tracing: Have max_latency be defined for HWLAT_TRACER as well
[deliverable/linux.git] / drivers / crypto / img-hash.c
1 /*
2 * Copyright (c) 2014 Imagination Technologies
3 * Authors: Will Thomas, James Hartley
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation.
8 *
9 * Interface structure taken from omap-sham driver
10 */
11
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/scatterlist.h>
21
22 #include <crypto/internal/hash.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25
26 #define CR_RESET 0
27 #define CR_RESET_SET 1
28 #define CR_RESET_UNSET 0
29
30 #define CR_MESSAGE_LENGTH_H 0x4
31 #define CR_MESSAGE_LENGTH_L 0x8
32
33 #define CR_CONTROL 0xc
34 #define CR_CONTROL_BYTE_ORDER_3210 0
35 #define CR_CONTROL_BYTE_ORDER_0123 1
36 #define CR_CONTROL_BYTE_ORDER_2310 2
37 #define CR_CONTROL_BYTE_ORDER_1032 3
38 #define CR_CONTROL_BYTE_ORDER_SHIFT 8
39 #define CR_CONTROL_ALGO_MD5 0
40 #define CR_CONTROL_ALGO_SHA1 1
41 #define CR_CONTROL_ALGO_SHA224 2
42 #define CR_CONTROL_ALGO_SHA256 3
43
44 #define CR_INTSTAT 0x10
45 #define CR_INTENAB 0x14
46 #define CR_INTCLEAR 0x18
47 #define CR_INT_RESULTS_AVAILABLE BIT(0)
48 #define CR_INT_NEW_RESULTS_SET BIT(1)
49 #define CR_INT_RESULT_READ_ERR BIT(2)
50 #define CR_INT_MESSAGE_WRITE_ERROR BIT(3)
51 #define CR_INT_STATUS BIT(8)
52
53 #define CR_RESULT_QUEUE 0x1c
54 #define CR_RSD0 0x40
55 #define CR_CORE_REV 0x50
56 #define CR_CORE_DES1 0x60
57 #define CR_CORE_DES2 0x70
58
59 #define DRIVER_FLAGS_BUSY BIT(0)
60 #define DRIVER_FLAGS_FINAL BIT(1)
61 #define DRIVER_FLAGS_DMA_ACTIVE BIT(2)
62 #define DRIVER_FLAGS_OUTPUT_READY BIT(3)
63 #define DRIVER_FLAGS_INIT BIT(4)
64 #define DRIVER_FLAGS_CPU BIT(5)
65 #define DRIVER_FLAGS_DMA_READY BIT(6)
66 #define DRIVER_FLAGS_ERROR BIT(7)
67 #define DRIVER_FLAGS_SG BIT(8)
68 #define DRIVER_FLAGS_SHA1 BIT(18)
69 #define DRIVER_FLAGS_SHA224 BIT(19)
70 #define DRIVER_FLAGS_SHA256 BIT(20)
71 #define DRIVER_FLAGS_MD5 BIT(21)
72
73 #define IMG_HASH_QUEUE_LENGTH 20
74 #define IMG_HASH_DMA_THRESHOLD 64
75
76 #ifdef __LITTLE_ENDIAN
77 #define IMG_HASH_BYTE_ORDER CR_CONTROL_BYTE_ORDER_3210
78 #else
79 #define IMG_HASH_BYTE_ORDER CR_CONTROL_BYTE_ORDER_0123
80 #endif
81
82 struct img_hash_dev;
83
84 struct img_hash_request_ctx {
85 struct img_hash_dev *hdev;
86 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
87 unsigned long flags;
88 size_t digsize;
89
90 dma_addr_t dma_addr;
91 size_t dma_ct;
92
93 /* sg root */
94 struct scatterlist *sgfirst;
95 /* walk state */
96 struct scatterlist *sg;
97 size_t nents;
98 size_t offset;
99 unsigned int total;
100 size_t sent;
101
102 unsigned long op;
103
104 size_t bufcnt;
105 u8 buffer[0] __aligned(sizeof(u32));
106 struct ahash_request fallback_req;
107 };
108
109 struct img_hash_ctx {
110 struct img_hash_dev *hdev;
111 unsigned long flags;
112 struct crypto_ahash *fallback;
113 };
114
115 struct img_hash_dev {
116 struct list_head list;
117 struct device *dev;
118 struct clk *hash_clk;
119 struct clk *sys_clk;
120 void __iomem *io_base;
121
122 phys_addr_t bus_addr;
123 void __iomem *cpu_addr;
124
125 spinlock_t lock;
126 int err;
127 struct tasklet_struct done_task;
128 struct tasklet_struct dma_task;
129
130 unsigned long flags;
131 struct crypto_queue queue;
132 struct ahash_request *req;
133
134 struct dma_chan *dma_lch;
135 };
136
137 struct img_hash_drv {
138 struct list_head dev_list;
139 spinlock_t lock;
140 };
141
142 static struct img_hash_drv img_hash = {
143 .dev_list = LIST_HEAD_INIT(img_hash.dev_list),
144 .lock = __SPIN_LOCK_UNLOCKED(img_hash.lock),
145 };
146
147 static inline u32 img_hash_read(struct img_hash_dev *hdev, u32 offset)
148 {
149 return readl_relaxed(hdev->io_base + offset);
150 }
151
152 static inline void img_hash_write(struct img_hash_dev *hdev,
153 u32 offset, u32 value)
154 {
155 writel_relaxed(value, hdev->io_base + offset);
156 }
157
158 static inline u32 img_hash_read_result_queue(struct img_hash_dev *hdev)
159 {
160 return be32_to_cpu(img_hash_read(hdev, CR_RESULT_QUEUE));
161 }
162
163 static void img_hash_start(struct img_hash_dev *hdev, bool dma)
164 {
165 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
166 u32 cr = IMG_HASH_BYTE_ORDER << CR_CONTROL_BYTE_ORDER_SHIFT;
167
168 if (ctx->flags & DRIVER_FLAGS_MD5)
169 cr |= CR_CONTROL_ALGO_MD5;
170 else if (ctx->flags & DRIVER_FLAGS_SHA1)
171 cr |= CR_CONTROL_ALGO_SHA1;
172 else if (ctx->flags & DRIVER_FLAGS_SHA224)
173 cr |= CR_CONTROL_ALGO_SHA224;
174 else if (ctx->flags & DRIVER_FLAGS_SHA256)
175 cr |= CR_CONTROL_ALGO_SHA256;
176 dev_dbg(hdev->dev, "Starting hash process\n");
177 img_hash_write(hdev, CR_CONTROL, cr);
178
179 /*
180 * The hardware block requires two cycles between writing the control
181 * register and writing the first word of data in non DMA mode, to
182 * ensure the first data write is not grouped in burst with the control
183 * register write a read is issued to 'flush' the bus.
184 */
185 if (!dma)
186 img_hash_read(hdev, CR_CONTROL);
187 }
188
189 static int img_hash_xmit_cpu(struct img_hash_dev *hdev, const u8 *buf,
190 size_t length, int final)
191 {
192 u32 count, len32;
193 const u32 *buffer = (const u32 *)buf;
194
195 dev_dbg(hdev->dev, "xmit_cpu: length: %zu bytes\n", length);
196
197 if (final)
198 hdev->flags |= DRIVER_FLAGS_FINAL;
199
200 len32 = DIV_ROUND_UP(length, sizeof(u32));
201
202 for (count = 0; count < len32; count++)
203 writel_relaxed(buffer[count], hdev->cpu_addr);
204
205 return -EINPROGRESS;
206 }
207
208 static void img_hash_dma_callback(void *data)
209 {
210 struct img_hash_dev *hdev = (struct img_hash_dev *)data;
211 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
212
213 if (ctx->bufcnt) {
214 img_hash_xmit_cpu(hdev, ctx->buffer, ctx->bufcnt, 0);
215 ctx->bufcnt = 0;
216 }
217 if (ctx->sg)
218 tasklet_schedule(&hdev->dma_task);
219 }
220
221 static int img_hash_xmit_dma(struct img_hash_dev *hdev, struct scatterlist *sg)
222 {
223 struct dma_async_tx_descriptor *desc;
224 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
225
226 ctx->dma_ct = dma_map_sg(hdev->dev, sg, 1, DMA_MEM_TO_DEV);
227 if (ctx->dma_ct == 0) {
228 dev_err(hdev->dev, "Invalid DMA sg\n");
229 hdev->err = -EINVAL;
230 return -EINVAL;
231 }
232
233 desc = dmaengine_prep_slave_sg(hdev->dma_lch,
234 sg,
235 ctx->dma_ct,
236 DMA_MEM_TO_DEV,
237 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
238 if (!desc) {
239 dev_err(hdev->dev, "Null DMA descriptor\n");
240 hdev->err = -EINVAL;
241 dma_unmap_sg(hdev->dev, sg, 1, DMA_MEM_TO_DEV);
242 return -EINVAL;
243 }
244 desc->callback = img_hash_dma_callback;
245 desc->callback_param = hdev;
246 dmaengine_submit(desc);
247 dma_async_issue_pending(hdev->dma_lch);
248
249 return 0;
250 }
251
252 static int img_hash_write_via_cpu(struct img_hash_dev *hdev)
253 {
254 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
255
256 ctx->bufcnt = sg_copy_to_buffer(hdev->req->src, sg_nents(ctx->sg),
257 ctx->buffer, hdev->req->nbytes);
258
259 ctx->total = hdev->req->nbytes;
260 ctx->bufcnt = 0;
261
262 hdev->flags |= (DRIVER_FLAGS_CPU | DRIVER_FLAGS_FINAL);
263
264 img_hash_start(hdev, false);
265
266 return img_hash_xmit_cpu(hdev, ctx->buffer, ctx->total, 1);
267 }
268
269 static int img_hash_finish(struct ahash_request *req)
270 {
271 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
272
273 if (!req->result)
274 return -EINVAL;
275
276 memcpy(req->result, ctx->digest, ctx->digsize);
277
278 return 0;
279 }
280
281 static void img_hash_copy_hash(struct ahash_request *req)
282 {
283 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
284 u32 *hash = (u32 *)ctx->digest;
285 int i;
286
287 for (i = (ctx->digsize / sizeof(u32)) - 1; i >= 0; i--)
288 hash[i] = img_hash_read_result_queue(ctx->hdev);
289 }
290
291 static void img_hash_finish_req(struct ahash_request *req, int err)
292 {
293 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
294 struct img_hash_dev *hdev = ctx->hdev;
295
296 if (!err) {
297 img_hash_copy_hash(req);
298 if (DRIVER_FLAGS_FINAL & hdev->flags)
299 err = img_hash_finish(req);
300 } else {
301 dev_warn(hdev->dev, "Hash failed with error %d\n", err);
302 ctx->flags |= DRIVER_FLAGS_ERROR;
303 }
304
305 hdev->flags &= ~(DRIVER_FLAGS_DMA_READY | DRIVER_FLAGS_OUTPUT_READY |
306 DRIVER_FLAGS_CPU | DRIVER_FLAGS_BUSY | DRIVER_FLAGS_FINAL);
307
308 if (req->base.complete)
309 req->base.complete(&req->base, err);
310 }
311
312 static int img_hash_write_via_dma(struct img_hash_dev *hdev)
313 {
314 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
315
316 img_hash_start(hdev, true);
317
318 dev_dbg(hdev->dev, "xmit dma size: %d\n", ctx->total);
319
320 if (!ctx->total)
321 hdev->flags |= DRIVER_FLAGS_FINAL;
322
323 hdev->flags |= DRIVER_FLAGS_DMA_ACTIVE | DRIVER_FLAGS_FINAL;
324
325 tasklet_schedule(&hdev->dma_task);
326
327 return -EINPROGRESS;
328 }
329
330 static int img_hash_dma_init(struct img_hash_dev *hdev)
331 {
332 struct dma_slave_config dma_conf;
333 int err = -EINVAL;
334
335 hdev->dma_lch = dma_request_slave_channel(hdev->dev, "tx");
336 if (!hdev->dma_lch) {
337 dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
338 return -EBUSY;
339 }
340 dma_conf.direction = DMA_MEM_TO_DEV;
341 dma_conf.dst_addr = hdev->bus_addr;
342 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
343 dma_conf.dst_maxburst = 16;
344 dma_conf.device_fc = false;
345
346 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
347 if (err) {
348 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
349 dma_release_channel(hdev->dma_lch);
350 return err;
351 }
352
353 return 0;
354 }
355
356 static void img_hash_dma_task(unsigned long d)
357 {
358 struct img_hash_dev *hdev = (struct img_hash_dev *)d;
359 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
360 u8 *addr;
361 size_t nbytes, bleft, wsend, len, tbc;
362 struct scatterlist tsg;
363
364 if (!ctx->sg)
365 return;
366
367 addr = sg_virt(ctx->sg);
368 nbytes = ctx->sg->length - ctx->offset;
369
370 /*
371 * The hash accelerator does not support a data valid mask. This means
372 * that if each dma (i.e. per page) is not a multiple of 4 bytes, the
373 * padding bytes in the last word written by that dma would erroneously
374 * be included in the hash. To avoid this we round down the transfer,
375 * and add the excess to the start of the next dma. It does not matter
376 * that the final dma may not be a multiple of 4 bytes as the hashing
377 * block is programmed to accept the correct number of bytes.
378 */
379
380 bleft = nbytes % 4;
381 wsend = (nbytes / 4);
382
383 if (wsend) {
384 sg_init_one(&tsg, addr + ctx->offset, wsend * 4);
385 if (img_hash_xmit_dma(hdev, &tsg)) {
386 dev_err(hdev->dev, "DMA failed, falling back to CPU");
387 ctx->flags |= DRIVER_FLAGS_CPU;
388 hdev->err = 0;
389 img_hash_xmit_cpu(hdev, addr + ctx->offset,
390 wsend * 4, 0);
391 ctx->sent += wsend * 4;
392 wsend = 0;
393 } else {
394 ctx->sent += wsend * 4;
395 }
396 }
397
398 if (bleft) {
399 ctx->bufcnt = sg_pcopy_to_buffer(ctx->sgfirst, ctx->nents,
400 ctx->buffer, bleft, ctx->sent);
401 tbc = 0;
402 ctx->sg = sg_next(ctx->sg);
403 while (ctx->sg && (ctx->bufcnt < 4)) {
404 len = ctx->sg->length;
405 if (likely(len > (4 - ctx->bufcnt)))
406 len = 4 - ctx->bufcnt;
407 tbc = sg_pcopy_to_buffer(ctx->sgfirst, ctx->nents,
408 ctx->buffer + ctx->bufcnt, len,
409 ctx->sent + ctx->bufcnt);
410 ctx->bufcnt += tbc;
411 if (tbc >= ctx->sg->length) {
412 ctx->sg = sg_next(ctx->sg);
413 tbc = 0;
414 }
415 }
416
417 ctx->sent += ctx->bufcnt;
418 ctx->offset = tbc;
419
420 if (!wsend)
421 img_hash_dma_callback(hdev);
422 } else {
423 ctx->offset = 0;
424 ctx->sg = sg_next(ctx->sg);
425 }
426 }
427
428 static int img_hash_write_via_dma_stop(struct img_hash_dev *hdev)
429 {
430 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
431
432 if (ctx->flags & DRIVER_FLAGS_SG)
433 dma_unmap_sg(hdev->dev, ctx->sg, ctx->dma_ct, DMA_TO_DEVICE);
434
435 return 0;
436 }
437
438 static int img_hash_process_data(struct img_hash_dev *hdev)
439 {
440 struct ahash_request *req = hdev->req;
441 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
442 int err = 0;
443
444 ctx->bufcnt = 0;
445
446 if (req->nbytes >= IMG_HASH_DMA_THRESHOLD) {
447 dev_dbg(hdev->dev, "process data request(%d bytes) using DMA\n",
448 req->nbytes);
449 err = img_hash_write_via_dma(hdev);
450 } else {
451 dev_dbg(hdev->dev, "process data request(%d bytes) using CPU\n",
452 req->nbytes);
453 err = img_hash_write_via_cpu(hdev);
454 }
455 return err;
456 }
457
458 static int img_hash_hw_init(struct img_hash_dev *hdev)
459 {
460 unsigned long long nbits;
461 u32 u, l;
462
463 img_hash_write(hdev, CR_RESET, CR_RESET_SET);
464 img_hash_write(hdev, CR_RESET, CR_RESET_UNSET);
465 img_hash_write(hdev, CR_INTENAB, CR_INT_NEW_RESULTS_SET);
466
467 nbits = (u64)hdev->req->nbytes << 3;
468 u = nbits >> 32;
469 l = nbits;
470 img_hash_write(hdev, CR_MESSAGE_LENGTH_H, u);
471 img_hash_write(hdev, CR_MESSAGE_LENGTH_L, l);
472
473 if (!(DRIVER_FLAGS_INIT & hdev->flags)) {
474 hdev->flags |= DRIVER_FLAGS_INIT;
475 hdev->err = 0;
476 }
477 dev_dbg(hdev->dev, "hw initialized, nbits: %llx\n", nbits);
478 return 0;
479 }
480
481 static int img_hash_init(struct ahash_request *req)
482 {
483 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
484 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
485 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
486
487 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
488 rctx->fallback_req.base.flags = req->base.flags
489 & CRYPTO_TFM_REQ_MAY_SLEEP;
490
491 return crypto_ahash_init(&rctx->fallback_req);
492 }
493
494 static int img_hash_handle_queue(struct img_hash_dev *hdev,
495 struct ahash_request *req)
496 {
497 struct crypto_async_request *async_req, *backlog;
498 struct img_hash_request_ctx *ctx;
499 unsigned long flags;
500 int err = 0, res = 0;
501
502 spin_lock_irqsave(&hdev->lock, flags);
503
504 if (req)
505 res = ahash_enqueue_request(&hdev->queue, req);
506
507 if (DRIVER_FLAGS_BUSY & hdev->flags) {
508 spin_unlock_irqrestore(&hdev->lock, flags);
509 return res;
510 }
511
512 backlog = crypto_get_backlog(&hdev->queue);
513 async_req = crypto_dequeue_request(&hdev->queue);
514 if (async_req)
515 hdev->flags |= DRIVER_FLAGS_BUSY;
516
517 spin_unlock_irqrestore(&hdev->lock, flags);
518
519 if (!async_req)
520 return res;
521
522 if (backlog)
523 backlog->complete(backlog, -EINPROGRESS);
524
525 req = ahash_request_cast(async_req);
526 hdev->req = req;
527
528 ctx = ahash_request_ctx(req);
529
530 dev_info(hdev->dev, "processing req, op: %lu, bytes: %d\n",
531 ctx->op, req->nbytes);
532
533 err = img_hash_hw_init(hdev);
534
535 if (!err)
536 err = img_hash_process_data(hdev);
537
538 if (err != -EINPROGRESS) {
539 /* done_task will not finish so do it here */
540 img_hash_finish_req(req, err);
541 }
542 return res;
543 }
544
545 static int img_hash_update(struct ahash_request *req)
546 {
547 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
548 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
549 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
550
551 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
552 rctx->fallback_req.base.flags = req->base.flags
553 & CRYPTO_TFM_REQ_MAY_SLEEP;
554 rctx->fallback_req.nbytes = req->nbytes;
555 rctx->fallback_req.src = req->src;
556
557 return crypto_ahash_update(&rctx->fallback_req);
558 }
559
560 static int img_hash_final(struct ahash_request *req)
561 {
562 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
563 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
564 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
565
566 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
567 rctx->fallback_req.base.flags = req->base.flags
568 & CRYPTO_TFM_REQ_MAY_SLEEP;
569 rctx->fallback_req.result = req->result;
570
571 return crypto_ahash_final(&rctx->fallback_req);
572 }
573
574 static int img_hash_finup(struct ahash_request *req)
575 {
576 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
577 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
578 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
579
580 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
581 rctx->fallback_req.base.flags = req->base.flags
582 & CRYPTO_TFM_REQ_MAY_SLEEP;
583 rctx->fallback_req.nbytes = req->nbytes;
584 rctx->fallback_req.src = req->src;
585 rctx->fallback_req.result = req->result;
586
587 return crypto_ahash_finup(&rctx->fallback_req);
588 }
589
590 static int img_hash_digest(struct ahash_request *req)
591 {
592 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
593 struct img_hash_ctx *tctx = crypto_ahash_ctx(tfm);
594 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
595 struct img_hash_dev *hdev = NULL;
596 struct img_hash_dev *tmp;
597 int err;
598
599 spin_lock(&img_hash.lock);
600 if (!tctx->hdev) {
601 list_for_each_entry(tmp, &img_hash.dev_list, list) {
602 hdev = tmp;
603 break;
604 }
605 tctx->hdev = hdev;
606
607 } else {
608 hdev = tctx->hdev;
609 }
610
611 spin_unlock(&img_hash.lock);
612 ctx->hdev = hdev;
613 ctx->flags = 0;
614 ctx->digsize = crypto_ahash_digestsize(tfm);
615
616 switch (ctx->digsize) {
617 case SHA1_DIGEST_SIZE:
618 ctx->flags |= DRIVER_FLAGS_SHA1;
619 break;
620 case SHA256_DIGEST_SIZE:
621 ctx->flags |= DRIVER_FLAGS_SHA256;
622 break;
623 case SHA224_DIGEST_SIZE:
624 ctx->flags |= DRIVER_FLAGS_SHA224;
625 break;
626 case MD5_DIGEST_SIZE:
627 ctx->flags |= DRIVER_FLAGS_MD5;
628 break;
629 default:
630 return -EINVAL;
631 }
632
633 ctx->bufcnt = 0;
634 ctx->offset = 0;
635 ctx->sent = 0;
636 ctx->total = req->nbytes;
637 ctx->sg = req->src;
638 ctx->sgfirst = req->src;
639 ctx->nents = sg_nents(ctx->sg);
640
641 err = img_hash_handle_queue(tctx->hdev, req);
642
643 return err;
644 }
645
646 static int img_hash_cra_init(struct crypto_tfm *tfm)
647 {
648 struct img_hash_ctx *ctx = crypto_tfm_ctx(tfm);
649 const char *alg_name = crypto_tfm_alg_name(tfm);
650 int err = -ENOMEM;
651
652 ctx->fallback = crypto_alloc_ahash(alg_name, 0,
653 CRYPTO_ALG_NEED_FALLBACK);
654 if (IS_ERR(ctx->fallback)) {
655 pr_err("img_hash: Could not load fallback driver.\n");
656 err = PTR_ERR(ctx->fallback);
657 goto err;
658 }
659 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
660 sizeof(struct img_hash_request_ctx) +
661 IMG_HASH_DMA_THRESHOLD);
662
663 return 0;
664
665 err:
666 return err;
667 }
668
669 static void img_hash_cra_exit(struct crypto_tfm *tfm)
670 {
671 struct img_hash_ctx *tctx = crypto_tfm_ctx(tfm);
672
673 crypto_free_ahash(tctx->fallback);
674 }
675
676 static irqreturn_t img_irq_handler(int irq, void *dev_id)
677 {
678 struct img_hash_dev *hdev = dev_id;
679 u32 reg;
680
681 reg = img_hash_read(hdev, CR_INTSTAT);
682 img_hash_write(hdev, CR_INTCLEAR, reg);
683
684 if (reg & CR_INT_NEW_RESULTS_SET) {
685 dev_dbg(hdev->dev, "IRQ CR_INT_NEW_RESULTS_SET\n");
686 if (DRIVER_FLAGS_BUSY & hdev->flags) {
687 hdev->flags |= DRIVER_FLAGS_OUTPUT_READY;
688 if (!(DRIVER_FLAGS_CPU & hdev->flags))
689 hdev->flags |= DRIVER_FLAGS_DMA_READY;
690 tasklet_schedule(&hdev->done_task);
691 } else {
692 dev_warn(hdev->dev,
693 "HASH interrupt when no active requests.\n");
694 }
695 } else if (reg & CR_INT_RESULTS_AVAILABLE) {
696 dev_warn(hdev->dev,
697 "IRQ triggered before the hash had completed\n");
698 } else if (reg & CR_INT_RESULT_READ_ERR) {
699 dev_warn(hdev->dev,
700 "Attempt to read from an empty result queue\n");
701 } else if (reg & CR_INT_MESSAGE_WRITE_ERROR) {
702 dev_warn(hdev->dev,
703 "Data written before the hardware was configured\n");
704 }
705 return IRQ_HANDLED;
706 }
707
708 static struct ahash_alg img_algs[] = {
709 {
710 .init = img_hash_init,
711 .update = img_hash_update,
712 .final = img_hash_final,
713 .finup = img_hash_finup,
714 .digest = img_hash_digest,
715 .halg = {
716 .digestsize = MD5_DIGEST_SIZE,
717 .base = {
718 .cra_name = "md5",
719 .cra_driver_name = "img-md5",
720 .cra_priority = 300,
721 .cra_flags =
722 CRYPTO_ALG_ASYNC |
723 CRYPTO_ALG_NEED_FALLBACK,
724 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
725 .cra_ctxsize = sizeof(struct img_hash_ctx),
726 .cra_init = img_hash_cra_init,
727 .cra_exit = img_hash_cra_exit,
728 .cra_module = THIS_MODULE,
729 }
730 }
731 },
732 {
733 .init = img_hash_init,
734 .update = img_hash_update,
735 .final = img_hash_final,
736 .finup = img_hash_finup,
737 .digest = img_hash_digest,
738 .halg = {
739 .digestsize = SHA1_DIGEST_SIZE,
740 .base = {
741 .cra_name = "sha1",
742 .cra_driver_name = "img-sha1",
743 .cra_priority = 300,
744 .cra_flags =
745 CRYPTO_ALG_ASYNC |
746 CRYPTO_ALG_NEED_FALLBACK,
747 .cra_blocksize = SHA1_BLOCK_SIZE,
748 .cra_ctxsize = sizeof(struct img_hash_ctx),
749 .cra_init = img_hash_cra_init,
750 .cra_exit = img_hash_cra_exit,
751 .cra_module = THIS_MODULE,
752 }
753 }
754 },
755 {
756 .init = img_hash_init,
757 .update = img_hash_update,
758 .final = img_hash_final,
759 .finup = img_hash_finup,
760 .digest = img_hash_digest,
761 .halg = {
762 .digestsize = SHA224_DIGEST_SIZE,
763 .base = {
764 .cra_name = "sha224",
765 .cra_driver_name = "img-sha224",
766 .cra_priority = 300,
767 .cra_flags =
768 CRYPTO_ALG_ASYNC |
769 CRYPTO_ALG_NEED_FALLBACK,
770 .cra_blocksize = SHA224_BLOCK_SIZE,
771 .cra_ctxsize = sizeof(struct img_hash_ctx),
772 .cra_init = img_hash_cra_init,
773 .cra_exit = img_hash_cra_exit,
774 .cra_module = THIS_MODULE,
775 }
776 }
777 },
778 {
779 .init = img_hash_init,
780 .update = img_hash_update,
781 .final = img_hash_final,
782 .finup = img_hash_finup,
783 .digest = img_hash_digest,
784 .halg = {
785 .digestsize = SHA256_DIGEST_SIZE,
786 .base = {
787 .cra_name = "sha256",
788 .cra_driver_name = "img-sha256",
789 .cra_priority = 300,
790 .cra_flags =
791 CRYPTO_ALG_ASYNC |
792 CRYPTO_ALG_NEED_FALLBACK,
793 .cra_blocksize = SHA256_BLOCK_SIZE,
794 .cra_ctxsize = sizeof(struct img_hash_ctx),
795 .cra_init = img_hash_cra_init,
796 .cra_exit = img_hash_cra_exit,
797 .cra_module = THIS_MODULE,
798 }
799 }
800 }
801 };
802
803 static int img_register_algs(struct img_hash_dev *hdev)
804 {
805 int i, err;
806
807 for (i = 0; i < ARRAY_SIZE(img_algs); i++) {
808 err = crypto_register_ahash(&img_algs[i]);
809 if (err)
810 goto err_reg;
811 }
812 return 0;
813
814 err_reg:
815 for (; i--; )
816 crypto_unregister_ahash(&img_algs[i]);
817
818 return err;
819 }
820
821 static int img_unregister_algs(struct img_hash_dev *hdev)
822 {
823 int i;
824
825 for (i = 0; i < ARRAY_SIZE(img_algs); i++)
826 crypto_unregister_ahash(&img_algs[i]);
827 return 0;
828 }
829
830 static void img_hash_done_task(unsigned long data)
831 {
832 struct img_hash_dev *hdev = (struct img_hash_dev *)data;
833 int err = 0;
834
835 if (hdev->err == -EINVAL) {
836 err = hdev->err;
837 goto finish;
838 }
839
840 if (!(DRIVER_FLAGS_BUSY & hdev->flags)) {
841 img_hash_handle_queue(hdev, NULL);
842 return;
843 }
844
845 if (DRIVER_FLAGS_CPU & hdev->flags) {
846 if (DRIVER_FLAGS_OUTPUT_READY & hdev->flags) {
847 hdev->flags &= ~DRIVER_FLAGS_OUTPUT_READY;
848 goto finish;
849 }
850 } else if (DRIVER_FLAGS_DMA_READY & hdev->flags) {
851 if (DRIVER_FLAGS_DMA_ACTIVE & hdev->flags) {
852 hdev->flags &= ~DRIVER_FLAGS_DMA_ACTIVE;
853 img_hash_write_via_dma_stop(hdev);
854 if (hdev->err) {
855 err = hdev->err;
856 goto finish;
857 }
858 }
859 if (DRIVER_FLAGS_OUTPUT_READY & hdev->flags) {
860 hdev->flags &= ~(DRIVER_FLAGS_DMA_READY |
861 DRIVER_FLAGS_OUTPUT_READY);
862 goto finish;
863 }
864 }
865 return;
866
867 finish:
868 img_hash_finish_req(hdev->req, err);
869 }
870
871 static const struct of_device_id img_hash_match[] = {
872 { .compatible = "img,hash-accelerator" },
873 {}
874 };
875 MODULE_DEVICE_TABLE(of, img_hash_match);
876
877 static int img_hash_probe(struct platform_device *pdev)
878 {
879 struct img_hash_dev *hdev;
880 struct device *dev = &pdev->dev;
881 struct resource *hash_res;
882 int irq;
883 int err;
884
885 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
886 if (hdev == NULL)
887 return -ENOMEM;
888
889 spin_lock_init(&hdev->lock);
890
891 hdev->dev = dev;
892
893 platform_set_drvdata(pdev, hdev);
894
895 INIT_LIST_HEAD(&hdev->list);
896
897 tasklet_init(&hdev->done_task, img_hash_done_task, (unsigned long)hdev);
898 tasklet_init(&hdev->dma_task, img_hash_dma_task, (unsigned long)hdev);
899
900 crypto_init_queue(&hdev->queue, IMG_HASH_QUEUE_LENGTH);
901
902 /* Register bank */
903 hash_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
904
905 hdev->io_base = devm_ioremap_resource(dev, hash_res);
906 if (IS_ERR(hdev->io_base)) {
907 err = PTR_ERR(hdev->io_base);
908 dev_err(dev, "can't ioremap, returned %d\n", err);
909
910 goto res_err;
911 }
912
913 /* Write port (DMA or CPU) */
914 hash_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
915 hdev->cpu_addr = devm_ioremap_resource(dev, hash_res);
916 if (IS_ERR(hdev->cpu_addr)) {
917 dev_err(dev, "can't ioremap write port\n");
918 err = PTR_ERR(hdev->cpu_addr);
919 goto res_err;
920 }
921 hdev->bus_addr = hash_res->start;
922
923 irq = platform_get_irq(pdev, 0);
924 if (irq < 0) {
925 dev_err(dev, "no IRQ resource info\n");
926 err = irq;
927 goto res_err;
928 }
929
930 err = devm_request_irq(dev, irq, img_irq_handler, 0,
931 dev_name(dev), hdev);
932 if (err) {
933 dev_err(dev, "unable to request irq\n");
934 goto res_err;
935 }
936 dev_dbg(dev, "using IRQ channel %d\n", irq);
937
938 hdev->hash_clk = devm_clk_get(&pdev->dev, "hash");
939 if (IS_ERR(hdev->hash_clk)) {
940 dev_err(dev, "clock initialization failed.\n");
941 err = PTR_ERR(hdev->hash_clk);
942 goto res_err;
943 }
944
945 hdev->sys_clk = devm_clk_get(&pdev->dev, "sys");
946 if (IS_ERR(hdev->sys_clk)) {
947 dev_err(dev, "clock initialization failed.\n");
948 err = PTR_ERR(hdev->sys_clk);
949 goto res_err;
950 }
951
952 err = clk_prepare_enable(hdev->hash_clk);
953 if (err)
954 goto res_err;
955
956 err = clk_prepare_enable(hdev->sys_clk);
957 if (err)
958 goto clk_err;
959
960 err = img_hash_dma_init(hdev);
961 if (err)
962 goto dma_err;
963
964 dev_dbg(dev, "using %s for DMA transfers\n",
965 dma_chan_name(hdev->dma_lch));
966
967 spin_lock(&img_hash.lock);
968 list_add_tail(&hdev->list, &img_hash.dev_list);
969 spin_unlock(&img_hash.lock);
970
971 err = img_register_algs(hdev);
972 if (err)
973 goto err_algs;
974 dev_dbg(dev, "Img MD5/SHA1/SHA224/SHA256 Hardware accelerator initialized\n");
975
976 return 0;
977
978 err_algs:
979 spin_lock(&img_hash.lock);
980 list_del(&hdev->list);
981 spin_unlock(&img_hash.lock);
982 dma_release_channel(hdev->dma_lch);
983 dma_err:
984 clk_disable_unprepare(hdev->sys_clk);
985 clk_err:
986 clk_disable_unprepare(hdev->hash_clk);
987 res_err:
988 tasklet_kill(&hdev->done_task);
989 tasklet_kill(&hdev->dma_task);
990
991 return err;
992 }
993
994 static int img_hash_remove(struct platform_device *pdev)
995 {
996 static struct img_hash_dev *hdev;
997
998 hdev = platform_get_drvdata(pdev);
999 spin_lock(&img_hash.lock);
1000 list_del(&hdev->list);
1001 spin_unlock(&img_hash.lock);
1002
1003 img_unregister_algs(hdev);
1004
1005 tasklet_kill(&hdev->done_task);
1006 tasklet_kill(&hdev->dma_task);
1007
1008 dma_release_channel(hdev->dma_lch);
1009
1010 clk_disable_unprepare(hdev->hash_clk);
1011 clk_disable_unprepare(hdev->sys_clk);
1012
1013 return 0;
1014 }
1015
1016 static struct platform_driver img_hash_driver = {
1017 .probe = img_hash_probe,
1018 .remove = img_hash_remove,
1019 .driver = {
1020 .name = "img-hash-accelerator",
1021 .of_match_table = of_match_ptr(img_hash_match),
1022 }
1023 };
1024 module_platform_driver(img_hash_driver);
1025
1026 MODULE_LICENSE("GPL v2");
1027 MODULE_DESCRIPTION("Imgtec SHA1/224/256 & MD5 hw accelerator driver");
1028 MODULE_AUTHOR("Will Thomas.");
1029 MODULE_AUTHOR("James Hartley <james.hartley@imgtec.com>");
This page took 0.053637 seconds and 5 git commands to generate.