firmware: dmi_scan: add SBMIOS entry and DMI tables
[deliverable/linux.git] / drivers / firmware / dmi_scan.c
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
15
16 /*
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
20 */
21 static const char dmi_empty_string[] = " ";
22
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
28
29 /*
30 * Catch too early calls to dmi_check_system():
31 */
32 static int dmi_initialized;
33
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
36
37 static struct dmi_memdev_info {
38 const char *device;
39 const char *bank;
40 u16 handle;
41 } *dmi_memdev;
42 static int dmi_memdev_nr;
43
44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
45 {
46 const u8 *bp = ((u8 *) dm) + dm->length;
47
48 if (s) {
49 s--;
50 while (s > 0 && *bp) {
51 bp += strlen(bp) + 1;
52 s--;
53 }
54
55 if (*bp != 0) {
56 size_t len = strlen(bp)+1;
57 size_t cmp_len = len > 8 ? 8 : len;
58
59 if (!memcmp(bp, dmi_empty_string, cmp_len))
60 return dmi_empty_string;
61 return bp;
62 }
63 }
64
65 return "";
66 }
67
68 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
69 {
70 const char *bp = dmi_string_nosave(dm, s);
71 char *str;
72 size_t len;
73
74 if (bp == dmi_empty_string)
75 return dmi_empty_string;
76
77 len = strlen(bp) + 1;
78 str = dmi_alloc(len);
79 if (str != NULL)
80 strcpy(str, bp);
81
82 return str;
83 }
84
85 /*
86 * We have to be cautious here. We have seen BIOSes with DMI pointers
87 * pointing to completely the wrong place for example
88 */
89 static void dmi_decode_table(u8 *buf,
90 void (*decode)(const struct dmi_header *, void *),
91 void *private_data)
92 {
93 u8 *data = buf;
94 int i = 0;
95
96 /*
97 * Stop when we have seen all the items the table claimed to have
98 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
99 * >= 3.0 only) OR we run off the end of the table (should never
100 * happen but sometimes does on bogus implementations.)
101 */
102 while ((!dmi_num || i < dmi_num) &&
103 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
104 const struct dmi_header *dm = (const struct dmi_header *)data;
105
106 /*
107 * We want to know the total length (formatted area and
108 * strings) before decoding to make sure we won't run off the
109 * table in dmi_decode or dmi_string
110 */
111 data += dm->length;
112 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
113 data++;
114 if (data - buf < dmi_len - 1)
115 decode(dm, private_data);
116
117 data += 2;
118 i++;
119
120 /*
121 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
122 * For tables behind a 64-bit entry point, we have no item
123 * count and no exact table length, so stop on end-of-table
124 * marker. For tables behind a 32-bit entry point, we have
125 * seen OEM structures behind the end-of-table marker on
126 * some systems, so don't trust it.
127 */
128 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
129 break;
130 }
131
132 /* Trim DMI table length if needed */
133 if (dmi_len > data - buf)
134 dmi_len = data - buf;
135 }
136
137 static phys_addr_t dmi_base;
138
139 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
140 void *))
141 {
142 u8 *buf;
143 u32 orig_dmi_len = dmi_len;
144
145 buf = dmi_early_remap(dmi_base, orig_dmi_len);
146 if (buf == NULL)
147 return -1;
148
149 dmi_decode_table(buf, decode, NULL);
150
151 add_device_randomness(buf, dmi_len);
152
153 dmi_early_unmap(buf, orig_dmi_len);
154 return 0;
155 }
156
157 static int __init dmi_checksum(const u8 *buf, u8 len)
158 {
159 u8 sum = 0;
160 int a;
161
162 for (a = 0; a < len; a++)
163 sum += buf[a];
164
165 return sum == 0;
166 }
167
168 static const char *dmi_ident[DMI_STRING_MAX];
169 static LIST_HEAD(dmi_devices);
170 int dmi_available;
171
172 /*
173 * Save a DMI string
174 */
175 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
176 int string)
177 {
178 const char *d = (const char *) dm;
179 const char *p;
180
181 if (dmi_ident[slot])
182 return;
183
184 p = dmi_string(dm, d[string]);
185 if (p == NULL)
186 return;
187
188 dmi_ident[slot] = p;
189 }
190
191 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
192 int index)
193 {
194 const u8 *d = (u8 *) dm + index;
195 char *s;
196 int is_ff = 1, is_00 = 1, i;
197
198 if (dmi_ident[slot])
199 return;
200
201 for (i = 0; i < 16 && (is_ff || is_00); i++) {
202 if (d[i] != 0x00)
203 is_00 = 0;
204 if (d[i] != 0xFF)
205 is_ff = 0;
206 }
207
208 if (is_ff || is_00)
209 return;
210
211 s = dmi_alloc(16*2+4+1);
212 if (!s)
213 return;
214
215 /*
216 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
217 * the UUID are supposed to be little-endian encoded. The specification
218 * says that this is the defacto standard.
219 */
220 if (dmi_ver >= 0x020600)
221 sprintf(s, "%pUL", d);
222 else
223 sprintf(s, "%pUB", d);
224
225 dmi_ident[slot] = s;
226 }
227
228 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
229 int index)
230 {
231 const u8 *d = (u8 *) dm + index;
232 char *s;
233
234 if (dmi_ident[slot])
235 return;
236
237 s = dmi_alloc(4);
238 if (!s)
239 return;
240
241 sprintf(s, "%u", *d & 0x7F);
242 dmi_ident[slot] = s;
243 }
244
245 static void __init dmi_save_one_device(int type, const char *name)
246 {
247 struct dmi_device *dev;
248
249 /* No duplicate device */
250 if (dmi_find_device(type, name, NULL))
251 return;
252
253 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
254 if (!dev)
255 return;
256
257 dev->type = type;
258 strcpy((char *)(dev + 1), name);
259 dev->name = (char *)(dev + 1);
260 dev->device_data = NULL;
261 list_add(&dev->list, &dmi_devices);
262 }
263
264 static void __init dmi_save_devices(const struct dmi_header *dm)
265 {
266 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
267
268 for (i = 0; i < count; i++) {
269 const char *d = (char *)(dm + 1) + (i * 2);
270
271 /* Skip disabled device */
272 if ((*d & 0x80) == 0)
273 continue;
274
275 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
276 }
277 }
278
279 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
280 {
281 int i, count = *(u8 *)(dm + 1);
282 struct dmi_device *dev;
283
284 for (i = 1; i <= count; i++) {
285 const char *devname = dmi_string(dm, i);
286
287 if (devname == dmi_empty_string)
288 continue;
289
290 dev = dmi_alloc(sizeof(*dev));
291 if (!dev)
292 break;
293
294 dev->type = DMI_DEV_TYPE_OEM_STRING;
295 dev->name = devname;
296 dev->device_data = NULL;
297
298 list_add(&dev->list, &dmi_devices);
299 }
300 }
301
302 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
303 {
304 struct dmi_device *dev;
305 void *data;
306
307 data = dmi_alloc(dm->length);
308 if (data == NULL)
309 return;
310
311 memcpy(data, dm, dm->length);
312
313 dev = dmi_alloc(sizeof(*dev));
314 if (!dev)
315 return;
316
317 dev->type = DMI_DEV_TYPE_IPMI;
318 dev->name = "IPMI controller";
319 dev->device_data = data;
320
321 list_add_tail(&dev->list, &dmi_devices);
322 }
323
324 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
325 int devfn, const char *name)
326 {
327 struct dmi_dev_onboard *onboard_dev;
328
329 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
330 if (!onboard_dev)
331 return;
332
333 onboard_dev->instance = instance;
334 onboard_dev->segment = segment;
335 onboard_dev->bus = bus;
336 onboard_dev->devfn = devfn;
337
338 strcpy((char *)&onboard_dev[1], name);
339 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
340 onboard_dev->dev.name = (char *)&onboard_dev[1];
341 onboard_dev->dev.device_data = onboard_dev;
342
343 list_add(&onboard_dev->dev.list, &dmi_devices);
344 }
345
346 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
347 {
348 const u8 *d = (u8 *) dm + 5;
349
350 /* Skip disabled device */
351 if ((*d & 0x80) == 0)
352 return;
353
354 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
355 dmi_string_nosave(dm, *(d-1)));
356 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
357 }
358
359 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
360 {
361 if (dm->type != DMI_ENTRY_MEM_DEVICE)
362 return;
363 dmi_memdev_nr++;
364 }
365
366 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
367 {
368 const char *d = (const char *)dm;
369 static int nr;
370
371 if (dm->type != DMI_ENTRY_MEM_DEVICE)
372 return;
373 if (nr >= dmi_memdev_nr) {
374 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
375 return;
376 }
377 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
378 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
379 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
380 nr++;
381 }
382
383 void __init dmi_memdev_walk(void)
384 {
385 if (!dmi_available)
386 return;
387
388 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
389 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
390 if (dmi_memdev)
391 dmi_walk_early(save_mem_devices);
392 }
393 }
394
395 /*
396 * Process a DMI table entry. Right now all we care about are the BIOS
397 * and machine entries. For 2.5 we should pull the smbus controller info
398 * out of here.
399 */
400 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
401 {
402 switch (dm->type) {
403 case 0: /* BIOS Information */
404 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
405 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
406 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
407 break;
408 case 1: /* System Information */
409 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
410 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
411 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
412 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
413 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
414 break;
415 case 2: /* Base Board Information */
416 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
417 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
418 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
419 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
420 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
421 break;
422 case 3: /* Chassis Information */
423 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
424 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
425 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
426 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
427 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
428 break;
429 case 10: /* Onboard Devices Information */
430 dmi_save_devices(dm);
431 break;
432 case 11: /* OEM Strings */
433 dmi_save_oem_strings_devices(dm);
434 break;
435 case 38: /* IPMI Device Information */
436 dmi_save_ipmi_device(dm);
437 break;
438 case 41: /* Onboard Devices Extended Information */
439 dmi_save_extended_devices(dm);
440 }
441 }
442
443 static int __init print_filtered(char *buf, size_t len, const char *info)
444 {
445 int c = 0;
446 const char *p;
447
448 if (!info)
449 return c;
450
451 for (p = info; *p; p++)
452 if (isprint(*p))
453 c += scnprintf(buf + c, len - c, "%c", *p);
454 else
455 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
456 return c;
457 }
458
459 static void __init dmi_format_ids(char *buf, size_t len)
460 {
461 int c = 0;
462 const char *board; /* Board Name is optional */
463
464 c += print_filtered(buf + c, len - c,
465 dmi_get_system_info(DMI_SYS_VENDOR));
466 c += scnprintf(buf + c, len - c, " ");
467 c += print_filtered(buf + c, len - c,
468 dmi_get_system_info(DMI_PRODUCT_NAME));
469
470 board = dmi_get_system_info(DMI_BOARD_NAME);
471 if (board) {
472 c += scnprintf(buf + c, len - c, "/");
473 c += print_filtered(buf + c, len - c, board);
474 }
475 c += scnprintf(buf + c, len - c, ", BIOS ");
476 c += print_filtered(buf + c, len - c,
477 dmi_get_system_info(DMI_BIOS_VERSION));
478 c += scnprintf(buf + c, len - c, " ");
479 c += print_filtered(buf + c, len - c,
480 dmi_get_system_info(DMI_BIOS_DATE));
481 }
482
483 /*
484 * Check for DMI/SMBIOS headers in the system firmware image. Any
485 * SMBIOS header must start 16 bytes before the DMI header, so take a
486 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
487 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
488 * takes precedence) and return 0. Otherwise return 1.
489 */
490 static int __init dmi_present(const u8 *buf)
491 {
492 u32 smbios_ver;
493
494 if (memcmp(buf, "_SM_", 4) == 0 &&
495 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
496 smbios_ver = get_unaligned_be16(buf + 6);
497 smbios_entry_point_size = buf[5];
498 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
499
500 /* Some BIOS report weird SMBIOS version, fix that up */
501 switch (smbios_ver) {
502 case 0x021F:
503 case 0x0221:
504 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
505 smbios_ver & 0xFF, 3);
506 smbios_ver = 0x0203;
507 break;
508 case 0x0233:
509 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
510 smbios_ver = 0x0206;
511 break;
512 }
513 } else {
514 smbios_ver = 0;
515 }
516
517 buf += 16;
518
519 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
520 if (smbios_ver)
521 dmi_ver = smbios_ver;
522 else
523 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
524 dmi_num = get_unaligned_le16(buf + 12);
525 dmi_len = get_unaligned_le16(buf + 6);
526 dmi_base = get_unaligned_le32(buf + 8);
527
528 if (dmi_walk_early(dmi_decode) == 0) {
529 if (smbios_ver) {
530 pr_info("SMBIOS %d.%d present.\n",
531 dmi_ver >> 8, dmi_ver & 0xFF);
532 } else {
533 smbios_entry_point_size = 15;
534 memcpy(smbios_entry_point, buf,
535 smbios_entry_point_size);
536 pr_info("Legacy DMI %d.%d present.\n",
537 dmi_ver >> 8, dmi_ver & 0xFF);
538 }
539 dmi_ver <<= 8;
540 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
541 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
542 return 0;
543 }
544 }
545
546 return 1;
547 }
548
549 /*
550 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
551 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
552 */
553 static int __init dmi_smbios3_present(const u8 *buf)
554 {
555 if (memcmp(buf, "_SM3_", 5) == 0 &&
556 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
557 dmi_ver = get_unaligned_be32(buf + 6);
558 dmi_ver &= 0xFFFFFF;
559 dmi_num = 0; /* No longer specified */
560 dmi_len = get_unaligned_le32(buf + 12);
561 dmi_base = get_unaligned_le64(buf + 16);
562 smbios_entry_point_size = buf[6];
563 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
564
565 if (dmi_walk_early(dmi_decode) == 0) {
566 pr_info("SMBIOS %d.%d.%d present.\n",
567 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
568 dmi_ver & 0xFF);
569 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
570 pr_debug("DMI: %s\n", dmi_ids_string);
571 return 0;
572 }
573 }
574 return 1;
575 }
576
577 void __init dmi_scan_machine(void)
578 {
579 char __iomem *p, *q;
580 char buf[32];
581
582 if (efi_enabled(EFI_CONFIG_TABLES)) {
583 /*
584 * According to the DMTF SMBIOS reference spec v3.0.0, it is
585 * allowed to define both the 64-bit entry point (smbios3) and
586 * the 32-bit entry point (smbios), in which case they should
587 * either both point to the same SMBIOS structure table, or the
588 * table pointed to by the 64-bit entry point should contain a
589 * superset of the table contents pointed to by the 32-bit entry
590 * point (section 5.2)
591 * This implies that the 64-bit entry point should have
592 * precedence if it is defined and supported by the OS. If we
593 * have the 64-bit entry point, but fail to decode it, fall
594 * back to the legacy one (if available)
595 */
596 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
597 p = dmi_early_remap(efi.smbios3, 32);
598 if (p == NULL)
599 goto error;
600 memcpy_fromio(buf, p, 32);
601 dmi_early_unmap(p, 32);
602
603 if (!dmi_smbios3_present(buf)) {
604 dmi_available = 1;
605 goto out;
606 }
607 }
608 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
609 goto error;
610
611 /* This is called as a core_initcall() because it isn't
612 * needed during early boot. This also means we can
613 * iounmap the space when we're done with it.
614 */
615 p = dmi_early_remap(efi.smbios, 32);
616 if (p == NULL)
617 goto error;
618 memcpy_fromio(buf, p, 32);
619 dmi_early_unmap(p, 32);
620
621 if (!dmi_present(buf)) {
622 dmi_available = 1;
623 goto out;
624 }
625 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
626 p = dmi_early_remap(0xF0000, 0x10000);
627 if (p == NULL)
628 goto error;
629
630 /*
631 * Iterate over all possible DMI header addresses q.
632 * Maintain the 32 bytes around q in buf. On the
633 * first iteration, substitute zero for the
634 * out-of-range bytes so there is no chance of falsely
635 * detecting an SMBIOS header.
636 */
637 memset(buf, 0, 16);
638 for (q = p; q < p + 0x10000; q += 16) {
639 memcpy_fromio(buf + 16, q, 16);
640 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
641 dmi_available = 1;
642 dmi_early_unmap(p, 0x10000);
643 goto out;
644 }
645 memcpy(buf, buf + 16, 16);
646 }
647 dmi_early_unmap(p, 0x10000);
648 }
649 error:
650 pr_info("DMI not present or invalid.\n");
651 out:
652 dmi_initialized = 1;
653 }
654
655 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
656 struct bin_attribute *attr, char *buf,
657 loff_t pos, size_t count)
658 {
659 memcpy(buf, attr->private + pos, count);
660 return count;
661 }
662
663 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
664 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
665
666 static int __init dmi_init(void)
667 {
668 struct kobject *tables_kobj;
669 u8 *dmi_table;
670 int ret = -ENOMEM;
671
672 if (!dmi_available) {
673 ret = -ENODATA;
674 goto err;
675 }
676
677 /*
678 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
679 * even after farther error, as it can be used by other modules like
680 * dmi-sysfs.
681 */
682 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
683 if (!dmi_kobj)
684 goto err;
685
686 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
687 if (!tables_kobj)
688 goto err;
689
690 dmi_table = dmi_remap(dmi_base, dmi_len);
691 if (!dmi_table)
692 goto err_tables;
693
694 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
695 bin_attr_smbios_entry_point.private = smbios_entry_point;
696 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
697 if (ret)
698 goto err_unmap;
699
700 bin_attr_DMI.size = dmi_len;
701 bin_attr_DMI.private = dmi_table;
702 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
703 if (!ret)
704 return 0;
705
706 sysfs_remove_bin_file(tables_kobj,
707 &bin_attr_smbios_entry_point);
708 err_unmap:
709 dmi_unmap(dmi_table);
710 err_tables:
711 kobject_del(tables_kobj);
712 kobject_put(tables_kobj);
713 err:
714 pr_err("dmi: Firmware registration failed.\n");
715
716 return ret;
717 }
718 subsys_initcall(dmi_init);
719
720 /**
721 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
722 *
723 * Invoke dump_stack_set_arch_desc() with DMI system information so that
724 * DMI identifiers are printed out on task dumps. Arch boot code should
725 * call this function after dmi_scan_machine() if it wants to print out DMI
726 * identifiers on task dumps.
727 */
728 void __init dmi_set_dump_stack_arch_desc(void)
729 {
730 dump_stack_set_arch_desc("%s", dmi_ids_string);
731 }
732
733 /**
734 * dmi_matches - check if dmi_system_id structure matches system DMI data
735 * @dmi: pointer to the dmi_system_id structure to check
736 */
737 static bool dmi_matches(const struct dmi_system_id *dmi)
738 {
739 int i;
740
741 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
742
743 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
744 int s = dmi->matches[i].slot;
745 if (s == DMI_NONE)
746 break;
747 if (dmi_ident[s]) {
748 if (!dmi->matches[i].exact_match &&
749 strstr(dmi_ident[s], dmi->matches[i].substr))
750 continue;
751 else if (dmi->matches[i].exact_match &&
752 !strcmp(dmi_ident[s], dmi->matches[i].substr))
753 continue;
754 }
755
756 /* No match */
757 return false;
758 }
759 return true;
760 }
761
762 /**
763 * dmi_is_end_of_table - check for end-of-table marker
764 * @dmi: pointer to the dmi_system_id structure to check
765 */
766 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
767 {
768 return dmi->matches[0].slot == DMI_NONE;
769 }
770
771 /**
772 * dmi_check_system - check system DMI data
773 * @list: array of dmi_system_id structures to match against
774 * All non-null elements of the list must match
775 * their slot's (field index's) data (i.e., each
776 * list string must be a substring of the specified
777 * DMI slot's string data) to be considered a
778 * successful match.
779 *
780 * Walk the blacklist table running matching functions until someone
781 * returns non zero or we hit the end. Callback function is called for
782 * each successful match. Returns the number of matches.
783 */
784 int dmi_check_system(const struct dmi_system_id *list)
785 {
786 int count = 0;
787 const struct dmi_system_id *d;
788
789 for (d = list; !dmi_is_end_of_table(d); d++)
790 if (dmi_matches(d)) {
791 count++;
792 if (d->callback && d->callback(d))
793 break;
794 }
795
796 return count;
797 }
798 EXPORT_SYMBOL(dmi_check_system);
799
800 /**
801 * dmi_first_match - find dmi_system_id structure matching system DMI data
802 * @list: array of dmi_system_id structures to match against
803 * All non-null elements of the list must match
804 * their slot's (field index's) data (i.e., each
805 * list string must be a substring of the specified
806 * DMI slot's string data) to be considered a
807 * successful match.
808 *
809 * Walk the blacklist table until the first match is found. Return the
810 * pointer to the matching entry or NULL if there's no match.
811 */
812 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
813 {
814 const struct dmi_system_id *d;
815
816 for (d = list; !dmi_is_end_of_table(d); d++)
817 if (dmi_matches(d))
818 return d;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(dmi_first_match);
823
824 /**
825 * dmi_get_system_info - return DMI data value
826 * @field: data index (see enum dmi_field)
827 *
828 * Returns one DMI data value, can be used to perform
829 * complex DMI data checks.
830 */
831 const char *dmi_get_system_info(int field)
832 {
833 return dmi_ident[field];
834 }
835 EXPORT_SYMBOL(dmi_get_system_info);
836
837 /**
838 * dmi_name_in_serial - Check if string is in the DMI product serial information
839 * @str: string to check for
840 */
841 int dmi_name_in_serial(const char *str)
842 {
843 int f = DMI_PRODUCT_SERIAL;
844 if (dmi_ident[f] && strstr(dmi_ident[f], str))
845 return 1;
846 return 0;
847 }
848
849 /**
850 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
851 * @str: Case sensitive Name
852 */
853 int dmi_name_in_vendors(const char *str)
854 {
855 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
856 int i;
857 for (i = 0; fields[i] != DMI_NONE; i++) {
858 int f = fields[i];
859 if (dmi_ident[f] && strstr(dmi_ident[f], str))
860 return 1;
861 }
862 return 0;
863 }
864 EXPORT_SYMBOL(dmi_name_in_vendors);
865
866 /**
867 * dmi_find_device - find onboard device by type/name
868 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
869 * @name: device name string or %NULL to match all
870 * @from: previous device found in search, or %NULL for new search.
871 *
872 * Iterates through the list of known onboard devices. If a device is
873 * found with a matching @vendor and @device, a pointer to its device
874 * structure is returned. Otherwise, %NULL is returned.
875 * A new search is initiated by passing %NULL as the @from argument.
876 * If @from is not %NULL, searches continue from next device.
877 */
878 const struct dmi_device *dmi_find_device(int type, const char *name,
879 const struct dmi_device *from)
880 {
881 const struct list_head *head = from ? &from->list : &dmi_devices;
882 struct list_head *d;
883
884 for (d = head->next; d != &dmi_devices; d = d->next) {
885 const struct dmi_device *dev =
886 list_entry(d, struct dmi_device, list);
887
888 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
889 ((name == NULL) || (strcmp(dev->name, name) == 0)))
890 return dev;
891 }
892
893 return NULL;
894 }
895 EXPORT_SYMBOL(dmi_find_device);
896
897 /**
898 * dmi_get_date - parse a DMI date
899 * @field: data index (see enum dmi_field)
900 * @yearp: optional out parameter for the year
901 * @monthp: optional out parameter for the month
902 * @dayp: optional out parameter for the day
903 *
904 * The date field is assumed to be in the form resembling
905 * [mm[/dd]]/yy[yy] and the result is stored in the out
906 * parameters any or all of which can be omitted.
907 *
908 * If the field doesn't exist, all out parameters are set to zero
909 * and false is returned. Otherwise, true is returned with any
910 * invalid part of date set to zero.
911 *
912 * On return, year, month and day are guaranteed to be in the
913 * range of [0,9999], [0,12] and [0,31] respectively.
914 */
915 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
916 {
917 int year = 0, month = 0, day = 0;
918 bool exists;
919 const char *s, *y;
920 char *e;
921
922 s = dmi_get_system_info(field);
923 exists = s;
924 if (!exists)
925 goto out;
926
927 /*
928 * Determine year first. We assume the date string resembles
929 * mm/dd/yy[yy] but the original code extracted only the year
930 * from the end. Keep the behavior in the spirit of no
931 * surprises.
932 */
933 y = strrchr(s, '/');
934 if (!y)
935 goto out;
936
937 y++;
938 year = simple_strtoul(y, &e, 10);
939 if (y != e && year < 100) { /* 2-digit year */
940 year += 1900;
941 if (year < 1996) /* no dates < spec 1.0 */
942 year += 100;
943 }
944 if (year > 9999) /* year should fit in %04d */
945 year = 0;
946
947 /* parse the mm and dd */
948 month = simple_strtoul(s, &e, 10);
949 if (s == e || *e != '/' || !month || month > 12) {
950 month = 0;
951 goto out;
952 }
953
954 s = e + 1;
955 day = simple_strtoul(s, &e, 10);
956 if (s == y || s == e || *e != '/' || day > 31)
957 day = 0;
958 out:
959 if (yearp)
960 *yearp = year;
961 if (monthp)
962 *monthp = month;
963 if (dayp)
964 *dayp = day;
965 return exists;
966 }
967 EXPORT_SYMBOL(dmi_get_date);
968
969 /**
970 * dmi_walk - Walk the DMI table and get called back for every record
971 * @decode: Callback function
972 * @private_data: Private data to be passed to the callback function
973 *
974 * Returns -1 when the DMI table can't be reached, 0 on success.
975 */
976 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
977 void *private_data)
978 {
979 u8 *buf;
980
981 if (!dmi_available)
982 return -1;
983
984 buf = dmi_remap(dmi_base, dmi_len);
985 if (buf == NULL)
986 return -1;
987
988 dmi_decode_table(buf, decode, private_data);
989
990 dmi_unmap(buf);
991 return 0;
992 }
993 EXPORT_SYMBOL_GPL(dmi_walk);
994
995 /**
996 * dmi_match - compare a string to the dmi field (if exists)
997 * @f: DMI field identifier
998 * @str: string to compare the DMI field to
999 *
1000 * Returns true if the requested field equals to the str (including NULL).
1001 */
1002 bool dmi_match(enum dmi_field f, const char *str)
1003 {
1004 const char *info = dmi_get_system_info(f);
1005
1006 if (info == NULL || str == NULL)
1007 return info == str;
1008
1009 return !strcmp(info, str);
1010 }
1011 EXPORT_SYMBOL_GPL(dmi_match);
1012
1013 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1014 {
1015 int n;
1016
1017 if (dmi_memdev == NULL)
1018 return;
1019
1020 for (n = 0; n < dmi_memdev_nr; n++) {
1021 if (handle == dmi_memdev[n].handle) {
1022 *bank = dmi_memdev[n].bank;
1023 *device = dmi_memdev[n].device;
1024 break;
1025 }
1026 }
1027 }
1028 EXPORT_SYMBOL_GPL(dmi_memdev_name);
This page took 0.073386 seconds and 5 git commands to generate.