Merge remote-tracking branch 'kspp/for-next/kspp'
[deliverable/linux.git] / drivers / dma / sh / rcar-dmac.c
1 /*
2 * Renesas R-Car Gen2 DMA Controller Driver
3 *
4 * Copyright (C) 2014 Renesas Electronics Inc.
5 *
6 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7 *
8 * This is free software; you can redistribute it and/or modify
9 * it under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include "../dmaengine.h"
28
29 /*
30 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31 * @node: entry in the parent's chunks list
32 * @src_addr: device source address
33 * @dst_addr: device destination address
34 * @size: transfer size in bytes
35 */
36 struct rcar_dmac_xfer_chunk {
37 struct list_head node;
38
39 dma_addr_t src_addr;
40 dma_addr_t dst_addr;
41 u32 size;
42 };
43
44 /*
45 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46 * @sar: value of the SAR register (source address)
47 * @dar: value of the DAR register (destination address)
48 * @tcr: value of the TCR register (transfer count)
49 */
50 struct rcar_dmac_hw_desc {
51 u32 sar;
52 u32 dar;
53 u32 tcr;
54 u32 reserved;
55 } __attribute__((__packed__));
56
57 /*
58 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59 * @async_tx: base DMA asynchronous transaction descriptor
60 * @direction: direction of the DMA transfer
61 * @xfer_shift: log2 of the transfer size
62 * @chcr: value of the channel configuration register for this transfer
63 * @node: entry in the channel's descriptors lists
64 * @chunks: list of transfer chunks for this transfer
65 * @running: the transfer chunk being currently processed
66 * @nchunks: number of transfer chunks for this transfer
67 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68 * @hwdescs.mem: hardware descriptors memory for the transfer
69 * @hwdescs.dma: device address of the hardware descriptors memory
70 * @hwdescs.size: size of the hardware descriptors in bytes
71 * @size: transfer size in bytes
72 * @cyclic: when set indicates that the DMA transfer is cyclic
73 */
74 struct rcar_dmac_desc {
75 struct dma_async_tx_descriptor async_tx;
76 enum dma_transfer_direction direction;
77 unsigned int xfer_shift;
78 u32 chcr;
79
80 struct list_head node;
81 struct list_head chunks;
82 struct rcar_dmac_xfer_chunk *running;
83 unsigned int nchunks;
84
85 struct {
86 bool use;
87 struct rcar_dmac_hw_desc *mem;
88 dma_addr_t dma;
89 size_t size;
90 } hwdescs;
91
92 unsigned int size;
93 bool cyclic;
94 };
95
96 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
97
98 /*
99 * struct rcar_dmac_desc_page - One page worth of descriptors
100 * @node: entry in the channel's pages list
101 * @descs: array of DMA descriptors
102 * @chunks: array of transfer chunk descriptors
103 */
104 struct rcar_dmac_desc_page {
105 struct list_head node;
106
107 union {
108 struct rcar_dmac_desc descs[0];
109 struct rcar_dmac_xfer_chunk chunks[0];
110 };
111 };
112
113 #define RCAR_DMAC_DESCS_PER_PAGE \
114 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
115 sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
117 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
118 sizeof(struct rcar_dmac_xfer_chunk))
119
120 /*
121 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
122 * @chan: base DMA channel object
123 * @iomem: channel I/O memory base
124 * @index: index of this channel in the controller
125 * @src_xfer_size: size (in bytes) of hardware transfers on the source side
126 * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side
127 * @src_slave_addr: slave source memory address
128 * @dst_slave_addr: slave destination memory address
129 * @mid_rid: hardware MID/RID for the DMA client using this channel
130 * @lock: protects the channel CHCR register and the desc members
131 * @desc.free: list of free descriptors
132 * @desc.pending: list of pending descriptors (submitted with tx_submit)
133 * @desc.active: list of active descriptors (activated with issue_pending)
134 * @desc.done: list of completed descriptors
135 * @desc.wait: list of descriptors waiting for an ack
136 * @desc.running: the descriptor being processed (a member of the active list)
137 * @desc.chunks_free: list of free transfer chunk descriptors
138 * @desc.pages: list of pages used by allocated descriptors
139 */
140 struct rcar_dmac_chan {
141 struct dma_chan chan;
142 void __iomem *iomem;
143 unsigned int index;
144
145 unsigned int src_xfer_size;
146 unsigned int dst_xfer_size;
147 dma_addr_t src_slave_addr;
148 dma_addr_t dst_slave_addr;
149 int mid_rid;
150
151 spinlock_t lock;
152
153 struct {
154 struct list_head free;
155 struct list_head pending;
156 struct list_head active;
157 struct list_head done;
158 struct list_head wait;
159 struct rcar_dmac_desc *running;
160
161 struct list_head chunks_free;
162
163 struct list_head pages;
164 } desc;
165 };
166
167 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
168
169 /*
170 * struct rcar_dmac - R-Car Gen2 DMA Controller
171 * @engine: base DMA engine object
172 * @dev: the hardware device
173 * @iomem: remapped I/O memory base
174 * @n_channels: number of available channels
175 * @channels: array of DMAC channels
176 * @modules: bitmask of client modules in use
177 */
178 struct rcar_dmac {
179 struct dma_device engine;
180 struct device *dev;
181 void __iomem *iomem;
182
183 unsigned int n_channels;
184 struct rcar_dmac_chan *channels;
185
186 DECLARE_BITMAP(modules, 256);
187 };
188
189 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
190
191 /* -----------------------------------------------------------------------------
192 * Registers
193 */
194
195 #define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i))
196
197 #define RCAR_DMAISTA 0x0020
198 #define RCAR_DMASEC 0x0030
199 #define RCAR_DMAOR 0x0060
200 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
201 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
202 #define RCAR_DMAOR_AE (1 << 2)
203 #define RCAR_DMAOR_DME (1 << 0)
204 #define RCAR_DMACHCLR 0x0080
205 #define RCAR_DMADPSEC 0x00a0
206
207 #define RCAR_DMASAR 0x0000
208 #define RCAR_DMADAR 0x0004
209 #define RCAR_DMATCR 0x0008
210 #define RCAR_DMATCR_MASK 0x00ffffff
211 #define RCAR_DMATSR 0x0028
212 #define RCAR_DMACHCR 0x000c
213 #define RCAR_DMACHCR_CAE (1 << 31)
214 #define RCAR_DMACHCR_CAIE (1 << 30)
215 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
216 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
217 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
218 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
219 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
220 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
221 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
222 #define RCAR_DMACHCR_DPB (1 << 22)
223 #define RCAR_DMACHCR_DSE (1 << 19)
224 #define RCAR_DMACHCR_DSIE (1 << 18)
225 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
226 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
227 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
228 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
229 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
230 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
231 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
232 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
233 #define RCAR_DMACHCR_DM_INC (1 << 14)
234 #define RCAR_DMACHCR_DM_DEC (2 << 14)
235 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
236 #define RCAR_DMACHCR_SM_INC (1 << 12)
237 #define RCAR_DMACHCR_SM_DEC (2 << 12)
238 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
239 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
240 #define RCAR_DMACHCR_IE (1 << 2)
241 #define RCAR_DMACHCR_TE (1 << 1)
242 #define RCAR_DMACHCR_DE (1 << 0)
243 #define RCAR_DMATCRB 0x0018
244 #define RCAR_DMATSRB 0x0038
245 #define RCAR_DMACHCRB 0x001c
246 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
247 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
248 #define RCAR_DMACHCRB_DPTR_SHIFT 16
249 #define RCAR_DMACHCRB_DRST (1 << 15)
250 #define RCAR_DMACHCRB_DTS (1 << 8)
251 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
252 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
253 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
254 #define RCAR_DMARS 0x0040
255 #define RCAR_DMABUFCR 0x0048
256 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
257 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
258 #define RCAR_DMADPBASE 0x0050
259 #define RCAR_DMADPBASE_MASK 0xfffffff0
260 #define RCAR_DMADPBASE_SEL (1 << 0)
261 #define RCAR_DMADPCR 0x0054
262 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
263 #define RCAR_DMAFIXSAR 0x0010
264 #define RCAR_DMAFIXDAR 0x0014
265 #define RCAR_DMAFIXDPBASE 0x0060
266
267 /* Hardcode the MEMCPY transfer size to 4 bytes. */
268 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
269
270 /* -----------------------------------------------------------------------------
271 * Device access
272 */
273
274 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
275 {
276 if (reg == RCAR_DMAOR)
277 writew(data, dmac->iomem + reg);
278 else
279 writel(data, dmac->iomem + reg);
280 }
281
282 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
283 {
284 if (reg == RCAR_DMAOR)
285 return readw(dmac->iomem + reg);
286 else
287 return readl(dmac->iomem + reg);
288 }
289
290 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
291 {
292 if (reg == RCAR_DMARS)
293 return readw(chan->iomem + reg);
294 else
295 return readl(chan->iomem + reg);
296 }
297
298 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
299 {
300 if (reg == RCAR_DMARS)
301 writew(data, chan->iomem + reg);
302 else
303 writel(data, chan->iomem + reg);
304 }
305
306 /* -----------------------------------------------------------------------------
307 * Initialization and configuration
308 */
309
310 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
311 {
312 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
313
314 return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
315 }
316
317 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
318 {
319 struct rcar_dmac_desc *desc = chan->desc.running;
320 u32 chcr = desc->chcr;
321
322 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
323
324 if (chan->mid_rid >= 0)
325 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
326
327 if (desc->hwdescs.use) {
328 struct rcar_dmac_xfer_chunk *chunk;
329
330 dev_dbg(chan->chan.device->dev,
331 "chan%u: queue desc %p: %u@%pad\n",
332 chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
333
334 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
335 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
336 desc->hwdescs.dma >> 32);
337 #endif
338 rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
339 (desc->hwdescs.dma & 0xfffffff0) |
340 RCAR_DMADPBASE_SEL);
341 rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
342 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
343 RCAR_DMACHCRB_DRST);
344
345 /*
346 * Errata: When descriptor memory is accessed through an IOMMU
347 * the DMADAR register isn't initialized automatically from the
348 * first descriptor at beginning of transfer by the DMAC like it
349 * should. Initialize it manually with the destination address
350 * of the first chunk.
351 */
352 chunk = list_first_entry(&desc->chunks,
353 struct rcar_dmac_xfer_chunk, node);
354 rcar_dmac_chan_write(chan, RCAR_DMADAR,
355 chunk->dst_addr & 0xffffffff);
356
357 /*
358 * Program the descriptor stage interrupt to occur after the end
359 * of the first stage.
360 */
361 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
362
363 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
364 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
365
366 /*
367 * If the descriptor isn't cyclic enable normal descriptor mode
368 * and the transfer completion interrupt.
369 */
370 if (!desc->cyclic)
371 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
372 /*
373 * If the descriptor is cyclic and has a callback enable the
374 * descriptor stage interrupt in infinite repeat mode.
375 */
376 else if (desc->async_tx.callback)
377 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
378 /*
379 * Otherwise just select infinite repeat mode without any
380 * interrupt.
381 */
382 else
383 chcr |= RCAR_DMACHCR_DPM_INFINITE;
384 } else {
385 struct rcar_dmac_xfer_chunk *chunk = desc->running;
386
387 dev_dbg(chan->chan.device->dev,
388 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
389 chan->index, chunk, chunk->size, &chunk->src_addr,
390 &chunk->dst_addr);
391
392 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
393 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
394 chunk->src_addr >> 32);
395 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
396 chunk->dst_addr >> 32);
397 #endif
398 rcar_dmac_chan_write(chan, RCAR_DMASAR,
399 chunk->src_addr & 0xffffffff);
400 rcar_dmac_chan_write(chan, RCAR_DMADAR,
401 chunk->dst_addr & 0xffffffff);
402 rcar_dmac_chan_write(chan, RCAR_DMATCR,
403 chunk->size >> desc->xfer_shift);
404
405 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
406 }
407
408 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
409 }
410
411 static int rcar_dmac_init(struct rcar_dmac *dmac)
412 {
413 u16 dmaor;
414
415 /* Clear all channels and enable the DMAC globally. */
416 rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
417 rcar_dmac_write(dmac, RCAR_DMAOR,
418 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
419
420 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
421 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
422 dev_warn(dmac->dev, "DMAOR initialization failed.\n");
423 return -EIO;
424 }
425
426 return 0;
427 }
428
429 /* -----------------------------------------------------------------------------
430 * Descriptors submission
431 */
432
433 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
434 {
435 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
436 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
437 unsigned long flags;
438 dma_cookie_t cookie;
439
440 spin_lock_irqsave(&chan->lock, flags);
441
442 cookie = dma_cookie_assign(tx);
443
444 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
445 chan->index, tx->cookie, desc);
446
447 list_add_tail(&desc->node, &chan->desc.pending);
448 desc->running = list_first_entry(&desc->chunks,
449 struct rcar_dmac_xfer_chunk, node);
450
451 spin_unlock_irqrestore(&chan->lock, flags);
452
453 return cookie;
454 }
455
456 /* -----------------------------------------------------------------------------
457 * Descriptors allocation and free
458 */
459
460 /*
461 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
462 * @chan: the DMA channel
463 * @gfp: allocation flags
464 */
465 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
466 {
467 struct rcar_dmac_desc_page *page;
468 unsigned long flags;
469 LIST_HEAD(list);
470 unsigned int i;
471
472 page = (void *)get_zeroed_page(gfp);
473 if (!page)
474 return -ENOMEM;
475
476 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
477 struct rcar_dmac_desc *desc = &page->descs[i];
478
479 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
480 desc->async_tx.tx_submit = rcar_dmac_tx_submit;
481 INIT_LIST_HEAD(&desc->chunks);
482
483 list_add_tail(&desc->node, &list);
484 }
485
486 spin_lock_irqsave(&chan->lock, flags);
487 list_splice_tail(&list, &chan->desc.free);
488 list_add_tail(&page->node, &chan->desc.pages);
489 spin_unlock_irqrestore(&chan->lock, flags);
490
491 return 0;
492 }
493
494 /*
495 * rcar_dmac_desc_put - Release a DMA transfer descriptor
496 * @chan: the DMA channel
497 * @desc: the descriptor
498 *
499 * Put the descriptor and its transfer chunk descriptors back in the channel's
500 * free descriptors lists. The descriptor's chunks list will be reinitialized to
501 * an empty list as a result.
502 *
503 * The descriptor must have been removed from the channel's lists before calling
504 * this function.
505 */
506 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
507 struct rcar_dmac_desc *desc)
508 {
509 unsigned long flags;
510
511 spin_lock_irqsave(&chan->lock, flags);
512 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
513 list_add(&desc->node, &chan->desc.free);
514 spin_unlock_irqrestore(&chan->lock, flags);
515 }
516
517 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
518 {
519 struct rcar_dmac_desc *desc, *_desc;
520 unsigned long flags;
521 LIST_HEAD(list);
522
523 /*
524 * We have to temporarily move all descriptors from the wait list to a
525 * local list as iterating over the wait list, even with
526 * list_for_each_entry_safe, isn't safe if we release the channel lock
527 * around the rcar_dmac_desc_put() call.
528 */
529 spin_lock_irqsave(&chan->lock, flags);
530 list_splice_init(&chan->desc.wait, &list);
531 spin_unlock_irqrestore(&chan->lock, flags);
532
533 list_for_each_entry_safe(desc, _desc, &list, node) {
534 if (async_tx_test_ack(&desc->async_tx)) {
535 list_del(&desc->node);
536 rcar_dmac_desc_put(chan, desc);
537 }
538 }
539
540 if (list_empty(&list))
541 return;
542
543 /* Put the remaining descriptors back in the wait list. */
544 spin_lock_irqsave(&chan->lock, flags);
545 list_splice(&list, &chan->desc.wait);
546 spin_unlock_irqrestore(&chan->lock, flags);
547 }
548
549 /*
550 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
551 * @chan: the DMA channel
552 *
553 * Locking: This function must be called in a non-atomic context.
554 *
555 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
556 * be allocated.
557 */
558 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
559 {
560 struct rcar_dmac_desc *desc;
561 unsigned long flags;
562 int ret;
563
564 /* Recycle acked descriptors before attempting allocation. */
565 rcar_dmac_desc_recycle_acked(chan);
566
567 spin_lock_irqsave(&chan->lock, flags);
568
569 while (list_empty(&chan->desc.free)) {
570 /*
571 * No free descriptors, allocate a page worth of them and try
572 * again, as someone else could race us to get the newly
573 * allocated descriptors. If the allocation fails return an
574 * error.
575 */
576 spin_unlock_irqrestore(&chan->lock, flags);
577 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
578 if (ret < 0)
579 return NULL;
580 spin_lock_irqsave(&chan->lock, flags);
581 }
582
583 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
584 list_del(&desc->node);
585
586 spin_unlock_irqrestore(&chan->lock, flags);
587
588 return desc;
589 }
590
591 /*
592 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
593 * @chan: the DMA channel
594 * @gfp: allocation flags
595 */
596 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
597 {
598 struct rcar_dmac_desc_page *page;
599 unsigned long flags;
600 LIST_HEAD(list);
601 unsigned int i;
602
603 page = (void *)get_zeroed_page(gfp);
604 if (!page)
605 return -ENOMEM;
606
607 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
608 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
609
610 list_add_tail(&chunk->node, &list);
611 }
612
613 spin_lock_irqsave(&chan->lock, flags);
614 list_splice_tail(&list, &chan->desc.chunks_free);
615 list_add_tail(&page->node, &chan->desc.pages);
616 spin_unlock_irqrestore(&chan->lock, flags);
617
618 return 0;
619 }
620
621 /*
622 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
623 * @chan: the DMA channel
624 *
625 * Locking: This function must be called in a non-atomic context.
626 *
627 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
628 * descriptor can be allocated.
629 */
630 static struct rcar_dmac_xfer_chunk *
631 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
632 {
633 struct rcar_dmac_xfer_chunk *chunk;
634 unsigned long flags;
635 int ret;
636
637 spin_lock_irqsave(&chan->lock, flags);
638
639 while (list_empty(&chan->desc.chunks_free)) {
640 /*
641 * No free descriptors, allocate a page worth of them and try
642 * again, as someone else could race us to get the newly
643 * allocated descriptors. If the allocation fails return an
644 * error.
645 */
646 spin_unlock_irqrestore(&chan->lock, flags);
647 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
648 if (ret < 0)
649 return NULL;
650 spin_lock_irqsave(&chan->lock, flags);
651 }
652
653 chunk = list_first_entry(&chan->desc.chunks_free,
654 struct rcar_dmac_xfer_chunk, node);
655 list_del(&chunk->node);
656
657 spin_unlock_irqrestore(&chan->lock, flags);
658
659 return chunk;
660 }
661
662 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
663 struct rcar_dmac_desc *desc, size_t size)
664 {
665 /*
666 * dma_alloc_coherent() allocates memory in page size increments. To
667 * avoid reallocating the hardware descriptors when the allocated size
668 * wouldn't change align the requested size to a multiple of the page
669 * size.
670 */
671 size = PAGE_ALIGN(size);
672
673 if (desc->hwdescs.size == size)
674 return;
675
676 if (desc->hwdescs.mem) {
677 dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
678 desc->hwdescs.mem, desc->hwdescs.dma);
679 desc->hwdescs.mem = NULL;
680 desc->hwdescs.size = 0;
681 }
682
683 if (!size)
684 return;
685
686 desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
687 &desc->hwdescs.dma, GFP_NOWAIT);
688 if (!desc->hwdescs.mem)
689 return;
690
691 desc->hwdescs.size = size;
692 }
693
694 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
695 struct rcar_dmac_desc *desc)
696 {
697 struct rcar_dmac_xfer_chunk *chunk;
698 struct rcar_dmac_hw_desc *hwdesc;
699
700 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
701
702 hwdesc = desc->hwdescs.mem;
703 if (!hwdesc)
704 return -ENOMEM;
705
706 list_for_each_entry(chunk, &desc->chunks, node) {
707 hwdesc->sar = chunk->src_addr;
708 hwdesc->dar = chunk->dst_addr;
709 hwdesc->tcr = chunk->size >> desc->xfer_shift;
710 hwdesc++;
711 }
712
713 return 0;
714 }
715
716 /* -----------------------------------------------------------------------------
717 * Stop and reset
718 */
719
720 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
721 {
722 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
723
724 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
725 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
726 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
727 }
728
729 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
730 {
731 struct rcar_dmac_desc *desc, *_desc;
732 unsigned long flags;
733 LIST_HEAD(descs);
734
735 spin_lock_irqsave(&chan->lock, flags);
736
737 /* Move all non-free descriptors to the local lists. */
738 list_splice_init(&chan->desc.pending, &descs);
739 list_splice_init(&chan->desc.active, &descs);
740 list_splice_init(&chan->desc.done, &descs);
741 list_splice_init(&chan->desc.wait, &descs);
742
743 chan->desc.running = NULL;
744
745 spin_unlock_irqrestore(&chan->lock, flags);
746
747 list_for_each_entry_safe(desc, _desc, &descs, node) {
748 list_del(&desc->node);
749 rcar_dmac_desc_put(chan, desc);
750 }
751 }
752
753 static void rcar_dmac_stop(struct rcar_dmac *dmac)
754 {
755 rcar_dmac_write(dmac, RCAR_DMAOR, 0);
756 }
757
758 static void rcar_dmac_abort(struct rcar_dmac *dmac)
759 {
760 unsigned int i;
761
762 /* Stop all channels. */
763 for (i = 0; i < dmac->n_channels; ++i) {
764 struct rcar_dmac_chan *chan = &dmac->channels[i];
765
766 /* Stop and reinitialize the channel. */
767 spin_lock(&chan->lock);
768 rcar_dmac_chan_halt(chan);
769 spin_unlock(&chan->lock);
770
771 rcar_dmac_chan_reinit(chan);
772 }
773 }
774
775 /* -----------------------------------------------------------------------------
776 * Descriptors preparation
777 */
778
779 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
780 struct rcar_dmac_desc *desc)
781 {
782 static const u32 chcr_ts[] = {
783 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
784 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
785 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
786 RCAR_DMACHCR_TS_64B,
787 };
788
789 unsigned int xfer_size;
790 u32 chcr;
791
792 switch (desc->direction) {
793 case DMA_DEV_TO_MEM:
794 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
795 | RCAR_DMACHCR_RS_DMARS;
796 xfer_size = chan->src_xfer_size;
797 break;
798
799 case DMA_MEM_TO_DEV:
800 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
801 | RCAR_DMACHCR_RS_DMARS;
802 xfer_size = chan->dst_xfer_size;
803 break;
804
805 case DMA_MEM_TO_MEM:
806 default:
807 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
808 | RCAR_DMACHCR_RS_AUTO;
809 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
810 break;
811 }
812
813 desc->xfer_shift = ilog2(xfer_size);
814 desc->chcr = chcr | chcr_ts[desc->xfer_shift];
815 }
816
817 /*
818 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
819 *
820 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
821 * converted to scatter-gather to guarantee consistent locking and a correct
822 * list manipulation. For slave DMA direction carries the usual meaning, and,
823 * logically, the SG list is RAM and the addr variable contains slave address,
824 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
825 * and the SG list contains only one element and points at the source buffer.
826 */
827 static struct dma_async_tx_descriptor *
828 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
829 unsigned int sg_len, dma_addr_t dev_addr,
830 enum dma_transfer_direction dir, unsigned long dma_flags,
831 bool cyclic)
832 {
833 struct rcar_dmac_xfer_chunk *chunk;
834 struct rcar_dmac_desc *desc;
835 struct scatterlist *sg;
836 unsigned int nchunks = 0;
837 unsigned int max_chunk_size;
838 unsigned int full_size = 0;
839 bool highmem = false;
840 unsigned int i;
841
842 desc = rcar_dmac_desc_get(chan);
843 if (!desc)
844 return NULL;
845
846 desc->async_tx.flags = dma_flags;
847 desc->async_tx.cookie = -EBUSY;
848
849 desc->cyclic = cyclic;
850 desc->direction = dir;
851
852 rcar_dmac_chan_configure_desc(chan, desc);
853
854 max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
855
856 /*
857 * Allocate and fill the transfer chunk descriptors. We own the only
858 * reference to the DMA descriptor, there's no need for locking.
859 */
860 for_each_sg(sgl, sg, sg_len, i) {
861 dma_addr_t mem_addr = sg_dma_address(sg);
862 unsigned int len = sg_dma_len(sg);
863
864 full_size += len;
865
866 while (len) {
867 unsigned int size = min(len, max_chunk_size);
868
869 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
870 /*
871 * Prevent individual transfers from crossing 4GB
872 * boundaries.
873 */
874 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
875 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
876 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
877 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
878
879 /*
880 * Check if either of the source or destination address
881 * can't be expressed in 32 bits. If so we can't use
882 * hardware descriptor lists.
883 */
884 if (dev_addr >> 32 || mem_addr >> 32)
885 highmem = true;
886 #endif
887
888 chunk = rcar_dmac_xfer_chunk_get(chan);
889 if (!chunk) {
890 rcar_dmac_desc_put(chan, desc);
891 return NULL;
892 }
893
894 if (dir == DMA_DEV_TO_MEM) {
895 chunk->src_addr = dev_addr;
896 chunk->dst_addr = mem_addr;
897 } else {
898 chunk->src_addr = mem_addr;
899 chunk->dst_addr = dev_addr;
900 }
901
902 chunk->size = size;
903
904 dev_dbg(chan->chan.device->dev,
905 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
906 chan->index, chunk, desc, i, sg, size, len,
907 &chunk->src_addr, &chunk->dst_addr);
908
909 mem_addr += size;
910 if (dir == DMA_MEM_TO_MEM)
911 dev_addr += size;
912
913 len -= size;
914
915 list_add_tail(&chunk->node, &desc->chunks);
916 nchunks++;
917 }
918 }
919
920 desc->nchunks = nchunks;
921 desc->size = full_size;
922
923 /*
924 * Use hardware descriptor lists if possible when more than one chunk
925 * needs to be transferred (otherwise they don't make much sense).
926 *
927 * The highmem check currently covers the whole transfer. As an
928 * optimization we could use descriptor lists for consecutive lowmem
929 * chunks and direct manual mode for highmem chunks. Whether the
930 * performance improvement would be significant enough compared to the
931 * additional complexity remains to be investigated.
932 */
933 desc->hwdescs.use = !highmem && nchunks > 1;
934 if (desc->hwdescs.use) {
935 if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
936 desc->hwdescs.use = false;
937 }
938
939 return &desc->async_tx;
940 }
941
942 /* -----------------------------------------------------------------------------
943 * DMA engine operations
944 */
945
946 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
947 {
948 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
949 int ret;
950
951 INIT_LIST_HEAD(&rchan->desc.chunks_free);
952 INIT_LIST_HEAD(&rchan->desc.pages);
953
954 /* Preallocate descriptors. */
955 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
956 if (ret < 0)
957 return -ENOMEM;
958
959 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
960 if (ret < 0)
961 return -ENOMEM;
962
963 return pm_runtime_get_sync(chan->device->dev);
964 }
965
966 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
967 {
968 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
969 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
970 struct rcar_dmac_desc_page *page, *_page;
971 struct rcar_dmac_desc *desc;
972 LIST_HEAD(list);
973
974 /* Protect against ISR */
975 spin_lock_irq(&rchan->lock);
976 rcar_dmac_chan_halt(rchan);
977 spin_unlock_irq(&rchan->lock);
978
979 /* Now no new interrupts will occur */
980
981 if (rchan->mid_rid >= 0) {
982 /* The caller is holding dma_list_mutex */
983 clear_bit(rchan->mid_rid, dmac->modules);
984 rchan->mid_rid = -EINVAL;
985 }
986
987 list_splice_init(&rchan->desc.free, &list);
988 list_splice_init(&rchan->desc.pending, &list);
989 list_splice_init(&rchan->desc.active, &list);
990 list_splice_init(&rchan->desc.done, &list);
991 list_splice_init(&rchan->desc.wait, &list);
992
993 rchan->desc.running = NULL;
994
995 list_for_each_entry(desc, &list, node)
996 rcar_dmac_realloc_hwdesc(rchan, desc, 0);
997
998 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
999 list_del(&page->node);
1000 free_page((unsigned long)page);
1001 }
1002
1003 pm_runtime_put(chan->device->dev);
1004 }
1005
1006 static struct dma_async_tx_descriptor *
1007 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1008 dma_addr_t dma_src, size_t len, unsigned long flags)
1009 {
1010 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1011 struct scatterlist sgl;
1012
1013 if (!len)
1014 return NULL;
1015
1016 sg_init_table(&sgl, 1);
1017 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1018 offset_in_page(dma_src));
1019 sg_dma_address(&sgl) = dma_src;
1020 sg_dma_len(&sgl) = len;
1021
1022 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1023 DMA_MEM_TO_MEM, flags, false);
1024 }
1025
1026 static struct dma_async_tx_descriptor *
1027 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1028 unsigned int sg_len, enum dma_transfer_direction dir,
1029 unsigned long flags, void *context)
1030 {
1031 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1032 dma_addr_t dev_addr;
1033
1034 /* Someone calling slave DMA on a generic channel? */
1035 if (rchan->mid_rid < 0 || !sg_len) {
1036 dev_warn(chan->device->dev,
1037 "%s: bad parameter: len=%d, id=%d\n",
1038 __func__, sg_len, rchan->mid_rid);
1039 return NULL;
1040 }
1041
1042 dev_addr = dir == DMA_DEV_TO_MEM
1043 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1044 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1045 dir, flags, false);
1046 }
1047
1048 #define RCAR_DMAC_MAX_SG_LEN 32
1049
1050 static struct dma_async_tx_descriptor *
1051 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1052 size_t buf_len, size_t period_len,
1053 enum dma_transfer_direction dir, unsigned long flags)
1054 {
1055 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1056 struct dma_async_tx_descriptor *desc;
1057 struct scatterlist *sgl;
1058 dma_addr_t dev_addr;
1059 unsigned int sg_len;
1060 unsigned int i;
1061
1062 /* Someone calling slave DMA on a generic channel? */
1063 if (rchan->mid_rid < 0 || buf_len < period_len) {
1064 dev_warn(chan->device->dev,
1065 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1066 __func__, buf_len, period_len, rchan->mid_rid);
1067 return NULL;
1068 }
1069
1070 sg_len = buf_len / period_len;
1071 if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1072 dev_err(chan->device->dev,
1073 "chan%u: sg length %d exceds limit %d",
1074 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1075 return NULL;
1076 }
1077
1078 /*
1079 * Allocate the sg list dynamically as it would consume too much stack
1080 * space.
1081 */
1082 sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1083 if (!sgl)
1084 return NULL;
1085
1086 sg_init_table(sgl, sg_len);
1087
1088 for (i = 0; i < sg_len; ++i) {
1089 dma_addr_t src = buf_addr + (period_len * i);
1090
1091 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1092 offset_in_page(src));
1093 sg_dma_address(&sgl[i]) = src;
1094 sg_dma_len(&sgl[i]) = period_len;
1095 }
1096
1097 dev_addr = dir == DMA_DEV_TO_MEM
1098 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1099 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1100 dir, flags, true);
1101
1102 kfree(sgl);
1103 return desc;
1104 }
1105
1106 static int rcar_dmac_device_config(struct dma_chan *chan,
1107 struct dma_slave_config *cfg)
1108 {
1109 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1110
1111 /*
1112 * We could lock this, but you shouldn't be configuring the
1113 * channel, while using it...
1114 */
1115 rchan->src_slave_addr = cfg->src_addr;
1116 rchan->dst_slave_addr = cfg->dst_addr;
1117 rchan->src_xfer_size = cfg->src_addr_width;
1118 rchan->dst_xfer_size = cfg->dst_addr_width;
1119
1120 return 0;
1121 }
1122
1123 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1124 {
1125 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(&rchan->lock, flags);
1129 rcar_dmac_chan_halt(rchan);
1130 spin_unlock_irqrestore(&rchan->lock, flags);
1131
1132 /*
1133 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1134 * be running.
1135 */
1136
1137 rcar_dmac_chan_reinit(rchan);
1138
1139 return 0;
1140 }
1141
1142 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1143 dma_cookie_t cookie)
1144 {
1145 struct rcar_dmac_desc *desc = chan->desc.running;
1146 struct rcar_dmac_xfer_chunk *running = NULL;
1147 struct rcar_dmac_xfer_chunk *chunk;
1148 enum dma_status status;
1149 unsigned int residue = 0;
1150 unsigned int dptr = 0;
1151
1152 if (!desc)
1153 return 0;
1154
1155 /*
1156 * If the cookie corresponds to a descriptor that has been completed
1157 * there is no residue. The same check has already been performed by the
1158 * caller but without holding the channel lock, so the descriptor could
1159 * now be complete.
1160 */
1161 status = dma_cookie_status(&chan->chan, cookie, NULL);
1162 if (status == DMA_COMPLETE)
1163 return 0;
1164
1165 /*
1166 * If the cookie doesn't correspond to the currently running transfer
1167 * then the descriptor hasn't been processed yet, and the residue is
1168 * equal to the full descriptor size.
1169 */
1170 if (cookie != desc->async_tx.cookie) {
1171 list_for_each_entry(desc, &chan->desc.pending, node) {
1172 if (cookie == desc->async_tx.cookie)
1173 return desc->size;
1174 }
1175 list_for_each_entry(desc, &chan->desc.active, node) {
1176 if (cookie == desc->async_tx.cookie)
1177 return desc->size;
1178 }
1179
1180 /*
1181 * No descriptor found for the cookie, there's thus no residue.
1182 * This shouldn't happen if the calling driver passes a correct
1183 * cookie value.
1184 */
1185 WARN(1, "No descriptor for cookie!");
1186 return 0;
1187 }
1188
1189 /*
1190 * In descriptor mode the descriptor running pointer is not maintained
1191 * by the interrupt handler, find the running descriptor from the
1192 * descriptor pointer field in the CHCRB register. In non-descriptor
1193 * mode just use the running descriptor pointer.
1194 */
1195 if (desc->hwdescs.use) {
1196 dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1197 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1198 WARN_ON(dptr >= desc->nchunks);
1199 } else {
1200 running = desc->running;
1201 }
1202
1203 /* Compute the size of all chunks still to be transferred. */
1204 list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1205 if (chunk == running || ++dptr == desc->nchunks)
1206 break;
1207
1208 residue += chunk->size;
1209 }
1210
1211 /* Add the residue for the current chunk. */
1212 residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1213
1214 return residue;
1215 }
1216
1217 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1218 dma_cookie_t cookie,
1219 struct dma_tx_state *txstate)
1220 {
1221 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1222 enum dma_status status;
1223 unsigned long flags;
1224 unsigned int residue;
1225
1226 status = dma_cookie_status(chan, cookie, txstate);
1227 if (status == DMA_COMPLETE || !txstate)
1228 return status;
1229
1230 spin_lock_irqsave(&rchan->lock, flags);
1231 residue = rcar_dmac_chan_get_residue(rchan, cookie);
1232 spin_unlock_irqrestore(&rchan->lock, flags);
1233
1234 /* if there's no residue, the cookie is complete */
1235 if (!residue)
1236 return DMA_COMPLETE;
1237
1238 dma_set_residue(txstate, residue);
1239
1240 return status;
1241 }
1242
1243 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1244 {
1245 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1246 unsigned long flags;
1247
1248 spin_lock_irqsave(&rchan->lock, flags);
1249
1250 if (list_empty(&rchan->desc.pending))
1251 goto done;
1252
1253 /* Append the pending list to the active list. */
1254 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1255
1256 /*
1257 * If no transfer is running pick the first descriptor from the active
1258 * list and start the transfer.
1259 */
1260 if (!rchan->desc.running) {
1261 struct rcar_dmac_desc *desc;
1262
1263 desc = list_first_entry(&rchan->desc.active,
1264 struct rcar_dmac_desc, node);
1265 rchan->desc.running = desc;
1266
1267 rcar_dmac_chan_start_xfer(rchan);
1268 }
1269
1270 done:
1271 spin_unlock_irqrestore(&rchan->lock, flags);
1272 }
1273
1274 /* -----------------------------------------------------------------------------
1275 * IRQ handling
1276 */
1277
1278 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1279 {
1280 struct rcar_dmac_desc *desc = chan->desc.running;
1281 unsigned int stage;
1282
1283 if (WARN_ON(!desc || !desc->cyclic)) {
1284 /*
1285 * This should never happen, there should always be a running
1286 * cyclic descriptor when a descriptor stage end interrupt is
1287 * triggered. Warn and return.
1288 */
1289 return IRQ_NONE;
1290 }
1291
1292 /* Program the interrupt pointer to the next stage. */
1293 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1294 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1295 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1296
1297 return IRQ_WAKE_THREAD;
1298 }
1299
1300 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1301 {
1302 struct rcar_dmac_desc *desc = chan->desc.running;
1303 irqreturn_t ret = IRQ_WAKE_THREAD;
1304
1305 if (WARN_ON_ONCE(!desc)) {
1306 /*
1307 * This should never happen, there should always be a running
1308 * descriptor when a transfer end interrupt is triggered. Warn
1309 * and return.
1310 */
1311 return IRQ_NONE;
1312 }
1313
1314 /*
1315 * The transfer end interrupt isn't generated for each chunk when using
1316 * descriptor mode. Only update the running chunk pointer in
1317 * non-descriptor mode.
1318 */
1319 if (!desc->hwdescs.use) {
1320 /*
1321 * If we haven't completed the last transfer chunk simply move
1322 * to the next one. Only wake the IRQ thread if the transfer is
1323 * cyclic.
1324 */
1325 if (!list_is_last(&desc->running->node, &desc->chunks)) {
1326 desc->running = list_next_entry(desc->running, node);
1327 if (!desc->cyclic)
1328 ret = IRQ_HANDLED;
1329 goto done;
1330 }
1331
1332 /*
1333 * We've completed the last transfer chunk. If the transfer is
1334 * cyclic, move back to the first one.
1335 */
1336 if (desc->cyclic) {
1337 desc->running =
1338 list_first_entry(&desc->chunks,
1339 struct rcar_dmac_xfer_chunk,
1340 node);
1341 goto done;
1342 }
1343 }
1344
1345 /* The descriptor is complete, move it to the done list. */
1346 list_move_tail(&desc->node, &chan->desc.done);
1347
1348 /* Queue the next descriptor, if any. */
1349 if (!list_empty(&chan->desc.active))
1350 chan->desc.running = list_first_entry(&chan->desc.active,
1351 struct rcar_dmac_desc,
1352 node);
1353 else
1354 chan->desc.running = NULL;
1355
1356 done:
1357 if (chan->desc.running)
1358 rcar_dmac_chan_start_xfer(chan);
1359
1360 return ret;
1361 }
1362
1363 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1364 {
1365 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1366 struct rcar_dmac_chan *chan = dev;
1367 irqreturn_t ret = IRQ_NONE;
1368 u32 chcr;
1369
1370 spin_lock(&chan->lock);
1371
1372 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1373 if (chcr & RCAR_DMACHCR_TE)
1374 mask |= RCAR_DMACHCR_DE;
1375 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1376
1377 if (chcr & RCAR_DMACHCR_DSE)
1378 ret |= rcar_dmac_isr_desc_stage_end(chan);
1379
1380 if (chcr & RCAR_DMACHCR_TE)
1381 ret |= rcar_dmac_isr_transfer_end(chan);
1382
1383 spin_unlock(&chan->lock);
1384
1385 return ret;
1386 }
1387
1388 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1389 {
1390 struct rcar_dmac_chan *chan = dev;
1391 struct rcar_dmac_desc *desc;
1392 struct dmaengine_desc_callback cb;
1393
1394 spin_lock_irq(&chan->lock);
1395
1396 /* For cyclic transfers notify the user after every chunk. */
1397 if (chan->desc.running && chan->desc.running->cyclic) {
1398 desc = chan->desc.running;
1399 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1400
1401 if (dmaengine_desc_callback_valid(&cb)) {
1402 spin_unlock_irq(&chan->lock);
1403 dmaengine_desc_callback_invoke(&cb, NULL);
1404 spin_lock_irq(&chan->lock);
1405 }
1406 }
1407
1408 /*
1409 * Call the callback function for all descriptors on the done list and
1410 * move them to the ack wait list.
1411 */
1412 while (!list_empty(&chan->desc.done)) {
1413 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1414 node);
1415 dma_cookie_complete(&desc->async_tx);
1416 list_del(&desc->node);
1417
1418 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1419 if (dmaengine_desc_callback_valid(&cb)) {
1420 spin_unlock_irq(&chan->lock);
1421 /*
1422 * We own the only reference to this descriptor, we can
1423 * safely dereference it without holding the channel
1424 * lock.
1425 */
1426 dmaengine_desc_callback_invoke(&cb, NULL);
1427 spin_lock_irq(&chan->lock);
1428 }
1429
1430 list_add_tail(&desc->node, &chan->desc.wait);
1431 }
1432
1433 spin_unlock_irq(&chan->lock);
1434
1435 /* Recycle all acked descriptors. */
1436 rcar_dmac_desc_recycle_acked(chan);
1437
1438 return IRQ_HANDLED;
1439 }
1440
1441 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1442 {
1443 struct rcar_dmac *dmac = data;
1444
1445 if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1446 return IRQ_NONE;
1447
1448 /*
1449 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1450 * abort transfers on all channels, and reinitialize the DMAC.
1451 */
1452 rcar_dmac_stop(dmac);
1453 rcar_dmac_abort(dmac);
1454 rcar_dmac_init(dmac);
1455
1456 return IRQ_HANDLED;
1457 }
1458
1459 /* -----------------------------------------------------------------------------
1460 * OF xlate and channel filter
1461 */
1462
1463 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1464 {
1465 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1466 struct of_phandle_args *dma_spec = arg;
1467
1468 /*
1469 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1470 * function knows from which device it wants to allocate a channel from,
1471 * and would be perfectly capable of selecting the channel it wants.
1472 * Forcing it to call dma_request_channel() and iterate through all
1473 * channels from all controllers is just pointless.
1474 */
1475 if (chan->device->device_config != rcar_dmac_device_config ||
1476 dma_spec->np != chan->device->dev->of_node)
1477 return false;
1478
1479 return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1480 }
1481
1482 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1483 struct of_dma *ofdma)
1484 {
1485 struct rcar_dmac_chan *rchan;
1486 struct dma_chan *chan;
1487 dma_cap_mask_t mask;
1488
1489 if (dma_spec->args_count != 1)
1490 return NULL;
1491
1492 /* Only slave DMA channels can be allocated via DT */
1493 dma_cap_zero(mask);
1494 dma_cap_set(DMA_SLAVE, mask);
1495
1496 chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1497 if (!chan)
1498 return NULL;
1499
1500 rchan = to_rcar_dmac_chan(chan);
1501 rchan->mid_rid = dma_spec->args[0];
1502
1503 return chan;
1504 }
1505
1506 /* -----------------------------------------------------------------------------
1507 * Power management
1508 */
1509
1510 #ifdef CONFIG_PM_SLEEP
1511 static int rcar_dmac_sleep_suspend(struct device *dev)
1512 {
1513 /*
1514 * TODO: Wait for the current transfer to complete and stop the device.
1515 */
1516 return 0;
1517 }
1518
1519 static int rcar_dmac_sleep_resume(struct device *dev)
1520 {
1521 /* TODO: Resume transfers, if any. */
1522 return 0;
1523 }
1524 #endif
1525
1526 #ifdef CONFIG_PM
1527 static int rcar_dmac_runtime_suspend(struct device *dev)
1528 {
1529 return 0;
1530 }
1531
1532 static int rcar_dmac_runtime_resume(struct device *dev)
1533 {
1534 struct rcar_dmac *dmac = dev_get_drvdata(dev);
1535
1536 return rcar_dmac_init(dmac);
1537 }
1538 #endif
1539
1540 static const struct dev_pm_ops rcar_dmac_pm = {
1541 SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1542 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1543 NULL)
1544 };
1545
1546 /* -----------------------------------------------------------------------------
1547 * Probe and remove
1548 */
1549
1550 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1551 struct rcar_dmac_chan *rchan,
1552 unsigned int index)
1553 {
1554 struct platform_device *pdev = to_platform_device(dmac->dev);
1555 struct dma_chan *chan = &rchan->chan;
1556 char pdev_irqname[5];
1557 char *irqname;
1558 int irq;
1559 int ret;
1560
1561 rchan->index = index;
1562 rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1563 rchan->mid_rid = -EINVAL;
1564
1565 spin_lock_init(&rchan->lock);
1566
1567 INIT_LIST_HEAD(&rchan->desc.free);
1568 INIT_LIST_HEAD(&rchan->desc.pending);
1569 INIT_LIST_HEAD(&rchan->desc.active);
1570 INIT_LIST_HEAD(&rchan->desc.done);
1571 INIT_LIST_HEAD(&rchan->desc.wait);
1572
1573 /* Request the channel interrupt. */
1574 sprintf(pdev_irqname, "ch%u", index);
1575 irq = platform_get_irq_byname(pdev, pdev_irqname);
1576 if (irq < 0) {
1577 dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1578 return -ENODEV;
1579 }
1580
1581 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1582 dev_name(dmac->dev), index);
1583 if (!irqname)
1584 return -ENOMEM;
1585
1586 ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1587 rcar_dmac_isr_channel_thread, 0,
1588 irqname, rchan);
1589 if (ret) {
1590 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1591 return ret;
1592 }
1593
1594 /*
1595 * Initialize the DMA engine channel and add it to the DMA engine
1596 * channels list.
1597 */
1598 chan->device = &dmac->engine;
1599 dma_cookie_init(chan);
1600
1601 list_add_tail(&chan->device_node, &dmac->engine.channels);
1602
1603 return 0;
1604 }
1605
1606 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1607 {
1608 struct device_node *np = dev->of_node;
1609 int ret;
1610
1611 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1612 if (ret < 0) {
1613 dev_err(dev, "unable to read dma-channels property\n");
1614 return ret;
1615 }
1616
1617 if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1618 dev_err(dev, "invalid number of channels %u\n",
1619 dmac->n_channels);
1620 return -EINVAL;
1621 }
1622
1623 return 0;
1624 }
1625
1626 static int rcar_dmac_probe(struct platform_device *pdev)
1627 {
1628 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1629 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1630 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1631 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1632 unsigned int channels_offset = 0;
1633 struct dma_device *engine;
1634 struct rcar_dmac *dmac;
1635 struct resource *mem;
1636 unsigned int i;
1637 char *irqname;
1638 int irq;
1639 int ret;
1640
1641 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1642 if (!dmac)
1643 return -ENOMEM;
1644
1645 dmac->dev = &pdev->dev;
1646 platform_set_drvdata(pdev, dmac);
1647
1648 ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1649 if (ret < 0)
1650 return ret;
1651
1652 /*
1653 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1654 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1655 * is connected to microTLB 0 on currently supported platforms, so we
1656 * can't use it with the IPMMU. As the IOMMU API operates at the device
1657 * level we can't disable it selectively, so ignore channel 0 for now if
1658 * the device is part of an IOMMU group.
1659 */
1660 if (pdev->dev.iommu_group) {
1661 dmac->n_channels--;
1662 channels_offset = 1;
1663 }
1664
1665 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1666 sizeof(*dmac->channels), GFP_KERNEL);
1667 if (!dmac->channels)
1668 return -ENOMEM;
1669
1670 /* Request resources. */
1671 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1672 dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1673 if (IS_ERR(dmac->iomem))
1674 return PTR_ERR(dmac->iomem);
1675
1676 irq = platform_get_irq_byname(pdev, "error");
1677 if (irq < 0) {
1678 dev_err(&pdev->dev, "no error IRQ specified\n");
1679 return -ENODEV;
1680 }
1681
1682 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1683 dev_name(dmac->dev));
1684 if (!irqname)
1685 return -ENOMEM;
1686
1687 ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1688 irqname, dmac);
1689 if (ret) {
1690 dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1691 irq, ret);
1692 return ret;
1693 }
1694
1695 /* Enable runtime PM and initialize the device. */
1696 pm_runtime_enable(&pdev->dev);
1697 ret = pm_runtime_get_sync(&pdev->dev);
1698 if (ret < 0) {
1699 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1700 return ret;
1701 }
1702
1703 ret = rcar_dmac_init(dmac);
1704 pm_runtime_put(&pdev->dev);
1705
1706 if (ret) {
1707 dev_err(&pdev->dev, "failed to reset device\n");
1708 goto error;
1709 }
1710
1711 /* Initialize the channels. */
1712 INIT_LIST_HEAD(&dmac->engine.channels);
1713
1714 for (i = 0; i < dmac->n_channels; ++i) {
1715 ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1716 i + channels_offset);
1717 if (ret < 0)
1718 goto error;
1719 }
1720
1721 /* Register the DMAC as a DMA provider for DT. */
1722 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1723 NULL);
1724 if (ret < 0)
1725 goto error;
1726
1727 /*
1728 * Register the DMA engine device.
1729 *
1730 * Default transfer size of 32 bytes requires 32-byte alignment.
1731 */
1732 engine = &dmac->engine;
1733 dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1734 dma_cap_set(DMA_SLAVE, engine->cap_mask);
1735
1736 engine->dev = &pdev->dev;
1737 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1738
1739 engine->src_addr_widths = widths;
1740 engine->dst_addr_widths = widths;
1741 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1742 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1743
1744 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1745 engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1746 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1747 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1748 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1749 engine->device_config = rcar_dmac_device_config;
1750 engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1751 engine->device_tx_status = rcar_dmac_tx_status;
1752 engine->device_issue_pending = rcar_dmac_issue_pending;
1753
1754 ret = dma_async_device_register(engine);
1755 if (ret < 0)
1756 goto error;
1757
1758 return 0;
1759
1760 error:
1761 of_dma_controller_free(pdev->dev.of_node);
1762 pm_runtime_disable(&pdev->dev);
1763 return ret;
1764 }
1765
1766 static int rcar_dmac_remove(struct platform_device *pdev)
1767 {
1768 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1769
1770 of_dma_controller_free(pdev->dev.of_node);
1771 dma_async_device_unregister(&dmac->engine);
1772
1773 pm_runtime_disable(&pdev->dev);
1774
1775 return 0;
1776 }
1777
1778 static void rcar_dmac_shutdown(struct platform_device *pdev)
1779 {
1780 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1781
1782 rcar_dmac_stop(dmac);
1783 }
1784
1785 static const struct of_device_id rcar_dmac_of_ids[] = {
1786 { .compatible = "renesas,rcar-dmac", },
1787 { /* Sentinel */ }
1788 };
1789 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1790
1791 static struct platform_driver rcar_dmac_driver = {
1792 .driver = {
1793 .pm = &rcar_dmac_pm,
1794 .name = "rcar-dmac",
1795 .of_match_table = rcar_dmac_of_ids,
1796 },
1797 .probe = rcar_dmac_probe,
1798 .remove = rcar_dmac_remove,
1799 .shutdown = rcar_dmac_shutdown,
1800 };
1801
1802 module_platform_driver(rcar_dmac_driver);
1803
1804 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1805 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1806 MODULE_LICENSE("GPL v2");
This page took 0.068746 seconds and 5 git commands to generate.