Merge remote-tracking branch 'ftrace/for-next'
[deliverable/linux.git] / drivers / crypto / ccp / ccp-crypto-sha.c
1 /*
2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
3 *
4 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5 *
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 * Author: Gary R Hook <gary.hook@amd.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/delay.h>
17 #include <linux/scatterlist.h>
18 #include <linux/crypto.h>
19 #include <crypto/algapi.h>
20 #include <crypto/hash.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/sha.h>
23 #include <crypto/scatterwalk.h>
24
25 #include "ccp-crypto.h"
26
27 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
28 {
29 struct ahash_request *req = ahash_request_cast(async_req);
30 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
31 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
32 unsigned int digest_size = crypto_ahash_digestsize(tfm);
33
34 if (ret)
35 goto e_free;
36
37 if (rctx->hash_rem) {
38 /* Save remaining data to buffer */
39 unsigned int offset = rctx->nbytes - rctx->hash_rem;
40
41 scatterwalk_map_and_copy(rctx->buf, rctx->src,
42 offset, rctx->hash_rem, 0);
43 rctx->buf_count = rctx->hash_rem;
44 } else {
45 rctx->buf_count = 0;
46 }
47
48 /* Update result area if supplied */
49 if (req->result)
50 memcpy(req->result, rctx->ctx, digest_size);
51
52 e_free:
53 sg_free_table(&rctx->data_sg);
54
55 return ret;
56 }
57
58 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
59 unsigned int final)
60 {
61 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
62 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
63 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
64 struct scatterlist *sg;
65 unsigned int block_size =
66 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
67 unsigned int sg_count;
68 gfp_t gfp;
69 u64 len;
70 int ret;
71
72 len = (u64)rctx->buf_count + (u64)nbytes;
73
74 if (!final && (len <= block_size)) {
75 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
76 0, nbytes, 0);
77 rctx->buf_count += nbytes;
78
79 return 0;
80 }
81
82 rctx->src = req->src;
83 rctx->nbytes = nbytes;
84
85 rctx->final = final;
86 rctx->hash_rem = final ? 0 : len & (block_size - 1);
87 rctx->hash_cnt = len - rctx->hash_rem;
88 if (!final && !rctx->hash_rem) {
89 /* CCP can't do zero length final, so keep some data around */
90 rctx->hash_cnt -= block_size;
91 rctx->hash_rem = block_size;
92 }
93
94 /* Initialize the context scatterlist */
95 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
96
97 sg = NULL;
98 if (rctx->buf_count && nbytes) {
99 /* Build the data scatterlist table - allocate enough entries
100 * for both data pieces (buffer and input data)
101 */
102 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
103 GFP_KERNEL : GFP_ATOMIC;
104 sg_count = sg_nents(req->src) + 1;
105 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
106 if (ret)
107 return ret;
108
109 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
110 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
111 if (!sg) {
112 ret = -EINVAL;
113 goto e_free;
114 }
115 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
116 if (!sg) {
117 ret = -EINVAL;
118 goto e_free;
119 }
120 sg_mark_end(sg);
121
122 sg = rctx->data_sg.sgl;
123 } else if (rctx->buf_count) {
124 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
125
126 sg = &rctx->buf_sg;
127 } else if (nbytes) {
128 sg = req->src;
129 }
130
131 rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
132
133 memset(&rctx->cmd, 0, sizeof(rctx->cmd));
134 INIT_LIST_HEAD(&rctx->cmd.entry);
135 rctx->cmd.engine = CCP_ENGINE_SHA;
136 rctx->cmd.u.sha.type = rctx->type;
137 rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
138
139 switch (rctx->type) {
140 case CCP_SHA_TYPE_1:
141 rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
142 break;
143 case CCP_SHA_TYPE_224:
144 rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
145 break;
146 case CCP_SHA_TYPE_256:
147 rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
148 break;
149 default:
150 /* Should never get here */
151 break;
152 }
153
154 rctx->cmd.u.sha.src = sg;
155 rctx->cmd.u.sha.src_len = rctx->hash_cnt;
156 rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
157 &ctx->u.sha.opad_sg : NULL;
158 rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
159 ctx->u.sha.opad_count : 0;
160 rctx->cmd.u.sha.first = rctx->first;
161 rctx->cmd.u.sha.final = rctx->final;
162 rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
163
164 rctx->first = 0;
165
166 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
167
168 return ret;
169
170 e_free:
171 sg_free_table(&rctx->data_sg);
172
173 return ret;
174 }
175
176 static int ccp_sha_init(struct ahash_request *req)
177 {
178 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
179 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
180 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
181 struct ccp_crypto_ahash_alg *alg =
182 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
183 unsigned int block_size =
184 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
185
186 memset(rctx, 0, sizeof(*rctx));
187
188 rctx->type = alg->type;
189 rctx->first = 1;
190
191 if (ctx->u.sha.key_len) {
192 /* Buffer the HMAC key for first update */
193 memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
194 rctx->buf_count = block_size;
195 }
196
197 return 0;
198 }
199
200 static int ccp_sha_update(struct ahash_request *req)
201 {
202 return ccp_do_sha_update(req, req->nbytes, 0);
203 }
204
205 static int ccp_sha_final(struct ahash_request *req)
206 {
207 return ccp_do_sha_update(req, 0, 1);
208 }
209
210 static int ccp_sha_finup(struct ahash_request *req)
211 {
212 return ccp_do_sha_update(req, req->nbytes, 1);
213 }
214
215 static int ccp_sha_digest(struct ahash_request *req)
216 {
217 int ret;
218
219 ret = ccp_sha_init(req);
220 if (ret)
221 return ret;
222
223 return ccp_sha_finup(req);
224 }
225
226 static int ccp_sha_export(struct ahash_request *req, void *out)
227 {
228 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
229 struct ccp_sha_exp_ctx state;
230
231 /* Don't let anything leak to 'out' */
232 memset(&state, 0, sizeof(state));
233
234 state.type = rctx->type;
235 state.msg_bits = rctx->msg_bits;
236 state.first = rctx->first;
237 memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
238 state.buf_count = rctx->buf_count;
239 memcpy(state.buf, rctx->buf, sizeof(state.buf));
240
241 /* 'out' may not be aligned so memcpy from local variable */
242 memcpy(out, &state, sizeof(state));
243
244 return 0;
245 }
246
247 static int ccp_sha_import(struct ahash_request *req, const void *in)
248 {
249 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
250 struct ccp_sha_exp_ctx state;
251
252 /* 'in' may not be aligned so memcpy to local variable */
253 memcpy(&state, in, sizeof(state));
254
255 memset(rctx, 0, sizeof(*rctx));
256 rctx->type = state.type;
257 rctx->msg_bits = state.msg_bits;
258 rctx->first = state.first;
259 memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
260 rctx->buf_count = state.buf_count;
261 memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
262
263 return 0;
264 }
265
266 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
267 unsigned int key_len)
268 {
269 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
270 struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
271
272 SHASH_DESC_ON_STACK(sdesc, shash);
273
274 unsigned int block_size = crypto_shash_blocksize(shash);
275 unsigned int digest_size = crypto_shash_digestsize(shash);
276 int i, ret;
277
278 /* Set to zero until complete */
279 ctx->u.sha.key_len = 0;
280
281 /* Clear key area to provide zero padding for keys smaller
282 * than the block size
283 */
284 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
285
286 if (key_len > block_size) {
287 /* Must hash the input key */
288 sdesc->tfm = shash;
289 sdesc->flags = crypto_ahash_get_flags(tfm) &
290 CRYPTO_TFM_REQ_MAY_SLEEP;
291
292 ret = crypto_shash_digest(sdesc, key, key_len,
293 ctx->u.sha.key);
294 if (ret) {
295 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
296 return -EINVAL;
297 }
298
299 key_len = digest_size;
300 } else {
301 memcpy(ctx->u.sha.key, key, key_len);
302 }
303
304 for (i = 0; i < block_size; i++) {
305 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
306 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
307 }
308
309 sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
310 ctx->u.sha.opad_count = block_size;
311
312 ctx->u.sha.key_len = key_len;
313
314 return 0;
315 }
316
317 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
318 {
319 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
320 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
321
322 ctx->complete = ccp_sha_complete;
323 ctx->u.sha.key_len = 0;
324
325 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
326
327 return 0;
328 }
329
330 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
331 {
332 }
333
334 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
335 {
336 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
337 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
338 struct crypto_shash *hmac_tfm;
339
340 hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
341 if (IS_ERR(hmac_tfm)) {
342 pr_warn("could not load driver %s need for HMAC support\n",
343 alg->child_alg);
344 return PTR_ERR(hmac_tfm);
345 }
346
347 ctx->u.sha.hmac_tfm = hmac_tfm;
348
349 return ccp_sha_cra_init(tfm);
350 }
351
352 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
353 {
354 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
355
356 if (ctx->u.sha.hmac_tfm)
357 crypto_free_shash(ctx->u.sha.hmac_tfm);
358
359 ccp_sha_cra_exit(tfm);
360 }
361
362 struct ccp_sha_def {
363 unsigned int version;
364 const char *name;
365 const char *drv_name;
366 enum ccp_sha_type type;
367 u32 digest_size;
368 u32 block_size;
369 };
370
371 static struct ccp_sha_def sha_algs[] = {
372 {
373 .version = CCP_VERSION(3, 0),
374 .name = "sha1",
375 .drv_name = "sha1-ccp",
376 .type = CCP_SHA_TYPE_1,
377 .digest_size = SHA1_DIGEST_SIZE,
378 .block_size = SHA1_BLOCK_SIZE,
379 },
380 {
381 .version = CCP_VERSION(3, 0),
382 .name = "sha224",
383 .drv_name = "sha224-ccp",
384 .type = CCP_SHA_TYPE_224,
385 .digest_size = SHA224_DIGEST_SIZE,
386 .block_size = SHA224_BLOCK_SIZE,
387 },
388 {
389 .version = CCP_VERSION(3, 0),
390 .name = "sha256",
391 .drv_name = "sha256-ccp",
392 .type = CCP_SHA_TYPE_256,
393 .digest_size = SHA256_DIGEST_SIZE,
394 .block_size = SHA256_BLOCK_SIZE,
395 },
396 };
397
398 static int ccp_register_hmac_alg(struct list_head *head,
399 const struct ccp_sha_def *def,
400 const struct ccp_crypto_ahash_alg *base_alg)
401 {
402 struct ccp_crypto_ahash_alg *ccp_alg;
403 struct ahash_alg *alg;
404 struct hash_alg_common *halg;
405 struct crypto_alg *base;
406 int ret;
407
408 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
409 if (!ccp_alg)
410 return -ENOMEM;
411
412 /* Copy the base algorithm and only change what's necessary */
413 *ccp_alg = *base_alg;
414 INIT_LIST_HEAD(&ccp_alg->entry);
415
416 strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
417
418 alg = &ccp_alg->alg;
419 alg->setkey = ccp_sha_setkey;
420
421 halg = &alg->halg;
422
423 base = &halg->base;
424 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
425 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
426 def->drv_name);
427 base->cra_init = ccp_hmac_sha_cra_init;
428 base->cra_exit = ccp_hmac_sha_cra_exit;
429
430 ret = crypto_register_ahash(alg);
431 if (ret) {
432 pr_err("%s ahash algorithm registration error (%d)\n",
433 base->cra_name, ret);
434 kfree(ccp_alg);
435 return ret;
436 }
437
438 list_add(&ccp_alg->entry, head);
439
440 return ret;
441 }
442
443 static int ccp_register_sha_alg(struct list_head *head,
444 const struct ccp_sha_def *def)
445 {
446 struct ccp_crypto_ahash_alg *ccp_alg;
447 struct ahash_alg *alg;
448 struct hash_alg_common *halg;
449 struct crypto_alg *base;
450 int ret;
451
452 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
453 if (!ccp_alg)
454 return -ENOMEM;
455
456 INIT_LIST_HEAD(&ccp_alg->entry);
457
458 ccp_alg->type = def->type;
459
460 alg = &ccp_alg->alg;
461 alg->init = ccp_sha_init;
462 alg->update = ccp_sha_update;
463 alg->final = ccp_sha_final;
464 alg->finup = ccp_sha_finup;
465 alg->digest = ccp_sha_digest;
466 alg->export = ccp_sha_export;
467 alg->import = ccp_sha_import;
468
469 halg = &alg->halg;
470 halg->digestsize = def->digest_size;
471 halg->statesize = sizeof(struct ccp_sha_exp_ctx);
472
473 base = &halg->base;
474 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
475 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
476 def->drv_name);
477 base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
478 CRYPTO_ALG_KERN_DRIVER_ONLY |
479 CRYPTO_ALG_NEED_FALLBACK;
480 base->cra_blocksize = def->block_size;
481 base->cra_ctxsize = sizeof(struct ccp_ctx);
482 base->cra_priority = CCP_CRA_PRIORITY;
483 base->cra_type = &crypto_ahash_type;
484 base->cra_init = ccp_sha_cra_init;
485 base->cra_exit = ccp_sha_cra_exit;
486 base->cra_module = THIS_MODULE;
487
488 ret = crypto_register_ahash(alg);
489 if (ret) {
490 pr_err("%s ahash algorithm registration error (%d)\n",
491 base->cra_name, ret);
492 kfree(ccp_alg);
493 return ret;
494 }
495
496 list_add(&ccp_alg->entry, head);
497
498 ret = ccp_register_hmac_alg(head, def, ccp_alg);
499
500 return ret;
501 }
502
503 int ccp_register_sha_algs(struct list_head *head)
504 {
505 int i, ret;
506 unsigned int ccpversion = ccp_version();
507
508 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
509 if (sha_algs[i].version > ccpversion)
510 continue;
511 ret = ccp_register_sha_alg(head, &sha_algs[i]);
512 if (ret)
513 return ret;
514 }
515
516 return 0;
517 }
This page took 0.062857 seconds and 5 git commands to generate.