drm/vc4: Add support for YUV planes.
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59
60 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
61 {
62 SDMA0_REGISTER_OFFSET,
63 SDMA1_REGISTER_OFFSET
64 };
65
66 static const u32 golden_settings_tonga_a11[] =
67 {
68 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
69 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
70 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
71 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
72 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
73 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
74 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
75 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
76 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
77 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
78 };
79
80 static const u32 tonga_mgcg_cgcg_init[] =
81 {
82 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
83 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
84 };
85
86 static const u32 golden_settings_fiji_a10[] =
87 {
88 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
89 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
90 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
91 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
92 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
93 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
94 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
95 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
96 };
97
98 static const u32 fiji_mgcg_cgcg_init[] =
99 {
100 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
101 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
102 };
103
104 static const u32 cz_golden_settings_a11[] =
105 {
106 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
107 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
108 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
109 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
110 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
111 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
112 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
113 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
114 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
115 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
116 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
117 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
118 };
119
120 static const u32 cz_mgcg_cgcg_init[] =
121 {
122 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
123 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
124 };
125
126 static const u32 stoney_golden_settings_a11[] =
127 {
128 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
129 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
130 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
131 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
132 };
133
134 static const u32 stoney_mgcg_cgcg_init[] =
135 {
136 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
137 };
138
139 /*
140 * sDMA - System DMA
141 * Starting with CIK, the GPU has new asynchronous
142 * DMA engines. These engines are used for compute
143 * and gfx. There are two DMA engines (SDMA0, SDMA1)
144 * and each one supports 1 ring buffer used for gfx
145 * and 2 queues used for compute.
146 *
147 * The programming model is very similar to the CP
148 * (ring buffer, IBs, etc.), but sDMA has it's own
149 * packet format that is different from the PM4 format
150 * used by the CP. sDMA supports copying data, writing
151 * embedded data, solid fills, and a number of other
152 * things. It also has support for tiling/detiling of
153 * buffers.
154 */
155
156 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
157 {
158 switch (adev->asic_type) {
159 case CHIP_FIJI:
160 amdgpu_program_register_sequence(adev,
161 fiji_mgcg_cgcg_init,
162 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
163 amdgpu_program_register_sequence(adev,
164 golden_settings_fiji_a10,
165 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
166 break;
167 case CHIP_TONGA:
168 amdgpu_program_register_sequence(adev,
169 tonga_mgcg_cgcg_init,
170 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
171 amdgpu_program_register_sequence(adev,
172 golden_settings_tonga_a11,
173 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
174 break;
175 case CHIP_CARRIZO:
176 amdgpu_program_register_sequence(adev,
177 cz_mgcg_cgcg_init,
178 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
179 amdgpu_program_register_sequence(adev,
180 cz_golden_settings_a11,
181 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
182 break;
183 case CHIP_STONEY:
184 amdgpu_program_register_sequence(adev,
185 stoney_mgcg_cgcg_init,
186 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
187 amdgpu_program_register_sequence(adev,
188 stoney_golden_settings_a11,
189 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
190 break;
191 default:
192 break;
193 }
194 }
195
196 /**
197 * sdma_v3_0_init_microcode - load ucode images from disk
198 *
199 * @adev: amdgpu_device pointer
200 *
201 * Use the firmware interface to load the ucode images into
202 * the driver (not loaded into hw).
203 * Returns 0 on success, error on failure.
204 */
205 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
206 {
207 const char *chip_name;
208 char fw_name[30];
209 int err = 0, i;
210 struct amdgpu_firmware_info *info = NULL;
211 const struct common_firmware_header *header = NULL;
212 const struct sdma_firmware_header_v1_0 *hdr;
213
214 DRM_DEBUG("\n");
215
216 switch (adev->asic_type) {
217 case CHIP_TONGA:
218 chip_name = "tonga";
219 break;
220 case CHIP_FIJI:
221 chip_name = "fiji";
222 break;
223 case CHIP_CARRIZO:
224 chip_name = "carrizo";
225 break;
226 case CHIP_STONEY:
227 chip_name = "stoney";
228 break;
229 default: BUG();
230 }
231
232 for (i = 0; i < adev->sdma.num_instances; i++) {
233 if (i == 0)
234 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
235 else
236 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
237 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
238 if (err)
239 goto out;
240 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
241 if (err)
242 goto out;
243 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
244 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
245 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
246 if (adev->sdma.instance[i].feature_version >= 20)
247 adev->sdma.instance[i].burst_nop = true;
248
249 if (adev->firmware.smu_load) {
250 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
251 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
252 info->fw = adev->sdma.instance[i].fw;
253 header = (const struct common_firmware_header *)info->fw->data;
254 adev->firmware.fw_size +=
255 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
256 }
257 }
258 out:
259 if (err) {
260 printk(KERN_ERR
261 "sdma_v3_0: Failed to load firmware \"%s\"\n",
262 fw_name);
263 for (i = 0; i < adev->sdma.num_instances; i++) {
264 release_firmware(adev->sdma.instance[i].fw);
265 adev->sdma.instance[i].fw = NULL;
266 }
267 }
268 return err;
269 }
270
271 /**
272 * sdma_v3_0_ring_get_rptr - get the current read pointer
273 *
274 * @ring: amdgpu ring pointer
275 *
276 * Get the current rptr from the hardware (VI+).
277 */
278 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
279 {
280 u32 rptr;
281
282 /* XXX check if swapping is necessary on BE */
283 rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
284
285 return rptr;
286 }
287
288 /**
289 * sdma_v3_0_ring_get_wptr - get the current write pointer
290 *
291 * @ring: amdgpu ring pointer
292 *
293 * Get the current wptr from the hardware (VI+).
294 */
295 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
296 {
297 struct amdgpu_device *adev = ring->adev;
298 u32 wptr;
299
300 if (ring->use_doorbell) {
301 /* XXX check if swapping is necessary on BE */
302 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
303 } else {
304 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
305
306 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
307 }
308
309 return wptr;
310 }
311
312 /**
313 * sdma_v3_0_ring_set_wptr - commit the write pointer
314 *
315 * @ring: amdgpu ring pointer
316 *
317 * Write the wptr back to the hardware (VI+).
318 */
319 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
320 {
321 struct amdgpu_device *adev = ring->adev;
322
323 if (ring->use_doorbell) {
324 /* XXX check if swapping is necessary on BE */
325 adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
326 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
327 } else {
328 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
329
330 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
331 }
332 }
333
334 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
335 {
336 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
337 int i;
338
339 for (i = 0; i < count; i++)
340 if (sdma && sdma->burst_nop && (i == 0))
341 amdgpu_ring_write(ring, ring->nop |
342 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
343 else
344 amdgpu_ring_write(ring, ring->nop);
345 }
346
347 /**
348 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
349 *
350 * @ring: amdgpu ring pointer
351 * @ib: IB object to schedule
352 *
353 * Schedule an IB in the DMA ring (VI).
354 */
355 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
356 struct amdgpu_ib *ib)
357 {
358 u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
359 u32 next_rptr = ring->wptr + 5;
360
361 while ((next_rptr & 7) != 2)
362 next_rptr++;
363 next_rptr += 6;
364
365 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
366 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
367 amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
368 amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
369 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
370 amdgpu_ring_write(ring, next_rptr);
371
372 /* IB packet must end on a 8 DW boundary */
373 sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
374
375 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
376 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
377 /* base must be 32 byte aligned */
378 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
379 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
380 amdgpu_ring_write(ring, ib->length_dw);
381 amdgpu_ring_write(ring, 0);
382 amdgpu_ring_write(ring, 0);
383
384 }
385
386 /**
387 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
388 *
389 * @ring: amdgpu ring pointer
390 *
391 * Emit an hdp flush packet on the requested DMA ring.
392 */
393 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
394 {
395 u32 ref_and_mask = 0;
396
397 if (ring == &ring->adev->sdma.instance[0].ring)
398 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
399 else
400 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
401
402 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
403 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
404 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
405 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
406 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
407 amdgpu_ring_write(ring, ref_and_mask); /* reference */
408 amdgpu_ring_write(ring, ref_and_mask); /* mask */
409 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
410 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
411 }
412
413 /**
414 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
415 *
416 * @ring: amdgpu ring pointer
417 * @fence: amdgpu fence object
418 *
419 * Add a DMA fence packet to the ring to write
420 * the fence seq number and DMA trap packet to generate
421 * an interrupt if needed (VI).
422 */
423 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
424 unsigned flags)
425 {
426 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
427 /* write the fence */
428 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
429 amdgpu_ring_write(ring, lower_32_bits(addr));
430 amdgpu_ring_write(ring, upper_32_bits(addr));
431 amdgpu_ring_write(ring, lower_32_bits(seq));
432
433 /* optionally write high bits as well */
434 if (write64bit) {
435 addr += 4;
436 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
437 amdgpu_ring_write(ring, lower_32_bits(addr));
438 amdgpu_ring_write(ring, upper_32_bits(addr));
439 amdgpu_ring_write(ring, upper_32_bits(seq));
440 }
441
442 /* generate an interrupt */
443 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
444 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
445 }
446
447
448 /**
449 * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
450 *
451 * @ring: amdgpu_ring structure holding ring information
452 * @semaphore: amdgpu semaphore object
453 * @emit_wait: wait or signal semaphore
454 *
455 * Add a DMA semaphore packet to the ring wait on or signal
456 * other rings (VI).
457 */
458 static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
459 struct amdgpu_semaphore *semaphore,
460 bool emit_wait)
461 {
462 u64 addr = semaphore->gpu_addr;
463 u32 sig = emit_wait ? 0 : 1;
464
465 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
466 SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
467 amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
468 amdgpu_ring_write(ring, upper_32_bits(addr));
469
470 return true;
471 }
472
473 /**
474 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
475 *
476 * @adev: amdgpu_device pointer
477 *
478 * Stop the gfx async dma ring buffers (VI).
479 */
480 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
481 {
482 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
483 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
484 u32 rb_cntl, ib_cntl;
485 int i;
486
487 if ((adev->mman.buffer_funcs_ring == sdma0) ||
488 (adev->mman.buffer_funcs_ring == sdma1))
489 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
490
491 for (i = 0; i < adev->sdma.num_instances; i++) {
492 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
493 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
494 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
495 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
496 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
497 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
498 }
499 sdma0->ready = false;
500 sdma1->ready = false;
501 }
502
503 /**
504 * sdma_v3_0_rlc_stop - stop the compute async dma engines
505 *
506 * @adev: amdgpu_device pointer
507 *
508 * Stop the compute async dma queues (VI).
509 */
510 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
511 {
512 /* XXX todo */
513 }
514
515 /**
516 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
517 *
518 * @adev: amdgpu_device pointer
519 * @enable: enable/disable the DMA MEs context switch.
520 *
521 * Halt or unhalt the async dma engines context switch (VI).
522 */
523 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
524 {
525 u32 f32_cntl;
526 int i;
527
528 for (i = 0; i < adev->sdma.num_instances; i++) {
529 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
530 if (enable)
531 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
532 AUTO_CTXSW_ENABLE, 1);
533 else
534 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
535 AUTO_CTXSW_ENABLE, 0);
536 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
537 }
538 }
539
540 /**
541 * sdma_v3_0_enable - stop the async dma engines
542 *
543 * @adev: amdgpu_device pointer
544 * @enable: enable/disable the DMA MEs.
545 *
546 * Halt or unhalt the async dma engines (VI).
547 */
548 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
549 {
550 u32 f32_cntl;
551 int i;
552
553 if (enable == false) {
554 sdma_v3_0_gfx_stop(adev);
555 sdma_v3_0_rlc_stop(adev);
556 }
557
558 for (i = 0; i < adev->sdma.num_instances; i++) {
559 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
560 if (enable)
561 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
562 else
563 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
564 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
565 }
566 }
567
568 /**
569 * sdma_v3_0_gfx_resume - setup and start the async dma engines
570 *
571 * @adev: amdgpu_device pointer
572 *
573 * Set up the gfx DMA ring buffers and enable them (VI).
574 * Returns 0 for success, error for failure.
575 */
576 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
577 {
578 struct amdgpu_ring *ring;
579 u32 rb_cntl, ib_cntl;
580 u32 rb_bufsz;
581 u32 wb_offset;
582 u32 doorbell;
583 int i, j, r;
584
585 for (i = 0; i < adev->sdma.num_instances; i++) {
586 ring = &adev->sdma.instance[i].ring;
587 wb_offset = (ring->rptr_offs * 4);
588
589 mutex_lock(&adev->srbm_mutex);
590 for (j = 0; j < 16; j++) {
591 vi_srbm_select(adev, 0, 0, 0, j);
592 /* SDMA GFX */
593 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
594 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
595 }
596 vi_srbm_select(adev, 0, 0, 0, 0);
597 mutex_unlock(&adev->srbm_mutex);
598
599 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
600
601 /* Set ring buffer size in dwords */
602 rb_bufsz = order_base_2(ring->ring_size / 4);
603 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
604 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
605 #ifdef __BIG_ENDIAN
606 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
607 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
608 RPTR_WRITEBACK_SWAP_ENABLE, 1);
609 #endif
610 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
611
612 /* Initialize the ring buffer's read and write pointers */
613 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
614 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
615
616 /* set the wb address whether it's enabled or not */
617 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
618 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
619 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
620 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
621
622 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
623
624 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
625 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
626
627 ring->wptr = 0;
628 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
629
630 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
631
632 if (ring->use_doorbell) {
633 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
634 OFFSET, ring->doorbell_index);
635 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
636 } else {
637 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
638 }
639 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
640
641 /* enable DMA RB */
642 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
643 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
644
645 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
646 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
647 #ifdef __BIG_ENDIAN
648 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
649 #endif
650 /* enable DMA IBs */
651 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
652
653 ring->ready = true;
654
655 r = amdgpu_ring_test_ring(ring);
656 if (r) {
657 ring->ready = false;
658 return r;
659 }
660
661 if (adev->mman.buffer_funcs_ring == ring)
662 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
663 }
664
665 return 0;
666 }
667
668 /**
669 * sdma_v3_0_rlc_resume - setup and start the async dma engines
670 *
671 * @adev: amdgpu_device pointer
672 *
673 * Set up the compute DMA queues and enable them (VI).
674 * Returns 0 for success, error for failure.
675 */
676 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
677 {
678 /* XXX todo */
679 return 0;
680 }
681
682 /**
683 * sdma_v3_0_load_microcode - load the sDMA ME ucode
684 *
685 * @adev: amdgpu_device pointer
686 *
687 * Loads the sDMA0/1 ucode.
688 * Returns 0 for success, -EINVAL if the ucode is not available.
689 */
690 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
691 {
692 const struct sdma_firmware_header_v1_0 *hdr;
693 const __le32 *fw_data;
694 u32 fw_size;
695 int i, j;
696
697 /* halt the MEs */
698 sdma_v3_0_enable(adev, false);
699
700 for (i = 0; i < adev->sdma.num_instances; i++) {
701 if (!adev->sdma.instance[i].fw)
702 return -EINVAL;
703 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
704 amdgpu_ucode_print_sdma_hdr(&hdr->header);
705 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
706 fw_data = (const __le32 *)
707 (adev->sdma.instance[i].fw->data +
708 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
709 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
710 for (j = 0; j < fw_size; j++)
711 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
712 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
713 }
714
715 return 0;
716 }
717
718 /**
719 * sdma_v3_0_start - setup and start the async dma engines
720 *
721 * @adev: amdgpu_device pointer
722 *
723 * Set up the DMA engines and enable them (VI).
724 * Returns 0 for success, error for failure.
725 */
726 static int sdma_v3_0_start(struct amdgpu_device *adev)
727 {
728 int r, i;
729
730 if (!adev->pp_enabled) {
731 if (!adev->firmware.smu_load) {
732 r = sdma_v3_0_load_microcode(adev);
733 if (r)
734 return r;
735 } else {
736 for (i = 0; i < adev->sdma.num_instances; i++) {
737 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
738 (i == 0) ?
739 AMDGPU_UCODE_ID_SDMA0 :
740 AMDGPU_UCODE_ID_SDMA1);
741 if (r)
742 return -EINVAL;
743 }
744 }
745 }
746
747 /* unhalt the MEs */
748 sdma_v3_0_enable(adev, true);
749 /* enable sdma ring preemption */
750 sdma_v3_0_ctx_switch_enable(adev, true);
751
752 /* start the gfx rings and rlc compute queues */
753 r = sdma_v3_0_gfx_resume(adev);
754 if (r)
755 return r;
756 r = sdma_v3_0_rlc_resume(adev);
757 if (r)
758 return r;
759
760 return 0;
761 }
762
763 /**
764 * sdma_v3_0_ring_test_ring - simple async dma engine test
765 *
766 * @ring: amdgpu_ring structure holding ring information
767 *
768 * Test the DMA engine by writing using it to write an
769 * value to memory. (VI).
770 * Returns 0 for success, error for failure.
771 */
772 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
773 {
774 struct amdgpu_device *adev = ring->adev;
775 unsigned i;
776 unsigned index;
777 int r;
778 u32 tmp;
779 u64 gpu_addr;
780
781 r = amdgpu_wb_get(adev, &index);
782 if (r) {
783 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
784 return r;
785 }
786
787 gpu_addr = adev->wb.gpu_addr + (index * 4);
788 tmp = 0xCAFEDEAD;
789 adev->wb.wb[index] = cpu_to_le32(tmp);
790
791 r = amdgpu_ring_lock(ring, 5);
792 if (r) {
793 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
794 amdgpu_wb_free(adev, index);
795 return r;
796 }
797
798 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
799 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
800 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
801 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
802 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
803 amdgpu_ring_write(ring, 0xDEADBEEF);
804 amdgpu_ring_unlock_commit(ring);
805
806 for (i = 0; i < adev->usec_timeout; i++) {
807 tmp = le32_to_cpu(adev->wb.wb[index]);
808 if (tmp == 0xDEADBEEF)
809 break;
810 DRM_UDELAY(1);
811 }
812
813 if (i < adev->usec_timeout) {
814 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
815 } else {
816 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
817 ring->idx, tmp);
818 r = -EINVAL;
819 }
820 amdgpu_wb_free(adev, index);
821
822 return r;
823 }
824
825 /**
826 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
827 *
828 * @ring: amdgpu_ring structure holding ring information
829 *
830 * Test a simple IB in the DMA ring (VI).
831 * Returns 0 on success, error on failure.
832 */
833 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
834 {
835 struct amdgpu_device *adev = ring->adev;
836 struct amdgpu_ib ib;
837 struct fence *f = NULL;
838 unsigned i;
839 unsigned index;
840 int r;
841 u32 tmp = 0;
842 u64 gpu_addr;
843
844 r = amdgpu_wb_get(adev, &index);
845 if (r) {
846 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
847 return r;
848 }
849
850 gpu_addr = adev->wb.gpu_addr + (index * 4);
851 tmp = 0xCAFEDEAD;
852 adev->wb.wb[index] = cpu_to_le32(tmp);
853 memset(&ib, 0, sizeof(ib));
854 r = amdgpu_ib_get(ring, NULL, 256, &ib);
855 if (r) {
856 DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
857 goto err0;
858 }
859
860 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
861 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
862 ib.ptr[1] = lower_32_bits(gpu_addr);
863 ib.ptr[2] = upper_32_bits(gpu_addr);
864 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
865 ib.ptr[4] = 0xDEADBEEF;
866 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
867 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
868 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
869 ib.length_dw = 8;
870
871 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
872 AMDGPU_FENCE_OWNER_UNDEFINED,
873 &f);
874 if (r)
875 goto err1;
876
877 r = fence_wait(f, false);
878 if (r) {
879 DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
880 goto err1;
881 }
882 for (i = 0; i < adev->usec_timeout; i++) {
883 tmp = le32_to_cpu(adev->wb.wb[index]);
884 if (tmp == 0xDEADBEEF)
885 break;
886 DRM_UDELAY(1);
887 }
888 if (i < adev->usec_timeout) {
889 DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
890 ring->idx, i);
891 goto err1;
892 } else {
893 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
894 r = -EINVAL;
895 }
896 err1:
897 fence_put(f);
898 amdgpu_ib_free(adev, &ib);
899 err0:
900 amdgpu_wb_free(adev, index);
901 return r;
902 }
903
904 /**
905 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
906 *
907 * @ib: indirect buffer to fill with commands
908 * @pe: addr of the page entry
909 * @src: src addr to copy from
910 * @count: number of page entries to update
911 *
912 * Update PTEs by copying them from the GART using sDMA (CIK).
913 */
914 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
915 uint64_t pe, uint64_t src,
916 unsigned count)
917 {
918 while (count) {
919 unsigned bytes = count * 8;
920 if (bytes > 0x1FFFF8)
921 bytes = 0x1FFFF8;
922
923 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
924 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
925 ib->ptr[ib->length_dw++] = bytes;
926 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
927 ib->ptr[ib->length_dw++] = lower_32_bits(src);
928 ib->ptr[ib->length_dw++] = upper_32_bits(src);
929 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
930 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
931
932 pe += bytes;
933 src += bytes;
934 count -= bytes / 8;
935 }
936 }
937
938 /**
939 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
940 *
941 * @ib: indirect buffer to fill with commands
942 * @pe: addr of the page entry
943 * @addr: dst addr to write into pe
944 * @count: number of page entries to update
945 * @incr: increase next addr by incr bytes
946 * @flags: access flags
947 *
948 * Update PTEs by writing them manually using sDMA (CIK).
949 */
950 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
951 uint64_t pe,
952 uint64_t addr, unsigned count,
953 uint32_t incr, uint32_t flags)
954 {
955 uint64_t value;
956 unsigned ndw;
957
958 while (count) {
959 ndw = count * 2;
960 if (ndw > 0xFFFFE)
961 ndw = 0xFFFFE;
962
963 /* for non-physically contiguous pages (system) */
964 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
965 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
966 ib->ptr[ib->length_dw++] = pe;
967 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
968 ib->ptr[ib->length_dw++] = ndw;
969 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
970 if (flags & AMDGPU_PTE_SYSTEM) {
971 value = amdgpu_vm_map_gart(ib->ring->adev, addr);
972 value &= 0xFFFFFFFFFFFFF000ULL;
973 } else if (flags & AMDGPU_PTE_VALID) {
974 value = addr;
975 } else {
976 value = 0;
977 }
978 addr += incr;
979 value |= flags;
980 ib->ptr[ib->length_dw++] = value;
981 ib->ptr[ib->length_dw++] = upper_32_bits(value);
982 }
983 }
984 }
985
986 /**
987 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
988 *
989 * @ib: indirect buffer to fill with commands
990 * @pe: addr of the page entry
991 * @addr: dst addr to write into pe
992 * @count: number of page entries to update
993 * @incr: increase next addr by incr bytes
994 * @flags: access flags
995 *
996 * Update the page tables using sDMA (CIK).
997 */
998 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
999 uint64_t pe,
1000 uint64_t addr, unsigned count,
1001 uint32_t incr, uint32_t flags)
1002 {
1003 uint64_t value;
1004 unsigned ndw;
1005
1006 while (count) {
1007 ndw = count;
1008 if (ndw > 0x7FFFF)
1009 ndw = 0x7FFFF;
1010
1011 if (flags & AMDGPU_PTE_VALID)
1012 value = addr;
1013 else
1014 value = 0;
1015
1016 /* for physically contiguous pages (vram) */
1017 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1018 ib->ptr[ib->length_dw++] = pe; /* dst addr */
1019 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1020 ib->ptr[ib->length_dw++] = flags; /* mask */
1021 ib->ptr[ib->length_dw++] = 0;
1022 ib->ptr[ib->length_dw++] = value; /* value */
1023 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1024 ib->ptr[ib->length_dw++] = incr; /* increment size */
1025 ib->ptr[ib->length_dw++] = 0;
1026 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
1027
1028 pe += ndw * 8;
1029 addr += ndw * incr;
1030 count -= ndw;
1031 }
1032 }
1033
1034 /**
1035 * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
1036 *
1037 * @ib: indirect buffer to fill with padding
1038 *
1039 */
1040 static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
1041 {
1042 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ib->ring);
1043 u32 pad_count;
1044 int i;
1045
1046 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1047 for (i = 0; i < pad_count; i++)
1048 if (sdma && sdma->burst_nop && (i == 0))
1049 ib->ptr[ib->length_dw++] =
1050 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1051 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1052 else
1053 ib->ptr[ib->length_dw++] =
1054 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1055 }
1056
1057 /**
1058 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1059 *
1060 * @ring: amdgpu_ring pointer
1061 * @vm: amdgpu_vm pointer
1062 *
1063 * Update the page table base and flush the VM TLB
1064 * using sDMA (VI).
1065 */
1066 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1067 unsigned vm_id, uint64_t pd_addr)
1068 {
1069 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1070 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1071 if (vm_id < 8) {
1072 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1073 } else {
1074 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1075 }
1076 amdgpu_ring_write(ring, pd_addr >> 12);
1077
1078 /* flush TLB */
1079 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1080 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1081 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1082 amdgpu_ring_write(ring, 1 << vm_id);
1083
1084 /* wait for flush */
1085 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1086 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1087 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1088 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1089 amdgpu_ring_write(ring, 0);
1090 amdgpu_ring_write(ring, 0); /* reference */
1091 amdgpu_ring_write(ring, 0); /* mask */
1092 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1093 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1094 }
1095
1096 static int sdma_v3_0_early_init(void *handle)
1097 {
1098 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1099
1100 switch (adev->asic_type) {
1101 case CHIP_STONEY:
1102 adev->sdma.num_instances = 1;
1103 break;
1104 default:
1105 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1106 break;
1107 }
1108
1109 sdma_v3_0_set_ring_funcs(adev);
1110 sdma_v3_0_set_buffer_funcs(adev);
1111 sdma_v3_0_set_vm_pte_funcs(adev);
1112 sdma_v3_0_set_irq_funcs(adev);
1113
1114 return 0;
1115 }
1116
1117 static int sdma_v3_0_sw_init(void *handle)
1118 {
1119 struct amdgpu_ring *ring;
1120 int r, i;
1121 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1122
1123 /* SDMA trap event */
1124 r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1125 if (r)
1126 return r;
1127
1128 /* SDMA Privileged inst */
1129 r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1130 if (r)
1131 return r;
1132
1133 /* SDMA Privileged inst */
1134 r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1135 if (r)
1136 return r;
1137
1138 r = sdma_v3_0_init_microcode(adev);
1139 if (r) {
1140 DRM_ERROR("Failed to load sdma firmware!\n");
1141 return r;
1142 }
1143
1144 for (i = 0; i < adev->sdma.num_instances; i++) {
1145 ring = &adev->sdma.instance[i].ring;
1146 ring->ring_obj = NULL;
1147 ring->use_doorbell = true;
1148 ring->doorbell_index = (i == 0) ?
1149 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1150
1151 sprintf(ring->name, "sdma%d", i);
1152 r = amdgpu_ring_init(adev, ring, 256 * 1024,
1153 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1154 &adev->sdma.trap_irq,
1155 (i == 0) ?
1156 AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
1157 AMDGPU_RING_TYPE_SDMA);
1158 if (r)
1159 return r;
1160 }
1161
1162 return r;
1163 }
1164
1165 static int sdma_v3_0_sw_fini(void *handle)
1166 {
1167 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1168 int i;
1169
1170 for (i = 0; i < adev->sdma.num_instances; i++)
1171 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1172
1173 return 0;
1174 }
1175
1176 static int sdma_v3_0_hw_init(void *handle)
1177 {
1178 int r;
1179 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1180
1181 sdma_v3_0_init_golden_registers(adev);
1182
1183 r = sdma_v3_0_start(adev);
1184 if (r)
1185 return r;
1186
1187 return r;
1188 }
1189
1190 static int sdma_v3_0_hw_fini(void *handle)
1191 {
1192 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1193
1194 sdma_v3_0_ctx_switch_enable(adev, false);
1195 sdma_v3_0_enable(adev, false);
1196
1197 return 0;
1198 }
1199
1200 static int sdma_v3_0_suspend(void *handle)
1201 {
1202 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1203
1204 return sdma_v3_0_hw_fini(adev);
1205 }
1206
1207 static int sdma_v3_0_resume(void *handle)
1208 {
1209 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1210
1211 return sdma_v3_0_hw_init(adev);
1212 }
1213
1214 static bool sdma_v3_0_is_idle(void *handle)
1215 {
1216 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1217 u32 tmp = RREG32(mmSRBM_STATUS2);
1218
1219 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1220 SRBM_STATUS2__SDMA1_BUSY_MASK))
1221 return false;
1222
1223 return true;
1224 }
1225
1226 static int sdma_v3_0_wait_for_idle(void *handle)
1227 {
1228 unsigned i;
1229 u32 tmp;
1230 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1231
1232 for (i = 0; i < adev->usec_timeout; i++) {
1233 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1234 SRBM_STATUS2__SDMA1_BUSY_MASK);
1235
1236 if (!tmp)
1237 return 0;
1238 udelay(1);
1239 }
1240 return -ETIMEDOUT;
1241 }
1242
1243 static void sdma_v3_0_print_status(void *handle)
1244 {
1245 int i, j;
1246 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1247
1248 dev_info(adev->dev, "VI SDMA registers\n");
1249 dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
1250 RREG32(mmSRBM_STATUS2));
1251 for (i = 0; i < adev->sdma.num_instances; i++) {
1252 dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
1253 i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
1254 dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
1255 i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
1256 dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
1257 i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
1258 dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
1259 i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
1260 dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
1261 i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
1262 dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
1263 i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
1264 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
1265 i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
1266 dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
1267 i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
1268 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
1269 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
1270 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
1271 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
1272 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
1273 i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
1274 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
1275 i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
1276 dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
1277 i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
1278 mutex_lock(&adev->srbm_mutex);
1279 for (j = 0; j < 16; j++) {
1280 vi_srbm_select(adev, 0, 0, 0, j);
1281 dev_info(adev->dev, " VM %d:\n", j);
1282 dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
1283 i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
1284 dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
1285 i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
1286 }
1287 vi_srbm_select(adev, 0, 0, 0, 0);
1288 mutex_unlock(&adev->srbm_mutex);
1289 }
1290 }
1291
1292 static int sdma_v3_0_soft_reset(void *handle)
1293 {
1294 u32 srbm_soft_reset = 0;
1295 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1296 u32 tmp = RREG32(mmSRBM_STATUS2);
1297
1298 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1299 /* sdma0 */
1300 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1301 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1302 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1303 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1304 }
1305 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1306 /* sdma1 */
1307 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1308 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1309 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1310 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1311 }
1312
1313 if (srbm_soft_reset) {
1314 sdma_v3_0_print_status((void *)adev);
1315
1316 tmp = RREG32(mmSRBM_SOFT_RESET);
1317 tmp |= srbm_soft_reset;
1318 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1319 WREG32(mmSRBM_SOFT_RESET, tmp);
1320 tmp = RREG32(mmSRBM_SOFT_RESET);
1321
1322 udelay(50);
1323
1324 tmp &= ~srbm_soft_reset;
1325 WREG32(mmSRBM_SOFT_RESET, tmp);
1326 tmp = RREG32(mmSRBM_SOFT_RESET);
1327
1328 /* Wait a little for things to settle down */
1329 udelay(50);
1330
1331 sdma_v3_0_print_status((void *)adev);
1332 }
1333
1334 return 0;
1335 }
1336
1337 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1338 struct amdgpu_irq_src *source,
1339 unsigned type,
1340 enum amdgpu_interrupt_state state)
1341 {
1342 u32 sdma_cntl;
1343
1344 switch (type) {
1345 case AMDGPU_SDMA_IRQ_TRAP0:
1346 switch (state) {
1347 case AMDGPU_IRQ_STATE_DISABLE:
1348 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1349 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1350 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1351 break;
1352 case AMDGPU_IRQ_STATE_ENABLE:
1353 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1354 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1355 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1356 break;
1357 default:
1358 break;
1359 }
1360 break;
1361 case AMDGPU_SDMA_IRQ_TRAP1:
1362 switch (state) {
1363 case AMDGPU_IRQ_STATE_DISABLE:
1364 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1365 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1366 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1367 break;
1368 case AMDGPU_IRQ_STATE_ENABLE:
1369 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1370 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1371 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1372 break;
1373 default:
1374 break;
1375 }
1376 break;
1377 default:
1378 break;
1379 }
1380 return 0;
1381 }
1382
1383 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1384 struct amdgpu_irq_src *source,
1385 struct amdgpu_iv_entry *entry)
1386 {
1387 u8 instance_id, queue_id;
1388
1389 instance_id = (entry->ring_id & 0x3) >> 0;
1390 queue_id = (entry->ring_id & 0xc) >> 2;
1391 DRM_DEBUG("IH: SDMA trap\n");
1392 switch (instance_id) {
1393 case 0:
1394 switch (queue_id) {
1395 case 0:
1396 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1397 break;
1398 case 1:
1399 /* XXX compute */
1400 break;
1401 case 2:
1402 /* XXX compute */
1403 break;
1404 }
1405 break;
1406 case 1:
1407 switch (queue_id) {
1408 case 0:
1409 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1410 break;
1411 case 1:
1412 /* XXX compute */
1413 break;
1414 case 2:
1415 /* XXX compute */
1416 break;
1417 }
1418 break;
1419 }
1420 return 0;
1421 }
1422
1423 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1424 struct amdgpu_irq_src *source,
1425 struct amdgpu_iv_entry *entry)
1426 {
1427 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1428 schedule_work(&adev->reset_work);
1429 return 0;
1430 }
1431
1432 static void fiji_update_sdma_medium_grain_clock_gating(
1433 struct amdgpu_device *adev,
1434 bool enable)
1435 {
1436 uint32_t temp, data;
1437
1438 if (enable) {
1439 temp = data = RREG32(mmSDMA0_CLK_CTRL);
1440 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1441 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1442 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1443 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1444 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1445 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1446 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1447 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1448 if (data != temp)
1449 WREG32(mmSDMA0_CLK_CTRL, data);
1450
1451 temp = data = RREG32(mmSDMA1_CLK_CTRL);
1452 data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1453 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1454 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1455 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1456 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1457 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1458 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1459 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1460
1461 if (data != temp)
1462 WREG32(mmSDMA1_CLK_CTRL, data);
1463 } else {
1464 temp = data = RREG32(mmSDMA0_CLK_CTRL);
1465 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1466 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1467 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1468 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1469 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1470 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1471 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1472 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1473
1474 if (data != temp)
1475 WREG32(mmSDMA0_CLK_CTRL, data);
1476
1477 temp = data = RREG32(mmSDMA1_CLK_CTRL);
1478 data |= SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1479 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1480 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1481 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1482 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1483 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1484 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1485 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1486
1487 if (data != temp)
1488 WREG32(mmSDMA1_CLK_CTRL, data);
1489 }
1490 }
1491
1492 static void fiji_update_sdma_medium_grain_light_sleep(
1493 struct amdgpu_device *adev,
1494 bool enable)
1495 {
1496 uint32_t temp, data;
1497
1498 if (enable) {
1499 temp = data = RREG32(mmSDMA0_POWER_CNTL);
1500 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1501
1502 if (temp != data)
1503 WREG32(mmSDMA0_POWER_CNTL, data);
1504
1505 temp = data = RREG32(mmSDMA1_POWER_CNTL);
1506 data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1507
1508 if (temp != data)
1509 WREG32(mmSDMA1_POWER_CNTL, data);
1510 } else {
1511 temp = data = RREG32(mmSDMA0_POWER_CNTL);
1512 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1513
1514 if (temp != data)
1515 WREG32(mmSDMA0_POWER_CNTL, data);
1516
1517 temp = data = RREG32(mmSDMA1_POWER_CNTL);
1518 data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1519
1520 if (temp != data)
1521 WREG32(mmSDMA1_POWER_CNTL, data);
1522 }
1523 }
1524
1525 static int sdma_v3_0_set_clockgating_state(void *handle,
1526 enum amd_clockgating_state state)
1527 {
1528 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1529
1530 switch (adev->asic_type) {
1531 case CHIP_FIJI:
1532 fiji_update_sdma_medium_grain_clock_gating(adev,
1533 state == AMD_CG_STATE_GATE ? true : false);
1534 fiji_update_sdma_medium_grain_light_sleep(adev,
1535 state == AMD_CG_STATE_GATE ? true : false);
1536 break;
1537 default:
1538 break;
1539 }
1540 return 0;
1541 }
1542
1543 static int sdma_v3_0_set_powergating_state(void *handle,
1544 enum amd_powergating_state state)
1545 {
1546 return 0;
1547 }
1548
1549 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1550 .early_init = sdma_v3_0_early_init,
1551 .late_init = NULL,
1552 .sw_init = sdma_v3_0_sw_init,
1553 .sw_fini = sdma_v3_0_sw_fini,
1554 .hw_init = sdma_v3_0_hw_init,
1555 .hw_fini = sdma_v3_0_hw_fini,
1556 .suspend = sdma_v3_0_suspend,
1557 .resume = sdma_v3_0_resume,
1558 .is_idle = sdma_v3_0_is_idle,
1559 .wait_for_idle = sdma_v3_0_wait_for_idle,
1560 .soft_reset = sdma_v3_0_soft_reset,
1561 .print_status = sdma_v3_0_print_status,
1562 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1563 .set_powergating_state = sdma_v3_0_set_powergating_state,
1564 };
1565
1566 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1567 .get_rptr = sdma_v3_0_ring_get_rptr,
1568 .get_wptr = sdma_v3_0_ring_get_wptr,
1569 .set_wptr = sdma_v3_0_ring_set_wptr,
1570 .parse_cs = NULL,
1571 .emit_ib = sdma_v3_0_ring_emit_ib,
1572 .emit_fence = sdma_v3_0_ring_emit_fence,
1573 .emit_semaphore = sdma_v3_0_ring_emit_semaphore,
1574 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1575 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1576 .test_ring = sdma_v3_0_ring_test_ring,
1577 .test_ib = sdma_v3_0_ring_test_ib,
1578 .insert_nop = sdma_v3_0_ring_insert_nop,
1579 };
1580
1581 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1582 {
1583 int i;
1584
1585 for (i = 0; i < adev->sdma.num_instances; i++)
1586 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1587 }
1588
1589 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1590 .set = sdma_v3_0_set_trap_irq_state,
1591 .process = sdma_v3_0_process_trap_irq,
1592 };
1593
1594 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1595 .process = sdma_v3_0_process_illegal_inst_irq,
1596 };
1597
1598 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1599 {
1600 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1601 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1602 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1603 }
1604
1605 /**
1606 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1607 *
1608 * @ring: amdgpu_ring structure holding ring information
1609 * @src_offset: src GPU address
1610 * @dst_offset: dst GPU address
1611 * @byte_count: number of bytes to xfer
1612 *
1613 * Copy GPU buffers using the DMA engine (VI).
1614 * Used by the amdgpu ttm implementation to move pages if
1615 * registered as the asic copy callback.
1616 */
1617 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1618 uint64_t src_offset,
1619 uint64_t dst_offset,
1620 uint32_t byte_count)
1621 {
1622 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1623 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1624 ib->ptr[ib->length_dw++] = byte_count;
1625 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1626 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1627 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1628 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1629 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1630 }
1631
1632 /**
1633 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1634 *
1635 * @ring: amdgpu_ring structure holding ring information
1636 * @src_data: value to write to buffer
1637 * @dst_offset: dst GPU address
1638 * @byte_count: number of bytes to xfer
1639 *
1640 * Fill GPU buffers using the DMA engine (VI).
1641 */
1642 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1643 uint32_t src_data,
1644 uint64_t dst_offset,
1645 uint32_t byte_count)
1646 {
1647 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1648 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1649 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1650 ib->ptr[ib->length_dw++] = src_data;
1651 ib->ptr[ib->length_dw++] = byte_count;
1652 }
1653
1654 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1655 .copy_max_bytes = 0x1fffff,
1656 .copy_num_dw = 7,
1657 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1658
1659 .fill_max_bytes = 0x1fffff,
1660 .fill_num_dw = 5,
1661 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1662 };
1663
1664 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1665 {
1666 if (adev->mman.buffer_funcs == NULL) {
1667 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1668 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1669 }
1670 }
1671
1672 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1673 .copy_pte = sdma_v3_0_vm_copy_pte,
1674 .write_pte = sdma_v3_0_vm_write_pte,
1675 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1676 .pad_ib = sdma_v3_0_vm_pad_ib,
1677 };
1678
1679 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1680 {
1681 if (adev->vm_manager.vm_pte_funcs == NULL) {
1682 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1683 adev->vm_manager.vm_pte_funcs_ring = &adev->sdma.instance[0].ring;
1684 adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
1685 }
1686 }
This page took 0.066 seconds and 5 git commands to generate.