Merge tag 'drm-intel-next-2016-02-14' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32
33 /*
34 * GPUVM
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time. The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID. When execting a command buffer,
44 * the kernel tells the the ring what VMID to use for that command
45 * buffer. VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
50 * SI supports 16.
51 */
52
53 /**
54 * amdgpu_vm_num_pde - return the number of page directory entries
55 *
56 * @adev: amdgpu_device pointer
57 *
58 * Calculate the number of page directory entries.
59 */
60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64
65 /**
66 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67 *
68 * @adev: amdgpu_device pointer
69 *
70 * Calculate the size of the page directory in bytes.
71 */
72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76
77 /**
78 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
79 *
80 * @vm: vm providing the BOs
81 * @validated: head of validation list
82 * @entry: entry to add
83 *
84 * Add the page directory to the list of BOs to
85 * validate for command submission.
86 */
87 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
88 struct list_head *validated,
89 struct amdgpu_bo_list_entry *entry)
90 {
91 entry->robj = vm->page_directory;
92 entry->priority = 0;
93 entry->tv.bo = &vm->page_directory->tbo;
94 entry->tv.shared = true;
95 list_add(&entry->tv.head, validated);
96 }
97
98 /**
99 * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
100 *
101 * @vm: vm providing the BOs
102 * @duplicates: head of duplicates list
103 *
104 * Add the page directory to the BO duplicates list
105 * for command submission.
106 */
107 void amdgpu_vm_get_pt_bos(struct amdgpu_vm *vm, struct list_head *duplicates)
108 {
109 unsigned i;
110
111 /* add the vm page table to the list */
112 for (i = 0; i <= vm->max_pde_used; ++i) {
113 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
114
115 if (!entry->robj)
116 continue;
117
118 list_add(&entry->tv.head, duplicates);
119 }
120
121 }
122
123 /**
124 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
125 *
126 * @adev: amdgpu device instance
127 * @vm: vm providing the BOs
128 *
129 * Move the PT BOs to the tail of the LRU.
130 */
131 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
132 struct amdgpu_vm *vm)
133 {
134 struct ttm_bo_global *glob = adev->mman.bdev.glob;
135 unsigned i;
136
137 spin_lock(&glob->lru_lock);
138 for (i = 0; i <= vm->max_pde_used; ++i) {
139 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
140
141 if (!entry->robj)
142 continue;
143
144 ttm_bo_move_to_lru_tail(&entry->robj->tbo);
145 }
146 spin_unlock(&glob->lru_lock);
147 }
148
149 /**
150 * amdgpu_vm_grab_id - allocate the next free VMID
151 *
152 * @vm: vm to allocate id for
153 * @ring: ring we want to submit job to
154 * @sync: sync object where we add dependencies
155 * @fence: fence protecting ID from reuse
156 *
157 * Allocate an id for the vm, adding fences to the sync obj as necessary.
158 */
159 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
160 struct amdgpu_sync *sync, struct fence *fence)
161 {
162 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
163 struct amdgpu_device *adev = ring->adev;
164 struct amdgpu_vm_manager_id *id;
165 int r;
166
167 mutex_lock(&adev->vm_manager.lock);
168
169 /* check if the id is still valid */
170 if (vm_id->id) {
171 long owner;
172
173 id = &adev->vm_manager.ids[vm_id->id];
174 owner = atomic_long_read(&id->owner);
175 if (owner == (long)vm) {
176 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
177 trace_amdgpu_vm_grab_id(vm, vm_id->id, ring->idx);
178
179 fence_put(id->active);
180 id->active = fence_get(fence);
181
182 mutex_unlock(&adev->vm_manager.lock);
183 return 0;
184 }
185 }
186
187 /* we definately need to flush */
188 vm_id->pd_gpu_addr = ~0ll;
189
190 id = list_first_entry(&adev->vm_manager.ids_lru,
191 struct amdgpu_vm_manager_id,
192 list);
193 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
194 atomic_long_set(&id->owner, (long)vm);
195
196 vm_id->id = id - adev->vm_manager.ids;
197 trace_amdgpu_vm_grab_id(vm, vm_id->id, ring->idx);
198
199 r = amdgpu_sync_fence(ring->adev, sync, id->active);
200
201 if (!r) {
202 fence_put(id->active);
203 id->active = fence_get(fence);
204 }
205
206 mutex_unlock(&adev->vm_manager.lock);
207 return r;
208 }
209
210 /**
211 * amdgpu_vm_flush - hardware flush the vm
212 *
213 * @ring: ring to use for flush
214 * @vm: vm we want to flush
215 * @updates: last vm update that we waited for
216 *
217 * Flush the vm.
218 */
219 void amdgpu_vm_flush(struct amdgpu_ring *ring,
220 struct amdgpu_vm *vm,
221 struct fence *updates)
222 {
223 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
224 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
225 struct fence *flushed_updates = vm_id->flushed_updates;
226 bool is_later;
227
228 if (!flushed_updates)
229 is_later = true;
230 else if (!updates)
231 is_later = false;
232 else
233 is_later = fence_is_later(updates, flushed_updates);
234
235 if (pd_addr != vm_id->pd_gpu_addr || is_later) {
236 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
237 if (is_later) {
238 vm_id->flushed_updates = fence_get(updates);
239 fence_put(flushed_updates);
240 }
241 vm_id->pd_gpu_addr = pd_addr;
242 amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
243 }
244 }
245
246 /**
247 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
248 *
249 * @vm: requested vm
250 * @bo: requested buffer object
251 *
252 * Find @bo inside the requested vm.
253 * Search inside the @bos vm list for the requested vm
254 * Returns the found bo_va or NULL if none is found
255 *
256 * Object has to be reserved!
257 */
258 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
259 struct amdgpu_bo *bo)
260 {
261 struct amdgpu_bo_va *bo_va;
262
263 list_for_each_entry(bo_va, &bo->va, bo_list) {
264 if (bo_va->vm == vm) {
265 return bo_va;
266 }
267 }
268 return NULL;
269 }
270
271 /**
272 * amdgpu_vm_update_pages - helper to call the right asic function
273 *
274 * @adev: amdgpu_device pointer
275 * @gtt: GART instance to use for mapping
276 * @gtt_flags: GTT hw access flags
277 * @ib: indirect buffer to fill with commands
278 * @pe: addr of the page entry
279 * @addr: dst addr to write into pe
280 * @count: number of page entries to update
281 * @incr: increase next addr by incr bytes
282 * @flags: hw access flags
283 *
284 * Traces the parameters and calls the right asic functions
285 * to setup the page table using the DMA.
286 */
287 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
288 struct amdgpu_gart *gtt,
289 uint32_t gtt_flags,
290 struct amdgpu_ib *ib,
291 uint64_t pe, uint64_t addr,
292 unsigned count, uint32_t incr,
293 uint32_t flags)
294 {
295 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
296
297 if ((gtt == &adev->gart) && (flags == gtt_flags)) {
298 uint64_t src = gtt->table_addr + (addr >> 12) * 8;
299 amdgpu_vm_copy_pte(adev, ib, pe, src, count);
300
301 } else if (gtt) {
302 dma_addr_t *pages_addr = gtt->pages_addr;
303 amdgpu_vm_write_pte(adev, ib, pages_addr, pe, addr,
304 count, incr, flags);
305
306 } else if (count < 3) {
307 amdgpu_vm_write_pte(adev, ib, NULL, pe, addr,
308 count, incr, flags);
309
310 } else {
311 amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
312 count, incr, flags);
313 }
314 }
315
316 /**
317 * amdgpu_vm_clear_bo - initially clear the page dir/table
318 *
319 * @adev: amdgpu_device pointer
320 * @bo: bo to clear
321 *
322 * need to reserve bo first before calling it.
323 */
324 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
325 struct amdgpu_vm *vm,
326 struct amdgpu_bo *bo)
327 {
328 struct amdgpu_ring *ring;
329 struct fence *fence = NULL;
330 struct amdgpu_job *job;
331 unsigned entries;
332 uint64_t addr;
333 int r;
334
335 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
336
337 r = reservation_object_reserve_shared(bo->tbo.resv);
338 if (r)
339 return r;
340
341 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
342 if (r)
343 goto error;
344
345 addr = amdgpu_bo_gpu_offset(bo);
346 entries = amdgpu_bo_size(bo) / 8;
347
348 r = amdgpu_job_alloc_with_ib(adev, 64, &job);
349 if (r)
350 goto error;
351
352 amdgpu_vm_update_pages(adev, NULL, 0, &job->ibs[0], addr, 0, entries,
353 0, 0);
354 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
355
356 WARN_ON(job->ibs[0].length_dw > 64);
357 r = amdgpu_job_submit(job, ring, &vm->entity,
358 AMDGPU_FENCE_OWNER_VM, &fence);
359 if (r)
360 goto error_free;
361
362 amdgpu_bo_fence(bo, fence, true);
363 fence_put(fence);
364 return 0;
365
366 error_free:
367 amdgpu_job_free(job);
368
369 error:
370 return r;
371 }
372
373 /**
374 * amdgpu_vm_map_gart - Resolve gart mapping of addr
375 *
376 * @pages_addr: optional DMA address to use for lookup
377 * @addr: the unmapped addr
378 *
379 * Look up the physical address of the page that the pte resolves
380 * to and return the pointer for the page table entry.
381 */
382 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
383 {
384 uint64_t result;
385
386 if (pages_addr) {
387 /* page table offset */
388 result = pages_addr[addr >> PAGE_SHIFT];
389
390 /* in case cpu page size != gpu page size*/
391 result |= addr & (~PAGE_MASK);
392
393 } else {
394 /* No mapping required */
395 result = addr;
396 }
397
398 result &= 0xFFFFFFFFFFFFF000ULL;
399
400 return result;
401 }
402
403 /**
404 * amdgpu_vm_update_pdes - make sure that page directory is valid
405 *
406 * @adev: amdgpu_device pointer
407 * @vm: requested vm
408 * @start: start of GPU address range
409 * @end: end of GPU address range
410 *
411 * Allocates new page tables if necessary
412 * and updates the page directory.
413 * Returns 0 for success, error for failure.
414 */
415 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
416 struct amdgpu_vm *vm)
417 {
418 struct amdgpu_ring *ring;
419 struct amdgpu_bo *pd = vm->page_directory;
420 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
421 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
422 uint64_t last_pde = ~0, last_pt = ~0;
423 unsigned count = 0, pt_idx, ndw;
424 struct amdgpu_job *job;
425 struct amdgpu_ib *ib;
426 struct fence *fence = NULL;
427
428 int r;
429
430 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
431
432 /* padding, etc. */
433 ndw = 64;
434
435 /* assume the worst case */
436 ndw += vm->max_pde_used * 6;
437
438 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
439 if (r)
440 return r;
441
442 ib = &job->ibs[0];
443
444 /* walk over the address space and update the page directory */
445 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
446 struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
447 uint64_t pde, pt;
448
449 if (bo == NULL)
450 continue;
451
452 pt = amdgpu_bo_gpu_offset(bo);
453 if (vm->page_tables[pt_idx].addr == pt)
454 continue;
455 vm->page_tables[pt_idx].addr = pt;
456
457 pde = pd_addr + pt_idx * 8;
458 if (((last_pde + 8 * count) != pde) ||
459 ((last_pt + incr * count) != pt)) {
460
461 if (count) {
462 amdgpu_vm_update_pages(adev, NULL, 0, ib,
463 last_pde, last_pt,
464 count, incr,
465 AMDGPU_PTE_VALID);
466 }
467
468 count = 1;
469 last_pde = pde;
470 last_pt = pt;
471 } else {
472 ++count;
473 }
474 }
475
476 if (count)
477 amdgpu_vm_update_pages(adev, NULL, 0, ib, last_pde, last_pt,
478 count, incr, AMDGPU_PTE_VALID);
479
480 if (ib->length_dw != 0) {
481 amdgpu_ring_pad_ib(ring, ib);
482 amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
483 AMDGPU_FENCE_OWNER_VM);
484 WARN_ON(ib->length_dw > ndw);
485 r = amdgpu_job_submit(job, ring, &vm->entity,
486 AMDGPU_FENCE_OWNER_VM, &fence);
487 if (r)
488 goto error_free;
489
490 amdgpu_bo_fence(pd, fence, true);
491 fence_put(vm->page_directory_fence);
492 vm->page_directory_fence = fence_get(fence);
493 fence_put(fence);
494
495 } else {
496 amdgpu_job_free(job);
497 }
498
499 return 0;
500
501 error_free:
502 amdgpu_job_free(job);
503 return r;
504 }
505
506 /**
507 * amdgpu_vm_frag_ptes - add fragment information to PTEs
508 *
509 * @adev: amdgpu_device pointer
510 * @gtt: GART instance to use for mapping
511 * @gtt_flags: GTT hw mapping flags
512 * @ib: IB for the update
513 * @pe_start: first PTE to handle
514 * @pe_end: last PTE to handle
515 * @addr: addr those PTEs should point to
516 * @flags: hw mapping flags
517 */
518 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
519 struct amdgpu_gart *gtt,
520 uint32_t gtt_flags,
521 struct amdgpu_ib *ib,
522 uint64_t pe_start, uint64_t pe_end,
523 uint64_t addr, uint32_t flags)
524 {
525 /**
526 * The MC L1 TLB supports variable sized pages, based on a fragment
527 * field in the PTE. When this field is set to a non-zero value, page
528 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
529 * flags are considered valid for all PTEs within the fragment range
530 * and corresponding mappings are assumed to be physically contiguous.
531 *
532 * The L1 TLB can store a single PTE for the whole fragment,
533 * significantly increasing the space available for translation
534 * caching. This leads to large improvements in throughput when the
535 * TLB is under pressure.
536 *
537 * The L2 TLB distributes small and large fragments into two
538 * asymmetric partitions. The large fragment cache is significantly
539 * larger. Thus, we try to use large fragments wherever possible.
540 * Userspace can support this by aligning virtual base address and
541 * allocation size to the fragment size.
542 */
543
544 /* SI and newer are optimized for 64KB */
545 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
546 uint64_t frag_align = 0x80;
547
548 uint64_t frag_start = ALIGN(pe_start, frag_align);
549 uint64_t frag_end = pe_end & ~(frag_align - 1);
550
551 unsigned count;
552
553 /* Abort early if there isn't anything to do */
554 if (pe_start == pe_end)
555 return;
556
557 /* system pages are non continuously */
558 if (gtt || !(flags & AMDGPU_PTE_VALID) || (frag_start >= frag_end)) {
559
560 count = (pe_end - pe_start) / 8;
561 amdgpu_vm_update_pages(adev, gtt, gtt_flags, ib, pe_start,
562 addr, count, AMDGPU_GPU_PAGE_SIZE,
563 flags);
564 return;
565 }
566
567 /* handle the 4K area at the beginning */
568 if (pe_start != frag_start) {
569 count = (frag_start - pe_start) / 8;
570 amdgpu_vm_update_pages(adev, NULL, 0, ib, pe_start, addr,
571 count, AMDGPU_GPU_PAGE_SIZE, flags);
572 addr += AMDGPU_GPU_PAGE_SIZE * count;
573 }
574
575 /* handle the area in the middle */
576 count = (frag_end - frag_start) / 8;
577 amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_start, addr, count,
578 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags);
579
580 /* handle the 4K area at the end */
581 if (frag_end != pe_end) {
582 addr += AMDGPU_GPU_PAGE_SIZE * count;
583 count = (pe_end - frag_end) / 8;
584 amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_end, addr,
585 count, AMDGPU_GPU_PAGE_SIZE, flags);
586 }
587 }
588
589 /**
590 * amdgpu_vm_update_ptes - make sure that page tables are valid
591 *
592 * @adev: amdgpu_device pointer
593 * @gtt: GART instance to use for mapping
594 * @gtt_flags: GTT hw mapping flags
595 * @vm: requested vm
596 * @start: start of GPU address range
597 * @end: end of GPU address range
598 * @dst: destination address to map to
599 * @flags: mapping flags
600 *
601 * Update the page tables in the range @start - @end.
602 */
603 static void amdgpu_vm_update_ptes(struct amdgpu_device *adev,
604 struct amdgpu_gart *gtt,
605 uint32_t gtt_flags,
606 struct amdgpu_vm *vm,
607 struct amdgpu_ib *ib,
608 uint64_t start, uint64_t end,
609 uint64_t dst, uint32_t flags)
610 {
611 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
612
613 uint64_t last_pe_start = ~0, last_pe_end = ~0, last_dst = ~0;
614 uint64_t addr;
615
616 /* walk over the address space and update the page tables */
617 for (addr = start; addr < end; ) {
618 uint64_t pt_idx = addr >> amdgpu_vm_block_size;
619 struct amdgpu_bo *pt = vm->page_tables[pt_idx].entry.robj;
620 unsigned nptes;
621 uint64_t pe_start;
622
623 if ((addr & ~mask) == (end & ~mask))
624 nptes = end - addr;
625 else
626 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
627
628 pe_start = amdgpu_bo_gpu_offset(pt);
629 pe_start += (addr & mask) * 8;
630
631 if (last_pe_end != pe_start) {
632
633 amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
634 last_pe_start, last_pe_end,
635 last_dst, flags);
636
637 last_pe_start = pe_start;
638 last_pe_end = pe_start + 8 * nptes;
639 last_dst = dst;
640 } else {
641 last_pe_end += 8 * nptes;
642 }
643
644 addr += nptes;
645 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
646 }
647
648 amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
649 last_pe_start, last_pe_end,
650 last_dst, flags);
651 }
652
653 /**
654 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
655 *
656 * @adev: amdgpu_device pointer
657 * @gtt: GART instance to use for mapping
658 * @gtt_flags: flags as they are used for GTT
659 * @vm: requested vm
660 * @start: start of mapped range
661 * @last: last mapped entry
662 * @flags: flags for the entries
663 * @addr: addr to set the area to
664 * @fence: optional resulting fence
665 *
666 * Fill in the page table entries between @start and @last.
667 * Returns 0 for success, -EINVAL for failure.
668 */
669 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
670 struct amdgpu_gart *gtt,
671 uint32_t gtt_flags,
672 struct amdgpu_vm *vm,
673 uint64_t start, uint64_t last,
674 uint32_t flags, uint64_t addr,
675 struct fence **fence)
676 {
677 struct amdgpu_ring *ring;
678 void *owner = AMDGPU_FENCE_OWNER_VM;
679 unsigned nptes, ncmds, ndw;
680 struct amdgpu_job *job;
681 struct amdgpu_ib *ib;
682 struct fence *f = NULL;
683 int r;
684
685 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
686
687 /* sync to everything on unmapping */
688 if (!(flags & AMDGPU_PTE_VALID))
689 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
690
691 nptes = last - start + 1;
692
693 /*
694 * reserve space for one command every (1 << BLOCK_SIZE)
695 * entries or 2k dwords (whatever is smaller)
696 */
697 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
698
699 /* padding, etc. */
700 ndw = 64;
701
702 if ((gtt == &adev->gart) && (flags == gtt_flags)) {
703 /* only copy commands needed */
704 ndw += ncmds * 7;
705
706 } else if (gtt) {
707 /* header for write data commands */
708 ndw += ncmds * 4;
709
710 /* body of write data command */
711 ndw += nptes * 2;
712
713 } else {
714 /* set page commands needed */
715 ndw += ncmds * 10;
716
717 /* two extra commands for begin/end of fragment */
718 ndw += 2 * 10;
719 }
720
721 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
722 if (r)
723 return r;
724
725 ib = &job->ibs[0];
726
727 r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
728 owner);
729 if (r)
730 goto error_free;
731
732 r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
733 if (r)
734 goto error_free;
735
736 amdgpu_vm_update_ptes(adev, gtt, gtt_flags, vm, ib, start, last + 1,
737 addr, flags);
738
739 amdgpu_ring_pad_ib(ring, ib);
740 WARN_ON(ib->length_dw > ndw);
741 r = amdgpu_job_submit(job, ring, &vm->entity,
742 AMDGPU_FENCE_OWNER_VM, &f);
743 if (r)
744 goto error_free;
745
746 amdgpu_bo_fence(vm->page_directory, f, true);
747 if (fence) {
748 fence_put(*fence);
749 *fence = fence_get(f);
750 }
751 fence_put(f);
752 return 0;
753
754 error_free:
755 amdgpu_job_free(job);
756 return r;
757 }
758
759 /**
760 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
761 *
762 * @adev: amdgpu_device pointer
763 * @gtt: GART instance to use for mapping
764 * @vm: requested vm
765 * @mapping: mapped range and flags to use for the update
766 * @addr: addr to set the area to
767 * @gtt_flags: flags as they are used for GTT
768 * @fence: optional resulting fence
769 *
770 * Split the mapping into smaller chunks so that each update fits
771 * into a SDMA IB.
772 * Returns 0 for success, -EINVAL for failure.
773 */
774 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
775 struct amdgpu_gart *gtt,
776 uint32_t gtt_flags,
777 struct amdgpu_vm *vm,
778 struct amdgpu_bo_va_mapping *mapping,
779 uint64_t addr, struct fence **fence)
780 {
781 const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
782
783 uint64_t start = mapping->it.start;
784 uint32_t flags = gtt_flags;
785 int r;
786
787 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
788 * but in case of something, we filter the flags in first place
789 */
790 if (!(mapping->flags & AMDGPU_PTE_READABLE))
791 flags &= ~AMDGPU_PTE_READABLE;
792 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
793 flags &= ~AMDGPU_PTE_WRITEABLE;
794
795 trace_amdgpu_vm_bo_update(mapping);
796
797 addr += mapping->offset;
798
799 if (!gtt || ((gtt == &adev->gart) && (flags == gtt_flags)))
800 return amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
801 start, mapping->it.last,
802 flags, addr, fence);
803
804 while (start != mapping->it.last + 1) {
805 uint64_t last;
806
807 last = min((uint64_t)mapping->it.last, start + max_size);
808 r = amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
809 start, last, flags, addr,
810 fence);
811 if (r)
812 return r;
813
814 start = last + 1;
815 addr += max_size;
816 }
817
818 return 0;
819 }
820
821 /**
822 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
823 *
824 * @adev: amdgpu_device pointer
825 * @bo_va: requested BO and VM object
826 * @mem: ttm mem
827 *
828 * Fill in the page table entries for @bo_va.
829 * Returns 0 for success, -EINVAL for failure.
830 *
831 * Object have to be reserved and mutex must be locked!
832 */
833 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
834 struct amdgpu_bo_va *bo_va,
835 struct ttm_mem_reg *mem)
836 {
837 struct amdgpu_vm *vm = bo_va->vm;
838 struct amdgpu_bo_va_mapping *mapping;
839 struct amdgpu_gart *gtt = NULL;
840 uint32_t flags;
841 uint64_t addr;
842 int r;
843
844 if (mem) {
845 addr = (u64)mem->start << PAGE_SHIFT;
846 switch (mem->mem_type) {
847 case TTM_PL_TT:
848 gtt = &bo_va->bo->adev->gart;
849 break;
850
851 case TTM_PL_VRAM:
852 addr += adev->vm_manager.vram_base_offset;
853 break;
854
855 default:
856 break;
857 }
858 } else {
859 addr = 0;
860 }
861
862 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
863
864 spin_lock(&vm->status_lock);
865 if (!list_empty(&bo_va->vm_status))
866 list_splice_init(&bo_va->valids, &bo_va->invalids);
867 spin_unlock(&vm->status_lock);
868
869 list_for_each_entry(mapping, &bo_va->invalids, list) {
870 r = amdgpu_vm_bo_split_mapping(adev, gtt, flags, vm, mapping, addr,
871 &bo_va->last_pt_update);
872 if (r)
873 return r;
874 }
875
876 if (trace_amdgpu_vm_bo_mapping_enabled()) {
877 list_for_each_entry(mapping, &bo_va->valids, list)
878 trace_amdgpu_vm_bo_mapping(mapping);
879
880 list_for_each_entry(mapping, &bo_va->invalids, list)
881 trace_amdgpu_vm_bo_mapping(mapping);
882 }
883
884 spin_lock(&vm->status_lock);
885 list_splice_init(&bo_va->invalids, &bo_va->valids);
886 list_del_init(&bo_va->vm_status);
887 if (!mem)
888 list_add(&bo_va->vm_status, &vm->cleared);
889 spin_unlock(&vm->status_lock);
890
891 return 0;
892 }
893
894 /**
895 * amdgpu_vm_clear_freed - clear freed BOs in the PT
896 *
897 * @adev: amdgpu_device pointer
898 * @vm: requested vm
899 *
900 * Make sure all freed BOs are cleared in the PT.
901 * Returns 0 for success.
902 *
903 * PTs have to be reserved and mutex must be locked!
904 */
905 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
906 struct amdgpu_vm *vm)
907 {
908 struct amdgpu_bo_va_mapping *mapping;
909 int r;
910
911 spin_lock(&vm->freed_lock);
912 while (!list_empty(&vm->freed)) {
913 mapping = list_first_entry(&vm->freed,
914 struct amdgpu_bo_va_mapping, list);
915 list_del(&mapping->list);
916 spin_unlock(&vm->freed_lock);
917 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, vm, mapping,
918 0, NULL);
919 kfree(mapping);
920 if (r)
921 return r;
922
923 spin_lock(&vm->freed_lock);
924 }
925 spin_unlock(&vm->freed_lock);
926
927 return 0;
928
929 }
930
931 /**
932 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
933 *
934 * @adev: amdgpu_device pointer
935 * @vm: requested vm
936 *
937 * Make sure all invalidated BOs are cleared in the PT.
938 * Returns 0 for success.
939 *
940 * PTs have to be reserved and mutex must be locked!
941 */
942 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
943 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
944 {
945 struct amdgpu_bo_va *bo_va = NULL;
946 int r = 0;
947
948 spin_lock(&vm->status_lock);
949 while (!list_empty(&vm->invalidated)) {
950 bo_va = list_first_entry(&vm->invalidated,
951 struct amdgpu_bo_va, vm_status);
952 spin_unlock(&vm->status_lock);
953 mutex_lock(&bo_va->mutex);
954 r = amdgpu_vm_bo_update(adev, bo_va, NULL);
955 mutex_unlock(&bo_va->mutex);
956 if (r)
957 return r;
958
959 spin_lock(&vm->status_lock);
960 }
961 spin_unlock(&vm->status_lock);
962
963 if (bo_va)
964 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
965
966 return r;
967 }
968
969 /**
970 * amdgpu_vm_bo_add - add a bo to a specific vm
971 *
972 * @adev: amdgpu_device pointer
973 * @vm: requested vm
974 * @bo: amdgpu buffer object
975 *
976 * Add @bo into the requested vm.
977 * Add @bo to the list of bos associated with the vm
978 * Returns newly added bo_va or NULL for failure
979 *
980 * Object has to be reserved!
981 */
982 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
983 struct amdgpu_vm *vm,
984 struct amdgpu_bo *bo)
985 {
986 struct amdgpu_bo_va *bo_va;
987
988 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
989 if (bo_va == NULL) {
990 return NULL;
991 }
992 bo_va->vm = vm;
993 bo_va->bo = bo;
994 bo_va->ref_count = 1;
995 INIT_LIST_HEAD(&bo_va->bo_list);
996 INIT_LIST_HEAD(&bo_va->valids);
997 INIT_LIST_HEAD(&bo_va->invalids);
998 INIT_LIST_HEAD(&bo_va->vm_status);
999 mutex_init(&bo_va->mutex);
1000 list_add_tail(&bo_va->bo_list, &bo->va);
1001
1002 return bo_va;
1003 }
1004
1005 /**
1006 * amdgpu_vm_bo_map - map bo inside a vm
1007 *
1008 * @adev: amdgpu_device pointer
1009 * @bo_va: bo_va to store the address
1010 * @saddr: where to map the BO
1011 * @offset: requested offset in the BO
1012 * @flags: attributes of pages (read/write/valid/etc.)
1013 *
1014 * Add a mapping of the BO at the specefied addr into the VM.
1015 * Returns 0 for success, error for failure.
1016 *
1017 * Object has to be reserved and unreserved outside!
1018 */
1019 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1020 struct amdgpu_bo_va *bo_va,
1021 uint64_t saddr, uint64_t offset,
1022 uint64_t size, uint32_t flags)
1023 {
1024 struct amdgpu_bo_va_mapping *mapping;
1025 struct amdgpu_vm *vm = bo_va->vm;
1026 struct interval_tree_node *it;
1027 unsigned last_pfn, pt_idx;
1028 uint64_t eaddr;
1029 int r;
1030
1031 /* validate the parameters */
1032 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1033 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1034 return -EINVAL;
1035
1036 /* make sure object fit at this offset */
1037 eaddr = saddr + size - 1;
1038 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1039 return -EINVAL;
1040
1041 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1042 if (last_pfn >= adev->vm_manager.max_pfn) {
1043 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1044 last_pfn, adev->vm_manager.max_pfn);
1045 return -EINVAL;
1046 }
1047
1048 saddr /= AMDGPU_GPU_PAGE_SIZE;
1049 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1050
1051 spin_lock(&vm->it_lock);
1052 it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1053 spin_unlock(&vm->it_lock);
1054 if (it) {
1055 struct amdgpu_bo_va_mapping *tmp;
1056 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1057 /* bo and tmp overlap, invalid addr */
1058 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1059 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1060 tmp->it.start, tmp->it.last + 1);
1061 r = -EINVAL;
1062 goto error;
1063 }
1064
1065 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1066 if (!mapping) {
1067 r = -ENOMEM;
1068 goto error;
1069 }
1070
1071 INIT_LIST_HEAD(&mapping->list);
1072 mapping->it.start = saddr;
1073 mapping->it.last = eaddr;
1074 mapping->offset = offset;
1075 mapping->flags = flags;
1076
1077 mutex_lock(&bo_va->mutex);
1078 list_add(&mapping->list, &bo_va->invalids);
1079 mutex_unlock(&bo_va->mutex);
1080 spin_lock(&vm->it_lock);
1081 interval_tree_insert(&mapping->it, &vm->va);
1082 spin_unlock(&vm->it_lock);
1083 trace_amdgpu_vm_bo_map(bo_va, mapping);
1084
1085 /* Make sure the page tables are allocated */
1086 saddr >>= amdgpu_vm_block_size;
1087 eaddr >>= amdgpu_vm_block_size;
1088
1089 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1090
1091 if (eaddr > vm->max_pde_used)
1092 vm->max_pde_used = eaddr;
1093
1094 /* walk over the address space and allocate the page tables */
1095 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1096 struct reservation_object *resv = vm->page_directory->tbo.resv;
1097 struct amdgpu_bo_list_entry *entry;
1098 struct amdgpu_bo *pt;
1099
1100 entry = &vm->page_tables[pt_idx].entry;
1101 if (entry->robj)
1102 continue;
1103
1104 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1105 AMDGPU_GPU_PAGE_SIZE, true,
1106 AMDGPU_GEM_DOMAIN_VRAM,
1107 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1108 NULL, resv, &pt);
1109 if (r)
1110 goto error_free;
1111
1112 /* Keep a reference to the page table to avoid freeing
1113 * them up in the wrong order.
1114 */
1115 pt->parent = amdgpu_bo_ref(vm->page_directory);
1116
1117 r = amdgpu_vm_clear_bo(adev, vm, pt);
1118 if (r) {
1119 amdgpu_bo_unref(&pt);
1120 goto error_free;
1121 }
1122
1123 entry->robj = pt;
1124 entry->priority = 0;
1125 entry->tv.bo = &entry->robj->tbo;
1126 entry->tv.shared = true;
1127 vm->page_tables[pt_idx].addr = 0;
1128 }
1129
1130 return 0;
1131
1132 error_free:
1133 list_del(&mapping->list);
1134 spin_lock(&vm->it_lock);
1135 interval_tree_remove(&mapping->it, &vm->va);
1136 spin_unlock(&vm->it_lock);
1137 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1138 kfree(mapping);
1139
1140 error:
1141 return r;
1142 }
1143
1144 /**
1145 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1146 *
1147 * @adev: amdgpu_device pointer
1148 * @bo_va: bo_va to remove the address from
1149 * @saddr: where to the BO is mapped
1150 *
1151 * Remove a mapping of the BO at the specefied addr from the VM.
1152 * Returns 0 for success, error for failure.
1153 *
1154 * Object has to be reserved and unreserved outside!
1155 */
1156 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1157 struct amdgpu_bo_va *bo_va,
1158 uint64_t saddr)
1159 {
1160 struct amdgpu_bo_va_mapping *mapping;
1161 struct amdgpu_vm *vm = bo_va->vm;
1162 bool valid = true;
1163
1164 saddr /= AMDGPU_GPU_PAGE_SIZE;
1165 mutex_lock(&bo_va->mutex);
1166 list_for_each_entry(mapping, &bo_va->valids, list) {
1167 if (mapping->it.start == saddr)
1168 break;
1169 }
1170
1171 if (&mapping->list == &bo_va->valids) {
1172 valid = false;
1173
1174 list_for_each_entry(mapping, &bo_va->invalids, list) {
1175 if (mapping->it.start == saddr)
1176 break;
1177 }
1178
1179 if (&mapping->list == &bo_va->invalids) {
1180 mutex_unlock(&bo_va->mutex);
1181 return -ENOENT;
1182 }
1183 }
1184 mutex_unlock(&bo_va->mutex);
1185 list_del(&mapping->list);
1186 spin_lock(&vm->it_lock);
1187 interval_tree_remove(&mapping->it, &vm->va);
1188 spin_unlock(&vm->it_lock);
1189 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1190
1191 if (valid) {
1192 spin_lock(&vm->freed_lock);
1193 list_add(&mapping->list, &vm->freed);
1194 spin_unlock(&vm->freed_lock);
1195 } else {
1196 kfree(mapping);
1197 }
1198
1199 return 0;
1200 }
1201
1202 /**
1203 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1204 *
1205 * @adev: amdgpu_device pointer
1206 * @bo_va: requested bo_va
1207 *
1208 * Remove @bo_va->bo from the requested vm.
1209 *
1210 * Object have to be reserved!
1211 */
1212 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1213 struct amdgpu_bo_va *bo_va)
1214 {
1215 struct amdgpu_bo_va_mapping *mapping, *next;
1216 struct amdgpu_vm *vm = bo_va->vm;
1217
1218 list_del(&bo_va->bo_list);
1219
1220 spin_lock(&vm->status_lock);
1221 list_del(&bo_va->vm_status);
1222 spin_unlock(&vm->status_lock);
1223
1224 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1225 list_del(&mapping->list);
1226 spin_lock(&vm->it_lock);
1227 interval_tree_remove(&mapping->it, &vm->va);
1228 spin_unlock(&vm->it_lock);
1229 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1230 spin_lock(&vm->freed_lock);
1231 list_add(&mapping->list, &vm->freed);
1232 spin_unlock(&vm->freed_lock);
1233 }
1234 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1235 list_del(&mapping->list);
1236 spin_lock(&vm->it_lock);
1237 interval_tree_remove(&mapping->it, &vm->va);
1238 spin_unlock(&vm->it_lock);
1239 kfree(mapping);
1240 }
1241 fence_put(bo_va->last_pt_update);
1242 mutex_destroy(&bo_va->mutex);
1243 kfree(bo_va);
1244 }
1245
1246 /**
1247 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1248 *
1249 * @adev: amdgpu_device pointer
1250 * @vm: requested vm
1251 * @bo: amdgpu buffer object
1252 *
1253 * Mark @bo as invalid.
1254 */
1255 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1256 struct amdgpu_bo *bo)
1257 {
1258 struct amdgpu_bo_va *bo_va;
1259
1260 list_for_each_entry(bo_va, &bo->va, bo_list) {
1261 spin_lock(&bo_va->vm->status_lock);
1262 if (list_empty(&bo_va->vm_status))
1263 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1264 spin_unlock(&bo_va->vm->status_lock);
1265 }
1266 }
1267
1268 /**
1269 * amdgpu_vm_init - initialize a vm instance
1270 *
1271 * @adev: amdgpu_device pointer
1272 * @vm: requested vm
1273 *
1274 * Init @vm fields.
1275 */
1276 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1277 {
1278 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1279 AMDGPU_VM_PTE_COUNT * 8);
1280 unsigned pd_size, pd_entries;
1281 unsigned ring_instance;
1282 struct amdgpu_ring *ring;
1283 struct amd_sched_rq *rq;
1284 int i, r;
1285
1286 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1287 vm->ids[i].id = 0;
1288 vm->ids[i].flushed_updates = NULL;
1289 }
1290 vm->va = RB_ROOT;
1291 spin_lock_init(&vm->status_lock);
1292 INIT_LIST_HEAD(&vm->invalidated);
1293 INIT_LIST_HEAD(&vm->cleared);
1294 INIT_LIST_HEAD(&vm->freed);
1295 spin_lock_init(&vm->it_lock);
1296 spin_lock_init(&vm->freed_lock);
1297 pd_size = amdgpu_vm_directory_size(adev);
1298 pd_entries = amdgpu_vm_num_pdes(adev);
1299
1300 /* allocate page table array */
1301 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1302 if (vm->page_tables == NULL) {
1303 DRM_ERROR("Cannot allocate memory for page table array\n");
1304 return -ENOMEM;
1305 }
1306
1307 /* create scheduler entity for page table updates */
1308
1309 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1310 ring_instance %= adev->vm_manager.vm_pte_num_rings;
1311 ring = adev->vm_manager.vm_pte_rings[ring_instance];
1312 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1313 r = amd_sched_entity_init(&ring->sched, &vm->entity,
1314 rq, amdgpu_sched_jobs);
1315 if (r)
1316 return r;
1317
1318 vm->page_directory_fence = NULL;
1319
1320 r = amdgpu_bo_create(adev, pd_size, align, true,
1321 AMDGPU_GEM_DOMAIN_VRAM,
1322 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1323 NULL, NULL, &vm->page_directory);
1324 if (r)
1325 goto error_free_sched_entity;
1326
1327 r = amdgpu_bo_reserve(vm->page_directory, false);
1328 if (r)
1329 goto error_free_page_directory;
1330
1331 r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory);
1332 amdgpu_bo_unreserve(vm->page_directory);
1333 if (r)
1334 goto error_free_page_directory;
1335
1336 return 0;
1337
1338 error_free_page_directory:
1339 amdgpu_bo_unref(&vm->page_directory);
1340 vm->page_directory = NULL;
1341
1342 error_free_sched_entity:
1343 amd_sched_entity_fini(&ring->sched, &vm->entity);
1344
1345 return r;
1346 }
1347
1348 /**
1349 * amdgpu_vm_fini - tear down a vm instance
1350 *
1351 * @adev: amdgpu_device pointer
1352 * @vm: requested vm
1353 *
1354 * Tear down @vm.
1355 * Unbind the VM and remove all bos from the vm bo list
1356 */
1357 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1358 {
1359 struct amdgpu_bo_va_mapping *mapping, *tmp;
1360 int i;
1361
1362 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1363
1364 if (!RB_EMPTY_ROOT(&vm->va)) {
1365 dev_err(adev->dev, "still active bo inside vm\n");
1366 }
1367 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1368 list_del(&mapping->list);
1369 interval_tree_remove(&mapping->it, &vm->va);
1370 kfree(mapping);
1371 }
1372 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1373 list_del(&mapping->list);
1374 kfree(mapping);
1375 }
1376
1377 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1378 amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1379 drm_free_large(vm->page_tables);
1380
1381 amdgpu_bo_unref(&vm->page_directory);
1382 fence_put(vm->page_directory_fence);
1383 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1384 unsigned id = vm->ids[i].id;
1385
1386 atomic_long_cmpxchg(&adev->vm_manager.ids[id].owner,
1387 (long)vm, 0);
1388 fence_put(vm->ids[i].flushed_updates);
1389 }
1390
1391 }
1392
1393 /**
1394 * amdgpu_vm_manager_init - init the VM manager
1395 *
1396 * @adev: amdgpu_device pointer
1397 *
1398 * Initialize the VM manager structures
1399 */
1400 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1401 {
1402 unsigned i;
1403
1404 INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1405
1406 /* skip over VMID 0, since it is the system VM */
1407 for (i = 1; i < adev->vm_manager.num_ids; ++i)
1408 list_add_tail(&adev->vm_manager.ids[i].list,
1409 &adev->vm_manager.ids_lru);
1410
1411 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
1412 }
1413
1414 /**
1415 * amdgpu_vm_manager_fini - cleanup VM manager
1416 *
1417 * @adev: amdgpu_device pointer
1418 *
1419 * Cleanup the VM manager and free resources.
1420 */
1421 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1422 {
1423 unsigned i;
1424
1425 for (i = 0; i < AMDGPU_NUM_VM; ++i)
1426 fence_put(adev->vm_manager.ids[i].active);
1427 }
This page took 0.060369 seconds and 5 git commands to generate.