Merge remote-tracking branch 'tpmdd/next'
[deliverable/linux.git] / drivers / dma / omap-dma.c
1 /*
2 * OMAP DMAengine support
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/omap-dma.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/of_dma.h>
22 #include <linux/of_device.h>
23
24 #include "virt-dma.h"
25
26 #define OMAP_SDMA_REQUESTS 127
27 #define OMAP_SDMA_CHANNELS 32
28
29 struct omap_dmadev {
30 struct dma_device ddev;
31 spinlock_t lock;
32 void __iomem *base;
33 const struct omap_dma_reg *reg_map;
34 struct omap_system_dma_plat_info *plat;
35 bool legacy;
36 bool ll123_supported;
37 struct dma_pool *desc_pool;
38 unsigned dma_requests;
39 spinlock_t irq_lock;
40 uint32_t irq_enable_mask;
41 struct omap_chan **lch_map;
42 };
43
44 struct omap_chan {
45 struct virt_dma_chan vc;
46 void __iomem *channel_base;
47 const struct omap_dma_reg *reg_map;
48 uint32_t ccr;
49
50 struct dma_slave_config cfg;
51 unsigned dma_sig;
52 bool cyclic;
53 bool paused;
54 bool running;
55
56 int dma_ch;
57 struct omap_desc *desc;
58 unsigned sgidx;
59 };
60
61 #define DESC_NXT_SV_REFRESH (0x1 << 24)
62 #define DESC_NXT_SV_REUSE (0x2 << 24)
63 #define DESC_NXT_DV_REFRESH (0x1 << 26)
64 #define DESC_NXT_DV_REUSE (0x2 << 26)
65 #define DESC_NTYPE_TYPE2 (0x2 << 29)
66
67 /* Type 2 descriptor with Source or Destination address update */
68 struct omap_type2_desc {
69 uint32_t next_desc;
70 uint32_t en;
71 uint32_t addr; /* src or dst */
72 uint16_t fn;
73 uint16_t cicr;
74 uint16_t cdei;
75 uint16_t csei;
76 uint32_t cdfi;
77 uint32_t csfi;
78 } __packed;
79
80 struct omap_sg {
81 dma_addr_t addr;
82 uint32_t en; /* number of elements (24-bit) */
83 uint32_t fn; /* number of frames (16-bit) */
84 int32_t fi; /* for double indexing */
85 int16_t ei; /* for double indexing */
86
87 /* Linked list */
88 struct omap_type2_desc *t2_desc;
89 dma_addr_t t2_desc_paddr;
90 };
91
92 struct omap_desc {
93 struct virt_dma_desc vd;
94 bool using_ll;
95 enum dma_transfer_direction dir;
96 dma_addr_t dev_addr;
97
98 int32_t fi; /* for OMAP_DMA_SYNC_PACKET / double indexing */
99 int16_t ei; /* for double indexing */
100 uint8_t es; /* CSDP_DATA_TYPE_xxx */
101 uint32_t ccr; /* CCR value */
102 uint16_t clnk_ctrl; /* CLNK_CTRL value */
103 uint16_t cicr; /* CICR value */
104 uint32_t csdp; /* CSDP value */
105
106 unsigned sglen;
107 struct omap_sg sg[0];
108 };
109
110 enum {
111 CAPS_0_SUPPORT_LL123 = BIT(20), /* Linked List type1/2/3 */
112 CAPS_0_SUPPORT_LL4 = BIT(21), /* Linked List type4 */
113
114 CCR_FS = BIT(5),
115 CCR_READ_PRIORITY = BIT(6),
116 CCR_ENABLE = BIT(7),
117 CCR_AUTO_INIT = BIT(8), /* OMAP1 only */
118 CCR_REPEAT = BIT(9), /* OMAP1 only */
119 CCR_OMAP31_DISABLE = BIT(10), /* OMAP1 only */
120 CCR_SUSPEND_SENSITIVE = BIT(8), /* OMAP2+ only */
121 CCR_RD_ACTIVE = BIT(9), /* OMAP2+ only */
122 CCR_WR_ACTIVE = BIT(10), /* OMAP2+ only */
123 CCR_SRC_AMODE_CONSTANT = 0 << 12,
124 CCR_SRC_AMODE_POSTINC = 1 << 12,
125 CCR_SRC_AMODE_SGLIDX = 2 << 12,
126 CCR_SRC_AMODE_DBLIDX = 3 << 12,
127 CCR_DST_AMODE_CONSTANT = 0 << 14,
128 CCR_DST_AMODE_POSTINC = 1 << 14,
129 CCR_DST_AMODE_SGLIDX = 2 << 14,
130 CCR_DST_AMODE_DBLIDX = 3 << 14,
131 CCR_CONSTANT_FILL = BIT(16),
132 CCR_TRANSPARENT_COPY = BIT(17),
133 CCR_BS = BIT(18),
134 CCR_SUPERVISOR = BIT(22),
135 CCR_PREFETCH = BIT(23),
136 CCR_TRIGGER_SRC = BIT(24),
137 CCR_BUFFERING_DISABLE = BIT(25),
138 CCR_WRITE_PRIORITY = BIT(26),
139 CCR_SYNC_ELEMENT = 0,
140 CCR_SYNC_FRAME = CCR_FS,
141 CCR_SYNC_BLOCK = CCR_BS,
142 CCR_SYNC_PACKET = CCR_BS | CCR_FS,
143
144 CSDP_DATA_TYPE_8 = 0,
145 CSDP_DATA_TYPE_16 = 1,
146 CSDP_DATA_TYPE_32 = 2,
147 CSDP_SRC_PORT_EMIFF = 0 << 2, /* OMAP1 only */
148 CSDP_SRC_PORT_EMIFS = 1 << 2, /* OMAP1 only */
149 CSDP_SRC_PORT_OCP_T1 = 2 << 2, /* OMAP1 only */
150 CSDP_SRC_PORT_TIPB = 3 << 2, /* OMAP1 only */
151 CSDP_SRC_PORT_OCP_T2 = 4 << 2, /* OMAP1 only */
152 CSDP_SRC_PORT_MPUI = 5 << 2, /* OMAP1 only */
153 CSDP_SRC_PACKED = BIT(6),
154 CSDP_SRC_BURST_1 = 0 << 7,
155 CSDP_SRC_BURST_16 = 1 << 7,
156 CSDP_SRC_BURST_32 = 2 << 7,
157 CSDP_SRC_BURST_64 = 3 << 7,
158 CSDP_DST_PORT_EMIFF = 0 << 9, /* OMAP1 only */
159 CSDP_DST_PORT_EMIFS = 1 << 9, /* OMAP1 only */
160 CSDP_DST_PORT_OCP_T1 = 2 << 9, /* OMAP1 only */
161 CSDP_DST_PORT_TIPB = 3 << 9, /* OMAP1 only */
162 CSDP_DST_PORT_OCP_T2 = 4 << 9, /* OMAP1 only */
163 CSDP_DST_PORT_MPUI = 5 << 9, /* OMAP1 only */
164 CSDP_DST_PACKED = BIT(13),
165 CSDP_DST_BURST_1 = 0 << 14,
166 CSDP_DST_BURST_16 = 1 << 14,
167 CSDP_DST_BURST_32 = 2 << 14,
168 CSDP_DST_BURST_64 = 3 << 14,
169
170 CICR_TOUT_IE = BIT(0), /* OMAP1 only */
171 CICR_DROP_IE = BIT(1),
172 CICR_HALF_IE = BIT(2),
173 CICR_FRAME_IE = BIT(3),
174 CICR_LAST_IE = BIT(4),
175 CICR_BLOCK_IE = BIT(5),
176 CICR_PKT_IE = BIT(7), /* OMAP2+ only */
177 CICR_TRANS_ERR_IE = BIT(8), /* OMAP2+ only */
178 CICR_SUPERVISOR_ERR_IE = BIT(10), /* OMAP2+ only */
179 CICR_MISALIGNED_ERR_IE = BIT(11), /* OMAP2+ only */
180 CICR_DRAIN_IE = BIT(12), /* OMAP2+ only */
181 CICR_SUPER_BLOCK_IE = BIT(14), /* OMAP2+ only */
182
183 CLNK_CTRL_ENABLE_LNK = BIT(15),
184
185 CDP_DST_VALID_INC = 0 << 0,
186 CDP_DST_VALID_RELOAD = 1 << 0,
187 CDP_DST_VALID_REUSE = 2 << 0,
188 CDP_SRC_VALID_INC = 0 << 2,
189 CDP_SRC_VALID_RELOAD = 1 << 2,
190 CDP_SRC_VALID_REUSE = 2 << 2,
191 CDP_NTYPE_TYPE1 = 1 << 4,
192 CDP_NTYPE_TYPE2 = 2 << 4,
193 CDP_NTYPE_TYPE3 = 3 << 4,
194 CDP_TMODE_NORMAL = 0 << 8,
195 CDP_TMODE_LLIST = 1 << 8,
196 CDP_FAST = BIT(10),
197 };
198
199 static const unsigned es_bytes[] = {
200 [CSDP_DATA_TYPE_8] = 1,
201 [CSDP_DATA_TYPE_16] = 2,
202 [CSDP_DATA_TYPE_32] = 4,
203 };
204
205 static struct of_dma_filter_info omap_dma_info = {
206 .filter_fn = omap_dma_filter_fn,
207 };
208
209 static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
210 {
211 return container_of(d, struct omap_dmadev, ddev);
212 }
213
214 static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
215 {
216 return container_of(c, struct omap_chan, vc.chan);
217 }
218
219 static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
220 {
221 return container_of(t, struct omap_desc, vd.tx);
222 }
223
224 static void omap_dma_desc_free(struct virt_dma_desc *vd)
225 {
226 struct omap_desc *d = to_omap_dma_desc(&vd->tx);
227
228 if (d->using_ll) {
229 struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
230 int i;
231
232 for (i = 0; i < d->sglen; i++) {
233 if (d->sg[i].t2_desc)
234 dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
235 d->sg[i].t2_desc_paddr);
236 }
237 }
238
239 kfree(d);
240 }
241
242 static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
243 enum dma_transfer_direction dir, bool last)
244 {
245 struct omap_sg *sg = &d->sg[idx];
246 struct omap_type2_desc *t2_desc = sg->t2_desc;
247
248 if (idx)
249 d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
250 if (last)
251 t2_desc->next_desc = 0xfffffffc;
252
253 t2_desc->en = sg->en;
254 t2_desc->addr = sg->addr;
255 t2_desc->fn = sg->fn & 0xffff;
256 t2_desc->cicr = d->cicr;
257 if (!last)
258 t2_desc->cicr &= ~CICR_BLOCK_IE;
259
260 switch (dir) {
261 case DMA_DEV_TO_MEM:
262 t2_desc->cdei = sg->ei;
263 t2_desc->csei = d->ei;
264 t2_desc->cdfi = sg->fi;
265 t2_desc->csfi = d->fi;
266
267 t2_desc->en |= DESC_NXT_DV_REFRESH;
268 t2_desc->en |= DESC_NXT_SV_REUSE;
269 break;
270 case DMA_MEM_TO_DEV:
271 t2_desc->cdei = d->ei;
272 t2_desc->csei = sg->ei;
273 t2_desc->cdfi = d->fi;
274 t2_desc->csfi = sg->fi;
275
276 t2_desc->en |= DESC_NXT_SV_REFRESH;
277 t2_desc->en |= DESC_NXT_DV_REUSE;
278 break;
279 default:
280 return;
281 }
282
283 t2_desc->en |= DESC_NTYPE_TYPE2;
284 }
285
286 static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
287 {
288 switch (type) {
289 case OMAP_DMA_REG_16BIT:
290 writew_relaxed(val, addr);
291 break;
292 case OMAP_DMA_REG_2X16BIT:
293 writew_relaxed(val, addr);
294 writew_relaxed(val >> 16, addr + 2);
295 break;
296 case OMAP_DMA_REG_32BIT:
297 writel_relaxed(val, addr);
298 break;
299 default:
300 WARN_ON(1);
301 }
302 }
303
304 static unsigned omap_dma_read(unsigned type, void __iomem *addr)
305 {
306 unsigned val;
307
308 switch (type) {
309 case OMAP_DMA_REG_16BIT:
310 val = readw_relaxed(addr);
311 break;
312 case OMAP_DMA_REG_2X16BIT:
313 val = readw_relaxed(addr);
314 val |= readw_relaxed(addr + 2) << 16;
315 break;
316 case OMAP_DMA_REG_32BIT:
317 val = readl_relaxed(addr);
318 break;
319 default:
320 WARN_ON(1);
321 val = 0;
322 }
323
324 return val;
325 }
326
327 static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
328 {
329 const struct omap_dma_reg *r = od->reg_map + reg;
330
331 WARN_ON(r->stride);
332
333 omap_dma_write(val, r->type, od->base + r->offset);
334 }
335
336 static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
337 {
338 const struct omap_dma_reg *r = od->reg_map + reg;
339
340 WARN_ON(r->stride);
341
342 return omap_dma_read(r->type, od->base + r->offset);
343 }
344
345 static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
346 {
347 const struct omap_dma_reg *r = c->reg_map + reg;
348
349 omap_dma_write(val, r->type, c->channel_base + r->offset);
350 }
351
352 static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
353 {
354 const struct omap_dma_reg *r = c->reg_map + reg;
355
356 return omap_dma_read(r->type, c->channel_base + r->offset);
357 }
358
359 static void omap_dma_clear_csr(struct omap_chan *c)
360 {
361 if (dma_omap1())
362 omap_dma_chan_read(c, CSR);
363 else
364 omap_dma_chan_write(c, CSR, ~0);
365 }
366
367 static unsigned omap_dma_get_csr(struct omap_chan *c)
368 {
369 unsigned val = omap_dma_chan_read(c, CSR);
370
371 if (!dma_omap1())
372 omap_dma_chan_write(c, CSR, val);
373
374 return val;
375 }
376
377 static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
378 unsigned lch)
379 {
380 c->channel_base = od->base + od->plat->channel_stride * lch;
381
382 od->lch_map[lch] = c;
383 }
384
385 static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
386 {
387 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
388 uint16_t cicr = d->cicr;
389
390 if (__dma_omap15xx(od->plat->dma_attr))
391 omap_dma_chan_write(c, CPC, 0);
392 else
393 omap_dma_chan_write(c, CDAC, 0);
394
395 omap_dma_clear_csr(c);
396
397 if (d->using_ll) {
398 uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;
399
400 if (d->dir == DMA_DEV_TO_MEM)
401 cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
402 else
403 cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
404 omap_dma_chan_write(c, CDP, cdp);
405
406 omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
407 omap_dma_chan_write(c, CCDN, 0);
408 omap_dma_chan_write(c, CCFN, 0xffff);
409 omap_dma_chan_write(c, CCEN, 0xffffff);
410
411 cicr &= ~CICR_BLOCK_IE;
412 } else if (od->ll123_supported) {
413 omap_dma_chan_write(c, CDP, 0);
414 }
415
416 /* Enable interrupts */
417 omap_dma_chan_write(c, CICR, cicr);
418
419 /* Enable channel */
420 omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
421
422 c->running = true;
423 }
424
425 static void omap_dma_stop(struct omap_chan *c)
426 {
427 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
428 uint32_t val;
429
430 /* disable irq */
431 omap_dma_chan_write(c, CICR, 0);
432
433 omap_dma_clear_csr(c);
434
435 val = omap_dma_chan_read(c, CCR);
436 if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
437 uint32_t sysconfig;
438 unsigned i;
439
440 sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
441 val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
442 val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
443 omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
444
445 val = omap_dma_chan_read(c, CCR);
446 val &= ~CCR_ENABLE;
447 omap_dma_chan_write(c, CCR, val);
448
449 /* Wait for sDMA FIFO to drain */
450 for (i = 0; ; i++) {
451 val = omap_dma_chan_read(c, CCR);
452 if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
453 break;
454
455 if (i > 100)
456 break;
457
458 udelay(5);
459 }
460
461 if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
462 dev_err(c->vc.chan.device->dev,
463 "DMA drain did not complete on lch %d\n",
464 c->dma_ch);
465
466 omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
467 } else {
468 val &= ~CCR_ENABLE;
469 omap_dma_chan_write(c, CCR, val);
470 }
471
472 mb();
473
474 if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
475 val = omap_dma_chan_read(c, CLNK_CTRL);
476
477 if (dma_omap1())
478 val |= 1 << 14; /* set the STOP_LNK bit */
479 else
480 val &= ~CLNK_CTRL_ENABLE_LNK;
481
482 omap_dma_chan_write(c, CLNK_CTRL, val);
483 }
484
485 c->running = false;
486 }
487
488 static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
489 {
490 struct omap_sg *sg = d->sg + c->sgidx;
491 unsigned cxsa, cxei, cxfi;
492
493 if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
494 cxsa = CDSA;
495 cxei = CDEI;
496 cxfi = CDFI;
497 } else {
498 cxsa = CSSA;
499 cxei = CSEI;
500 cxfi = CSFI;
501 }
502
503 omap_dma_chan_write(c, cxsa, sg->addr);
504 omap_dma_chan_write(c, cxei, sg->ei);
505 omap_dma_chan_write(c, cxfi, sg->fi);
506 omap_dma_chan_write(c, CEN, sg->en);
507 omap_dma_chan_write(c, CFN, sg->fn);
508
509 omap_dma_start(c, d);
510 c->sgidx++;
511 }
512
513 static void omap_dma_start_desc(struct omap_chan *c)
514 {
515 struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
516 struct omap_desc *d;
517 unsigned cxsa, cxei, cxfi;
518
519 if (!vd) {
520 c->desc = NULL;
521 return;
522 }
523
524 list_del(&vd->node);
525
526 c->desc = d = to_omap_dma_desc(&vd->tx);
527 c->sgidx = 0;
528
529 /*
530 * This provides the necessary barrier to ensure data held in
531 * DMA coherent memory is visible to the DMA engine prior to
532 * the transfer starting.
533 */
534 mb();
535
536 omap_dma_chan_write(c, CCR, d->ccr);
537 if (dma_omap1())
538 omap_dma_chan_write(c, CCR2, d->ccr >> 16);
539
540 if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
541 cxsa = CSSA;
542 cxei = CSEI;
543 cxfi = CSFI;
544 } else {
545 cxsa = CDSA;
546 cxei = CDEI;
547 cxfi = CDFI;
548 }
549
550 omap_dma_chan_write(c, cxsa, d->dev_addr);
551 omap_dma_chan_write(c, cxei, d->ei);
552 omap_dma_chan_write(c, cxfi, d->fi);
553 omap_dma_chan_write(c, CSDP, d->csdp);
554 omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
555
556 omap_dma_start_sg(c, d);
557 }
558
559 static void omap_dma_callback(int ch, u16 status, void *data)
560 {
561 struct omap_chan *c = data;
562 struct omap_desc *d;
563 unsigned long flags;
564
565 spin_lock_irqsave(&c->vc.lock, flags);
566 d = c->desc;
567 if (d) {
568 if (c->cyclic) {
569 vchan_cyclic_callback(&d->vd);
570 } else if (d->using_ll || c->sgidx == d->sglen) {
571 omap_dma_start_desc(c);
572 vchan_cookie_complete(&d->vd);
573 } else {
574 omap_dma_start_sg(c, d);
575 }
576 }
577 spin_unlock_irqrestore(&c->vc.lock, flags);
578 }
579
580 static irqreturn_t omap_dma_irq(int irq, void *devid)
581 {
582 struct omap_dmadev *od = devid;
583 unsigned status, channel;
584
585 spin_lock(&od->irq_lock);
586
587 status = omap_dma_glbl_read(od, IRQSTATUS_L1);
588 status &= od->irq_enable_mask;
589 if (status == 0) {
590 spin_unlock(&od->irq_lock);
591 return IRQ_NONE;
592 }
593
594 while ((channel = ffs(status)) != 0) {
595 unsigned mask, csr;
596 struct omap_chan *c;
597
598 channel -= 1;
599 mask = BIT(channel);
600 status &= ~mask;
601
602 c = od->lch_map[channel];
603 if (c == NULL) {
604 /* This should never happen */
605 dev_err(od->ddev.dev, "invalid channel %u\n", channel);
606 continue;
607 }
608
609 csr = omap_dma_get_csr(c);
610 omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
611
612 omap_dma_callback(channel, csr, c);
613 }
614
615 spin_unlock(&od->irq_lock);
616
617 return IRQ_HANDLED;
618 }
619
620 static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
621 {
622 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
623 struct omap_chan *c = to_omap_dma_chan(chan);
624 struct device *dev = od->ddev.dev;
625 int ret;
626
627 if (od->legacy) {
628 ret = omap_request_dma(c->dma_sig, "DMA engine",
629 omap_dma_callback, c, &c->dma_ch);
630 } else {
631 ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
632 &c->dma_ch);
633 }
634
635 dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
636
637 if (ret >= 0) {
638 omap_dma_assign(od, c, c->dma_ch);
639
640 if (!od->legacy) {
641 unsigned val;
642
643 spin_lock_irq(&od->irq_lock);
644 val = BIT(c->dma_ch);
645 omap_dma_glbl_write(od, IRQSTATUS_L1, val);
646 od->irq_enable_mask |= val;
647 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
648
649 val = omap_dma_glbl_read(od, IRQENABLE_L0);
650 val &= ~BIT(c->dma_ch);
651 omap_dma_glbl_write(od, IRQENABLE_L0, val);
652 spin_unlock_irq(&od->irq_lock);
653 }
654 }
655
656 if (dma_omap1()) {
657 if (__dma_omap16xx(od->plat->dma_attr)) {
658 c->ccr = CCR_OMAP31_DISABLE;
659 /* Duplicate what plat-omap/dma.c does */
660 c->ccr |= c->dma_ch + 1;
661 } else {
662 c->ccr = c->dma_sig & 0x1f;
663 }
664 } else {
665 c->ccr = c->dma_sig & 0x1f;
666 c->ccr |= (c->dma_sig & ~0x1f) << 14;
667 }
668 if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
669 c->ccr |= CCR_BUFFERING_DISABLE;
670
671 return ret;
672 }
673
674 static void omap_dma_free_chan_resources(struct dma_chan *chan)
675 {
676 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
677 struct omap_chan *c = to_omap_dma_chan(chan);
678
679 if (!od->legacy) {
680 spin_lock_irq(&od->irq_lock);
681 od->irq_enable_mask &= ~BIT(c->dma_ch);
682 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
683 spin_unlock_irq(&od->irq_lock);
684 }
685
686 c->channel_base = NULL;
687 od->lch_map[c->dma_ch] = NULL;
688 vchan_free_chan_resources(&c->vc);
689 omap_free_dma(c->dma_ch);
690
691 dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
692 c->dma_sig);
693 c->dma_sig = 0;
694 }
695
696 static size_t omap_dma_sg_size(struct omap_sg *sg)
697 {
698 return sg->en * sg->fn;
699 }
700
701 static size_t omap_dma_desc_size(struct omap_desc *d)
702 {
703 unsigned i;
704 size_t size;
705
706 for (size = i = 0; i < d->sglen; i++)
707 size += omap_dma_sg_size(&d->sg[i]);
708
709 return size * es_bytes[d->es];
710 }
711
712 static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
713 {
714 unsigned i;
715 size_t size, es_size = es_bytes[d->es];
716
717 for (size = i = 0; i < d->sglen; i++) {
718 size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
719
720 if (size)
721 size += this_size;
722 else if (addr >= d->sg[i].addr &&
723 addr < d->sg[i].addr + this_size)
724 size += d->sg[i].addr + this_size - addr;
725 }
726 return size;
727 }
728
729 /*
730 * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
731 * read before the DMA controller finished disabling the channel.
732 */
733 static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
734 {
735 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
736 uint32_t val;
737
738 val = omap_dma_chan_read(c, reg);
739 if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
740 val = omap_dma_chan_read(c, reg);
741
742 return val;
743 }
744
745 static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
746 {
747 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
748 dma_addr_t addr, cdac;
749
750 if (__dma_omap15xx(od->plat->dma_attr)) {
751 addr = omap_dma_chan_read(c, CPC);
752 } else {
753 addr = omap_dma_chan_read_3_3(c, CSAC);
754 cdac = omap_dma_chan_read_3_3(c, CDAC);
755
756 /*
757 * CDAC == 0 indicates that the DMA transfer on the channel has
758 * not been started (no data has been transferred so far).
759 * Return the programmed source start address in this case.
760 */
761 if (cdac == 0)
762 addr = omap_dma_chan_read(c, CSSA);
763 }
764
765 if (dma_omap1())
766 addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
767
768 return addr;
769 }
770
771 static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
772 {
773 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
774 dma_addr_t addr;
775
776 if (__dma_omap15xx(od->plat->dma_attr)) {
777 addr = omap_dma_chan_read(c, CPC);
778 } else {
779 addr = omap_dma_chan_read_3_3(c, CDAC);
780
781 /*
782 * CDAC == 0 indicates that the DMA transfer on the channel
783 * has not been started (no data has been transferred so
784 * far). Return the programmed destination start address in
785 * this case.
786 */
787 if (addr == 0)
788 addr = omap_dma_chan_read(c, CDSA);
789 }
790
791 if (dma_omap1())
792 addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
793
794 return addr;
795 }
796
797 static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
798 dma_cookie_t cookie, struct dma_tx_state *txstate)
799 {
800 struct omap_chan *c = to_omap_dma_chan(chan);
801 struct virt_dma_desc *vd;
802 enum dma_status ret;
803 unsigned long flags;
804
805 ret = dma_cookie_status(chan, cookie, txstate);
806
807 if (!c->paused && c->running) {
808 uint32_t ccr = omap_dma_chan_read(c, CCR);
809 /*
810 * The channel is no longer active, set the return value
811 * accordingly
812 */
813 if (!(ccr & CCR_ENABLE))
814 ret = DMA_COMPLETE;
815 }
816
817 if (ret == DMA_COMPLETE || !txstate)
818 return ret;
819
820 spin_lock_irqsave(&c->vc.lock, flags);
821 vd = vchan_find_desc(&c->vc, cookie);
822 if (vd) {
823 txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
824 } else if (c->desc && c->desc->vd.tx.cookie == cookie) {
825 struct omap_desc *d = c->desc;
826 dma_addr_t pos;
827
828 if (d->dir == DMA_MEM_TO_DEV)
829 pos = omap_dma_get_src_pos(c);
830 else if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM)
831 pos = omap_dma_get_dst_pos(c);
832 else
833 pos = 0;
834
835 txstate->residue = omap_dma_desc_size_pos(d, pos);
836 } else {
837 txstate->residue = 0;
838 }
839 spin_unlock_irqrestore(&c->vc.lock, flags);
840
841 return ret;
842 }
843
844 static void omap_dma_issue_pending(struct dma_chan *chan)
845 {
846 struct omap_chan *c = to_omap_dma_chan(chan);
847 unsigned long flags;
848
849 spin_lock_irqsave(&c->vc.lock, flags);
850 if (vchan_issue_pending(&c->vc) && !c->desc)
851 omap_dma_start_desc(c);
852 spin_unlock_irqrestore(&c->vc.lock, flags);
853 }
854
855 static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
856 struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
857 enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
858 {
859 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
860 struct omap_chan *c = to_omap_dma_chan(chan);
861 enum dma_slave_buswidth dev_width;
862 struct scatterlist *sgent;
863 struct omap_desc *d;
864 dma_addr_t dev_addr;
865 unsigned i, es, en, frame_bytes;
866 bool ll_failed = false;
867 u32 burst;
868
869 if (dir == DMA_DEV_TO_MEM) {
870 dev_addr = c->cfg.src_addr;
871 dev_width = c->cfg.src_addr_width;
872 burst = c->cfg.src_maxburst;
873 } else if (dir == DMA_MEM_TO_DEV) {
874 dev_addr = c->cfg.dst_addr;
875 dev_width = c->cfg.dst_addr_width;
876 burst = c->cfg.dst_maxburst;
877 } else {
878 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
879 return NULL;
880 }
881
882 /* Bus width translates to the element size (ES) */
883 switch (dev_width) {
884 case DMA_SLAVE_BUSWIDTH_1_BYTE:
885 es = CSDP_DATA_TYPE_8;
886 break;
887 case DMA_SLAVE_BUSWIDTH_2_BYTES:
888 es = CSDP_DATA_TYPE_16;
889 break;
890 case DMA_SLAVE_BUSWIDTH_4_BYTES:
891 es = CSDP_DATA_TYPE_32;
892 break;
893 default: /* not reached */
894 return NULL;
895 }
896
897 /* Now allocate and setup the descriptor. */
898 d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
899 if (!d)
900 return NULL;
901
902 d->dir = dir;
903 d->dev_addr = dev_addr;
904 d->es = es;
905
906 d->ccr = c->ccr | CCR_SYNC_FRAME;
907 if (dir == DMA_DEV_TO_MEM)
908 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
909 else
910 d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
911
912 d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
913 d->csdp = es;
914
915 if (dma_omap1()) {
916 d->cicr |= CICR_TOUT_IE;
917
918 if (dir == DMA_DEV_TO_MEM)
919 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
920 else
921 d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
922 } else {
923 if (dir == DMA_DEV_TO_MEM)
924 d->ccr |= CCR_TRIGGER_SRC;
925
926 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
927 }
928 if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
929 d->clnk_ctrl = c->dma_ch;
930
931 /*
932 * Build our scatterlist entries: each contains the address,
933 * the number of elements (EN) in each frame, and the number of
934 * frames (FN). Number of bytes for this entry = ES * EN * FN.
935 *
936 * Burst size translates to number of elements with frame sync.
937 * Note: DMA engine defines burst to be the number of dev-width
938 * transfers.
939 */
940 en = burst;
941 frame_bytes = es_bytes[es] * en;
942
943 if (sglen >= 2)
944 d->using_ll = od->ll123_supported;
945
946 for_each_sg(sgl, sgent, sglen, i) {
947 struct omap_sg *osg = &d->sg[i];
948
949 osg->addr = sg_dma_address(sgent);
950 osg->en = en;
951 osg->fn = sg_dma_len(sgent) / frame_bytes;
952
953 if (d->using_ll) {
954 osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
955 &osg->t2_desc_paddr);
956 if (!osg->t2_desc) {
957 dev_err(chan->device->dev,
958 "t2_desc[%d] allocation failed\n", i);
959 ll_failed = true;
960 d->using_ll = false;
961 continue;
962 }
963
964 omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
965 }
966 }
967
968 d->sglen = sglen;
969
970 /* Release the dma_pool entries if one allocation failed */
971 if (ll_failed) {
972 for (i = 0; i < d->sglen; i++) {
973 struct omap_sg *osg = &d->sg[i];
974
975 if (osg->t2_desc) {
976 dma_pool_free(od->desc_pool, osg->t2_desc,
977 osg->t2_desc_paddr);
978 osg->t2_desc = NULL;
979 }
980 }
981 }
982
983 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
984 }
985
986 static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
987 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
988 size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
989 {
990 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
991 struct omap_chan *c = to_omap_dma_chan(chan);
992 enum dma_slave_buswidth dev_width;
993 struct omap_desc *d;
994 dma_addr_t dev_addr;
995 unsigned es;
996 u32 burst;
997
998 if (dir == DMA_DEV_TO_MEM) {
999 dev_addr = c->cfg.src_addr;
1000 dev_width = c->cfg.src_addr_width;
1001 burst = c->cfg.src_maxburst;
1002 } else if (dir == DMA_MEM_TO_DEV) {
1003 dev_addr = c->cfg.dst_addr;
1004 dev_width = c->cfg.dst_addr_width;
1005 burst = c->cfg.dst_maxburst;
1006 } else {
1007 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
1008 return NULL;
1009 }
1010
1011 /* Bus width translates to the element size (ES) */
1012 switch (dev_width) {
1013 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1014 es = CSDP_DATA_TYPE_8;
1015 break;
1016 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1017 es = CSDP_DATA_TYPE_16;
1018 break;
1019 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1020 es = CSDP_DATA_TYPE_32;
1021 break;
1022 default: /* not reached */
1023 return NULL;
1024 }
1025
1026 /* Now allocate and setup the descriptor. */
1027 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1028 if (!d)
1029 return NULL;
1030
1031 d->dir = dir;
1032 d->dev_addr = dev_addr;
1033 d->fi = burst;
1034 d->es = es;
1035 d->sg[0].addr = buf_addr;
1036 d->sg[0].en = period_len / es_bytes[es];
1037 d->sg[0].fn = buf_len / period_len;
1038 d->sglen = 1;
1039
1040 d->ccr = c->ccr;
1041 if (dir == DMA_DEV_TO_MEM)
1042 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
1043 else
1044 d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
1045
1046 d->cicr = CICR_DROP_IE;
1047 if (flags & DMA_PREP_INTERRUPT)
1048 d->cicr |= CICR_FRAME_IE;
1049
1050 d->csdp = es;
1051
1052 if (dma_omap1()) {
1053 d->cicr |= CICR_TOUT_IE;
1054
1055 if (dir == DMA_DEV_TO_MEM)
1056 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
1057 else
1058 d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
1059 } else {
1060 if (burst)
1061 d->ccr |= CCR_SYNC_PACKET;
1062 else
1063 d->ccr |= CCR_SYNC_ELEMENT;
1064
1065 if (dir == DMA_DEV_TO_MEM) {
1066 d->ccr |= CCR_TRIGGER_SRC;
1067 d->csdp |= CSDP_DST_PACKED;
1068 } else {
1069 d->csdp |= CSDP_SRC_PACKED;
1070 }
1071
1072 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1073
1074 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1075 }
1076
1077 if (__dma_omap15xx(od->plat->dma_attr))
1078 d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
1079 else
1080 d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
1081
1082 c->cyclic = true;
1083
1084 return vchan_tx_prep(&c->vc, &d->vd, flags);
1085 }
1086
1087 static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
1088 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1089 size_t len, unsigned long tx_flags)
1090 {
1091 struct omap_chan *c = to_omap_dma_chan(chan);
1092 struct omap_desc *d;
1093 uint8_t data_type;
1094
1095 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1096 if (!d)
1097 return NULL;
1098
1099 data_type = __ffs((src | dest | len));
1100 if (data_type > CSDP_DATA_TYPE_32)
1101 data_type = CSDP_DATA_TYPE_32;
1102
1103 d->dir = DMA_MEM_TO_MEM;
1104 d->dev_addr = src;
1105 d->fi = 0;
1106 d->es = data_type;
1107 d->sg[0].en = len / BIT(data_type);
1108 d->sg[0].fn = 1;
1109 d->sg[0].addr = dest;
1110 d->sglen = 1;
1111 d->ccr = c->ccr;
1112 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
1113
1114 d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1115
1116 d->csdp = data_type;
1117
1118 if (dma_omap1()) {
1119 d->cicr |= CICR_TOUT_IE;
1120 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1121 } else {
1122 d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1123 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1124 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1125 }
1126
1127 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
1128 }
1129
1130 static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
1131 struct dma_chan *chan, struct dma_interleaved_template *xt,
1132 unsigned long flags)
1133 {
1134 struct omap_chan *c = to_omap_dma_chan(chan);
1135 struct omap_desc *d;
1136 struct omap_sg *sg;
1137 uint8_t data_type;
1138 size_t src_icg, dst_icg;
1139
1140 /* Slave mode is not supported */
1141 if (is_slave_direction(xt->dir))
1142 return NULL;
1143
1144 if (xt->frame_size != 1 || xt->numf == 0)
1145 return NULL;
1146
1147 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1148 if (!d)
1149 return NULL;
1150
1151 data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
1152 if (data_type > CSDP_DATA_TYPE_32)
1153 data_type = CSDP_DATA_TYPE_32;
1154
1155 sg = &d->sg[0];
1156 d->dir = DMA_MEM_TO_MEM;
1157 d->dev_addr = xt->src_start;
1158 d->es = data_type;
1159 sg->en = xt->sgl[0].size / BIT(data_type);
1160 sg->fn = xt->numf;
1161 sg->addr = xt->dst_start;
1162 d->sglen = 1;
1163 d->ccr = c->ccr;
1164
1165 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1166 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1167 if (src_icg) {
1168 d->ccr |= CCR_SRC_AMODE_DBLIDX;
1169 d->ei = 1;
1170 d->fi = src_icg;
1171 } else if (xt->src_inc) {
1172 d->ccr |= CCR_SRC_AMODE_POSTINC;
1173 d->fi = 0;
1174 } else {
1175 dev_err(chan->device->dev,
1176 "%s: SRC constant addressing is not supported\n",
1177 __func__);
1178 kfree(d);
1179 return NULL;
1180 }
1181
1182 if (dst_icg) {
1183 d->ccr |= CCR_DST_AMODE_DBLIDX;
1184 sg->ei = 1;
1185 sg->fi = dst_icg;
1186 } else if (xt->dst_inc) {
1187 d->ccr |= CCR_DST_AMODE_POSTINC;
1188 sg->fi = 0;
1189 } else {
1190 dev_err(chan->device->dev,
1191 "%s: DST constant addressing is not supported\n",
1192 __func__);
1193 kfree(d);
1194 return NULL;
1195 }
1196
1197 d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1198
1199 d->csdp = data_type;
1200
1201 if (dma_omap1()) {
1202 d->cicr |= CICR_TOUT_IE;
1203 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1204 } else {
1205 d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1206 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1207 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1208 }
1209
1210 return vchan_tx_prep(&c->vc, &d->vd, flags);
1211 }
1212
1213 static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
1214 {
1215 struct omap_chan *c = to_omap_dma_chan(chan);
1216
1217 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1218 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1219 return -EINVAL;
1220
1221 memcpy(&c->cfg, cfg, sizeof(c->cfg));
1222
1223 return 0;
1224 }
1225
1226 static int omap_dma_terminate_all(struct dma_chan *chan)
1227 {
1228 struct omap_chan *c = to_omap_dma_chan(chan);
1229 unsigned long flags;
1230 LIST_HEAD(head);
1231
1232 spin_lock_irqsave(&c->vc.lock, flags);
1233
1234 /*
1235 * Stop DMA activity: we assume the callback will not be called
1236 * after omap_dma_stop() returns (even if it does, it will see
1237 * c->desc is NULL and exit.)
1238 */
1239 if (c->desc) {
1240 omap_dma_desc_free(&c->desc->vd);
1241 c->desc = NULL;
1242 /* Avoid stopping the dma twice */
1243 if (!c->paused)
1244 omap_dma_stop(c);
1245 }
1246
1247 if (c->cyclic) {
1248 c->cyclic = false;
1249 c->paused = false;
1250 }
1251
1252 vchan_get_all_descriptors(&c->vc, &head);
1253 spin_unlock_irqrestore(&c->vc.lock, flags);
1254 vchan_dma_desc_free_list(&c->vc, &head);
1255
1256 return 0;
1257 }
1258
1259 static void omap_dma_synchronize(struct dma_chan *chan)
1260 {
1261 struct omap_chan *c = to_omap_dma_chan(chan);
1262
1263 vchan_synchronize(&c->vc);
1264 }
1265
1266 static int omap_dma_pause(struct dma_chan *chan)
1267 {
1268 struct omap_chan *c = to_omap_dma_chan(chan);
1269
1270 /* Pause/Resume only allowed with cyclic mode */
1271 if (!c->cyclic)
1272 return -EINVAL;
1273
1274 if (!c->paused) {
1275 omap_dma_stop(c);
1276 c->paused = true;
1277 }
1278
1279 return 0;
1280 }
1281
1282 static int omap_dma_resume(struct dma_chan *chan)
1283 {
1284 struct omap_chan *c = to_omap_dma_chan(chan);
1285
1286 /* Pause/Resume only allowed with cyclic mode */
1287 if (!c->cyclic)
1288 return -EINVAL;
1289
1290 if (c->paused) {
1291 mb();
1292
1293 /* Restore channel link register */
1294 omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
1295
1296 omap_dma_start(c, c->desc);
1297 c->paused = false;
1298 }
1299
1300 return 0;
1301 }
1302
1303 static int omap_dma_chan_init(struct omap_dmadev *od)
1304 {
1305 struct omap_chan *c;
1306
1307 c = kzalloc(sizeof(*c), GFP_KERNEL);
1308 if (!c)
1309 return -ENOMEM;
1310
1311 c->reg_map = od->reg_map;
1312 c->vc.desc_free = omap_dma_desc_free;
1313 vchan_init(&c->vc, &od->ddev);
1314
1315 return 0;
1316 }
1317
1318 static void omap_dma_free(struct omap_dmadev *od)
1319 {
1320 while (!list_empty(&od->ddev.channels)) {
1321 struct omap_chan *c = list_first_entry(&od->ddev.channels,
1322 struct omap_chan, vc.chan.device_node);
1323
1324 list_del(&c->vc.chan.device_node);
1325 tasklet_kill(&c->vc.task);
1326 kfree(c);
1327 }
1328 }
1329
1330 #define OMAP_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1331 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1332 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1333
1334 static int omap_dma_probe(struct platform_device *pdev)
1335 {
1336 struct omap_dmadev *od;
1337 struct resource *res;
1338 int rc, i, irq;
1339
1340 od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1341 if (!od)
1342 return -ENOMEM;
1343
1344 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1345 od->base = devm_ioremap_resource(&pdev->dev, res);
1346 if (IS_ERR(od->base))
1347 return PTR_ERR(od->base);
1348
1349 od->plat = omap_get_plat_info();
1350 if (!od->plat)
1351 return -EPROBE_DEFER;
1352
1353 od->reg_map = od->plat->reg_map;
1354
1355 dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1356 dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1357 dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
1358 dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
1359 od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
1360 od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
1361 od->ddev.device_tx_status = omap_dma_tx_status;
1362 od->ddev.device_issue_pending = omap_dma_issue_pending;
1363 od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1364 od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1365 od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
1366 od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
1367 od->ddev.device_config = omap_dma_slave_config;
1368 od->ddev.device_pause = omap_dma_pause;
1369 od->ddev.device_resume = omap_dma_resume;
1370 od->ddev.device_terminate_all = omap_dma_terminate_all;
1371 od->ddev.device_synchronize = omap_dma_synchronize;
1372 od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
1373 od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
1374 od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1375 od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1376 od->ddev.dev = &pdev->dev;
1377 INIT_LIST_HEAD(&od->ddev.channels);
1378 spin_lock_init(&od->lock);
1379 spin_lock_init(&od->irq_lock);
1380
1381 if (!pdev->dev.of_node) {
1382 od->dma_requests = od->plat->dma_attr->lch_count;
1383 if (unlikely(!od->dma_requests))
1384 od->dma_requests = OMAP_SDMA_REQUESTS;
1385 } else if (of_property_read_u32(pdev->dev.of_node, "dma-requests",
1386 &od->dma_requests)) {
1387 dev_info(&pdev->dev,
1388 "Missing dma-requests property, using %u.\n",
1389 OMAP_SDMA_REQUESTS);
1390 od->dma_requests = OMAP_SDMA_REQUESTS;
1391 }
1392
1393 od->lch_map = devm_kcalloc(&pdev->dev, od->dma_requests,
1394 sizeof(*od->lch_map), GFP_KERNEL);
1395 if (!od->lch_map)
1396 return -ENOMEM;
1397
1398 for (i = 0; i < od->dma_requests; i++) {
1399 rc = omap_dma_chan_init(od);
1400 if (rc) {
1401 omap_dma_free(od);
1402 return rc;
1403 }
1404 }
1405
1406 irq = platform_get_irq(pdev, 1);
1407 if (irq <= 0) {
1408 dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
1409 od->legacy = true;
1410 } else {
1411 /* Disable all interrupts */
1412 od->irq_enable_mask = 0;
1413 omap_dma_glbl_write(od, IRQENABLE_L1, 0);
1414
1415 rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
1416 IRQF_SHARED, "omap-dma-engine", od);
1417 if (rc)
1418 return rc;
1419 }
1420
1421 if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
1422 od->ll123_supported = true;
1423
1424 od->ddev.filter.map = od->plat->slave_map;
1425 od->ddev.filter.mapcnt = od->plat->slavecnt;
1426 od->ddev.filter.fn = omap_dma_filter_fn;
1427
1428 if (od->ll123_supported) {
1429 od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
1430 &pdev->dev,
1431 sizeof(struct omap_type2_desc),
1432 4, 0);
1433 if (!od->desc_pool) {
1434 dev_err(&pdev->dev,
1435 "unable to allocate descriptor pool\n");
1436 od->ll123_supported = false;
1437 }
1438 }
1439
1440 rc = dma_async_device_register(&od->ddev);
1441 if (rc) {
1442 pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
1443 rc);
1444 omap_dma_free(od);
1445 return rc;
1446 }
1447
1448 platform_set_drvdata(pdev, od);
1449
1450 if (pdev->dev.of_node) {
1451 omap_dma_info.dma_cap = od->ddev.cap_mask;
1452
1453 /* Device-tree DMA controller registration */
1454 rc = of_dma_controller_register(pdev->dev.of_node,
1455 of_dma_simple_xlate, &omap_dma_info);
1456 if (rc) {
1457 pr_warn("OMAP-DMA: failed to register DMA controller\n");
1458 dma_async_device_unregister(&od->ddev);
1459 omap_dma_free(od);
1460 }
1461 }
1462
1463 dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
1464 od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
1465
1466 return rc;
1467 }
1468
1469 static int omap_dma_remove(struct platform_device *pdev)
1470 {
1471 struct omap_dmadev *od = platform_get_drvdata(pdev);
1472 int irq;
1473
1474 if (pdev->dev.of_node)
1475 of_dma_controller_free(pdev->dev.of_node);
1476
1477 irq = platform_get_irq(pdev, 1);
1478 devm_free_irq(&pdev->dev, irq, od);
1479
1480 dma_async_device_unregister(&od->ddev);
1481
1482 if (!od->legacy) {
1483 /* Disable all interrupts */
1484 omap_dma_glbl_write(od, IRQENABLE_L0, 0);
1485 }
1486
1487 if (od->ll123_supported)
1488 dma_pool_destroy(od->desc_pool);
1489
1490 omap_dma_free(od);
1491
1492 return 0;
1493 }
1494
1495 static const struct of_device_id omap_dma_match[] = {
1496 { .compatible = "ti,omap2420-sdma", },
1497 { .compatible = "ti,omap2430-sdma", },
1498 { .compatible = "ti,omap3430-sdma", },
1499 { .compatible = "ti,omap3630-sdma", },
1500 { .compatible = "ti,omap4430-sdma", },
1501 {},
1502 };
1503 MODULE_DEVICE_TABLE(of, omap_dma_match);
1504
1505 static struct platform_driver omap_dma_driver = {
1506 .probe = omap_dma_probe,
1507 .remove = omap_dma_remove,
1508 .driver = {
1509 .name = "omap-dma-engine",
1510 .of_match_table = of_match_ptr(omap_dma_match),
1511 },
1512 };
1513
1514 bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
1515 {
1516 if (chan->device->dev->driver == &omap_dma_driver.driver) {
1517 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1518 struct omap_chan *c = to_omap_dma_chan(chan);
1519 unsigned req = *(unsigned *)param;
1520
1521 if (req <= od->dma_requests) {
1522 c->dma_sig = req;
1523 return true;
1524 }
1525 }
1526 return false;
1527 }
1528 EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
1529
1530 static int omap_dma_init(void)
1531 {
1532 return platform_driver_register(&omap_dma_driver);
1533 }
1534 subsys_initcall(omap_dma_init);
1535
1536 static void __exit omap_dma_exit(void)
1537 {
1538 platform_driver_unregister(&omap_dma_driver);
1539 }
1540 module_exit(omap_dma_exit);
1541
1542 MODULE_AUTHOR("Russell King");
1543 MODULE_LICENSE("GPL");
This page took 0.066351 seconds and 5 git commands to generate.