selinux: fix overflow and 0 length allocations
[deliverable/linux.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2 * Intel IXP4xx NPE-C crypto driver
3 *
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
9 *
10 */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/internal/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34
35 #define MAX_KEYLEN 32
36
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40
41 #define NPE_OP_HASH_VERIFY 0x01
42 #define NPE_OP_CCM_ENABLE 0x04
43 #define NPE_OP_CRYPT_ENABLE 0x08
44 #define NPE_OP_HASH_ENABLE 0x10
45 #define NPE_OP_NOT_IN_PLACE 0x20
46 #define NPE_OP_HMAC_DISABLE 0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48
49 #define NPE_OP_CCM_GEN_MIC 0xcc
50 #define NPE_OP_HASH_GEN_ICV 0x50
51 #define NPE_OP_ENC_GEN_KEY 0xc9
52
53 #define MOD_ECB 0x0000
54 #define MOD_CTR 0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59
60 #define KEYLEN_128 4
61 #define KEYLEN_192 6
62 #define KEYLEN_256 8
63
64 #define CIPH_DECR 0x0000
65 #define CIPH_ENCR 0x0400
66
67 #define MOD_DES 0x0000
68 #define MOD_TDEA2 0x0100
69 #define MOD_3DES 0x0200
70 #define MOD_AES 0x0800
71 #define MOD_AES128 (0x0800 | KEYLEN_128)
72 #define MOD_AES192 (0x0900 | KEYLEN_192)
73 #define MOD_AES256 (0x0a00 | KEYLEN_256)
74
75 #define MAX_IVLEN 16
76 #define NPE_ID 2 /* NPE C */
77 #define NPE_QLEN 16
78 /* Space for registering when the first
79 * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81
82 #define SEND_QID 29
83 #define RECV_QID 30
84
85 #define CTL_FLAG_UNUSED 0x0000
86 #define CTL_FLAG_USED 0x1000
87 #define CTL_FLAG_PERFORM_ABLK 0x0001
88 #define CTL_FLAG_GEN_ICV 0x0002
89 #define CTL_FLAG_GEN_REVAES 0x0004
90 #define CTL_FLAG_PERFORM_AEAD 0x0008
91 #define CTL_FLAG_MASK 0x000f
92
93 #define HMAC_IPAD_VALUE 0x36
94 #define HMAC_OPAD_VALUE 0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96
97 #define MD5_DIGEST_SIZE 16
98
99 struct buffer_desc {
100 u32 phys_next;
101 #ifdef __ARMEB__
102 u16 buf_len;
103 u16 pkt_len;
104 #else
105 u16 pkt_len;
106 u16 buf_len;
107 #endif
108 u32 phys_addr;
109 u32 __reserved[4];
110 struct buffer_desc *next;
111 enum dma_data_direction dir;
112 };
113
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116 u8 mode; /* NPE_OP_* operation mode */
117 u8 init_len;
118 u16 reserved;
119 #else
120 u16 reserved;
121 u8 init_len;
122 u8 mode; /* NPE_OP_* operation mode */
123 #endif
124 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
125 u32 icv_rev_aes; /* icv or rev aes */
126 u32 src_buf;
127 u32 dst_buf;
128 #ifdef __ARMEB__
129 u16 auth_offs; /* Authentication start offset */
130 u16 auth_len; /* Authentication data length */
131 u16 crypt_offs; /* Cryption start offset */
132 u16 crypt_len; /* Cryption data length */
133 #else
134 u16 auth_len; /* Authentication data length */
135 u16 auth_offs; /* Authentication start offset */
136 u16 crypt_len; /* Cryption data length */
137 u16 crypt_offs; /* Cryption start offset */
138 #endif
139 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
140 u32 crypto_ctx; /* NPE Crypto Param structure address */
141
142 /* Used by Host: 4*4 bytes*/
143 unsigned ctl_flags;
144 union {
145 struct ablkcipher_request *ablk_req;
146 struct aead_request *aead_req;
147 struct crypto_tfm *tfm;
148 } data;
149 struct buffer_desc *regist_buf;
150 u8 *regist_ptr;
151 };
152
153 struct ablk_ctx {
154 struct buffer_desc *src;
155 struct buffer_desc *dst;
156 };
157
158 struct aead_ctx {
159 struct buffer_desc *src;
160 struct buffer_desc *dst;
161 struct scatterlist ivlist;
162 /* used when the hmac is not on one sg entry */
163 u8 *hmac_virt;
164 int encrypt;
165 };
166
167 struct ix_hash_algo {
168 u32 cfgword;
169 unsigned char *icv;
170 };
171
172 struct ix_sa_dir {
173 unsigned char *npe_ctx;
174 dma_addr_t npe_ctx_phys;
175 int npe_ctx_idx;
176 u8 npe_mode;
177 };
178
179 struct ixp_ctx {
180 struct ix_sa_dir encrypt;
181 struct ix_sa_dir decrypt;
182 int authkey_len;
183 u8 authkey[MAX_KEYLEN];
184 int enckey_len;
185 u8 enckey[MAX_KEYLEN];
186 u8 salt[MAX_IVLEN];
187 u8 nonce[CTR_RFC3686_NONCE_SIZE];
188 unsigned salted;
189 atomic_t configuring;
190 struct completion completion;
191 };
192
193 struct ixp_alg {
194 struct crypto_alg crypto;
195 const struct ix_hash_algo *hash;
196 u32 cfg_enc;
197 u32 cfg_dec;
198
199 int registered;
200 };
201
202 struct ixp_aead_alg {
203 struct aead_alg crypto;
204 const struct ix_hash_algo *hash;
205 u32 cfg_enc;
206 u32 cfg_dec;
207
208 int registered;
209 };
210
211 static const struct ix_hash_algo hash_alg_md5 = {
212 .cfgword = 0xAA010004,
213 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215 };
216 static const struct ix_hash_algo hash_alg_sha1 = {
217 .cfgword = 0x00000005,
218 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
219 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
220 };
221
222 static struct npe *npe_c;
223 static struct dma_pool *buffer_pool = NULL;
224 static struct dma_pool *ctx_pool = NULL;
225
226 static struct crypt_ctl *crypt_virt = NULL;
227 static dma_addr_t crypt_phys;
228
229 static int support_aes = 1;
230
231 #define DRIVER_NAME "ixp4xx_crypto"
232
233 static struct platform_device *pdev;
234
235 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
236 {
237 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
238 }
239
240 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
241 {
242 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
243 }
244
245 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
246 {
247 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
248 }
249
250 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
251 {
252 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
253 }
254
255 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
256 {
257 return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
258 }
259
260 static int setup_crypt_desc(void)
261 {
262 struct device *dev = &pdev->dev;
263 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
264 crypt_virt = dma_alloc_coherent(dev,
265 NPE_QLEN * sizeof(struct crypt_ctl),
266 &crypt_phys, GFP_ATOMIC);
267 if (!crypt_virt)
268 return -ENOMEM;
269 memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
270 return 0;
271 }
272
273 static spinlock_t desc_lock;
274 static struct crypt_ctl *get_crypt_desc(void)
275 {
276 int i;
277 static int idx = 0;
278 unsigned long flags;
279
280 spin_lock_irqsave(&desc_lock, flags);
281
282 if (unlikely(!crypt_virt))
283 setup_crypt_desc();
284 if (unlikely(!crypt_virt)) {
285 spin_unlock_irqrestore(&desc_lock, flags);
286 return NULL;
287 }
288 i = idx;
289 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
290 if (++idx >= NPE_QLEN)
291 idx = 0;
292 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
293 spin_unlock_irqrestore(&desc_lock, flags);
294 return crypt_virt +i;
295 } else {
296 spin_unlock_irqrestore(&desc_lock, flags);
297 return NULL;
298 }
299 }
300
301 static spinlock_t emerg_lock;
302 static struct crypt_ctl *get_crypt_desc_emerg(void)
303 {
304 int i;
305 static int idx = NPE_QLEN;
306 struct crypt_ctl *desc;
307 unsigned long flags;
308
309 desc = get_crypt_desc();
310 if (desc)
311 return desc;
312 if (unlikely(!crypt_virt))
313 return NULL;
314
315 spin_lock_irqsave(&emerg_lock, flags);
316 i = idx;
317 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
318 if (++idx >= NPE_QLEN_TOTAL)
319 idx = NPE_QLEN;
320 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
321 spin_unlock_irqrestore(&emerg_lock, flags);
322 return crypt_virt +i;
323 } else {
324 spin_unlock_irqrestore(&emerg_lock, flags);
325 return NULL;
326 }
327 }
328
329 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
330 {
331 while (buf) {
332 struct buffer_desc *buf1;
333 u32 phys1;
334
335 buf1 = buf->next;
336 phys1 = buf->phys_next;
337 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
338 dma_pool_free(buffer_pool, buf, phys);
339 buf = buf1;
340 phys = phys1;
341 }
342 }
343
344 static struct tasklet_struct crypto_done_tasklet;
345
346 static void finish_scattered_hmac(struct crypt_ctl *crypt)
347 {
348 struct aead_request *req = crypt->data.aead_req;
349 struct aead_ctx *req_ctx = aead_request_ctx(req);
350 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
351 int authsize = crypto_aead_authsize(tfm);
352 int decryptlen = req->assoclen + req->cryptlen - authsize;
353
354 if (req_ctx->encrypt) {
355 scatterwalk_map_and_copy(req_ctx->hmac_virt,
356 req->dst, decryptlen, authsize, 1);
357 }
358 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
359 }
360
361 static void one_packet(dma_addr_t phys)
362 {
363 struct device *dev = &pdev->dev;
364 struct crypt_ctl *crypt;
365 struct ixp_ctx *ctx;
366 int failed;
367
368 failed = phys & 0x1 ? -EBADMSG : 0;
369 phys &= ~0x3;
370 crypt = crypt_phys2virt(phys);
371
372 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
373 case CTL_FLAG_PERFORM_AEAD: {
374 struct aead_request *req = crypt->data.aead_req;
375 struct aead_ctx *req_ctx = aead_request_ctx(req);
376
377 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
378 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
379 if (req_ctx->hmac_virt) {
380 finish_scattered_hmac(crypt);
381 }
382 req->base.complete(&req->base, failed);
383 break;
384 }
385 case CTL_FLAG_PERFORM_ABLK: {
386 struct ablkcipher_request *req = crypt->data.ablk_req;
387 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
388
389 if (req_ctx->dst) {
390 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
391 }
392 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
393 req->base.complete(&req->base, failed);
394 break;
395 }
396 case CTL_FLAG_GEN_ICV:
397 ctx = crypto_tfm_ctx(crypt->data.tfm);
398 dma_pool_free(ctx_pool, crypt->regist_ptr,
399 crypt->regist_buf->phys_addr);
400 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
401 if (atomic_dec_and_test(&ctx->configuring))
402 complete(&ctx->completion);
403 break;
404 case CTL_FLAG_GEN_REVAES:
405 ctx = crypto_tfm_ctx(crypt->data.tfm);
406 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
407 if (atomic_dec_and_test(&ctx->configuring))
408 complete(&ctx->completion);
409 break;
410 default:
411 BUG();
412 }
413 crypt->ctl_flags = CTL_FLAG_UNUSED;
414 }
415
416 static void irqhandler(void *_unused)
417 {
418 tasklet_schedule(&crypto_done_tasklet);
419 }
420
421 static void crypto_done_action(unsigned long arg)
422 {
423 int i;
424
425 for(i=0; i<4; i++) {
426 dma_addr_t phys = qmgr_get_entry(RECV_QID);
427 if (!phys)
428 return;
429 one_packet(phys);
430 }
431 tasklet_schedule(&crypto_done_tasklet);
432 }
433
434 static int init_ixp_crypto(struct device *dev)
435 {
436 int ret = -ENODEV;
437 u32 msg[2] = { 0, 0 };
438
439 if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
440 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
441 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
442 return ret;
443 }
444 npe_c = npe_request(NPE_ID);
445 if (!npe_c)
446 return ret;
447
448 if (!npe_running(npe_c)) {
449 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
450 if (ret) {
451 return ret;
452 }
453 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
454 goto npe_error;
455 } else {
456 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
457 goto npe_error;
458
459 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
460 goto npe_error;
461 }
462
463 switch ((msg[1]>>16) & 0xff) {
464 case 3:
465 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
466 npe_name(npe_c));
467 support_aes = 0;
468 break;
469 case 4:
470 case 5:
471 support_aes = 1;
472 break;
473 default:
474 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
475 npe_name(npe_c));
476 return -ENODEV;
477 }
478 /* buffer_pool will also be used to sometimes store the hmac,
479 * so assure it is large enough
480 */
481 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
482 buffer_pool = dma_pool_create("buffer", dev,
483 sizeof(struct buffer_desc), 32, 0);
484 ret = -ENOMEM;
485 if (!buffer_pool) {
486 goto err;
487 }
488 ctx_pool = dma_pool_create("context", dev,
489 NPE_CTX_LEN, 16, 0);
490 if (!ctx_pool) {
491 goto err;
492 }
493 ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
494 "ixp_crypto:out", NULL);
495 if (ret)
496 goto err;
497 ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
498 "ixp_crypto:in", NULL);
499 if (ret) {
500 qmgr_release_queue(SEND_QID);
501 goto err;
502 }
503 qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
504 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
505
506 qmgr_enable_irq(RECV_QID);
507 return 0;
508
509 npe_error:
510 printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
511 ret = -EIO;
512 err:
513 dma_pool_destroy(ctx_pool);
514 dma_pool_destroy(buffer_pool);
515 npe_release(npe_c);
516 return ret;
517 }
518
519 static void release_ixp_crypto(struct device *dev)
520 {
521 qmgr_disable_irq(RECV_QID);
522 tasklet_kill(&crypto_done_tasklet);
523
524 qmgr_release_queue(SEND_QID);
525 qmgr_release_queue(RECV_QID);
526
527 dma_pool_destroy(ctx_pool);
528 dma_pool_destroy(buffer_pool);
529
530 npe_release(npe_c);
531
532 if (crypt_virt) {
533 dma_free_coherent(dev,
534 NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
535 crypt_virt, crypt_phys);
536 }
537 return;
538 }
539
540 static void reset_sa_dir(struct ix_sa_dir *dir)
541 {
542 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
543 dir->npe_ctx_idx = 0;
544 dir->npe_mode = 0;
545 }
546
547 static int init_sa_dir(struct ix_sa_dir *dir)
548 {
549 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
550 if (!dir->npe_ctx) {
551 return -ENOMEM;
552 }
553 reset_sa_dir(dir);
554 return 0;
555 }
556
557 static void free_sa_dir(struct ix_sa_dir *dir)
558 {
559 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
560 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
561 }
562
563 static int init_tfm(struct crypto_tfm *tfm)
564 {
565 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
566 int ret;
567
568 atomic_set(&ctx->configuring, 0);
569 ret = init_sa_dir(&ctx->encrypt);
570 if (ret)
571 return ret;
572 ret = init_sa_dir(&ctx->decrypt);
573 if (ret) {
574 free_sa_dir(&ctx->encrypt);
575 }
576 return ret;
577 }
578
579 static int init_tfm_ablk(struct crypto_tfm *tfm)
580 {
581 tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
582 return init_tfm(tfm);
583 }
584
585 static int init_tfm_aead(struct crypto_aead *tfm)
586 {
587 crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
588 return init_tfm(crypto_aead_tfm(tfm));
589 }
590
591 static void exit_tfm(struct crypto_tfm *tfm)
592 {
593 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
594 free_sa_dir(&ctx->encrypt);
595 free_sa_dir(&ctx->decrypt);
596 }
597
598 static void exit_tfm_aead(struct crypto_aead *tfm)
599 {
600 exit_tfm(crypto_aead_tfm(tfm));
601 }
602
603 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
604 int init_len, u32 ctx_addr, const u8 *key, int key_len)
605 {
606 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
607 struct crypt_ctl *crypt;
608 struct buffer_desc *buf;
609 int i;
610 u8 *pad;
611 u32 pad_phys, buf_phys;
612
613 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
614 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
615 if (!pad)
616 return -ENOMEM;
617 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
618 if (!buf) {
619 dma_pool_free(ctx_pool, pad, pad_phys);
620 return -ENOMEM;
621 }
622 crypt = get_crypt_desc_emerg();
623 if (!crypt) {
624 dma_pool_free(ctx_pool, pad, pad_phys);
625 dma_pool_free(buffer_pool, buf, buf_phys);
626 return -EAGAIN;
627 }
628
629 memcpy(pad, key, key_len);
630 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
631 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
632 pad[i] ^= xpad;
633 }
634
635 crypt->data.tfm = tfm;
636 crypt->regist_ptr = pad;
637 crypt->regist_buf = buf;
638
639 crypt->auth_offs = 0;
640 crypt->auth_len = HMAC_PAD_BLOCKLEN;
641 crypt->crypto_ctx = ctx_addr;
642 crypt->src_buf = buf_phys;
643 crypt->icv_rev_aes = target;
644 crypt->mode = NPE_OP_HASH_GEN_ICV;
645 crypt->init_len = init_len;
646 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
647
648 buf->next = 0;
649 buf->buf_len = HMAC_PAD_BLOCKLEN;
650 buf->pkt_len = 0;
651 buf->phys_addr = pad_phys;
652
653 atomic_inc(&ctx->configuring);
654 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
655 BUG_ON(qmgr_stat_overflow(SEND_QID));
656 return 0;
657 }
658
659 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
660 const u8 *key, int key_len, unsigned digest_len)
661 {
662 u32 itarget, otarget, npe_ctx_addr;
663 unsigned char *cinfo;
664 int init_len, ret = 0;
665 u32 cfgword;
666 struct ix_sa_dir *dir;
667 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
668 const struct ix_hash_algo *algo;
669
670 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
671 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
672 algo = ix_hash(tfm);
673
674 /* write cfg word to cryptinfo */
675 cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
676 #ifndef __ARMEB__
677 cfgword ^= 0xAA000000; /* change the "byte swap" flags */
678 #endif
679 *(u32*)cinfo = cpu_to_be32(cfgword);
680 cinfo += sizeof(cfgword);
681
682 /* write ICV to cryptinfo */
683 memcpy(cinfo, algo->icv, digest_len);
684 cinfo += digest_len;
685
686 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
687 + sizeof(algo->cfgword);
688 otarget = itarget + digest_len;
689 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
690 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
691
692 dir->npe_ctx_idx += init_len;
693 dir->npe_mode |= NPE_OP_HASH_ENABLE;
694
695 if (!encrypt)
696 dir->npe_mode |= NPE_OP_HASH_VERIFY;
697
698 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
699 init_len, npe_ctx_addr, key, key_len);
700 if (ret)
701 return ret;
702 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
703 init_len, npe_ctx_addr, key, key_len);
704 }
705
706 static int gen_rev_aes_key(struct crypto_tfm *tfm)
707 {
708 struct crypt_ctl *crypt;
709 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
710 struct ix_sa_dir *dir = &ctx->decrypt;
711
712 crypt = get_crypt_desc_emerg();
713 if (!crypt) {
714 return -EAGAIN;
715 }
716 *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
717
718 crypt->data.tfm = tfm;
719 crypt->crypt_offs = 0;
720 crypt->crypt_len = AES_BLOCK128;
721 crypt->src_buf = 0;
722 crypt->crypto_ctx = dir->npe_ctx_phys;
723 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
724 crypt->mode = NPE_OP_ENC_GEN_KEY;
725 crypt->init_len = dir->npe_ctx_idx;
726 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
727
728 atomic_inc(&ctx->configuring);
729 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
730 BUG_ON(qmgr_stat_overflow(SEND_QID));
731 return 0;
732 }
733
734 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
735 const u8 *key, int key_len)
736 {
737 u8 *cinfo;
738 u32 cipher_cfg;
739 u32 keylen_cfg = 0;
740 struct ix_sa_dir *dir;
741 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
742 u32 *flags = &tfm->crt_flags;
743
744 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
745 cinfo = dir->npe_ctx;
746
747 if (encrypt) {
748 cipher_cfg = cipher_cfg_enc(tfm);
749 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
750 } else {
751 cipher_cfg = cipher_cfg_dec(tfm);
752 }
753 if (cipher_cfg & MOD_AES) {
754 switch (key_len) {
755 case 16: keylen_cfg = MOD_AES128; break;
756 case 24: keylen_cfg = MOD_AES192; break;
757 case 32: keylen_cfg = MOD_AES256; break;
758 default:
759 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
760 return -EINVAL;
761 }
762 cipher_cfg |= keylen_cfg;
763 } else if (cipher_cfg & MOD_3DES) {
764 const u32 *K = (const u32 *)key;
765 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
766 !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
767 {
768 *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
769 return -EINVAL;
770 }
771 } else {
772 u32 tmp[DES_EXPKEY_WORDS];
773 if (des_ekey(tmp, key) == 0) {
774 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
775 }
776 }
777 /* write cfg word to cryptinfo */
778 *(u32*)cinfo = cpu_to_be32(cipher_cfg);
779 cinfo += sizeof(cipher_cfg);
780
781 /* write cipher key to cryptinfo */
782 memcpy(cinfo, key, key_len);
783 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
784 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
785 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
786 key_len = DES3_EDE_KEY_SIZE;
787 }
788 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
789 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
790 if ((cipher_cfg & MOD_AES) && !encrypt) {
791 return gen_rev_aes_key(tfm);
792 }
793 return 0;
794 }
795
796 static struct buffer_desc *chainup_buffers(struct device *dev,
797 struct scatterlist *sg, unsigned nbytes,
798 struct buffer_desc *buf, gfp_t flags,
799 enum dma_data_direction dir)
800 {
801 for (; nbytes > 0; sg = sg_next(sg)) {
802 unsigned len = min(nbytes, sg->length);
803 struct buffer_desc *next_buf;
804 u32 next_buf_phys;
805 void *ptr;
806
807 nbytes -= len;
808 ptr = page_address(sg_page(sg)) + sg->offset;
809 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
810 if (!next_buf) {
811 buf = NULL;
812 break;
813 }
814 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
815 buf->next = next_buf;
816 buf->phys_next = next_buf_phys;
817 buf = next_buf;
818
819 buf->phys_addr = sg_dma_address(sg);
820 buf->buf_len = len;
821 buf->dir = dir;
822 }
823 buf->next = NULL;
824 buf->phys_next = 0;
825 return buf;
826 }
827
828 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
829 unsigned int key_len)
830 {
831 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
832 u32 *flags = &tfm->base.crt_flags;
833 int ret;
834
835 init_completion(&ctx->completion);
836 atomic_inc(&ctx->configuring);
837
838 reset_sa_dir(&ctx->encrypt);
839 reset_sa_dir(&ctx->decrypt);
840
841 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
842 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
843
844 ret = setup_cipher(&tfm->base, 0, key, key_len);
845 if (ret)
846 goto out;
847 ret = setup_cipher(&tfm->base, 1, key, key_len);
848 if (ret)
849 goto out;
850
851 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
852 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
853 ret = -EINVAL;
854 } else {
855 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
856 }
857 }
858 out:
859 if (!atomic_dec_and_test(&ctx->configuring))
860 wait_for_completion(&ctx->completion);
861 return ret;
862 }
863
864 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
865 unsigned int key_len)
866 {
867 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
868
869 /* the nonce is stored in bytes at end of key */
870 if (key_len < CTR_RFC3686_NONCE_SIZE)
871 return -EINVAL;
872
873 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
874 CTR_RFC3686_NONCE_SIZE);
875
876 key_len -= CTR_RFC3686_NONCE_SIZE;
877 return ablk_setkey(tfm, key, key_len);
878 }
879
880 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
881 {
882 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
883 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
884 unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
885 struct ix_sa_dir *dir;
886 struct crypt_ctl *crypt;
887 unsigned int nbytes = req->nbytes;
888 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
889 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
890 struct buffer_desc src_hook;
891 struct device *dev = &pdev->dev;
892 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
893 GFP_KERNEL : GFP_ATOMIC;
894
895 if (qmgr_stat_full(SEND_QID))
896 return -EAGAIN;
897 if (atomic_read(&ctx->configuring))
898 return -EAGAIN;
899
900 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
901
902 crypt = get_crypt_desc();
903 if (!crypt)
904 return -ENOMEM;
905
906 crypt->data.ablk_req = req;
907 crypt->crypto_ctx = dir->npe_ctx_phys;
908 crypt->mode = dir->npe_mode;
909 crypt->init_len = dir->npe_ctx_idx;
910
911 crypt->crypt_offs = 0;
912 crypt->crypt_len = nbytes;
913
914 BUG_ON(ivsize && !req->info);
915 memcpy(crypt->iv, req->info, ivsize);
916 if (req->src != req->dst) {
917 struct buffer_desc dst_hook;
918 crypt->mode |= NPE_OP_NOT_IN_PLACE;
919 /* This was never tested by Intel
920 * for more than one dst buffer, I think. */
921 req_ctx->dst = NULL;
922 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
923 flags, DMA_FROM_DEVICE))
924 goto free_buf_dest;
925 src_direction = DMA_TO_DEVICE;
926 req_ctx->dst = dst_hook.next;
927 crypt->dst_buf = dst_hook.phys_next;
928 } else {
929 req_ctx->dst = NULL;
930 }
931 req_ctx->src = NULL;
932 if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
933 flags, src_direction))
934 goto free_buf_src;
935
936 req_ctx->src = src_hook.next;
937 crypt->src_buf = src_hook.phys_next;
938 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
939 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
940 BUG_ON(qmgr_stat_overflow(SEND_QID));
941 return -EINPROGRESS;
942
943 free_buf_src:
944 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
945 free_buf_dest:
946 if (req->src != req->dst) {
947 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
948 }
949 crypt->ctl_flags = CTL_FLAG_UNUSED;
950 return -ENOMEM;
951 }
952
953 static int ablk_encrypt(struct ablkcipher_request *req)
954 {
955 return ablk_perform(req, 1);
956 }
957
958 static int ablk_decrypt(struct ablkcipher_request *req)
959 {
960 return ablk_perform(req, 0);
961 }
962
963 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
964 {
965 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
966 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
967 u8 iv[CTR_RFC3686_BLOCK_SIZE];
968 u8 *info = req->info;
969 int ret;
970
971 /* set up counter block */
972 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
973 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
974
975 /* initialize counter portion of counter block */
976 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
977 cpu_to_be32(1);
978
979 req->info = iv;
980 ret = ablk_perform(req, 1);
981 req->info = info;
982 return ret;
983 }
984
985 static int aead_perform(struct aead_request *req, int encrypt,
986 int cryptoffset, int eff_cryptlen, u8 *iv)
987 {
988 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
989 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
990 unsigned ivsize = crypto_aead_ivsize(tfm);
991 unsigned authsize = crypto_aead_authsize(tfm);
992 struct ix_sa_dir *dir;
993 struct crypt_ctl *crypt;
994 unsigned int cryptlen;
995 struct buffer_desc *buf, src_hook;
996 struct aead_ctx *req_ctx = aead_request_ctx(req);
997 struct device *dev = &pdev->dev;
998 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
999 GFP_KERNEL : GFP_ATOMIC;
1000 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1001 unsigned int lastlen;
1002
1003 if (qmgr_stat_full(SEND_QID))
1004 return -EAGAIN;
1005 if (atomic_read(&ctx->configuring))
1006 return -EAGAIN;
1007
1008 if (encrypt) {
1009 dir = &ctx->encrypt;
1010 cryptlen = req->cryptlen;
1011 } else {
1012 dir = &ctx->decrypt;
1013 /* req->cryptlen includes the authsize when decrypting */
1014 cryptlen = req->cryptlen -authsize;
1015 eff_cryptlen -= authsize;
1016 }
1017 crypt = get_crypt_desc();
1018 if (!crypt)
1019 return -ENOMEM;
1020
1021 crypt->data.aead_req = req;
1022 crypt->crypto_ctx = dir->npe_ctx_phys;
1023 crypt->mode = dir->npe_mode;
1024 crypt->init_len = dir->npe_ctx_idx;
1025
1026 crypt->crypt_offs = cryptoffset;
1027 crypt->crypt_len = eff_cryptlen;
1028
1029 crypt->auth_offs = 0;
1030 crypt->auth_len = req->assoclen + cryptlen;
1031 BUG_ON(ivsize && !req->iv);
1032 memcpy(crypt->iv, req->iv, ivsize);
1033
1034 buf = chainup_buffers(dev, req->src, crypt->auth_len,
1035 &src_hook, flags, src_direction);
1036 req_ctx->src = src_hook.next;
1037 crypt->src_buf = src_hook.phys_next;
1038 if (!buf)
1039 goto free_buf_src;
1040
1041 lastlen = buf->buf_len;
1042 if (lastlen >= authsize)
1043 crypt->icv_rev_aes = buf->phys_addr +
1044 buf->buf_len - authsize;
1045
1046 req_ctx->dst = NULL;
1047
1048 if (req->src != req->dst) {
1049 struct buffer_desc dst_hook;
1050
1051 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1052 src_direction = DMA_TO_DEVICE;
1053
1054 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1055 &dst_hook, flags, DMA_FROM_DEVICE);
1056 req_ctx->dst = dst_hook.next;
1057 crypt->dst_buf = dst_hook.phys_next;
1058
1059 if (!buf)
1060 goto free_buf_dst;
1061
1062 if (encrypt) {
1063 lastlen = buf->buf_len;
1064 if (lastlen >= authsize)
1065 crypt->icv_rev_aes = buf->phys_addr +
1066 buf->buf_len - authsize;
1067 }
1068 }
1069
1070 if (unlikely(lastlen < authsize)) {
1071 /* The 12 hmac bytes are scattered,
1072 * we need to copy them into a safe buffer */
1073 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1074 &crypt->icv_rev_aes);
1075 if (unlikely(!req_ctx->hmac_virt))
1076 goto free_buf_src;
1077 if (!encrypt) {
1078 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1079 req->src, cryptlen, authsize, 0);
1080 }
1081 req_ctx->encrypt = encrypt;
1082 } else {
1083 req_ctx->hmac_virt = NULL;
1084 }
1085
1086 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1087 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1088 BUG_ON(qmgr_stat_overflow(SEND_QID));
1089 return -EINPROGRESS;
1090
1091 free_buf_src:
1092 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1093 free_buf_dst:
1094 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1095 crypt->ctl_flags = CTL_FLAG_UNUSED;
1096 return -ENOMEM;
1097 }
1098
1099 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1100 {
1101 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1102 u32 *flags = &tfm->base.crt_flags;
1103 unsigned digest_len = crypto_aead_maxauthsize(tfm);
1104 int ret;
1105
1106 if (!ctx->enckey_len && !ctx->authkey_len)
1107 return 0;
1108 init_completion(&ctx->completion);
1109 atomic_inc(&ctx->configuring);
1110
1111 reset_sa_dir(&ctx->encrypt);
1112 reset_sa_dir(&ctx->decrypt);
1113
1114 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1115 if (ret)
1116 goto out;
1117 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1118 if (ret)
1119 goto out;
1120 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1121 ctx->authkey_len, digest_len);
1122 if (ret)
1123 goto out;
1124 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1125 ctx->authkey_len, digest_len);
1126 if (ret)
1127 goto out;
1128
1129 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1130 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1131 ret = -EINVAL;
1132 goto out;
1133 } else {
1134 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1135 }
1136 }
1137 out:
1138 if (!atomic_dec_and_test(&ctx->configuring))
1139 wait_for_completion(&ctx->completion);
1140 return ret;
1141 }
1142
1143 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1144 {
1145 int max = crypto_aead_maxauthsize(tfm) >> 2;
1146
1147 if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1148 return -EINVAL;
1149 return aead_setup(tfm, authsize);
1150 }
1151
1152 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1153 unsigned int keylen)
1154 {
1155 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1156 struct crypto_authenc_keys keys;
1157
1158 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1159 goto badkey;
1160
1161 if (keys.authkeylen > sizeof(ctx->authkey))
1162 goto badkey;
1163
1164 if (keys.enckeylen > sizeof(ctx->enckey))
1165 goto badkey;
1166
1167 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1168 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1169 ctx->authkey_len = keys.authkeylen;
1170 ctx->enckey_len = keys.enckeylen;
1171
1172 return aead_setup(tfm, crypto_aead_authsize(tfm));
1173 badkey:
1174 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1175 return -EINVAL;
1176 }
1177
1178 static int aead_encrypt(struct aead_request *req)
1179 {
1180 return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1181 }
1182
1183 static int aead_decrypt(struct aead_request *req)
1184 {
1185 return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1186 }
1187
1188 static struct ixp_alg ixp4xx_algos[] = {
1189 {
1190 .crypto = {
1191 .cra_name = "cbc(des)",
1192 .cra_blocksize = DES_BLOCK_SIZE,
1193 .cra_u = { .ablkcipher = {
1194 .min_keysize = DES_KEY_SIZE,
1195 .max_keysize = DES_KEY_SIZE,
1196 .ivsize = DES_BLOCK_SIZE,
1197 .geniv = "eseqiv",
1198 }
1199 }
1200 },
1201 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1202 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1203
1204 }, {
1205 .crypto = {
1206 .cra_name = "ecb(des)",
1207 .cra_blocksize = DES_BLOCK_SIZE,
1208 .cra_u = { .ablkcipher = {
1209 .min_keysize = DES_KEY_SIZE,
1210 .max_keysize = DES_KEY_SIZE,
1211 }
1212 }
1213 },
1214 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1215 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1216 }, {
1217 .crypto = {
1218 .cra_name = "cbc(des3_ede)",
1219 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1220 .cra_u = { .ablkcipher = {
1221 .min_keysize = DES3_EDE_KEY_SIZE,
1222 .max_keysize = DES3_EDE_KEY_SIZE,
1223 .ivsize = DES3_EDE_BLOCK_SIZE,
1224 .geniv = "eseqiv",
1225 }
1226 }
1227 },
1228 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1229 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1230 }, {
1231 .crypto = {
1232 .cra_name = "ecb(des3_ede)",
1233 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1234 .cra_u = { .ablkcipher = {
1235 .min_keysize = DES3_EDE_KEY_SIZE,
1236 .max_keysize = DES3_EDE_KEY_SIZE,
1237 }
1238 }
1239 },
1240 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1241 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1242 }, {
1243 .crypto = {
1244 .cra_name = "cbc(aes)",
1245 .cra_blocksize = AES_BLOCK_SIZE,
1246 .cra_u = { .ablkcipher = {
1247 .min_keysize = AES_MIN_KEY_SIZE,
1248 .max_keysize = AES_MAX_KEY_SIZE,
1249 .ivsize = AES_BLOCK_SIZE,
1250 .geniv = "eseqiv",
1251 }
1252 }
1253 },
1254 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1255 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1256 }, {
1257 .crypto = {
1258 .cra_name = "ecb(aes)",
1259 .cra_blocksize = AES_BLOCK_SIZE,
1260 .cra_u = { .ablkcipher = {
1261 .min_keysize = AES_MIN_KEY_SIZE,
1262 .max_keysize = AES_MAX_KEY_SIZE,
1263 }
1264 }
1265 },
1266 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1267 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1268 }, {
1269 .crypto = {
1270 .cra_name = "ctr(aes)",
1271 .cra_blocksize = AES_BLOCK_SIZE,
1272 .cra_u = { .ablkcipher = {
1273 .min_keysize = AES_MIN_KEY_SIZE,
1274 .max_keysize = AES_MAX_KEY_SIZE,
1275 .ivsize = AES_BLOCK_SIZE,
1276 .geniv = "eseqiv",
1277 }
1278 }
1279 },
1280 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1281 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1282 }, {
1283 .crypto = {
1284 .cra_name = "rfc3686(ctr(aes))",
1285 .cra_blocksize = AES_BLOCK_SIZE,
1286 .cra_u = { .ablkcipher = {
1287 .min_keysize = AES_MIN_KEY_SIZE,
1288 .max_keysize = AES_MAX_KEY_SIZE,
1289 .ivsize = AES_BLOCK_SIZE,
1290 .geniv = "eseqiv",
1291 .setkey = ablk_rfc3686_setkey,
1292 .encrypt = ablk_rfc3686_crypt,
1293 .decrypt = ablk_rfc3686_crypt }
1294 }
1295 },
1296 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1297 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1298 } };
1299
1300 static struct ixp_aead_alg ixp4xx_aeads[] = {
1301 {
1302 .crypto = {
1303 .base = {
1304 .cra_name = "authenc(hmac(md5),cbc(des))",
1305 .cra_blocksize = DES_BLOCK_SIZE,
1306 },
1307 .ivsize = DES_BLOCK_SIZE,
1308 .maxauthsize = MD5_DIGEST_SIZE,
1309 },
1310 .hash = &hash_alg_md5,
1311 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1312 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1313 }, {
1314 .crypto = {
1315 .base = {
1316 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1317 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1318 },
1319 .ivsize = DES3_EDE_BLOCK_SIZE,
1320 .maxauthsize = MD5_DIGEST_SIZE,
1321 },
1322 .hash = &hash_alg_md5,
1323 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1324 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1325 }, {
1326 .crypto = {
1327 .base = {
1328 .cra_name = "authenc(hmac(sha1),cbc(des))",
1329 .cra_blocksize = DES_BLOCK_SIZE,
1330 },
1331 .ivsize = DES_BLOCK_SIZE,
1332 .maxauthsize = SHA1_DIGEST_SIZE,
1333 },
1334 .hash = &hash_alg_sha1,
1335 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1336 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1337 }, {
1338 .crypto = {
1339 .base = {
1340 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1341 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1342 },
1343 .ivsize = DES3_EDE_BLOCK_SIZE,
1344 .maxauthsize = SHA1_DIGEST_SIZE,
1345 },
1346 .hash = &hash_alg_sha1,
1347 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1348 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1349 }, {
1350 .crypto = {
1351 .base = {
1352 .cra_name = "authenc(hmac(md5),cbc(aes))",
1353 .cra_blocksize = AES_BLOCK_SIZE,
1354 },
1355 .ivsize = AES_BLOCK_SIZE,
1356 .maxauthsize = MD5_DIGEST_SIZE,
1357 },
1358 .hash = &hash_alg_md5,
1359 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1360 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1361 }, {
1362 .crypto = {
1363 .base = {
1364 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1365 .cra_blocksize = AES_BLOCK_SIZE,
1366 },
1367 .ivsize = AES_BLOCK_SIZE,
1368 .maxauthsize = SHA1_DIGEST_SIZE,
1369 },
1370 .hash = &hash_alg_sha1,
1371 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1372 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1373 } };
1374
1375 #define IXP_POSTFIX "-ixp4xx"
1376
1377 static const struct platform_device_info ixp_dev_info __initdata = {
1378 .name = DRIVER_NAME,
1379 .id = 0,
1380 .dma_mask = DMA_BIT_MASK(32),
1381 };
1382
1383 static int __init ixp_module_init(void)
1384 {
1385 int num = ARRAY_SIZE(ixp4xx_algos);
1386 int i, err;
1387
1388 pdev = platform_device_register_full(&ixp_dev_info);
1389 if (IS_ERR(pdev))
1390 return PTR_ERR(pdev);
1391
1392 spin_lock_init(&desc_lock);
1393 spin_lock_init(&emerg_lock);
1394
1395 err = init_ixp_crypto(&pdev->dev);
1396 if (err) {
1397 platform_device_unregister(pdev);
1398 return err;
1399 }
1400 for (i=0; i< num; i++) {
1401 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1402
1403 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1404 "%s"IXP_POSTFIX, cra->cra_name) >=
1405 CRYPTO_MAX_ALG_NAME)
1406 {
1407 continue;
1408 }
1409 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1410 continue;
1411 }
1412
1413 /* block ciphers */
1414 cra->cra_type = &crypto_ablkcipher_type;
1415 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1416 CRYPTO_ALG_KERN_DRIVER_ONLY |
1417 CRYPTO_ALG_ASYNC;
1418 if (!cra->cra_ablkcipher.setkey)
1419 cra->cra_ablkcipher.setkey = ablk_setkey;
1420 if (!cra->cra_ablkcipher.encrypt)
1421 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1422 if (!cra->cra_ablkcipher.decrypt)
1423 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1424 cra->cra_init = init_tfm_ablk;
1425
1426 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1427 cra->cra_module = THIS_MODULE;
1428 cra->cra_alignmask = 3;
1429 cra->cra_priority = 300;
1430 cra->cra_exit = exit_tfm;
1431 if (crypto_register_alg(cra))
1432 printk(KERN_ERR "Failed to register '%s'\n",
1433 cra->cra_name);
1434 else
1435 ixp4xx_algos[i].registered = 1;
1436 }
1437
1438 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1439 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1440
1441 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1442 "%s"IXP_POSTFIX, cra->base.cra_name) >=
1443 CRYPTO_MAX_ALG_NAME)
1444 continue;
1445 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1446 continue;
1447
1448 /* authenc */
1449 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1450 CRYPTO_ALG_ASYNC;
1451 cra->setkey = aead_setkey;
1452 cra->setauthsize = aead_setauthsize;
1453 cra->encrypt = aead_encrypt;
1454 cra->decrypt = aead_decrypt;
1455 cra->init = init_tfm_aead;
1456 cra->exit = exit_tfm_aead;
1457
1458 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1459 cra->base.cra_module = THIS_MODULE;
1460 cra->base.cra_alignmask = 3;
1461 cra->base.cra_priority = 300;
1462
1463 if (crypto_register_aead(cra))
1464 printk(KERN_ERR "Failed to register '%s'\n",
1465 cra->base.cra_driver_name);
1466 else
1467 ixp4xx_aeads[i].registered = 1;
1468 }
1469 return 0;
1470 }
1471
1472 static void __exit ixp_module_exit(void)
1473 {
1474 int num = ARRAY_SIZE(ixp4xx_algos);
1475 int i;
1476
1477 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1478 if (ixp4xx_aeads[i].registered)
1479 crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1480 }
1481
1482 for (i=0; i< num; i++) {
1483 if (ixp4xx_algos[i].registered)
1484 crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1485 }
1486 release_ixp_crypto(&pdev->dev);
1487 platform_device_unregister(pdev);
1488 }
1489
1490 module_init(ixp_module_init);
1491 module_exit(ixp_module_exit);
1492
1493 MODULE_LICENSE("GPL");
1494 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1495 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1496
This page took 0.081609 seconds and 5 git commands to generate.