vfio/pci: Fix typos in comments
[deliverable/linux.git] / drivers / crypto / sunxi-ss / sun4i-ss-hash.c
1 /*
2 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
3 *
4 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
5 *
6 * This file add support for MD5 and SHA1.
7 *
8 * You could find the datasheet in Documentation/arm/sunxi/README
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15 #include "sun4i-ss.h"
16 #include <linux/scatterlist.h>
17
18 /* This is a totally arbitrary value */
19 #define SS_TIMEOUT 100
20
21 int sun4i_hash_crainit(struct crypto_tfm *tfm)
22 {
23 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
24 sizeof(struct sun4i_req_ctx));
25 return 0;
26 }
27
28 /* sun4i_hash_init: initialize request context */
29 int sun4i_hash_init(struct ahash_request *areq)
30 {
31 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
32 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
33 struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
34 struct sun4i_ss_alg_template *algt;
35 struct sun4i_ss_ctx *ss;
36
37 memset(op, 0, sizeof(struct sun4i_req_ctx));
38
39 algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
40 ss = algt->ss;
41 op->ss = algt->ss;
42 op->mode = algt->mode;
43
44 return 0;
45 }
46
47 int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
48 {
49 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
50 struct md5_state *octx = out;
51 int i;
52
53 octx->byte_count = op->byte_count + op->len;
54
55 memcpy(octx->block, op->buf, op->len);
56
57 if (op->byte_count > 0) {
58 for (i = 0; i < 4; i++)
59 octx->hash[i] = op->hash[i];
60 } else {
61 octx->hash[0] = SHA1_H0;
62 octx->hash[1] = SHA1_H1;
63 octx->hash[2] = SHA1_H2;
64 octx->hash[3] = SHA1_H3;
65 }
66
67 return 0;
68 }
69
70 int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
71 {
72 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
73 const struct md5_state *ictx = in;
74 int i;
75
76 sun4i_hash_init(areq);
77
78 op->byte_count = ictx->byte_count & ~0x3F;
79 op->len = ictx->byte_count & 0x3F;
80
81 memcpy(op->buf, ictx->block, op->len);
82
83 for (i = 0; i < 4; i++)
84 op->hash[i] = ictx->hash[i];
85
86 return 0;
87 }
88
89 int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
90 {
91 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
92 struct sha1_state *octx = out;
93 int i;
94
95 octx->count = op->byte_count + op->len;
96
97 memcpy(octx->buffer, op->buf, op->len);
98
99 if (op->byte_count > 0) {
100 for (i = 0; i < 5; i++)
101 octx->state[i] = op->hash[i];
102 } else {
103 octx->state[0] = SHA1_H0;
104 octx->state[1] = SHA1_H1;
105 octx->state[2] = SHA1_H2;
106 octx->state[3] = SHA1_H3;
107 octx->state[4] = SHA1_H4;
108 }
109
110 return 0;
111 }
112
113 int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
114 {
115 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
116 const struct sha1_state *ictx = in;
117 int i;
118
119 sun4i_hash_init(areq);
120
121 op->byte_count = ictx->count & ~0x3F;
122 op->len = ictx->count & 0x3F;
123
124 memcpy(op->buf, ictx->buffer, op->len);
125
126 for (i = 0; i < 5; i++)
127 op->hash[i] = ictx->state[i];
128
129 return 0;
130 }
131
132 /*
133 * sun4i_hash_update: update hash engine
134 *
135 * Could be used for both SHA1 and MD5
136 * Write data by step of 32bits and put then in the SS.
137 *
138 * Since we cannot leave partial data and hash state in the engine,
139 * we need to get the hash state at the end of this function.
140 * We can get the hash state every 64 bytes
141 *
142 * So the first work is to get the number of bytes to write to SS modulo 64
143 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
144 *
145 * So at the begin of update()
146 * if op->len + areq->nbytes < 64
147 * => all data will be written to wait buffer (op->buf) and end=0
148 * if not, write all data from op->buf to the device and position end to
149 * complete to 64bytes
150 *
151 * example 1:
152 * update1 60o => op->len=60
153 * update2 60o => need one more word to have 64 bytes
154 * end=4
155 * so write all data from op->buf and one word of SGs
156 * write remaining data in op->buf
157 * final state op->len=56
158 */
159 int sun4i_hash_update(struct ahash_request *areq)
160 {
161 u32 v, ivmode = 0;
162 unsigned int i = 0;
163 /*
164 * i is the total bytes read from SGs, to be compared to areq->nbytes
165 * i is important because we cannot rely on SG length since the sum of
166 * SG->length could be greater than areq->nbytes
167 */
168
169 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
170 struct sun4i_ss_ctx *ss = op->ss;
171 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
172 unsigned int in_i = 0; /* advancement in the current SG */
173 unsigned int end;
174 /*
175 * end is the position when we need to stop writing to the device,
176 * to be compared to i
177 */
178 int in_r, err = 0;
179 unsigned int todo;
180 u32 spaces, rx_cnt = SS_RX_DEFAULT;
181 size_t copied = 0;
182 struct sg_mapping_iter mi;
183
184 dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
185 __func__, crypto_tfm_alg_name(areq->base.tfm),
186 op->byte_count, areq->nbytes, op->mode,
187 op->len, op->hash[0]);
188
189 if (areq->nbytes == 0)
190 return 0;
191
192 /* protect against overflow */
193 if (areq->nbytes > UINT_MAX - op->len) {
194 dev_err(ss->dev, "Cannot process too large request\n");
195 return -EINVAL;
196 }
197
198 if (op->len + areq->nbytes < 64) {
199 /* linearize data to op->buf */
200 copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
201 op->buf + op->len, areq->nbytes, 0);
202 op->len += copied;
203 return 0;
204 }
205
206 end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
207
208 if (end > areq->nbytes || areq->nbytes - end > 63) {
209 dev_err(ss->dev, "ERROR: Bound error %u %u\n",
210 end, areq->nbytes);
211 return -EINVAL;
212 }
213
214 spin_lock_bh(&ss->slock);
215
216 /*
217 * if some data have been processed before,
218 * we need to restore the partial hash state
219 */
220 if (op->byte_count > 0) {
221 ivmode = SS_IV_ARBITRARY;
222 for (i = 0; i < 5; i++)
223 writel(op->hash[i], ss->base + SS_IV0 + i * 4);
224 }
225 /* Enable the device */
226 writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
227
228 i = 0;
229 sg_miter_start(&mi, areq->src, sg_nents(areq->src),
230 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
231 sg_miter_next(&mi);
232 in_i = 0;
233
234 do {
235 /*
236 * we need to linearize in two case:
237 * - the buffer is already used
238 * - the SG does not have enough byte remaining ( < 4)
239 */
240 if (op->len > 0 || (mi.length - in_i) < 4) {
241 /*
242 * if we have entered here we have two reason to stop
243 * - the buffer is full
244 * - reach the end
245 */
246 while (op->len < 64 && i < end) {
247 /* how many bytes we can read from current SG */
248 in_r = min3(mi.length - in_i, end - i,
249 64 - op->len);
250 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
251 op->len += in_r;
252 i += in_r;
253 in_i += in_r;
254 if (in_i == mi.length) {
255 sg_miter_next(&mi);
256 in_i = 0;
257 }
258 }
259 if (op->len > 3 && (op->len % 4) == 0) {
260 /* write buf to the device */
261 writesl(ss->base + SS_RXFIFO, op->buf,
262 op->len / 4);
263 op->byte_count += op->len;
264 op->len = 0;
265 }
266 }
267 if (mi.length - in_i > 3 && i < end) {
268 /* how many bytes we can read from current SG */
269 in_r = min3(mi.length - in_i, areq->nbytes - i,
270 ((mi.length - in_i) / 4) * 4);
271 /* how many bytes we can write in the device*/
272 todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
273 writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
274 op->byte_count += todo * 4;
275 i += todo * 4;
276 in_i += todo * 4;
277 rx_cnt -= todo;
278 if (rx_cnt == 0) {
279 spaces = readl(ss->base + SS_FCSR);
280 rx_cnt = SS_RXFIFO_SPACES(spaces);
281 }
282 if (in_i == mi.length) {
283 sg_miter_next(&mi);
284 in_i = 0;
285 }
286 }
287 } while (i < end);
288 /* final linear */
289 if ((areq->nbytes - i) < 64) {
290 while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
291 /* how many bytes we can read from current SG */
292 in_r = min3(mi.length - in_i, areq->nbytes - i,
293 64 - op->len);
294 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
295 op->len += in_r;
296 i += in_r;
297 in_i += in_r;
298 if (in_i == mi.length) {
299 sg_miter_next(&mi);
300 in_i = 0;
301 }
302 }
303 }
304
305 sg_miter_stop(&mi);
306
307 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
308 i = 0;
309 do {
310 v = readl(ss->base + SS_CTL);
311 i++;
312 } while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
313 if (i >= SS_TIMEOUT) {
314 dev_err_ratelimited(ss->dev,
315 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
316 i, SS_TIMEOUT, v, areq->nbytes);
317 err = -EIO;
318 goto release_ss;
319 }
320
321 /* get the partial hash only if something was written */
322 for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
323 op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
324
325 release_ss:
326 writel(0, ss->base + SS_CTL);
327 spin_unlock_bh(&ss->slock);
328 return err;
329 }
330
331 /*
332 * sun4i_hash_final: finalize hashing operation
333 *
334 * If we have some remaining bytes, we write them.
335 * Then ask the SS for finalizing the hashing operation
336 *
337 * I do not check RX FIFO size in this function since the size is 32
338 * after each enabling and this function neither write more than 32 words.
339 */
340 int sun4i_hash_final(struct ahash_request *areq)
341 {
342 u32 v, ivmode = 0;
343 unsigned int i;
344 unsigned int j = 0;
345 int zeros, err = 0;
346 unsigned int index, padlen;
347 __be64 bits;
348 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
349 struct sun4i_ss_ctx *ss = op->ss;
350 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
351 u32 bf[32];
352 u32 wb = 0;
353 unsigned int nwait, nbw = 0;
354
355 dev_dbg(ss->dev, "%s: byte=%llu len=%u mode=%x wl=%u h=%x",
356 __func__, op->byte_count, areq->nbytes, op->mode,
357 op->len, op->hash[0]);
358
359 spin_lock_bh(&ss->slock);
360
361 /*
362 * if we have already written something,
363 * restore the partial hash state
364 */
365 if (op->byte_count > 0) {
366 ivmode = SS_IV_ARBITRARY;
367 for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
368 writel(op->hash[i], ss->base + SS_IV0 + i * 4);
369 }
370 writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
371
372 /* write the remaining words of the wait buffer */
373 if (op->len > 0) {
374 nwait = op->len / 4;
375 if (nwait > 0) {
376 writesl(ss->base + SS_RXFIFO, op->buf, nwait);
377 op->byte_count += 4 * nwait;
378 }
379 nbw = op->len - 4 * nwait;
380 wb = *(u32 *)(op->buf + nwait * 4);
381 wb &= (0xFFFFFFFF >> (4 - nbw) * 8);
382 }
383
384 /* write the remaining bytes of the nbw buffer */
385 if (nbw > 0) {
386 wb |= ((1 << 7) << (nbw * 8));
387 bf[j++] = wb;
388 } else {
389 bf[j++] = 1 << 7;
390 }
391
392 /*
393 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
394 * I take the operations from other MD5/SHA1 implementations
395 */
396
397 /* we have already send 4 more byte of which nbw data */
398 if (op->mode == SS_OP_MD5) {
399 index = (op->byte_count + 4) & 0x3f;
400 op->byte_count += nbw;
401 if (index > 56)
402 zeros = (120 - index) / 4;
403 else
404 zeros = (56 - index) / 4;
405 } else {
406 op->byte_count += nbw;
407 index = op->byte_count & 0x3f;
408 padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
409 zeros = (padlen - 1) / 4;
410 }
411
412 memset(bf + j, 0, 4 * zeros);
413 j += zeros;
414
415 /* write the length of data */
416 if (op->mode == SS_OP_SHA1) {
417 bits = cpu_to_be64(op->byte_count << 3);
418 bf[j++] = bits & 0xffffffff;
419 bf[j++] = (bits >> 32) & 0xffffffff;
420 } else {
421 bf[j++] = (op->byte_count << 3) & 0xffffffff;
422 bf[j++] = (op->byte_count >> 29) & 0xffffffff;
423 }
424 writesl(ss->base + SS_RXFIFO, bf, j);
425
426 /* Tell the SS to stop the hashing */
427 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
428
429 /*
430 * Wait for SS to finish the hash.
431 * The timeout could happen only in case of bad overcloking
432 * or driver bug.
433 */
434 i = 0;
435 do {
436 v = readl(ss->base + SS_CTL);
437 i++;
438 } while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
439 if (i >= SS_TIMEOUT) {
440 dev_err_ratelimited(ss->dev,
441 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
442 i, SS_TIMEOUT, v, areq->nbytes);
443 err = -EIO;
444 goto release_ss;
445 }
446
447 /* Get the hash from the device */
448 if (op->mode == SS_OP_SHA1) {
449 for (i = 0; i < 5; i++) {
450 v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
451 memcpy(areq->result + i * 4, &v, 4);
452 }
453 } else {
454 for (i = 0; i < 4; i++) {
455 v = readl(ss->base + SS_MD0 + i * 4);
456 memcpy(areq->result + i * 4, &v, 4);
457 }
458 }
459
460 release_ss:
461 writel(0, ss->base + SS_CTL);
462 spin_unlock_bh(&ss->slock);
463 return err;
464 }
465
466 /* sun4i_hash_finup: finalize hashing operation after an update */
467 int sun4i_hash_finup(struct ahash_request *areq)
468 {
469 int err;
470
471 err = sun4i_hash_update(areq);
472 if (err != 0)
473 return err;
474
475 return sun4i_hash_final(areq);
476 }
477
478 /* combo of init/update/final functions */
479 int sun4i_hash_digest(struct ahash_request *areq)
480 {
481 int err;
482
483 err = sun4i_hash_init(areq);
484 if (err != 0)
485 return err;
486
487 err = sun4i_hash_update(areq);
488 if (err != 0)
489 return err;
490
491 return sun4i_hash_final(areq);
492 }
This page took 0.055273 seconds and 5 git commands to generate.