Merge remote-tracking branch 'keys/keys-next'
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define ATOM_RATIOS 0x66a
41 #define ATOM_VIDS 0x66b
42 #define ATOM_TURBO_RATIOS 0x66c
43 #define ATOM_TURBO_VIDS 0x66d
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88 * struct sample - Store performance sample
89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
92 * P state. This can be different than core_avg_perf
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
105 struct sample {
106 int32_t core_avg_perf;
107 int32_t busy_scaled;
108 u64 aperf;
109 u64 mperf;
110 u64 tsc;
111 u64 time;
112 };
113
114 /**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 *
126 * Stores the per cpu model P state limits and current P state.
127 */
128 struct pstate_data {
129 int current_pstate;
130 int min_pstate;
131 int max_pstate;
132 int max_pstate_physical;
133 int scaling;
134 int turbo_pstate;
135 };
136
137 /**
138 * struct vid_data - Stores voltage information data
139 * @min: VID data for this platform corresponding to
140 * the lowest P state
141 * @max: VID data corresponding to the highest P State.
142 * @turbo: VID data for turbo P state
143 * @ratio: Ratio of (vid max - vid min) /
144 * (max P state - Min P State)
145 *
146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147 * This data is used in Atom platforms, where in addition to target P state,
148 * the voltage data needs to be specified to select next P State.
149 */
150 struct vid_data {
151 int min;
152 int max;
153 int turbo;
154 int32_t ratio;
155 };
156
157 /**
158 * struct _pid - Stores PID data
159 * @setpoint: Target set point for busyness or performance
160 * @integral: Storage for accumulated error values
161 * @p_gain: PID proportional gain
162 * @i_gain: PID integral gain
163 * @d_gain: PID derivative gain
164 * @deadband: PID deadband
165 * @last_err: Last error storage for integral part of PID calculation
166 *
167 * Stores PID coefficients and last error for PID controller.
168 */
169 struct _pid {
170 int setpoint;
171 int32_t integral;
172 int32_t p_gain;
173 int32_t i_gain;
174 int32_t d_gain;
175 int deadband;
176 int32_t last_err;
177 };
178
179 /**
180 * struct cpudata - Per CPU instance data storage
181 * @cpu: CPU number for this instance data
182 * @update_util: CPUFreq utility callback information
183 * @update_util_set: CPUFreq utility callback is set
184 * @pstate: Stores P state limits for this CPU
185 * @vid: Stores VID limits for this CPU
186 * @pid: Stores PID parameters for this CPU
187 * @last_sample_time: Last Sample time
188 * @prev_aperf: Last APERF value read from APERF MSR
189 * @prev_mperf: Last MPERF value read from MPERF MSR
190 * @prev_tsc: Last timestamp counter (TSC) value
191 * @prev_cummulative_iowait: IO Wait time difference from last and
192 * current sample
193 * @sample: Storage for storing last Sample data
194 * @acpi_perf_data: Stores ACPI perf information read from _PSS
195 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
196 *
197 * This structure stores per CPU instance data for all CPUs.
198 */
199 struct cpudata {
200 int cpu;
201
202 struct update_util_data update_util;
203 bool update_util_set;
204
205 struct pstate_data pstate;
206 struct vid_data vid;
207 struct _pid pid;
208
209 u64 last_sample_time;
210 u64 prev_aperf;
211 u64 prev_mperf;
212 u64 prev_tsc;
213 u64 prev_cummulative_iowait;
214 struct sample sample;
215 #ifdef CONFIG_ACPI
216 struct acpi_processor_performance acpi_perf_data;
217 bool valid_pss_table;
218 #endif
219 };
220
221 static struct cpudata **all_cpu_data;
222
223 /**
224 * struct pid_adjust_policy - Stores static PID configuration data
225 * @sample_rate_ms: PID calculation sample rate in ms
226 * @sample_rate_ns: Sample rate calculation in ns
227 * @deadband: PID deadband
228 * @setpoint: PID Setpoint
229 * @p_gain_pct: PID proportional gain
230 * @i_gain_pct: PID integral gain
231 * @d_gain_pct: PID derivative gain
232 *
233 * Stores per CPU model static PID configuration data.
234 */
235 struct pstate_adjust_policy {
236 int sample_rate_ms;
237 s64 sample_rate_ns;
238 int deadband;
239 int setpoint;
240 int p_gain_pct;
241 int d_gain_pct;
242 int i_gain_pct;
243 };
244
245 /**
246 * struct pstate_funcs - Per CPU model specific callbacks
247 * @get_max: Callback to get maximum non turbo effective P state
248 * @get_max_physical: Callback to get maximum non turbo physical P state
249 * @get_min: Callback to get minimum P state
250 * @get_turbo: Callback to get turbo P state
251 * @get_scaling: Callback to get frequency scaling factor
252 * @get_val: Callback to convert P state to actual MSR write value
253 * @get_vid: Callback to get VID data for Atom platforms
254 * @get_target_pstate: Callback to a function to calculate next P state to use
255 *
256 * Core and Atom CPU models have different way to get P State limits. This
257 * structure is used to store those callbacks.
258 */
259 struct pstate_funcs {
260 int (*get_max)(void);
261 int (*get_max_physical)(void);
262 int (*get_min)(void);
263 int (*get_turbo)(void);
264 int (*get_scaling)(void);
265 u64 (*get_val)(struct cpudata*, int pstate);
266 void (*get_vid)(struct cpudata *);
267 int32_t (*get_target_pstate)(struct cpudata *);
268 };
269
270 /**
271 * struct cpu_defaults- Per CPU model default config data
272 * @pid_policy: PID config data
273 * @funcs: Callback function data
274 */
275 struct cpu_defaults {
276 struct pstate_adjust_policy pid_policy;
277 struct pstate_funcs funcs;
278 };
279
280 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
281 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
282
283 static struct pstate_adjust_policy pid_params __read_mostly;
284 static struct pstate_funcs pstate_funcs __read_mostly;
285 static int hwp_active __read_mostly;
286
287 #ifdef CONFIG_ACPI
288 static bool acpi_ppc;
289 #endif
290
291 /**
292 * struct perf_limits - Store user and policy limits
293 * @no_turbo: User requested turbo state from intel_pstate sysfs
294 * @turbo_disabled: Platform turbo status either from msr
295 * MSR_IA32_MISC_ENABLE or when maximum available pstate
296 * matches the maximum turbo pstate
297 * @max_perf_pct: Effective maximum performance limit in percentage, this
298 * is minimum of either limits enforced by cpufreq policy
299 * or limits from user set limits via intel_pstate sysfs
300 * @min_perf_pct: Effective minimum performance limit in percentage, this
301 * is maximum of either limits enforced by cpufreq policy
302 * or limits from user set limits via intel_pstate sysfs
303 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
304 * This value is used to limit max pstate
305 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
306 * This value is used to limit min pstate
307 * @max_policy_pct: The maximum performance in percentage enforced by
308 * cpufreq setpolicy interface
309 * @max_sysfs_pct: The maximum performance in percentage enforced by
310 * intel pstate sysfs interface
311 * @min_policy_pct: The minimum performance in percentage enforced by
312 * cpufreq setpolicy interface
313 * @min_sysfs_pct: The minimum performance in percentage enforced by
314 * intel pstate sysfs interface
315 *
316 * Storage for user and policy defined limits.
317 */
318 struct perf_limits {
319 int no_turbo;
320 int turbo_disabled;
321 int max_perf_pct;
322 int min_perf_pct;
323 int32_t max_perf;
324 int32_t min_perf;
325 int max_policy_pct;
326 int max_sysfs_pct;
327 int min_policy_pct;
328 int min_sysfs_pct;
329 };
330
331 static struct perf_limits performance_limits = {
332 .no_turbo = 0,
333 .turbo_disabled = 0,
334 .max_perf_pct = 100,
335 .max_perf = int_tofp(1),
336 .min_perf_pct = 100,
337 .min_perf = int_tofp(1),
338 .max_policy_pct = 100,
339 .max_sysfs_pct = 100,
340 .min_policy_pct = 0,
341 .min_sysfs_pct = 0,
342 };
343
344 static struct perf_limits powersave_limits = {
345 .no_turbo = 0,
346 .turbo_disabled = 0,
347 .max_perf_pct = 100,
348 .max_perf = int_tofp(1),
349 .min_perf_pct = 0,
350 .min_perf = 0,
351 .max_policy_pct = 100,
352 .max_sysfs_pct = 100,
353 .min_policy_pct = 0,
354 .min_sysfs_pct = 0,
355 };
356
357 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
358 static struct perf_limits *limits = &performance_limits;
359 #else
360 static struct perf_limits *limits = &powersave_limits;
361 #endif
362
363 #ifdef CONFIG_ACPI
364
365 static bool intel_pstate_get_ppc_enable_status(void)
366 {
367 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
368 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
369 return true;
370
371 return acpi_ppc;
372 }
373
374 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
375 {
376 struct cpudata *cpu;
377 int ret;
378 int i;
379
380 if (hwp_active)
381 return;
382
383 if (!intel_pstate_get_ppc_enable_status())
384 return;
385
386 cpu = all_cpu_data[policy->cpu];
387
388 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
389 policy->cpu);
390 if (ret)
391 return;
392
393 /*
394 * Check if the control value in _PSS is for PERF_CTL MSR, which should
395 * guarantee that the states returned by it map to the states in our
396 * list directly.
397 */
398 if (cpu->acpi_perf_data.control_register.space_id !=
399 ACPI_ADR_SPACE_FIXED_HARDWARE)
400 goto err;
401
402 /*
403 * If there is only one entry _PSS, simply ignore _PSS and continue as
404 * usual without taking _PSS into account
405 */
406 if (cpu->acpi_perf_data.state_count < 2)
407 goto err;
408
409 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
410 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
411 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
412 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
413 (u32) cpu->acpi_perf_data.states[i].core_frequency,
414 (u32) cpu->acpi_perf_data.states[i].power,
415 (u32) cpu->acpi_perf_data.states[i].control);
416 }
417
418 /*
419 * The _PSS table doesn't contain whole turbo frequency range.
420 * This just contains +1 MHZ above the max non turbo frequency,
421 * with control value corresponding to max turbo ratio. But
422 * when cpufreq set policy is called, it will call with this
423 * max frequency, which will cause a reduced performance as
424 * this driver uses real max turbo frequency as the max
425 * frequency. So correct this frequency in _PSS table to
426 * correct max turbo frequency based on the turbo state.
427 * Also need to convert to MHz as _PSS freq is in MHz.
428 */
429 if (!limits->turbo_disabled)
430 cpu->acpi_perf_data.states[0].core_frequency =
431 policy->cpuinfo.max_freq / 1000;
432 cpu->valid_pss_table = true;
433 pr_debug("_PPC limits will be enforced\n");
434
435 return;
436
437 err:
438 cpu->valid_pss_table = false;
439 acpi_processor_unregister_performance(policy->cpu);
440 }
441
442 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
443 {
444 struct cpudata *cpu;
445
446 cpu = all_cpu_data[policy->cpu];
447 if (!cpu->valid_pss_table)
448 return;
449
450 acpi_processor_unregister_performance(policy->cpu);
451 }
452
453 #else
454 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
455 {
456 }
457
458 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461 #endif
462
463 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
464 int deadband, int integral) {
465 pid->setpoint = int_tofp(setpoint);
466 pid->deadband = int_tofp(deadband);
467 pid->integral = int_tofp(integral);
468 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
469 }
470
471 static inline void pid_p_gain_set(struct _pid *pid, int percent)
472 {
473 pid->p_gain = div_fp(percent, 100);
474 }
475
476 static inline void pid_i_gain_set(struct _pid *pid, int percent)
477 {
478 pid->i_gain = div_fp(percent, 100);
479 }
480
481 static inline void pid_d_gain_set(struct _pid *pid, int percent)
482 {
483 pid->d_gain = div_fp(percent, 100);
484 }
485
486 static signed int pid_calc(struct _pid *pid, int32_t busy)
487 {
488 signed int result;
489 int32_t pterm, dterm, fp_error;
490 int32_t integral_limit;
491
492 fp_error = pid->setpoint - busy;
493
494 if (abs(fp_error) <= pid->deadband)
495 return 0;
496
497 pterm = mul_fp(pid->p_gain, fp_error);
498
499 pid->integral += fp_error;
500
501 /*
502 * We limit the integral here so that it will never
503 * get higher than 30. This prevents it from becoming
504 * too large an input over long periods of time and allows
505 * it to get factored out sooner.
506 *
507 * The value of 30 was chosen through experimentation.
508 */
509 integral_limit = int_tofp(30);
510 if (pid->integral > integral_limit)
511 pid->integral = integral_limit;
512 if (pid->integral < -integral_limit)
513 pid->integral = -integral_limit;
514
515 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
516 pid->last_err = fp_error;
517
518 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
519 result = result + (1 << (FRAC_BITS-1));
520 return (signed int)fp_toint(result);
521 }
522
523 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
524 {
525 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
526 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
527 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
528
529 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
530 }
531
532 static inline void intel_pstate_reset_all_pid(void)
533 {
534 unsigned int cpu;
535
536 for_each_online_cpu(cpu) {
537 if (all_cpu_data[cpu])
538 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
539 }
540 }
541
542 static inline void update_turbo_state(void)
543 {
544 u64 misc_en;
545 struct cpudata *cpu;
546
547 cpu = all_cpu_data[0];
548 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
549 limits->turbo_disabled =
550 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
551 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
552 }
553
554 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
555 {
556 int min, hw_min, max, hw_max, cpu, range, adj_range;
557 u64 value, cap;
558
559 rdmsrl(MSR_HWP_CAPABILITIES, cap);
560 hw_min = HWP_LOWEST_PERF(cap);
561 hw_max = HWP_HIGHEST_PERF(cap);
562 range = hw_max - hw_min;
563
564 for_each_cpu(cpu, cpumask) {
565 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
566 adj_range = limits->min_perf_pct * range / 100;
567 min = hw_min + adj_range;
568 value &= ~HWP_MIN_PERF(~0L);
569 value |= HWP_MIN_PERF(min);
570
571 adj_range = limits->max_perf_pct * range / 100;
572 max = hw_min + adj_range;
573 if (limits->no_turbo) {
574 hw_max = HWP_GUARANTEED_PERF(cap);
575 if (hw_max < max)
576 max = hw_max;
577 }
578
579 value &= ~HWP_MAX_PERF(~0L);
580 value |= HWP_MAX_PERF(max);
581 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
582 }
583 }
584
585 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
586 {
587 if (hwp_active)
588 intel_pstate_hwp_set(policy->cpus);
589
590 return 0;
591 }
592
593 static void intel_pstate_hwp_set_online_cpus(void)
594 {
595 get_online_cpus();
596 intel_pstate_hwp_set(cpu_online_mask);
597 put_online_cpus();
598 }
599
600 /************************** debugfs begin ************************/
601 static int pid_param_set(void *data, u64 val)
602 {
603 *(u32 *)data = val;
604 intel_pstate_reset_all_pid();
605 return 0;
606 }
607
608 static int pid_param_get(void *data, u64 *val)
609 {
610 *val = *(u32 *)data;
611 return 0;
612 }
613 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
614
615 struct pid_param {
616 char *name;
617 void *value;
618 };
619
620 static struct pid_param pid_files[] = {
621 {"sample_rate_ms", &pid_params.sample_rate_ms},
622 {"d_gain_pct", &pid_params.d_gain_pct},
623 {"i_gain_pct", &pid_params.i_gain_pct},
624 {"deadband", &pid_params.deadband},
625 {"setpoint", &pid_params.setpoint},
626 {"p_gain_pct", &pid_params.p_gain_pct},
627 {NULL, NULL}
628 };
629
630 static void __init intel_pstate_debug_expose_params(void)
631 {
632 struct dentry *debugfs_parent;
633 int i = 0;
634
635 if (hwp_active)
636 return;
637 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
638 if (IS_ERR_OR_NULL(debugfs_parent))
639 return;
640 while (pid_files[i].name) {
641 debugfs_create_file(pid_files[i].name, 0660,
642 debugfs_parent, pid_files[i].value,
643 &fops_pid_param);
644 i++;
645 }
646 }
647
648 /************************** debugfs end ************************/
649
650 /************************** sysfs begin ************************/
651 #define show_one(file_name, object) \
652 static ssize_t show_##file_name \
653 (struct kobject *kobj, struct attribute *attr, char *buf) \
654 { \
655 return sprintf(buf, "%u\n", limits->object); \
656 }
657
658 static ssize_t show_turbo_pct(struct kobject *kobj,
659 struct attribute *attr, char *buf)
660 {
661 struct cpudata *cpu;
662 int total, no_turbo, turbo_pct;
663 uint32_t turbo_fp;
664
665 cpu = all_cpu_data[0];
666
667 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
668 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
669 turbo_fp = div_fp(no_turbo, total);
670 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
671 return sprintf(buf, "%u\n", turbo_pct);
672 }
673
674 static ssize_t show_num_pstates(struct kobject *kobj,
675 struct attribute *attr, char *buf)
676 {
677 struct cpudata *cpu;
678 int total;
679
680 cpu = all_cpu_data[0];
681 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
682 return sprintf(buf, "%u\n", total);
683 }
684
685 static ssize_t show_no_turbo(struct kobject *kobj,
686 struct attribute *attr, char *buf)
687 {
688 ssize_t ret;
689
690 update_turbo_state();
691 if (limits->turbo_disabled)
692 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
693 else
694 ret = sprintf(buf, "%u\n", limits->no_turbo);
695
696 return ret;
697 }
698
699 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
700 const char *buf, size_t count)
701 {
702 unsigned int input;
703 int ret;
704
705 ret = sscanf(buf, "%u", &input);
706 if (ret != 1)
707 return -EINVAL;
708
709 update_turbo_state();
710 if (limits->turbo_disabled) {
711 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
712 return -EPERM;
713 }
714
715 limits->no_turbo = clamp_t(int, input, 0, 1);
716
717 if (hwp_active)
718 intel_pstate_hwp_set_online_cpus();
719
720 return count;
721 }
722
723 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
724 const char *buf, size_t count)
725 {
726 unsigned int input;
727 int ret;
728
729 ret = sscanf(buf, "%u", &input);
730 if (ret != 1)
731 return -EINVAL;
732
733 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
734 limits->max_perf_pct = min(limits->max_policy_pct,
735 limits->max_sysfs_pct);
736 limits->max_perf_pct = max(limits->min_policy_pct,
737 limits->max_perf_pct);
738 limits->max_perf_pct = max(limits->min_perf_pct,
739 limits->max_perf_pct);
740 limits->max_perf = div_fp(limits->max_perf_pct, 100);
741
742 if (hwp_active)
743 intel_pstate_hwp_set_online_cpus();
744 return count;
745 }
746
747 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
748 const char *buf, size_t count)
749 {
750 unsigned int input;
751 int ret;
752
753 ret = sscanf(buf, "%u", &input);
754 if (ret != 1)
755 return -EINVAL;
756
757 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
758 limits->min_perf_pct = max(limits->min_policy_pct,
759 limits->min_sysfs_pct);
760 limits->min_perf_pct = min(limits->max_policy_pct,
761 limits->min_perf_pct);
762 limits->min_perf_pct = min(limits->max_perf_pct,
763 limits->min_perf_pct);
764 limits->min_perf = div_fp(limits->min_perf_pct, 100);
765
766 if (hwp_active)
767 intel_pstate_hwp_set_online_cpus();
768 return count;
769 }
770
771 show_one(max_perf_pct, max_perf_pct);
772 show_one(min_perf_pct, min_perf_pct);
773
774 define_one_global_rw(no_turbo);
775 define_one_global_rw(max_perf_pct);
776 define_one_global_rw(min_perf_pct);
777 define_one_global_ro(turbo_pct);
778 define_one_global_ro(num_pstates);
779
780 static struct attribute *intel_pstate_attributes[] = {
781 &no_turbo.attr,
782 &max_perf_pct.attr,
783 &min_perf_pct.attr,
784 &turbo_pct.attr,
785 &num_pstates.attr,
786 NULL
787 };
788
789 static struct attribute_group intel_pstate_attr_group = {
790 .attrs = intel_pstate_attributes,
791 };
792
793 static void __init intel_pstate_sysfs_expose_params(void)
794 {
795 struct kobject *intel_pstate_kobject;
796 int rc;
797
798 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
799 &cpu_subsys.dev_root->kobj);
800 BUG_ON(!intel_pstate_kobject);
801 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
802 BUG_ON(rc);
803 }
804 /************************** sysfs end ************************/
805
806 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
807 {
808 /* First disable HWP notification interrupt as we don't process them */
809 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
810 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
811
812 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
813 }
814
815 static int atom_get_min_pstate(void)
816 {
817 u64 value;
818
819 rdmsrl(ATOM_RATIOS, value);
820 return (value >> 8) & 0x7F;
821 }
822
823 static int atom_get_max_pstate(void)
824 {
825 u64 value;
826
827 rdmsrl(ATOM_RATIOS, value);
828 return (value >> 16) & 0x7F;
829 }
830
831 static int atom_get_turbo_pstate(void)
832 {
833 u64 value;
834
835 rdmsrl(ATOM_TURBO_RATIOS, value);
836 return value & 0x7F;
837 }
838
839 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
840 {
841 u64 val;
842 int32_t vid_fp;
843 u32 vid;
844
845 val = (u64)pstate << 8;
846 if (limits->no_turbo && !limits->turbo_disabled)
847 val |= (u64)1 << 32;
848
849 vid_fp = cpudata->vid.min + mul_fp(
850 int_tofp(pstate - cpudata->pstate.min_pstate),
851 cpudata->vid.ratio);
852
853 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
854 vid = ceiling_fp(vid_fp);
855
856 if (pstate > cpudata->pstate.max_pstate)
857 vid = cpudata->vid.turbo;
858
859 return val | vid;
860 }
861
862 static int silvermont_get_scaling(void)
863 {
864 u64 value;
865 int i;
866 /* Defined in Table 35-6 from SDM (Sept 2015) */
867 static int silvermont_freq_table[] = {
868 83300, 100000, 133300, 116700, 80000};
869
870 rdmsrl(MSR_FSB_FREQ, value);
871 i = value & 0x7;
872 WARN_ON(i > 4);
873
874 return silvermont_freq_table[i];
875 }
876
877 static int airmont_get_scaling(void)
878 {
879 u64 value;
880 int i;
881 /* Defined in Table 35-10 from SDM (Sept 2015) */
882 static int airmont_freq_table[] = {
883 83300, 100000, 133300, 116700, 80000,
884 93300, 90000, 88900, 87500};
885
886 rdmsrl(MSR_FSB_FREQ, value);
887 i = value & 0xF;
888 WARN_ON(i > 8);
889
890 return airmont_freq_table[i];
891 }
892
893 static void atom_get_vid(struct cpudata *cpudata)
894 {
895 u64 value;
896
897 rdmsrl(ATOM_VIDS, value);
898 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
899 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
900 cpudata->vid.ratio = div_fp(
901 cpudata->vid.max - cpudata->vid.min,
902 int_tofp(cpudata->pstate.max_pstate -
903 cpudata->pstate.min_pstate));
904
905 rdmsrl(ATOM_TURBO_VIDS, value);
906 cpudata->vid.turbo = value & 0x7f;
907 }
908
909 static int core_get_min_pstate(void)
910 {
911 u64 value;
912
913 rdmsrl(MSR_PLATFORM_INFO, value);
914 return (value >> 40) & 0xFF;
915 }
916
917 static int core_get_max_pstate_physical(void)
918 {
919 u64 value;
920
921 rdmsrl(MSR_PLATFORM_INFO, value);
922 return (value >> 8) & 0xFF;
923 }
924
925 static int core_get_max_pstate(void)
926 {
927 u64 tar;
928 u64 plat_info;
929 int max_pstate;
930 int err;
931
932 rdmsrl(MSR_PLATFORM_INFO, plat_info);
933 max_pstate = (plat_info >> 8) & 0xFF;
934
935 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
936 if (!err) {
937 /* Do some sanity checking for safety */
938 if (plat_info & 0x600000000) {
939 u64 tdp_ctrl;
940 u64 tdp_ratio;
941 int tdp_msr;
942
943 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
944 if (err)
945 goto skip_tar;
946
947 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
948 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
949 if (err)
950 goto skip_tar;
951
952 /* For level 1 and 2, bits[23:16] contain the ratio */
953 if (tdp_ctrl)
954 tdp_ratio >>= 16;
955
956 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
957 if (tdp_ratio - 1 == tar) {
958 max_pstate = tar;
959 pr_debug("max_pstate=TAC %x\n", max_pstate);
960 } else {
961 goto skip_tar;
962 }
963 }
964 }
965
966 skip_tar:
967 return max_pstate;
968 }
969
970 static int core_get_turbo_pstate(void)
971 {
972 u64 value;
973 int nont, ret;
974
975 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
976 nont = core_get_max_pstate();
977 ret = (value) & 255;
978 if (ret <= nont)
979 ret = nont;
980 return ret;
981 }
982
983 static inline int core_get_scaling(void)
984 {
985 return 100000;
986 }
987
988 static u64 core_get_val(struct cpudata *cpudata, int pstate)
989 {
990 u64 val;
991
992 val = (u64)pstate << 8;
993 if (limits->no_turbo && !limits->turbo_disabled)
994 val |= (u64)1 << 32;
995
996 return val;
997 }
998
999 static int knl_get_turbo_pstate(void)
1000 {
1001 u64 value;
1002 int nont, ret;
1003
1004 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1005 nont = core_get_max_pstate();
1006 ret = (((value) >> 8) & 0xFF);
1007 if (ret <= nont)
1008 ret = nont;
1009 return ret;
1010 }
1011
1012 static struct cpu_defaults core_params = {
1013 .pid_policy = {
1014 .sample_rate_ms = 10,
1015 .deadband = 0,
1016 .setpoint = 97,
1017 .p_gain_pct = 20,
1018 .d_gain_pct = 0,
1019 .i_gain_pct = 0,
1020 },
1021 .funcs = {
1022 .get_max = core_get_max_pstate,
1023 .get_max_physical = core_get_max_pstate_physical,
1024 .get_min = core_get_min_pstate,
1025 .get_turbo = core_get_turbo_pstate,
1026 .get_scaling = core_get_scaling,
1027 .get_val = core_get_val,
1028 .get_target_pstate = get_target_pstate_use_performance,
1029 },
1030 };
1031
1032 static struct cpu_defaults silvermont_params = {
1033 .pid_policy = {
1034 .sample_rate_ms = 10,
1035 .deadband = 0,
1036 .setpoint = 60,
1037 .p_gain_pct = 14,
1038 .d_gain_pct = 0,
1039 .i_gain_pct = 4,
1040 },
1041 .funcs = {
1042 .get_max = atom_get_max_pstate,
1043 .get_max_physical = atom_get_max_pstate,
1044 .get_min = atom_get_min_pstate,
1045 .get_turbo = atom_get_turbo_pstate,
1046 .get_val = atom_get_val,
1047 .get_scaling = silvermont_get_scaling,
1048 .get_vid = atom_get_vid,
1049 .get_target_pstate = get_target_pstate_use_cpu_load,
1050 },
1051 };
1052
1053 static struct cpu_defaults airmont_params = {
1054 .pid_policy = {
1055 .sample_rate_ms = 10,
1056 .deadband = 0,
1057 .setpoint = 60,
1058 .p_gain_pct = 14,
1059 .d_gain_pct = 0,
1060 .i_gain_pct = 4,
1061 },
1062 .funcs = {
1063 .get_max = atom_get_max_pstate,
1064 .get_max_physical = atom_get_max_pstate,
1065 .get_min = atom_get_min_pstate,
1066 .get_turbo = atom_get_turbo_pstate,
1067 .get_val = atom_get_val,
1068 .get_scaling = airmont_get_scaling,
1069 .get_vid = atom_get_vid,
1070 .get_target_pstate = get_target_pstate_use_cpu_load,
1071 },
1072 };
1073
1074 static struct cpu_defaults knl_params = {
1075 .pid_policy = {
1076 .sample_rate_ms = 10,
1077 .deadband = 0,
1078 .setpoint = 97,
1079 .p_gain_pct = 20,
1080 .d_gain_pct = 0,
1081 .i_gain_pct = 0,
1082 },
1083 .funcs = {
1084 .get_max = core_get_max_pstate,
1085 .get_max_physical = core_get_max_pstate_physical,
1086 .get_min = core_get_min_pstate,
1087 .get_turbo = knl_get_turbo_pstate,
1088 .get_scaling = core_get_scaling,
1089 .get_val = core_get_val,
1090 .get_target_pstate = get_target_pstate_use_performance,
1091 },
1092 };
1093
1094 static struct cpu_defaults bxt_params = {
1095 .pid_policy = {
1096 .sample_rate_ms = 10,
1097 .deadband = 0,
1098 .setpoint = 60,
1099 .p_gain_pct = 14,
1100 .d_gain_pct = 0,
1101 .i_gain_pct = 4,
1102 },
1103 .funcs = {
1104 .get_max = core_get_max_pstate,
1105 .get_max_physical = core_get_max_pstate_physical,
1106 .get_min = core_get_min_pstate,
1107 .get_turbo = core_get_turbo_pstate,
1108 .get_scaling = core_get_scaling,
1109 .get_val = core_get_val,
1110 .get_target_pstate = get_target_pstate_use_cpu_load,
1111 },
1112 };
1113
1114 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1115 {
1116 int max_perf = cpu->pstate.turbo_pstate;
1117 int max_perf_adj;
1118 int min_perf;
1119
1120 if (limits->no_turbo || limits->turbo_disabled)
1121 max_perf = cpu->pstate.max_pstate;
1122
1123 /*
1124 * performance can be limited by user through sysfs, by cpufreq
1125 * policy, or by cpu specific default values determined through
1126 * experimentation.
1127 */
1128 max_perf_adj = fp_toint(max_perf * limits->max_perf);
1129 *max = clamp_t(int, max_perf_adj,
1130 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1131
1132 min_perf = fp_toint(max_perf * limits->min_perf);
1133 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1134 }
1135
1136 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1137 {
1138 int pstate = cpu->pstate.min_pstate;
1139
1140 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1141 cpu->pstate.current_pstate = pstate;
1142 /*
1143 * Generally, there is no guarantee that this code will always run on
1144 * the CPU being updated, so force the register update to run on the
1145 * right CPU.
1146 */
1147 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1148 pstate_funcs.get_val(cpu, pstate));
1149 }
1150
1151 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1152 {
1153 cpu->pstate.min_pstate = pstate_funcs.get_min();
1154 cpu->pstate.max_pstate = pstate_funcs.get_max();
1155 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1156 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1157 cpu->pstate.scaling = pstate_funcs.get_scaling();
1158
1159 if (pstate_funcs.get_vid)
1160 pstate_funcs.get_vid(cpu);
1161
1162 intel_pstate_set_min_pstate(cpu);
1163 }
1164
1165 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1166 {
1167 struct sample *sample = &cpu->sample;
1168
1169 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1170 }
1171
1172 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1173 {
1174 u64 aperf, mperf;
1175 unsigned long flags;
1176 u64 tsc;
1177
1178 local_irq_save(flags);
1179 rdmsrl(MSR_IA32_APERF, aperf);
1180 rdmsrl(MSR_IA32_MPERF, mperf);
1181 tsc = rdtsc();
1182 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1183 local_irq_restore(flags);
1184 return false;
1185 }
1186 local_irq_restore(flags);
1187
1188 cpu->last_sample_time = cpu->sample.time;
1189 cpu->sample.time = time;
1190 cpu->sample.aperf = aperf;
1191 cpu->sample.mperf = mperf;
1192 cpu->sample.tsc = tsc;
1193 cpu->sample.aperf -= cpu->prev_aperf;
1194 cpu->sample.mperf -= cpu->prev_mperf;
1195 cpu->sample.tsc -= cpu->prev_tsc;
1196
1197 cpu->prev_aperf = aperf;
1198 cpu->prev_mperf = mperf;
1199 cpu->prev_tsc = tsc;
1200 /*
1201 * First time this function is invoked in a given cycle, all of the
1202 * previous sample data fields are equal to zero or stale and they must
1203 * be populated with meaningful numbers for things to work, so assume
1204 * that sample.time will always be reset before setting the utilization
1205 * update hook and make the caller skip the sample then.
1206 */
1207 return !!cpu->last_sample_time;
1208 }
1209
1210 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1211 {
1212 return mul_ext_fp(cpu->sample.core_avg_perf,
1213 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1214 }
1215
1216 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1217 {
1218 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1219 cpu->sample.core_avg_perf);
1220 }
1221
1222 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1223 {
1224 struct sample *sample = &cpu->sample;
1225 u64 cummulative_iowait, delta_iowait_us;
1226 u64 delta_iowait_mperf;
1227 u64 mperf, now;
1228 int32_t cpu_load;
1229
1230 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1231
1232 /*
1233 * Convert iowait time into number of IO cycles spent at max_freq.
1234 * IO is considered as busy only for the cpu_load algorithm. For
1235 * performance this is not needed since we always try to reach the
1236 * maximum P-State, so we are already boosting the IOs.
1237 */
1238 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1239 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1240 cpu->pstate.max_pstate, MSEC_PER_SEC);
1241
1242 mperf = cpu->sample.mperf + delta_iowait_mperf;
1243 cpu->prev_cummulative_iowait = cummulative_iowait;
1244
1245 /*
1246 * The load can be estimated as the ratio of the mperf counter
1247 * running at a constant frequency during active periods
1248 * (C0) and the time stamp counter running at the same frequency
1249 * also during C-states.
1250 */
1251 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1252 cpu->sample.busy_scaled = cpu_load;
1253
1254 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1255 }
1256
1257 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1258 {
1259 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1260 u64 duration_ns;
1261
1262 /*
1263 * perf_scaled is the average performance during the last sampling
1264 * period scaled by the ratio of the maximum P-state to the P-state
1265 * requested last time (in percent). That measures the system's
1266 * response to the previous P-state selection.
1267 */
1268 max_pstate = cpu->pstate.max_pstate_physical;
1269 current_pstate = cpu->pstate.current_pstate;
1270 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1271 div_fp(100 * max_pstate, current_pstate));
1272
1273 /*
1274 * Since our utilization update callback will not run unless we are
1275 * in C0, check if the actual elapsed time is significantly greater (3x)
1276 * than our sample interval. If it is, then we were idle for a long
1277 * enough period of time to adjust our performance metric.
1278 */
1279 duration_ns = cpu->sample.time - cpu->last_sample_time;
1280 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1281 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1282 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1283 } else {
1284 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1285 if (sample_ratio < int_tofp(1))
1286 perf_scaled = 0;
1287 }
1288
1289 cpu->sample.busy_scaled = perf_scaled;
1290 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1291 }
1292
1293 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1294 {
1295 int max_perf, min_perf;
1296
1297 update_turbo_state();
1298
1299 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1300 pstate = clamp_t(int, pstate, min_perf, max_perf);
1301 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1302 if (pstate == cpu->pstate.current_pstate)
1303 return;
1304
1305 cpu->pstate.current_pstate = pstate;
1306 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1307 }
1308
1309 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1310 {
1311 int from, target_pstate;
1312 struct sample *sample;
1313
1314 from = cpu->pstate.current_pstate;
1315
1316 target_pstate = pstate_funcs.get_target_pstate(cpu);
1317
1318 intel_pstate_update_pstate(cpu, target_pstate);
1319
1320 sample = &cpu->sample;
1321 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1322 fp_toint(sample->busy_scaled),
1323 from,
1324 cpu->pstate.current_pstate,
1325 sample->mperf,
1326 sample->aperf,
1327 sample->tsc,
1328 get_avg_frequency(cpu));
1329 }
1330
1331 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1332 unsigned int flags)
1333 {
1334 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1335 u64 delta_ns = time - cpu->sample.time;
1336
1337 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1338 bool sample_taken = intel_pstate_sample(cpu, time);
1339
1340 if (sample_taken) {
1341 intel_pstate_calc_avg_perf(cpu);
1342 if (!hwp_active)
1343 intel_pstate_adjust_busy_pstate(cpu);
1344 }
1345 }
1346 }
1347
1348 #define ICPU(model, policy) \
1349 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1350 (unsigned long)&policy }
1351
1352 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1353 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1354 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1355 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1356 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1357 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1358 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1359 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1360 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1361 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1362 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1363 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1364 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1365 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1366 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1367 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1368 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1369 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1370 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1371 {}
1372 };
1373 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1374
1375 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1376 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1377 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1378 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1379 {}
1380 };
1381
1382 static int intel_pstate_init_cpu(unsigned int cpunum)
1383 {
1384 struct cpudata *cpu;
1385
1386 if (!all_cpu_data[cpunum])
1387 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1388 GFP_KERNEL);
1389 if (!all_cpu_data[cpunum])
1390 return -ENOMEM;
1391
1392 cpu = all_cpu_data[cpunum];
1393
1394 cpu->cpu = cpunum;
1395
1396 if (hwp_active) {
1397 intel_pstate_hwp_enable(cpu);
1398 pid_params.sample_rate_ms = 50;
1399 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1400 }
1401
1402 intel_pstate_get_cpu_pstates(cpu);
1403
1404 intel_pstate_busy_pid_reset(cpu);
1405
1406 pr_debug("controlling: cpu %d\n", cpunum);
1407
1408 return 0;
1409 }
1410
1411 static unsigned int intel_pstate_get(unsigned int cpu_num)
1412 {
1413 struct cpudata *cpu = all_cpu_data[cpu_num];
1414
1415 return cpu ? get_avg_frequency(cpu) : 0;
1416 }
1417
1418 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1419 {
1420 struct cpudata *cpu = all_cpu_data[cpu_num];
1421
1422 if (cpu->update_util_set)
1423 return;
1424
1425 /* Prevent intel_pstate_update_util() from using stale data. */
1426 cpu->sample.time = 0;
1427 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1428 intel_pstate_update_util);
1429 cpu->update_util_set = true;
1430 }
1431
1432 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1433 {
1434 struct cpudata *cpu_data = all_cpu_data[cpu];
1435
1436 if (!cpu_data->update_util_set)
1437 return;
1438
1439 cpufreq_remove_update_util_hook(cpu);
1440 cpu_data->update_util_set = false;
1441 synchronize_sched();
1442 }
1443
1444 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1445 {
1446 limits->no_turbo = 0;
1447 limits->turbo_disabled = 0;
1448 limits->max_perf_pct = 100;
1449 limits->max_perf = int_tofp(1);
1450 limits->min_perf_pct = 100;
1451 limits->min_perf = int_tofp(1);
1452 limits->max_policy_pct = 100;
1453 limits->max_sysfs_pct = 100;
1454 limits->min_policy_pct = 0;
1455 limits->min_sysfs_pct = 0;
1456 }
1457
1458 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1459 {
1460 struct cpudata *cpu;
1461
1462 if (!policy->cpuinfo.max_freq)
1463 return -ENODEV;
1464
1465 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1466 policy->cpuinfo.max_freq, policy->max);
1467
1468 cpu = all_cpu_data[0];
1469 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1470 policy->max < policy->cpuinfo.max_freq &&
1471 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1472 pr_debug("policy->max > max non turbo frequency\n");
1473 policy->max = policy->cpuinfo.max_freq;
1474 }
1475
1476 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1477 limits = &performance_limits;
1478 if (policy->max >= policy->cpuinfo.max_freq) {
1479 pr_debug("set performance\n");
1480 intel_pstate_set_performance_limits(limits);
1481 goto out;
1482 }
1483 } else {
1484 pr_debug("set powersave\n");
1485 limits = &powersave_limits;
1486 }
1487
1488 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1489 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1490 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1491 policy->cpuinfo.max_freq);
1492 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1493
1494 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1495 limits->min_perf_pct = max(limits->min_policy_pct,
1496 limits->min_sysfs_pct);
1497 limits->min_perf_pct = min(limits->max_policy_pct,
1498 limits->min_perf_pct);
1499 limits->max_perf_pct = min(limits->max_policy_pct,
1500 limits->max_sysfs_pct);
1501 limits->max_perf_pct = max(limits->min_policy_pct,
1502 limits->max_perf_pct);
1503
1504 /* Make sure min_perf_pct <= max_perf_pct */
1505 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1506
1507 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1508 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1509 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1510
1511 out:
1512 intel_pstate_set_update_util_hook(policy->cpu);
1513
1514 intel_pstate_hwp_set_policy(policy);
1515
1516 return 0;
1517 }
1518
1519 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1520 {
1521 cpufreq_verify_within_cpu_limits(policy);
1522
1523 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1524 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1525 return -EINVAL;
1526
1527 return 0;
1528 }
1529
1530 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1531 {
1532 int cpu_num = policy->cpu;
1533 struct cpudata *cpu = all_cpu_data[cpu_num];
1534
1535 pr_debug("CPU %d exiting\n", cpu_num);
1536
1537 intel_pstate_clear_update_util_hook(cpu_num);
1538
1539 if (hwp_active)
1540 return;
1541
1542 intel_pstate_set_min_pstate(cpu);
1543 }
1544
1545 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1546 {
1547 struct cpudata *cpu;
1548 int rc;
1549
1550 rc = intel_pstate_init_cpu(policy->cpu);
1551 if (rc)
1552 return rc;
1553
1554 cpu = all_cpu_data[policy->cpu];
1555
1556 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1557 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1558 else
1559 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1560
1561 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1562 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1563
1564 /* cpuinfo and default policy values */
1565 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1566 update_turbo_state();
1567 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1568 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1569 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1570
1571 intel_pstate_init_acpi_perf_limits(policy);
1572 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1573 cpumask_set_cpu(policy->cpu, policy->cpus);
1574
1575 return 0;
1576 }
1577
1578 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1579 {
1580 intel_pstate_exit_perf_limits(policy);
1581
1582 return 0;
1583 }
1584
1585 static struct cpufreq_driver intel_pstate_driver = {
1586 .flags = CPUFREQ_CONST_LOOPS,
1587 .verify = intel_pstate_verify_policy,
1588 .setpolicy = intel_pstate_set_policy,
1589 .resume = intel_pstate_hwp_set_policy,
1590 .get = intel_pstate_get,
1591 .init = intel_pstate_cpu_init,
1592 .exit = intel_pstate_cpu_exit,
1593 .stop_cpu = intel_pstate_stop_cpu,
1594 .name = "intel_pstate",
1595 };
1596
1597 static int no_load __initdata;
1598 static int no_hwp __initdata;
1599 static int hwp_only __initdata;
1600 static unsigned int force_load __initdata;
1601
1602 static int __init intel_pstate_msrs_not_valid(void)
1603 {
1604 if (!pstate_funcs.get_max() ||
1605 !pstate_funcs.get_min() ||
1606 !pstate_funcs.get_turbo())
1607 return -ENODEV;
1608
1609 return 0;
1610 }
1611
1612 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1613 {
1614 pid_params.sample_rate_ms = policy->sample_rate_ms;
1615 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1616 pid_params.p_gain_pct = policy->p_gain_pct;
1617 pid_params.i_gain_pct = policy->i_gain_pct;
1618 pid_params.d_gain_pct = policy->d_gain_pct;
1619 pid_params.deadband = policy->deadband;
1620 pid_params.setpoint = policy->setpoint;
1621 }
1622
1623 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1624 {
1625 pstate_funcs.get_max = funcs->get_max;
1626 pstate_funcs.get_max_physical = funcs->get_max_physical;
1627 pstate_funcs.get_min = funcs->get_min;
1628 pstate_funcs.get_turbo = funcs->get_turbo;
1629 pstate_funcs.get_scaling = funcs->get_scaling;
1630 pstate_funcs.get_val = funcs->get_val;
1631 pstate_funcs.get_vid = funcs->get_vid;
1632 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1633
1634 }
1635
1636 #ifdef CONFIG_ACPI
1637
1638 static bool __init intel_pstate_no_acpi_pss(void)
1639 {
1640 int i;
1641
1642 for_each_possible_cpu(i) {
1643 acpi_status status;
1644 union acpi_object *pss;
1645 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1646 struct acpi_processor *pr = per_cpu(processors, i);
1647
1648 if (!pr)
1649 continue;
1650
1651 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1652 if (ACPI_FAILURE(status))
1653 continue;
1654
1655 pss = buffer.pointer;
1656 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1657 kfree(pss);
1658 return false;
1659 }
1660
1661 kfree(pss);
1662 }
1663
1664 return true;
1665 }
1666
1667 static bool __init intel_pstate_has_acpi_ppc(void)
1668 {
1669 int i;
1670
1671 for_each_possible_cpu(i) {
1672 struct acpi_processor *pr = per_cpu(processors, i);
1673
1674 if (!pr)
1675 continue;
1676 if (acpi_has_method(pr->handle, "_PPC"))
1677 return true;
1678 }
1679 return false;
1680 }
1681
1682 enum {
1683 PSS,
1684 PPC,
1685 };
1686
1687 struct hw_vendor_info {
1688 u16 valid;
1689 char oem_id[ACPI_OEM_ID_SIZE];
1690 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1691 int oem_pwr_table;
1692 };
1693
1694 /* Hardware vendor-specific info that has its own power management modes */
1695 static struct hw_vendor_info vendor_info[] __initdata = {
1696 {1, "HP ", "ProLiant", PSS},
1697 {1, "ORACLE", "X4-2 ", PPC},
1698 {1, "ORACLE", "X4-2L ", PPC},
1699 {1, "ORACLE", "X4-2B ", PPC},
1700 {1, "ORACLE", "X3-2 ", PPC},
1701 {1, "ORACLE", "X3-2L ", PPC},
1702 {1, "ORACLE", "X3-2B ", PPC},
1703 {1, "ORACLE", "X4470M2 ", PPC},
1704 {1, "ORACLE", "X4270M3 ", PPC},
1705 {1, "ORACLE", "X4270M2 ", PPC},
1706 {1, "ORACLE", "X4170M2 ", PPC},
1707 {1, "ORACLE", "X4170 M3", PPC},
1708 {1, "ORACLE", "X4275 M3", PPC},
1709 {1, "ORACLE", "X6-2 ", PPC},
1710 {1, "ORACLE", "Sudbury ", PPC},
1711 {0, "", ""},
1712 };
1713
1714 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1715 {
1716 struct acpi_table_header hdr;
1717 struct hw_vendor_info *v_info;
1718 const struct x86_cpu_id *id;
1719 u64 misc_pwr;
1720
1721 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1722 if (id) {
1723 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1724 if ( misc_pwr & (1 << 8))
1725 return true;
1726 }
1727
1728 if (acpi_disabled ||
1729 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1730 return false;
1731
1732 for (v_info = vendor_info; v_info->valid; v_info++) {
1733 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1734 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1735 ACPI_OEM_TABLE_ID_SIZE))
1736 switch (v_info->oem_pwr_table) {
1737 case PSS:
1738 return intel_pstate_no_acpi_pss();
1739 case PPC:
1740 return intel_pstate_has_acpi_ppc() &&
1741 (!force_load);
1742 }
1743 }
1744
1745 return false;
1746 }
1747 #else /* CONFIG_ACPI not enabled */
1748 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1749 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1750 #endif /* CONFIG_ACPI */
1751
1752 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1753 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1754 {}
1755 };
1756
1757 static int __init intel_pstate_init(void)
1758 {
1759 int cpu, rc = 0;
1760 const struct x86_cpu_id *id;
1761 struct cpu_defaults *cpu_def;
1762
1763 if (no_load)
1764 return -ENODEV;
1765
1766 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1767 copy_cpu_funcs(&core_params.funcs);
1768 hwp_active++;
1769 goto hwp_cpu_matched;
1770 }
1771
1772 id = x86_match_cpu(intel_pstate_cpu_ids);
1773 if (!id)
1774 return -ENODEV;
1775
1776 cpu_def = (struct cpu_defaults *)id->driver_data;
1777
1778 copy_pid_params(&cpu_def->pid_policy);
1779 copy_cpu_funcs(&cpu_def->funcs);
1780
1781 if (intel_pstate_msrs_not_valid())
1782 return -ENODEV;
1783
1784 hwp_cpu_matched:
1785 /*
1786 * The Intel pstate driver will be ignored if the platform
1787 * firmware has its own power management modes.
1788 */
1789 if (intel_pstate_platform_pwr_mgmt_exists())
1790 return -ENODEV;
1791
1792 pr_info("Intel P-state driver initializing\n");
1793
1794 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1795 if (!all_cpu_data)
1796 return -ENOMEM;
1797
1798 if (!hwp_active && hwp_only)
1799 goto out;
1800
1801 rc = cpufreq_register_driver(&intel_pstate_driver);
1802 if (rc)
1803 goto out;
1804
1805 intel_pstate_debug_expose_params();
1806 intel_pstate_sysfs_expose_params();
1807
1808 if (hwp_active)
1809 pr_info("HWP enabled\n");
1810
1811 return rc;
1812 out:
1813 get_online_cpus();
1814 for_each_online_cpu(cpu) {
1815 if (all_cpu_data[cpu]) {
1816 intel_pstate_clear_update_util_hook(cpu);
1817 kfree(all_cpu_data[cpu]);
1818 }
1819 }
1820
1821 put_online_cpus();
1822 vfree(all_cpu_data);
1823 return -ENODEV;
1824 }
1825 device_initcall(intel_pstate_init);
1826
1827 static int __init intel_pstate_setup(char *str)
1828 {
1829 if (!str)
1830 return -EINVAL;
1831
1832 if (!strcmp(str, "disable"))
1833 no_load = 1;
1834 if (!strcmp(str, "no_hwp")) {
1835 pr_info("HWP disabled\n");
1836 no_hwp = 1;
1837 }
1838 if (!strcmp(str, "force"))
1839 force_load = 1;
1840 if (!strcmp(str, "hwp_only"))
1841 hwp_only = 1;
1842
1843 #ifdef CONFIG_ACPI
1844 if (!strcmp(str, "support_acpi_ppc"))
1845 acpi_ppc = true;
1846 #endif
1847
1848 return 0;
1849 }
1850 early_param("intel_pstate", intel_pstate_setup);
1851
1852 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1853 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1854 MODULE_LICENSE("GPL");
This page took 0.070459 seconds and 5 git commands to generate.