vfio/pci: Fix typos in comments
[deliverable/linux.git] / drivers / dma / fsldma.c
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
42
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49
50 /*
51 * Register Helpers
52 */
53
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93
94 /*
95 * Descriptor Helpers
96 */
97
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103
104 static void set_desc_src(struct fsldma_chan *chan,
105 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 u64 snoop_bits;
108
109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113
114 static void set_desc_dst(struct fsldma_chan *chan,
115 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 u64 snoop_bits;
118
119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123
124 static void set_desc_next(struct fsldma_chan *chan,
125 struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 u64 snoop_bits;
128
129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 ? FSL_DMA_SNEN : 0;
131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 u64 snoop_bits;
137
138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 ? FSL_DMA_SNEN : 0;
140
141 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 | snoop_bits, 64);
144 }
145
146 /*
147 * DMA Engine Hardware Control Helpers
148 */
149
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 /* Reset the channel */
153 set_mr(chan, 0);
154
155 switch (chan->feature & FSL_DMA_IP_MASK) {
156 case FSL_DMA_IP_85XX:
157 /* Set the channel to below modes:
158 * EIE - Error interrupt enable
159 * EOLNIE - End of links interrupt enable
160 * BWC - Bandwidth sharing among channels
161 */
162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 | FSL_DMA_MR_EOLNIE);
164 break;
165 case FSL_DMA_IP_83XX:
166 /* Set the channel to below modes:
167 * EOTIE - End-of-transfer interrupt enable
168 * PRC_RM - PCI read multiple
169 */
170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 break;
172 }
173 }
174
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 u32 sr = get_sr(chan);
178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180
181 /*
182 * Start the DMA controller
183 *
184 * Preconditions:
185 * - the CDAR register must point to the start descriptor
186 * - the MRn[CS] bit must be cleared
187 */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 u32 mode;
191
192 mode = get_mr(chan);
193
194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 set_bcr(chan, 0);
196 mode |= FSL_DMA_MR_EMP_EN;
197 } else {
198 mode &= ~FSL_DMA_MR_EMP_EN;
199 }
200
201 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 mode |= FSL_DMA_MR_EMS_EN;
203 } else {
204 mode &= ~FSL_DMA_MR_EMS_EN;
205 mode |= FSL_DMA_MR_CS;
206 }
207
208 set_mr(chan, mode);
209 }
210
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 u32 mode;
214 int i;
215
216 /* read the mode register */
217 mode = get_mr(chan);
218
219 /*
220 * The 85xx controller supports channel abort, which will stop
221 * the current transfer. On 83xx, this bit is the transfer error
222 * mask bit, which should not be changed.
223 */
224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 mode |= FSL_DMA_MR_CA;
226 set_mr(chan, mode);
227
228 mode &= ~FSL_DMA_MR_CA;
229 }
230
231 /* stop the DMA controller */
232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 set_mr(chan, mode);
234
235 /* wait for the DMA controller to become idle */
236 for (i = 0; i < 100; i++) {
237 if (dma_is_idle(chan))
238 return;
239
240 udelay(10);
241 }
242
243 if (!dma_is_idle(chan))
244 chan_err(chan, "DMA halt timeout!\n");
245 }
246
247 /**
248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
249 * @chan : Freescale DMA channel
250 * @size : Address loop size, 0 for disable loop
251 *
252 * The set source address hold transfer size. The source
253 * address hold or loop transfer size is when the DMA transfer
254 * data from source address (SA), if the loop size is 4, the DMA will
255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256 * SA + 1 ... and so on.
257 */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 u32 mode;
261
262 mode = get_mr(chan);
263
264 switch (size) {
265 case 0:
266 mode &= ~FSL_DMA_MR_SAHE;
267 break;
268 case 1:
269 case 2:
270 case 4:
271 case 8:
272 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 break;
274 }
275
276 set_mr(chan, mode);
277 }
278
279 /**
280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281 * @chan : Freescale DMA channel
282 * @size : Address loop size, 0 for disable loop
283 *
284 * The set destination address hold transfer size. The destination
285 * address hold or loop transfer size is when the DMA transfer
286 * data to destination address (TA), if the loop size is 4, the DMA will
287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288 * TA + 1 ... and so on.
289 */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292 u32 mode;
293
294 mode = get_mr(chan);
295
296 switch (size) {
297 case 0:
298 mode &= ~FSL_DMA_MR_DAHE;
299 break;
300 case 1:
301 case 2:
302 case 4:
303 case 8:
304 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 break;
306 }
307
308 set_mr(chan, mode);
309 }
310
311 /**
312 * fsl_chan_set_request_count - Set DMA Request Count for external control
313 * @chan : Freescale DMA channel
314 * @size : Number of bytes to transfer in a single request
315 *
316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
317 * The DMA request count is how many bytes are allowed to transfer before
318 * pausing the channel, after which a new assertion of DREQ# resumes channel
319 * operation.
320 *
321 * A size of 0 disables external pause control. The maximum size is 1024.
322 */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325 u32 mode;
326
327 BUG_ON(size > 1024);
328
329 mode = get_mr(chan);
330 mode |= (__ilog2(size) << 24) & 0x0f000000;
331
332 set_mr(chan, mode);
333 }
334
335 /**
336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337 * @chan : Freescale DMA channel
338 * @enable : 0 is disabled, 1 is enabled.
339 *
340 * The Freescale DMA channel can be controlled by the external signal DREQ#.
341 * The DMA Request Count feature should be used in addition to this feature
342 * to set the number of bytes to transfer before pausing the channel.
343 */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346 if (enable)
347 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 else
349 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351
352 /**
353 * fsl_chan_toggle_ext_start - Toggle channel external start status
354 * @chan : Freescale DMA channel
355 * @enable : 0 is disabled, 1 is enabled.
356 *
357 * If enable the external start, the channel can be started by an
358 * external DMA start pin. So the dma_start() does not start the
359 * transfer immediately. The DMA channel will wait for the
360 * control pin asserted.
361 */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364 if (enable)
365 chan->feature |= FSL_DMA_CHAN_START_EXT;
366 else
367 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369
370 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
371 {
372 struct fsldma_chan *chan;
373
374 if (!dchan)
375 return -EINVAL;
376
377 chan = to_fsl_chan(dchan);
378
379 fsl_chan_toggle_ext_start(chan, enable);
380 return 0;
381 }
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
383
384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
385 {
386 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
387
388 if (list_empty(&chan->ld_pending))
389 goto out_splice;
390
391 /*
392 * Add the hardware descriptor to the chain of hardware descriptors
393 * that already exists in memory.
394 *
395 * This will un-set the EOL bit of the existing transaction, and the
396 * last link in this transaction will become the EOL descriptor.
397 */
398 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
399
400 /*
401 * Add the software descriptor and all children to the list
402 * of pending transactions
403 */
404 out_splice:
405 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
406 }
407
408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
409 {
410 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
411 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
412 struct fsl_desc_sw *child;
413 dma_cookie_t cookie = -EINVAL;
414
415 spin_lock_bh(&chan->desc_lock);
416
417 #ifdef CONFIG_PM
418 if (unlikely(chan->pm_state != RUNNING)) {
419 chan_dbg(chan, "cannot submit due to suspend\n");
420 spin_unlock_bh(&chan->desc_lock);
421 return -1;
422 }
423 #endif
424
425 /*
426 * assign cookies to all of the software descriptors
427 * that make up this transaction
428 */
429 list_for_each_entry(child, &desc->tx_list, node) {
430 cookie = dma_cookie_assign(&child->async_tx);
431 }
432
433 /* put this transaction onto the tail of the pending queue */
434 append_ld_queue(chan, desc);
435
436 spin_unlock_bh(&chan->desc_lock);
437
438 return cookie;
439 }
440
441 /**
442 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443 * @chan : Freescale DMA channel
444 * @desc: descriptor to be freed
445 */
446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
447 struct fsl_desc_sw *desc)
448 {
449 list_del(&desc->node);
450 chan_dbg(chan, "LD %p free\n", desc);
451 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
452 }
453
454 /**
455 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456 * @chan : Freescale DMA channel
457 *
458 * Return - The descriptor allocated. NULL for failed.
459 */
460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
461 {
462 struct fsl_desc_sw *desc;
463 dma_addr_t pdesc;
464
465 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
466 if (!desc) {
467 chan_dbg(chan, "out of memory for link descriptor\n");
468 return NULL;
469 }
470
471 INIT_LIST_HEAD(&desc->tx_list);
472 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
473 desc->async_tx.tx_submit = fsl_dma_tx_submit;
474 desc->async_tx.phys = pdesc;
475
476 chan_dbg(chan, "LD %p allocated\n", desc);
477
478 return desc;
479 }
480
481 /**
482 * fsldma_clean_completed_descriptor - free all descriptors which
483 * has been completed and acked
484 * @chan: Freescale DMA channel
485 *
486 * This function is used on all completed and acked descriptors.
487 * All descriptors should only be freed in this function.
488 */
489 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
490 {
491 struct fsl_desc_sw *desc, *_desc;
492
493 /* Run the callback for each descriptor, in order */
494 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
495 if (async_tx_test_ack(&desc->async_tx))
496 fsl_dma_free_descriptor(chan, desc);
497 }
498
499 /**
500 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
501 * @chan: Freescale DMA channel
502 * @desc: descriptor to cleanup and free
503 * @cookie: Freescale DMA transaction identifier
504 *
505 * This function is used on a descriptor which has been executed by the DMA
506 * controller. It will run any callbacks, submit any dependencies.
507 */
508 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
509 struct fsl_desc_sw *desc, dma_cookie_t cookie)
510 {
511 struct dma_async_tx_descriptor *txd = &desc->async_tx;
512 dma_cookie_t ret = cookie;
513
514 BUG_ON(txd->cookie < 0);
515
516 if (txd->cookie > 0) {
517 ret = txd->cookie;
518
519 /* Run the link descriptor callback function */
520 if (txd->callback) {
521 chan_dbg(chan, "LD %p callback\n", desc);
522 txd->callback(txd->callback_param);
523 }
524
525 dma_descriptor_unmap(txd);
526 }
527
528 /* Run any dependencies */
529 dma_run_dependencies(txd);
530
531 return ret;
532 }
533
534 /**
535 * fsldma_clean_running_descriptor - move the completed descriptor from
536 * ld_running to ld_completed
537 * @chan: Freescale DMA channel
538 * @desc: the descriptor which is completed
539 *
540 * Free the descriptor directly if acked by async_tx api, or move it to
541 * queue ld_completed.
542 */
543 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
544 struct fsl_desc_sw *desc)
545 {
546 /* Remove from the list of transactions */
547 list_del(&desc->node);
548
549 /*
550 * the client is allowed to attach dependent operations
551 * until 'ack' is set
552 */
553 if (!async_tx_test_ack(&desc->async_tx)) {
554 /*
555 * Move this descriptor to the list of descriptors which is
556 * completed, but still awaiting the 'ack' bit to be set.
557 */
558 list_add_tail(&desc->node, &chan->ld_completed);
559 return;
560 }
561
562 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
563 }
564
565 /**
566 * fsl_chan_xfer_ld_queue - transfer any pending transactions
567 * @chan : Freescale DMA channel
568 *
569 * HARDWARE STATE: idle
570 * LOCKING: must hold chan->desc_lock
571 */
572 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
573 {
574 struct fsl_desc_sw *desc;
575
576 /*
577 * If the list of pending descriptors is empty, then we
578 * don't need to do any work at all
579 */
580 if (list_empty(&chan->ld_pending)) {
581 chan_dbg(chan, "no pending LDs\n");
582 return;
583 }
584
585 /*
586 * The DMA controller is not idle, which means that the interrupt
587 * handler will start any queued transactions when it runs after
588 * this transaction finishes
589 */
590 if (!chan->idle) {
591 chan_dbg(chan, "DMA controller still busy\n");
592 return;
593 }
594
595 /*
596 * If there are some link descriptors which have not been
597 * transferred, we need to start the controller
598 */
599
600 /*
601 * Move all elements from the queue of pending transactions
602 * onto the list of running transactions
603 */
604 chan_dbg(chan, "idle, starting controller\n");
605 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
606 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
607
608 /*
609 * The 85xx DMA controller doesn't clear the channel start bit
610 * automatically at the end of a transfer. Therefore we must clear
611 * it in software before starting the transfer.
612 */
613 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
614 u32 mode;
615
616 mode = get_mr(chan);
617 mode &= ~FSL_DMA_MR_CS;
618 set_mr(chan, mode);
619 }
620
621 /*
622 * Program the descriptor's address into the DMA controller,
623 * then start the DMA transaction
624 */
625 set_cdar(chan, desc->async_tx.phys);
626 get_cdar(chan);
627
628 dma_start(chan);
629 chan->idle = false;
630 }
631
632 /**
633 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
634 * and move them to ld_completed to free until flag 'ack' is set
635 * @chan: Freescale DMA channel
636 *
637 * This function is used on descriptors which have been executed by the DMA
638 * controller. It will run any callbacks, submit any dependencies, then
639 * free these descriptors if flag 'ack' is set.
640 */
641 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
642 {
643 struct fsl_desc_sw *desc, *_desc;
644 dma_cookie_t cookie = 0;
645 dma_addr_t curr_phys = get_cdar(chan);
646 int seen_current = 0;
647
648 fsldma_clean_completed_descriptor(chan);
649
650 /* Run the callback for each descriptor, in order */
651 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
652 /*
653 * do not advance past the current descriptor loaded into the
654 * hardware channel, subsequent descriptors are either in
655 * process or have not been submitted
656 */
657 if (seen_current)
658 break;
659
660 /*
661 * stop the search if we reach the current descriptor and the
662 * channel is busy
663 */
664 if (desc->async_tx.phys == curr_phys) {
665 seen_current = 1;
666 if (!dma_is_idle(chan))
667 break;
668 }
669
670 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
671
672 fsldma_clean_running_descriptor(chan, desc);
673 }
674
675 /*
676 * Start any pending transactions automatically
677 *
678 * In the ideal case, we keep the DMA controller busy while we go
679 * ahead and free the descriptors below.
680 */
681 fsl_chan_xfer_ld_queue(chan);
682
683 if (cookie > 0)
684 chan->common.completed_cookie = cookie;
685 }
686
687 /**
688 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
689 * @chan : Freescale DMA channel
690 *
691 * This function will create a dma pool for descriptor allocation.
692 *
693 * Return - The number of descriptors allocated.
694 */
695 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
696 {
697 struct fsldma_chan *chan = to_fsl_chan(dchan);
698
699 /* Has this channel already been allocated? */
700 if (chan->desc_pool)
701 return 1;
702
703 /*
704 * We need the descriptor to be aligned to 32bytes
705 * for meeting FSL DMA specification requirement.
706 */
707 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
708 sizeof(struct fsl_desc_sw),
709 __alignof__(struct fsl_desc_sw), 0);
710 if (!chan->desc_pool) {
711 chan_err(chan, "unable to allocate descriptor pool\n");
712 return -ENOMEM;
713 }
714
715 /* there is at least one descriptor free to be allocated */
716 return 1;
717 }
718
719 /**
720 * fsldma_free_desc_list - Free all descriptors in a queue
721 * @chan: Freescae DMA channel
722 * @list: the list to free
723 *
724 * LOCKING: must hold chan->desc_lock
725 */
726 static void fsldma_free_desc_list(struct fsldma_chan *chan,
727 struct list_head *list)
728 {
729 struct fsl_desc_sw *desc, *_desc;
730
731 list_for_each_entry_safe(desc, _desc, list, node)
732 fsl_dma_free_descriptor(chan, desc);
733 }
734
735 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
736 struct list_head *list)
737 {
738 struct fsl_desc_sw *desc, *_desc;
739
740 list_for_each_entry_safe_reverse(desc, _desc, list, node)
741 fsl_dma_free_descriptor(chan, desc);
742 }
743
744 /**
745 * fsl_dma_free_chan_resources - Free all resources of the channel.
746 * @chan : Freescale DMA channel
747 */
748 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
749 {
750 struct fsldma_chan *chan = to_fsl_chan(dchan);
751
752 chan_dbg(chan, "free all channel resources\n");
753 spin_lock_bh(&chan->desc_lock);
754 fsldma_cleanup_descriptors(chan);
755 fsldma_free_desc_list(chan, &chan->ld_pending);
756 fsldma_free_desc_list(chan, &chan->ld_running);
757 fsldma_free_desc_list(chan, &chan->ld_completed);
758 spin_unlock_bh(&chan->desc_lock);
759
760 dma_pool_destroy(chan->desc_pool);
761 chan->desc_pool = NULL;
762 }
763
764 static struct dma_async_tx_descriptor *
765 fsl_dma_prep_memcpy(struct dma_chan *dchan,
766 dma_addr_t dma_dst, dma_addr_t dma_src,
767 size_t len, unsigned long flags)
768 {
769 struct fsldma_chan *chan;
770 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
771 size_t copy;
772
773 if (!dchan)
774 return NULL;
775
776 if (!len)
777 return NULL;
778
779 chan = to_fsl_chan(dchan);
780
781 do {
782
783 /* Allocate the link descriptor from DMA pool */
784 new = fsl_dma_alloc_descriptor(chan);
785 if (!new) {
786 chan_err(chan, "%s\n", msg_ld_oom);
787 goto fail;
788 }
789
790 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
791
792 set_desc_cnt(chan, &new->hw, copy);
793 set_desc_src(chan, &new->hw, dma_src);
794 set_desc_dst(chan, &new->hw, dma_dst);
795
796 if (!first)
797 first = new;
798 else
799 set_desc_next(chan, &prev->hw, new->async_tx.phys);
800
801 new->async_tx.cookie = 0;
802 async_tx_ack(&new->async_tx);
803
804 prev = new;
805 len -= copy;
806 dma_src += copy;
807 dma_dst += copy;
808
809 /* Insert the link descriptor to the LD ring */
810 list_add_tail(&new->node, &first->tx_list);
811 } while (len);
812
813 new->async_tx.flags = flags; /* client is in control of this ack */
814 new->async_tx.cookie = -EBUSY;
815
816 /* Set End-of-link to the last link descriptor of new list */
817 set_ld_eol(chan, new);
818
819 return &first->async_tx;
820
821 fail:
822 if (!first)
823 return NULL;
824
825 fsldma_free_desc_list_reverse(chan, &first->tx_list);
826 return NULL;
827 }
828
829 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
830 struct scatterlist *dst_sg, unsigned int dst_nents,
831 struct scatterlist *src_sg, unsigned int src_nents,
832 unsigned long flags)
833 {
834 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
835 struct fsldma_chan *chan = to_fsl_chan(dchan);
836 size_t dst_avail, src_avail;
837 dma_addr_t dst, src;
838 size_t len;
839
840 /* basic sanity checks */
841 if (dst_nents == 0 || src_nents == 0)
842 return NULL;
843
844 if (dst_sg == NULL || src_sg == NULL)
845 return NULL;
846
847 /*
848 * TODO: should we check that both scatterlists have the same
849 * TODO: number of bytes in total? Is that really an error?
850 */
851
852 /* get prepared for the loop */
853 dst_avail = sg_dma_len(dst_sg);
854 src_avail = sg_dma_len(src_sg);
855
856 /* run until we are out of scatterlist entries */
857 while (true) {
858
859 /* create the largest transaction possible */
860 len = min_t(size_t, src_avail, dst_avail);
861 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
862 if (len == 0)
863 goto fetch;
864
865 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
866 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
867
868 /* allocate and populate the descriptor */
869 new = fsl_dma_alloc_descriptor(chan);
870 if (!new) {
871 chan_err(chan, "%s\n", msg_ld_oom);
872 goto fail;
873 }
874
875 set_desc_cnt(chan, &new->hw, len);
876 set_desc_src(chan, &new->hw, src);
877 set_desc_dst(chan, &new->hw, dst);
878
879 if (!first)
880 first = new;
881 else
882 set_desc_next(chan, &prev->hw, new->async_tx.phys);
883
884 new->async_tx.cookie = 0;
885 async_tx_ack(&new->async_tx);
886 prev = new;
887
888 /* Insert the link descriptor to the LD ring */
889 list_add_tail(&new->node, &first->tx_list);
890
891 /* update metadata */
892 dst_avail -= len;
893 src_avail -= len;
894
895 fetch:
896 /* fetch the next dst scatterlist entry */
897 if (dst_avail == 0) {
898
899 /* no more entries: we're done */
900 if (dst_nents == 0)
901 break;
902
903 /* fetch the next entry: if there are no more: done */
904 dst_sg = sg_next(dst_sg);
905 if (dst_sg == NULL)
906 break;
907
908 dst_nents--;
909 dst_avail = sg_dma_len(dst_sg);
910 }
911
912 /* fetch the next src scatterlist entry */
913 if (src_avail == 0) {
914
915 /* no more entries: we're done */
916 if (src_nents == 0)
917 break;
918
919 /* fetch the next entry: if there are no more: done */
920 src_sg = sg_next(src_sg);
921 if (src_sg == NULL)
922 break;
923
924 src_nents--;
925 src_avail = sg_dma_len(src_sg);
926 }
927 }
928
929 new->async_tx.flags = flags; /* client is in control of this ack */
930 new->async_tx.cookie = -EBUSY;
931
932 /* Set End-of-link to the last link descriptor of new list */
933 set_ld_eol(chan, new);
934
935 return &first->async_tx;
936
937 fail:
938 if (!first)
939 return NULL;
940
941 fsldma_free_desc_list_reverse(chan, &first->tx_list);
942 return NULL;
943 }
944
945 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
946 {
947 struct fsldma_chan *chan;
948
949 if (!dchan)
950 return -EINVAL;
951
952 chan = to_fsl_chan(dchan);
953
954 spin_lock_bh(&chan->desc_lock);
955
956 /* Halt the DMA engine */
957 dma_halt(chan);
958
959 /* Remove and free all of the descriptors in the LD queue */
960 fsldma_free_desc_list(chan, &chan->ld_pending);
961 fsldma_free_desc_list(chan, &chan->ld_running);
962 fsldma_free_desc_list(chan, &chan->ld_completed);
963 chan->idle = true;
964
965 spin_unlock_bh(&chan->desc_lock);
966 return 0;
967 }
968
969 static int fsl_dma_device_config(struct dma_chan *dchan,
970 struct dma_slave_config *config)
971 {
972 struct fsldma_chan *chan;
973 int size;
974
975 if (!dchan)
976 return -EINVAL;
977
978 chan = to_fsl_chan(dchan);
979
980 /* make sure the channel supports setting burst size */
981 if (!chan->set_request_count)
982 return -ENXIO;
983
984 /* we set the controller burst size depending on direction */
985 if (config->direction == DMA_MEM_TO_DEV)
986 size = config->dst_addr_width * config->dst_maxburst;
987 else
988 size = config->src_addr_width * config->src_maxburst;
989
990 chan->set_request_count(chan, size);
991 return 0;
992 }
993
994
995 /**
996 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
997 * @chan : Freescale DMA channel
998 */
999 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1000 {
1001 struct fsldma_chan *chan = to_fsl_chan(dchan);
1002
1003 spin_lock_bh(&chan->desc_lock);
1004 fsl_chan_xfer_ld_queue(chan);
1005 spin_unlock_bh(&chan->desc_lock);
1006 }
1007
1008 /**
1009 * fsl_tx_status - Determine the DMA status
1010 * @chan : Freescale DMA channel
1011 */
1012 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1013 dma_cookie_t cookie,
1014 struct dma_tx_state *txstate)
1015 {
1016 struct fsldma_chan *chan = to_fsl_chan(dchan);
1017 enum dma_status ret;
1018
1019 ret = dma_cookie_status(dchan, cookie, txstate);
1020 if (ret == DMA_COMPLETE)
1021 return ret;
1022
1023 spin_lock_bh(&chan->desc_lock);
1024 fsldma_cleanup_descriptors(chan);
1025 spin_unlock_bh(&chan->desc_lock);
1026
1027 return dma_cookie_status(dchan, cookie, txstate);
1028 }
1029
1030 /*----------------------------------------------------------------------------*/
1031 /* Interrupt Handling */
1032 /*----------------------------------------------------------------------------*/
1033
1034 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1035 {
1036 struct fsldma_chan *chan = data;
1037 u32 stat;
1038
1039 /* save and clear the status register */
1040 stat = get_sr(chan);
1041 set_sr(chan, stat);
1042 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1043
1044 /* check that this was really our device */
1045 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1046 if (!stat)
1047 return IRQ_NONE;
1048
1049 if (stat & FSL_DMA_SR_TE)
1050 chan_err(chan, "Transfer Error!\n");
1051
1052 /*
1053 * Programming Error
1054 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1055 * trigger a PE interrupt.
1056 */
1057 if (stat & FSL_DMA_SR_PE) {
1058 chan_dbg(chan, "irq: Programming Error INT\n");
1059 stat &= ~FSL_DMA_SR_PE;
1060 if (get_bcr(chan) != 0)
1061 chan_err(chan, "Programming Error!\n");
1062 }
1063
1064 /*
1065 * For MPC8349, EOCDI event need to update cookie
1066 * and start the next transfer if it exist.
1067 */
1068 if (stat & FSL_DMA_SR_EOCDI) {
1069 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1070 stat &= ~FSL_DMA_SR_EOCDI;
1071 }
1072
1073 /*
1074 * If it current transfer is the end-of-transfer,
1075 * we should clear the Channel Start bit for
1076 * prepare next transfer.
1077 */
1078 if (stat & FSL_DMA_SR_EOLNI) {
1079 chan_dbg(chan, "irq: End-of-link INT\n");
1080 stat &= ~FSL_DMA_SR_EOLNI;
1081 }
1082
1083 /* check that the DMA controller is really idle */
1084 if (!dma_is_idle(chan))
1085 chan_err(chan, "irq: controller not idle!\n");
1086
1087 /* check that we handled all of the bits */
1088 if (stat)
1089 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1090
1091 /*
1092 * Schedule the tasklet to handle all cleanup of the current
1093 * transaction. It will start a new transaction if there is
1094 * one pending.
1095 */
1096 tasklet_schedule(&chan->tasklet);
1097 chan_dbg(chan, "irq: Exit\n");
1098 return IRQ_HANDLED;
1099 }
1100
1101 static void dma_do_tasklet(unsigned long data)
1102 {
1103 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1104
1105 chan_dbg(chan, "tasklet entry\n");
1106
1107 spin_lock_bh(&chan->desc_lock);
1108
1109 /* the hardware is now idle and ready for more */
1110 chan->idle = true;
1111
1112 /* Run all cleanup for descriptors which have been completed */
1113 fsldma_cleanup_descriptors(chan);
1114
1115 spin_unlock_bh(&chan->desc_lock);
1116
1117 chan_dbg(chan, "tasklet exit\n");
1118 }
1119
1120 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1121 {
1122 struct fsldma_device *fdev = data;
1123 struct fsldma_chan *chan;
1124 unsigned int handled = 0;
1125 u32 gsr, mask;
1126 int i;
1127
1128 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1129 : in_le32(fdev->regs);
1130 mask = 0xff000000;
1131 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1132
1133 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1134 chan = fdev->chan[i];
1135 if (!chan)
1136 continue;
1137
1138 if (gsr & mask) {
1139 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1140 fsldma_chan_irq(irq, chan);
1141 handled++;
1142 }
1143
1144 gsr &= ~mask;
1145 mask >>= 8;
1146 }
1147
1148 return IRQ_RETVAL(handled);
1149 }
1150
1151 static void fsldma_free_irqs(struct fsldma_device *fdev)
1152 {
1153 struct fsldma_chan *chan;
1154 int i;
1155
1156 if (fdev->irq != NO_IRQ) {
1157 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1158 free_irq(fdev->irq, fdev);
1159 return;
1160 }
1161
1162 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1163 chan = fdev->chan[i];
1164 if (chan && chan->irq != NO_IRQ) {
1165 chan_dbg(chan, "free per-channel IRQ\n");
1166 free_irq(chan->irq, chan);
1167 }
1168 }
1169 }
1170
1171 static int fsldma_request_irqs(struct fsldma_device *fdev)
1172 {
1173 struct fsldma_chan *chan;
1174 int ret;
1175 int i;
1176
1177 /* if we have a per-controller IRQ, use that */
1178 if (fdev->irq != NO_IRQ) {
1179 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1180 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1181 "fsldma-controller", fdev);
1182 return ret;
1183 }
1184
1185 /* no per-controller IRQ, use the per-channel IRQs */
1186 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1187 chan = fdev->chan[i];
1188 if (!chan)
1189 continue;
1190
1191 if (chan->irq == NO_IRQ) {
1192 chan_err(chan, "interrupts property missing in device tree\n");
1193 ret = -ENODEV;
1194 goto out_unwind;
1195 }
1196
1197 chan_dbg(chan, "request per-channel IRQ\n");
1198 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1199 "fsldma-chan", chan);
1200 if (ret) {
1201 chan_err(chan, "unable to request per-channel IRQ\n");
1202 goto out_unwind;
1203 }
1204 }
1205
1206 return 0;
1207
1208 out_unwind:
1209 for (/* none */; i >= 0; i--) {
1210 chan = fdev->chan[i];
1211 if (!chan)
1212 continue;
1213
1214 if (chan->irq == NO_IRQ)
1215 continue;
1216
1217 free_irq(chan->irq, chan);
1218 }
1219
1220 return ret;
1221 }
1222
1223 /*----------------------------------------------------------------------------*/
1224 /* OpenFirmware Subsystem */
1225 /*----------------------------------------------------------------------------*/
1226
1227 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1228 struct device_node *node, u32 feature, const char *compatible)
1229 {
1230 struct fsldma_chan *chan;
1231 struct resource res;
1232 int err;
1233
1234 /* alloc channel */
1235 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1236 if (!chan) {
1237 err = -ENOMEM;
1238 goto out_return;
1239 }
1240
1241 /* ioremap registers for use */
1242 chan->regs = of_iomap(node, 0);
1243 if (!chan->regs) {
1244 dev_err(fdev->dev, "unable to ioremap registers\n");
1245 err = -ENOMEM;
1246 goto out_free_chan;
1247 }
1248
1249 err = of_address_to_resource(node, 0, &res);
1250 if (err) {
1251 dev_err(fdev->dev, "unable to find 'reg' property\n");
1252 goto out_iounmap_regs;
1253 }
1254
1255 chan->feature = feature;
1256 if (!fdev->feature)
1257 fdev->feature = chan->feature;
1258
1259 /*
1260 * If the DMA device's feature is different than the feature
1261 * of its channels, report the bug
1262 */
1263 WARN_ON(fdev->feature != chan->feature);
1264
1265 chan->dev = fdev->dev;
1266 chan->id = (res.start & 0xfff) < 0x300 ?
1267 ((res.start - 0x100) & 0xfff) >> 7 :
1268 ((res.start - 0x200) & 0xfff) >> 7;
1269 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1270 dev_err(fdev->dev, "too many channels for device\n");
1271 err = -EINVAL;
1272 goto out_iounmap_regs;
1273 }
1274
1275 fdev->chan[chan->id] = chan;
1276 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1277 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1278
1279 /* Initialize the channel */
1280 dma_init(chan);
1281
1282 /* Clear cdar registers */
1283 set_cdar(chan, 0);
1284
1285 switch (chan->feature & FSL_DMA_IP_MASK) {
1286 case FSL_DMA_IP_85XX:
1287 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1288 case FSL_DMA_IP_83XX:
1289 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1290 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1291 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1292 chan->set_request_count = fsl_chan_set_request_count;
1293 }
1294
1295 spin_lock_init(&chan->desc_lock);
1296 INIT_LIST_HEAD(&chan->ld_pending);
1297 INIT_LIST_HEAD(&chan->ld_running);
1298 INIT_LIST_HEAD(&chan->ld_completed);
1299 chan->idle = true;
1300 #ifdef CONFIG_PM
1301 chan->pm_state = RUNNING;
1302 #endif
1303
1304 chan->common.device = &fdev->common;
1305 dma_cookie_init(&chan->common);
1306
1307 /* find the IRQ line, if it exists in the device tree */
1308 chan->irq = irq_of_parse_and_map(node, 0);
1309
1310 /* Add the channel to DMA device channel list */
1311 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1312
1313 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1314 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1315
1316 return 0;
1317
1318 out_iounmap_regs:
1319 iounmap(chan->regs);
1320 out_free_chan:
1321 kfree(chan);
1322 out_return:
1323 return err;
1324 }
1325
1326 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1327 {
1328 irq_dispose_mapping(chan->irq);
1329 list_del(&chan->common.device_node);
1330 iounmap(chan->regs);
1331 kfree(chan);
1332 }
1333
1334 static int fsldma_of_probe(struct platform_device *op)
1335 {
1336 struct fsldma_device *fdev;
1337 struct device_node *child;
1338 int err;
1339
1340 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1341 if (!fdev) {
1342 err = -ENOMEM;
1343 goto out_return;
1344 }
1345
1346 fdev->dev = &op->dev;
1347 INIT_LIST_HEAD(&fdev->common.channels);
1348
1349 /* ioremap the registers for use */
1350 fdev->regs = of_iomap(op->dev.of_node, 0);
1351 if (!fdev->regs) {
1352 dev_err(&op->dev, "unable to ioremap registers\n");
1353 err = -ENOMEM;
1354 goto out_free_fdev;
1355 }
1356
1357 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1358 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1359
1360 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1361 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1362 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1363 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1364 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1365 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1366 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1367 fdev->common.device_tx_status = fsl_tx_status;
1368 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1369 fdev->common.device_config = fsl_dma_device_config;
1370 fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1371 fdev->common.dev = &op->dev;
1372
1373 fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1374 fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1375 fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1376 fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1377
1378 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1379
1380 platform_set_drvdata(op, fdev);
1381
1382 /*
1383 * We cannot use of_platform_bus_probe() because there is no
1384 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1385 * channel object.
1386 */
1387 for_each_child_of_node(op->dev.of_node, child) {
1388 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1389 fsl_dma_chan_probe(fdev, child,
1390 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1391 "fsl,eloplus-dma-channel");
1392 }
1393
1394 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1395 fsl_dma_chan_probe(fdev, child,
1396 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1397 "fsl,elo-dma-channel");
1398 }
1399 }
1400
1401 /*
1402 * Hookup the IRQ handler(s)
1403 *
1404 * If we have a per-controller interrupt, we prefer that to the
1405 * per-channel interrupts to reduce the number of shared interrupt
1406 * handlers on the same IRQ line
1407 */
1408 err = fsldma_request_irqs(fdev);
1409 if (err) {
1410 dev_err(fdev->dev, "unable to request IRQs\n");
1411 goto out_free_fdev;
1412 }
1413
1414 dma_async_device_register(&fdev->common);
1415 return 0;
1416
1417 out_free_fdev:
1418 irq_dispose_mapping(fdev->irq);
1419 kfree(fdev);
1420 out_return:
1421 return err;
1422 }
1423
1424 static int fsldma_of_remove(struct platform_device *op)
1425 {
1426 struct fsldma_device *fdev;
1427 unsigned int i;
1428
1429 fdev = platform_get_drvdata(op);
1430 dma_async_device_unregister(&fdev->common);
1431
1432 fsldma_free_irqs(fdev);
1433
1434 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1435 if (fdev->chan[i])
1436 fsl_dma_chan_remove(fdev->chan[i]);
1437 }
1438
1439 iounmap(fdev->regs);
1440 kfree(fdev);
1441
1442 return 0;
1443 }
1444
1445 #ifdef CONFIG_PM
1446 static int fsldma_suspend_late(struct device *dev)
1447 {
1448 struct platform_device *pdev = to_platform_device(dev);
1449 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1450 struct fsldma_chan *chan;
1451 int i;
1452
1453 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1454 chan = fdev->chan[i];
1455 if (!chan)
1456 continue;
1457
1458 spin_lock_bh(&chan->desc_lock);
1459 if (unlikely(!chan->idle))
1460 goto out;
1461 chan->regs_save.mr = get_mr(chan);
1462 chan->pm_state = SUSPENDED;
1463 spin_unlock_bh(&chan->desc_lock);
1464 }
1465 return 0;
1466
1467 out:
1468 for (; i >= 0; i--) {
1469 chan = fdev->chan[i];
1470 if (!chan)
1471 continue;
1472 chan->pm_state = RUNNING;
1473 spin_unlock_bh(&chan->desc_lock);
1474 }
1475 return -EBUSY;
1476 }
1477
1478 static int fsldma_resume_early(struct device *dev)
1479 {
1480 struct platform_device *pdev = to_platform_device(dev);
1481 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1482 struct fsldma_chan *chan;
1483 u32 mode;
1484 int i;
1485
1486 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1487 chan = fdev->chan[i];
1488 if (!chan)
1489 continue;
1490
1491 spin_lock_bh(&chan->desc_lock);
1492 mode = chan->regs_save.mr
1493 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1494 set_mr(chan, mode);
1495 chan->pm_state = RUNNING;
1496 spin_unlock_bh(&chan->desc_lock);
1497 }
1498
1499 return 0;
1500 }
1501
1502 static const struct dev_pm_ops fsldma_pm_ops = {
1503 .suspend_late = fsldma_suspend_late,
1504 .resume_early = fsldma_resume_early,
1505 };
1506 #endif
1507
1508 static const struct of_device_id fsldma_of_ids[] = {
1509 { .compatible = "fsl,elo3-dma", },
1510 { .compatible = "fsl,eloplus-dma", },
1511 { .compatible = "fsl,elo-dma", },
1512 {}
1513 };
1514 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1515
1516 static struct platform_driver fsldma_of_driver = {
1517 .driver = {
1518 .name = "fsl-elo-dma",
1519 .of_match_table = fsldma_of_ids,
1520 #ifdef CONFIG_PM
1521 .pm = &fsldma_pm_ops,
1522 #endif
1523 },
1524 .probe = fsldma_of_probe,
1525 .remove = fsldma_of_remove,
1526 };
1527
1528 /*----------------------------------------------------------------------------*/
1529 /* Module Init / Exit */
1530 /*----------------------------------------------------------------------------*/
1531
1532 static __init int fsldma_init(void)
1533 {
1534 pr_info("Freescale Elo series DMA driver\n");
1535 return platform_driver_register(&fsldma_of_driver);
1536 }
1537
1538 static void __exit fsldma_exit(void)
1539 {
1540 platform_driver_unregister(&fsldma_of_driver);
1541 }
1542
1543 subsys_initcall(fsldma_init);
1544 module_exit(fsldma_exit);
1545
1546 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1547 MODULE_LICENSE("GPL");
This page took 0.102412 seconds and 5 git commands to generate.