Merge remote-tracking branch 'keys/keys-next'
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/fence-array.h>
29 #include <drm/drmP.h>
30 #include <drm/amdgpu_drm.h>
31 #include "amdgpu.h"
32 #include "amdgpu_trace.h"
33
34 /*
35 * GPUVM
36 * GPUVM is similar to the legacy gart on older asics, however
37 * rather than there being a single global gart table
38 * for the entire GPU, there are multiple VM page tables active
39 * at any given time. The VM page tables can contain a mix
40 * vram pages and system memory pages and system memory pages
41 * can be mapped as snooped (cached system pages) or unsnooped
42 * (uncached system pages).
43 * Each VM has an ID associated with it and there is a page table
44 * associated with each VMID. When execting a command buffer,
45 * the kernel tells the the ring what VMID to use for that command
46 * buffer. VMIDs are allocated dynamically as commands are submitted.
47 * The userspace drivers maintain their own address space and the kernel
48 * sets up their pages tables accordingly when they submit their
49 * command buffers and a VMID is assigned.
50 * Cayman/Trinity support up to 8 active VMs at any given time;
51 * SI supports 16.
52 */
53
54 /* Local structure. Encapsulate some VM table update parameters to reduce
55 * the number of function parameters
56 */
57 struct amdgpu_pte_update_params {
58 /* amdgpu device we do this update for */
59 struct amdgpu_device *adev;
60 /* address where to copy page table entries from */
61 uint64_t src;
62 /* indirect buffer to fill with commands */
63 struct amdgpu_ib *ib;
64 /* Function which actually does the update */
65 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
66 uint64_t addr, unsigned count, uint32_t incr,
67 uint32_t flags);
68 /* indicate update pt or its shadow */
69 bool shadow;
70 };
71
72 /**
73 * amdgpu_vm_num_pde - return the number of page directory entries
74 *
75 * @adev: amdgpu_device pointer
76 *
77 * Calculate the number of page directory entries.
78 */
79 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
80 {
81 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
82 }
83
84 /**
85 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
86 *
87 * @adev: amdgpu_device pointer
88 *
89 * Calculate the size of the page directory in bytes.
90 */
91 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
92 {
93 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
94 }
95
96 /**
97 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
98 *
99 * @vm: vm providing the BOs
100 * @validated: head of validation list
101 * @entry: entry to add
102 *
103 * Add the page directory to the list of BOs to
104 * validate for command submission.
105 */
106 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
107 struct list_head *validated,
108 struct amdgpu_bo_list_entry *entry)
109 {
110 entry->robj = vm->page_directory;
111 entry->priority = 0;
112 entry->tv.bo = &vm->page_directory->tbo;
113 entry->tv.shared = true;
114 entry->user_pages = NULL;
115 list_add(&entry->tv.head, validated);
116 }
117
118 /**
119 * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
120 *
121 * @adev: amdgpu device pointer
122 * @vm: vm providing the BOs
123 * @duplicates: head of duplicates list
124 *
125 * Add the page directory to the BO duplicates list
126 * for command submission.
127 */
128 void amdgpu_vm_get_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
129 struct list_head *duplicates)
130 {
131 uint64_t num_evictions;
132 unsigned i;
133
134 /* We only need to validate the page tables
135 * if they aren't already valid.
136 */
137 num_evictions = atomic64_read(&adev->num_evictions);
138 if (num_evictions == vm->last_eviction_counter)
139 return;
140
141 /* add the vm page table to the list */
142 for (i = 0; i <= vm->max_pde_used; ++i) {
143 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
144
145 if (!entry->robj)
146 continue;
147
148 list_add(&entry->tv.head, duplicates);
149 }
150
151 }
152
153 /**
154 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
155 *
156 * @adev: amdgpu device instance
157 * @vm: vm providing the BOs
158 *
159 * Move the PT BOs to the tail of the LRU.
160 */
161 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
162 struct amdgpu_vm *vm)
163 {
164 struct ttm_bo_global *glob = adev->mman.bdev.glob;
165 unsigned i;
166
167 spin_lock(&glob->lru_lock);
168 for (i = 0; i <= vm->max_pde_used; ++i) {
169 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
170
171 if (!entry->robj)
172 continue;
173
174 ttm_bo_move_to_lru_tail(&entry->robj->tbo);
175 }
176 spin_unlock(&glob->lru_lock);
177 }
178
179 static bool amdgpu_vm_is_gpu_reset(struct amdgpu_device *adev,
180 struct amdgpu_vm_id *id)
181 {
182 return id->current_gpu_reset_count !=
183 atomic_read(&adev->gpu_reset_counter) ? true : false;
184 }
185
186 /**
187 * amdgpu_vm_grab_id - allocate the next free VMID
188 *
189 * @vm: vm to allocate id for
190 * @ring: ring we want to submit job to
191 * @sync: sync object where we add dependencies
192 * @fence: fence protecting ID from reuse
193 *
194 * Allocate an id for the vm, adding fences to the sync obj as necessary.
195 */
196 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
197 struct amdgpu_sync *sync, struct fence *fence,
198 struct amdgpu_job *job)
199 {
200 struct amdgpu_device *adev = ring->adev;
201 uint64_t fence_context = adev->fence_context + ring->idx;
202 struct fence *updates = sync->last_vm_update;
203 struct amdgpu_vm_id *id, *idle;
204 struct fence **fences;
205 unsigned i;
206 int r = 0;
207
208 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids,
209 GFP_KERNEL);
210 if (!fences)
211 return -ENOMEM;
212
213 mutex_lock(&adev->vm_manager.lock);
214
215 /* Check if we have an idle VMID */
216 i = 0;
217 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) {
218 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
219 if (!fences[i])
220 break;
221 ++i;
222 }
223
224 /* If we can't find a idle VMID to use, wait till one becomes available */
225 if (&idle->list == &adev->vm_manager.ids_lru) {
226 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
227 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
228 struct fence_array *array;
229 unsigned j;
230
231 for (j = 0; j < i; ++j)
232 fence_get(fences[j]);
233
234 array = fence_array_create(i, fences, fence_context,
235 seqno, true);
236 if (!array) {
237 for (j = 0; j < i; ++j)
238 fence_put(fences[j]);
239 kfree(fences);
240 r = -ENOMEM;
241 goto error;
242 }
243
244
245 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
246 fence_put(&array->base);
247 if (r)
248 goto error;
249
250 mutex_unlock(&adev->vm_manager.lock);
251 return 0;
252
253 }
254 kfree(fences);
255
256 job->vm_needs_flush = true;
257 /* Check if we can use a VMID already assigned to this VM */
258 i = ring->idx;
259 do {
260 struct fence *flushed;
261
262 id = vm->ids[i++];
263 if (i == AMDGPU_MAX_RINGS)
264 i = 0;
265
266 /* Check all the prerequisites to using this VMID */
267 if (!id)
268 continue;
269 if (amdgpu_vm_is_gpu_reset(adev, id))
270 continue;
271
272 if (atomic64_read(&id->owner) != vm->client_id)
273 continue;
274
275 if (job->vm_pd_addr != id->pd_gpu_addr)
276 continue;
277
278 if (!id->last_flush)
279 continue;
280
281 if (id->last_flush->context != fence_context &&
282 !fence_is_signaled(id->last_flush))
283 continue;
284
285 flushed = id->flushed_updates;
286 if (updates &&
287 (!flushed || fence_is_later(updates, flushed)))
288 continue;
289
290 /* Good we can use this VMID. Remember this submission as
291 * user of the VMID.
292 */
293 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
294 if (r)
295 goto error;
296
297 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
298 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
299 vm->ids[ring->idx] = id;
300
301 job->vm_id = id - adev->vm_manager.ids;
302 job->vm_needs_flush = false;
303 trace_amdgpu_vm_grab_id(vm, ring->idx, job);
304
305 mutex_unlock(&adev->vm_manager.lock);
306 return 0;
307
308 } while (i != ring->idx);
309
310 /* Still no ID to use? Then use the idle one found earlier */
311 id = idle;
312
313 /* Remember this submission as user of the VMID */
314 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
315 if (r)
316 goto error;
317
318 fence_put(id->first);
319 id->first = fence_get(fence);
320
321 fence_put(id->last_flush);
322 id->last_flush = NULL;
323
324 fence_put(id->flushed_updates);
325 id->flushed_updates = fence_get(updates);
326
327 id->pd_gpu_addr = job->vm_pd_addr;
328 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
329 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
330 atomic64_set(&id->owner, vm->client_id);
331 vm->ids[ring->idx] = id;
332
333 job->vm_id = id - adev->vm_manager.ids;
334 trace_amdgpu_vm_grab_id(vm, ring->idx, job);
335
336 error:
337 mutex_unlock(&adev->vm_manager.lock);
338 return r;
339 }
340
341 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
342 {
343 struct amdgpu_device *adev = ring->adev;
344 const struct amdgpu_ip_block_version *ip_block;
345
346 if (ring->type != AMDGPU_RING_TYPE_COMPUTE)
347 /* only compute rings */
348 return false;
349
350 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
351 if (!ip_block)
352 return false;
353
354 if (ip_block->major <= 7) {
355 /* gfx7 has no workaround */
356 return true;
357 } else if (ip_block->major == 8) {
358 if (adev->gfx.mec_fw_version >= 673)
359 /* gfx8 is fixed in MEC firmware 673 */
360 return false;
361 else
362 return true;
363 }
364 return false;
365 }
366
367 /**
368 * amdgpu_vm_flush - hardware flush the vm
369 *
370 * @ring: ring to use for flush
371 * @vm_id: vmid number to use
372 * @pd_addr: address of the page directory
373 *
374 * Emit a VM flush when it is necessary.
375 */
376 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
377 {
378 struct amdgpu_device *adev = ring->adev;
379 struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id];
380 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
381 id->gds_base != job->gds_base ||
382 id->gds_size != job->gds_size ||
383 id->gws_base != job->gws_base ||
384 id->gws_size != job->gws_size ||
385 id->oa_base != job->oa_base ||
386 id->oa_size != job->oa_size);
387 int r;
388
389 if (ring->funcs->emit_pipeline_sync && (
390 job->vm_needs_flush || gds_switch_needed ||
391 amdgpu_vm_ring_has_compute_vm_bug(ring)))
392 amdgpu_ring_emit_pipeline_sync(ring);
393
394 if (ring->funcs->emit_vm_flush && (job->vm_needs_flush ||
395 amdgpu_vm_is_gpu_reset(adev, id))) {
396 struct fence *fence;
397
398 trace_amdgpu_vm_flush(job->vm_pd_addr, ring->idx, job->vm_id);
399 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
400
401 r = amdgpu_fence_emit(ring, &fence);
402 if (r)
403 return r;
404
405 mutex_lock(&adev->vm_manager.lock);
406 fence_put(id->last_flush);
407 id->last_flush = fence;
408 mutex_unlock(&adev->vm_manager.lock);
409 }
410
411 if (gds_switch_needed) {
412 id->gds_base = job->gds_base;
413 id->gds_size = job->gds_size;
414 id->gws_base = job->gws_base;
415 id->gws_size = job->gws_size;
416 id->oa_base = job->oa_base;
417 id->oa_size = job->oa_size;
418 amdgpu_ring_emit_gds_switch(ring, job->vm_id,
419 job->gds_base, job->gds_size,
420 job->gws_base, job->gws_size,
421 job->oa_base, job->oa_size);
422 }
423
424 return 0;
425 }
426
427 /**
428 * amdgpu_vm_reset_id - reset VMID to zero
429 *
430 * @adev: amdgpu device structure
431 * @vm_id: vmid number to use
432 *
433 * Reset saved GDW, GWS and OA to force switch on next flush.
434 */
435 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
436 {
437 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
438
439 id->gds_base = 0;
440 id->gds_size = 0;
441 id->gws_base = 0;
442 id->gws_size = 0;
443 id->oa_base = 0;
444 id->oa_size = 0;
445 }
446
447 /**
448 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
449 *
450 * @vm: requested vm
451 * @bo: requested buffer object
452 *
453 * Find @bo inside the requested vm.
454 * Search inside the @bos vm list for the requested vm
455 * Returns the found bo_va or NULL if none is found
456 *
457 * Object has to be reserved!
458 */
459 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
460 struct amdgpu_bo *bo)
461 {
462 struct amdgpu_bo_va *bo_va;
463
464 list_for_each_entry(bo_va, &bo->va, bo_list) {
465 if (bo_va->vm == vm) {
466 return bo_va;
467 }
468 }
469 return NULL;
470 }
471
472 /**
473 * amdgpu_vm_do_set_ptes - helper to call the right asic function
474 *
475 * @params: see amdgpu_pte_update_params definition
476 * @pe: addr of the page entry
477 * @addr: dst addr to write into pe
478 * @count: number of page entries to update
479 * @incr: increase next addr by incr bytes
480 * @flags: hw access flags
481 *
482 * Traces the parameters and calls the right asic functions
483 * to setup the page table using the DMA.
484 */
485 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
486 uint64_t pe, uint64_t addr,
487 unsigned count, uint32_t incr,
488 uint32_t flags)
489 {
490 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
491
492 if (count < 3) {
493 amdgpu_vm_write_pte(params->adev, params->ib, pe,
494 addr | flags, count, incr);
495
496 } else {
497 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
498 count, incr, flags);
499 }
500 }
501
502 /**
503 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
504 *
505 * @params: see amdgpu_pte_update_params definition
506 * @pe: addr of the page entry
507 * @addr: dst addr to write into pe
508 * @count: number of page entries to update
509 * @incr: increase next addr by incr bytes
510 * @flags: hw access flags
511 *
512 * Traces the parameters and calls the DMA function to copy the PTEs.
513 */
514 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
515 uint64_t pe, uint64_t addr,
516 unsigned count, uint32_t incr,
517 uint32_t flags)
518 {
519 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
520
521 amdgpu_vm_copy_pte(params->adev, params->ib, pe,
522 (params->src + (addr >> 12) * 8), count);
523 }
524
525 /**
526 * amdgpu_vm_clear_bo - initially clear the page dir/table
527 *
528 * @adev: amdgpu_device pointer
529 * @bo: bo to clear
530 *
531 * need to reserve bo first before calling it.
532 */
533 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
534 struct amdgpu_vm *vm,
535 struct amdgpu_bo *bo)
536 {
537 struct amdgpu_ring *ring;
538 struct fence *fence = NULL;
539 struct amdgpu_job *job;
540 struct amdgpu_pte_update_params params;
541 unsigned entries;
542 uint64_t addr;
543 int r;
544
545 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
546
547 r = reservation_object_reserve_shared(bo->tbo.resv);
548 if (r)
549 return r;
550
551 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
552 if (r)
553 goto error;
554
555 addr = amdgpu_bo_gpu_offset(bo);
556 entries = amdgpu_bo_size(bo) / 8;
557
558 r = amdgpu_job_alloc_with_ib(adev, 64, &job);
559 if (r)
560 goto error;
561
562 memset(&params, 0, sizeof(params));
563 params.adev = adev;
564 params.ib = &job->ibs[0];
565 amdgpu_vm_do_set_ptes(&params, addr, 0, entries, 0, 0);
566 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
567
568 WARN_ON(job->ibs[0].length_dw > 64);
569 r = amdgpu_job_submit(job, ring, &vm->entity,
570 AMDGPU_FENCE_OWNER_VM, &fence);
571 if (r)
572 goto error_free;
573
574 amdgpu_bo_fence(bo, fence, true);
575 fence_put(fence);
576 return 0;
577
578 error_free:
579 amdgpu_job_free(job);
580
581 error:
582 return r;
583 }
584
585 /**
586 * amdgpu_vm_map_gart - Resolve gart mapping of addr
587 *
588 * @pages_addr: optional DMA address to use for lookup
589 * @addr: the unmapped addr
590 *
591 * Look up the physical address of the page that the pte resolves
592 * to and return the pointer for the page table entry.
593 */
594 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
595 {
596 uint64_t result;
597
598 /* page table offset */
599 result = pages_addr[addr >> PAGE_SHIFT];
600
601 /* in case cpu page size != gpu page size*/
602 result |= addr & (~PAGE_MASK);
603
604 result &= 0xFFFFFFFFFFFFF000ULL;
605
606 return result;
607 }
608
609 static int amdgpu_vm_update_pd_or_shadow(struct amdgpu_device *adev,
610 struct amdgpu_vm *vm,
611 bool shadow)
612 {
613 struct amdgpu_ring *ring;
614 struct amdgpu_bo *pd = shadow ? vm->page_directory->shadow :
615 vm->page_directory;
616 uint64_t pd_addr;
617 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
618 uint64_t last_pde = ~0, last_pt = ~0;
619 unsigned count = 0, pt_idx, ndw;
620 struct amdgpu_job *job;
621 struct amdgpu_pte_update_params params;
622 struct fence *fence = NULL;
623
624 int r;
625
626 if (!pd)
627 return 0;
628 pd_addr = amdgpu_bo_gpu_offset(pd);
629 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
630
631 /* padding, etc. */
632 ndw = 64;
633
634 /* assume the worst case */
635 ndw += vm->max_pde_used * 6;
636
637 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
638 if (r)
639 return r;
640
641 memset(&params, 0, sizeof(params));
642 params.adev = adev;
643 params.ib = &job->ibs[0];
644
645 /* walk over the address space and update the page directory */
646 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
647 struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
648 uint64_t pde, pt;
649
650 if (bo == NULL)
651 continue;
652
653 pt = amdgpu_bo_gpu_offset(bo);
654 if (!shadow) {
655 if (vm->page_tables[pt_idx].addr == pt)
656 continue;
657 vm->page_tables[pt_idx].addr = pt;
658 } else {
659 if (vm->page_tables[pt_idx].shadow_addr == pt)
660 continue;
661 vm->page_tables[pt_idx].shadow_addr = pt;
662 }
663
664 pde = pd_addr + pt_idx * 8;
665 if (((last_pde + 8 * count) != pde) ||
666 ((last_pt + incr * count) != pt) ||
667 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
668
669 if (count) {
670 amdgpu_vm_do_set_ptes(&params, last_pde,
671 last_pt, count, incr,
672 AMDGPU_PTE_VALID);
673 }
674
675 count = 1;
676 last_pde = pde;
677 last_pt = pt;
678 } else {
679 ++count;
680 }
681 }
682
683 if (count)
684 amdgpu_vm_do_set_ptes(&params, last_pde, last_pt,
685 count, incr, AMDGPU_PTE_VALID);
686
687 if (params.ib->length_dw != 0) {
688 amdgpu_ring_pad_ib(ring, params.ib);
689 amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
690 AMDGPU_FENCE_OWNER_VM);
691 WARN_ON(params.ib->length_dw > ndw);
692 r = amdgpu_job_submit(job, ring, &vm->entity,
693 AMDGPU_FENCE_OWNER_VM, &fence);
694 if (r)
695 goto error_free;
696
697 amdgpu_bo_fence(pd, fence, true);
698 fence_put(vm->page_directory_fence);
699 vm->page_directory_fence = fence_get(fence);
700 fence_put(fence);
701
702 } else {
703 amdgpu_job_free(job);
704 }
705
706 return 0;
707
708 error_free:
709 amdgpu_job_free(job);
710 return r;
711 }
712
713 /*
714 * amdgpu_vm_update_pdes - make sure that page directory is valid
715 *
716 * @adev: amdgpu_device pointer
717 * @vm: requested vm
718 * @start: start of GPU address range
719 * @end: end of GPU address range
720 *
721 * Allocates new page tables if necessary
722 * and updates the page directory.
723 * Returns 0 for success, error for failure.
724 */
725 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
726 struct amdgpu_vm *vm)
727 {
728 int r;
729
730 r = amdgpu_vm_update_pd_or_shadow(adev, vm, true);
731 if (r)
732 return r;
733 return amdgpu_vm_update_pd_or_shadow(adev, vm, false);
734 }
735
736 /**
737 * amdgpu_vm_update_ptes - make sure that page tables are valid
738 *
739 * @params: see amdgpu_pte_update_params definition
740 * @vm: requested vm
741 * @start: start of GPU address range
742 * @end: end of GPU address range
743 * @dst: destination address to map to, the next dst inside the function
744 * @flags: mapping flags
745 *
746 * Update the page tables in the range @start - @end.
747 */
748 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
749 struct amdgpu_vm *vm,
750 uint64_t start, uint64_t end,
751 uint64_t dst, uint32_t flags)
752 {
753 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
754
755 uint64_t cur_pe_start, cur_nptes, cur_dst;
756 uint64_t addr; /* next GPU address to be updated */
757 uint64_t pt_idx;
758 struct amdgpu_bo *pt;
759 unsigned nptes; /* next number of ptes to be updated */
760 uint64_t next_pe_start;
761
762 /* initialize the variables */
763 addr = start;
764 pt_idx = addr >> amdgpu_vm_block_size;
765 pt = vm->page_tables[pt_idx].entry.robj;
766 if (params->shadow) {
767 if (!pt->shadow)
768 return;
769 pt = vm->page_tables[pt_idx].entry.robj->shadow;
770 }
771 if ((addr & ~mask) == (end & ~mask))
772 nptes = end - addr;
773 else
774 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
775
776 cur_pe_start = amdgpu_bo_gpu_offset(pt);
777 cur_pe_start += (addr & mask) * 8;
778 cur_nptes = nptes;
779 cur_dst = dst;
780
781 /* for next ptb*/
782 addr += nptes;
783 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
784
785 /* walk over the address space and update the page tables */
786 while (addr < end) {
787 pt_idx = addr >> amdgpu_vm_block_size;
788 pt = vm->page_tables[pt_idx].entry.robj;
789 if (params->shadow) {
790 if (!pt->shadow)
791 return;
792 pt = vm->page_tables[pt_idx].entry.robj->shadow;
793 }
794
795 if ((addr & ~mask) == (end & ~mask))
796 nptes = end - addr;
797 else
798 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
799
800 next_pe_start = amdgpu_bo_gpu_offset(pt);
801 next_pe_start += (addr & mask) * 8;
802
803 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start &&
804 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) {
805 /* The next ptb is consecutive to current ptb.
806 * Don't call the update function now.
807 * Will update two ptbs together in future.
808 */
809 cur_nptes += nptes;
810 } else {
811 params->func(params, cur_pe_start, cur_dst, cur_nptes,
812 AMDGPU_GPU_PAGE_SIZE, flags);
813
814 cur_pe_start = next_pe_start;
815 cur_nptes = nptes;
816 cur_dst = dst;
817 }
818
819 /* for next ptb*/
820 addr += nptes;
821 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
822 }
823
824 params->func(params, cur_pe_start, cur_dst, cur_nptes,
825 AMDGPU_GPU_PAGE_SIZE, flags);
826 }
827
828 /*
829 * amdgpu_vm_frag_ptes - add fragment information to PTEs
830 *
831 * @params: see amdgpu_pte_update_params definition
832 * @vm: requested vm
833 * @start: first PTE to handle
834 * @end: last PTE to handle
835 * @dst: addr those PTEs should point to
836 * @flags: hw mapping flags
837 */
838 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
839 struct amdgpu_vm *vm,
840 uint64_t start, uint64_t end,
841 uint64_t dst, uint32_t flags)
842 {
843 /**
844 * The MC L1 TLB supports variable sized pages, based on a fragment
845 * field in the PTE. When this field is set to a non-zero value, page
846 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
847 * flags are considered valid for all PTEs within the fragment range
848 * and corresponding mappings are assumed to be physically contiguous.
849 *
850 * The L1 TLB can store a single PTE for the whole fragment,
851 * significantly increasing the space available for translation
852 * caching. This leads to large improvements in throughput when the
853 * TLB is under pressure.
854 *
855 * The L2 TLB distributes small and large fragments into two
856 * asymmetric partitions. The large fragment cache is significantly
857 * larger. Thus, we try to use large fragments wherever possible.
858 * Userspace can support this by aligning virtual base address and
859 * allocation size to the fragment size.
860 */
861
862 const uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
863
864 uint64_t frag_start = ALIGN(start, frag_align);
865 uint64_t frag_end = end & ~(frag_align - 1);
866
867 uint32_t frag;
868
869 /* system pages are non continuously */
870 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
871 (frag_start >= frag_end)) {
872
873 amdgpu_vm_update_ptes(params, vm, start, end, dst, flags);
874 return;
875 }
876
877 /* use more than 64KB fragment size if possible */
878 frag = lower_32_bits(frag_start | frag_end);
879 frag = likely(frag) ? __ffs(frag) : 31;
880
881 /* handle the 4K area at the beginning */
882 if (start != frag_start) {
883 amdgpu_vm_update_ptes(params, vm, start, frag_start,
884 dst, flags);
885 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
886 }
887
888 /* handle the area in the middle */
889 amdgpu_vm_update_ptes(params, vm, frag_start, frag_end, dst,
890 flags | AMDGPU_PTE_FRAG(frag));
891
892 /* handle the 4K area at the end */
893 if (frag_end != end) {
894 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
895 amdgpu_vm_update_ptes(params, vm, frag_end, end, dst, flags);
896 }
897 }
898
899 /**
900 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
901 *
902 * @adev: amdgpu_device pointer
903 * @exclusive: fence we need to sync to
904 * @src: address where to copy page table entries from
905 * @pages_addr: DMA addresses to use for mapping
906 * @vm: requested vm
907 * @start: start of mapped range
908 * @last: last mapped entry
909 * @flags: flags for the entries
910 * @addr: addr to set the area to
911 * @fence: optional resulting fence
912 *
913 * Fill in the page table entries between @start and @last.
914 * Returns 0 for success, -EINVAL for failure.
915 */
916 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
917 struct fence *exclusive,
918 uint64_t src,
919 dma_addr_t *pages_addr,
920 struct amdgpu_vm *vm,
921 uint64_t start, uint64_t last,
922 uint32_t flags, uint64_t addr,
923 struct fence **fence)
924 {
925 struct amdgpu_ring *ring;
926 void *owner = AMDGPU_FENCE_OWNER_VM;
927 unsigned nptes, ncmds, ndw;
928 struct amdgpu_job *job;
929 struct amdgpu_pte_update_params params;
930 struct fence *f = NULL;
931 int r;
932
933 memset(&params, 0, sizeof(params));
934 params.adev = adev;
935 params.src = src;
936
937 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
938
939 memset(&params, 0, sizeof(params));
940 params.adev = adev;
941 params.src = src;
942
943 /* sync to everything on unmapping */
944 if (!(flags & AMDGPU_PTE_VALID))
945 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
946
947 nptes = last - start + 1;
948
949 /*
950 * reserve space for one command every (1 << BLOCK_SIZE)
951 * entries or 2k dwords (whatever is smaller)
952 */
953 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
954
955 /* padding, etc. */
956 ndw = 64;
957
958 if (src) {
959 /* only copy commands needed */
960 ndw += ncmds * 7;
961
962 params.func = amdgpu_vm_do_copy_ptes;
963
964 } else if (pages_addr) {
965 /* copy commands needed */
966 ndw += ncmds * 7;
967
968 /* and also PTEs */
969 ndw += nptes * 2;
970
971 params.func = amdgpu_vm_do_copy_ptes;
972
973 } else {
974 /* set page commands needed */
975 ndw += ncmds * 10;
976
977 /* two extra commands for begin/end of fragment */
978 ndw += 2 * 10;
979
980 params.func = amdgpu_vm_do_set_ptes;
981 }
982
983 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
984 if (r)
985 return r;
986
987 params.ib = &job->ibs[0];
988
989 if (!src && pages_addr) {
990 uint64_t *pte;
991 unsigned i;
992
993 /* Put the PTEs at the end of the IB. */
994 i = ndw - nptes * 2;
995 pte= (uint64_t *)&(job->ibs->ptr[i]);
996 params.src = job->ibs->gpu_addr + i * 4;
997
998 for (i = 0; i < nptes; ++i) {
999 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1000 AMDGPU_GPU_PAGE_SIZE);
1001 pte[i] |= flags;
1002 }
1003 }
1004
1005 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1006 if (r)
1007 goto error_free;
1008
1009 r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
1010 owner);
1011 if (r)
1012 goto error_free;
1013
1014 r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
1015 if (r)
1016 goto error_free;
1017
1018 params.shadow = true;
1019 amdgpu_vm_frag_ptes(&params, vm, start, last + 1, addr, flags);
1020 params.shadow = false;
1021 amdgpu_vm_frag_ptes(&params, vm, start, last + 1, addr, flags);
1022
1023 amdgpu_ring_pad_ib(ring, params.ib);
1024 WARN_ON(params.ib->length_dw > ndw);
1025 r = amdgpu_job_submit(job, ring, &vm->entity,
1026 AMDGPU_FENCE_OWNER_VM, &f);
1027 if (r)
1028 goto error_free;
1029
1030 amdgpu_bo_fence(vm->page_directory, f, true);
1031 if (fence) {
1032 fence_put(*fence);
1033 *fence = fence_get(f);
1034 }
1035 fence_put(f);
1036 return 0;
1037
1038 error_free:
1039 amdgpu_job_free(job);
1040 return r;
1041 }
1042
1043 /**
1044 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1045 *
1046 * @adev: amdgpu_device pointer
1047 * @exclusive: fence we need to sync to
1048 * @gtt_flags: flags as they are used for GTT
1049 * @pages_addr: DMA addresses to use for mapping
1050 * @vm: requested vm
1051 * @mapping: mapped range and flags to use for the update
1052 * @addr: addr to set the area to
1053 * @flags: HW flags for the mapping
1054 * @fence: optional resulting fence
1055 *
1056 * Split the mapping into smaller chunks so that each update fits
1057 * into a SDMA IB.
1058 * Returns 0 for success, -EINVAL for failure.
1059 */
1060 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1061 struct fence *exclusive,
1062 uint32_t gtt_flags,
1063 dma_addr_t *pages_addr,
1064 struct amdgpu_vm *vm,
1065 struct amdgpu_bo_va_mapping *mapping,
1066 uint32_t flags, uint64_t addr,
1067 struct fence **fence)
1068 {
1069 const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
1070
1071 uint64_t src = 0, start = mapping->it.start;
1072 int r;
1073
1074 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1075 * but in case of something, we filter the flags in first place
1076 */
1077 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1078 flags &= ~AMDGPU_PTE_READABLE;
1079 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1080 flags &= ~AMDGPU_PTE_WRITEABLE;
1081
1082 trace_amdgpu_vm_bo_update(mapping);
1083
1084 if (pages_addr) {
1085 if (flags == gtt_flags)
1086 src = adev->gart.table_addr + (addr >> 12) * 8;
1087 addr = 0;
1088 }
1089 addr += mapping->offset;
1090
1091 if (!pages_addr || src)
1092 return amdgpu_vm_bo_update_mapping(adev, exclusive,
1093 src, pages_addr, vm,
1094 start, mapping->it.last,
1095 flags, addr, fence);
1096
1097 while (start != mapping->it.last + 1) {
1098 uint64_t last;
1099
1100 last = min((uint64_t)mapping->it.last, start + max_size - 1);
1101 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1102 src, pages_addr, vm,
1103 start, last, flags, addr,
1104 fence);
1105 if (r)
1106 return r;
1107
1108 start = last + 1;
1109 addr += max_size * AMDGPU_GPU_PAGE_SIZE;
1110 }
1111
1112 return 0;
1113 }
1114
1115 /**
1116 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1117 *
1118 * @adev: amdgpu_device pointer
1119 * @bo_va: requested BO and VM object
1120 * @clear: if true clear the entries
1121 *
1122 * Fill in the page table entries for @bo_va.
1123 * Returns 0 for success, -EINVAL for failure.
1124 */
1125 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1126 struct amdgpu_bo_va *bo_va,
1127 bool clear)
1128 {
1129 struct amdgpu_vm *vm = bo_va->vm;
1130 struct amdgpu_bo_va_mapping *mapping;
1131 dma_addr_t *pages_addr = NULL;
1132 uint32_t gtt_flags, flags;
1133 struct ttm_mem_reg *mem;
1134 struct fence *exclusive;
1135 uint64_t addr;
1136 int r;
1137
1138 if (clear) {
1139 mem = NULL;
1140 addr = 0;
1141 exclusive = NULL;
1142 } else {
1143 struct ttm_dma_tt *ttm;
1144
1145 mem = &bo_va->bo->tbo.mem;
1146 addr = (u64)mem->start << PAGE_SHIFT;
1147 switch (mem->mem_type) {
1148 case TTM_PL_TT:
1149 ttm = container_of(bo_va->bo->tbo.ttm, struct
1150 ttm_dma_tt, ttm);
1151 pages_addr = ttm->dma_address;
1152 break;
1153
1154 case TTM_PL_VRAM:
1155 addr += adev->vm_manager.vram_base_offset;
1156 break;
1157
1158 default:
1159 break;
1160 }
1161
1162 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1163 }
1164
1165 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1166 gtt_flags = (adev == bo_va->bo->adev) ? flags : 0;
1167
1168 spin_lock(&vm->status_lock);
1169 if (!list_empty(&bo_va->vm_status))
1170 list_splice_init(&bo_va->valids, &bo_va->invalids);
1171 spin_unlock(&vm->status_lock);
1172
1173 list_for_each_entry(mapping, &bo_va->invalids, list) {
1174 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1175 gtt_flags, pages_addr, vm,
1176 mapping, flags, addr,
1177 &bo_va->last_pt_update);
1178 if (r)
1179 return r;
1180 }
1181
1182 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1183 list_for_each_entry(mapping, &bo_va->valids, list)
1184 trace_amdgpu_vm_bo_mapping(mapping);
1185
1186 list_for_each_entry(mapping, &bo_va->invalids, list)
1187 trace_amdgpu_vm_bo_mapping(mapping);
1188 }
1189
1190 spin_lock(&vm->status_lock);
1191 list_splice_init(&bo_va->invalids, &bo_va->valids);
1192 list_del_init(&bo_va->vm_status);
1193 if (clear)
1194 list_add(&bo_va->vm_status, &vm->cleared);
1195 spin_unlock(&vm->status_lock);
1196
1197 return 0;
1198 }
1199
1200 /**
1201 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1202 *
1203 * @adev: amdgpu_device pointer
1204 * @vm: requested vm
1205 *
1206 * Make sure all freed BOs are cleared in the PT.
1207 * Returns 0 for success.
1208 *
1209 * PTs have to be reserved and mutex must be locked!
1210 */
1211 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1212 struct amdgpu_vm *vm)
1213 {
1214 struct amdgpu_bo_va_mapping *mapping;
1215 int r;
1216
1217 while (!list_empty(&vm->freed)) {
1218 mapping = list_first_entry(&vm->freed,
1219 struct amdgpu_bo_va_mapping, list);
1220 list_del(&mapping->list);
1221
1222 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping,
1223 0, 0, NULL);
1224 kfree(mapping);
1225 if (r)
1226 return r;
1227
1228 }
1229 return 0;
1230
1231 }
1232
1233 /**
1234 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1235 *
1236 * @adev: amdgpu_device pointer
1237 * @vm: requested vm
1238 *
1239 * Make sure all invalidated BOs are cleared in the PT.
1240 * Returns 0 for success.
1241 *
1242 * PTs have to be reserved and mutex must be locked!
1243 */
1244 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1245 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1246 {
1247 struct amdgpu_bo_va *bo_va = NULL;
1248 int r = 0;
1249
1250 spin_lock(&vm->status_lock);
1251 while (!list_empty(&vm->invalidated)) {
1252 bo_va = list_first_entry(&vm->invalidated,
1253 struct amdgpu_bo_va, vm_status);
1254 spin_unlock(&vm->status_lock);
1255
1256 r = amdgpu_vm_bo_update(adev, bo_va, true);
1257 if (r)
1258 return r;
1259
1260 spin_lock(&vm->status_lock);
1261 }
1262 spin_unlock(&vm->status_lock);
1263
1264 if (bo_va)
1265 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1266
1267 return r;
1268 }
1269
1270 /**
1271 * amdgpu_vm_bo_add - add a bo to a specific vm
1272 *
1273 * @adev: amdgpu_device pointer
1274 * @vm: requested vm
1275 * @bo: amdgpu buffer object
1276 *
1277 * Add @bo into the requested vm.
1278 * Add @bo to the list of bos associated with the vm
1279 * Returns newly added bo_va or NULL for failure
1280 *
1281 * Object has to be reserved!
1282 */
1283 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1284 struct amdgpu_vm *vm,
1285 struct amdgpu_bo *bo)
1286 {
1287 struct amdgpu_bo_va *bo_va;
1288
1289 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1290 if (bo_va == NULL) {
1291 return NULL;
1292 }
1293 bo_va->vm = vm;
1294 bo_va->bo = bo;
1295 bo_va->ref_count = 1;
1296 INIT_LIST_HEAD(&bo_va->bo_list);
1297 INIT_LIST_HEAD(&bo_va->valids);
1298 INIT_LIST_HEAD(&bo_va->invalids);
1299 INIT_LIST_HEAD(&bo_va->vm_status);
1300
1301 list_add_tail(&bo_va->bo_list, &bo->va);
1302
1303 return bo_va;
1304 }
1305
1306 /**
1307 * amdgpu_vm_bo_map - map bo inside a vm
1308 *
1309 * @adev: amdgpu_device pointer
1310 * @bo_va: bo_va to store the address
1311 * @saddr: where to map the BO
1312 * @offset: requested offset in the BO
1313 * @flags: attributes of pages (read/write/valid/etc.)
1314 *
1315 * Add a mapping of the BO at the specefied addr into the VM.
1316 * Returns 0 for success, error for failure.
1317 *
1318 * Object has to be reserved and unreserved outside!
1319 */
1320 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1321 struct amdgpu_bo_va *bo_va,
1322 uint64_t saddr, uint64_t offset,
1323 uint64_t size, uint32_t flags)
1324 {
1325 struct amdgpu_bo_va_mapping *mapping;
1326 struct amdgpu_vm *vm = bo_va->vm;
1327 struct interval_tree_node *it;
1328 unsigned last_pfn, pt_idx;
1329 uint64_t eaddr;
1330 int r;
1331
1332 /* validate the parameters */
1333 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1334 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1335 return -EINVAL;
1336
1337 /* make sure object fit at this offset */
1338 eaddr = saddr + size - 1;
1339 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1340 return -EINVAL;
1341
1342 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1343 if (last_pfn >= adev->vm_manager.max_pfn) {
1344 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1345 last_pfn, adev->vm_manager.max_pfn);
1346 return -EINVAL;
1347 }
1348
1349 saddr /= AMDGPU_GPU_PAGE_SIZE;
1350 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1351
1352 it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1353 if (it) {
1354 struct amdgpu_bo_va_mapping *tmp;
1355 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1356 /* bo and tmp overlap, invalid addr */
1357 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1358 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1359 tmp->it.start, tmp->it.last + 1);
1360 r = -EINVAL;
1361 goto error;
1362 }
1363
1364 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1365 if (!mapping) {
1366 r = -ENOMEM;
1367 goto error;
1368 }
1369
1370 INIT_LIST_HEAD(&mapping->list);
1371 mapping->it.start = saddr;
1372 mapping->it.last = eaddr;
1373 mapping->offset = offset;
1374 mapping->flags = flags;
1375
1376 list_add(&mapping->list, &bo_va->invalids);
1377 interval_tree_insert(&mapping->it, &vm->va);
1378
1379 /* Make sure the page tables are allocated */
1380 saddr >>= amdgpu_vm_block_size;
1381 eaddr >>= amdgpu_vm_block_size;
1382
1383 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1384
1385 if (eaddr > vm->max_pde_used)
1386 vm->max_pde_used = eaddr;
1387
1388 /* walk over the address space and allocate the page tables */
1389 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1390 struct reservation_object *resv = vm->page_directory->tbo.resv;
1391 struct amdgpu_bo_list_entry *entry;
1392 struct amdgpu_bo *pt;
1393
1394 entry = &vm->page_tables[pt_idx].entry;
1395 if (entry->robj)
1396 continue;
1397
1398 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1399 AMDGPU_GPU_PAGE_SIZE, true,
1400 AMDGPU_GEM_DOMAIN_VRAM,
1401 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
1402 AMDGPU_GEM_CREATE_SHADOW,
1403 NULL, resv, &pt);
1404 if (r)
1405 goto error_free;
1406
1407 /* Keep a reference to the page table to avoid freeing
1408 * them up in the wrong order.
1409 */
1410 pt->parent = amdgpu_bo_ref(vm->page_directory);
1411
1412 r = amdgpu_vm_clear_bo(adev, vm, pt);
1413 if (r) {
1414 amdgpu_bo_unref(&pt);
1415 goto error_free;
1416 }
1417
1418 entry->robj = pt;
1419 entry->priority = 0;
1420 entry->tv.bo = &entry->robj->tbo;
1421 entry->tv.shared = true;
1422 entry->user_pages = NULL;
1423 vm->page_tables[pt_idx].addr = 0;
1424 }
1425
1426 return 0;
1427
1428 error_free:
1429 list_del(&mapping->list);
1430 interval_tree_remove(&mapping->it, &vm->va);
1431 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1432 kfree(mapping);
1433
1434 error:
1435 return r;
1436 }
1437
1438 /**
1439 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1440 *
1441 * @adev: amdgpu_device pointer
1442 * @bo_va: bo_va to remove the address from
1443 * @saddr: where to the BO is mapped
1444 *
1445 * Remove a mapping of the BO at the specefied addr from the VM.
1446 * Returns 0 for success, error for failure.
1447 *
1448 * Object has to be reserved and unreserved outside!
1449 */
1450 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1451 struct amdgpu_bo_va *bo_va,
1452 uint64_t saddr)
1453 {
1454 struct amdgpu_bo_va_mapping *mapping;
1455 struct amdgpu_vm *vm = bo_va->vm;
1456 bool valid = true;
1457
1458 saddr /= AMDGPU_GPU_PAGE_SIZE;
1459
1460 list_for_each_entry(mapping, &bo_va->valids, list) {
1461 if (mapping->it.start == saddr)
1462 break;
1463 }
1464
1465 if (&mapping->list == &bo_va->valids) {
1466 valid = false;
1467
1468 list_for_each_entry(mapping, &bo_va->invalids, list) {
1469 if (mapping->it.start == saddr)
1470 break;
1471 }
1472
1473 if (&mapping->list == &bo_va->invalids)
1474 return -ENOENT;
1475 }
1476
1477 list_del(&mapping->list);
1478 interval_tree_remove(&mapping->it, &vm->va);
1479 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1480
1481 if (valid)
1482 list_add(&mapping->list, &vm->freed);
1483 else
1484 kfree(mapping);
1485
1486 return 0;
1487 }
1488
1489 /**
1490 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1491 *
1492 * @adev: amdgpu_device pointer
1493 * @bo_va: requested bo_va
1494 *
1495 * Remove @bo_va->bo from the requested vm.
1496 *
1497 * Object have to be reserved!
1498 */
1499 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1500 struct amdgpu_bo_va *bo_va)
1501 {
1502 struct amdgpu_bo_va_mapping *mapping, *next;
1503 struct amdgpu_vm *vm = bo_va->vm;
1504
1505 list_del(&bo_va->bo_list);
1506
1507 spin_lock(&vm->status_lock);
1508 list_del(&bo_va->vm_status);
1509 spin_unlock(&vm->status_lock);
1510
1511 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1512 list_del(&mapping->list);
1513 interval_tree_remove(&mapping->it, &vm->va);
1514 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1515 list_add(&mapping->list, &vm->freed);
1516 }
1517 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1518 list_del(&mapping->list);
1519 interval_tree_remove(&mapping->it, &vm->va);
1520 kfree(mapping);
1521 }
1522
1523 fence_put(bo_va->last_pt_update);
1524 kfree(bo_va);
1525 }
1526
1527 /**
1528 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1529 *
1530 * @adev: amdgpu_device pointer
1531 * @vm: requested vm
1532 * @bo: amdgpu buffer object
1533 *
1534 * Mark @bo as invalid.
1535 */
1536 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1537 struct amdgpu_bo *bo)
1538 {
1539 struct amdgpu_bo_va *bo_va;
1540
1541 list_for_each_entry(bo_va, &bo->va, bo_list) {
1542 spin_lock(&bo_va->vm->status_lock);
1543 if (list_empty(&bo_va->vm_status))
1544 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1545 spin_unlock(&bo_va->vm->status_lock);
1546 }
1547 }
1548
1549 /**
1550 * amdgpu_vm_init - initialize a vm instance
1551 *
1552 * @adev: amdgpu_device pointer
1553 * @vm: requested vm
1554 *
1555 * Init @vm fields.
1556 */
1557 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1558 {
1559 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1560 AMDGPU_VM_PTE_COUNT * 8);
1561 unsigned pd_size, pd_entries;
1562 unsigned ring_instance;
1563 struct amdgpu_ring *ring;
1564 struct amd_sched_rq *rq;
1565 int i, r;
1566
1567 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1568 vm->ids[i] = NULL;
1569 vm->va = RB_ROOT;
1570 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
1571 spin_lock_init(&vm->status_lock);
1572 INIT_LIST_HEAD(&vm->invalidated);
1573 INIT_LIST_HEAD(&vm->cleared);
1574 INIT_LIST_HEAD(&vm->freed);
1575
1576 pd_size = amdgpu_vm_directory_size(adev);
1577 pd_entries = amdgpu_vm_num_pdes(adev);
1578
1579 /* allocate page table array */
1580 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1581 if (vm->page_tables == NULL) {
1582 DRM_ERROR("Cannot allocate memory for page table array\n");
1583 return -ENOMEM;
1584 }
1585
1586 /* create scheduler entity for page table updates */
1587
1588 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1589 ring_instance %= adev->vm_manager.vm_pte_num_rings;
1590 ring = adev->vm_manager.vm_pte_rings[ring_instance];
1591 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1592 r = amd_sched_entity_init(&ring->sched, &vm->entity,
1593 rq, amdgpu_sched_jobs);
1594 if (r)
1595 goto err;
1596
1597 vm->page_directory_fence = NULL;
1598
1599 r = amdgpu_bo_create(adev, pd_size, align, true,
1600 AMDGPU_GEM_DOMAIN_VRAM,
1601 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
1602 AMDGPU_GEM_CREATE_SHADOW,
1603 NULL, NULL, &vm->page_directory);
1604 if (r)
1605 goto error_free_sched_entity;
1606
1607 r = amdgpu_bo_reserve(vm->page_directory, false);
1608 if (r)
1609 goto error_free_page_directory;
1610
1611 r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory);
1612 amdgpu_bo_unreserve(vm->page_directory);
1613 if (r)
1614 goto error_free_page_directory;
1615 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
1616
1617 return 0;
1618
1619 error_free_page_directory:
1620 amdgpu_bo_unref(&vm->page_directory);
1621 vm->page_directory = NULL;
1622
1623 error_free_sched_entity:
1624 amd_sched_entity_fini(&ring->sched, &vm->entity);
1625
1626 err:
1627 drm_free_large(vm->page_tables);
1628
1629 return r;
1630 }
1631
1632 /**
1633 * amdgpu_vm_fini - tear down a vm instance
1634 *
1635 * @adev: amdgpu_device pointer
1636 * @vm: requested vm
1637 *
1638 * Tear down @vm.
1639 * Unbind the VM and remove all bos from the vm bo list
1640 */
1641 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1642 {
1643 struct amdgpu_bo_va_mapping *mapping, *tmp;
1644 int i;
1645
1646 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1647
1648 if (!RB_EMPTY_ROOT(&vm->va)) {
1649 dev_err(adev->dev, "still active bo inside vm\n");
1650 }
1651 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1652 list_del(&mapping->list);
1653 interval_tree_remove(&mapping->it, &vm->va);
1654 kfree(mapping);
1655 }
1656 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1657 list_del(&mapping->list);
1658 kfree(mapping);
1659 }
1660
1661 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++) {
1662 if (vm->page_tables[i].entry.robj &&
1663 vm->page_tables[i].entry.robj->shadow)
1664 amdgpu_bo_unref(&vm->page_tables[i].entry.robj->shadow);
1665 amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1666 }
1667 drm_free_large(vm->page_tables);
1668
1669 if (vm->page_directory->shadow)
1670 amdgpu_bo_unref(&vm->page_directory->shadow);
1671 amdgpu_bo_unref(&vm->page_directory);
1672 fence_put(vm->page_directory_fence);
1673 }
1674
1675 /**
1676 * amdgpu_vm_manager_init - init the VM manager
1677 *
1678 * @adev: amdgpu_device pointer
1679 *
1680 * Initialize the VM manager structures
1681 */
1682 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1683 {
1684 unsigned i;
1685
1686 INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1687
1688 /* skip over VMID 0, since it is the system VM */
1689 for (i = 1; i < adev->vm_manager.num_ids; ++i) {
1690 amdgpu_vm_reset_id(adev, i);
1691 amdgpu_sync_create(&adev->vm_manager.ids[i].active);
1692 list_add_tail(&adev->vm_manager.ids[i].list,
1693 &adev->vm_manager.ids_lru);
1694 }
1695
1696 adev->vm_manager.fence_context = fence_context_alloc(AMDGPU_MAX_RINGS);
1697 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1698 adev->vm_manager.seqno[i] = 0;
1699
1700 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
1701 atomic64_set(&adev->vm_manager.client_counter, 0);
1702 }
1703
1704 /**
1705 * amdgpu_vm_manager_fini - cleanup VM manager
1706 *
1707 * @adev: amdgpu_device pointer
1708 *
1709 * Cleanup the VM manager and free resources.
1710 */
1711 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1712 {
1713 unsigned i;
1714
1715 for (i = 0; i < AMDGPU_NUM_VM; ++i) {
1716 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
1717
1718 fence_put(adev->vm_manager.ids[i].first);
1719 amdgpu_sync_free(&adev->vm_manager.ids[i].active);
1720 fence_put(id->flushed_updates);
1721 }
1722 }
This page took 0.114209 seconds and 5 git commands to generate.