selinux: fix overflow and 0 length allocations
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / tonga_ih.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "drmP.h"
24 #include "amdgpu.h"
25 #include "amdgpu_ih.h"
26 #include "vid.h"
27
28 #include "oss/oss_3_0_d.h"
29 #include "oss/oss_3_0_sh_mask.h"
30
31 #include "bif/bif_5_1_d.h"
32 #include "bif/bif_5_1_sh_mask.h"
33
34 /*
35 * Interrupts
36 * Starting with r6xx, interrupts are handled via a ring buffer.
37 * Ring buffers are areas of GPU accessible memory that the GPU
38 * writes interrupt vectors into and the host reads vectors out of.
39 * There is a rptr (read pointer) that determines where the
40 * host is currently reading, and a wptr (write pointer)
41 * which determines where the GPU has written. When the
42 * pointers are equal, the ring is idle. When the GPU
43 * writes vectors to the ring buffer, it increments the
44 * wptr. When there is an interrupt, the host then starts
45 * fetching commands and processing them until the pointers are
46 * equal again at which point it updates the rptr.
47 */
48
49 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev);
50
51 /**
52 * tonga_ih_enable_interrupts - Enable the interrupt ring buffer
53 *
54 * @adev: amdgpu_device pointer
55 *
56 * Enable the interrupt ring buffer (VI).
57 */
58 static void tonga_ih_enable_interrupts(struct amdgpu_device *adev)
59 {
60 u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
61
62 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 1);
63 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 1);
64 WREG32(mmIH_RB_CNTL, ih_rb_cntl);
65 adev->irq.ih.enabled = true;
66 }
67
68 /**
69 * tonga_ih_disable_interrupts - Disable the interrupt ring buffer
70 *
71 * @adev: amdgpu_device pointer
72 *
73 * Disable the interrupt ring buffer (VI).
74 */
75 static void tonga_ih_disable_interrupts(struct amdgpu_device *adev)
76 {
77 u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
78
79 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 0);
80 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 0);
81 WREG32(mmIH_RB_CNTL, ih_rb_cntl);
82 /* set rptr, wptr to 0 */
83 WREG32(mmIH_RB_RPTR, 0);
84 WREG32(mmIH_RB_WPTR, 0);
85 adev->irq.ih.enabled = false;
86 adev->irq.ih.rptr = 0;
87 }
88
89 /**
90 * tonga_ih_irq_init - init and enable the interrupt ring
91 *
92 * @adev: amdgpu_device pointer
93 *
94 * Allocate a ring buffer for the interrupt controller,
95 * enable the RLC, disable interrupts, enable the IH
96 * ring buffer and enable it (VI).
97 * Called at device load and reume.
98 * Returns 0 for success, errors for failure.
99 */
100 static int tonga_ih_irq_init(struct amdgpu_device *adev)
101 {
102 int rb_bufsz;
103 u32 interrupt_cntl, ih_rb_cntl, ih_doorbell_rtpr;
104 u64 wptr_off;
105
106 /* disable irqs */
107 tonga_ih_disable_interrupts(adev);
108
109 /* setup interrupt control */
110 WREG32(mmINTERRUPT_CNTL2, adev->dummy_page.addr >> 8);
111 interrupt_cntl = RREG32(mmINTERRUPT_CNTL);
112 /* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi
113 * INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN
114 */
115 interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_DUMMY_RD_OVERRIDE, 0);
116 /* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */
117 interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_REQ_NONSNOOP_EN, 0);
118 WREG32(mmINTERRUPT_CNTL, interrupt_cntl);
119
120 /* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/
121 if (adev->irq.ih.use_bus_addr)
122 WREG32(mmIH_RB_BASE, adev->irq.ih.rb_dma_addr >> 8);
123 else
124 WREG32(mmIH_RB_BASE, adev->irq.ih.gpu_addr >> 8);
125
126 rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4);
127 ih_rb_cntl = REG_SET_FIELD(0, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
128 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_SIZE, rb_bufsz);
129 /* Ring Buffer write pointer writeback. If enabled, IH_RB_WPTR register value is written to memory */
130 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_WRITEBACK_ENABLE, 1);
131 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, MC_VMID, 0);
132
133 if (adev->irq.msi_enabled)
134 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RPTR_REARM, 1);
135
136 WREG32(mmIH_RB_CNTL, ih_rb_cntl);
137
138 /* set the writeback address whether it's enabled or not */
139 if (adev->irq.ih.use_bus_addr)
140 wptr_off = adev->irq.ih.rb_dma_addr + (adev->irq.ih.wptr_offs * 4);
141 else
142 wptr_off = adev->wb.gpu_addr + (adev->irq.ih.wptr_offs * 4);
143 WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(wptr_off));
144 WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(wptr_off) & 0xFF);
145
146 /* set rptr, wptr to 0 */
147 WREG32(mmIH_RB_RPTR, 0);
148 WREG32(mmIH_RB_WPTR, 0);
149
150 ih_doorbell_rtpr = RREG32(mmIH_DOORBELL_RPTR);
151 if (adev->irq.ih.use_doorbell) {
152 ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
153 OFFSET, adev->irq.ih.doorbell_index);
154 ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
155 ENABLE, 1);
156 } else {
157 ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
158 ENABLE, 0);
159 }
160 WREG32(mmIH_DOORBELL_RPTR, ih_doorbell_rtpr);
161
162 pci_set_master(adev->pdev);
163
164 /* enable interrupts */
165 tonga_ih_enable_interrupts(adev);
166
167 return 0;
168 }
169
170 /**
171 * tonga_ih_irq_disable - disable interrupts
172 *
173 * @adev: amdgpu_device pointer
174 *
175 * Disable interrupts on the hw (VI).
176 */
177 static void tonga_ih_irq_disable(struct amdgpu_device *adev)
178 {
179 tonga_ih_disable_interrupts(adev);
180
181 /* Wait and acknowledge irq */
182 mdelay(1);
183 }
184
185 /**
186 * tonga_ih_get_wptr - get the IH ring buffer wptr
187 *
188 * @adev: amdgpu_device pointer
189 *
190 * Get the IH ring buffer wptr from either the register
191 * or the writeback memory buffer (VI). Also check for
192 * ring buffer overflow and deal with it.
193 * Used by cz_irq_process(VI).
194 * Returns the value of the wptr.
195 */
196 static u32 tonga_ih_get_wptr(struct amdgpu_device *adev)
197 {
198 u32 wptr, tmp;
199
200 if (adev->irq.ih.use_bus_addr)
201 wptr = le32_to_cpu(adev->irq.ih.ring[adev->irq.ih.wptr_offs]);
202 else
203 wptr = le32_to_cpu(adev->wb.wb[adev->irq.ih.wptr_offs]);
204
205 if (REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW)) {
206 wptr = REG_SET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW, 0);
207 /* When a ring buffer overflow happen start parsing interrupt
208 * from the last not overwritten vector (wptr + 16). Hopefully
209 * this should allow us to catchup.
210 */
211 dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
212 wptr, adev->irq.ih.rptr, (wptr + 16) & adev->irq.ih.ptr_mask);
213 adev->irq.ih.rptr = (wptr + 16) & adev->irq.ih.ptr_mask;
214 tmp = RREG32(mmIH_RB_CNTL);
215 tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
216 WREG32(mmIH_RB_CNTL, tmp);
217 }
218 return (wptr & adev->irq.ih.ptr_mask);
219 }
220
221 /**
222 * tonga_ih_decode_iv - decode an interrupt vector
223 *
224 * @adev: amdgpu_device pointer
225 *
226 * Decodes the interrupt vector at the current rptr
227 * position and also advance the position.
228 */
229 static void tonga_ih_decode_iv(struct amdgpu_device *adev,
230 struct amdgpu_iv_entry *entry)
231 {
232 /* wptr/rptr are in bytes! */
233 u32 ring_index = adev->irq.ih.rptr >> 2;
234 uint32_t dw[4];
235
236 dw[0] = le32_to_cpu(adev->irq.ih.ring[ring_index + 0]);
237 dw[1] = le32_to_cpu(adev->irq.ih.ring[ring_index + 1]);
238 dw[2] = le32_to_cpu(adev->irq.ih.ring[ring_index + 2]);
239 dw[3] = le32_to_cpu(adev->irq.ih.ring[ring_index + 3]);
240
241 entry->src_id = dw[0] & 0xff;
242 entry->src_data = dw[1] & 0xfffffff;
243 entry->ring_id = dw[2] & 0xff;
244 entry->vm_id = (dw[2] >> 8) & 0xff;
245 entry->pas_id = (dw[2] >> 16) & 0xffff;
246
247 /* wptr/rptr are in bytes! */
248 adev->irq.ih.rptr += 16;
249 }
250
251 /**
252 * tonga_ih_set_rptr - set the IH ring buffer rptr
253 *
254 * @adev: amdgpu_device pointer
255 *
256 * Set the IH ring buffer rptr.
257 */
258 static void tonga_ih_set_rptr(struct amdgpu_device *adev)
259 {
260 if (adev->irq.ih.use_doorbell) {
261 /* XXX check if swapping is necessary on BE */
262 if (adev->irq.ih.use_bus_addr)
263 adev->irq.ih.ring[adev->irq.ih.rptr_offs] = adev->irq.ih.rptr;
264 else
265 adev->wb.wb[adev->irq.ih.rptr_offs] = adev->irq.ih.rptr;
266 WDOORBELL32(adev->irq.ih.doorbell_index, adev->irq.ih.rptr);
267 } else {
268 WREG32(mmIH_RB_RPTR, adev->irq.ih.rptr);
269 }
270 }
271
272 static int tonga_ih_early_init(void *handle)
273 {
274 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
275 int ret;
276
277 ret = amdgpu_irq_add_domain(adev);
278 if (ret)
279 return ret;
280
281 tonga_ih_set_interrupt_funcs(adev);
282
283 return 0;
284 }
285
286 static int tonga_ih_sw_init(void *handle)
287 {
288 int r;
289 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
290
291 r = amdgpu_ih_ring_init(adev, 4 * 1024, true);
292 if (r)
293 return r;
294
295 adev->irq.ih.use_doorbell = true;
296 adev->irq.ih.doorbell_index = AMDGPU_DOORBELL_IH;
297
298 r = amdgpu_irq_init(adev);
299
300 return r;
301 }
302
303 static int tonga_ih_sw_fini(void *handle)
304 {
305 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
306
307 amdgpu_irq_fini(adev);
308 amdgpu_ih_ring_fini(adev);
309 amdgpu_irq_remove_domain(adev);
310
311 return 0;
312 }
313
314 static int tonga_ih_hw_init(void *handle)
315 {
316 int r;
317 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
318
319 r = tonga_ih_irq_init(adev);
320 if (r)
321 return r;
322
323 return 0;
324 }
325
326 static int tonga_ih_hw_fini(void *handle)
327 {
328 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
329
330 tonga_ih_irq_disable(adev);
331
332 return 0;
333 }
334
335 static int tonga_ih_suspend(void *handle)
336 {
337 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
338
339 return tonga_ih_hw_fini(adev);
340 }
341
342 static int tonga_ih_resume(void *handle)
343 {
344 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
345
346 return tonga_ih_hw_init(adev);
347 }
348
349 static bool tonga_ih_is_idle(void *handle)
350 {
351 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
352 u32 tmp = RREG32(mmSRBM_STATUS);
353
354 if (REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
355 return false;
356
357 return true;
358 }
359
360 static int tonga_ih_wait_for_idle(void *handle)
361 {
362 unsigned i;
363 u32 tmp;
364 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
365
366 for (i = 0; i < adev->usec_timeout; i++) {
367 /* read MC_STATUS */
368 tmp = RREG32(mmSRBM_STATUS);
369 if (!REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
370 return 0;
371 udelay(1);
372 }
373 return -ETIMEDOUT;
374 }
375
376 static int tonga_ih_soft_reset(void *handle)
377 {
378 u32 srbm_soft_reset = 0;
379 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
380 u32 tmp = RREG32(mmSRBM_STATUS);
381
382 if (tmp & SRBM_STATUS__IH_BUSY_MASK)
383 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET,
384 SOFT_RESET_IH, 1);
385
386 if (srbm_soft_reset) {
387 tmp = RREG32(mmSRBM_SOFT_RESET);
388 tmp |= srbm_soft_reset;
389 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
390 WREG32(mmSRBM_SOFT_RESET, tmp);
391 tmp = RREG32(mmSRBM_SOFT_RESET);
392
393 udelay(50);
394
395 tmp &= ~srbm_soft_reset;
396 WREG32(mmSRBM_SOFT_RESET, tmp);
397 tmp = RREG32(mmSRBM_SOFT_RESET);
398
399 /* Wait a little for things to settle down */
400 udelay(50);
401 }
402
403 return 0;
404 }
405
406 static int tonga_ih_set_clockgating_state(void *handle,
407 enum amd_clockgating_state state)
408 {
409 return 0;
410 }
411
412 static int tonga_ih_set_powergating_state(void *handle,
413 enum amd_powergating_state state)
414 {
415 return 0;
416 }
417
418 const struct amd_ip_funcs tonga_ih_ip_funcs = {
419 .name = "tonga_ih",
420 .early_init = tonga_ih_early_init,
421 .late_init = NULL,
422 .sw_init = tonga_ih_sw_init,
423 .sw_fini = tonga_ih_sw_fini,
424 .hw_init = tonga_ih_hw_init,
425 .hw_fini = tonga_ih_hw_fini,
426 .suspend = tonga_ih_suspend,
427 .resume = tonga_ih_resume,
428 .is_idle = tonga_ih_is_idle,
429 .wait_for_idle = tonga_ih_wait_for_idle,
430 .soft_reset = tonga_ih_soft_reset,
431 .set_clockgating_state = tonga_ih_set_clockgating_state,
432 .set_powergating_state = tonga_ih_set_powergating_state,
433 };
434
435 static const struct amdgpu_ih_funcs tonga_ih_funcs = {
436 .get_wptr = tonga_ih_get_wptr,
437 .decode_iv = tonga_ih_decode_iv,
438 .set_rptr = tonga_ih_set_rptr
439 };
440
441 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev)
442 {
443 if (adev->irq.ih_funcs == NULL)
444 adev->irq.ih_funcs = &tonga_ih_funcs;
445 }
446
This page took 0.039783 seconds and 5 git commands to generate.