arm/xen: fix SMP guests boot
[deliverable/linux.git] / drivers / crypto / marvell / hash.c
1 /*
2 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
3 *
4 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
5 * Author: Arnaud Ebalard <arno@natisbad.org>
6 *
7 * This work is based on an initial version written by
8 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published
12 * by the Free Software Foundation.
13 */
14
15 #include <crypto/md5.h>
16 #include <crypto/sha.h>
17
18 #include "cesa.h"
19
20 struct mv_cesa_ahash_dma_iter {
21 struct mv_cesa_dma_iter base;
22 struct mv_cesa_sg_dma_iter src;
23 };
24
25 static inline void
26 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
27 struct ahash_request *req)
28 {
29 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
30 unsigned int len = req->nbytes + creq->cache_ptr;
31
32 if (!creq->last_req)
33 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
34
35 mv_cesa_req_dma_iter_init(&iter->base, len);
36 mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
37 iter->src.op_offset = creq->cache_ptr;
38 }
39
40 static inline bool
41 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
42 {
43 iter->src.op_offset = 0;
44
45 return mv_cesa_req_dma_iter_next_op(&iter->base);
46 }
47
48 static inline int
49 mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
50 {
51 req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
52 &req->cache_dma);
53 if (!req->cache)
54 return -ENOMEM;
55
56 return 0;
57 }
58
59 static inline void
60 mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
61 {
62 if (!req->cache)
63 return;
64
65 dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
66 req->cache_dma);
67 }
68
69 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
70 gfp_t flags)
71 {
72 if (req->padding)
73 return 0;
74
75 req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
76 &req->padding_dma);
77 if (!req->padding)
78 return -ENOMEM;
79
80 return 0;
81 }
82
83 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
84 {
85 if (!req->padding)
86 return;
87
88 dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
89 req->padding_dma);
90 req->padding = NULL;
91 }
92
93 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
94 {
95 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
96
97 mv_cesa_ahash_dma_free_padding(&creq->req.dma);
98 }
99
100 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
101 {
102 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
103
104 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
105 mv_cesa_ahash_dma_free_cache(&creq->req.dma);
106 mv_cesa_dma_cleanup(&creq->base);
107 }
108
109 static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
110 {
111 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
112
113 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
114 mv_cesa_ahash_dma_cleanup(req);
115 }
116
117 static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
118 {
119 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
120
121 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
122 mv_cesa_ahash_dma_last_cleanup(req);
123 }
124
125 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
126 {
127 unsigned int index, padlen;
128
129 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
130 padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
131
132 return padlen;
133 }
134
135 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
136 {
137 unsigned int index, padlen;
138
139 buf[0] = 0x80;
140 /* Pad out to 56 mod 64 */
141 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
142 padlen = mv_cesa_ahash_pad_len(creq);
143 memset(buf + 1, 0, padlen - 1);
144
145 if (creq->algo_le) {
146 __le64 bits = cpu_to_le64(creq->len << 3);
147 memcpy(buf + padlen, &bits, sizeof(bits));
148 } else {
149 __be64 bits = cpu_to_be64(creq->len << 3);
150 memcpy(buf + padlen, &bits, sizeof(bits));
151 }
152
153 return padlen + 8;
154 }
155
156 static void mv_cesa_ahash_std_step(struct ahash_request *req)
157 {
158 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
159 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
160 struct mv_cesa_engine *engine = creq->base.engine;
161 struct mv_cesa_op_ctx *op;
162 unsigned int new_cache_ptr = 0;
163 u32 frag_mode;
164 size_t len;
165 unsigned int digsize;
166 int i;
167
168 mv_cesa_adjust_op(engine, &creq->op_tmpl);
169 memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
170
171 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
172 for (i = 0; i < digsize / 4; i++)
173 writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
174
175 mv_cesa_adjust_op(engine, &creq->op_tmpl);
176 memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
177
178 if (creq->cache_ptr)
179 memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
180 creq->cache, creq->cache_ptr);
181
182 len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
183 CESA_SA_SRAM_PAYLOAD_SIZE);
184
185 if (!creq->last_req) {
186 new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
187 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
188 }
189
190 if (len - creq->cache_ptr)
191 sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
192 engine->sram +
193 CESA_SA_DATA_SRAM_OFFSET +
194 creq->cache_ptr,
195 len - creq->cache_ptr,
196 sreq->offset);
197
198 op = &creq->op_tmpl;
199
200 frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
201
202 if (creq->last_req && sreq->offset == req->nbytes &&
203 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
204 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
205 frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
206 else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
207 frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
208 }
209
210 if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
211 frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
212 if (len &&
213 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
214 mv_cesa_set_mac_op_total_len(op, creq->len);
215 } else {
216 int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
217
218 if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
219 len &= CESA_HASH_BLOCK_SIZE_MSK;
220 new_cache_ptr = 64 - trailerlen;
221 memcpy_fromio(creq->cache,
222 engine->sram +
223 CESA_SA_DATA_SRAM_OFFSET + len,
224 new_cache_ptr);
225 } else {
226 len += mv_cesa_ahash_pad_req(creq,
227 engine->sram + len +
228 CESA_SA_DATA_SRAM_OFFSET);
229 }
230
231 if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
232 frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
233 else
234 frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
235 }
236 }
237
238 mv_cesa_set_mac_op_frag_len(op, len);
239 mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
240
241 /* FIXME: only update enc_len field */
242 memcpy_toio(engine->sram, op, sizeof(*op));
243
244 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
245 mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
246 CESA_SA_DESC_CFG_FRAG_MSK);
247
248 creq->cache_ptr = new_cache_ptr;
249
250 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
251 writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
252 BUG_ON(readl(engine->regs + CESA_SA_CMD) &
253 CESA_SA_CMD_EN_CESA_SA_ACCL0);
254 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
255 }
256
257 static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
258 {
259 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
260 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
261
262 if (sreq->offset < (req->nbytes - creq->cache_ptr))
263 return -EINPROGRESS;
264
265 return 0;
266 }
267
268 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
269 {
270 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
271 struct mv_cesa_req *basereq = &creq->base;
272
273 mv_cesa_dma_prepare(basereq, basereq->engine);
274 }
275
276 static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
277 {
278 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
279 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
280
281 sreq->offset = 0;
282 }
283
284 static void mv_cesa_ahash_step(struct crypto_async_request *req)
285 {
286 struct ahash_request *ahashreq = ahash_request_cast(req);
287 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
288
289 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
290 mv_cesa_dma_step(&creq->base);
291 else
292 mv_cesa_ahash_std_step(ahashreq);
293 }
294
295 static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
296 {
297 struct ahash_request *ahashreq = ahash_request_cast(req);
298 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
299
300 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
301 return mv_cesa_dma_process(&creq->base, status);
302
303 return mv_cesa_ahash_std_process(ahashreq, status);
304 }
305
306 static void mv_cesa_ahash_complete(struct crypto_async_request *req)
307 {
308 struct ahash_request *ahashreq = ahash_request_cast(req);
309 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
310 struct mv_cesa_engine *engine = creq->base.engine;
311 unsigned int digsize;
312 int i;
313
314 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
315 for (i = 0; i < digsize / 4; i++)
316 creq->state[i] = readl_relaxed(engine->regs + CESA_IVDIG(i));
317
318 if (creq->last_req) {
319 /*
320 * Hardware's MD5 digest is in little endian format, but
321 * SHA in big endian format
322 */
323 if (creq->algo_le) {
324 __le32 *result = (void *)ahashreq->result;
325
326 for (i = 0; i < digsize / 4; i++)
327 result[i] = cpu_to_le32(creq->state[i]);
328 } else {
329 __be32 *result = (void *)ahashreq->result;
330
331 for (i = 0; i < digsize / 4; i++)
332 result[i] = cpu_to_be32(creq->state[i]);
333 }
334 }
335
336 atomic_sub(ahashreq->nbytes, &engine->load);
337 }
338
339 static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
340 struct mv_cesa_engine *engine)
341 {
342 struct ahash_request *ahashreq = ahash_request_cast(req);
343 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
344
345 creq->base.engine = engine;
346
347 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
348 mv_cesa_ahash_dma_prepare(ahashreq);
349 else
350 mv_cesa_ahash_std_prepare(ahashreq);
351 }
352
353 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
354 {
355 struct ahash_request *ahashreq = ahash_request_cast(req);
356 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
357
358 if (creq->last_req)
359 mv_cesa_ahash_last_cleanup(ahashreq);
360
361 mv_cesa_ahash_cleanup(ahashreq);
362
363 if (creq->cache_ptr)
364 sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
365 creq->cache,
366 creq->cache_ptr,
367 ahashreq->nbytes - creq->cache_ptr);
368 }
369
370 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
371 .step = mv_cesa_ahash_step,
372 .process = mv_cesa_ahash_process,
373 .cleanup = mv_cesa_ahash_req_cleanup,
374 .complete = mv_cesa_ahash_complete,
375 };
376
377 static int mv_cesa_ahash_init(struct ahash_request *req,
378 struct mv_cesa_op_ctx *tmpl, bool algo_le)
379 {
380 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
381
382 memset(creq, 0, sizeof(*creq));
383 mv_cesa_update_op_cfg(tmpl,
384 CESA_SA_DESC_CFG_OP_MAC_ONLY |
385 CESA_SA_DESC_CFG_FIRST_FRAG,
386 CESA_SA_DESC_CFG_OP_MSK |
387 CESA_SA_DESC_CFG_FRAG_MSK);
388 mv_cesa_set_mac_op_total_len(tmpl, 0);
389 mv_cesa_set_mac_op_frag_len(tmpl, 0);
390 creq->op_tmpl = *tmpl;
391 creq->len = 0;
392 creq->algo_le = algo_le;
393
394 return 0;
395 }
396
397 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
398 {
399 struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
400
401 ctx->base.ops = &mv_cesa_ahash_req_ops;
402
403 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
404 sizeof(struct mv_cesa_ahash_req));
405 return 0;
406 }
407
408 static int mv_cesa_ahash_cache_req(struct ahash_request *req, bool *cached)
409 {
410 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
411
412 if (creq->cache_ptr + req->nbytes < 64 && !creq->last_req) {
413 *cached = true;
414
415 if (!req->nbytes)
416 return 0;
417
418 sg_pcopy_to_buffer(req->src, creq->src_nents,
419 creq->cache + creq->cache_ptr,
420 req->nbytes, 0);
421
422 creq->cache_ptr += req->nbytes;
423 }
424
425 return 0;
426 }
427
428 static struct mv_cesa_op_ctx *
429 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
430 struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
431 gfp_t flags)
432 {
433 struct mv_cesa_op_ctx *op;
434 int ret;
435
436 op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
437 if (IS_ERR(op))
438 return op;
439
440 /* Set the operation block fragment length. */
441 mv_cesa_set_mac_op_frag_len(op, frag_len);
442
443 /* Append dummy desc to launch operation */
444 ret = mv_cesa_dma_add_dummy_launch(chain, flags);
445 if (ret)
446 return ERR_PTR(ret);
447
448 if (mv_cesa_mac_op_is_first_frag(tmpl))
449 mv_cesa_update_op_cfg(tmpl,
450 CESA_SA_DESC_CFG_MID_FRAG,
451 CESA_SA_DESC_CFG_FRAG_MSK);
452
453 return op;
454 }
455
456 static int
457 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
458 struct mv_cesa_ahash_dma_iter *dma_iter,
459 struct mv_cesa_ahash_req *creq,
460 gfp_t flags)
461 {
462 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
463 int ret;
464
465 if (!creq->cache_ptr)
466 return 0;
467
468 ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
469 if (ret)
470 return ret;
471
472 memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
473
474 return mv_cesa_dma_add_data_transfer(chain,
475 CESA_SA_DATA_SRAM_OFFSET,
476 ahashdreq->cache_dma,
477 creq->cache_ptr,
478 CESA_TDMA_DST_IN_SRAM,
479 flags);
480 }
481
482 static struct mv_cesa_op_ctx *
483 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
484 struct mv_cesa_ahash_dma_iter *dma_iter,
485 struct mv_cesa_ahash_req *creq,
486 unsigned int frag_len, gfp_t flags)
487 {
488 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
489 unsigned int len, trailerlen, padoff = 0;
490 struct mv_cesa_op_ctx *op;
491 int ret;
492
493 /*
494 * If the transfer is smaller than our maximum length, and we have
495 * some data outstanding, we can ask the engine to finish the hash.
496 */
497 if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
498 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
499 flags);
500 if (IS_ERR(op))
501 return op;
502
503 mv_cesa_set_mac_op_total_len(op, creq->len);
504 mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
505 CESA_SA_DESC_CFG_NOT_FRAG :
506 CESA_SA_DESC_CFG_LAST_FRAG,
507 CESA_SA_DESC_CFG_FRAG_MSK);
508
509 return op;
510 }
511
512 /*
513 * The request is longer than the engine can handle, or we have
514 * no data outstanding. Manually generate the padding, adding it
515 * as a "mid" fragment.
516 */
517 ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
518 if (ret)
519 return ERR_PTR(ret);
520
521 trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
522
523 len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
524 if (len) {
525 ret = mv_cesa_dma_add_data_transfer(chain,
526 CESA_SA_DATA_SRAM_OFFSET +
527 frag_len,
528 ahashdreq->padding_dma,
529 len, CESA_TDMA_DST_IN_SRAM,
530 flags);
531 if (ret)
532 return ERR_PTR(ret);
533
534 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
535 flags);
536 if (IS_ERR(op))
537 return op;
538
539 if (len == trailerlen)
540 return op;
541
542 padoff += len;
543 }
544
545 ret = mv_cesa_dma_add_data_transfer(chain,
546 CESA_SA_DATA_SRAM_OFFSET,
547 ahashdreq->padding_dma +
548 padoff,
549 trailerlen - padoff,
550 CESA_TDMA_DST_IN_SRAM,
551 flags);
552 if (ret)
553 return ERR_PTR(ret);
554
555 return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
556 flags);
557 }
558
559 static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
560 {
561 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
562 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
563 GFP_KERNEL : GFP_ATOMIC;
564 struct mv_cesa_req *basereq = &creq->base;
565 struct mv_cesa_ahash_dma_iter iter;
566 struct mv_cesa_op_ctx *op = NULL;
567 unsigned int frag_len;
568 int ret;
569
570 basereq->chain.first = NULL;
571 basereq->chain.last = NULL;
572
573 if (creq->src_nents) {
574 ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
575 DMA_TO_DEVICE);
576 if (!ret) {
577 ret = -ENOMEM;
578 goto err;
579 }
580 }
581
582 mv_cesa_tdma_desc_iter_init(&basereq->chain);
583 mv_cesa_ahash_req_iter_init(&iter, req);
584
585 /*
586 * Add the cache (left-over data from a previous block) first.
587 * This will never overflow the SRAM size.
588 */
589 ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, &iter, creq, flags);
590 if (ret)
591 goto err_free_tdma;
592
593 if (iter.src.sg) {
594 /*
595 * Add all the new data, inserting an operation block and
596 * launch command between each full SRAM block-worth of
597 * data. We intentionally do not add the final op block.
598 */
599 while (true) {
600 ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
601 &iter.base,
602 &iter.src, flags);
603 if (ret)
604 goto err_free_tdma;
605
606 frag_len = iter.base.op_len;
607
608 if (!mv_cesa_ahash_req_iter_next_op(&iter))
609 break;
610
611 op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
612 frag_len, flags);
613 if (IS_ERR(op)) {
614 ret = PTR_ERR(op);
615 goto err_free_tdma;
616 }
617 }
618 } else {
619 /* Account for the data that was in the cache. */
620 frag_len = iter.base.op_len;
621 }
622
623 /*
624 * At this point, frag_len indicates whether we have any data
625 * outstanding which needs an operation. Queue up the final
626 * operation, which depends whether this is the final request.
627 */
628 if (creq->last_req)
629 op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
630 frag_len, flags);
631 else if (frag_len)
632 op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
633 frag_len, flags);
634
635 if (IS_ERR(op)) {
636 ret = PTR_ERR(op);
637 goto err_free_tdma;
638 }
639
640 if (op) {
641 /* Add dummy desc to wait for crypto operation end */
642 ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
643 if (ret)
644 goto err_free_tdma;
645 }
646
647 if (!creq->last_req)
648 creq->cache_ptr = req->nbytes + creq->cache_ptr -
649 iter.base.len;
650 else
651 creq->cache_ptr = 0;
652
653 basereq->chain.last->flags |= (CESA_TDMA_END_OF_REQ |
654 CESA_TDMA_BREAK_CHAIN);
655
656 return 0;
657
658 err_free_tdma:
659 mv_cesa_dma_cleanup(basereq);
660 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
661
662 err:
663 mv_cesa_ahash_last_cleanup(req);
664
665 return ret;
666 }
667
668 static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
669 {
670 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
671 int ret;
672
673 creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
674 if (creq->src_nents < 0) {
675 dev_err(cesa_dev->dev, "Invalid number of src SG");
676 return creq->src_nents;
677 }
678
679 ret = mv_cesa_ahash_cache_req(req, cached);
680 if (ret)
681 return ret;
682
683 if (*cached)
684 return 0;
685
686 if (cesa_dev->caps->has_tdma)
687 ret = mv_cesa_ahash_dma_req_init(req);
688
689 return ret;
690 }
691
692 static int mv_cesa_ahash_queue_req(struct ahash_request *req)
693 {
694 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
695 struct mv_cesa_engine *engine;
696 bool cached = false;
697 int ret;
698
699 ret = mv_cesa_ahash_req_init(req, &cached);
700 if (ret)
701 return ret;
702
703 if (cached)
704 return 0;
705
706 engine = mv_cesa_select_engine(req->nbytes);
707 mv_cesa_ahash_prepare(&req->base, engine);
708
709 ret = mv_cesa_queue_req(&req->base, &creq->base);
710
711 if (mv_cesa_req_needs_cleanup(&req->base, ret))
712 mv_cesa_ahash_cleanup(req);
713
714 return ret;
715 }
716
717 static int mv_cesa_ahash_update(struct ahash_request *req)
718 {
719 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
720
721 creq->len += req->nbytes;
722
723 return mv_cesa_ahash_queue_req(req);
724 }
725
726 static int mv_cesa_ahash_final(struct ahash_request *req)
727 {
728 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
729 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
730
731 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
732 creq->last_req = true;
733 req->nbytes = 0;
734
735 return mv_cesa_ahash_queue_req(req);
736 }
737
738 static int mv_cesa_ahash_finup(struct ahash_request *req)
739 {
740 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
741 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
742
743 creq->len += req->nbytes;
744 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
745 creq->last_req = true;
746
747 return mv_cesa_ahash_queue_req(req);
748 }
749
750 static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
751 u64 *len, void *cache)
752 {
753 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
754 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
755 unsigned int digsize = crypto_ahash_digestsize(ahash);
756 unsigned int blocksize;
757
758 blocksize = crypto_ahash_blocksize(ahash);
759
760 *len = creq->len;
761 memcpy(hash, creq->state, digsize);
762 memset(cache, 0, blocksize);
763 memcpy(cache, creq->cache, creq->cache_ptr);
764
765 return 0;
766 }
767
768 static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
769 u64 len, const void *cache)
770 {
771 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
772 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
773 unsigned int digsize = crypto_ahash_digestsize(ahash);
774 unsigned int blocksize;
775 unsigned int cache_ptr;
776 int ret;
777
778 ret = crypto_ahash_init(req);
779 if (ret)
780 return ret;
781
782 blocksize = crypto_ahash_blocksize(ahash);
783 if (len >= blocksize)
784 mv_cesa_update_op_cfg(&creq->op_tmpl,
785 CESA_SA_DESC_CFG_MID_FRAG,
786 CESA_SA_DESC_CFG_FRAG_MSK);
787
788 creq->len = len;
789 memcpy(creq->state, hash, digsize);
790 creq->cache_ptr = 0;
791
792 cache_ptr = do_div(len, blocksize);
793 if (!cache_ptr)
794 return 0;
795
796 memcpy(creq->cache, cache, cache_ptr);
797 creq->cache_ptr = cache_ptr;
798
799 return 0;
800 }
801
802 static int mv_cesa_md5_init(struct ahash_request *req)
803 {
804 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
805 struct mv_cesa_op_ctx tmpl = { };
806
807 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
808 creq->state[0] = MD5_H0;
809 creq->state[1] = MD5_H1;
810 creq->state[2] = MD5_H2;
811 creq->state[3] = MD5_H3;
812
813 mv_cesa_ahash_init(req, &tmpl, true);
814
815 return 0;
816 }
817
818 static int mv_cesa_md5_export(struct ahash_request *req, void *out)
819 {
820 struct md5_state *out_state = out;
821
822 return mv_cesa_ahash_export(req, out_state->hash,
823 &out_state->byte_count, out_state->block);
824 }
825
826 static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
827 {
828 const struct md5_state *in_state = in;
829
830 return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
831 in_state->block);
832 }
833
834 static int mv_cesa_md5_digest(struct ahash_request *req)
835 {
836 int ret;
837
838 ret = mv_cesa_md5_init(req);
839 if (ret)
840 return ret;
841
842 return mv_cesa_ahash_finup(req);
843 }
844
845 struct ahash_alg mv_md5_alg = {
846 .init = mv_cesa_md5_init,
847 .update = mv_cesa_ahash_update,
848 .final = mv_cesa_ahash_final,
849 .finup = mv_cesa_ahash_finup,
850 .digest = mv_cesa_md5_digest,
851 .export = mv_cesa_md5_export,
852 .import = mv_cesa_md5_import,
853 .halg = {
854 .digestsize = MD5_DIGEST_SIZE,
855 .statesize = sizeof(struct md5_state),
856 .base = {
857 .cra_name = "md5",
858 .cra_driver_name = "mv-md5",
859 .cra_priority = 300,
860 .cra_flags = CRYPTO_ALG_ASYNC |
861 CRYPTO_ALG_KERN_DRIVER_ONLY,
862 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
863 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
864 .cra_init = mv_cesa_ahash_cra_init,
865 .cra_module = THIS_MODULE,
866 }
867 }
868 };
869
870 static int mv_cesa_sha1_init(struct ahash_request *req)
871 {
872 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
873 struct mv_cesa_op_ctx tmpl = { };
874
875 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
876 creq->state[0] = SHA1_H0;
877 creq->state[1] = SHA1_H1;
878 creq->state[2] = SHA1_H2;
879 creq->state[3] = SHA1_H3;
880 creq->state[4] = SHA1_H4;
881
882 mv_cesa_ahash_init(req, &tmpl, false);
883
884 return 0;
885 }
886
887 static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
888 {
889 struct sha1_state *out_state = out;
890
891 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
892 out_state->buffer);
893 }
894
895 static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
896 {
897 const struct sha1_state *in_state = in;
898
899 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
900 in_state->buffer);
901 }
902
903 static int mv_cesa_sha1_digest(struct ahash_request *req)
904 {
905 int ret;
906
907 ret = mv_cesa_sha1_init(req);
908 if (ret)
909 return ret;
910
911 return mv_cesa_ahash_finup(req);
912 }
913
914 struct ahash_alg mv_sha1_alg = {
915 .init = mv_cesa_sha1_init,
916 .update = mv_cesa_ahash_update,
917 .final = mv_cesa_ahash_final,
918 .finup = mv_cesa_ahash_finup,
919 .digest = mv_cesa_sha1_digest,
920 .export = mv_cesa_sha1_export,
921 .import = mv_cesa_sha1_import,
922 .halg = {
923 .digestsize = SHA1_DIGEST_SIZE,
924 .statesize = sizeof(struct sha1_state),
925 .base = {
926 .cra_name = "sha1",
927 .cra_driver_name = "mv-sha1",
928 .cra_priority = 300,
929 .cra_flags = CRYPTO_ALG_ASYNC |
930 CRYPTO_ALG_KERN_DRIVER_ONLY,
931 .cra_blocksize = SHA1_BLOCK_SIZE,
932 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
933 .cra_init = mv_cesa_ahash_cra_init,
934 .cra_module = THIS_MODULE,
935 }
936 }
937 };
938
939 static int mv_cesa_sha256_init(struct ahash_request *req)
940 {
941 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
942 struct mv_cesa_op_ctx tmpl = { };
943
944 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
945 creq->state[0] = SHA256_H0;
946 creq->state[1] = SHA256_H1;
947 creq->state[2] = SHA256_H2;
948 creq->state[3] = SHA256_H3;
949 creq->state[4] = SHA256_H4;
950 creq->state[5] = SHA256_H5;
951 creq->state[6] = SHA256_H6;
952 creq->state[7] = SHA256_H7;
953
954 mv_cesa_ahash_init(req, &tmpl, false);
955
956 return 0;
957 }
958
959 static int mv_cesa_sha256_digest(struct ahash_request *req)
960 {
961 int ret;
962
963 ret = mv_cesa_sha256_init(req);
964 if (ret)
965 return ret;
966
967 return mv_cesa_ahash_finup(req);
968 }
969
970 static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
971 {
972 struct sha256_state *out_state = out;
973
974 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
975 out_state->buf);
976 }
977
978 static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
979 {
980 const struct sha256_state *in_state = in;
981
982 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
983 in_state->buf);
984 }
985
986 struct ahash_alg mv_sha256_alg = {
987 .init = mv_cesa_sha256_init,
988 .update = mv_cesa_ahash_update,
989 .final = mv_cesa_ahash_final,
990 .finup = mv_cesa_ahash_finup,
991 .digest = mv_cesa_sha256_digest,
992 .export = mv_cesa_sha256_export,
993 .import = mv_cesa_sha256_import,
994 .halg = {
995 .digestsize = SHA256_DIGEST_SIZE,
996 .statesize = sizeof(struct sha256_state),
997 .base = {
998 .cra_name = "sha256",
999 .cra_driver_name = "mv-sha256",
1000 .cra_priority = 300,
1001 .cra_flags = CRYPTO_ALG_ASYNC |
1002 CRYPTO_ALG_KERN_DRIVER_ONLY,
1003 .cra_blocksize = SHA256_BLOCK_SIZE,
1004 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1005 .cra_init = mv_cesa_ahash_cra_init,
1006 .cra_module = THIS_MODULE,
1007 }
1008 }
1009 };
1010
1011 struct mv_cesa_ahash_result {
1012 struct completion completion;
1013 int error;
1014 };
1015
1016 static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
1017 int error)
1018 {
1019 struct mv_cesa_ahash_result *result = req->data;
1020
1021 if (error == -EINPROGRESS)
1022 return;
1023
1024 result->error = error;
1025 complete(&result->completion);
1026 }
1027
1028 static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
1029 void *state, unsigned int blocksize)
1030 {
1031 struct mv_cesa_ahash_result result;
1032 struct scatterlist sg;
1033 int ret;
1034
1035 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1036 mv_cesa_hmac_ahash_complete, &result);
1037 sg_init_one(&sg, pad, blocksize);
1038 ahash_request_set_crypt(req, &sg, pad, blocksize);
1039 init_completion(&result.completion);
1040
1041 ret = crypto_ahash_init(req);
1042 if (ret)
1043 return ret;
1044
1045 ret = crypto_ahash_update(req);
1046 if (ret && ret != -EINPROGRESS)
1047 return ret;
1048
1049 wait_for_completion_interruptible(&result.completion);
1050 if (result.error)
1051 return result.error;
1052
1053 ret = crypto_ahash_export(req, state);
1054 if (ret)
1055 return ret;
1056
1057 return 0;
1058 }
1059
1060 static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
1061 const u8 *key, unsigned int keylen,
1062 u8 *ipad, u8 *opad,
1063 unsigned int blocksize)
1064 {
1065 struct mv_cesa_ahash_result result;
1066 struct scatterlist sg;
1067 int ret;
1068 int i;
1069
1070 if (keylen <= blocksize) {
1071 memcpy(ipad, key, keylen);
1072 } else {
1073 u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
1074
1075 if (!keydup)
1076 return -ENOMEM;
1077
1078 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1079 mv_cesa_hmac_ahash_complete,
1080 &result);
1081 sg_init_one(&sg, keydup, keylen);
1082 ahash_request_set_crypt(req, &sg, ipad, keylen);
1083 init_completion(&result.completion);
1084
1085 ret = crypto_ahash_digest(req);
1086 if (ret == -EINPROGRESS) {
1087 wait_for_completion_interruptible(&result.completion);
1088 ret = result.error;
1089 }
1090
1091 /* Set the memory region to 0 to avoid any leak. */
1092 memset(keydup, 0, keylen);
1093 kfree(keydup);
1094
1095 if (ret)
1096 return ret;
1097
1098 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
1099 }
1100
1101 memset(ipad + keylen, 0, blocksize - keylen);
1102 memcpy(opad, ipad, blocksize);
1103
1104 for (i = 0; i < blocksize; i++) {
1105 ipad[i] ^= 0x36;
1106 opad[i] ^= 0x5c;
1107 }
1108
1109 return 0;
1110 }
1111
1112 static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
1113 const u8 *key, unsigned int keylen,
1114 void *istate, void *ostate)
1115 {
1116 struct ahash_request *req;
1117 struct crypto_ahash *tfm;
1118 unsigned int blocksize;
1119 u8 *ipad = NULL;
1120 u8 *opad;
1121 int ret;
1122
1123 tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
1124 CRYPTO_ALG_TYPE_AHASH_MASK);
1125 if (IS_ERR(tfm))
1126 return PTR_ERR(tfm);
1127
1128 req = ahash_request_alloc(tfm, GFP_KERNEL);
1129 if (!req) {
1130 ret = -ENOMEM;
1131 goto free_ahash;
1132 }
1133
1134 crypto_ahash_clear_flags(tfm, ~0);
1135
1136 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1137
1138 ipad = kzalloc(2 * blocksize, GFP_KERNEL);
1139 if (!ipad) {
1140 ret = -ENOMEM;
1141 goto free_req;
1142 }
1143
1144 opad = ipad + blocksize;
1145
1146 ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
1147 if (ret)
1148 goto free_ipad;
1149
1150 ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
1151 if (ret)
1152 goto free_ipad;
1153
1154 ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
1155
1156 free_ipad:
1157 kfree(ipad);
1158 free_req:
1159 ahash_request_free(req);
1160 free_ahash:
1161 crypto_free_ahash(tfm);
1162
1163 return ret;
1164 }
1165
1166 static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
1167 {
1168 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
1169
1170 ctx->base.ops = &mv_cesa_ahash_req_ops;
1171
1172 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1173 sizeof(struct mv_cesa_ahash_req));
1174 return 0;
1175 }
1176
1177 static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
1178 {
1179 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1180 struct mv_cesa_op_ctx tmpl = { };
1181
1182 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
1183 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1184
1185 mv_cesa_ahash_init(req, &tmpl, true);
1186
1187 return 0;
1188 }
1189
1190 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1191 unsigned int keylen)
1192 {
1193 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1194 struct md5_state istate, ostate;
1195 int ret, i;
1196
1197 ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
1198 if (ret)
1199 return ret;
1200
1201 for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
1202 ctx->iv[i] = be32_to_cpu(istate.hash[i]);
1203
1204 for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
1205 ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);
1206
1207 return 0;
1208 }
1209
1210 static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
1211 {
1212 int ret;
1213
1214 ret = mv_cesa_ahmac_md5_init(req);
1215 if (ret)
1216 return ret;
1217
1218 return mv_cesa_ahash_finup(req);
1219 }
1220
1221 struct ahash_alg mv_ahmac_md5_alg = {
1222 .init = mv_cesa_ahmac_md5_init,
1223 .update = mv_cesa_ahash_update,
1224 .final = mv_cesa_ahash_final,
1225 .finup = mv_cesa_ahash_finup,
1226 .digest = mv_cesa_ahmac_md5_digest,
1227 .setkey = mv_cesa_ahmac_md5_setkey,
1228 .export = mv_cesa_md5_export,
1229 .import = mv_cesa_md5_import,
1230 .halg = {
1231 .digestsize = MD5_DIGEST_SIZE,
1232 .statesize = sizeof(struct md5_state),
1233 .base = {
1234 .cra_name = "hmac(md5)",
1235 .cra_driver_name = "mv-hmac-md5",
1236 .cra_priority = 300,
1237 .cra_flags = CRYPTO_ALG_ASYNC |
1238 CRYPTO_ALG_KERN_DRIVER_ONLY,
1239 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1240 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1241 .cra_init = mv_cesa_ahmac_cra_init,
1242 .cra_module = THIS_MODULE,
1243 }
1244 }
1245 };
1246
1247 static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
1248 {
1249 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1250 struct mv_cesa_op_ctx tmpl = { };
1251
1252 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
1253 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1254
1255 mv_cesa_ahash_init(req, &tmpl, false);
1256
1257 return 0;
1258 }
1259
1260 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1261 unsigned int keylen)
1262 {
1263 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1264 struct sha1_state istate, ostate;
1265 int ret, i;
1266
1267 ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
1268 if (ret)
1269 return ret;
1270
1271 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1272 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1273
1274 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1275 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1276
1277 return 0;
1278 }
1279
1280 static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
1281 {
1282 int ret;
1283
1284 ret = mv_cesa_ahmac_sha1_init(req);
1285 if (ret)
1286 return ret;
1287
1288 return mv_cesa_ahash_finup(req);
1289 }
1290
1291 struct ahash_alg mv_ahmac_sha1_alg = {
1292 .init = mv_cesa_ahmac_sha1_init,
1293 .update = mv_cesa_ahash_update,
1294 .final = mv_cesa_ahash_final,
1295 .finup = mv_cesa_ahash_finup,
1296 .digest = mv_cesa_ahmac_sha1_digest,
1297 .setkey = mv_cesa_ahmac_sha1_setkey,
1298 .export = mv_cesa_sha1_export,
1299 .import = mv_cesa_sha1_import,
1300 .halg = {
1301 .digestsize = SHA1_DIGEST_SIZE,
1302 .statesize = sizeof(struct sha1_state),
1303 .base = {
1304 .cra_name = "hmac(sha1)",
1305 .cra_driver_name = "mv-hmac-sha1",
1306 .cra_priority = 300,
1307 .cra_flags = CRYPTO_ALG_ASYNC |
1308 CRYPTO_ALG_KERN_DRIVER_ONLY,
1309 .cra_blocksize = SHA1_BLOCK_SIZE,
1310 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1311 .cra_init = mv_cesa_ahmac_cra_init,
1312 .cra_module = THIS_MODULE,
1313 }
1314 }
1315 };
1316
1317 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1318 unsigned int keylen)
1319 {
1320 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1321 struct sha256_state istate, ostate;
1322 int ret, i;
1323
1324 ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
1325 if (ret)
1326 return ret;
1327
1328 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1329 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1330
1331 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1332 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1333
1334 return 0;
1335 }
1336
1337 static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
1338 {
1339 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1340 struct mv_cesa_op_ctx tmpl = { };
1341
1342 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
1343 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1344
1345 mv_cesa_ahash_init(req, &tmpl, false);
1346
1347 return 0;
1348 }
1349
1350 static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
1351 {
1352 int ret;
1353
1354 ret = mv_cesa_ahmac_sha256_init(req);
1355 if (ret)
1356 return ret;
1357
1358 return mv_cesa_ahash_finup(req);
1359 }
1360
1361 struct ahash_alg mv_ahmac_sha256_alg = {
1362 .init = mv_cesa_ahmac_sha256_init,
1363 .update = mv_cesa_ahash_update,
1364 .final = mv_cesa_ahash_final,
1365 .finup = mv_cesa_ahash_finup,
1366 .digest = mv_cesa_ahmac_sha256_digest,
1367 .setkey = mv_cesa_ahmac_sha256_setkey,
1368 .export = mv_cesa_sha256_export,
1369 .import = mv_cesa_sha256_import,
1370 .halg = {
1371 .digestsize = SHA256_DIGEST_SIZE,
1372 .statesize = sizeof(struct sha256_state),
1373 .base = {
1374 .cra_name = "hmac(sha256)",
1375 .cra_driver_name = "mv-hmac-sha256",
1376 .cra_priority = 300,
1377 .cra_flags = CRYPTO_ALG_ASYNC |
1378 CRYPTO_ALG_KERN_DRIVER_ONLY,
1379 .cra_blocksize = SHA256_BLOCK_SIZE,
1380 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1381 .cra_init = mv_cesa_ahmac_cra_init,
1382 .cra_module = THIS_MODULE,
1383 }
1384 }
1385 };
This page took 0.087846 seconds and 5 git commands to generate.