selinux: fix overflow and 0 length allocations
[deliverable/linux.git] / drivers / dma / mic_x100_dma.c
1 /*
2 * Intel MIC Platform Software Stack (MPSS)
3 *
4 * Copyright(c) 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * The full GNU General Public License is included in this distribution in
16 * the file called "COPYING".
17 *
18 * Intel MIC X100 DMA Driver.
19 *
20 * Adapted from IOAT dma driver.
21 */
22 #include <linux/module.h>
23 #include <linux/io.h>
24 #include <linux/seq_file.h>
25 #include <linux/vmalloc.h>
26
27 #include "mic_x100_dma.h"
28
29 #define MIC_DMA_MAX_XFER_SIZE_CARD (1 * 1024 * 1024 -\
30 MIC_DMA_ALIGN_BYTES)
31 #define MIC_DMA_MAX_XFER_SIZE_HOST (1 * 1024 * 1024 >> 1)
32 #define MIC_DMA_DESC_TYPE_SHIFT 60
33 #define MIC_DMA_MEMCPY_LEN_SHIFT 46
34 #define MIC_DMA_STAT_INTR_SHIFT 59
35
36 /* high-water mark for pushing dma descriptors */
37 static int mic_dma_pending_level = 4;
38
39 /* Status descriptor is used to write a 64 bit value to a memory location */
40 enum mic_dma_desc_format_type {
41 MIC_DMA_MEMCPY = 1,
42 MIC_DMA_STATUS,
43 };
44
45 static inline u32 mic_dma_hw_ring_inc(u32 val)
46 {
47 return (val + 1) % MIC_DMA_DESC_RX_SIZE;
48 }
49
50 static inline u32 mic_dma_hw_ring_dec(u32 val)
51 {
52 return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1;
53 }
54
55 static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch)
56 {
57 ch->head = mic_dma_hw_ring_inc(ch->head);
58 }
59
60 /* Prepare a memcpy desc */
61 static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc,
62 dma_addr_t src_phys, dma_addr_t dst_phys, u64 size)
63 {
64 u64 qw0, qw1;
65
66 qw0 = src_phys;
67 qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT;
68 qw1 = MIC_DMA_MEMCPY;
69 qw1 <<= MIC_DMA_DESC_TYPE_SHIFT;
70 qw1 |= dst_phys;
71 desc->qw0 = qw0;
72 desc->qw1 = qw1;
73 }
74
75 /* Prepare a status desc. with @data to be written at @dst_phys */
76 static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data,
77 dma_addr_t dst_phys, bool generate_intr)
78 {
79 u64 qw0, qw1;
80
81 qw0 = data;
82 qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys;
83 if (generate_intr)
84 qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT);
85 desc->qw0 = qw0;
86 desc->qw1 = qw1;
87 }
88
89 static void mic_dma_cleanup(struct mic_dma_chan *ch)
90 {
91 struct dma_async_tx_descriptor *tx;
92 u32 tail;
93 u32 last_tail;
94
95 spin_lock(&ch->cleanup_lock);
96 tail = mic_dma_read_cmp_cnt(ch);
97 /*
98 * This is the barrier pair for smp_wmb() in fn.
99 * mic_dma_tx_submit_unlock. It's required so that we read the
100 * updated cookie value from tx->cookie.
101 */
102 smp_rmb();
103 for (last_tail = ch->last_tail; tail != last_tail;) {
104 tx = &ch->tx_array[last_tail];
105 if (tx->cookie) {
106 dma_cookie_complete(tx);
107 if (tx->callback) {
108 tx->callback(tx->callback_param);
109 tx->callback = NULL;
110 }
111 }
112 last_tail = mic_dma_hw_ring_inc(last_tail);
113 }
114 /* finish all completion callbacks before incrementing tail */
115 smp_mb();
116 ch->last_tail = last_tail;
117 spin_unlock(&ch->cleanup_lock);
118 }
119
120 static u32 mic_dma_ring_count(u32 head, u32 tail)
121 {
122 u32 count;
123
124 if (head >= tail)
125 count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head);
126 else
127 count = tail - head;
128 return count - 1;
129 }
130
131 /* Returns the num. of free descriptors on success, -ENOMEM on failure */
132 static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required)
133 {
134 struct device *dev = mic_dma_ch_to_device(ch);
135 u32 count;
136
137 count = mic_dma_ring_count(ch->head, ch->last_tail);
138 if (count < required) {
139 mic_dma_cleanup(ch);
140 count = mic_dma_ring_count(ch->head, ch->last_tail);
141 }
142
143 if (count < required) {
144 dev_dbg(dev, "Not enough desc space");
145 dev_dbg(dev, "%s %d required=%u, avail=%u\n",
146 __func__, __LINE__, required, count);
147 return -ENOMEM;
148 } else {
149 return count;
150 }
151 }
152
153 /* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/
154 static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src,
155 dma_addr_t dst, size_t len)
156 {
157 size_t current_transfer_len;
158 size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size;
159 /* 3 is added to make sure we have enough space for status desc */
160 int num_desc = len / max_xfer_size + 3;
161 int ret;
162
163 if (len % max_xfer_size)
164 num_desc++;
165
166 ret = mic_dma_avail_desc_ring_space(ch, num_desc);
167 if (ret < 0)
168 return ret;
169 do {
170 current_transfer_len = min(len, max_xfer_size);
171 mic_dma_memcpy_desc(&ch->desc_ring[ch->head],
172 src, dst, current_transfer_len);
173 mic_dma_hw_ring_inc_head(ch);
174 len -= current_transfer_len;
175 dst = dst + current_transfer_len;
176 src = src + current_transfer_len;
177 } while (len > 0);
178 return 0;
179 }
180
181 /* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */
182 static void mic_dma_prog_intr(struct mic_dma_chan *ch)
183 {
184 mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
185 ch->status_dest_micpa, false);
186 mic_dma_hw_ring_inc_head(ch);
187 mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
188 ch->status_dest_micpa, true);
189 mic_dma_hw_ring_inc_head(ch);
190 }
191
192 /* Wrapper function to program memcpy descriptors/status descriptors */
193 static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src,
194 dma_addr_t dst, size_t len)
195 {
196 if (len && -ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len)) {
197 return -ENOMEM;
198 } else {
199 /* 3 is the maximum number of status descriptors */
200 int ret = mic_dma_avail_desc_ring_space(ch, 3);
201
202 if (ret < 0)
203 return ret;
204 }
205
206 /* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */
207 if (flags & DMA_PREP_FENCE) {
208 mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
209 ch->status_dest_micpa, false);
210 mic_dma_hw_ring_inc_head(ch);
211 }
212
213 if (flags & DMA_PREP_INTERRUPT)
214 mic_dma_prog_intr(ch);
215
216 return 0;
217 }
218
219 static inline void mic_dma_issue_pending(struct dma_chan *ch)
220 {
221 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
222
223 spin_lock(&mic_ch->issue_lock);
224 /*
225 * Write to head triggers h/w to act on the descriptors.
226 * On MIC, writing the same head value twice causes
227 * a h/w error. On second write, h/w assumes we filled
228 * the entire ring & overwrote some of the descriptors.
229 */
230 if (mic_ch->issued == mic_ch->submitted)
231 goto out;
232 mic_ch->issued = mic_ch->submitted;
233 /*
234 * make descriptor updates visible before advancing head,
235 * this is purposefully not smp_wmb() since we are also
236 * publishing the descriptor updates to a dma device
237 */
238 wmb();
239 mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued);
240 out:
241 spin_unlock(&mic_ch->issue_lock);
242 }
243
244 static inline void mic_dma_update_pending(struct mic_dma_chan *ch)
245 {
246 if (mic_dma_ring_count(ch->issued, ch->submitted)
247 > mic_dma_pending_level)
248 mic_dma_issue_pending(&ch->api_ch);
249 }
250
251 static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
252 {
253 struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan);
254 dma_cookie_t cookie;
255
256 dma_cookie_assign(tx);
257 cookie = tx->cookie;
258 /*
259 * We need an smp write barrier here because another CPU might see
260 * an update to submitted and update h/w head even before we
261 * assigned a cookie to this tx.
262 */
263 smp_wmb();
264 mic_ch->submitted = mic_ch->head;
265 spin_unlock(&mic_ch->prep_lock);
266 mic_dma_update_pending(mic_ch);
267 return cookie;
268 }
269
270 static inline struct dma_async_tx_descriptor *
271 allocate_tx(struct mic_dma_chan *ch)
272 {
273 u32 idx = mic_dma_hw_ring_dec(ch->head);
274 struct dma_async_tx_descriptor *tx = &ch->tx_array[idx];
275
276 dma_async_tx_descriptor_init(tx, &ch->api_ch);
277 tx->tx_submit = mic_dma_tx_submit_unlock;
278 return tx;
279 }
280
281 /* Program a status descriptor with dst as address and value to be written */
282 static struct dma_async_tx_descriptor *
283 mic_dma_prep_status_lock(struct dma_chan *ch, dma_addr_t dst, u64 src_val,
284 unsigned long flags)
285 {
286 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
287 int result;
288
289 spin_lock(&mic_ch->prep_lock);
290 result = mic_dma_avail_desc_ring_space(mic_ch, 4);
291 if (result < 0)
292 goto error;
293 mic_dma_prep_status_desc(&mic_ch->desc_ring[mic_ch->head], src_val, dst,
294 false);
295 mic_dma_hw_ring_inc_head(mic_ch);
296 result = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
297 if (result < 0)
298 goto error;
299
300 return allocate_tx(mic_ch);
301 error:
302 dev_err(mic_dma_ch_to_device(mic_ch),
303 "Error enqueueing dma status descriptor, error=%d\n", result);
304 spin_unlock(&mic_ch->prep_lock);
305 return NULL;
306 }
307
308 /*
309 * Prepare a memcpy descriptor to be added to the ring.
310 * Note that the temporary descriptor adds an extra overhead of copying the
311 * descriptor to ring. So, we copy directly to the descriptor ring
312 */
313 static struct dma_async_tx_descriptor *
314 mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
315 dma_addr_t dma_src, size_t len, unsigned long flags)
316 {
317 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
318 struct device *dev = mic_dma_ch_to_device(mic_ch);
319 int result;
320
321 if (!len && !flags)
322 return NULL;
323
324 spin_lock(&mic_ch->prep_lock);
325 result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len);
326 if (result >= 0)
327 return allocate_tx(mic_ch);
328 dev_err(dev, "Error enqueueing dma, error=%d\n", result);
329 spin_unlock(&mic_ch->prep_lock);
330 return NULL;
331 }
332
333 static struct dma_async_tx_descriptor *
334 mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags)
335 {
336 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
337 int ret;
338
339 spin_lock(&mic_ch->prep_lock);
340 ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
341 if (!ret)
342 return allocate_tx(mic_ch);
343 spin_unlock(&mic_ch->prep_lock);
344 return NULL;
345 }
346
347 /* Return the status of the transaction */
348 static enum dma_status
349 mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie,
350 struct dma_tx_state *txstate)
351 {
352 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
353
354 if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate))
355 mic_dma_cleanup(mic_ch);
356
357 return dma_cookie_status(ch, cookie, txstate);
358 }
359
360 static irqreturn_t mic_dma_thread_fn(int irq, void *data)
361 {
362 mic_dma_cleanup((struct mic_dma_chan *)data);
363 return IRQ_HANDLED;
364 }
365
366 static irqreturn_t mic_dma_intr_handler(int irq, void *data)
367 {
368 struct mic_dma_chan *ch = ((struct mic_dma_chan *)data);
369
370 mic_dma_ack_interrupt(ch);
371 return IRQ_WAKE_THREAD;
372 }
373
374 static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch)
375 {
376 u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
377 struct device *dev = &to_mbus_device(ch)->dev;
378
379 desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
380 ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL);
381
382 if (!ch->desc_ring)
383 return -ENOMEM;
384
385 ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring,
386 desc_ring_size, DMA_BIDIRECTIONAL);
387 if (dma_mapping_error(dev, ch->desc_ring_micpa))
388 goto map_error;
389
390 ch->tx_array = vzalloc(MIC_DMA_DESC_RX_SIZE * sizeof(*ch->tx_array));
391 if (!ch->tx_array)
392 goto tx_error;
393 return 0;
394 tx_error:
395 dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size,
396 DMA_BIDIRECTIONAL);
397 map_error:
398 kfree(ch->desc_ring);
399 return -ENOMEM;
400 }
401
402 static void mic_dma_free_desc_ring(struct mic_dma_chan *ch)
403 {
404 u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
405
406 vfree(ch->tx_array);
407 desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
408 dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa,
409 desc_ring_size, DMA_BIDIRECTIONAL);
410 kfree(ch->desc_ring);
411 ch->desc_ring = NULL;
412 }
413
414 static void mic_dma_free_status_dest(struct mic_dma_chan *ch)
415 {
416 dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa,
417 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
418 kfree(ch->status_dest);
419 }
420
421 static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch)
422 {
423 struct device *dev = &to_mbus_device(ch)->dev;
424
425 ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL);
426 if (!ch->status_dest)
427 return -ENOMEM;
428 ch->status_dest_micpa = dma_map_single(dev, ch->status_dest,
429 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
430 if (dma_mapping_error(dev, ch->status_dest_micpa)) {
431 kfree(ch->status_dest);
432 ch->status_dest = NULL;
433 return -ENOMEM;
434 }
435 return 0;
436 }
437
438 static int mic_dma_check_chan(struct mic_dma_chan *ch)
439 {
440 if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) ||
441 mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) {
442 mic_dma_disable_chan(ch);
443 mic_dma_chan_mask_intr(ch);
444 dev_err(mic_dma_ch_to_device(ch),
445 "%s %d error setting up mic dma chan %d\n",
446 __func__, __LINE__, ch->ch_num);
447 return -EBUSY;
448 }
449 return 0;
450 }
451
452 static int mic_dma_chan_setup(struct mic_dma_chan *ch)
453 {
454 if (MIC_DMA_CHAN_MIC == ch->owner)
455 mic_dma_chan_set_owner(ch);
456 mic_dma_disable_chan(ch);
457 mic_dma_chan_mask_intr(ch);
458 mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0);
459 mic_dma_chan_set_desc_ring(ch);
460 ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR);
461 ch->head = ch->last_tail;
462 ch->issued = 0;
463 mic_dma_chan_unmask_intr(ch);
464 mic_dma_enable_chan(ch);
465 return mic_dma_check_chan(ch);
466 }
467
468 static void mic_dma_chan_destroy(struct mic_dma_chan *ch)
469 {
470 mic_dma_disable_chan(ch);
471 mic_dma_chan_mask_intr(ch);
472 }
473
474 static void mic_dma_unregister_dma_device(struct mic_dma_device *mic_dma_dev)
475 {
476 dma_async_device_unregister(&mic_dma_dev->dma_dev);
477 }
478
479 static int mic_dma_setup_irq(struct mic_dma_chan *ch)
480 {
481 ch->cookie =
482 to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch),
483 mic_dma_intr_handler, mic_dma_thread_fn,
484 "mic dma_channel", ch, ch->ch_num);
485 if (IS_ERR(ch->cookie))
486 return PTR_ERR(ch->cookie);
487 return 0;
488 }
489
490 static inline void mic_dma_free_irq(struct mic_dma_chan *ch)
491 {
492 to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch);
493 }
494
495 static int mic_dma_chan_init(struct mic_dma_chan *ch)
496 {
497 int ret = mic_dma_alloc_desc_ring(ch);
498
499 if (ret)
500 goto ring_error;
501 ret = mic_dma_alloc_status_dest(ch);
502 if (ret)
503 goto status_error;
504 ret = mic_dma_chan_setup(ch);
505 if (ret)
506 goto chan_error;
507 return ret;
508 chan_error:
509 mic_dma_free_status_dest(ch);
510 status_error:
511 mic_dma_free_desc_ring(ch);
512 ring_error:
513 return ret;
514 }
515
516 static int mic_dma_drain_chan(struct mic_dma_chan *ch)
517 {
518 struct dma_async_tx_descriptor *tx;
519 int err = 0;
520 dma_cookie_t cookie;
521
522 tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE);
523 if (!tx) {
524 err = -ENOMEM;
525 goto error;
526 }
527
528 cookie = tx->tx_submit(tx);
529 if (dma_submit_error(cookie))
530 err = -ENOMEM;
531 else
532 err = dma_sync_wait(&ch->api_ch, cookie);
533 if (err) {
534 dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n",
535 __func__, __LINE__, ch->ch_num);
536 err = -EIO;
537 }
538 error:
539 mic_dma_cleanup(ch);
540 return err;
541 }
542
543 static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch)
544 {
545 mic_dma_chan_destroy(ch);
546 mic_dma_cleanup(ch);
547 mic_dma_free_status_dest(ch);
548 mic_dma_free_desc_ring(ch);
549 }
550
551 static int mic_dma_init(struct mic_dma_device *mic_dma_dev,
552 enum mic_dma_chan_owner owner)
553 {
554 int i, first_chan = mic_dma_dev->start_ch;
555 struct mic_dma_chan *ch;
556 int ret;
557
558 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
559 unsigned long data;
560 ch = &mic_dma_dev->mic_ch[i];
561 data = (unsigned long)ch;
562 ch->ch_num = i;
563 ch->owner = owner;
564 spin_lock_init(&ch->cleanup_lock);
565 spin_lock_init(&ch->prep_lock);
566 spin_lock_init(&ch->issue_lock);
567 ret = mic_dma_setup_irq(ch);
568 if (ret)
569 goto error;
570 }
571 return 0;
572 error:
573 for (i = i - 1; i >= first_chan; i--)
574 mic_dma_free_irq(ch);
575 return ret;
576 }
577
578 static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev)
579 {
580 int i, first_chan = mic_dma_dev->start_ch;
581 struct mic_dma_chan *ch;
582
583 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
584 ch = &mic_dma_dev->mic_ch[i];
585 mic_dma_free_irq(ch);
586 }
587 }
588
589 static int mic_dma_alloc_chan_resources(struct dma_chan *ch)
590 {
591 int ret = mic_dma_chan_init(to_mic_dma_chan(ch));
592 if (ret)
593 return ret;
594 return MIC_DMA_DESC_RX_SIZE;
595 }
596
597 static void mic_dma_free_chan_resources(struct dma_chan *ch)
598 {
599 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
600 mic_dma_drain_chan(mic_ch);
601 mic_dma_chan_uninit(mic_ch);
602 }
603
604 /* Set the fn. handlers and register the dma device with dma api */
605 static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev,
606 enum mic_dma_chan_owner owner)
607 {
608 int i, first_chan = mic_dma_dev->start_ch;
609
610 dma_cap_zero(mic_dma_dev->dma_dev.cap_mask);
611 /*
612 * This dma engine is not capable of host memory to host memory
613 * transfers
614 */
615 dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask);
616
617 if (MIC_DMA_CHAN_HOST == owner)
618 dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask);
619 mic_dma_dev->dma_dev.device_alloc_chan_resources =
620 mic_dma_alloc_chan_resources;
621 mic_dma_dev->dma_dev.device_free_chan_resources =
622 mic_dma_free_chan_resources;
623 mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status;
624 mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock;
625 mic_dma_dev->dma_dev.device_prep_dma_imm_data =
626 mic_dma_prep_status_lock;
627 mic_dma_dev->dma_dev.device_prep_dma_interrupt =
628 mic_dma_prep_interrupt_lock;
629 mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending;
630 mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT;
631 INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels);
632 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
633 mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev;
634 dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch);
635 list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node,
636 &mic_dma_dev->dma_dev.channels);
637 }
638 return dma_async_device_register(&mic_dma_dev->dma_dev);
639 }
640
641 /*
642 * Initializes dma channels and registers the dma device with the
643 * dma engine api.
644 */
645 static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev,
646 enum mic_dma_chan_owner owner)
647 {
648 struct mic_dma_device *mic_dma_dev;
649 int ret;
650 struct device *dev = &mbdev->dev;
651
652 mic_dma_dev = kzalloc(sizeof(*mic_dma_dev), GFP_KERNEL);
653 if (!mic_dma_dev) {
654 ret = -ENOMEM;
655 goto alloc_error;
656 }
657 mic_dma_dev->mbdev = mbdev;
658 mic_dma_dev->dma_dev.dev = dev;
659 mic_dma_dev->mmio = mbdev->mmio_va;
660 if (MIC_DMA_CHAN_HOST == owner) {
661 mic_dma_dev->start_ch = 0;
662 mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST;
663 } else {
664 mic_dma_dev->start_ch = 4;
665 mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD;
666 }
667 ret = mic_dma_init(mic_dma_dev, owner);
668 if (ret)
669 goto init_error;
670 ret = mic_dma_register_dma_device(mic_dma_dev, owner);
671 if (ret)
672 goto reg_error;
673 return mic_dma_dev;
674 reg_error:
675 mic_dma_uninit(mic_dma_dev);
676 init_error:
677 kfree(mic_dma_dev);
678 mic_dma_dev = NULL;
679 alloc_error:
680 dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret);
681 return mic_dma_dev;
682 }
683
684 static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev)
685 {
686 mic_dma_unregister_dma_device(mic_dma_dev);
687 mic_dma_uninit(mic_dma_dev);
688 kfree(mic_dma_dev);
689 }
690
691 /* DEBUGFS CODE */
692 static int mic_dma_reg_seq_show(struct seq_file *s, void *pos)
693 {
694 struct mic_dma_device *mic_dma_dev = s->private;
695 int i, chan_num, first_chan = mic_dma_dev->start_ch;
696 struct mic_dma_chan *ch;
697
698 seq_printf(s, "SBOX_DCR: %#x\n",
699 mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan],
700 MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR));
701 seq_puts(s, "DMA Channel Registers\n");
702 seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s",
703 "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO");
704 seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT");
705 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
706 ch = &mic_dma_dev->mic_ch[i];
707 chan_num = ch->ch_num;
708 seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x",
709 chan_num,
710 mic_dma_read_reg(ch, MIC_DMA_REG_DCAR),
711 mic_dma_read_reg(ch, MIC_DMA_REG_DTPR),
712 mic_dma_read_reg(ch, MIC_DMA_REG_DHPR),
713 mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI));
714 seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n",
715 mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO),
716 mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR),
717 mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK),
718 mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT));
719 }
720 return 0;
721 }
722
723 static int mic_dma_reg_debug_open(struct inode *inode, struct file *file)
724 {
725 return single_open(file, mic_dma_reg_seq_show, inode->i_private);
726 }
727
728 static int mic_dma_reg_debug_release(struct inode *inode, struct file *file)
729 {
730 return single_release(inode, file);
731 }
732
733 static const struct file_operations mic_dma_reg_ops = {
734 .owner = THIS_MODULE,
735 .open = mic_dma_reg_debug_open,
736 .read = seq_read,
737 .llseek = seq_lseek,
738 .release = mic_dma_reg_debug_release
739 };
740
741 /* Debugfs parent dir */
742 static struct dentry *mic_dma_dbg;
743
744 static int mic_dma_driver_probe(struct mbus_device *mbdev)
745 {
746 struct mic_dma_device *mic_dma_dev;
747 enum mic_dma_chan_owner owner;
748
749 if (MBUS_DEV_DMA_MIC == mbdev->id.device)
750 owner = MIC_DMA_CHAN_MIC;
751 else
752 owner = MIC_DMA_CHAN_HOST;
753
754 mic_dma_dev = mic_dma_dev_reg(mbdev, owner);
755 dev_set_drvdata(&mbdev->dev, mic_dma_dev);
756
757 if (mic_dma_dbg) {
758 mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev),
759 mic_dma_dbg);
760 if (mic_dma_dev->dbg_dir)
761 debugfs_create_file("mic_dma_reg", 0444,
762 mic_dma_dev->dbg_dir, mic_dma_dev,
763 &mic_dma_reg_ops);
764 }
765 return 0;
766 }
767
768 static void mic_dma_driver_remove(struct mbus_device *mbdev)
769 {
770 struct mic_dma_device *mic_dma_dev;
771
772 mic_dma_dev = dev_get_drvdata(&mbdev->dev);
773 debugfs_remove_recursive(mic_dma_dev->dbg_dir);
774 mic_dma_dev_unreg(mic_dma_dev);
775 }
776
777 static struct mbus_device_id id_table[] = {
778 {MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID},
779 {MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID},
780 {0},
781 };
782
783 static struct mbus_driver mic_dma_driver = {
784 .driver.name = KBUILD_MODNAME,
785 .driver.owner = THIS_MODULE,
786 .id_table = id_table,
787 .probe = mic_dma_driver_probe,
788 .remove = mic_dma_driver_remove,
789 };
790
791 static int __init mic_x100_dma_init(void)
792 {
793 int rc = mbus_register_driver(&mic_dma_driver);
794 if (rc)
795 return rc;
796 mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
797 return 0;
798 }
799
800 static void __exit mic_x100_dma_exit(void)
801 {
802 debugfs_remove_recursive(mic_dma_dbg);
803 mbus_unregister_driver(&mic_dma_driver);
804 }
805
806 module_init(mic_x100_dma_init);
807 module_exit(mic_x100_dma_exit);
808
809 MODULE_DEVICE_TABLE(mbus, id_table);
810 MODULE_AUTHOR("Intel Corporation");
811 MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver");
812 MODULE_LICENSE("GPL v2");
This page took 0.052463 seconds and 5 git commands to generate.