Merge remote-tracking branch 'mailbox/mailbox-for-next'
[deliverable/linux.git] / drivers / dma / xgene-dma.c
1 /*
2 * Applied Micro X-Gene SoC DMA engine Driver
3 *
4 * Copyright (c) 2015, Applied Micro Circuits Corporation
5 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6 * Loc Ho <lho@apm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * NOTE: PM support is currently not available.
22 */
23
24 #include <linux/acpi.h>
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dmapool.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35
36 #include "dmaengine.h"
37
38 /* X-Gene DMA ring csr registers and bit definations */
39 #define XGENE_DMA_RING_CONFIG 0x04
40 #define XGENE_DMA_RING_ENABLE BIT(31)
41 #define XGENE_DMA_RING_ID 0x08
42 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31))
43 #define XGENE_DMA_RING_ID_BUF 0x0C
44 #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21))
45 #define XGENE_DMA_RING_THRESLD0_SET1 0x30
46 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64
47 #define XGENE_DMA_RING_THRESLD1_SET1 0x34
48 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8
49 #define XGENE_DMA_RING_HYSTERESIS 0x68
50 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF
51 #define XGENE_DMA_RING_STATE 0x6C
52 #define XGENE_DMA_RING_STATE_WR_BASE 0x70
53 #define XGENE_DMA_RING_NE_INT_MODE 0x017C
54 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \
55 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
56 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \
57 ((m) &= (~BIT(31 - (v))))
58 #define XGENE_DMA_RING_CLKEN 0xC208
59 #define XGENE_DMA_RING_SRST 0xC200
60 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070
61 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074
62 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF
63 #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num))
64 #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v))
65 #define XGENE_DMA_RING_CMD_OFFSET 0x2C
66 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6)
67 #define XGENE_DMA_RING_COHERENT_SET(m) \
68 (((u32 *)(m))[2] |= BIT(4))
69 #define XGENE_DMA_RING_ADDRL_SET(m, v) \
70 (((u32 *)(m))[2] |= (((v) >> 8) << 5))
71 #define XGENE_DMA_RING_ADDRH_SET(m, v) \
72 (((u32 *)(m))[3] |= ((v) >> 35))
73 #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \
74 (((u32 *)(m))[3] |= BIT(19))
75 #define XGENE_DMA_RING_SIZE_SET(m, v) \
76 (((u32 *)(m))[3] |= ((v) << 23))
77 #define XGENE_DMA_RING_RECOMBBUF_SET(m) \
78 (((u32 *)(m))[3] |= BIT(27))
79 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \
80 (((u32 *)(m))[3] |= (0x7 << 28))
81 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \
82 (((u32 *)(m))[4] |= 0x3)
83 #define XGENE_DMA_RING_SELTHRSH_SET(m) \
84 (((u32 *)(m))[4] |= BIT(3))
85 #define XGENE_DMA_RING_TYPE_SET(m, v) \
86 (((u32 *)(m))[4] |= ((v) << 19))
87
88 /* X-Gene DMA device csr registers and bit definitions */
89 #define XGENE_DMA_IPBRR 0x0
90 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF)
91 #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3)
92 #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3)
93 #define XGENE_DMA_GCR 0x10
94 #define XGENE_DMA_CH_SETUP(v) \
95 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
96 #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31))
97 #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31))
98 #define XGENE_DMA_RAID6_CONT 0x14
99 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24)
100 #define XGENE_DMA_INT 0x70
101 #define XGENE_DMA_INT_MASK 0x74
102 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF
103 #define XGENE_DMA_INT_ALL_UNMASK 0x0
104 #define XGENE_DMA_INT_MASK_SHIFT 0x14
105 #define XGENE_DMA_RING_INT0_MASK 0x90A0
106 #define XGENE_DMA_RING_INT1_MASK 0x90A8
107 #define XGENE_DMA_RING_INT2_MASK 0x90B0
108 #define XGENE_DMA_RING_INT3_MASK 0x90B8
109 #define XGENE_DMA_RING_INT4_MASK 0x90C0
110 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0
111 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF
112 #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070
113 #define XGENE_DMA_BLK_MEM_RDY 0xD074
114 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF
115 #define XGENE_DMA_RING_CMD_SM_OFFSET 0x8000
116
117 /* X-Gene SoC EFUSE csr register and bit defination */
118 #define XGENE_SOC_JTAG1_SHADOW 0x18
119 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13)
120
121 /* X-Gene DMA Descriptor format */
122 #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50)
123 #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55)
124 #define XGENE_DMA_DESC_C_BIT BIT_ULL(63)
125 #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61)
126 #define XGENE_DMA_DESC_ELERR_POS 46
127 #define XGENE_DMA_DESC_RTYPE_POS 56
128 #define XGENE_DMA_DESC_LERR_POS 60
129 #define XGENE_DMA_DESC_BUFLEN_POS 48
130 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48
131 #define XGENE_DMA_DESC_ELERR_RD(m) \
132 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
133 #define XGENE_DMA_DESC_LERR_RD(m) \
134 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
135 #define XGENE_DMA_DESC_STATUS(elerr, lerr) \
136 (((elerr) << 4) | (lerr))
137
138 /* X-Gene DMA descriptor empty s/w signature */
139 #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL
140
141 /* X-Gene DMA configurable parameters defines */
142 #define XGENE_DMA_RING_NUM 512
143 #define XGENE_DMA_BUFNUM 0x0
144 #define XGENE_DMA_CPU_BUFNUM 0x18
145 #define XGENE_DMA_RING_OWNER_DMA 0x03
146 #define XGENE_DMA_RING_OWNER_CPU 0x0F
147 #define XGENE_DMA_RING_TYPE_REGULAR 0x01
148 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */
149 #define XGENE_DMA_RING_NUM_CONFIG 5
150 #define XGENE_DMA_MAX_CHANNEL 4
151 #define XGENE_DMA_XOR_CHANNEL 0
152 #define XGENE_DMA_PQ_CHANNEL 1
153 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */
154 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
155 #define XGENE_DMA_MAX_XOR_SRC 5
156 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0
157 #define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL
158
159 /* X-Gene DMA descriptor error codes */
160 #define ERR_DESC_AXI 0x01
161 #define ERR_BAD_DESC 0x02
162 #define ERR_READ_DATA_AXI 0x03
163 #define ERR_WRITE_DATA_AXI 0x04
164 #define ERR_FBP_TIMEOUT 0x05
165 #define ERR_ECC 0x06
166 #define ERR_DIFF_SIZE 0x08
167 #define ERR_SCT_GAT_LEN 0x09
168 #define ERR_CRC_ERR 0x11
169 #define ERR_CHKSUM 0x12
170 #define ERR_DIF 0x13
171
172 /* X-Gene DMA error interrupt codes */
173 #define ERR_DIF_SIZE_INT 0x0
174 #define ERR_GS_ERR_INT 0x1
175 #define ERR_FPB_TIMEO_INT 0x2
176 #define ERR_WFIFO_OVF_INT 0x3
177 #define ERR_RFIFO_OVF_INT 0x4
178 #define ERR_WR_TIMEO_INT 0x5
179 #define ERR_RD_TIMEO_INT 0x6
180 #define ERR_WR_ERR_INT 0x7
181 #define ERR_RD_ERR_INT 0x8
182 #define ERR_BAD_DESC_INT 0x9
183 #define ERR_DESC_DST_INT 0xA
184 #define ERR_DESC_SRC_INT 0xB
185
186 /* X-Gene DMA flyby operation code */
187 #define FLYBY_2SRC_XOR 0x80
188 #define FLYBY_3SRC_XOR 0x90
189 #define FLYBY_4SRC_XOR 0xA0
190 #define FLYBY_5SRC_XOR 0xB0
191
192 /* X-Gene DMA SW descriptor flags */
193 #define XGENE_DMA_FLAG_64B_DESC BIT(0)
194
195 /* Define to dump X-Gene DMA descriptor */
196 #define XGENE_DMA_DESC_DUMP(desc, m) \
197 print_hex_dump(KERN_ERR, (m), \
198 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
199
200 #define to_dma_desc_sw(tx) \
201 container_of(tx, struct xgene_dma_desc_sw, tx)
202 #define to_dma_chan(dchan) \
203 container_of(dchan, struct xgene_dma_chan, dma_chan)
204
205 #define chan_dbg(chan, fmt, arg...) \
206 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
207 #define chan_err(chan, fmt, arg...) \
208 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
209
210 struct xgene_dma_desc_hw {
211 __le64 m0;
212 __le64 m1;
213 __le64 m2;
214 __le64 m3;
215 };
216
217 enum xgene_dma_ring_cfgsize {
218 XGENE_DMA_RING_CFG_SIZE_512B,
219 XGENE_DMA_RING_CFG_SIZE_2KB,
220 XGENE_DMA_RING_CFG_SIZE_16KB,
221 XGENE_DMA_RING_CFG_SIZE_64KB,
222 XGENE_DMA_RING_CFG_SIZE_512KB,
223 XGENE_DMA_RING_CFG_SIZE_INVALID
224 };
225
226 struct xgene_dma_ring {
227 struct xgene_dma *pdma;
228 u8 buf_num;
229 u16 id;
230 u16 num;
231 u16 head;
232 u16 owner;
233 u16 slots;
234 u16 dst_ring_num;
235 u32 size;
236 void __iomem *cmd;
237 void __iomem *cmd_base;
238 dma_addr_t desc_paddr;
239 u32 state[XGENE_DMA_RING_NUM_CONFIG];
240 enum xgene_dma_ring_cfgsize cfgsize;
241 union {
242 void *desc_vaddr;
243 struct xgene_dma_desc_hw *desc_hw;
244 };
245 };
246
247 struct xgene_dma_desc_sw {
248 struct xgene_dma_desc_hw desc1;
249 struct xgene_dma_desc_hw desc2;
250 u32 flags;
251 struct list_head node;
252 struct list_head tx_list;
253 struct dma_async_tx_descriptor tx;
254 };
255
256 /**
257 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
258 * @dma_chan: dmaengine channel object member
259 * @pdma: X-Gene DMA device structure reference
260 * @dev: struct device reference for dma mapping api
261 * @id: raw id of this channel
262 * @rx_irq: channel IRQ
263 * @name: name of X-Gene DMA channel
264 * @lock: serializes enqueue/dequeue operations to the descriptor pool
265 * @pending: number of transaction request pushed to DMA controller for
266 * execution, but still waiting for completion,
267 * @max_outstanding: max number of outstanding request we can push to channel
268 * @ld_pending: descriptors which are queued to run, but have not yet been
269 * submitted to the hardware for execution
270 * @ld_running: descriptors which are currently being executing by the hardware
271 * @ld_completed: descriptors which have finished execution by the hardware.
272 * These descriptors have already had their cleanup actions run. They
273 * are waiting for the ACK bit to be set by the async tx API.
274 * @desc_pool: descriptor pool for DMA operations
275 * @tasklet: bottom half where all completed descriptors cleans
276 * @tx_ring: transmit ring descriptor that we use to prepare actual
277 * descriptors for further executions
278 * @rx_ring: receive ring descriptor that we use to get completed DMA
279 * descriptors during cleanup time
280 */
281 struct xgene_dma_chan {
282 struct dma_chan dma_chan;
283 struct xgene_dma *pdma;
284 struct device *dev;
285 int id;
286 int rx_irq;
287 char name[10];
288 spinlock_t lock;
289 int pending;
290 int max_outstanding;
291 struct list_head ld_pending;
292 struct list_head ld_running;
293 struct list_head ld_completed;
294 struct dma_pool *desc_pool;
295 struct tasklet_struct tasklet;
296 struct xgene_dma_ring tx_ring;
297 struct xgene_dma_ring rx_ring;
298 };
299
300 /**
301 * struct xgene_dma - internal representation of an X-Gene DMA device
302 * @err_irq: DMA error irq number
303 * @ring_num: start id number for DMA ring
304 * @csr_dma: base for DMA register access
305 * @csr_ring: base for DMA ring register access
306 * @csr_ring_cmd: base for DMA ring command register access
307 * @csr_efuse: base for efuse register access
308 * @dma_dev: embedded struct dma_device
309 * @chan: reference to X-Gene DMA channels
310 */
311 struct xgene_dma {
312 struct device *dev;
313 struct clk *clk;
314 int err_irq;
315 int ring_num;
316 void __iomem *csr_dma;
317 void __iomem *csr_ring;
318 void __iomem *csr_ring_cmd;
319 void __iomem *csr_efuse;
320 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
321 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
322 };
323
324 static const char * const xgene_dma_desc_err[] = {
325 [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
326 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
327 [ERR_READ_DATA_AXI] = "AXI error when reading data",
328 [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
329 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
330 [ERR_ECC] = "ECC double bit error",
331 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
332 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
333 [ERR_CRC_ERR] = "CRC error",
334 [ERR_CHKSUM] = "Checksum error",
335 [ERR_DIF] = "DIF error",
336 };
337
338 static const char * const xgene_dma_err[] = {
339 [ERR_DIF_SIZE_INT] = "DIF size error",
340 [ERR_GS_ERR_INT] = "Gather scatter not same size error",
341 [ERR_FPB_TIMEO_INT] = "Free pool time out error",
342 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
343 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
344 [ERR_WR_TIMEO_INT] = "Write time out error",
345 [ERR_RD_TIMEO_INT] = "Read time out error",
346 [ERR_WR_ERR_INT] = "HBF bus write error",
347 [ERR_RD_ERR_INT] = "HBF bus read error",
348 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
349 [ERR_DESC_DST_INT] = "HFB reading dst link address error",
350 [ERR_DESC_SRC_INT] = "HFB reading src link address error",
351 };
352
353 static bool is_pq_enabled(struct xgene_dma *pdma)
354 {
355 u32 val;
356
357 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
358 return !(val & XGENE_DMA_PQ_DISABLE_MASK);
359 }
360
361 static u64 xgene_dma_encode_len(size_t len)
362 {
363 return (len < XGENE_DMA_MAX_BYTE_CNT) ?
364 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
365 XGENE_DMA_16K_BUFFER_LEN_CODE;
366 }
367
368 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
369 {
370 static u8 flyby_type[] = {
371 FLYBY_2SRC_XOR, /* Dummy */
372 FLYBY_2SRC_XOR, /* Dummy */
373 FLYBY_2SRC_XOR,
374 FLYBY_3SRC_XOR,
375 FLYBY_4SRC_XOR,
376 FLYBY_5SRC_XOR
377 };
378
379 return flyby_type[src_cnt];
380 }
381
382 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
383 dma_addr_t *paddr)
384 {
385 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
386 *len : XGENE_DMA_MAX_BYTE_CNT;
387
388 *ext8 |= cpu_to_le64(*paddr);
389 *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
390 *len -= nbytes;
391 *paddr += nbytes;
392 }
393
394 static void xgene_dma_invalidate_buffer(__le64 *ext8)
395 {
396 *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
397 }
398
399 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
400 {
401 switch (idx) {
402 case 0:
403 return &desc->m1;
404 case 1:
405 return &desc->m0;
406 case 2:
407 return &desc->m3;
408 case 3:
409 return &desc->m2;
410 default:
411 pr_err("Invalid dma descriptor index\n");
412 }
413
414 return NULL;
415 }
416
417 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
418 u16 dst_ring_num)
419 {
420 desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
421 desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
422 XGENE_DMA_DESC_RTYPE_POS);
423 desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
424 desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
425 XGENE_DMA_DESC_HOENQ_NUM_POS);
426 }
427
428 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
429 struct xgene_dma_desc_sw *desc_sw,
430 dma_addr_t dst, dma_addr_t src,
431 size_t len)
432 {
433 struct xgene_dma_desc_hw *desc1, *desc2;
434 int i;
435
436 /* Get 1st descriptor */
437 desc1 = &desc_sw->desc1;
438 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
439
440 /* Set destination address */
441 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
442 desc1->m3 |= cpu_to_le64(dst);
443
444 /* Set 1st source address */
445 xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
446
447 if (!len)
448 return;
449
450 /*
451 * We need to split this source buffer,
452 * and need to use 2nd descriptor
453 */
454 desc2 = &desc_sw->desc2;
455 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
456
457 /* Set 2nd to 5th source address */
458 for (i = 0; i < 4 && len; i++)
459 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
460 &len, &src);
461
462 /* Invalidate unused source address field */
463 for (; i < 4; i++)
464 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
465
466 /* Updated flag that we have prepared 64B descriptor */
467 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
468 }
469
470 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
471 struct xgene_dma_desc_sw *desc_sw,
472 dma_addr_t *dst, dma_addr_t *src,
473 u32 src_cnt, size_t *nbytes,
474 const u8 *scf)
475 {
476 struct xgene_dma_desc_hw *desc1, *desc2;
477 size_t len = *nbytes;
478 int i;
479
480 desc1 = &desc_sw->desc1;
481 desc2 = &desc_sw->desc2;
482
483 /* Initialize DMA descriptor */
484 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
485
486 /* Set destination address */
487 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
488 desc1->m3 |= cpu_to_le64(*dst);
489
490 /* We have multiple source addresses, so need to set NV bit*/
491 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
492
493 /* Set flyby opcode */
494 desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
495
496 /* Set 1st to 5th source addresses */
497 for (i = 0; i < src_cnt; i++) {
498 len = *nbytes;
499 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
500 xgene_dma_lookup_ext8(desc2, i - 1),
501 &len, &src[i]);
502 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
503 }
504
505 /* Update meta data */
506 *nbytes = len;
507 *dst += XGENE_DMA_MAX_BYTE_CNT;
508
509 /* We need always 64B descriptor to perform xor or pq operations */
510 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
511 }
512
513 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
514 {
515 struct xgene_dma_desc_sw *desc;
516 struct xgene_dma_chan *chan;
517 dma_cookie_t cookie;
518
519 if (unlikely(!tx))
520 return -EINVAL;
521
522 chan = to_dma_chan(tx->chan);
523 desc = to_dma_desc_sw(tx);
524
525 spin_lock_bh(&chan->lock);
526
527 cookie = dma_cookie_assign(tx);
528
529 /* Add this transaction list onto the tail of the pending queue */
530 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
531
532 spin_unlock_bh(&chan->lock);
533
534 return cookie;
535 }
536
537 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
538 struct xgene_dma_desc_sw *desc)
539 {
540 list_del(&desc->node);
541 chan_dbg(chan, "LD %p free\n", desc);
542 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
543 }
544
545 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
546 struct xgene_dma_chan *chan)
547 {
548 struct xgene_dma_desc_sw *desc;
549 dma_addr_t phys;
550
551 desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
552 if (!desc) {
553 chan_err(chan, "Failed to allocate LDs\n");
554 return NULL;
555 }
556
557 INIT_LIST_HEAD(&desc->tx_list);
558 desc->tx.phys = phys;
559 desc->tx.tx_submit = xgene_dma_tx_submit;
560 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
561
562 chan_dbg(chan, "LD %p allocated\n", desc);
563
564 return desc;
565 }
566
567 /**
568 * xgene_dma_clean_completed_descriptor - free all descriptors which
569 * has been completed and acked
570 * @chan: X-Gene DMA channel
571 *
572 * This function is used on all completed and acked descriptors.
573 */
574 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
575 {
576 struct xgene_dma_desc_sw *desc, *_desc;
577
578 /* Run the callback for each descriptor, in order */
579 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
580 if (async_tx_test_ack(&desc->tx))
581 xgene_dma_clean_descriptor(chan, desc);
582 }
583 }
584
585 /**
586 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
587 * @chan: X-Gene DMA channel
588 * @desc: descriptor to cleanup and free
589 *
590 * This function is used on a descriptor which has been executed by the DMA
591 * controller. It will run any callbacks, submit any dependencies.
592 */
593 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
594 struct xgene_dma_desc_sw *desc)
595 {
596 struct dma_async_tx_descriptor *tx = &desc->tx;
597
598 /*
599 * If this is not the last transaction in the group,
600 * then no need to complete cookie and run any callback as
601 * this is not the tx_descriptor which had been sent to caller
602 * of this DMA request
603 */
604
605 if (tx->cookie == 0)
606 return;
607
608 dma_cookie_complete(tx);
609 dma_descriptor_unmap(tx);
610
611 /* Run the link descriptor callback function */
612 dmaengine_desc_get_callback_invoke(tx, NULL);
613
614 /* Run any dependencies */
615 dma_run_dependencies(tx);
616 }
617
618 /**
619 * xgene_dma_clean_running_descriptor - move the completed descriptor from
620 * ld_running to ld_completed
621 * @chan: X-Gene DMA channel
622 * @desc: the descriptor which is completed
623 *
624 * Free the descriptor directly if acked by async_tx api,
625 * else move it to queue ld_completed.
626 */
627 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
628 struct xgene_dma_desc_sw *desc)
629 {
630 /* Remove from the list of running transactions */
631 list_del(&desc->node);
632
633 /*
634 * the client is allowed to attach dependent operations
635 * until 'ack' is set
636 */
637 if (!async_tx_test_ack(&desc->tx)) {
638 /*
639 * Move this descriptor to the list of descriptors which is
640 * completed, but still awaiting the 'ack' bit to be set.
641 */
642 list_add_tail(&desc->node, &chan->ld_completed);
643 return;
644 }
645
646 chan_dbg(chan, "LD %p free\n", desc);
647 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
648 }
649
650 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
651 struct xgene_dma_desc_sw *desc_sw)
652 {
653 struct xgene_dma_ring *ring = &chan->tx_ring;
654 struct xgene_dma_desc_hw *desc_hw;
655
656 /* Get hw descriptor from DMA tx ring */
657 desc_hw = &ring->desc_hw[ring->head];
658
659 /*
660 * Increment the head count to point next
661 * descriptor for next time
662 */
663 if (++ring->head == ring->slots)
664 ring->head = 0;
665
666 /* Copy prepared sw descriptor data to hw descriptor */
667 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
668
669 /*
670 * Check if we have prepared 64B descriptor,
671 * in this case we need one more hw descriptor
672 */
673 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
674 desc_hw = &ring->desc_hw[ring->head];
675
676 if (++ring->head == ring->slots)
677 ring->head = 0;
678
679 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
680 }
681
682 /* Increment the pending transaction count */
683 chan->pending += ((desc_sw->flags &
684 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
685
686 /* Notify the hw that we have descriptor ready for execution */
687 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
688 2 : 1, ring->cmd);
689 }
690
691 /**
692 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
693 * @chan : X-Gene DMA channel
694 *
695 * LOCKING: must hold chan->lock
696 */
697 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
698 {
699 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
700
701 /*
702 * If the list of pending descriptors is empty, then we
703 * don't need to do any work at all
704 */
705 if (list_empty(&chan->ld_pending)) {
706 chan_dbg(chan, "No pending LDs\n");
707 return;
708 }
709
710 /*
711 * Move elements from the queue of pending transactions onto the list
712 * of running transactions and push it to hw for further executions
713 */
714 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
715 /*
716 * Check if have pushed max number of transactions to hw
717 * as capable, so let's stop here and will push remaining
718 * elements from pening ld queue after completing some
719 * descriptors that we have already pushed
720 */
721 if (chan->pending >= chan->max_outstanding)
722 return;
723
724 xgene_chan_xfer_request(chan, desc_sw);
725
726 /*
727 * Delete this element from ld pending queue and append it to
728 * ld running queue
729 */
730 list_move_tail(&desc_sw->node, &chan->ld_running);
731 }
732 }
733
734 /**
735 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
736 * and move them to ld_completed to free until flag 'ack' is set
737 * @chan: X-Gene DMA channel
738 *
739 * This function is used on descriptors which have been executed by the DMA
740 * controller. It will run any callbacks, submit any dependencies, then
741 * free these descriptors if flag 'ack' is set.
742 */
743 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
744 {
745 struct xgene_dma_ring *ring = &chan->rx_ring;
746 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
747 struct xgene_dma_desc_hw *desc_hw;
748 struct list_head ld_completed;
749 u8 status;
750
751 INIT_LIST_HEAD(&ld_completed);
752
753 spin_lock_bh(&chan->lock);
754
755 /* Clean already completed and acked descriptors */
756 xgene_dma_clean_completed_descriptor(chan);
757
758 /* Move all completed descriptors to ld completed queue, in order */
759 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
760 /* Get subsequent hw descriptor from DMA rx ring */
761 desc_hw = &ring->desc_hw[ring->head];
762
763 /* Check if this descriptor has been completed */
764 if (unlikely(le64_to_cpu(desc_hw->m0) ==
765 XGENE_DMA_DESC_EMPTY_SIGNATURE))
766 break;
767
768 if (++ring->head == ring->slots)
769 ring->head = 0;
770
771 /* Check if we have any error with DMA transactions */
772 status = XGENE_DMA_DESC_STATUS(
773 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
774 desc_hw->m0)),
775 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
776 desc_hw->m0)));
777 if (status) {
778 /* Print the DMA error type */
779 chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
780
781 /*
782 * We have DMA transactions error here. Dump DMA Tx
783 * and Rx descriptors for this request */
784 XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
785 "X-Gene DMA TX DESC1: ");
786
787 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
788 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
789 "X-Gene DMA TX DESC2: ");
790
791 XGENE_DMA_DESC_DUMP(desc_hw,
792 "X-Gene DMA RX ERR DESC: ");
793 }
794
795 /* Notify the hw about this completed descriptor */
796 iowrite32(-1, ring->cmd);
797
798 /* Mark this hw descriptor as processed */
799 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
800
801 /*
802 * Decrement the pending transaction count
803 * as we have processed one
804 */
805 chan->pending -= ((desc_sw->flags &
806 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
807
808 /*
809 * Delete this node from ld running queue and append it to
810 * ld completed queue for further processing
811 */
812 list_move_tail(&desc_sw->node, &ld_completed);
813 }
814
815 /*
816 * Start any pending transactions automatically
817 * In the ideal case, we keep the DMA controller busy while we go
818 * ahead and free the descriptors below.
819 */
820 xgene_chan_xfer_ld_pending(chan);
821
822 spin_unlock_bh(&chan->lock);
823
824 /* Run the callback for each descriptor, in order */
825 list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
826 xgene_dma_run_tx_complete_actions(chan, desc_sw);
827 xgene_dma_clean_running_descriptor(chan, desc_sw);
828 }
829 }
830
831 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
832 {
833 struct xgene_dma_chan *chan = to_dma_chan(dchan);
834
835 /* Has this channel already been allocated? */
836 if (chan->desc_pool)
837 return 1;
838
839 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
840 sizeof(struct xgene_dma_desc_sw),
841 0, 0);
842 if (!chan->desc_pool) {
843 chan_err(chan, "Failed to allocate descriptor pool\n");
844 return -ENOMEM;
845 }
846
847 chan_dbg(chan, "Allocate descripto pool\n");
848
849 return 1;
850 }
851
852 /**
853 * xgene_dma_free_desc_list - Free all descriptors in a queue
854 * @chan: X-Gene DMA channel
855 * @list: the list to free
856 *
857 * LOCKING: must hold chan->lock
858 */
859 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
860 struct list_head *list)
861 {
862 struct xgene_dma_desc_sw *desc, *_desc;
863
864 list_for_each_entry_safe(desc, _desc, list, node)
865 xgene_dma_clean_descriptor(chan, desc);
866 }
867
868 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
869 {
870 struct xgene_dma_chan *chan = to_dma_chan(dchan);
871
872 chan_dbg(chan, "Free all resources\n");
873
874 if (!chan->desc_pool)
875 return;
876
877 /* Process all running descriptor */
878 xgene_dma_cleanup_descriptors(chan);
879
880 spin_lock_bh(&chan->lock);
881
882 /* Clean all link descriptor queues */
883 xgene_dma_free_desc_list(chan, &chan->ld_pending);
884 xgene_dma_free_desc_list(chan, &chan->ld_running);
885 xgene_dma_free_desc_list(chan, &chan->ld_completed);
886
887 spin_unlock_bh(&chan->lock);
888
889 /* Delete this channel DMA pool */
890 dma_pool_destroy(chan->desc_pool);
891 chan->desc_pool = NULL;
892 }
893
894 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
895 struct dma_chan *dchan, struct scatterlist *dst_sg,
896 u32 dst_nents, struct scatterlist *src_sg,
897 u32 src_nents, unsigned long flags)
898 {
899 struct xgene_dma_desc_sw *first = NULL, *new = NULL;
900 struct xgene_dma_chan *chan;
901 size_t dst_avail, src_avail;
902 dma_addr_t dst, src;
903 size_t len;
904
905 if (unlikely(!dchan))
906 return NULL;
907
908 if (unlikely(!dst_nents || !src_nents))
909 return NULL;
910
911 if (unlikely(!dst_sg || !src_sg))
912 return NULL;
913
914 chan = to_dma_chan(dchan);
915
916 /* Get prepared for the loop */
917 dst_avail = sg_dma_len(dst_sg);
918 src_avail = sg_dma_len(src_sg);
919 dst_nents--;
920 src_nents--;
921
922 /* Run until we are out of scatterlist entries */
923 while (true) {
924 /* Create the largest transaction possible */
925 len = min_t(size_t, src_avail, dst_avail);
926 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
927 if (len == 0)
928 goto fetch;
929
930 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
931 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
932
933 /* Allocate the link descriptor from DMA pool */
934 new = xgene_dma_alloc_descriptor(chan);
935 if (!new)
936 goto fail;
937
938 /* Prepare DMA descriptor */
939 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
940
941 if (!first)
942 first = new;
943
944 new->tx.cookie = 0;
945 async_tx_ack(&new->tx);
946
947 /* update metadata */
948 dst_avail -= len;
949 src_avail -= len;
950
951 /* Insert the link descriptor to the LD ring */
952 list_add_tail(&new->node, &first->tx_list);
953
954 fetch:
955 /* fetch the next dst scatterlist entry */
956 if (dst_avail == 0) {
957 /* no more entries: we're done */
958 if (dst_nents == 0)
959 break;
960
961 /* fetch the next entry: if there are no more: done */
962 dst_sg = sg_next(dst_sg);
963 if (!dst_sg)
964 break;
965
966 dst_nents--;
967 dst_avail = sg_dma_len(dst_sg);
968 }
969
970 /* fetch the next src scatterlist entry */
971 if (src_avail == 0) {
972 /* no more entries: we're done */
973 if (src_nents == 0)
974 break;
975
976 /* fetch the next entry: if there are no more: done */
977 src_sg = sg_next(src_sg);
978 if (!src_sg)
979 break;
980
981 src_nents--;
982 src_avail = sg_dma_len(src_sg);
983 }
984 }
985
986 if (!new)
987 return NULL;
988
989 new->tx.flags = flags; /* client is in control of this ack */
990 new->tx.cookie = -EBUSY;
991 list_splice(&first->tx_list, &new->tx_list);
992
993 return &new->tx;
994 fail:
995 if (!first)
996 return NULL;
997
998 xgene_dma_free_desc_list(chan, &first->tx_list);
999 return NULL;
1000 }
1001
1002 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1003 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1004 u32 src_cnt, size_t len, unsigned long flags)
1005 {
1006 struct xgene_dma_desc_sw *first = NULL, *new;
1007 struct xgene_dma_chan *chan;
1008 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1009 0x01, 0x01, 0x01, 0x01, 0x01};
1010
1011 if (unlikely(!dchan || !len))
1012 return NULL;
1013
1014 chan = to_dma_chan(dchan);
1015
1016 do {
1017 /* Allocate the link descriptor from DMA pool */
1018 new = xgene_dma_alloc_descriptor(chan);
1019 if (!new)
1020 goto fail;
1021
1022 /* Prepare xor DMA descriptor */
1023 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1024 src_cnt, &len, multi);
1025
1026 if (!first)
1027 first = new;
1028
1029 new->tx.cookie = 0;
1030 async_tx_ack(&new->tx);
1031
1032 /* Insert the link descriptor to the LD ring */
1033 list_add_tail(&new->node, &first->tx_list);
1034 } while (len);
1035
1036 new->tx.flags = flags; /* client is in control of this ack */
1037 new->tx.cookie = -EBUSY;
1038 list_splice(&first->tx_list, &new->tx_list);
1039
1040 return &new->tx;
1041
1042 fail:
1043 if (!first)
1044 return NULL;
1045
1046 xgene_dma_free_desc_list(chan, &first->tx_list);
1047 return NULL;
1048 }
1049
1050 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1051 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1052 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1053 {
1054 struct xgene_dma_desc_sw *first = NULL, *new;
1055 struct xgene_dma_chan *chan;
1056 size_t _len = len;
1057 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1058 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1059
1060 if (unlikely(!dchan || !len))
1061 return NULL;
1062
1063 chan = to_dma_chan(dchan);
1064
1065 /*
1066 * Save source addresses on local variable, may be we have to
1067 * prepare two descriptor to generate P and Q if both enabled
1068 * in the flags by client
1069 */
1070 memcpy(_src, src, sizeof(*src) * src_cnt);
1071
1072 if (flags & DMA_PREP_PQ_DISABLE_P)
1073 len = 0;
1074
1075 if (flags & DMA_PREP_PQ_DISABLE_Q)
1076 _len = 0;
1077
1078 do {
1079 /* Allocate the link descriptor from DMA pool */
1080 new = xgene_dma_alloc_descriptor(chan);
1081 if (!new)
1082 goto fail;
1083
1084 if (!first)
1085 first = new;
1086
1087 new->tx.cookie = 0;
1088 async_tx_ack(&new->tx);
1089
1090 /* Insert the link descriptor to the LD ring */
1091 list_add_tail(&new->node, &first->tx_list);
1092
1093 /*
1094 * Prepare DMA descriptor to generate P,
1095 * if DMA_PREP_PQ_DISABLE_P flag is not set
1096 */
1097 if (len) {
1098 xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1099 src_cnt, &len, multi);
1100 continue;
1101 }
1102
1103 /*
1104 * Prepare DMA descriptor to generate Q,
1105 * if DMA_PREP_PQ_DISABLE_Q flag is not set
1106 */
1107 if (_len) {
1108 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1109 src_cnt, &_len, scf);
1110 }
1111 } while (len || _len);
1112
1113 new->tx.flags = flags; /* client is in control of this ack */
1114 new->tx.cookie = -EBUSY;
1115 list_splice(&first->tx_list, &new->tx_list);
1116
1117 return &new->tx;
1118
1119 fail:
1120 if (!first)
1121 return NULL;
1122
1123 xgene_dma_free_desc_list(chan, &first->tx_list);
1124 return NULL;
1125 }
1126
1127 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1128 {
1129 struct xgene_dma_chan *chan = to_dma_chan(dchan);
1130
1131 spin_lock_bh(&chan->lock);
1132 xgene_chan_xfer_ld_pending(chan);
1133 spin_unlock_bh(&chan->lock);
1134 }
1135
1136 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1137 dma_cookie_t cookie,
1138 struct dma_tx_state *txstate)
1139 {
1140 return dma_cookie_status(dchan, cookie, txstate);
1141 }
1142
1143 static void xgene_dma_tasklet_cb(unsigned long data)
1144 {
1145 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1146
1147 /* Run all cleanup for descriptors which have been completed */
1148 xgene_dma_cleanup_descriptors(chan);
1149
1150 /* Re-enable DMA channel IRQ */
1151 enable_irq(chan->rx_irq);
1152 }
1153
1154 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1155 {
1156 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1157
1158 BUG_ON(!chan);
1159
1160 /*
1161 * Disable DMA channel IRQ until we process completed
1162 * descriptors
1163 */
1164 disable_irq_nosync(chan->rx_irq);
1165
1166 /*
1167 * Schedule the tasklet to handle all cleanup of the current
1168 * transaction. It will start a new transaction if there is
1169 * one pending.
1170 */
1171 tasklet_schedule(&chan->tasklet);
1172
1173 return IRQ_HANDLED;
1174 }
1175
1176 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1177 {
1178 struct xgene_dma *pdma = (struct xgene_dma *)id;
1179 unsigned long int_mask;
1180 u32 val, i;
1181
1182 val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1183
1184 /* Clear DMA interrupts */
1185 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1186
1187 /* Print DMA error info */
1188 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1189 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1190 dev_err(pdma->dev,
1191 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1192
1193 return IRQ_HANDLED;
1194 }
1195
1196 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1197 {
1198 int i;
1199
1200 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1201
1202 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1203 iowrite32(ring->state[i], ring->pdma->csr_ring +
1204 XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1205 }
1206
1207 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1208 {
1209 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1210 xgene_dma_wr_ring_state(ring);
1211 }
1212
1213 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1214 {
1215 void *ring_cfg = ring->state;
1216 u64 addr = ring->desc_paddr;
1217 u32 i, val;
1218
1219 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1220
1221 /* Clear DMA ring state */
1222 xgene_dma_clr_ring_state(ring);
1223
1224 /* Set DMA ring type */
1225 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1226
1227 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1228 /* Set recombination buffer and timeout */
1229 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1230 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1231 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1232 }
1233
1234 /* Initialize DMA ring state */
1235 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1236 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1237 XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1238 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1239 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1240 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1241
1242 /* Write DMA ring configurations */
1243 xgene_dma_wr_ring_state(ring);
1244
1245 /* Set DMA ring id */
1246 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1247 ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1248
1249 /* Set DMA ring buffer */
1250 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1251 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1252
1253 if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1254 return;
1255
1256 /* Set empty signature to DMA Rx ring descriptors */
1257 for (i = 0; i < ring->slots; i++) {
1258 struct xgene_dma_desc_hw *desc;
1259
1260 desc = &ring->desc_hw[i];
1261 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1262 }
1263
1264 /* Enable DMA Rx ring interrupt */
1265 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1266 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1267 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1268 }
1269
1270 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1271 {
1272 u32 ring_id, val;
1273
1274 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1275 /* Disable DMA Rx ring interrupt */
1276 val = ioread32(ring->pdma->csr_ring +
1277 XGENE_DMA_RING_NE_INT_MODE);
1278 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1279 iowrite32(val, ring->pdma->csr_ring +
1280 XGENE_DMA_RING_NE_INT_MODE);
1281 }
1282
1283 /* Clear DMA ring state */
1284 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1285 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1286
1287 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1288 xgene_dma_clr_ring_state(ring);
1289 }
1290
1291 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1292 {
1293 ring->cmd_base = ring->pdma->csr_ring_cmd +
1294 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1295 XGENE_DMA_RING_NUM));
1296
1297 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1298 }
1299
1300 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1301 enum xgene_dma_ring_cfgsize cfgsize)
1302 {
1303 int size;
1304
1305 switch (cfgsize) {
1306 case XGENE_DMA_RING_CFG_SIZE_512B:
1307 size = 0x200;
1308 break;
1309 case XGENE_DMA_RING_CFG_SIZE_2KB:
1310 size = 0x800;
1311 break;
1312 case XGENE_DMA_RING_CFG_SIZE_16KB:
1313 size = 0x4000;
1314 break;
1315 case XGENE_DMA_RING_CFG_SIZE_64KB:
1316 size = 0x10000;
1317 break;
1318 case XGENE_DMA_RING_CFG_SIZE_512KB:
1319 size = 0x80000;
1320 break;
1321 default:
1322 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1323 return -EINVAL;
1324 }
1325
1326 return size;
1327 }
1328
1329 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1330 {
1331 /* Clear DMA ring configurations */
1332 xgene_dma_clear_ring(ring);
1333
1334 /* De-allocate DMA ring descriptor */
1335 if (ring->desc_vaddr) {
1336 dma_free_coherent(ring->pdma->dev, ring->size,
1337 ring->desc_vaddr, ring->desc_paddr);
1338 ring->desc_vaddr = NULL;
1339 }
1340 }
1341
1342 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1343 {
1344 xgene_dma_delete_ring_one(&chan->rx_ring);
1345 xgene_dma_delete_ring_one(&chan->tx_ring);
1346 }
1347
1348 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1349 struct xgene_dma_ring *ring,
1350 enum xgene_dma_ring_cfgsize cfgsize)
1351 {
1352 int ret;
1353
1354 /* Setup DMA ring descriptor variables */
1355 ring->pdma = chan->pdma;
1356 ring->cfgsize = cfgsize;
1357 ring->num = chan->pdma->ring_num++;
1358 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1359
1360 ret = xgene_dma_get_ring_size(chan, cfgsize);
1361 if (ret <= 0)
1362 return ret;
1363 ring->size = ret;
1364
1365 /* Allocate memory for DMA ring descriptor */
1366 ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1367 &ring->desc_paddr, GFP_KERNEL);
1368 if (!ring->desc_vaddr) {
1369 chan_err(chan, "Failed to allocate ring desc\n");
1370 return -ENOMEM;
1371 }
1372
1373 /* Configure and enable DMA ring */
1374 xgene_dma_set_ring_cmd(ring);
1375 xgene_dma_setup_ring(ring);
1376
1377 return 0;
1378 }
1379
1380 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1381 {
1382 struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1383 struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1384 int ret;
1385
1386 /* Create DMA Rx ring descriptor */
1387 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1388 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1389
1390 ret = xgene_dma_create_ring_one(chan, rx_ring,
1391 XGENE_DMA_RING_CFG_SIZE_64KB);
1392 if (ret)
1393 return ret;
1394
1395 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1396 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1397
1398 /* Create DMA Tx ring descriptor */
1399 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1400 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1401
1402 ret = xgene_dma_create_ring_one(chan, tx_ring,
1403 XGENE_DMA_RING_CFG_SIZE_64KB);
1404 if (ret) {
1405 xgene_dma_delete_ring_one(rx_ring);
1406 return ret;
1407 }
1408
1409 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1410
1411 chan_dbg(chan,
1412 "Tx ring id 0x%X num %d desc 0x%p\n",
1413 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1414
1415 /* Set the max outstanding request possible to this channel */
1416 chan->max_outstanding = tx_ring->slots;
1417
1418 return ret;
1419 }
1420
1421 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1422 {
1423 int ret, i, j;
1424
1425 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1426 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1427 if (ret) {
1428 for (j = 0; j < i; j++)
1429 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1430 return ret;
1431 }
1432 }
1433
1434 return ret;
1435 }
1436
1437 static void xgene_dma_enable(struct xgene_dma *pdma)
1438 {
1439 u32 val;
1440
1441 /* Configure and enable DMA engine */
1442 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1443 XGENE_DMA_CH_SETUP(val);
1444 XGENE_DMA_ENABLE(val);
1445 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1446 }
1447
1448 static void xgene_dma_disable(struct xgene_dma *pdma)
1449 {
1450 u32 val;
1451
1452 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1453 XGENE_DMA_DISABLE(val);
1454 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1455 }
1456
1457 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1458 {
1459 /*
1460 * Mask DMA ring overflow, underflow and
1461 * AXI write/read error interrupts
1462 */
1463 iowrite32(XGENE_DMA_INT_ALL_MASK,
1464 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1465 iowrite32(XGENE_DMA_INT_ALL_MASK,
1466 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1467 iowrite32(XGENE_DMA_INT_ALL_MASK,
1468 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1469 iowrite32(XGENE_DMA_INT_ALL_MASK,
1470 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1471 iowrite32(XGENE_DMA_INT_ALL_MASK,
1472 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1473
1474 /* Mask DMA error interrupts */
1475 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1476 }
1477
1478 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1479 {
1480 /*
1481 * Unmask DMA ring overflow, underflow and
1482 * AXI write/read error interrupts
1483 */
1484 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1485 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1486 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1487 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1488 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1489 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1490 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1491 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1492 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1493 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1494
1495 /* Unmask DMA error interrupts */
1496 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1497 pdma->csr_dma + XGENE_DMA_INT_MASK);
1498 }
1499
1500 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1501 {
1502 u32 val;
1503
1504 /* Associate DMA ring to corresponding ring HW */
1505 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1506 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1507
1508 /* Configure RAID6 polynomial control setting */
1509 if (is_pq_enabled(pdma))
1510 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1511 pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1512 else
1513 dev_info(pdma->dev, "PQ is disabled in HW\n");
1514
1515 xgene_dma_enable(pdma);
1516 xgene_dma_unmask_interrupts(pdma);
1517
1518 /* Get DMA id and version info */
1519 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1520
1521 /* DMA device info */
1522 dev_info(pdma->dev,
1523 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1524 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1525 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1526 }
1527
1528 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1529 {
1530 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1531 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1532 return 0;
1533
1534 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1535 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1536
1537 /* Bring up memory */
1538 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1539
1540 /* Force a barrier */
1541 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1542
1543 /* reset may take up to 1ms */
1544 usleep_range(1000, 1100);
1545
1546 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1547 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1548 dev_err(pdma->dev,
1549 "Failed to release ring mngr memory from shutdown\n");
1550 return -ENODEV;
1551 }
1552
1553 /* program threshold set 1 and all hysteresis */
1554 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1555 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1556 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1557 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1558 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1559 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1560
1561 /* Enable QPcore and assign error queue */
1562 iowrite32(XGENE_DMA_RING_ENABLE,
1563 pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1564
1565 return 0;
1566 }
1567
1568 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1569 {
1570 int ret;
1571
1572 ret = xgene_dma_init_ring_mngr(pdma);
1573 if (ret)
1574 return ret;
1575
1576 /* Bring up memory */
1577 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1578
1579 /* Force a barrier */
1580 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1581
1582 /* reset may take up to 1ms */
1583 usleep_range(1000, 1100);
1584
1585 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1586 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1587 dev_err(pdma->dev,
1588 "Failed to release DMA memory from shutdown\n");
1589 return -ENODEV;
1590 }
1591
1592 return 0;
1593 }
1594
1595 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1596 {
1597 struct xgene_dma_chan *chan;
1598 int ret, i, j;
1599
1600 /* Register DMA error irq */
1601 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1602 0, "dma_error", pdma);
1603 if (ret) {
1604 dev_err(pdma->dev,
1605 "Failed to register error IRQ %d\n", pdma->err_irq);
1606 return ret;
1607 }
1608
1609 /* Register DMA channel rx irq */
1610 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1611 chan = &pdma->chan[i];
1612 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1613 ret = devm_request_irq(chan->dev, chan->rx_irq,
1614 xgene_dma_chan_ring_isr,
1615 0, chan->name, chan);
1616 if (ret) {
1617 chan_err(chan, "Failed to register Rx IRQ %d\n",
1618 chan->rx_irq);
1619 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1620
1621 for (j = 0; j < i; j++) {
1622 chan = &pdma->chan[i];
1623 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1624 devm_free_irq(chan->dev, chan->rx_irq, chan);
1625 }
1626
1627 return ret;
1628 }
1629 }
1630
1631 return 0;
1632 }
1633
1634 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1635 {
1636 struct xgene_dma_chan *chan;
1637 int i;
1638
1639 /* Free DMA device error irq */
1640 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1641
1642 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1643 chan = &pdma->chan[i];
1644 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1645 devm_free_irq(chan->dev, chan->rx_irq, chan);
1646 }
1647 }
1648
1649 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1650 struct dma_device *dma_dev)
1651 {
1652 /* Initialize DMA device capability mask */
1653 dma_cap_zero(dma_dev->cap_mask);
1654
1655 /* Set DMA device capability */
1656 dma_cap_set(DMA_SG, dma_dev->cap_mask);
1657
1658 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1659 * and channel 1 supports XOR, PQ both. First thing here is we have
1660 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1661 * we can make sure this by reading SoC Efuse register.
1662 * Second thing, we have hw errata that if we run channel 0 and
1663 * channel 1 simultaneously with executing XOR and PQ request,
1664 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1665 * if XOR and PQ supports on channel 1 is disabled.
1666 */
1667 if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1668 is_pq_enabled(chan->pdma)) {
1669 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1670 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1671 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1672 !is_pq_enabled(chan->pdma)) {
1673 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1674 }
1675
1676 /* Set base and prep routines */
1677 dma_dev->dev = chan->dev;
1678 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1679 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1680 dma_dev->device_issue_pending = xgene_dma_issue_pending;
1681 dma_dev->device_tx_status = xgene_dma_tx_status;
1682 dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1683
1684 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1685 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1686 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1687 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1688 }
1689
1690 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1691 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1692 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1693 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1694 }
1695 }
1696
1697 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1698 {
1699 struct xgene_dma_chan *chan = &pdma->chan[id];
1700 struct dma_device *dma_dev = &pdma->dma_dev[id];
1701 int ret;
1702
1703 chan->dma_chan.device = dma_dev;
1704
1705 spin_lock_init(&chan->lock);
1706 INIT_LIST_HEAD(&chan->ld_pending);
1707 INIT_LIST_HEAD(&chan->ld_running);
1708 INIT_LIST_HEAD(&chan->ld_completed);
1709 tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1710 (unsigned long)chan);
1711
1712 chan->pending = 0;
1713 chan->desc_pool = NULL;
1714 dma_cookie_init(&chan->dma_chan);
1715
1716 /* Setup dma device capabilities and prep routines */
1717 xgene_dma_set_caps(chan, dma_dev);
1718
1719 /* Initialize DMA device list head */
1720 INIT_LIST_HEAD(&dma_dev->channels);
1721 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1722
1723 /* Register with Linux async DMA framework*/
1724 ret = dma_async_device_register(dma_dev);
1725 if (ret) {
1726 chan_err(chan, "Failed to register async device %d", ret);
1727 tasklet_kill(&chan->tasklet);
1728
1729 return ret;
1730 }
1731
1732 /* DMA capability info */
1733 dev_info(pdma->dev,
1734 "%s: CAPABILITY ( %s%s%s)\n", dma_chan_name(&chan->dma_chan),
1735 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1736 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1737 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1738
1739 return 0;
1740 }
1741
1742 static int xgene_dma_init_async(struct xgene_dma *pdma)
1743 {
1744 int ret, i, j;
1745
1746 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1747 ret = xgene_dma_async_register(pdma, i);
1748 if (ret) {
1749 for (j = 0; j < i; j++) {
1750 dma_async_device_unregister(&pdma->dma_dev[j]);
1751 tasklet_kill(&pdma->chan[j].tasklet);
1752 }
1753
1754 return ret;
1755 }
1756 }
1757
1758 return ret;
1759 }
1760
1761 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1762 {
1763 int i;
1764
1765 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1766 dma_async_device_unregister(&pdma->dma_dev[i]);
1767 }
1768
1769 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1770 {
1771 struct xgene_dma_chan *chan;
1772 int i;
1773
1774 pdma->ring_num = XGENE_DMA_RING_NUM;
1775
1776 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1777 chan = &pdma->chan[i];
1778 chan->dev = pdma->dev;
1779 chan->pdma = pdma;
1780 chan->id = i;
1781 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1782 }
1783 }
1784
1785 static int xgene_dma_get_resources(struct platform_device *pdev,
1786 struct xgene_dma *pdma)
1787 {
1788 struct resource *res;
1789 int irq, i;
1790
1791 /* Get DMA csr region */
1792 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1793 if (!res) {
1794 dev_err(&pdev->dev, "Failed to get csr region\n");
1795 return -ENXIO;
1796 }
1797
1798 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1799 resource_size(res));
1800 if (!pdma->csr_dma) {
1801 dev_err(&pdev->dev, "Failed to ioremap csr region");
1802 return -ENOMEM;
1803 }
1804
1805 /* Get DMA ring csr region */
1806 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1807 if (!res) {
1808 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1809 return -ENXIO;
1810 }
1811
1812 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start,
1813 resource_size(res));
1814 if (!pdma->csr_ring) {
1815 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1816 return -ENOMEM;
1817 }
1818
1819 /* Get DMA ring cmd csr region */
1820 res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1821 if (!res) {
1822 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1823 return -ENXIO;
1824 }
1825
1826 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1827 resource_size(res));
1828 if (!pdma->csr_ring_cmd) {
1829 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1830 return -ENOMEM;
1831 }
1832
1833 pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1834
1835 /* Get efuse csr region */
1836 res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1837 if (!res) {
1838 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1839 return -ENXIO;
1840 }
1841
1842 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1843 resource_size(res));
1844 if (!pdma->csr_efuse) {
1845 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1846 return -ENOMEM;
1847 }
1848
1849 /* Get DMA error interrupt */
1850 irq = platform_get_irq(pdev, 0);
1851 if (irq <= 0) {
1852 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1853 return -ENXIO;
1854 }
1855
1856 pdma->err_irq = irq;
1857
1858 /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1859 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1860 irq = platform_get_irq(pdev, i);
1861 if (irq <= 0) {
1862 dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1863 return -ENXIO;
1864 }
1865
1866 pdma->chan[i - 1].rx_irq = irq;
1867 }
1868
1869 return 0;
1870 }
1871
1872 static int xgene_dma_probe(struct platform_device *pdev)
1873 {
1874 struct xgene_dma *pdma;
1875 int ret, i;
1876
1877 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1878 if (!pdma)
1879 return -ENOMEM;
1880
1881 pdma->dev = &pdev->dev;
1882 platform_set_drvdata(pdev, pdma);
1883
1884 ret = xgene_dma_get_resources(pdev, pdma);
1885 if (ret)
1886 return ret;
1887
1888 pdma->clk = devm_clk_get(&pdev->dev, NULL);
1889 if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1890 dev_err(&pdev->dev, "Failed to get clk\n");
1891 return PTR_ERR(pdma->clk);
1892 }
1893
1894 /* Enable clk before accessing registers */
1895 if (!IS_ERR(pdma->clk)) {
1896 ret = clk_prepare_enable(pdma->clk);
1897 if (ret) {
1898 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1899 return ret;
1900 }
1901 }
1902
1903 /* Remove DMA RAM out of shutdown */
1904 ret = xgene_dma_init_mem(pdma);
1905 if (ret)
1906 goto err_clk_enable;
1907
1908 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1909 if (ret) {
1910 dev_err(&pdev->dev, "No usable DMA configuration\n");
1911 goto err_dma_mask;
1912 }
1913
1914 /* Initialize DMA channels software state */
1915 xgene_dma_init_channels(pdma);
1916
1917 /* Configue DMA rings */
1918 ret = xgene_dma_init_rings(pdma);
1919 if (ret)
1920 goto err_clk_enable;
1921
1922 ret = xgene_dma_request_irqs(pdma);
1923 if (ret)
1924 goto err_request_irq;
1925
1926 /* Configure and enable DMA engine */
1927 xgene_dma_init_hw(pdma);
1928
1929 /* Register DMA device with linux async framework */
1930 ret = xgene_dma_init_async(pdma);
1931 if (ret)
1932 goto err_async_init;
1933
1934 return 0;
1935
1936 err_async_init:
1937 xgene_dma_free_irqs(pdma);
1938
1939 err_request_irq:
1940 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1941 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1942
1943 err_dma_mask:
1944 err_clk_enable:
1945 if (!IS_ERR(pdma->clk))
1946 clk_disable_unprepare(pdma->clk);
1947
1948 return ret;
1949 }
1950
1951 static int xgene_dma_remove(struct platform_device *pdev)
1952 {
1953 struct xgene_dma *pdma = platform_get_drvdata(pdev);
1954 struct xgene_dma_chan *chan;
1955 int i;
1956
1957 xgene_dma_async_unregister(pdma);
1958
1959 /* Mask interrupts and disable DMA engine */
1960 xgene_dma_mask_interrupts(pdma);
1961 xgene_dma_disable(pdma);
1962 xgene_dma_free_irqs(pdma);
1963
1964 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1965 chan = &pdma->chan[i];
1966 tasklet_kill(&chan->tasklet);
1967 xgene_dma_delete_chan_rings(chan);
1968 }
1969
1970 if (!IS_ERR(pdma->clk))
1971 clk_disable_unprepare(pdma->clk);
1972
1973 return 0;
1974 }
1975
1976 #ifdef CONFIG_ACPI
1977 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1978 {"APMC0D43", 0},
1979 {},
1980 };
1981 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1982 #endif
1983
1984 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1985 {.compatible = "apm,xgene-storm-dma",},
1986 {},
1987 };
1988 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1989
1990 static struct platform_driver xgene_dma_driver = {
1991 .probe = xgene_dma_probe,
1992 .remove = xgene_dma_remove,
1993 .driver = {
1994 .name = "X-Gene-DMA",
1995 .of_match_table = xgene_dma_of_match_ptr,
1996 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1997 },
1998 };
1999
2000 module_platform_driver(xgene_dma_driver);
2001
2002 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2003 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2004 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2005 MODULE_LICENSE("GPL");
2006 MODULE_VERSION("1.0");
This page took 0.078857 seconds and 5 git commands to generate.