 }
1665 return false;
1666 }
1667
1668 enum {
1669 PSS,
1670 PPC,
1671 };
1672
1673 struct hw_vendor_info {
1674 u16 valid;
1675 char oem_id[ACPI_OEM_ID_SIZE];
1676 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1677 int oem_pwr_table;
1678 };
1679
1680 /* Hardware vendor-specific info that has its own power management modes */
1681 static struct hw_vendor_info vendor_info[] = {
1682 {1, "HP ", "ProLiant", PSS},
1683 {1, "ORACLE", "X4-2 ", PPC},
1684 {1, "ORACLE", "X4-2L ", PPC},
1685 {1, "ORACLE", "X4-2B ", PPC},
1686 {1, "ORACLE", "X3-2 ", PPC},
1687 {1, "ORACLE", "X3-2L ", PPC},
1688 {1, "ORACLE", "X3-2B ", PPC},
1689 {1, "ORACLE", "X4470M2 ", PPC},
1690 {1, "ORACLE", "X4270M3 ", PPC},
1691 {1, "ORACLE", "X4270M2 ", PPC},
1692 {1, "ORACLE", "X4170M2 ", PPC},
1693 {1, "ORACLE", "X4170 M3", PPC},
1694 {1, "ORACLE", "X4275 M3", PPC},
1695 {1, "ORACLE", "X6-2 ", PPC},
1696 {1, "ORACLE", "Sudbury ", PPC},
1697 {0, "", ""},
1698 };
1699
1700 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1701 {
1702 struct acpi_table_header hdr;
1703 struct hw_vendor_info *v_info;
1704 const struct x86_cpu_id *id;
1705 u64 misc_pwr;
1706
1707 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1708 if (id) {
1709 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1710 if ( misc_pwr & (1 << 8))
1711 return true;
1712 }
1713
1714 if (acpi_disabled ||
1715 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1716 return false;
1717
1718 for (v_info = vendor_info; v_info->valid; v_info++) {
1719 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1720 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1721 ACPI_OEM_TABLE_ID_SIZE))
1722 switch (v_info->oem_pwr_table) {
1723 case PSS:
1724 return intel_pstate_no_acpi_pss();
1725 case PPC:
1726 return intel_pstate_has_acpi_ppc() &&
1727 (!force_load);
1728 }
1729 }
1730
1731 return false;
1732 }
1733 #else /* CONFIG_ACPI not enabled */
1734 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1735 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1736 #endif /* CONFIG_ACPI */
1737
1738 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1739 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1740 {}
1741 };
1742
1743 static int __init intel_pstate_init(void)
1744 {
1745 int cpu, rc = 0;
1746 const struct x86_cpu_id *id;
1747 struct cpu_defaults *cpu_def;
1748
1749 if (no_load)
1750 return -ENODEV;
1751
1752 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1753 copy_cpu_funcs(&core_params.funcs);
1754 hwp_active++;
1755 goto hwp_cpu_matched;
1756 }
1757
1758 id = x86_match_cpu(intel_pstate_cpu_ids);
1759 if (!id)
1760 return -ENODEV;
1761
1762 cpu_def = (struct cpu_defaults *)id->driver_data;
1763
1764 copy_pid_params(&cpu_def->pid_policy);
1765 copy_cpu_funcs(&cpu_def->funcs);
1766
1767 if (intel_pstate_msrs_not_valid())
1768 return -ENODEV;
1769
1770 hwp_cpu_matched:
1771 /*
1772 * The Intel pstate driver will be ignored if the platform
1773 * firmware has its own power management modes.
1774 */
1775 if (intel_pstate_platform_pwr_mgmt_exists())
1776 return -ENODEV;
1777
1778 pr_info("Intel P-state driver initializing\n");
1779
1780 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1781 if (!all_cpu_data)
1782 return -ENOMEM;
1783
1784 if (!hwp_active && hwp_only)
1785 goto out;
1786
1787 rc = cpufreq_register_driver(&intel_pstate_driver);
1788 if (rc)
1789 goto out;
1790
1791 intel_pstate_debug_expose_params();
1792 intel_pstate_sysfs_expose_params();
1793
1794 if (hwp_active)
1795 pr_info("HWP enabled\n");
1796
1797 return rc;
1798 out:
1799 get_online_cpus();
1800 for_each_online_cpu(cpu) {
1801 if (all_cpu_data[cpu]) {
1802 intel_pstate_clear_update_util_hook(cpu);
1803 kfree(all_cpu_data[cpu]);
1804 }
1805 }
1806
1807 put_online_cpus();
1808 vfree(all_cpu_data);
1809 return -ENODEV;
1810 }
1811 device_initcall(intel_pstate_init);
1812
1813 static int __init intel_pstate_setup(char *str)
1814 {
1815 if (!str)
1816 return -EINVAL;
1817
1818 if (!strcmp(str, "disable"))
1819 no_load = 1;
1820 if (!strcmp(str, "no_hwp")) {
1821 pr_info("HWP disabled\n");
1822 no_hwp = 1;
1823 }
1824 if (!strcmp(str, "force"))
1825 force_load = 1;
1826 if (!strcmp(str, "hwp_only"))
1827 hwp_only = 1;
1828
1829 #ifdef CONFIG_ACPI
1830 if (!strcmp(str, "support_acpi_ppc"))
1831 acpi_ppc = true;
1832 #endif
1833
1834 return 0;
1835 }
1836 early_param("intel_pstate", intel_pstate_setup);
1837
1838 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1839 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1840 MODULE_LICENSE("GPL");
This page took 0.090136 seconds and 5 git commands to generate.