mmc: sdhci-acpi: Set MMC_CAP_CMD_DURING_TFR for Intel eMMC controllers
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / fiji_hwmgr.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27
28 #include "hwmgr.h"
29 #include "fiji_smumgr.h"
30 #include "atombios.h"
31 #include "hardwaremanager.h"
32 #include "ppatomctrl.h"
33 #include "atombios.h"
34 #include "cgs_common.h"
35 #include "fiji_dyn_defaults.h"
36 #include "fiji_powertune.h"
37 #include "smu73.h"
38 #include "smu/smu_7_1_3_d.h"
39 #include "smu/smu_7_1_3_sh_mask.h"
40 #include "gmc/gmc_8_1_d.h"
41 #include "gmc/gmc_8_1_sh_mask.h"
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 #include "dce/dce_10_0_d.h"
45 #include "dce/dce_10_0_sh_mask.h"
46 #include "pppcielanes.h"
47 #include "fiji_hwmgr.h"
48 #include "tonga_processpptables.h"
49 #include "tonga_pptable.h"
50 #include "pp_debug.h"
51 #include "pp_acpi.h"
52 #include "amd_pcie_helpers.h"
53 #include "cgs_linux.h"
54 #include "ppinterrupt.h"
55
56 #include "fiji_clockpowergating.h"
57 #include "fiji_thermal.h"
58
59 #define VOLTAGE_SCALE 4
60 #define SMC_RAM_END 0x40000
61 #define VDDC_VDDCI_DELTA 300
62
63 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
64 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
65 #define MC_SEQ_MISC0_GDDR5_VALUE 5
66
67 #define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */
68 #define MC_CG_ARB_FREQ_F1 0x0b
69 #define MC_CG_ARB_FREQ_F2 0x0c
70 #define MC_CG_ARB_FREQ_F3 0x0d
71
72 /* From smc_reg.h */
73 #define SMC_CG_IND_START 0xc0030000
74 #define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */
75
76 #define VOLTAGE_SCALE 4
77 #define VOLTAGE_VID_OFFSET_SCALE1 625
78 #define VOLTAGE_VID_OFFSET_SCALE2 100
79
80 #define VDDC_VDDCI_DELTA 300
81
82 #define ixSWRST_COMMAND_1 0x1400103
83 #define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000
84
85 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
86 enum DPM_EVENT_SRC {
87 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
88 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
89 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
90 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
91 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
92 };
93
94
95 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
96 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
97 */
98 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] =
99 { {600, 1050, 3, 0}, {600, 1050, 6, 1} };
100
101 /* [FF, SS] type, [] 4 voltage ranges, and
102 * [Floor Freq, Boundary Freq, VID min , VID max]
103 */
104 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
105 { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
106 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
107
108 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
109 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
110 */
111 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] =
112 { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
113
114 static const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
115
116 struct fiji_power_state *cast_phw_fiji_power_state(
117 struct pp_hw_power_state *hw_ps)
118 {
119 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
120 "Invalid Powerstate Type!",
121 return NULL;);
122
123 return (struct fiji_power_state *)hw_ps;
124 }
125
126 const struct fiji_power_state *cast_const_phw_fiji_power_state(
127 const struct pp_hw_power_state *hw_ps)
128 {
129 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
130 "Invalid Powerstate Type!",
131 return NULL;);
132
133 return (const struct fiji_power_state *)hw_ps;
134 }
135
136 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
137 {
138 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
139 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
140 ? true : false;
141 }
142
143 static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
144 {
145 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
146 struct fiji_ulv_parm *ulv = &data->ulv;
147
148 ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
149 data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
150 data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
151 data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
152 data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
153 data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
154 data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
155 data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
156 data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
157
158 data->static_screen_threshold_unit =
159 PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
160 data->static_screen_threshold =
161 PPFIJI_STATICSCREENTHRESHOLD_DFLT;
162
163 /* Unset ABM cap as it moved to DAL.
164 * Add PHM_PlatformCaps_NonABMSupportInPPLib
165 * for re-direct ABM related request to DAL
166 */
167 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
168 PHM_PlatformCaps_ABM);
169 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
170 PHM_PlatformCaps_NonABMSupportInPPLib);
171
172 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
173 PHM_PlatformCaps_DynamicACTiming);
174
175 fiji_initialize_power_tune_defaults(hwmgr);
176
177 data->mclk_stutter_mode_threshold = 60000;
178 data->pcie_gen_performance.max = PP_PCIEGen1;
179 data->pcie_gen_performance.min = PP_PCIEGen3;
180 data->pcie_gen_power_saving.max = PP_PCIEGen1;
181 data->pcie_gen_power_saving.min = PP_PCIEGen3;
182 data->pcie_lane_performance.max = 0;
183 data->pcie_lane_performance.min = 16;
184 data->pcie_lane_power_saving.max = 0;
185 data->pcie_lane_power_saving.min = 16;
186
187 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
188 PHM_PlatformCaps_DynamicUVDState);
189 }
190
191 static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
192 phm_ppt_v1_voltage_lookup_table *lookup_table,
193 uint16_t virtual_voltage_id, int32_t *sclk)
194 {
195 uint8_t entryId;
196 uint8_t voltageId;
197 struct phm_ppt_v1_information *table_info =
198 (struct phm_ppt_v1_information *)(hwmgr->pptable);
199
200 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
201
202 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
203 for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
204 voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
205 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
206 break;
207 }
208
209 PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
210 "Can't find requested voltage id in vdd_dep_on_sclk table!",
211 return -EINVAL;
212 );
213
214 *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
215
216 return 0;
217 }
218
219 /**
220 * Get Leakage VDDC based on leakage ID.
221 *
222 * @param hwmgr the address of the powerplay hardware manager.
223 * @return always 0
224 */
225 static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
226 {
227 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
228 uint16_t vv_id;
229 uint16_t vddc = 0;
230 uint16_t evv_default = 1150;
231 uint16_t i, j;
232 uint32_t sclk = 0;
233 struct phm_ppt_v1_information *table_info =
234 (struct phm_ppt_v1_information *)hwmgr->pptable;
235 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
236 table_info->vdd_dep_on_sclk;
237 int result;
238
239 for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
240 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
241 if (!fiji_get_sclk_for_voltage_evv(hwmgr,
242 table_info->vddc_lookup_table, vv_id, &sclk)) {
243 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
244 PHM_PlatformCaps_ClockStretcher)) {
245 for (j = 1; j < sclk_table->count; j++) {
246 if (sclk_table->entries[j].clk == sclk &&
247 sclk_table->entries[j].cks_enable == 0) {
248 sclk += 5000;
249 break;
250 }
251 }
252 }
253
254 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
255 PHM_PlatformCaps_EnableDriverEVV))
256 result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
257 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
258 else
259 result = -EINVAL;
260
261 if (result)
262 result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
263 VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
264
265 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
266 PP_ASSERT_WITH_CODE((vddc < 2000),
267 "Invalid VDDC value, greater than 2v!", result = -EINVAL;);
268
269 if (result)
270 /* 1.15V is the default safe value for Fiji */
271 vddc = evv_default;
272
273 /* the voltage should not be zero nor equal to leakage ID */
274 if (vddc != 0 && vddc != vv_id) {
275 data->vddc_leakage.actual_voltage
276 [data->vddc_leakage.count] = vddc;
277 data->vddc_leakage.leakage_id
278 [data->vddc_leakage.count] = vv_id;
279 data->vddc_leakage.count++;
280 }
281 }
282 }
283 return 0;
284 }
285
286 /**
287 * Change virtual leakage voltage to actual value.
288 *
289 * @param hwmgr the address of the powerplay hardware manager.
290 * @param pointer to changing voltage
291 * @param pointer to leakage table
292 */
293 static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
294 uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
295 {
296 uint32_t index;
297
298 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
299 for (index = 0; index < leakage_table->count; index++) {
300 /* if this voltage matches a leakage voltage ID */
301 /* patch with actual leakage voltage */
302 if (leakage_table->leakage_id[index] == *voltage) {
303 *voltage = leakage_table->actual_voltage[index];
304 break;
305 }
306 }
307
308 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
309 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
310 }
311
312 /**
313 * Patch voltage lookup table by EVV leakages.
314 *
315 * @param hwmgr the address of the powerplay hardware manager.
316 * @param pointer to voltage lookup table
317 * @param pointer to leakage table
318 * @return always 0
319 */
320 static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
321 phm_ppt_v1_voltage_lookup_table *lookup_table,
322 struct fiji_leakage_voltage *leakage_table)
323 {
324 uint32_t i;
325
326 for (i = 0; i < lookup_table->count; i++)
327 fiji_patch_with_vdd_leakage(hwmgr,
328 &lookup_table->entries[i].us_vdd, leakage_table);
329
330 return 0;
331 }
332
333 static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
334 struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
335 uint16_t *vddc)
336 {
337 struct phm_ppt_v1_information *table_info =
338 (struct phm_ppt_v1_information *)(hwmgr->pptable);
339 fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
340 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
341 table_info->max_clock_voltage_on_dc.vddc;
342 return 0;
343 }
344
345 static int fiji_patch_voltage_dependency_tables_with_lookup_table(
346 struct pp_hwmgr *hwmgr)
347 {
348 uint8_t entryId;
349 uint8_t voltageId;
350 struct phm_ppt_v1_information *table_info =
351 (struct phm_ppt_v1_information *)(hwmgr->pptable);
352
353 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
354 table_info->vdd_dep_on_sclk;
355 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
356 table_info->vdd_dep_on_mclk;
357 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
358 table_info->mm_dep_table;
359
360 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
361 voltageId = sclk_table->entries[entryId].vddInd;
362 sclk_table->entries[entryId].vddc =
363 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
364 }
365
366 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
367 voltageId = mclk_table->entries[entryId].vddInd;
368 mclk_table->entries[entryId].vddc =
369 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
370 }
371
372 for (entryId = 0; entryId < mm_table->count; ++entryId) {
373 voltageId = mm_table->entries[entryId].vddcInd;
374 mm_table->entries[entryId].vddc =
375 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
376 }
377
378 return 0;
379
380 }
381
382 static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
383 {
384 /* Need to determine if we need calculated voltage. */
385 return 0;
386 }
387
388 static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
389 {
390 /* Need to determine if we need calculated voltage from mm table. */
391 return 0;
392 }
393
394 static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
395 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
396 {
397 uint32_t table_size, i, j;
398 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
399 table_size = lookup_table->count;
400
401 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
402 "Lookup table is empty", return -EINVAL);
403
404 /* Sorting voltages */
405 for (i = 0; i < table_size - 1; i++) {
406 for (j = i + 1; j > 0; j--) {
407 if (lookup_table->entries[j].us_vdd <
408 lookup_table->entries[j - 1].us_vdd) {
409 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
410 lookup_table->entries[j - 1] = lookup_table->entries[j];
411 lookup_table->entries[j] = tmp_voltage_lookup_record;
412 }
413 }
414 }
415
416 return 0;
417 }
418
419 static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
420 {
421 int result = 0;
422 int tmp_result;
423 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
424 struct phm_ppt_v1_information *table_info =
425 (struct phm_ppt_v1_information *)(hwmgr->pptable);
426
427 tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
428 table_info->vddc_lookup_table, &(data->vddc_leakage));
429 if (tmp_result)
430 result = tmp_result;
431
432 tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
433 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
434 if (tmp_result)
435 result = tmp_result;
436
437 tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
438 if (tmp_result)
439 result = tmp_result;
440
441 tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
442 if (tmp_result)
443 result = tmp_result;
444
445 tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
446 if (tmp_result)
447 result = tmp_result;
448
449 tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
450 if(tmp_result)
451 result = tmp_result;
452
453 return result;
454 }
455
456 static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
457 {
458 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
459 struct phm_ppt_v1_information *table_info =
460 (struct phm_ppt_v1_information *)(hwmgr->pptable);
461
462 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
463 table_info->vdd_dep_on_sclk;
464 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
465 table_info->vdd_dep_on_mclk;
466
467 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
468 "VDD dependency on SCLK table is missing. \
469 This table is mandatory", return -EINVAL);
470 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
471 "VDD dependency on SCLK table has to have is missing. \
472 This table is mandatory", return -EINVAL);
473
474 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
475 "VDD dependency on MCLK table is missing. \
476 This table is mandatory", return -EINVAL);
477 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
478 "VDD dependency on MCLK table has to have is missing. \
479 This table is mandatory", return -EINVAL);
480
481 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
482 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->
483 entries[allowed_sclk_vdd_table->count - 1].vddc;
484
485 table_info->max_clock_voltage_on_ac.sclk =
486 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
487 table_info->max_clock_voltage_on_ac.mclk =
488 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
489 table_info->max_clock_voltage_on_ac.vddc =
490 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
491 table_info->max_clock_voltage_on_ac.vddci =
492 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
493
494 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
495 table_info->max_clock_voltage_on_ac.sclk;
496 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
497 table_info->max_clock_voltage_on_ac.mclk;
498 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
499 table_info->max_clock_voltage_on_ac.vddc;
500 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
501 table_info->max_clock_voltage_on_ac.vddci;
502
503 return 0;
504 }
505
506 static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
507 {
508 uint32_t speedCntl = 0;
509
510 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
511 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
512 ixPCIE_LC_SPEED_CNTL);
513 return((uint16_t)PHM_GET_FIELD(speedCntl,
514 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
515 }
516
517 static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
518 {
519 uint32_t link_width;
520
521 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
522 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
523 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
524
525 PP_ASSERT_WITH_CODE((7 >= link_width),
526 "Invalid PCIe lane width!", return 0);
527
528 return decode_pcie_lane_width(link_width);
529 }
530
531 /** Patch the Boot State to match VBIOS boot clocks and voltage.
532 *
533 * @param hwmgr Pointer to the hardware manager.
534 * @param pPowerState The address of the PowerState instance being created.
535 *
536 */
537 static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
538 struct pp_hw_power_state *hw_ps)
539 {
540 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
541 struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
542 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
543 uint16_t size;
544 uint8_t frev, crev;
545 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
546
547 /* First retrieve the Boot clocks and VDDC from the firmware info table.
548 * We assume here that fw_info is unchanged if this call fails.
549 */
550 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
551 hwmgr->device, index,
552 &size, &frev, &crev);
553 if (!fw_info)
554 /* During a test, there is no firmware info table. */
555 return 0;
556
557 /* Patch the state. */
558 data->vbios_boot_state.sclk_bootup_value =
559 le32_to_cpu(fw_info->ulDefaultEngineClock);
560 data->vbios_boot_state.mclk_bootup_value =
561 le32_to_cpu(fw_info->ulDefaultMemoryClock);
562 data->vbios_boot_state.mvdd_bootup_value =
563 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
564 data->vbios_boot_state.vddc_bootup_value =
565 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
566 data->vbios_boot_state.vddci_bootup_value =
567 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
568 data->vbios_boot_state.pcie_gen_bootup_value =
569 fiji_get_current_pcie_speed(hwmgr);
570 data->vbios_boot_state.pcie_lane_bootup_value =
571 (uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
572
573 /* set boot power state */
574 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
575 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
576 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
577 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
578
579 return 0;
580 }
581
582 static int fiji_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
583 {
584 return phm_hwmgr_backend_fini(hwmgr);
585 }
586
587 static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
588 {
589 struct fiji_hwmgr *data;
590 uint32_t i;
591 struct phm_ppt_v1_information *table_info =
592 (struct phm_ppt_v1_information *)(hwmgr->pptable);
593 bool stay_in_boot;
594 int result;
595
596 data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
597 if (data == NULL)
598 return -ENOMEM;
599
600 hwmgr->backend = data;
601
602 data->dll_default_on = false;
603 data->sram_end = SMC_RAM_END;
604
605 for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
606 data->activity_target[i] = FIJI_AT_DFLT;
607
608 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
609
610 data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
611 data->mclk_dpm0_activity_target = 0xa;
612
613 data->sclk_dpm_key_disabled = 0;
614 data->mclk_dpm_key_disabled = 0;
615 data->pcie_dpm_key_disabled = 0;
616
617 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
618 PHM_PlatformCaps_UnTabledHardwareInterface);
619 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
620 PHM_PlatformCaps_TablelessHardwareInterface);
621
622 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
623 PHM_PlatformCaps_SclkDeepSleep);
624
625 data->gpio_debug = 0;
626
627 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
628 PHM_PlatformCaps_DynamicPatchPowerState);
629
630 /* need to set voltage control types before EVV patching */
631 data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
632 data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
633 data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
634
635 data->force_pcie_gen = PP_PCIEGenInvalid;
636
637 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
638 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
639 data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
640
641 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
642 PHM_PlatformCaps_EnableMVDDControl))
643 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
644 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
645 data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
646
647 if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
648 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
649 PHM_PlatformCaps_EnableMVDDControl);
650
651 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
652 PHM_PlatformCaps_ControlVDDCI)) {
653 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
654 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
655 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
656 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
657 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
658 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
659 }
660
661 if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
662 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
663 PHM_PlatformCaps_ControlVDDCI);
664
665 if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
666 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
667 PHM_PlatformCaps_ClockStretcher);
668
669 fiji_init_dpm_defaults(hwmgr);
670
671 /* Get leakage voltage based on leakage ID. */
672 fiji_get_evv_voltages(hwmgr);
673
674 /* Patch our voltage dependency table with actual leakage voltage
675 * We need to perform leakage translation before it's used by other functions
676 */
677 fiji_complete_dependency_tables(hwmgr);
678
679 /* Parse pptable data read from VBIOS */
680 fiji_set_private_data_based_on_pptable(hwmgr);
681
682 /* ULV Support */
683 data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
684
685 /* Initalize Dynamic State Adjustment Rule Settings */
686 result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
687
688 if (!result) {
689 data->uvd_enabled = false;
690 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
691 PHM_PlatformCaps_EnableSMU7ThermalManagement);
692 data->vddc_phase_shed_control = false;
693 }
694
695 stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
696 PHM_PlatformCaps_StayInBootState);
697
698 if (0 == result) {
699 struct cgs_system_info sys_info = {0};
700
701 data->is_tlu_enabled = false;
702 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
703 FIJI_MAX_HARDWARE_POWERLEVELS;
704 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
705 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
706
707 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
708 PHM_PlatformCaps_FanSpeedInTableIsRPM);
709
710 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp &&
711 hwmgr->thermal_controller.
712 advanceFanControlParameters.ucFanControlMode) {
713 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
714 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
715 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
716 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
717 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
718 table_info->cac_dtp_table->usOperatingTempMinLimit;
719 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
720 table_info->cac_dtp_table->usOperatingTempMaxLimit;
721 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
722 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
723 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
724 table_info->cac_dtp_table->usOperatingTempStep;
725 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
726 table_info->cac_dtp_table->usTargetOperatingTemp;
727
728 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
729 PHM_PlatformCaps_ODFuzzyFanControlSupport);
730 }
731
732 sys_info.size = sizeof(struct cgs_system_info);
733 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
734 result = cgs_query_system_info(hwmgr->device, &sys_info);
735 if (result)
736 data->pcie_gen_cap = AMDGPU_DEFAULT_PCIE_GEN_MASK;
737 else
738 data->pcie_gen_cap = (uint32_t)sys_info.value;
739 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
740 data->pcie_spc_cap = 20;
741 sys_info.size = sizeof(struct cgs_system_info);
742 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
743 result = cgs_query_system_info(hwmgr->device, &sys_info);
744 if (result)
745 data->pcie_lane_cap = AMDGPU_DEFAULT_PCIE_MLW_MASK;
746 else
747 data->pcie_lane_cap = (uint32_t)sys_info.value;
748 } else {
749 /* Ignore return value in here, we are cleaning up a mess. */
750 fiji_hwmgr_backend_fini(hwmgr);
751 }
752
753 return 0;
754 }
755
756 /**
757 * Read clock related registers.
758 *
759 * @param hwmgr the address of the powerplay hardware manager.
760 * @return always 0
761 */
762 static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
763 {
764 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
765
766 data->clock_registers.vCG_SPLL_FUNC_CNTL =
767 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
768 ixCG_SPLL_FUNC_CNTL);
769 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
770 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
771 ixCG_SPLL_FUNC_CNTL_2);
772 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
773 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
774 ixCG_SPLL_FUNC_CNTL_3);
775 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
776 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
777 ixCG_SPLL_FUNC_CNTL_4);
778 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
779 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
780 ixCG_SPLL_SPREAD_SPECTRUM);
781 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
782 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
783 ixCG_SPLL_SPREAD_SPECTRUM_2);
784
785 return 0;
786 }
787
788 /**
789 * Find out if memory is GDDR5.
790 *
791 * @param hwmgr the address of the powerplay hardware manager.
792 * @return always 0
793 */
794 static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
795 {
796 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
797 uint32_t temp;
798
799 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
800
801 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
802 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
803 MC_SEQ_MISC0_GDDR5_SHIFT));
804
805 return 0;
806 }
807
808 /**
809 * Enables Dynamic Power Management by SMC
810 *
811 * @param hwmgr the address of the powerplay hardware manager.
812 * @return always 0
813 */
814 static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
815 {
816 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
817 GENERAL_PWRMGT, STATIC_PM_EN, 1);
818
819 return 0;
820 }
821
822 /**
823 * Initialize PowerGating States for different engines
824 *
825 * @param hwmgr the address of the powerplay hardware manager.
826 * @return always 0
827 */
828 static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
829 {
830 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
831
832 data->uvd_power_gated = false;
833 data->vce_power_gated = false;
834 data->samu_power_gated = false;
835 data->acp_power_gated = false;
836 data->pg_acp_init = true;
837
838 return 0;
839 }
840
841 static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
842 {
843 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
844 data->low_sclk_interrupt_threshold = 0;
845
846 return 0;
847 }
848
849 static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
850 {
851 int tmp_result, result = 0;
852
853 tmp_result = fiji_read_clock_registers(hwmgr);
854 PP_ASSERT_WITH_CODE((0 == tmp_result),
855 "Failed to read clock registers!", result = tmp_result);
856
857 tmp_result = fiji_get_memory_type(hwmgr);
858 PP_ASSERT_WITH_CODE((0 == tmp_result),
859 "Failed to get memory type!", result = tmp_result);
860
861 tmp_result = fiji_enable_acpi_power_management(hwmgr);
862 PP_ASSERT_WITH_CODE((0 == tmp_result),
863 "Failed to enable ACPI power management!", result = tmp_result);
864
865 tmp_result = fiji_init_power_gate_state(hwmgr);
866 PP_ASSERT_WITH_CODE((0 == tmp_result),
867 "Failed to init power gate state!", result = tmp_result);
868
869 tmp_result = tonga_get_mc_microcode_version(hwmgr);
870 PP_ASSERT_WITH_CODE((0 == tmp_result),
871 "Failed to get MC microcode version!", result = tmp_result);
872
873 tmp_result = fiji_init_sclk_threshold(hwmgr);
874 PP_ASSERT_WITH_CODE((0 == tmp_result),
875 "Failed to init sclk threshold!", result = tmp_result);
876
877 return result;
878 }
879
880 /**
881 * Checks if we want to support voltage control
882 *
883 * @param hwmgr the address of the powerplay hardware manager.
884 */
885 static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
886 {
887 const struct fiji_hwmgr *data =
888 (const struct fiji_hwmgr *)(hwmgr->backend);
889
890 return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
891 }
892
893 /**
894 * Enable voltage control
895 *
896 * @param hwmgr the address of the powerplay hardware manager.
897 * @return always 0
898 */
899 static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
900 {
901 /* enable voltage control */
902 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
903 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
904
905 return 0;
906 }
907
908 /**
909 * Remove repeated voltage values and create table with unique values.
910 *
911 * @param hwmgr the address of the powerplay hardware manager.
912 * @param vol_table the pointer to changing voltage table
913 * @return 0 in success
914 */
915
916 static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
917 struct pp_atomctrl_voltage_table *vol_table)
918 {
919 uint32_t i, j;
920 uint16_t vvalue;
921 bool found = false;
922 struct pp_atomctrl_voltage_table *table;
923
924 PP_ASSERT_WITH_CODE((NULL != vol_table),
925 "Voltage Table empty.", return -EINVAL);
926 table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
927 GFP_KERNEL);
928
929 if (NULL == table)
930 return -ENOMEM;
931
932 table->mask_low = vol_table->mask_low;
933 table->phase_delay = vol_table->phase_delay;
934
935 for (i = 0; i < vol_table->count; i++) {
936 vvalue = vol_table->entries[i].value;
937 found = false;
938
939 for (j = 0; j < table->count; j++) {
940 if (vvalue == table->entries[j].value) {
941 found = true;
942 break;
943 }
944 }
945
946 if (!found) {
947 table->entries[table->count].value = vvalue;
948 table->entries[table->count].smio_low =
949 vol_table->entries[i].smio_low;
950 table->count++;
951 }
952 }
953
954 memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
955 kfree(table);
956
957 return 0;
958 }
959
960 static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
961 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
962 {
963 uint32_t i;
964 int result;
965 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
966 struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
967
968 PP_ASSERT_WITH_CODE((0 != dep_table->count),
969 "Voltage Dependency Table empty.", return -EINVAL);
970
971 vol_table->mask_low = 0;
972 vol_table->phase_delay = 0;
973 vol_table->count = dep_table->count;
974
975 for (i = 0; i < dep_table->count; i++) {
976 vol_table->entries[i].value = dep_table->entries[i].mvdd;
977 vol_table->entries[i].smio_low = 0;
978 }
979
980 result = fiji_trim_voltage_table(hwmgr, vol_table);
981 PP_ASSERT_WITH_CODE((0 == result),
982 "Failed to trim MVDD table.", return result);
983
984 return 0;
985 }
986
987 static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
988 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
989 {
990 uint32_t i;
991 int result;
992 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
993 struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
994
995 PP_ASSERT_WITH_CODE((0 != dep_table->count),
996 "Voltage Dependency Table empty.", return -EINVAL);
997
998 vol_table->mask_low = 0;
999 vol_table->phase_delay = 0;
1000 vol_table->count = dep_table->count;
1001
1002 for (i = 0; i < dep_table->count; i++) {
1003 vol_table->entries[i].value = dep_table->entries[i].vddci;
1004 vol_table->entries[i].smio_low = 0;
1005 }
1006
1007 result = fiji_trim_voltage_table(hwmgr, vol_table);
1008 PP_ASSERT_WITH_CODE((0 == result),
1009 "Failed to trim VDDCI table.", return result);
1010
1011 return 0;
1012 }
1013
1014 static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1015 phm_ppt_v1_voltage_lookup_table *lookup_table)
1016 {
1017 int i = 0;
1018 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1019 struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
1020
1021 PP_ASSERT_WITH_CODE((0 != lookup_table->count),
1022 "Voltage Lookup Table empty.", return -EINVAL);
1023
1024 vol_table->mask_low = 0;
1025 vol_table->phase_delay = 0;
1026
1027 vol_table->count = lookup_table->count;
1028
1029 for (i = 0; i < vol_table->count; i++) {
1030 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
1031 vol_table->entries[i].smio_low = 0;
1032 }
1033
1034 return 0;
1035 }
1036
1037 /* ---- Voltage Tables ----
1038 * If the voltage table would be bigger than
1039 * what will fit into the state table on
1040 * the SMC keep only the higher entries.
1041 */
1042 static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
1043 uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
1044 {
1045 unsigned int i, diff;
1046
1047 if (vol_table->count <= max_vol_steps)
1048 return;
1049
1050 diff = vol_table->count - max_vol_steps;
1051
1052 for (i = 0; i < max_vol_steps; i++)
1053 vol_table->entries[i] = vol_table->entries[i + diff];
1054
1055 vol_table->count = max_vol_steps;
1056
1057 return;
1058 }
1059
1060 /**
1061 * Create Voltage Tables.
1062 *
1063 * @param hwmgr the address of the powerplay hardware manager.
1064 * @return always 0
1065 */
1066 static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1067 {
1068 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1069 struct phm_ppt_v1_information *table_info =
1070 (struct phm_ppt_v1_information *)hwmgr->pptable;
1071 int result;
1072
1073 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1074 result = atomctrl_get_voltage_table_v3(hwmgr,
1075 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
1076 &(data->mvdd_voltage_table));
1077 PP_ASSERT_WITH_CODE((0 == result),
1078 "Failed to retrieve MVDD table.",
1079 return result);
1080 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1081 result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
1082 table_info->vdd_dep_on_mclk);
1083 PP_ASSERT_WITH_CODE((0 == result),
1084 "Failed to retrieve SVI2 MVDD table from dependancy table.",
1085 return result;);
1086 }
1087
1088 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1089 result = atomctrl_get_voltage_table_v3(hwmgr,
1090 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
1091 &(data->vddci_voltage_table));
1092 PP_ASSERT_WITH_CODE((0 == result),
1093 "Failed to retrieve VDDCI table.",
1094 return result);
1095 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1096 result = fiji_get_svi2_vddci_voltage_table(hwmgr,
1097 table_info->vdd_dep_on_mclk);
1098 PP_ASSERT_WITH_CODE((0 == result),
1099 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
1100 return result);
1101 }
1102
1103 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1104 result = fiji_get_svi2_vdd_voltage_table(hwmgr,
1105 table_info->vddc_lookup_table);
1106 PP_ASSERT_WITH_CODE((0 == result),
1107 "Failed to retrieve SVI2 VDDC table from lookup table.",
1108 return result);
1109 }
1110
1111 PP_ASSERT_WITH_CODE(
1112 (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
1113 "Too many voltage values for VDDC. Trimming to fit state table.",
1114 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1115 SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
1116
1117 PP_ASSERT_WITH_CODE(
1118 (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
1119 "Too many voltage values for VDDCI. Trimming to fit state table.",
1120 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1121 SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
1122
1123 PP_ASSERT_WITH_CODE(
1124 (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
1125 "Too many voltage values for MVDD. Trimming to fit state table.",
1126 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1127 SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
1128
1129 return 0;
1130 }
1131
1132 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
1133 {
1134 /* Program additional LP registers
1135 * that are no longer programmed by VBIOS
1136 */
1137 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
1138 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
1139 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
1140 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
1141 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
1142 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
1143 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
1144 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
1145 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
1146 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
1147 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
1148 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
1149 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
1150 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
1151
1152 return 0;
1153 }
1154
1155 /**
1156 * Programs static screed detection parameters
1157 *
1158 * @param hwmgr the address of the powerplay hardware manager.
1159 * @return always 0
1160 */
1161 static int fiji_program_static_screen_threshold_parameters(
1162 struct pp_hwmgr *hwmgr)
1163 {
1164 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1165
1166 /* Set static screen threshold unit */
1167 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1168 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
1169 data->static_screen_threshold_unit);
1170 /* Set static screen threshold */
1171 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1172 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
1173 data->static_screen_threshold);
1174
1175 return 0;
1176 }
1177
1178 /**
1179 * Setup display gap for glitch free memory clock switching.
1180 *
1181 * @param hwmgr the address of the powerplay hardware manager.
1182 * @return always 0
1183 */
1184 static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
1185 {
1186 uint32_t displayGap =
1187 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1188 ixCG_DISPLAY_GAP_CNTL);
1189
1190 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1191 DISP_GAP, DISPLAY_GAP_IGNORE);
1192
1193 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1194 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
1195
1196 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1197 ixCG_DISPLAY_GAP_CNTL, displayGap);
1198
1199 return 0;
1200 }
1201
1202 /**
1203 * Programs activity state transition voting clients
1204 *
1205 * @param hwmgr the address of the powerplay hardware manager.
1206 * @return always 0
1207 */
1208 static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
1209 {
1210 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1211
1212 /* Clear reset for voting clients before enabling DPM */
1213 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1214 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
1215 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1216 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
1217
1218 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1219 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
1220 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1221 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
1222 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1223 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
1224 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1225 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
1226 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1227 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
1228 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1229 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
1230 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1231 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
1232 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1233 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
1234
1235 return 0;
1236 }
1237
1238 static int fiji_clear_voting_clients(struct pp_hwmgr *hwmgr)
1239 {
1240 /* Reset voting clients before disabling DPM */
1241 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1242 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
1243 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1244 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
1245
1246 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1247 ixCG_FREQ_TRAN_VOTING_0, 0);
1248 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1249 ixCG_FREQ_TRAN_VOTING_1, 0);
1250 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1251 ixCG_FREQ_TRAN_VOTING_2, 0);
1252 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1253 ixCG_FREQ_TRAN_VOTING_3, 0);
1254 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1255 ixCG_FREQ_TRAN_VOTING_4, 0);
1256 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1257 ixCG_FREQ_TRAN_VOTING_5, 0);
1258 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1259 ixCG_FREQ_TRAN_VOTING_6, 0);
1260 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1261 ixCG_FREQ_TRAN_VOTING_7, 0);
1262
1263 return 0;
1264 }
1265
1266 /**
1267 * Get the location of various tables inside the FW image.
1268 *
1269 * @param hwmgr the address of the powerplay hardware manager.
1270 * @return always 0
1271 */
1272 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
1273 {
1274 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1275 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1276 uint32_t tmp;
1277 int result;
1278 bool error = false;
1279
1280 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1281 SMU7_FIRMWARE_HEADER_LOCATION +
1282 offsetof(SMU73_Firmware_Header, DpmTable),
1283 &tmp, data->sram_end);
1284
1285 if (0 == result)
1286 data->dpm_table_start = tmp;
1287
1288 error |= (0 != result);
1289
1290 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1291 SMU7_FIRMWARE_HEADER_LOCATION +
1292 offsetof(SMU73_Firmware_Header, SoftRegisters),
1293 &tmp, data->sram_end);
1294
1295 if (!result) {
1296 data->soft_regs_start = tmp;
1297 smu_data->soft_regs_start = tmp;
1298 }
1299
1300 error |= (0 != result);
1301
1302 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1303 SMU7_FIRMWARE_HEADER_LOCATION +
1304 offsetof(SMU73_Firmware_Header, mcRegisterTable),
1305 &tmp, data->sram_end);
1306
1307 if (!result)
1308 data->mc_reg_table_start = tmp;
1309
1310 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1311 SMU7_FIRMWARE_HEADER_LOCATION +
1312 offsetof(SMU73_Firmware_Header, FanTable),
1313 &tmp, data->sram_end);
1314
1315 if (!result)
1316 data->fan_table_start = tmp;
1317
1318 error |= (0 != result);
1319
1320 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1321 SMU7_FIRMWARE_HEADER_LOCATION +
1322 offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
1323 &tmp, data->sram_end);
1324
1325 if (!result)
1326 data->arb_table_start = tmp;
1327
1328 error |= (0 != result);
1329
1330 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1331 SMU7_FIRMWARE_HEADER_LOCATION +
1332 offsetof(SMU73_Firmware_Header, Version),
1333 &tmp, data->sram_end);
1334
1335 if (!result)
1336 hwmgr->microcode_version_info.SMC = tmp;
1337
1338 error |= (0 != result);
1339
1340 return error ? -1 : 0;
1341 }
1342
1343 /* Copy one arb setting to another and then switch the active set.
1344 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
1345 */
1346 static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
1347 uint32_t arb_src, uint32_t arb_dest)
1348 {
1349 uint32_t mc_arb_dram_timing;
1350 uint32_t mc_arb_dram_timing2;
1351 uint32_t burst_time;
1352 uint32_t mc_cg_config;
1353
1354 switch (arb_src) {
1355 case MC_CG_ARB_FREQ_F0:
1356 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1357 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1358 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1359 break;
1360 case MC_CG_ARB_FREQ_F1:
1361 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
1362 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
1363 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
1364 break;
1365 default:
1366 return -EINVAL;
1367 }
1368
1369 switch (arb_dest) {
1370 case MC_CG_ARB_FREQ_F0:
1371 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
1372 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
1373 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
1374 break;
1375 case MC_CG_ARB_FREQ_F1:
1376 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
1377 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
1378 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
1379 break;
1380 default:
1381 return -EINVAL;
1382 }
1383
1384 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
1385 mc_cg_config |= 0x0000000F;
1386 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
1387 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
1388
1389 return 0;
1390 }
1391
1392 /**
1393 * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
1394 *
1395 * @param hwmgr the address of the powerplay hardware manager.
1396 * @return if success then 0;
1397 */
1398 static int fiji_reset_to_default(struct pp_hwmgr *hwmgr)
1399 {
1400 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults);
1401 }
1402
1403 /**
1404 * Initial switch from ARB F0->F1
1405 *
1406 * @param hwmgr the address of the powerplay hardware manager.
1407 * @return always 0
1408 * This function is to be called from the SetPowerState table.
1409 */
1410 static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
1411 {
1412 return fiji_copy_and_switch_arb_sets(hwmgr,
1413 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
1414 }
1415
1416 static int fiji_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
1417 {
1418 uint32_t tmp;
1419
1420 tmp = (cgs_read_ind_register(hwmgr->device,
1421 CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
1422 0x0000ff00) >> 8;
1423
1424 if (tmp == MC_CG_ARB_FREQ_F0)
1425 return 0;
1426
1427 return fiji_copy_and_switch_arb_sets(hwmgr,
1428 tmp, MC_CG_ARB_FREQ_F0);
1429 }
1430
1431 static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
1432 struct fiji_single_dpm_table *dpm_table, uint32_t count)
1433 {
1434 int i;
1435 PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
1436 "Fatal error, can not set up single DPM table entries "
1437 "to exceed max number!",);
1438
1439 dpm_table->count = count;
1440 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
1441 dpm_table->dpm_levels[i].enabled = false;
1442
1443 return 0;
1444 }
1445
1446 static void fiji_setup_pcie_table_entry(
1447 struct fiji_single_dpm_table *dpm_table,
1448 uint32_t index, uint32_t pcie_gen,
1449 uint32_t pcie_lanes)
1450 {
1451 dpm_table->dpm_levels[index].value = pcie_gen;
1452 dpm_table->dpm_levels[index].param1 = pcie_lanes;
1453 dpm_table->dpm_levels[index].enabled = true;
1454 }
1455
1456 static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1457 {
1458 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1459 struct phm_ppt_v1_information *table_info =
1460 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1461 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1462 uint32_t i, max_entry;
1463
1464 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
1465 data->use_pcie_power_saving_levels), "No pcie performance levels!",
1466 return -EINVAL);
1467
1468 if (data->use_pcie_performance_levels &&
1469 !data->use_pcie_power_saving_levels) {
1470 data->pcie_gen_power_saving = data->pcie_gen_performance;
1471 data->pcie_lane_power_saving = data->pcie_lane_performance;
1472 } else if (!data->use_pcie_performance_levels &&
1473 data->use_pcie_power_saving_levels) {
1474 data->pcie_gen_performance = data->pcie_gen_power_saving;
1475 data->pcie_lane_performance = data->pcie_lane_power_saving;
1476 }
1477
1478 fiji_reset_single_dpm_table(hwmgr,
1479 &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
1480
1481 if (pcie_table != NULL) {
1482 /* max_entry is used to make sure we reserve one PCIE level
1483 * for boot level (fix for A+A PSPP issue).
1484 * If PCIE table from PPTable have ULV entry + 8 entries,
1485 * then ignore the last entry.*/
1486 max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
1487 SMU73_MAX_LEVELS_LINK : pcie_table->count;
1488 for (i = 1; i < max_entry; i++) {
1489 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
1490 get_pcie_gen_support(data->pcie_gen_cap,
1491 pcie_table->entries[i].gen_speed),
1492 get_pcie_lane_support(data->pcie_lane_cap,
1493 pcie_table->entries[i].lane_width));
1494 }
1495 data->dpm_table.pcie_speed_table.count = max_entry - 1;
1496 } else {
1497 /* Hardcode Pcie Table */
1498 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
1499 get_pcie_gen_support(data->pcie_gen_cap,
1500 PP_Min_PCIEGen),
1501 get_pcie_lane_support(data->pcie_lane_cap,
1502 PP_Max_PCIELane));
1503 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
1504 get_pcie_gen_support(data->pcie_gen_cap,
1505 PP_Min_PCIEGen),
1506 get_pcie_lane_support(data->pcie_lane_cap,
1507 PP_Max_PCIELane));
1508 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
1509 get_pcie_gen_support(data->pcie_gen_cap,
1510 PP_Max_PCIEGen),
1511 get_pcie_lane_support(data->pcie_lane_cap,
1512 PP_Max_PCIELane));
1513 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
1514 get_pcie_gen_support(data->pcie_gen_cap,
1515 PP_Max_PCIEGen),
1516 get_pcie_lane_support(data->pcie_lane_cap,
1517 PP_Max_PCIELane));
1518 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
1519 get_pcie_gen_support(data->pcie_gen_cap,
1520 PP_Max_PCIEGen),
1521 get_pcie_lane_support(data->pcie_lane_cap,
1522 PP_Max_PCIELane));
1523 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
1524 get_pcie_gen_support(data->pcie_gen_cap,
1525 PP_Max_PCIEGen),
1526 get_pcie_lane_support(data->pcie_lane_cap,
1527 PP_Max_PCIELane));
1528
1529 data->dpm_table.pcie_speed_table.count = 6;
1530 }
1531 /* Populate last level for boot PCIE level, but do not increment count. */
1532 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
1533 data->dpm_table.pcie_speed_table.count,
1534 get_pcie_gen_support(data->pcie_gen_cap,
1535 PP_Min_PCIEGen),
1536 get_pcie_lane_support(data->pcie_lane_cap,
1537 PP_Max_PCIELane));
1538
1539 return 0;
1540 }
1541
1542 /*
1543 * This function is to initalize all DPM state tables
1544 * for SMU7 based on the dependency table.
1545 * Dynamic state patching function will then trim these
1546 * state tables to the allowed range based
1547 * on the power policy or external client requests,
1548 * such as UVD request, etc.
1549 */
1550 static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1551 {
1552 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1553 struct phm_ppt_v1_information *table_info =
1554 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1555 uint32_t i;
1556
1557 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
1558 table_info->vdd_dep_on_sclk;
1559 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1560 table_info->vdd_dep_on_mclk;
1561
1562 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
1563 "SCLK dependency table is missing. This table is mandatory",
1564 return -EINVAL);
1565 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
1566 "SCLK dependency table has to have is missing. "
1567 "This table is mandatory",
1568 return -EINVAL);
1569
1570 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
1571 "MCLK dependency table is missing. This table is mandatory",
1572 return -EINVAL);
1573 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1574 "MCLK dependency table has to have is missing. "
1575 "This table is mandatory",
1576 return -EINVAL);
1577
1578 /* clear the state table to reset everything to default */
1579 fiji_reset_single_dpm_table(hwmgr,
1580 &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
1581 fiji_reset_single_dpm_table(hwmgr,
1582 &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
1583
1584 /* Initialize Sclk DPM table based on allow Sclk values */
1585 data->dpm_table.sclk_table.count = 0;
1586 for (i = 0; i < dep_sclk_table->count; i++) {
1587 if (i == 0 || data->dpm_table.sclk_table.dpm_levels
1588 [data->dpm_table.sclk_table.count - 1].value !=
1589 dep_sclk_table->entries[i].clk) {
1590 data->dpm_table.sclk_table.dpm_levels
1591 [data->dpm_table.sclk_table.count].value =
1592 dep_sclk_table->entries[i].clk;
1593 data->dpm_table.sclk_table.dpm_levels
1594 [data->dpm_table.sclk_table.count].enabled =
1595 (i == 0) ? true : false;
1596 data->dpm_table.sclk_table.count++;
1597 }
1598 }
1599
1600 /* Initialize Mclk DPM table based on allow Mclk values */
1601 data->dpm_table.mclk_table.count = 0;
1602 for (i=0; i<dep_mclk_table->count; i++) {
1603 if ( i==0 || data->dpm_table.mclk_table.dpm_levels
1604 [data->dpm_table.mclk_table.count - 1].value !=
1605 dep_mclk_table->entries[i].clk) {
1606 data->dpm_table.mclk_table.dpm_levels
1607 [data->dpm_table.mclk_table.count].value =
1608 dep_mclk_table->entries[i].clk;
1609 data->dpm_table.mclk_table.dpm_levels
1610 [data->dpm_table.mclk_table.count].enabled =
1611 (i == 0) ? true : false;
1612 data->dpm_table.mclk_table.count++;
1613 }
1614 }
1615
1616 /* setup PCIE gen speed levels */
1617 fiji_setup_default_pcie_table(hwmgr);
1618
1619 /* save a copy of the default DPM table */
1620 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1621 sizeof(struct fiji_dpm_table));
1622
1623 return 0;
1624 }
1625
1626 /**
1627 * @brief PhwFiji_GetVoltageOrder
1628 * Returns index of requested voltage record in lookup(table)
1629 * @param lookup_table - lookup list to search in
1630 * @param voltage - voltage to look for
1631 * @return 0 on success
1632 */
1633 uint8_t fiji_get_voltage_index(
1634 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
1635 {
1636 uint8_t count = (uint8_t) (lookup_table->count);
1637 uint8_t i;
1638
1639 PP_ASSERT_WITH_CODE((NULL != lookup_table),
1640 "Lookup Table empty.", return 0);
1641 PP_ASSERT_WITH_CODE((0 != count),
1642 "Lookup Table empty.", return 0);
1643
1644 for (i = 0; i < lookup_table->count; i++) {
1645 /* find first voltage equal or bigger than requested */
1646 if (lookup_table->entries[i].us_vdd >= voltage)
1647 return i;
1648 }
1649 /* voltage is bigger than max voltage in the table */
1650 return i - 1;
1651 }
1652
1653 /**
1654 * Preparation of vddc and vddgfx CAC tables for SMC.
1655 *
1656 * @param hwmgr the address of the hardware manager
1657 * @param table the SMC DPM table structure to be populated
1658 * @return always 0
1659 */
1660 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
1661 struct SMU73_Discrete_DpmTable *table)
1662 {
1663 uint32_t count;
1664 uint8_t index;
1665 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1666 struct phm_ppt_v1_information *table_info =
1667 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1668 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
1669 table_info->vddc_lookup_table;
1670 /* tables is already swapped, so in order to use the value from it,
1671 * we need to swap it back.
1672 * We are populating vddc CAC data to BapmVddc table
1673 * in split and merged mode
1674 */
1675 for( count = 0; count<lookup_table->count; count++) {
1676 index = fiji_get_voltage_index(lookup_table,
1677 data->vddc_voltage_table.entries[count].value);
1678 table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
1679 (lookup_table->entries[index].us_cac_low *
1680 VOLTAGE_SCALE)) / 25);
1681 table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
1682 (lookup_table->entries[index].us_cac_high *
1683 VOLTAGE_SCALE)) / 25);
1684 }
1685
1686 return 0;
1687 }
1688
1689 /**
1690 * Preparation of voltage tables for SMC.
1691 *
1692 * @param hwmgr the address of the hardware manager
1693 * @param table the SMC DPM table structure to be populated
1694 * @return always 0
1695 */
1696
1697 int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1698 struct SMU73_Discrete_DpmTable *table)
1699 {
1700 int result;
1701
1702 result = fiji_populate_cac_table(hwmgr, table);
1703 PP_ASSERT_WITH_CODE(0 == result,
1704 "can not populate CAC voltage tables to SMC",
1705 return -EINVAL);
1706
1707 return 0;
1708 }
1709
1710 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
1711 struct SMU73_Discrete_Ulv *state)
1712 {
1713 int result = 0;
1714 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1715 struct phm_ppt_v1_information *table_info =
1716 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1717
1718 state->CcPwrDynRm = 0;
1719 state->CcPwrDynRm1 = 0;
1720
1721 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
1722 state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
1723 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
1724
1725 state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
1726
1727 if (!result) {
1728 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
1729 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
1730 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
1731 }
1732 return result;
1733 }
1734
1735 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
1736 struct SMU73_Discrete_DpmTable *table)
1737 {
1738 return fiji_populate_ulv_level(hwmgr, &table->Ulv);
1739 }
1740
1741 static int32_t fiji_get_dpm_level_enable_mask_value(
1742 struct fiji_single_dpm_table* dpm_table)
1743 {
1744 int32_t i;
1745 int32_t mask = 0;
1746
1747 for (i = dpm_table->count; i > 0; i--) {
1748 mask = mask << 1;
1749 if (dpm_table->dpm_levels[i - 1].enabled)
1750 mask |= 0x1;
1751 else
1752 mask &= 0xFFFFFFFE;
1753 }
1754 return mask;
1755 }
1756
1757 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
1758 struct SMU73_Discrete_DpmTable *table)
1759 {
1760 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1761 struct fiji_dpm_table *dpm_table = &data->dpm_table;
1762 int i;
1763
1764 /* Index (dpm_table->pcie_speed_table.count)
1765 * is reserved for PCIE boot level. */
1766 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1767 table->LinkLevel[i].PcieGenSpeed =
1768 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1769 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
1770 dpm_table->pcie_speed_table.dpm_levels[i].param1);
1771 table->LinkLevel[i].EnabledForActivity = 1;
1772 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
1773 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
1774 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
1775 }
1776
1777 data->smc_state_table.LinkLevelCount =
1778 (uint8_t)dpm_table->pcie_speed_table.count;
1779 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1780 fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1781
1782 return 0;
1783 }
1784
1785 /**
1786 * Calculates the SCLK dividers using the provided engine clock
1787 *
1788 * @param hwmgr the address of the hardware manager
1789 * @param clock the engine clock to use to populate the structure
1790 * @param sclk the SMC SCLK structure to be populated
1791 */
1792 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
1793 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
1794 {
1795 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1796 struct pp_atomctrl_clock_dividers_vi dividers;
1797 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1798 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1799 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1800 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1801 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1802 uint32_t ref_clock;
1803 uint32_t ref_divider;
1804 uint32_t fbdiv;
1805 int result;
1806
1807 /* get the engine clock dividers for this clock value */
1808 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
1809
1810 PP_ASSERT_WITH_CODE(result == 0,
1811 "Error retrieving Engine Clock dividers from VBIOS.",
1812 return result);
1813
1814 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
1815 ref_clock = atomctrl_get_reference_clock(hwmgr);
1816 ref_divider = 1 + dividers.uc_pll_ref_div;
1817
1818 /* low 14 bits is fraction and high 12 bits is divider */
1819 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
1820
1821 /* SPLL_FUNC_CNTL setup */
1822 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1823 SPLL_REF_DIV, dividers.uc_pll_ref_div);
1824 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1825 SPLL_PDIV_A, dividers.uc_pll_post_div);
1826
1827 /* SPLL_FUNC_CNTL_3 setup*/
1828 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1829 SPLL_FB_DIV, fbdiv);
1830
1831 /* set to use fractional accumulation*/
1832 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1833 SPLL_DITHEN, 1);
1834
1835 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1836 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
1837 struct pp_atomctrl_internal_ss_info ssInfo;
1838
1839 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
1840 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
1841 vco_freq, &ssInfo)) {
1842 /*
1843 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
1844 * ss_info.speed_spectrum_rate -- in unit of khz
1845 *
1846 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
1847 */
1848 uint32_t clk_s = ref_clock * 5 /
1849 (ref_divider * ssInfo.speed_spectrum_rate);
1850 /* clkv = 2 * D * fbdiv / NS */
1851 uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
1852 fbdiv / (clk_s * 10000);
1853
1854 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1855 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
1856 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1857 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
1858 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
1859 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
1860 }
1861 }
1862
1863 sclk->SclkFrequency = clock;
1864 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
1865 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
1866 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
1867 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
1868 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
1869
1870 return 0;
1871 }
1872
1873 static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
1874 {
1875 uint32_t i;
1876 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1877 struct pp_atomctrl_voltage_table *vddci_table =
1878 &(data->vddci_voltage_table);
1879
1880 for (i = 0; i < vddci_table->count; i++) {
1881 if (vddci_table->entries[i].value >= vddci)
1882 return vddci_table->entries[i].value;
1883 }
1884
1885 PP_ASSERT_WITH_CODE(false,
1886 "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
1887 return vddci_table->entries[i-1].value);
1888 }
1889
1890 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
1891 struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
1892 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1893 {
1894 uint32_t i;
1895 uint16_t vddci;
1896 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1897
1898 *voltage = *mvdd = 0;
1899
1900 /* clock - voltage dependency table is empty table */
1901 if (dep_table->count == 0)
1902 return -EINVAL;
1903
1904 for (i = 0; i < dep_table->count; i++) {
1905 /* find first sclk bigger than request */
1906 if (dep_table->entries[i].clk >= clock) {
1907 *voltage |= (dep_table->entries[i].vddc *
1908 VOLTAGE_SCALE) << VDDC_SHIFT;
1909 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1910 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1911 VOLTAGE_SCALE) << VDDCI_SHIFT;
1912 else if (dep_table->entries[i].vddci)
1913 *voltage |= (dep_table->entries[i].vddci *
1914 VOLTAGE_SCALE) << VDDCI_SHIFT;
1915 else {
1916 vddci = fiji_find_closest_vddci(hwmgr,
1917 (dep_table->entries[i].vddc -
1918 (uint16_t)data->vddc_vddci_delta));
1919 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1920 }
1921
1922 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1923 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1924 VOLTAGE_SCALE;
1925 else if (dep_table->entries[i].mvdd)
1926 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1927 VOLTAGE_SCALE;
1928
1929 *voltage |= 1 << PHASES_SHIFT;
1930 return 0;
1931 }
1932 }
1933
1934 /* sclk is bigger than max sclk in the dependence table */
1935 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1936
1937 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1938 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1939 VOLTAGE_SCALE) << VDDCI_SHIFT;
1940 else if (dep_table->entries[i-1].vddci) {
1941 vddci = fiji_find_closest_vddci(hwmgr,
1942 (dep_table->entries[i].vddc -
1943 (uint16_t)data->vddc_vddci_delta));
1944 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1945 }
1946
1947 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1948 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1949 else if (dep_table->entries[i].mvdd)
1950 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1951
1952 return 0;
1953 }
1954
1955 static uint8_t fiji_get_sleep_divider_id_from_clock(uint32_t clock,
1956 uint32_t clock_insr)
1957 {
1958 uint8_t i;
1959 uint32_t temp;
1960 uint32_t min = max(clock_insr, (uint32_t)FIJI_MINIMUM_ENGINE_CLOCK);
1961
1962 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
1963 for (i = FIJI_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
1964 temp = clock >> i;
1965
1966 if (temp >= min || i == 0)
1967 break;
1968 }
1969 return i;
1970 }
1971 /**
1972 * Populates single SMC SCLK structure using the provided engine clock
1973 *
1974 * @param hwmgr the address of the hardware manager
1975 * @param clock the engine clock to use to populate the structure
1976 * @param sclk the SMC SCLK structure to be populated
1977 */
1978
1979 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1980 uint32_t clock, uint16_t sclk_al_threshold,
1981 struct SMU73_Discrete_GraphicsLevel *level)
1982 {
1983 int result;
1984 /* PP_Clocks minClocks; */
1985 uint32_t threshold, mvdd;
1986 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1987 struct phm_ppt_v1_information *table_info =
1988 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1989
1990 result = fiji_calculate_sclk_params(hwmgr, clock, level);
1991
1992 /* populate graphics levels */
1993 result = fiji_get_dependency_volt_by_clk(hwmgr,
1994 table_info->vdd_dep_on_sclk, clock,
1995 &level->MinVoltage, &mvdd);
1996 PP_ASSERT_WITH_CODE((0 == result),
1997 "can not find VDDC voltage value for "
1998 "VDDC engine clock dependency table",
1999 return result);
2000
2001 level->SclkFrequency = clock;
2002 level->ActivityLevel = sclk_al_threshold;
2003 level->CcPwrDynRm = 0;
2004 level->CcPwrDynRm1 = 0;
2005 level->EnabledForActivity = 0;
2006 level->EnabledForThrottle = 1;
2007 level->UpHyst = 10;
2008 level->DownHyst = 0;
2009 level->VoltageDownHyst = 0;
2010 level->PowerThrottle = 0;
2011
2012 threshold = clock * data->fast_watermark_threshold / 100;
2013
2014
2015 data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
2016
2017 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
2018 level->DeepSleepDivId = fiji_get_sleep_divider_id_from_clock(clock,
2019 hwmgr->display_config.min_core_set_clock_in_sr);
2020
2021
2022 /* Default to slow, highest DPM level will be
2023 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
2024 */
2025 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2026
2027 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
2028 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
2029 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
2030 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
2031 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
2032 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
2033 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
2034 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
2035 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
2036
2037 return 0;
2038 }
2039 /**
2040 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
2041 *
2042 * @param hwmgr the address of the hardware manager
2043 */
2044 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
2045 {
2046 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2047 struct fiji_dpm_table *dpm_table = &data->dpm_table;
2048 struct phm_ppt_v1_information *table_info =
2049 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2050 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
2051 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
2052 int result = 0;
2053 uint32_t array = data->dpm_table_start +
2054 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2055 uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
2056 SMU73_MAX_LEVELS_GRAPHICS;
2057 struct SMU73_Discrete_GraphicsLevel *levels =
2058 data->smc_state_table.GraphicsLevel;
2059 uint32_t i, max_entry;
2060 uint8_t hightest_pcie_level_enabled = 0,
2061 lowest_pcie_level_enabled = 0,
2062 mid_pcie_level_enabled = 0,
2063 count = 0;
2064
2065 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2066 result = fiji_populate_single_graphic_level(hwmgr,
2067 dpm_table->sclk_table.dpm_levels[i].value,
2068 (uint16_t)data->activity_target[i],
2069 &levels[i]);
2070 if (result)
2071 return result;
2072
2073 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2074 if (i > 1)
2075 levels[i].DeepSleepDivId = 0;
2076 }
2077
2078 /* Only enable level 0 for now.*/
2079 levels[0].EnabledForActivity = 1;
2080
2081 /* set highest level watermark to high */
2082 levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
2083 PPSMC_DISPLAY_WATERMARK_HIGH;
2084
2085 data->smc_state_table.GraphicsDpmLevelCount =
2086 (uint8_t)dpm_table->sclk_table.count;
2087 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2088 fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2089
2090 if (pcie_table != NULL) {
2091 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
2092 "There must be 1 or more PCIE levels defined in PPTable.",
2093 return -EINVAL);
2094 max_entry = pcie_entry_cnt - 1;
2095 for (i = 0; i < dpm_table->sclk_table.count; i++)
2096 levels[i].pcieDpmLevel =
2097 (uint8_t) ((i < max_entry)? i : max_entry);
2098 } else {
2099 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2100 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2101 (1 << (hightest_pcie_level_enabled + 1))) != 0 ))
2102 hightest_pcie_level_enabled++;
2103
2104 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2105 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2106 (1 << lowest_pcie_level_enabled)) == 0 ))
2107 lowest_pcie_level_enabled++;
2108
2109 while ((count < hightest_pcie_level_enabled) &&
2110 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2111 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
2112 count++;
2113
2114 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
2115 hightest_pcie_level_enabled?
2116 (lowest_pcie_level_enabled + 1 + count) :
2117 hightest_pcie_level_enabled;
2118
2119 /* set pcieDpmLevel to hightest_pcie_level_enabled */
2120 for(i = 2; i < dpm_table->sclk_table.count; i++)
2121 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
2122
2123 /* set pcieDpmLevel to lowest_pcie_level_enabled */
2124 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
2125
2126 /* set pcieDpmLevel to mid_pcie_level_enabled */
2127 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
2128 }
2129 /* level count will send to smc once at init smc table and never change */
2130 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2131 (uint32_t)array_size, data->sram_end);
2132
2133 return result;
2134 }
2135
2136 /**
2137 * MCLK Frequency Ratio
2138 * SEQ_CG_RESP Bit[31:24] - 0x0
2139 * Bit[27:24] \96 DDR3 Frequency ratio
2140 * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
2141 * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
2142 * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
2143 * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
2144 * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
2145 * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
2146 * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
2147 * 400 < 0x7 <= 450MHz, 800 < 0xF
2148 */
2149 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
2150 {
2151 if (mem_clock <= 10000) return 0x0;
2152 if (mem_clock <= 15000) return 0x1;
2153 if (mem_clock <= 20000) return 0x2;
2154 if (mem_clock <= 25000) return 0x3;
2155 if (mem_clock <= 30000) return 0x4;
2156 if (mem_clock <= 35000) return 0x5;
2157 if (mem_clock <= 40000) return 0x6;
2158 if (mem_clock <= 45000) return 0x7;
2159 if (mem_clock <= 50000) return 0x8;
2160 if (mem_clock <= 55000) return 0x9;
2161 if (mem_clock <= 60000) return 0xa;
2162 if (mem_clock <= 65000) return 0xb;
2163 if (mem_clock <= 70000) return 0xc;
2164 if (mem_clock <= 75000) return 0xd;
2165 if (mem_clock <= 80000) return 0xe;
2166 /* mem_clock > 800MHz */
2167 return 0xf;
2168 }
2169
2170 /**
2171 * Populates the SMC MCLK structure using the provided memory clock
2172 *
2173 * @param hwmgr the address of the hardware manager
2174 * @param clock the memory clock to use to populate the structure
2175 * @param sclk the SMC SCLK structure to be populated
2176 */
2177 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
2178 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
2179 {
2180 struct pp_atomctrl_memory_clock_param mem_param;
2181 int result;
2182
2183 result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
2184 PP_ASSERT_WITH_CODE((0 == result),
2185 "Failed to get Memory PLL Dividers.",);
2186
2187 /* Save the result data to outpupt memory level structure */
2188 mclk->MclkFrequency = clock;
2189 mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
2190 mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
2191
2192 return result;
2193 }
2194
2195 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
2196 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
2197 {
2198 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2199 struct phm_ppt_v1_information *table_info =
2200 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2201 int result = 0;
2202
2203 if (table_info->vdd_dep_on_mclk) {
2204 result = fiji_get_dependency_volt_by_clk(hwmgr,
2205 table_info->vdd_dep_on_mclk, clock,
2206 &mem_level->MinVoltage, &mem_level->MinMvdd);
2207 PP_ASSERT_WITH_CODE((0 == result),
2208 "can not find MinVddc voltage value from memory "
2209 "VDDC voltage dependency table", return result);
2210 }
2211
2212 mem_level->EnabledForThrottle = 1;
2213 mem_level->EnabledForActivity = 0;
2214 mem_level->UpHyst = 0;
2215 mem_level->DownHyst = 100;
2216 mem_level->VoltageDownHyst = 0;
2217 mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2218 mem_level->StutterEnable = false;
2219
2220 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2221
2222 /* enable stutter mode if all the follow condition applied
2223 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
2224 * &(data->DisplayTiming.numExistingDisplays));
2225 */
2226 data->display_timing.num_existing_displays = 1;
2227
2228 if ((data->mclk_stutter_mode_threshold) &&
2229 (clock <= data->mclk_stutter_mode_threshold) &&
2230 (!data->is_uvd_enabled) &&
2231 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
2232 STUTTER_ENABLE) & 0x1))
2233 mem_level->StutterEnable = true;
2234
2235 result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
2236 if (!result) {
2237 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
2238 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
2239 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
2240 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
2241 }
2242 return result;
2243 }
2244
2245 /**
2246 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2247 *
2248 * @param hwmgr the address of the hardware manager
2249 */
2250 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2251 {
2252 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2253 struct fiji_dpm_table *dpm_table = &data->dpm_table;
2254 int result;
2255 /* populate MCLK dpm table to SMU7 */
2256 uint32_t array = data->dpm_table_start +
2257 offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2258 uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
2259 SMU73_MAX_LEVELS_MEMORY;
2260 struct SMU73_Discrete_MemoryLevel *levels =
2261 data->smc_state_table.MemoryLevel;
2262 uint32_t i;
2263
2264 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2265 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2266 "can not populate memory level as memory clock is zero",
2267 return -EINVAL);
2268 result = fiji_populate_single_memory_level(hwmgr,
2269 dpm_table->mclk_table.dpm_levels[i].value,
2270 &levels[i]);
2271 if (result)
2272 return result;
2273 }
2274
2275 /* Only enable level 0 for now. */
2276 levels[0].EnabledForActivity = 1;
2277
2278 /* in order to prevent MC activity from stutter mode to push DPM up.
2279 * the UVD change complements this by putting the MCLK in
2280 * a higher state by default such that we are not effected by
2281 * up threshold or and MCLK DPM latency.
2282 */
2283 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
2284 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
2285
2286 data->smc_state_table.MemoryDpmLevelCount =
2287 (uint8_t)dpm_table->mclk_table.count;
2288 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
2289 fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2290 /* set highest level watermark to high */
2291 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
2292 PPSMC_DISPLAY_WATERMARK_HIGH;
2293
2294 /* level count will send to smc once at init smc table and never change */
2295 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2296 (uint32_t)array_size, data->sram_end);
2297
2298 return result;
2299 }
2300
2301 /**
2302 * Populates the SMC MVDD structure using the provided memory clock.
2303 *
2304 * @param hwmgr the address of the hardware manager
2305 * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2306 * @param voltage the SMC VOLTAGE structure to be populated
2307 */
2308 int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
2309 uint32_t mclk, SMIO_Pattern *smio_pat)
2310 {
2311 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2312 struct phm_ppt_v1_information *table_info =
2313 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2314 uint32_t i = 0;
2315
2316 if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2317 /* find mvdd value which clock is more than request */
2318 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
2319 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
2320 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
2321 break;
2322 }
2323 }
2324 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
2325 "MVDD Voltage is outside the supported range.",
2326 return -EINVAL);
2327 } else
2328 return -EINVAL;
2329
2330 return 0;
2331 }
2332
2333 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
2334 SMU73_Discrete_DpmTable *table)
2335 {
2336 int result = 0;
2337 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2338 struct phm_ppt_v1_information *table_info =
2339 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2340 struct pp_atomctrl_clock_dividers_vi dividers;
2341 SMIO_Pattern vol_level;
2342 uint32_t mvdd;
2343 uint16_t us_mvdd;
2344 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2345 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2346
2347 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2348
2349 if (!data->sclk_dpm_key_disabled) {
2350 /* Get MinVoltage and Frequency from DPM0,
2351 * already converted to SMC_UL */
2352 table->ACPILevel.SclkFrequency =
2353 data->dpm_table.sclk_table.dpm_levels[0].value;
2354 result = fiji_get_dependency_volt_by_clk(hwmgr,
2355 table_info->vdd_dep_on_sclk,
2356 table->ACPILevel.SclkFrequency,
2357 &table->ACPILevel.MinVoltage, &mvdd);
2358 PP_ASSERT_WITH_CODE((0 == result),
2359 "Cannot find ACPI VDDC voltage value "
2360 "in Clock Dependency Table",);
2361 } else {
2362 table->ACPILevel.SclkFrequency =
2363 data->vbios_boot_state.sclk_bootup_value;
2364 table->ACPILevel.MinVoltage =
2365 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
2366 }
2367
2368 /* get the engine clock dividers for this clock value */
2369 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2370 table->ACPILevel.SclkFrequency, &dividers);
2371 PP_ASSERT_WITH_CODE(result == 0,
2372 "Error retrieving Engine Clock dividers from VBIOS.",
2373 return result);
2374
2375 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2376 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2377 table->ACPILevel.DeepSleepDivId = 0;
2378
2379 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2380 SPLL_PWRON, 0);
2381 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2382 SPLL_RESET, 1);
2383 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
2384 SCLK_MUX_SEL, 4);
2385
2386 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2387 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2388 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2389 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2390 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2391 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2392 table->ACPILevel.CcPwrDynRm = 0;
2393 table->ACPILevel.CcPwrDynRm1 = 0;
2394
2395 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2396 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2397 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
2398 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2399 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2400 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2401 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2402 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2403 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2404 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2405 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2406
2407 if (!data->mclk_dpm_key_disabled) {
2408 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
2409 table->MemoryACPILevel.MclkFrequency =
2410 data->dpm_table.mclk_table.dpm_levels[0].value;
2411 result = fiji_get_dependency_volt_by_clk(hwmgr,
2412 table_info->vdd_dep_on_mclk,
2413 table->MemoryACPILevel.MclkFrequency,
2414 &table->MemoryACPILevel.MinVoltage, &mvdd);
2415 PP_ASSERT_WITH_CODE((0 == result),
2416 "Cannot find ACPI VDDCI voltage value "
2417 "in Clock Dependency Table",);
2418 } else {
2419 table->MemoryACPILevel.MclkFrequency =
2420 data->vbios_boot_state.mclk_bootup_value;
2421 table->MemoryACPILevel.MinVoltage =
2422 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
2423 }
2424
2425 us_mvdd = 0;
2426 if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
2427 (data->mclk_dpm_key_disabled))
2428 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
2429 else {
2430 if (!fiji_populate_mvdd_value(hwmgr,
2431 data->dpm_table.mclk_table.dpm_levels[0].value,
2432 &vol_level))
2433 us_mvdd = vol_level.Voltage;
2434 }
2435
2436 table->MemoryACPILevel.MinMvdd =
2437 PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
2438
2439 table->MemoryACPILevel.EnabledForThrottle = 0;
2440 table->MemoryACPILevel.EnabledForActivity = 0;
2441 table->MemoryACPILevel.UpHyst = 0;
2442 table->MemoryACPILevel.DownHyst = 100;
2443 table->MemoryACPILevel.VoltageDownHyst = 0;
2444 table->MemoryACPILevel.ActivityLevel =
2445 PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2446
2447 table->MemoryACPILevel.StutterEnable = false;
2448 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
2449 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
2450
2451 return result;
2452 }
2453
2454 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
2455 SMU73_Discrete_DpmTable *table)
2456 {
2457 int result = -EINVAL;
2458 uint8_t count;
2459 struct pp_atomctrl_clock_dividers_vi dividers;
2460 struct phm_ppt_v1_information *table_info =
2461 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2462 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2463 table_info->mm_dep_table;
2464 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2465
2466 table->VceLevelCount = (uint8_t)(mm_table->count);
2467 table->VceBootLevel = 0;
2468
2469 for(count = 0; count < table->VceLevelCount; count++) {
2470 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
2471 table->VceLevel[count].MinVoltage = 0;
2472 table->VceLevel[count].MinVoltage |=
2473 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
2474 table->VceLevel[count].MinVoltage |=
2475 ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
2476 VOLTAGE_SCALE) << VDDCI_SHIFT;
2477 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2478
2479 /*retrieve divider value for VBIOS */
2480 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2481 table->VceLevel[count].Frequency, &dividers);
2482 PP_ASSERT_WITH_CODE((0 == result),
2483 "can not find divide id for VCE engine clock",
2484 return result);
2485
2486 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2487
2488 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
2489 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
2490 }
2491 return result;
2492 }
2493
2494 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
2495 SMU73_Discrete_DpmTable *table)
2496 {
2497 int result = -EINVAL;
2498 uint8_t count;
2499 struct pp_atomctrl_clock_dividers_vi dividers;
2500 struct phm_ppt_v1_information *table_info =
2501 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2502 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2503 table_info->mm_dep_table;
2504 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2505
2506 table->AcpLevelCount = (uint8_t)(mm_table->count);
2507 table->AcpBootLevel = 0;
2508
2509 for (count = 0; count < table->AcpLevelCount; count++) {
2510 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
2511 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2512 VOLTAGE_SCALE) << VDDC_SHIFT;
2513 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2514 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2515 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2516
2517 /* retrieve divider value for VBIOS */
2518 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2519 table->AcpLevel[count].Frequency, &dividers);
2520 PP_ASSERT_WITH_CODE((0 == result),
2521 "can not find divide id for engine clock", return result);
2522
2523 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2524
2525 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
2526 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
2527 }
2528 return result;
2529 }
2530
2531 static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
2532 SMU73_Discrete_DpmTable *table)
2533 {
2534 int result = -EINVAL;
2535 uint8_t count;
2536 struct pp_atomctrl_clock_dividers_vi dividers;
2537 struct phm_ppt_v1_information *table_info =
2538 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2539 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2540 table_info->mm_dep_table;
2541 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2542
2543 table->SamuBootLevel = 0;
2544 table->SamuLevelCount = (uint8_t)(mm_table->count);
2545
2546 for (count = 0; count < table->SamuLevelCount; count++) {
2547 /* not sure whether we need evclk or not */
2548 table->SamuLevel[count].MinVoltage = 0;
2549 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
2550 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2551 VOLTAGE_SCALE) << VDDC_SHIFT;
2552 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2553 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2554 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2555
2556 /* retrieve divider value for VBIOS */
2557 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2558 table->SamuLevel[count].Frequency, &dividers);
2559 PP_ASSERT_WITH_CODE((0 == result),
2560 "can not find divide id for samu clock", return result);
2561
2562 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2563
2564 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
2565 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
2566 }
2567 return result;
2568 }
2569
2570 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
2571 int32_t eng_clock, int32_t mem_clock,
2572 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
2573 {
2574 uint32_t dram_timing;
2575 uint32_t dram_timing2;
2576 uint32_t burstTime;
2577 ULONG state, trrds, trrdl;
2578 int result;
2579
2580 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
2581 eng_clock, mem_clock);
2582 PP_ASSERT_WITH_CODE(result == 0,
2583 "Error calling VBIOS to set DRAM_TIMING.", return result);
2584
2585 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
2586 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
2587 burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
2588
2589 state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
2590 trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
2591 trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
2592
2593 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
2594 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
2595 arb_regs->McArbBurstTime = (uint8_t)burstTime;
2596 arb_regs->TRRDS = (uint8_t)trrds;
2597 arb_regs->TRRDL = (uint8_t)trrdl;
2598
2599 return 0;
2600 }
2601
2602 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
2603 {
2604 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2605 struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
2606 uint32_t i, j;
2607 int result = 0;
2608
2609 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
2610 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
2611 result = fiji_populate_memory_timing_parameters(hwmgr,
2612 data->dpm_table.sclk_table.dpm_levels[i].value,
2613 data->dpm_table.mclk_table.dpm_levels[j].value,
2614 &arb_regs.entries[i][j]);
2615 if (result)
2616 break;
2617 }
2618 }
2619
2620 if (!result)
2621 result = fiji_copy_bytes_to_smc(
2622 hwmgr->smumgr,
2623 data->arb_table_start,
2624 (uint8_t *)&arb_regs,
2625 sizeof(SMU73_Discrete_MCArbDramTimingTable),
2626 data->sram_end);
2627 return result;
2628 }
2629
2630 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
2631 struct SMU73_Discrete_DpmTable *table)
2632 {
2633 int result = -EINVAL;
2634 uint8_t count;
2635 struct pp_atomctrl_clock_dividers_vi dividers;
2636 struct phm_ppt_v1_information *table_info =
2637 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2638 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2639 table_info->mm_dep_table;
2640 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2641
2642 table->UvdLevelCount = (uint8_t)(mm_table->count);
2643 table->UvdBootLevel = 0;
2644
2645 for (count = 0; count < table->UvdLevelCount; count++) {
2646 table->UvdLevel[count].MinVoltage = 0;
2647 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
2648 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
2649 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2650 VOLTAGE_SCALE) << VDDC_SHIFT;
2651 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2652 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2653 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2654
2655 /* retrieve divider value for VBIOS */
2656 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2657 table->UvdLevel[count].VclkFrequency, &dividers);
2658 PP_ASSERT_WITH_CODE((0 == result),
2659 "can not find divide id for Vclk clock", return result);
2660
2661 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
2662
2663 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2664 table->UvdLevel[count].DclkFrequency, &dividers);
2665 PP_ASSERT_WITH_CODE((0 == result),
2666 "can not find divide id for Dclk clock", return result);
2667
2668 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
2669
2670 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
2671 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
2672 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
2673
2674 }
2675 return result;
2676 }
2677
2678 static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
2679 uint32_t value, uint32_t *boot_level)
2680 {
2681 int result = -EINVAL;
2682 uint32_t i;
2683
2684 for (i = 0; i < table->count; i++) {
2685 if (value == table->dpm_levels[i].value) {
2686 *boot_level = i;
2687 result = 0;
2688 }
2689 }
2690 return result;
2691 }
2692
2693 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2694 struct SMU73_Discrete_DpmTable *table)
2695 {
2696 int result = 0;
2697 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2698
2699 table->GraphicsBootLevel = 0;
2700 table->MemoryBootLevel = 0;
2701
2702 /* find boot level from dpm table */
2703 result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
2704 data->vbios_boot_state.sclk_bootup_value,
2705 (uint32_t *)&(table->GraphicsBootLevel));
2706
2707 result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
2708 data->vbios_boot_state.mclk_bootup_value,
2709 (uint32_t *)&(table->MemoryBootLevel));
2710
2711 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
2712 VOLTAGE_SCALE;
2713 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
2714 VOLTAGE_SCALE;
2715 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
2716 VOLTAGE_SCALE;
2717
2718 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
2719 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
2720 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2721
2722 return 0;
2723 }
2724
2725 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
2726 {
2727 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2728 struct phm_ppt_v1_information *table_info =
2729 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2730 uint8_t count, level;
2731
2732 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
2733 for (level = 0; level < count; level++) {
2734 if(table_info->vdd_dep_on_sclk->entries[level].clk >=
2735 data->vbios_boot_state.sclk_bootup_value) {
2736 data->smc_state_table.GraphicsBootLevel = level;
2737 break;
2738 }
2739 }
2740
2741 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
2742 for (level = 0; level < count; level++) {
2743 if(table_info->vdd_dep_on_mclk->entries[level].clk >=
2744 data->vbios_boot_state.mclk_bootup_value) {
2745 data->smc_state_table.MemoryBootLevel = level;
2746 break;
2747 }
2748 }
2749
2750 return 0;
2751 }
2752
2753 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2754 {
2755 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
2756 volt_with_cks, value;
2757 uint16_t clock_freq_u16;
2758 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2759 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
2760 volt_offset = 0;
2761 struct phm_ppt_v1_information *table_info =
2762 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2763 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2764 table_info->vdd_dep_on_sclk;
2765
2766 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
2767
2768 /* Read SMU_Eefuse to read and calculate RO and determine
2769 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
2770 */
2771 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2772 ixSMU_EFUSE_0 + (146 * 4));
2773 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2774 ixSMU_EFUSE_0 + (148 * 4));
2775 efuse &= 0xFF000000;
2776 efuse = efuse >> 24;
2777 efuse2 &= 0xF;
2778
2779 if (efuse2 == 1)
2780 ro = (2300 - 1350) * efuse / 255 + 1350;
2781 else
2782 ro = (2500 - 1000) * efuse / 255 + 1000;
2783
2784 if (ro >= 1660)
2785 type = 0;
2786 else
2787 type = 1;
2788
2789 /* Populate Stretch amount */
2790 data->smc_state_table.ClockStretcherAmount = stretch_amount;
2791
2792 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
2793 for (i = 0; i < sclk_table->count; i++) {
2794 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
2795 sclk_table->entries[i].cks_enable << i;
2796 volt_without_cks = (uint32_t)((14041 *
2797 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
2798 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
2799 volt_with_cks = (uint32_t)((13946 *
2800 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
2801 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
2802 if (volt_without_cks >= volt_with_cks)
2803 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
2804 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
2805 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
2806 }
2807
2808 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2809 STRETCH_ENABLE, 0x0);
2810 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2811 masterReset, 0x1);
2812 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2813 staticEnable, 0x1);
2814 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2815 masterReset, 0x0);
2816
2817 /* Populate CKS Lookup Table */
2818 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
2819 stretch_amount2 = 0;
2820 else if (stretch_amount == 3 || stretch_amount == 4)
2821 stretch_amount2 = 1;
2822 else {
2823 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2824 PHM_PlatformCaps_ClockStretcher);
2825 PP_ASSERT_WITH_CODE(false,
2826 "Stretch Amount in PPTable not supported\n",
2827 return -EINVAL);
2828 }
2829
2830 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2831 ixPWR_CKS_CNTL);
2832 value &= 0xFFC2FF87;
2833 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
2834 fiji_clock_stretcher_lookup_table[stretch_amount2][0];
2835 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
2836 fiji_clock_stretcher_lookup_table[stretch_amount2][1];
2837 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
2838 GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
2839 SclkFrequency) / 100);
2840 if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
2841 clock_freq_u16 &&
2842 fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
2843 clock_freq_u16) {
2844 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
2845 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
2846 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
2847 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
2848 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
2849 value |= (fiji_clock_stretch_amount_conversion
2850 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
2851 [stretch_amount]) << 3;
2852 }
2853 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2854 CKS_LOOKUPTableEntry[0].minFreq);
2855 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2856 CKS_LOOKUPTableEntry[0].maxFreq);
2857 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
2858 fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
2859 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
2860 (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
2861
2862 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2863 ixPWR_CKS_CNTL, value);
2864
2865 /* Populate DDT Lookup Table */
2866 for (i = 0; i < 4; i++) {
2867 /* Assign the minimum and maximum VID stored
2868 * in the last row of Clock Stretcher Voltage Table.
2869 */
2870 data->smc_state_table.ClockStretcherDataTable.
2871 ClockStretcherDataTableEntry[i].minVID =
2872 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
2873 data->smc_state_table.ClockStretcherDataTable.
2874 ClockStretcherDataTableEntry[i].maxVID =
2875 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
2876 /* Loop through each SCLK and check the frequency
2877 * to see if it lies within the frequency for clock stretcher.
2878 */
2879 for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
2880 cks_setting = 0;
2881 clock_freq = PP_SMC_TO_HOST_UL(
2882 data->smc_state_table.GraphicsLevel[j].SclkFrequency);
2883 /* Check the allowed frequency against the sclk level[j].
2884 * Sclk's endianness has already been converted,
2885 * and it's in 10Khz unit,
2886 * as opposed to Data table, which is in Mhz unit.
2887 */
2888 if (clock_freq >=
2889 (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
2890 cks_setting |= 0x2;
2891 if (clock_freq <
2892 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
2893 cks_setting |= 0x1;
2894 }
2895 data->smc_state_table.ClockStretcherDataTable.
2896 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
2897 }
2898 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
2899 ClockStretcherDataTable.
2900 ClockStretcherDataTableEntry[i].setting);
2901 }
2902
2903 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
2904 value &= 0xFFFFFFFE;
2905 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
2906
2907 return 0;
2908 }
2909
2910 /**
2911 * Populates the SMC VRConfig field in DPM table.
2912 *
2913 * @param hwmgr the address of the hardware manager
2914 * @param table the SMC DPM table structure to be populated
2915 * @return always 0
2916 */
2917 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
2918 struct SMU73_Discrete_DpmTable *table)
2919 {
2920 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2921 uint16_t config;
2922
2923 config = VR_MERGED_WITH_VDDC;
2924 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
2925
2926 /* Set Vddc Voltage Controller */
2927 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
2928 config = VR_SVI2_PLANE_1;
2929 table->VRConfig |= config;
2930 } else {
2931 PP_ASSERT_WITH_CODE(false,
2932 "VDDC should be on SVI2 control in merged mode!",);
2933 }
2934 /* Set Vddci Voltage Controller */
2935 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
2936 config = VR_SVI2_PLANE_2; /* only in merged mode */
2937 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2938 } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
2939 config = VR_SMIO_PATTERN_1;
2940 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2941 } else {
2942 config = VR_STATIC_VOLTAGE;
2943 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2944 }
2945 /* Set Mvdd Voltage Controller */
2946 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
2947 config = VR_SVI2_PLANE_2;
2948 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2949 } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
2950 config = VR_SMIO_PATTERN_2;
2951 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2952 } else {
2953 config = VR_STATIC_VOLTAGE;
2954 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2955 }
2956
2957 return 0;
2958 }
2959
2960 /**
2961 * Initializes the SMC table and uploads it
2962 *
2963 * @param hwmgr the address of the powerplay hardware manager.
2964 * @param pInput the pointer to input data (PowerState)
2965 * @return always 0
2966 */
2967 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
2968 {
2969 int result;
2970 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2971 struct phm_ppt_v1_information *table_info =
2972 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2973 struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
2974 const struct fiji_ulv_parm *ulv = &(data->ulv);
2975 uint8_t i;
2976 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
2977
2978 result = fiji_setup_default_dpm_tables(hwmgr);
2979 PP_ASSERT_WITH_CODE(0 == result,
2980 "Failed to setup default DPM tables!", return result);
2981
2982 if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
2983 fiji_populate_smc_voltage_tables(hwmgr, table);
2984
2985 table->SystemFlags = 0;
2986
2987 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2988 PHM_PlatformCaps_AutomaticDCTransition))
2989 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2990
2991 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2992 PHM_PlatformCaps_StepVddc))
2993 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2994
2995 if (data->is_memory_gddr5)
2996 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2997
2998 if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2999 result = fiji_populate_ulv_state(hwmgr, table);
3000 PP_ASSERT_WITH_CODE(0 == result,
3001 "Failed to initialize ULV state!", return result);
3002 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3003 ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
3004 }
3005
3006 result = fiji_populate_smc_link_level(hwmgr, table);
3007 PP_ASSERT_WITH_CODE(0 == result,
3008 "Failed to initialize Link Level!", return result);
3009
3010 result = fiji_populate_all_graphic_levels(hwmgr);
3011 PP_ASSERT_WITH_CODE(0 == result,
3012 "Failed to initialize Graphics Level!", return result);
3013
3014 result = fiji_populate_all_memory_levels(hwmgr);
3015 PP_ASSERT_WITH_CODE(0 == result,
3016 "Failed to initialize Memory Level!", return result);
3017
3018 result = fiji_populate_smc_acpi_level(hwmgr, table);
3019 PP_ASSERT_WITH_CODE(0 == result,
3020 "Failed to initialize ACPI Level!", return result);
3021
3022 result = fiji_populate_smc_vce_level(hwmgr, table);
3023 PP_ASSERT_WITH_CODE(0 == result,
3024 "Failed to initialize VCE Level!", return result);
3025
3026 result = fiji_populate_smc_acp_level(hwmgr, table);
3027 PP_ASSERT_WITH_CODE(0 == result,
3028 "Failed to initialize ACP Level!", return result);
3029
3030 result = fiji_populate_smc_samu_level(hwmgr, table);
3031 PP_ASSERT_WITH_CODE(0 == result,
3032 "Failed to initialize SAMU Level!", return result);
3033
3034 /* Since only the initial state is completely set up at this point
3035 * (the other states are just copies of the boot state) we only
3036 * need to populate the ARB settings for the initial state.
3037 */
3038 result = fiji_program_memory_timing_parameters(hwmgr);
3039 PP_ASSERT_WITH_CODE(0 == result,
3040 "Failed to Write ARB settings for the initial state.", return result);
3041
3042 result = fiji_populate_smc_uvd_level(hwmgr, table);
3043 PP_ASSERT_WITH_CODE(0 == result,
3044 "Failed to initialize UVD Level!", return result);
3045
3046 result = fiji_populate_smc_boot_level(hwmgr, table);
3047 PP_ASSERT_WITH_CODE(0 == result,
3048 "Failed to initialize Boot Level!", return result);
3049
3050 result = fiji_populate_smc_initailial_state(hwmgr);
3051 PP_ASSERT_WITH_CODE(0 == result,
3052 "Failed to initialize Boot State!", return result);
3053
3054 result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
3055 PP_ASSERT_WITH_CODE(0 == result,
3056 "Failed to populate BAPM Parameters!", return result);
3057
3058 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3059 PHM_PlatformCaps_ClockStretcher)) {
3060 result = fiji_populate_clock_stretcher_data_table(hwmgr);
3061 PP_ASSERT_WITH_CODE(0 == result,
3062 "Failed to populate Clock Stretcher Data Table!",
3063 return result);
3064 }
3065
3066 table->GraphicsVoltageChangeEnable = 1;
3067 table->GraphicsThermThrottleEnable = 1;
3068 table->GraphicsInterval = 1;
3069 table->VoltageInterval = 1;
3070 table->ThermalInterval = 1;
3071 table->TemperatureLimitHigh =
3072 table_info->cac_dtp_table->usTargetOperatingTemp *
3073 FIJI_Q88_FORMAT_CONVERSION_UNIT;
3074 table->TemperatureLimitLow =
3075 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
3076 FIJI_Q88_FORMAT_CONVERSION_UNIT;
3077 table->MemoryVoltageChangeEnable = 1;
3078 table->MemoryInterval = 1;
3079 table->VoltageResponseTime = 0;
3080 table->PhaseResponseTime = 0;
3081 table->MemoryThermThrottleEnable = 1;
3082 table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
3083 table->PCIeGenInterval = 1;
3084 table->VRConfig = 0;
3085
3086 result = fiji_populate_vr_config(hwmgr, table);
3087 PP_ASSERT_WITH_CODE(0 == result,
3088 "Failed to populate VRConfig setting!", return result);
3089
3090 table->ThermGpio = 17;
3091 table->SclkStepSize = 0x4000;
3092
3093 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
3094 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
3095 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3096 PHM_PlatformCaps_RegulatorHot);
3097 } else {
3098 table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
3099 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3100 PHM_PlatformCaps_RegulatorHot);
3101 }
3102
3103 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
3104 &gpio_pin)) {
3105 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
3106 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3107 PHM_PlatformCaps_AutomaticDCTransition);
3108 } else {
3109 table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
3110 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3111 PHM_PlatformCaps_AutomaticDCTransition);
3112 }
3113
3114 /* Thermal Output GPIO */
3115 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
3116 &gpio_pin)) {
3117 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3118 PHM_PlatformCaps_ThermalOutGPIO);
3119
3120 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
3121
3122 /* For porlarity read GPIOPAD_A with assigned Gpio pin
3123 * since VBIOS will program this register to set 'inactive state',
3124 * driver can then determine 'active state' from this and
3125 * program SMU with correct polarity
3126 */
3127 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3128 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
3129 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3130
3131 /* if required, combine VRHot/PCC with thermal out GPIO */
3132 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3133 PHM_PlatformCaps_RegulatorHot) &&
3134 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3135 PHM_PlatformCaps_CombinePCCWithThermalSignal))
3136 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3137 } else {
3138 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3139 PHM_PlatformCaps_ThermalOutGPIO);
3140 table->ThermOutGpio = 17;
3141 table->ThermOutPolarity = 1;
3142 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3143 }
3144
3145 for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
3146 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3147
3148 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3149 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3150 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3151 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3152 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3153 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3154 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3155 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3156 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3157
3158 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3159 result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
3160 data->dpm_table_start +
3161 offsetof(SMU73_Discrete_DpmTable, SystemFlags),
3162 (uint8_t *)&(table->SystemFlags),
3163 sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
3164 data->sram_end);
3165 PP_ASSERT_WITH_CODE(0 == result,
3166 "Failed to upload dpm data to SMC memory!", return result);
3167
3168 return 0;
3169 }
3170
3171 /**
3172 * Initialize the ARB DRAM timing table's index field.
3173 *
3174 * @param hwmgr the address of the powerplay hardware manager.
3175 * @return always 0
3176 */
3177 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
3178 {
3179 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3180 uint32_t tmp;
3181 int result;
3182
3183 /* This is a read-modify-write on the first byte of the ARB table.
3184 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
3185 * is the field 'current'.
3186 * This solution is ugly, but we never write the whole table only
3187 * individual fields in it.
3188 * In reality this field should not be in that structure
3189 * but in a soft register.
3190 */
3191 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
3192 data->arb_table_start, &tmp, data->sram_end);
3193
3194 if (result)
3195 return result;
3196
3197 tmp &= 0x00FFFFFF;
3198 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
3199
3200 return fiji_write_smc_sram_dword(hwmgr->smumgr,
3201 data->arb_table_start, tmp, data->sram_end);
3202 }
3203
3204 static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
3205 {
3206 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3207 PHM_PlatformCaps_RegulatorHot))
3208 return smum_send_msg_to_smc(hwmgr->smumgr,
3209 PPSMC_MSG_EnableVRHotGPIOInterrupt);
3210
3211 return 0;
3212 }
3213
3214 static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
3215 {
3216 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3217 SCLK_PWRMGT_OFF, 0);
3218 return 0;
3219 }
3220
3221 static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
3222 {
3223 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3224 struct fiji_ulv_parm *ulv = &(data->ulv);
3225
3226 if (ulv->ulv_supported)
3227 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
3228
3229 return 0;
3230 }
3231
3232 static int fiji_disable_ulv(struct pp_hwmgr *hwmgr)
3233 {
3234 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3235 struct fiji_ulv_parm *ulv = &(data->ulv);
3236
3237 if (ulv->ulv_supported)
3238 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DisableULV);
3239
3240 return 0;
3241 }
3242
3243 static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3244 {
3245 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3246 PHM_PlatformCaps_SclkDeepSleep)) {
3247 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
3248 PP_ASSERT_WITH_CODE(false,
3249 "Attempt to enable Master Deep Sleep switch failed!",
3250 return -1);
3251 } else {
3252 if (smum_send_msg_to_smc(hwmgr->smumgr,
3253 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3254 PP_ASSERT_WITH_CODE(false,
3255 "Attempt to disable Master Deep Sleep switch failed!",
3256 return -1);
3257 }
3258 }
3259
3260 return 0;
3261 }
3262
3263 static int fiji_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3264 {
3265 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3266 PHM_PlatformCaps_SclkDeepSleep)) {
3267 if (smum_send_msg_to_smc(hwmgr->smumgr,
3268 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3269 PP_ASSERT_WITH_CODE(false,
3270 "Attempt to disable Master Deep Sleep switch failed!",
3271 return -1);
3272 }
3273 }
3274
3275 return 0;
3276 }
3277
3278 static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3279 {
3280 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3281 uint32_t val, val0, val2;
3282 uint32_t i, cpl_cntl, cpl_threshold, mc_threshold;
3283
3284 /* enable SCLK dpm */
3285 if(!data->sclk_dpm_key_disabled)
3286 PP_ASSERT_WITH_CODE(
3287 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
3288 "Failed to enable SCLK DPM during DPM Start Function!",
3289 return -1);
3290
3291 /* enable MCLK dpm */
3292 if(0 == data->mclk_dpm_key_disabled) {
3293 cpl_threshold = 0;
3294 mc_threshold = 0;
3295
3296 /* Read per MCD tile (0 - 7) */
3297 for (i = 0; i < 8; i++) {
3298 PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
3299 val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
3300 if (0xf0000000 != val) {
3301 /* count number of MCQ that has channel(s) enabled */
3302 cpl_threshold++;
3303 /* only harvest 3 or full 4 supported */
3304 mc_threshold = val ? 3 : 4;
3305 }
3306 }
3307 PP_ASSERT_WITH_CODE(0 != cpl_threshold,
3308 "Number of MCQ is zero!", return -EINVAL;);
3309
3310 mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
3311 LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
3312 LCAC_MC0_CNTL__MC0_ENABLE_MASK;
3313 cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
3314 LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
3315 LCAC_CPL_CNTL__CPL_ENABLE_MASK;
3316 cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
3317 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3318 ixLCAC_MC0_CNTL, mc_threshold);
3319 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3320 ixLCAC_MC1_CNTL, mc_threshold);
3321 if (8 == cpl_threshold) {
3322 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3323 ixLCAC_MC2_CNTL, mc_threshold);
3324 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3325 ixLCAC_MC3_CNTL, mc_threshold);
3326 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3327 ixLCAC_MC4_CNTL, mc_threshold);
3328 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3329 ixLCAC_MC5_CNTL, mc_threshold);
3330 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3331 ixLCAC_MC6_CNTL, mc_threshold);
3332 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3333 ixLCAC_MC7_CNTL, mc_threshold);
3334 }
3335 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3336 ixLCAC_CPL_CNTL, cpl_cntl);
3337
3338 udelay(5);
3339
3340 mc_threshold = mc_threshold |
3341 (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
3342 cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
3343 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3344 ixLCAC_MC0_CNTL, mc_threshold);
3345 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3346 ixLCAC_MC1_CNTL, mc_threshold);
3347 if (8 == cpl_threshold) {
3348 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3349 ixLCAC_MC2_CNTL, mc_threshold);
3350 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3351 ixLCAC_MC3_CNTL, mc_threshold);
3352 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3353 ixLCAC_MC4_CNTL, mc_threshold);
3354 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3355 ixLCAC_MC5_CNTL, mc_threshold);
3356 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3357 ixLCAC_MC6_CNTL, mc_threshold);
3358 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3359 ixLCAC_MC7_CNTL, mc_threshold);
3360 }
3361 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3362 ixLCAC_CPL_CNTL, cpl_cntl);
3363
3364 /* Program CAC_EN per MCD (0-7) Tile */
3365 val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
3366 val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
3367 MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
3368 MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
3369 MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
3370 MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
3371 MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
3372 MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
3373 MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
3374 MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
3375
3376 for (i = 0; i < 8; i++) {
3377 /* Enable MCD i Tile read & write */
3378 val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
3379 (1 << i));
3380 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
3381 /* Enbale CAC_ON MCD i Tile */
3382 val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
3383 val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
3384 cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
3385 }
3386 /* Set MC_CONFIG_MCD back to its default setting val0 */
3387 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
3388
3389 PP_ASSERT_WITH_CODE(
3390 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3391 PPSMC_MSG_MCLKDPM_Enable)),
3392 "Failed to enable MCLK DPM during DPM Start Function!",
3393 return -1);
3394 }
3395 return 0;
3396 }
3397
3398 static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
3399 {
3400 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3401
3402 /*enable general power management */
3403 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3404 GLOBAL_PWRMGT_EN, 1);
3405 /* enable sclk deep sleep */
3406 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3407 DYNAMIC_PM_EN, 1);
3408 /* prepare for PCIE DPM */
3409 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3410 data->soft_regs_start + offsetof(SMU73_SoftRegisters,
3411 VoltageChangeTimeout), 0x1000);
3412 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
3413 SWRST_COMMAND_1, RESETLC, 0x0);
3414
3415 PP_ASSERT_WITH_CODE(
3416 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3417 PPSMC_MSG_Voltage_Cntl_Enable)),
3418 "Failed to enable voltage DPM during DPM Start Function!",
3419 return -1);
3420
3421 if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
3422 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
3423 return -1;
3424 }
3425
3426 /* enable PCIE dpm */
3427 if(!data->pcie_dpm_key_disabled) {
3428 PP_ASSERT_WITH_CODE(
3429 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3430 PPSMC_MSG_PCIeDPM_Enable)),
3431 "Failed to enable pcie DPM during DPM Start Function!",
3432 return -1);
3433 }
3434
3435 return 0;
3436 }
3437
3438 static int fiji_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3439 {
3440 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3441
3442 /* disable SCLK dpm */
3443 if (!data->sclk_dpm_key_disabled)
3444 PP_ASSERT_WITH_CODE(
3445 (smum_send_msg_to_smc(hwmgr->smumgr,
3446 PPSMC_MSG_DPM_Disable) == 0),
3447 "Failed to disable SCLK DPM!",
3448 return -1);
3449
3450 /* disable MCLK dpm */
3451 if (!data->mclk_dpm_key_disabled) {
3452 PP_ASSERT_WITH_CODE(
3453 (smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3454 PPSMC_MSG_MCLKDPM_SetEnabledMask, 1) == 0),
3455 "Failed to force MCLK DPM0!",
3456 return -1);
3457
3458 PP_ASSERT_WITH_CODE(
3459 (smum_send_msg_to_smc(hwmgr->smumgr,
3460 PPSMC_MSG_MCLKDPM_Disable) == 0),
3461 "Failed to disable MCLK DPM!",
3462 return -1);
3463 }
3464
3465 return 0;
3466 }
3467
3468 static int fiji_stop_dpm(struct pp_hwmgr *hwmgr)
3469 {
3470 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3471
3472 /* disable general power management */
3473 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3474 GLOBAL_PWRMGT_EN, 0);
3475 /* disable sclk deep sleep */
3476 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3477 DYNAMIC_PM_EN, 0);
3478
3479 /* disable PCIE dpm */
3480 if (!data->pcie_dpm_key_disabled) {
3481 PP_ASSERT_WITH_CODE(
3482 (smum_send_msg_to_smc(hwmgr->smumgr,
3483 PPSMC_MSG_PCIeDPM_Disable) == 0),
3484 "Failed to disable pcie DPM during DPM Stop Function!",
3485 return -1);
3486 }
3487
3488 if (fiji_disable_sclk_mclk_dpm(hwmgr)) {
3489 printk(KERN_ERR "Failed to disable Sclk DPM and Mclk DPM!");
3490 return -1;
3491 }
3492
3493 PP_ASSERT_WITH_CODE(
3494 (smum_send_msg_to_smc(hwmgr->smumgr,
3495 PPSMC_MSG_Voltage_Cntl_Disable) == 0),
3496 "Failed to disable voltage DPM during DPM Stop Function!",
3497 return -1);
3498
3499 return 0;
3500 }
3501
3502 static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
3503 uint32_t sources)
3504 {
3505 bool protection;
3506 enum DPM_EVENT_SRC src;
3507
3508 switch (sources) {
3509 default:
3510 printk(KERN_ERR "Unknown throttling event sources.");
3511 /* fall through */
3512 case 0:
3513 protection = false;
3514 /* src is unused */
3515 break;
3516 case (1 << PHM_AutoThrottleSource_Thermal):
3517 protection = true;
3518 src = DPM_EVENT_SRC_DIGITAL;
3519 break;
3520 case (1 << PHM_AutoThrottleSource_External):
3521 protection = true;
3522 src = DPM_EVENT_SRC_EXTERNAL;
3523 break;
3524 case (1 << PHM_AutoThrottleSource_External) |
3525 (1 << PHM_AutoThrottleSource_Thermal):
3526 protection = true;
3527 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
3528 break;
3529 }
3530 /* Order matters - don't enable thermal protection for the wrong source. */
3531 if (protection) {
3532 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
3533 DPM_EVENT_SRC, src);
3534 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3535 THERMAL_PROTECTION_DIS,
3536 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3537 PHM_PlatformCaps_ThermalController));
3538 } else
3539 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3540 THERMAL_PROTECTION_DIS, 1);
3541 }
3542
3543 static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3544 PHM_AutoThrottleSource source)
3545 {
3546 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3547
3548 if (!(data->active_auto_throttle_sources & (1 << source))) {
3549 data->active_auto_throttle_sources |= 1 << source;
3550 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3551 }
3552 return 0;
3553 }
3554
3555 static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3556 {
3557 return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3558 }
3559
3560 static int fiji_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3561 PHM_AutoThrottleSource source)
3562 {
3563 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3564
3565 if (data->active_auto_throttle_sources & (1 << source)) {
3566 data->active_auto_throttle_sources &= ~(1 << source);
3567 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3568 }
3569 return 0;
3570 }
3571
3572 static int fiji_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3573 {
3574 return fiji_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3575 }
3576
3577 static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3578 {
3579 int tmp_result, result = 0;
3580
3581 tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
3582 PP_ASSERT_WITH_CODE(result == 0,
3583 "DPM is already running right now, no need to enable DPM!",
3584 return 0);
3585
3586 if (fiji_voltage_control(hwmgr)) {
3587 tmp_result = fiji_enable_voltage_control(hwmgr);
3588 PP_ASSERT_WITH_CODE(tmp_result == 0,
3589 "Failed to enable voltage control!",
3590 result = tmp_result);
3591 }
3592
3593 if (fiji_voltage_control(hwmgr)) {
3594 tmp_result = fiji_construct_voltage_tables(hwmgr);
3595 PP_ASSERT_WITH_CODE((0 == tmp_result),
3596 "Failed to contruct voltage tables!",
3597 result = tmp_result);
3598 }
3599
3600 tmp_result = fiji_initialize_mc_reg_table(hwmgr);
3601 PP_ASSERT_WITH_CODE((0 == tmp_result),
3602 "Failed to initialize MC reg table!", result = tmp_result);
3603
3604 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3605 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
3606 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3607 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
3608
3609 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3610 PHM_PlatformCaps_ThermalController))
3611 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3612 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
3613
3614 tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
3615 PP_ASSERT_WITH_CODE((0 == tmp_result),
3616 "Failed to program static screen threshold parameters!",
3617 result = tmp_result);
3618
3619 tmp_result = fiji_enable_display_gap(hwmgr);
3620 PP_ASSERT_WITH_CODE((0 == tmp_result),
3621 "Failed to enable display gap!", result = tmp_result);
3622
3623 tmp_result = fiji_program_voting_clients(hwmgr);
3624 PP_ASSERT_WITH_CODE((0 == tmp_result),
3625 "Failed to program voting clients!", result = tmp_result);
3626
3627 tmp_result = fiji_process_firmware_header(hwmgr);
3628 PP_ASSERT_WITH_CODE((0 == tmp_result),
3629 "Failed to process firmware header!", result = tmp_result);
3630
3631 tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
3632 PP_ASSERT_WITH_CODE((0 == tmp_result),
3633 "Failed to initialize switch from ArbF0 to F1!",
3634 result = tmp_result);
3635
3636 tmp_result = fiji_init_smc_table(hwmgr);
3637 PP_ASSERT_WITH_CODE((0 == tmp_result),
3638 "Failed to initialize SMC table!", result = tmp_result);
3639
3640 tmp_result = fiji_init_arb_table_index(hwmgr);
3641 PP_ASSERT_WITH_CODE((0 == tmp_result),
3642 "Failed to initialize ARB table index!", result = tmp_result);
3643
3644 tmp_result = fiji_populate_pm_fuses(hwmgr);
3645 PP_ASSERT_WITH_CODE((0 == tmp_result),
3646 "Failed to populate PM fuses!", result = tmp_result);
3647
3648 tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
3649 PP_ASSERT_WITH_CODE((0 == tmp_result),
3650 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
3651
3652 tmp_result = tonga_notify_smc_display_change(hwmgr, false);
3653 PP_ASSERT_WITH_CODE((0 == tmp_result),
3654 "Failed to notify no display!", result = tmp_result);
3655
3656 tmp_result = fiji_enable_sclk_control(hwmgr);
3657 PP_ASSERT_WITH_CODE((0 == tmp_result),
3658 "Failed to enable SCLK control!", result = tmp_result);
3659
3660 tmp_result = fiji_enable_ulv(hwmgr);
3661 PP_ASSERT_WITH_CODE((0 == tmp_result),
3662 "Failed to enable ULV!", result = tmp_result);
3663
3664 tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
3665 PP_ASSERT_WITH_CODE((0 == tmp_result),
3666 "Failed to enable deep sleep master switch!", result = tmp_result);
3667
3668 tmp_result = fiji_start_dpm(hwmgr);
3669 PP_ASSERT_WITH_CODE((0 == tmp_result),
3670 "Failed to start DPM!", result = tmp_result);
3671
3672 tmp_result = fiji_enable_smc_cac(hwmgr);
3673 PP_ASSERT_WITH_CODE((0 == tmp_result),
3674 "Failed to enable SMC CAC!", result = tmp_result);
3675
3676 tmp_result = fiji_enable_power_containment(hwmgr);
3677 PP_ASSERT_WITH_CODE((0 == tmp_result),
3678 "Failed to enable power containment!", result = tmp_result);
3679
3680 tmp_result = fiji_power_control_set_level(hwmgr);
3681 PP_ASSERT_WITH_CODE((0 == tmp_result),
3682 "Failed to power control set level!", result = tmp_result);
3683
3684 tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
3685 PP_ASSERT_WITH_CODE((0 == tmp_result),
3686 "Failed to enable thermal auto throttle!", result = tmp_result);
3687
3688 return result;
3689 }
3690
3691 static int fiji_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
3692 {
3693 int tmp_result, result = 0;
3694
3695 tmp_result = (fiji_is_dpm_running(hwmgr)) ? 0 : -1;
3696 PP_ASSERT_WITH_CODE(tmp_result == 0,
3697 "DPM is not running right now, no need to disable DPM!",
3698 return 0);
3699
3700 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3701 PHM_PlatformCaps_ThermalController))
3702 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3703 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
3704
3705 tmp_result = fiji_disable_power_containment(hwmgr);
3706 PP_ASSERT_WITH_CODE((tmp_result == 0),
3707 "Failed to disable power containment!", result = tmp_result);
3708
3709 tmp_result = fiji_disable_smc_cac(hwmgr);
3710 PP_ASSERT_WITH_CODE((tmp_result == 0),
3711 "Failed to disable SMC CAC!", result = tmp_result);
3712
3713 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3714 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
3715 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3716 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
3717
3718 tmp_result = fiji_disable_thermal_auto_throttle(hwmgr);
3719 PP_ASSERT_WITH_CODE((tmp_result == 0),
3720 "Failed to disable thermal auto throttle!", result = tmp_result);
3721
3722 tmp_result = fiji_stop_dpm(hwmgr);
3723 PP_ASSERT_WITH_CODE((tmp_result == 0),
3724 "Failed to stop DPM!", result = tmp_result);
3725
3726 tmp_result = fiji_disable_deep_sleep_master_switch(hwmgr);
3727 PP_ASSERT_WITH_CODE((tmp_result == 0),
3728 "Failed to disable deep sleep master switch!", result = tmp_result);
3729
3730 tmp_result = fiji_disable_ulv(hwmgr);
3731 PP_ASSERT_WITH_CODE((tmp_result == 0),
3732 "Failed to disable ULV!", result = tmp_result);
3733
3734 tmp_result = fiji_clear_voting_clients(hwmgr);
3735 PP_ASSERT_WITH_CODE((tmp_result == 0),
3736 "Failed to clear voting clients!", result = tmp_result);
3737
3738 tmp_result = fiji_reset_to_default(hwmgr);
3739 PP_ASSERT_WITH_CODE((tmp_result == 0),
3740 "Failed to reset to default!", result = tmp_result);
3741
3742 tmp_result = fiji_force_switch_to_arbf0(hwmgr);
3743 PP_ASSERT_WITH_CODE((tmp_result == 0),
3744 "Failed to force to switch arbf0!", result = tmp_result);
3745
3746 return result;
3747 }
3748
3749 static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
3750 {
3751 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3752 uint32_t level, tmp;
3753
3754 if (!data->sclk_dpm_key_disabled) {
3755 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3756 level = 0;
3757 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3758 while (tmp >>= 1)
3759 level++;
3760 if (level)
3761 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3762 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3763 (1 << level));
3764 }
3765 }
3766
3767 if (!data->mclk_dpm_key_disabled) {
3768 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3769 level = 0;
3770 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3771 while (tmp >>= 1)
3772 level++;
3773 if (level)
3774 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3775 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3776 (1 << level));
3777 }
3778 }
3779
3780 if (!data->pcie_dpm_key_disabled) {
3781 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3782 level = 0;
3783 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3784 while (tmp >>= 1)
3785 level++;
3786 if (level)
3787 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3788 PPSMC_MSG_PCIeDPM_ForceLevel,
3789 (1 << level));
3790 }
3791 }
3792 return 0;
3793 }
3794
3795 static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
3796 {
3797 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3798
3799 phm_apply_dal_min_voltage_request(hwmgr);
3800
3801 if (!data->sclk_dpm_key_disabled) {
3802 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3803 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3804 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3805 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3806 }
3807 return 0;
3808 }
3809
3810 static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3811 {
3812 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3813
3814 if (!fiji_is_dpm_running(hwmgr))
3815 return -EINVAL;
3816
3817 if (!data->pcie_dpm_key_disabled) {
3818 smum_send_msg_to_smc(hwmgr->smumgr,
3819 PPSMC_MSG_PCIeDPM_UnForceLevel);
3820 }
3821
3822 return fiji_upload_dpmlevel_enable_mask(hwmgr);
3823 }
3824
3825 static uint32_t fiji_get_lowest_enabled_level(
3826 struct pp_hwmgr *hwmgr, uint32_t mask)
3827 {
3828 uint32_t level = 0;
3829
3830 while(0 == (mask & (1 << level)))
3831 level++;
3832
3833 return level;
3834 }
3835
3836 static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3837 {
3838 struct fiji_hwmgr *data =
3839 (struct fiji_hwmgr *)(hwmgr->backend);
3840 uint32_t level;
3841
3842 if (!data->sclk_dpm_key_disabled)
3843 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3844 level = fiji_get_lowest_enabled_level(hwmgr,
3845 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3846 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3847 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3848 (1 << level));
3849
3850 }
3851
3852 if (!data->mclk_dpm_key_disabled) {
3853 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3854 level = fiji_get_lowest_enabled_level(hwmgr,
3855 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3856 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3857 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3858 (1 << level));
3859 }
3860 }
3861
3862 if (!data->pcie_dpm_key_disabled) {
3863 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3864 level = fiji_get_lowest_enabled_level(hwmgr,
3865 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3866 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3867 PPSMC_MSG_PCIeDPM_ForceLevel,
3868 (1 << level));
3869 }
3870 }
3871
3872 return 0;
3873
3874 }
3875 static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
3876 enum amd_dpm_forced_level level)
3877 {
3878 int ret = 0;
3879
3880 switch (level) {
3881 case AMD_DPM_FORCED_LEVEL_HIGH:
3882 ret = fiji_force_dpm_highest(hwmgr);
3883 if (ret)
3884 return ret;
3885 break;
3886 case AMD_DPM_FORCED_LEVEL_LOW:
3887 ret = fiji_force_dpm_lowest(hwmgr);
3888 if (ret)
3889 return ret;
3890 break;
3891 case AMD_DPM_FORCED_LEVEL_AUTO:
3892 ret = fiji_unforce_dpm_levels(hwmgr);
3893 if (ret)
3894 return ret;
3895 break;
3896 default:
3897 break;
3898 }
3899
3900 hwmgr->dpm_level = level;
3901
3902 return ret;
3903 }
3904
3905 static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
3906 {
3907 return sizeof(struct fiji_power_state);
3908 }
3909
3910 static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3911 void *state, struct pp_power_state *power_state,
3912 void *pp_table, uint32_t classification_flag)
3913 {
3914 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3915 struct fiji_power_state *fiji_power_state =
3916 (struct fiji_power_state *)(&(power_state->hardware));
3917 struct fiji_performance_level *performance_level;
3918 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3919 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3920 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3921 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
3922 (ATOM_Tonga_SCLK_Dependency_Table *)
3923 (((unsigned long)powerplay_table) +
3924 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3925 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3926 (ATOM_Tonga_MCLK_Dependency_Table *)
3927 (((unsigned long)powerplay_table) +
3928 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3929
3930 /* The following fields are not initialized here: id orderedList allStatesList */
3931 power_state->classification.ui_label =
3932 (le16_to_cpu(state_entry->usClassification) &
3933 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3934 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3935 power_state->classification.flags = classification_flag;
3936 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3937
3938 power_state->classification.temporary_state = false;
3939 power_state->classification.to_be_deleted = false;
3940
3941 power_state->validation.disallowOnDC =
3942 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3943 ATOM_Tonga_DISALLOW_ON_DC));
3944
3945 power_state->pcie.lanes = 0;
3946
3947 power_state->display.disableFrameModulation = false;
3948 power_state->display.limitRefreshrate = false;
3949 power_state->display.enableVariBright =
3950 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3951 ATOM_Tonga_ENABLE_VARIBRIGHT));
3952
3953 power_state->validation.supportedPowerLevels = 0;
3954 power_state->uvd_clocks.VCLK = 0;
3955 power_state->uvd_clocks.DCLK = 0;
3956 power_state->temperatures.min = 0;
3957 power_state->temperatures.max = 0;
3958
3959 performance_level = &(fiji_power_state->performance_levels
3960 [fiji_power_state->performance_level_count++]);
3961
3962 PP_ASSERT_WITH_CODE(
3963 (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
3964 "Performance levels exceeds SMC limit!",
3965 return -1);
3966
3967 PP_ASSERT_WITH_CODE(
3968 (fiji_power_state->performance_level_count <=
3969 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3970 "Performance levels exceeds Driver limit!",
3971 return -1);
3972
3973 /* Performance levels are arranged from low to high. */
3974 performance_level->memory_clock = mclk_dep_table->entries
3975 [state_entry->ucMemoryClockIndexLow].ulMclk;
3976 performance_level->engine_clock = sclk_dep_table->entries
3977 [state_entry->ucEngineClockIndexLow].ulSclk;
3978 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3979 state_entry->ucPCIEGenLow);
3980 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3981 state_entry->ucPCIELaneHigh);
3982
3983 performance_level = &(fiji_power_state->performance_levels
3984 [fiji_power_state->performance_level_count++]);
3985 performance_level->memory_clock = mclk_dep_table->entries
3986 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3987 performance_level->engine_clock = sclk_dep_table->entries
3988 [state_entry->ucEngineClockIndexHigh].ulSclk;
3989 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3990 state_entry->ucPCIEGenHigh);
3991 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3992 state_entry->ucPCIELaneHigh);
3993
3994 return 0;
3995 }
3996
3997 static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3998 unsigned long entry_index, struct pp_power_state *state)
3999 {
4000 int result;
4001 struct fiji_power_state *ps;
4002 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4003 struct phm_ppt_v1_information *table_info =
4004 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4005 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
4006 table_info->vdd_dep_on_mclk;
4007
4008 state->hardware.magic = PHM_VIslands_Magic;
4009
4010 ps = (struct fiji_power_state *)(&state->hardware);
4011
4012 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
4013 fiji_get_pp_table_entry_callback_func);
4014
4015 /* This is the earliest time we have all the dependency table and the VBIOS boot state
4016 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
4017 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
4018 */
4019 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
4020 if (dep_mclk_table->entries[0].clk !=
4021 data->vbios_boot_state.mclk_bootup_value)
4022 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
4023 "does not match VBIOS boot MCLK level");
4024 if (dep_mclk_table->entries[0].vddci !=
4025 data->vbios_boot_state.vddci_bootup_value)
4026 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
4027 "does not match VBIOS boot VDDCI level");
4028 }
4029
4030 /* set DC compatible flag if this state supports DC */
4031 if (!state->validation.disallowOnDC)
4032 ps->dc_compatible = true;
4033
4034 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
4035 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
4036
4037 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
4038 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
4039
4040 if (!result) {
4041 uint32_t i;
4042
4043 switch (state->classification.ui_label) {
4044 case PP_StateUILabel_Performance:
4045 data->use_pcie_performance_levels = true;
4046
4047 for (i = 0; i < ps->performance_level_count; i++) {
4048 if (data->pcie_gen_performance.max <
4049 ps->performance_levels[i].pcie_gen)
4050 data->pcie_gen_performance.max =
4051 ps->performance_levels[i].pcie_gen;
4052
4053 if (data->pcie_gen_performance.min >
4054 ps->performance_levels[i].pcie_gen)
4055 data->pcie_gen_performance.min =
4056 ps->performance_levels[i].pcie_gen;
4057
4058 if (data->pcie_lane_performance.max <
4059 ps->performance_levels[i].pcie_lane)
4060 data->pcie_lane_performance.max =
4061 ps->performance_levels[i].pcie_lane;
4062
4063 if (data->pcie_lane_performance.min >
4064 ps->performance_levels[i].pcie_lane)
4065 data->pcie_lane_performance.min =
4066 ps->performance_levels[i].pcie_lane;
4067 }
4068 break;
4069 case PP_StateUILabel_Battery:
4070 data->use_pcie_power_saving_levels = true;
4071
4072 for (i = 0; i < ps->performance_level_count; i++) {
4073 if (data->pcie_gen_power_saving.max <
4074 ps->performance_levels[i].pcie_gen)
4075 data->pcie_gen_power_saving.max =
4076 ps->performance_levels[i].pcie_gen;
4077
4078 if (data->pcie_gen_power_saving.min >
4079 ps->performance_levels[i].pcie_gen)
4080 data->pcie_gen_power_saving.min =
4081 ps->performance_levels[i].pcie_gen;
4082
4083 if (data->pcie_lane_power_saving.max <
4084 ps->performance_levels[i].pcie_lane)
4085 data->pcie_lane_power_saving.max =
4086 ps->performance_levels[i].pcie_lane;
4087
4088 if (data->pcie_lane_power_saving.min >
4089 ps->performance_levels[i].pcie_lane)
4090 data->pcie_lane_power_saving.min =
4091 ps->performance_levels[i].pcie_lane;
4092 }
4093 break;
4094 default:
4095 break;
4096 }
4097 }
4098 return 0;
4099 }
4100
4101 static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
4102 struct pp_power_state *request_ps,
4103 const struct pp_power_state *current_ps)
4104 {
4105 struct fiji_power_state *fiji_ps =
4106 cast_phw_fiji_power_state(&request_ps->hardware);
4107 uint32_t sclk;
4108 uint32_t mclk;
4109 struct PP_Clocks minimum_clocks = {0};
4110 bool disable_mclk_switching;
4111 bool disable_mclk_switching_for_frame_lock;
4112 struct cgs_display_info info = {0};
4113 const struct phm_clock_and_voltage_limits *max_limits;
4114 uint32_t i;
4115 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4116 struct phm_ppt_v1_information *table_info =
4117 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4118 int32_t count;
4119 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
4120
4121 data->battery_state = (PP_StateUILabel_Battery ==
4122 request_ps->classification.ui_label);
4123
4124 PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
4125 "VI should always have 2 performance levels",);
4126
4127 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
4128 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
4129 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
4130
4131 /* Cap clock DPM tables at DC MAX if it is in DC. */
4132 if (PP_PowerSource_DC == hwmgr->power_source) {
4133 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4134 if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
4135 fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
4136 if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
4137 fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
4138 }
4139 }
4140
4141 fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
4142 fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
4143
4144 fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
4145
4146 cgs_get_active_displays_info(hwmgr->device, &info);
4147
4148 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
4149
4150 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
4151
4152 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4153 PHM_PlatformCaps_StablePState)) {
4154 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
4155 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
4156
4157 for (count = table_info->vdd_dep_on_sclk->count - 1;
4158 count >= 0; count--) {
4159 if (stable_pstate_sclk >=
4160 table_info->vdd_dep_on_sclk->entries[count].clk) {
4161 stable_pstate_sclk =
4162 table_info->vdd_dep_on_sclk->entries[count].clk;
4163 break;
4164 }
4165 }
4166
4167 if (count < 0)
4168 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
4169
4170 stable_pstate_mclk = max_limits->mclk;
4171
4172 minimum_clocks.engineClock = stable_pstate_sclk;
4173 minimum_clocks.memoryClock = stable_pstate_mclk;
4174 }
4175
4176 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
4177 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
4178
4179 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
4180 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
4181
4182 fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
4183
4184 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
4185 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
4186 hwmgr->platform_descriptor.overdriveLimit.engineClock),
4187 "Overdrive sclk exceeds limit",
4188 hwmgr->gfx_arbiter.sclk_over_drive =
4189 hwmgr->platform_descriptor.overdriveLimit.engineClock);
4190
4191 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
4192 fiji_ps->performance_levels[1].engine_clock =
4193 hwmgr->gfx_arbiter.sclk_over_drive;
4194 }
4195
4196 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
4197 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
4198 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
4199 "Overdrive mclk exceeds limit",
4200 hwmgr->gfx_arbiter.mclk_over_drive =
4201 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4202
4203 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
4204 fiji_ps->performance_levels[1].memory_clock =
4205 hwmgr->gfx_arbiter.mclk_over_drive;
4206 }
4207
4208 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
4209 hwmgr->platform_descriptor.platformCaps,
4210 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4211
4212 disable_mclk_switching = (1 < info.display_count) ||
4213 disable_mclk_switching_for_frame_lock;
4214
4215 sclk = fiji_ps->performance_levels[0].engine_clock;
4216 mclk = fiji_ps->performance_levels[0].memory_clock;
4217
4218 if (disable_mclk_switching)
4219 mclk = fiji_ps->performance_levels
4220 [fiji_ps->performance_level_count - 1].memory_clock;
4221
4222 if (sclk < minimum_clocks.engineClock)
4223 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
4224 max_limits->sclk : minimum_clocks.engineClock;
4225
4226 if (mclk < minimum_clocks.memoryClock)
4227 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
4228 max_limits->mclk : minimum_clocks.memoryClock;
4229
4230 fiji_ps->performance_levels[0].engine_clock = sclk;
4231 fiji_ps->performance_levels[0].memory_clock = mclk;
4232
4233 fiji_ps->performance_levels[1].engine_clock =
4234 (fiji_ps->performance_levels[1].engine_clock >=
4235 fiji_ps->performance_levels[0].engine_clock) ?
4236 fiji_ps->performance_levels[1].engine_clock :
4237 fiji_ps->performance_levels[0].engine_clock;
4238
4239 if (disable_mclk_switching) {
4240 if (mclk < fiji_ps->performance_levels[1].memory_clock)
4241 mclk = fiji_ps->performance_levels[1].memory_clock;
4242
4243 fiji_ps->performance_levels[0].memory_clock = mclk;
4244 fiji_ps->performance_levels[1].memory_clock = mclk;
4245 } else {
4246 if (fiji_ps->performance_levels[1].memory_clock <
4247 fiji_ps->performance_levels[0].memory_clock)
4248 fiji_ps->performance_levels[1].memory_clock =
4249 fiji_ps->performance_levels[0].memory_clock;
4250 }
4251
4252 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4253 PHM_PlatformCaps_StablePState)) {
4254 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4255 fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4256 fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4257 fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4258 fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4259 }
4260 }
4261
4262 return 0;
4263 }
4264
4265 static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4266 {
4267 const struct phm_set_power_state_input *states =
4268 (const struct phm_set_power_state_input *)input;
4269 const struct fiji_power_state *fiji_ps =
4270 cast_const_phw_fiji_power_state(states->pnew_state);
4271 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4272 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4273 uint32_t sclk = fiji_ps->performance_levels
4274 [fiji_ps->performance_level_count - 1].engine_clock;
4275 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4276 uint32_t mclk = fiji_ps->performance_levels
4277 [fiji_ps->performance_level_count - 1].memory_clock;
4278 uint32_t i;
4279 struct cgs_display_info info = {0};
4280
4281 data->need_update_smu7_dpm_table = 0;
4282
4283 for (i = 0; i < sclk_table->count; i++) {
4284 if (sclk == sclk_table->dpm_levels[i].value)
4285 break;
4286 }
4287
4288 if (i >= sclk_table->count)
4289 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4290 else {
4291 if(data->display_timing.min_clock_in_sr !=
4292 hwmgr->display_config.min_core_set_clock_in_sr)
4293 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4294 }
4295
4296 for (i = 0; i < mclk_table->count; i++) {
4297 if (mclk == mclk_table->dpm_levels[i].value)
4298 break;
4299 }
4300
4301 if (i >= mclk_table->count)
4302 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4303
4304 cgs_get_active_displays_info(hwmgr->device, &info);
4305
4306 if (data->display_timing.num_existing_displays != info.display_count)
4307 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4308
4309 return 0;
4310 }
4311
4312 static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4313 const struct fiji_power_state *fiji_ps)
4314 {
4315 uint32_t i;
4316 uint32_t sclk, max_sclk = 0;
4317 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4318 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4319
4320 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4321 sclk = fiji_ps->performance_levels[i].engine_clock;
4322 if (max_sclk < sclk)
4323 max_sclk = sclk;
4324 }
4325
4326 for (i = 0; i < dpm_table->sclk_table.count; i++) {
4327 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4328 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4329 dpm_table->pcie_speed_table.dpm_levels
4330 [dpm_table->pcie_speed_table.count - 1].value :
4331 dpm_table->pcie_speed_table.dpm_levels[i].value);
4332 }
4333
4334 return 0;
4335 }
4336
4337 static int fiji_request_link_speed_change_before_state_change(
4338 struct pp_hwmgr *hwmgr, const void *input)
4339 {
4340 const struct phm_set_power_state_input *states =
4341 (const struct phm_set_power_state_input *)input;
4342 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4343 const struct fiji_power_state *fiji_nps =
4344 cast_const_phw_fiji_power_state(states->pnew_state);
4345 const struct fiji_power_state *fiji_cps =
4346 cast_const_phw_fiji_power_state(states->pcurrent_state);
4347
4348 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
4349 uint16_t current_link_speed;
4350
4351 if (data->force_pcie_gen == PP_PCIEGenInvalid)
4352 current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
4353 else
4354 current_link_speed = data->force_pcie_gen;
4355
4356 data->force_pcie_gen = PP_PCIEGenInvalid;
4357 data->pspp_notify_required = false;
4358 if (target_link_speed > current_link_speed) {
4359 switch(target_link_speed) {
4360 case PP_PCIEGen3:
4361 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
4362 break;
4363 data->force_pcie_gen = PP_PCIEGen2;
4364 if (current_link_speed == PP_PCIEGen2)
4365 break;
4366 case PP_PCIEGen2:
4367 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
4368 break;
4369 default:
4370 data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
4371 break;
4372 }
4373 } else {
4374 if (target_link_speed < current_link_speed)
4375 data->pspp_notify_required = true;
4376 }
4377
4378 return 0;
4379 }
4380
4381 static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4382 {
4383 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4384
4385 if (0 == data->need_update_smu7_dpm_table)
4386 return 0;
4387
4388 if ((0 == data->sclk_dpm_key_disabled) &&
4389 (data->need_update_smu7_dpm_table &
4390 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4391 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4392 "Trying to freeze SCLK DPM when DPM is disabled",
4393 );
4394 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4395 PPSMC_MSG_SCLKDPM_FreezeLevel),
4396 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4397 return -1);
4398 }
4399
4400 if ((0 == data->mclk_dpm_key_disabled) &&
4401 (data->need_update_smu7_dpm_table &
4402 DPMTABLE_OD_UPDATE_MCLK)) {
4403 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4404 "Trying to freeze MCLK DPM when DPM is disabled",
4405 );
4406 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4407 PPSMC_MSG_MCLKDPM_FreezeLevel),
4408 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4409 return -1);
4410 }
4411
4412 return 0;
4413 }
4414
4415 static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
4416 struct pp_hwmgr *hwmgr, const void *input)
4417 {
4418 int result = 0;
4419 const struct phm_set_power_state_input *states =
4420 (const struct phm_set_power_state_input *)input;
4421 const struct fiji_power_state *fiji_ps =
4422 cast_const_phw_fiji_power_state(states->pnew_state);
4423 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4424 uint32_t sclk = fiji_ps->performance_levels
4425 [fiji_ps->performance_level_count - 1].engine_clock;
4426 uint32_t mclk = fiji_ps->performance_levels
4427 [fiji_ps->performance_level_count - 1].memory_clock;
4428 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4429
4430 struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
4431 uint32_t dpm_count, clock_percent;
4432 uint32_t i;
4433
4434 if (0 == data->need_update_smu7_dpm_table)
4435 return 0;
4436
4437 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4438 dpm_table->sclk_table.dpm_levels
4439 [dpm_table->sclk_table.count - 1].value = sclk;
4440
4441 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4442 PHM_PlatformCaps_OD6PlusinACSupport) ||
4443 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4444 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4445 /* Need to do calculation based on the golden DPM table
4446 * as the Heatmap GPU Clock axis is also based on the default values
4447 */
4448 PP_ASSERT_WITH_CODE(
4449 (golden_dpm_table->sclk_table.dpm_levels
4450 [golden_dpm_table->sclk_table.count - 1].value != 0),
4451 "Divide by 0!",
4452 return -1);
4453 dpm_count = dpm_table->sclk_table.count < 2 ?
4454 0 : dpm_table->sclk_table.count - 2;
4455 for (i = dpm_count; i > 1; i--) {
4456 if (sclk > golden_dpm_table->sclk_table.dpm_levels
4457 [golden_dpm_table->sclk_table.count-1].value) {
4458 clock_percent =
4459 ((sclk - golden_dpm_table->sclk_table.dpm_levels
4460 [golden_dpm_table->sclk_table.count-1].value) * 100) /
4461 golden_dpm_table->sclk_table.dpm_levels
4462 [golden_dpm_table->sclk_table.count-1].value;
4463
4464 dpm_table->sclk_table.dpm_levels[i].value =
4465 golden_dpm_table->sclk_table.dpm_levels[i].value +
4466 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4467 clock_percent)/100;
4468
4469 } else if (golden_dpm_table->sclk_table.dpm_levels
4470 [dpm_table->sclk_table.count-1].value > sclk) {
4471 clock_percent =
4472 ((golden_dpm_table->sclk_table.dpm_levels
4473 [golden_dpm_table->sclk_table.count - 1].value - sclk) *
4474 100) /
4475 golden_dpm_table->sclk_table.dpm_levels
4476 [golden_dpm_table->sclk_table.count-1].value;
4477
4478 dpm_table->sclk_table.dpm_levels[i].value =
4479 golden_dpm_table->sclk_table.dpm_levels[i].value -
4480 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4481 clock_percent) / 100;
4482 } else
4483 dpm_table->sclk_table.dpm_levels[i].value =
4484 golden_dpm_table->sclk_table.dpm_levels[i].value;
4485 }
4486 }
4487 }
4488
4489 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4490 dpm_table->mclk_table.dpm_levels
4491 [dpm_table->mclk_table.count - 1].value = mclk;
4492 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4493 PHM_PlatformCaps_OD6PlusinACSupport) ||
4494 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4495 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4496
4497 PP_ASSERT_WITH_CODE(
4498 (golden_dpm_table->mclk_table.dpm_levels
4499 [golden_dpm_table->mclk_table.count-1].value != 0),
4500 "Divide by 0!",
4501 return -1);
4502 dpm_count = dpm_table->mclk_table.count < 2 ?
4503 0 : dpm_table->mclk_table.count - 2;
4504 for (i = dpm_count; i > 1; i--) {
4505 if (mclk > golden_dpm_table->mclk_table.dpm_levels
4506 [golden_dpm_table->mclk_table.count-1].value) {
4507 clock_percent = ((mclk -
4508 golden_dpm_table->mclk_table.dpm_levels
4509 [golden_dpm_table->mclk_table.count-1].value) * 100) /
4510 golden_dpm_table->mclk_table.dpm_levels
4511 [golden_dpm_table->mclk_table.count-1].value;
4512
4513 dpm_table->mclk_table.dpm_levels[i].value =
4514 golden_dpm_table->mclk_table.dpm_levels[i].value +
4515 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4516 clock_percent) / 100;
4517
4518 } else if (golden_dpm_table->mclk_table.dpm_levels
4519 [dpm_table->mclk_table.count-1].value > mclk) {
4520 clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
4521 [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
4522 golden_dpm_table->mclk_table.dpm_levels
4523 [golden_dpm_table->mclk_table.count-1].value;
4524
4525 dpm_table->mclk_table.dpm_levels[i].value =
4526 golden_dpm_table->mclk_table.dpm_levels[i].value -
4527 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4528 clock_percent) / 100;
4529 } else
4530 dpm_table->mclk_table.dpm_levels[i].value =
4531 golden_dpm_table->mclk_table.dpm_levels[i].value;
4532 }
4533 }
4534 }
4535
4536 if (data->need_update_smu7_dpm_table &
4537 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4538 result = fiji_populate_all_graphic_levels(hwmgr);
4539 PP_ASSERT_WITH_CODE((0 == result),
4540 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4541 return result);
4542 }
4543
4544 if (data->need_update_smu7_dpm_table &
4545 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4546 /*populate MCLK dpm table to SMU7 */
4547 result = fiji_populate_all_memory_levels(hwmgr);
4548 PP_ASSERT_WITH_CODE((0 == result),
4549 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4550 return result);
4551 }
4552
4553 return result;
4554 }
4555
4556 static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4557 struct fiji_single_dpm_table * dpm_table,
4558 uint32_t low_limit, uint32_t high_limit)
4559 {
4560 uint32_t i;
4561
4562 for (i = 0; i < dpm_table->count; i++) {
4563 if ((dpm_table->dpm_levels[i].value < low_limit) ||
4564 (dpm_table->dpm_levels[i].value > high_limit))
4565 dpm_table->dpm_levels[i].enabled = false;
4566 else
4567 dpm_table->dpm_levels[i].enabled = true;
4568 }
4569 return 0;
4570 }
4571
4572 static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
4573 const struct fiji_power_state *fiji_ps)
4574 {
4575 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4576 uint32_t high_limit_count;
4577
4578 PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
4579 "power state did not have any performance level",
4580 return -1);
4581
4582 high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
4583
4584 fiji_trim_single_dpm_states(hwmgr,
4585 &(data->dpm_table.sclk_table),
4586 fiji_ps->performance_levels[0].engine_clock,
4587 fiji_ps->performance_levels[high_limit_count].engine_clock);
4588
4589 fiji_trim_single_dpm_states(hwmgr,
4590 &(data->dpm_table.mclk_table),
4591 fiji_ps->performance_levels[0].memory_clock,
4592 fiji_ps->performance_levels[high_limit_count].memory_clock);
4593
4594 return 0;
4595 }
4596
4597 static int fiji_generate_dpm_level_enable_mask(
4598 struct pp_hwmgr *hwmgr, const void *input)
4599 {
4600 int result;
4601 const struct phm_set_power_state_input *states =
4602 (const struct phm_set_power_state_input *)input;
4603 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4604 const struct fiji_power_state *fiji_ps =
4605 cast_const_phw_fiji_power_state(states->pnew_state);
4606
4607 result = fiji_trim_dpm_states(hwmgr, fiji_ps);
4608 if (result)
4609 return result;
4610
4611 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4612 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4613 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4614 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4615 data->last_mclk_dpm_enable_mask =
4616 data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4617
4618 if (data->uvd_enabled) {
4619 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
4620 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
4621 }
4622
4623 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4624 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4625
4626 return 0;
4627 }
4628
4629 int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4630 {
4631 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4632 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
4633 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
4634 }
4635
4636 int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4637 {
4638 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4639 PPSMC_MSG_VCEDPM_Enable :
4640 PPSMC_MSG_VCEDPM_Disable);
4641 }
4642
4643 int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4644 {
4645 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4646 PPSMC_MSG_SAMUDPM_Enable :
4647 PPSMC_MSG_SAMUDPM_Disable);
4648 }
4649
4650 int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable)
4651 {
4652 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4653 PPSMC_MSG_ACPDPM_Enable :
4654 PPSMC_MSG_ACPDPM_Disable);
4655 }
4656
4657 int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4658 {
4659 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4660 uint32_t mm_boot_level_offset, mm_boot_level_value;
4661 struct phm_ppt_v1_information *table_info =
4662 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4663
4664 if (!bgate) {
4665 data->smc_state_table.UvdBootLevel = 0;
4666 if (table_info->mm_dep_table->count > 0)
4667 data->smc_state_table.UvdBootLevel =
4668 (uint8_t) (table_info->mm_dep_table->count - 1);
4669 mm_boot_level_offset = data->dpm_table_start +
4670 offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
4671 mm_boot_level_offset /= 4;
4672 mm_boot_level_offset *= 4;
4673 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4674 CGS_IND_REG__SMC, mm_boot_level_offset);
4675 mm_boot_level_value &= 0x00FFFFFF;
4676 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
4677 cgs_write_ind_register(hwmgr->device,
4678 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4679
4680 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4681 PHM_PlatformCaps_UVDDPM) ||
4682 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4683 PHM_PlatformCaps_StablePState))
4684 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4685 PPSMC_MSG_UVDDPM_SetEnabledMask,
4686 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
4687 }
4688
4689 return fiji_enable_disable_uvd_dpm(hwmgr, !bgate);
4690 }
4691
4692 int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4693 {
4694 const struct phm_set_power_state_input *states =
4695 (const struct phm_set_power_state_input *)input;
4696 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4697 const struct fiji_power_state *fiji_nps =
4698 cast_const_phw_fiji_power_state(states->pnew_state);
4699 const struct fiji_power_state *fiji_cps =
4700 cast_const_phw_fiji_power_state(states->pcurrent_state);
4701
4702 uint32_t mm_boot_level_offset, mm_boot_level_value;
4703 struct phm_ppt_v1_information *table_info =
4704 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4705
4706 if (fiji_nps->vce_clks.evclk >0 &&
4707 (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
4708 data->smc_state_table.VceBootLevel =
4709 (uint8_t) (table_info->mm_dep_table->count - 1);
4710
4711 mm_boot_level_offset = data->dpm_table_start +
4712 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
4713 mm_boot_level_offset /= 4;
4714 mm_boot_level_offset *= 4;
4715 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4716 CGS_IND_REG__SMC, mm_boot_level_offset);
4717 mm_boot_level_value &= 0xFF00FFFF;
4718 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4719 cgs_write_ind_register(hwmgr->device,
4720 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4721
4722 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4723 PHM_PlatformCaps_StablePState)) {
4724 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4725 PPSMC_MSG_VCEDPM_SetEnabledMask,
4726 (uint32_t)1 << data->smc_state_table.VceBootLevel);
4727
4728 fiji_enable_disable_vce_dpm(hwmgr, true);
4729 } else if (fiji_nps->vce_clks.evclk == 0 &&
4730 fiji_cps != NULL &&
4731 fiji_cps->vce_clks.evclk > 0)
4732 fiji_enable_disable_vce_dpm(hwmgr, false);
4733 }
4734
4735 return 0;
4736 }
4737
4738 int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4739 {
4740 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4741 uint32_t mm_boot_level_offset, mm_boot_level_value;
4742 struct phm_ppt_v1_information *table_info =
4743 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4744
4745 if (!bgate) {
4746 data->smc_state_table.SamuBootLevel =
4747 (uint8_t) (table_info->mm_dep_table->count - 1);
4748 mm_boot_level_offset = data->dpm_table_start +
4749 offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
4750 mm_boot_level_offset /= 4;
4751 mm_boot_level_offset *= 4;
4752 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4753 CGS_IND_REG__SMC, mm_boot_level_offset);
4754 mm_boot_level_value &= 0xFFFFFF00;
4755 mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
4756 cgs_write_ind_register(hwmgr->device,
4757 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4758
4759 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4760 PHM_PlatformCaps_StablePState))
4761 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4762 PPSMC_MSG_SAMUDPM_SetEnabledMask,
4763 (uint32_t)(1 << data->smc_state_table.SamuBootLevel));
4764 }
4765
4766 return fiji_enable_disable_samu_dpm(hwmgr, !bgate);
4767 }
4768
4769 int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4770 {
4771 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4772 uint32_t mm_boot_level_offset, mm_boot_level_value;
4773 struct phm_ppt_v1_information *table_info =
4774 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4775
4776 if (!bgate) {
4777 data->smc_state_table.AcpBootLevel =
4778 (uint8_t) (table_info->mm_dep_table->count - 1);
4779 mm_boot_level_offset = data->dpm_table_start +
4780 offsetof(SMU73_Discrete_DpmTable, AcpBootLevel);
4781 mm_boot_level_offset /= 4;
4782 mm_boot_level_offset *= 4;
4783 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4784 CGS_IND_REG__SMC, mm_boot_level_offset);
4785 mm_boot_level_value &= 0xFFFF00FF;
4786 mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8;
4787 cgs_write_ind_register(hwmgr->device,
4788 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4789
4790 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4791 PHM_PlatformCaps_StablePState))
4792 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4793 PPSMC_MSG_ACPDPM_SetEnabledMask,
4794 (uint32_t)(1 << data->smc_state_table.AcpBootLevel));
4795 }
4796
4797 return fiji_enable_disable_acp_dpm(hwmgr, !bgate);
4798 }
4799
4800 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4801 {
4802 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4803
4804 int result = 0;
4805 uint32_t low_sclk_interrupt_threshold = 0;
4806
4807 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4808 PHM_PlatformCaps_SclkThrottleLowNotification)
4809 && (hwmgr->gfx_arbiter.sclk_threshold !=
4810 data->low_sclk_interrupt_threshold)) {
4811 data->low_sclk_interrupt_threshold =
4812 hwmgr->gfx_arbiter.sclk_threshold;
4813 low_sclk_interrupt_threshold =
4814 data->low_sclk_interrupt_threshold;
4815
4816 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4817
4818 result = fiji_copy_bytes_to_smc(
4819 hwmgr->smumgr,
4820 data->dpm_table_start +
4821 offsetof(SMU73_Discrete_DpmTable,
4822 LowSclkInterruptThreshold),
4823 (uint8_t *)&low_sclk_interrupt_threshold,
4824 sizeof(uint32_t),
4825 data->sram_end);
4826 }
4827
4828 return result;
4829 }
4830
4831 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4832 {
4833 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4834
4835 if (data->need_update_smu7_dpm_table &
4836 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4837 return fiji_program_memory_timing_parameters(hwmgr);
4838
4839 return 0;
4840 }
4841
4842 static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4843 {
4844 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4845
4846 if (0 == data->need_update_smu7_dpm_table)
4847 return 0;
4848
4849 if ((0 == data->sclk_dpm_key_disabled) &&
4850 (data->need_update_smu7_dpm_table &
4851 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4852
4853 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4854 "Trying to Unfreeze SCLK DPM when DPM is disabled",
4855 );
4856 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4857 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4858 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4859 return -1);
4860 }
4861
4862 if ((0 == data->mclk_dpm_key_disabled) &&
4863 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4864
4865 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4866 "Trying to Unfreeze MCLK DPM when DPM is disabled",
4867 );
4868 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4869 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4870 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4871 return -1);
4872 }
4873
4874 data->need_update_smu7_dpm_table = 0;
4875
4876 return 0;
4877 }
4878
4879 /* Look up the voltaged based on DAL's requested level.
4880 * and then send the requested VDDC voltage to SMC
4881 */
4882 static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
4883 {
4884 return;
4885 }
4886
4887 int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
4888 {
4889 int result;
4890 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4891
4892 /* Apply minimum voltage based on DAL's request level */
4893 fiji_apply_dal_minimum_voltage_request(hwmgr);
4894
4895 if (0 == data->sclk_dpm_key_disabled) {
4896 /* Checking if DPM is running. If we discover hang because of this,
4897 * we should skip this message.
4898 */
4899 if (!fiji_is_dpm_running(hwmgr))
4900 printk(KERN_ERR "[ powerplay ] "
4901 "Trying to set Enable Mask when DPM is disabled \n");
4902
4903 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4904 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4905 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4906 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4907 PP_ASSERT_WITH_CODE((0 == result),
4908 "Set Sclk Dpm enable Mask failed", return -1);
4909 }
4910 }
4911
4912 if (0 == data->mclk_dpm_key_disabled) {
4913 /* Checking if DPM is running. If we discover hang because of this,
4914 * we should skip this message.
4915 */
4916 if (!fiji_is_dpm_running(hwmgr))
4917 printk(KERN_ERR "[ powerplay ]"
4918 " Trying to set Enable Mask when DPM is disabled \n");
4919
4920 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
4921 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4922 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4923 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
4924 PP_ASSERT_WITH_CODE((0 == result),
4925 "Set Mclk Dpm enable Mask failed", return -1);
4926 }
4927 }
4928
4929 return 0;
4930 }
4931
4932 static int fiji_notify_link_speed_change_after_state_change(
4933 struct pp_hwmgr *hwmgr, const void *input)
4934 {
4935 const struct phm_set_power_state_input *states =
4936 (const struct phm_set_power_state_input *)input;
4937 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4938 const struct fiji_power_state *fiji_ps =
4939 cast_const_phw_fiji_power_state(states->pnew_state);
4940 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
4941 uint8_t request;
4942
4943 if (data->pspp_notify_required) {
4944 if (target_link_speed == PP_PCIEGen3)
4945 request = PCIE_PERF_REQ_GEN3;
4946 else if (target_link_speed == PP_PCIEGen2)
4947 request = PCIE_PERF_REQ_GEN2;
4948 else
4949 request = PCIE_PERF_REQ_GEN1;
4950
4951 if(request == PCIE_PERF_REQ_GEN1 &&
4952 fiji_get_current_pcie_speed(hwmgr) > 0)
4953 return 0;
4954
4955 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4956 if (PP_PCIEGen2 == target_link_speed)
4957 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4958 else
4959 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4960 }
4961 }
4962
4963 return 0;
4964 }
4965
4966 static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
4967 const void *input)
4968 {
4969 int tmp_result, result = 0;
4970
4971 tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4972 PP_ASSERT_WITH_CODE((0 == tmp_result),
4973 "Failed to find DPM states clocks in DPM table!",
4974 result = tmp_result);
4975
4976 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4977 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4978 tmp_result =
4979 fiji_request_link_speed_change_before_state_change(hwmgr, input);
4980 PP_ASSERT_WITH_CODE((0 == tmp_result),
4981 "Failed to request link speed change before state change!",
4982 result = tmp_result);
4983 }
4984
4985 tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
4986 PP_ASSERT_WITH_CODE((0 == tmp_result),
4987 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4988
4989 tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4990 PP_ASSERT_WITH_CODE((0 == tmp_result),
4991 "Failed to populate and upload SCLK MCLK DPM levels!",
4992 result = tmp_result);
4993
4994 tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
4995 PP_ASSERT_WITH_CODE((0 == tmp_result),
4996 "Failed to generate DPM level enabled mask!",
4997 result = tmp_result);
4998
4999 tmp_result = fiji_update_vce_dpm(hwmgr, input);
5000 PP_ASSERT_WITH_CODE((0 == tmp_result),
5001 "Failed to update VCE DPM!",
5002 result = tmp_result);
5003
5004 tmp_result = fiji_update_sclk_threshold(hwmgr);
5005 PP_ASSERT_WITH_CODE((0 == tmp_result),
5006 "Failed to update SCLK threshold!",
5007 result = tmp_result);
5008
5009 tmp_result = fiji_program_mem_timing_parameters(hwmgr);
5010 PP_ASSERT_WITH_CODE((0 == tmp_result),
5011 "Failed to program memory timing parameters!",
5012 result = tmp_result);
5013
5014 tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
5015 PP_ASSERT_WITH_CODE((0 == tmp_result),
5016 "Failed to unfreeze SCLK MCLK DPM!",
5017 result = tmp_result);
5018
5019 tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
5020 PP_ASSERT_WITH_CODE((0 == tmp_result),
5021 "Failed to upload DPM level enabled mask!",
5022 result = tmp_result);
5023
5024 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5025 PHM_PlatformCaps_PCIEPerformanceRequest)) {
5026 tmp_result =
5027 fiji_notify_link_speed_change_after_state_change(hwmgr, input);
5028 PP_ASSERT_WITH_CODE((0 == tmp_result),
5029 "Failed to notify link speed change after state change!",
5030 result = tmp_result);
5031 }
5032
5033 return result;
5034 }
5035
5036 static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
5037 {
5038 struct pp_power_state *ps;
5039 struct fiji_power_state *fiji_ps;
5040
5041 if (hwmgr == NULL)
5042 return -EINVAL;
5043
5044 ps = hwmgr->request_ps;
5045
5046 if (ps == NULL)
5047 return -EINVAL;
5048
5049 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5050
5051 if (low)
5052 return fiji_ps->performance_levels[0].engine_clock;
5053 else
5054 return fiji_ps->performance_levels
5055 [fiji_ps->performance_level_count-1].engine_clock;
5056 }
5057
5058 static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
5059 {
5060 struct pp_power_state *ps;
5061 struct fiji_power_state *fiji_ps;
5062
5063 if (hwmgr == NULL)
5064 return -EINVAL;
5065
5066 ps = hwmgr->request_ps;
5067
5068 if (ps == NULL)
5069 return -EINVAL;
5070
5071 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5072
5073 if (low)
5074 return fiji_ps->performance_levels[0].memory_clock;
5075 else
5076 return fiji_ps->performance_levels
5077 [fiji_ps->performance_level_count-1].memory_clock;
5078 }
5079
5080 static void fiji_print_current_perforce_level(
5081 struct pp_hwmgr *hwmgr, struct seq_file *m)
5082 {
5083 uint32_t sclk, mclk, activity_percent = 0;
5084 uint32_t offset;
5085 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5086
5087 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5088
5089 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5090
5091 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5092
5093 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5094 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
5095 mclk / 100, sclk / 100);
5096
5097 offset = data->soft_regs_start + offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
5098 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
5099 activity_percent += 0x80;
5100 activity_percent >>= 8;
5101
5102 seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
5103
5104 seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en");
5105
5106 seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en");
5107 }
5108
5109 static int fiji_program_display_gap(struct pp_hwmgr *hwmgr)
5110 {
5111 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5112 uint32_t num_active_displays = 0;
5113 uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
5114 CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
5115 uint32_t display_gap2;
5116 uint32_t pre_vbi_time_in_us;
5117 uint32_t frame_time_in_us;
5118 uint32_t ref_clock;
5119 uint32_t refresh_rate = 0;
5120 struct cgs_display_info info = {0};
5121 struct cgs_mode_info mode_info;
5122
5123 info.mode_info = &mode_info;
5124
5125 cgs_get_active_displays_info(hwmgr->device, &info);
5126 num_active_displays = info.display_count;
5127
5128 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
5129 DISP_GAP, (num_active_displays > 0)?
5130 DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
5131 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5132 ixCG_DISPLAY_GAP_CNTL, display_gap);
5133
5134 ref_clock = mode_info.ref_clock;
5135 refresh_rate = mode_info.refresh_rate;
5136
5137 if (refresh_rate == 0)
5138 refresh_rate = 60;
5139
5140 frame_time_in_us = 1000000 / refresh_rate;
5141
5142 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
5143 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
5144
5145 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5146 ixCG_DISPLAY_GAP_CNTL2, display_gap2);
5147
5148 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5149 data->soft_regs_start +
5150 offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64);
5151
5152 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5153 data->soft_regs_start +
5154 offsetof(SMU73_SoftRegisters, VBlankTimeout),
5155 (frame_time_in_us - pre_vbi_time_in_us));
5156
5157 if (num_active_displays == 1)
5158 tonga_notify_smc_display_change(hwmgr, true);
5159
5160 return 0;
5161 }
5162
5163 int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
5164 {
5165 return fiji_program_display_gap(hwmgr);
5166 }
5167
5168 static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr,
5169 uint16_t us_max_fan_pwm)
5170 {
5171 hwmgr->thermal_controller.
5172 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
5173
5174 if (phm_is_hw_access_blocked(hwmgr))
5175 return 0;
5176
5177 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5178 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
5179 }
5180
5181 static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr,
5182 uint16_t us_max_fan_rpm)
5183 {
5184 hwmgr->thermal_controller.
5185 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
5186
5187 if (phm_is_hw_access_blocked(hwmgr))
5188 return 0;
5189
5190 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5191 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
5192 }
5193
5194 int fiji_dpm_set_interrupt_state(void *private_data,
5195 unsigned src_id, unsigned type,
5196 int enabled)
5197 {
5198 uint32_t cg_thermal_int;
5199 struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
5200
5201 if (hwmgr == NULL)
5202 return -EINVAL;
5203
5204 switch (type) {
5205 case AMD_THERMAL_IRQ_LOW_TO_HIGH:
5206 if (enabled) {
5207 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5208 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5209 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5210 cgs_write_ind_register(hwmgr->device,
5211 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5212 } else {
5213 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5214 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5215 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5216 cgs_write_ind_register(hwmgr->device,
5217 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5218 }
5219 break;
5220
5221 case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5222 if (enabled) {
5223 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5224 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5225 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5226 cgs_write_ind_register(hwmgr->device,
5227 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5228 } else {
5229 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5230 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5231 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5232 cgs_write_ind_register(hwmgr->device,
5233 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5234 }
5235 break;
5236 default:
5237 break;
5238 }
5239 return 0;
5240 }
5241
5242 int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5243 const void *thermal_interrupt_info)
5244 {
5245 int result;
5246 const struct pp_interrupt_registration_info *info =
5247 (const struct pp_interrupt_registration_info *)
5248 thermal_interrupt_info;
5249
5250 if (info == NULL)
5251 return -EINVAL;
5252
5253 result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5254 fiji_dpm_set_interrupt_state,
5255 info->call_back, info->context);
5256
5257 if (result)
5258 return -EINVAL;
5259
5260 result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5261 fiji_dpm_set_interrupt_state,
5262 info->call_back, info->context);
5263
5264 if (result)
5265 return -EINVAL;
5266
5267 return 0;
5268 }
5269
5270 static int fiji_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5271 {
5272 if (mode) {
5273 /* stop auto-manage */
5274 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5275 PHM_PlatformCaps_MicrocodeFanControl))
5276 fiji_fan_ctrl_stop_smc_fan_control(hwmgr);
5277 fiji_fan_ctrl_set_static_mode(hwmgr, mode);
5278 } else
5279 /* restart auto-manage */
5280 fiji_fan_ctrl_reset_fan_speed_to_default(hwmgr);
5281
5282 return 0;
5283 }
5284
5285 static int fiji_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5286 {
5287 if (hwmgr->fan_ctrl_is_in_default_mode)
5288 return hwmgr->fan_ctrl_default_mode;
5289 else
5290 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
5291 CG_FDO_CTRL2, FDO_PWM_MODE);
5292 }
5293
5294 static int fiji_force_clock_level(struct pp_hwmgr *hwmgr,
5295 enum pp_clock_type type, uint32_t mask)
5296 {
5297 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5298
5299 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
5300 return -EINVAL;
5301
5302 switch (type) {
5303 case PP_SCLK:
5304 if (!data->sclk_dpm_key_disabled)
5305 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5306 PPSMC_MSG_SCLKDPM_SetEnabledMask,
5307 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
5308 break;
5309
5310 case PP_MCLK:
5311 if (!data->mclk_dpm_key_disabled)
5312 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5313 PPSMC_MSG_MCLKDPM_SetEnabledMask,
5314 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
5315 break;
5316
5317 case PP_PCIE:
5318 {
5319 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
5320 uint32_t level = 0;
5321
5322 while (tmp >>= 1)
5323 level++;
5324
5325 if (!data->pcie_dpm_key_disabled)
5326 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5327 PPSMC_MSG_PCIeDPM_ForceLevel,
5328 level);
5329 break;
5330 }
5331 default:
5332 break;
5333 }
5334
5335 return 0;
5336 }
5337
5338 static int fiji_print_clock_levels(struct pp_hwmgr *hwmgr,
5339 enum pp_clock_type type, char *buf)
5340 {
5341 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5342 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5343 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5344 struct fiji_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
5345 int i, now, size = 0;
5346 uint32_t clock, pcie_speed;
5347
5348 switch (type) {
5349 case PP_SCLK:
5350 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5351 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5352
5353 for (i = 0; i < sclk_table->count; i++) {
5354 if (clock > sclk_table->dpm_levels[i].value)
5355 continue;
5356 break;
5357 }
5358 now = i;
5359
5360 for (i = 0; i < sclk_table->count; i++)
5361 size += sprintf(buf + size, "%d: %uMhz %s\n",
5362 i, sclk_table->dpm_levels[i].value / 100,
5363 (i == now) ? "*" : "");
5364 break;
5365 case PP_MCLK:
5366 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5367 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5368
5369 for (i = 0; i < mclk_table->count; i++) {
5370 if (clock > mclk_table->dpm_levels[i].value)
5371 continue;
5372 break;
5373 }
5374 now = i;
5375
5376 for (i = 0; i < mclk_table->count; i++)
5377 size += sprintf(buf + size, "%d: %uMhz %s\n",
5378 i, mclk_table->dpm_levels[i].value / 100,
5379 (i == now) ? "*" : "");
5380 break;
5381 case PP_PCIE:
5382 pcie_speed = fiji_get_current_pcie_speed(hwmgr);
5383 for (i = 0; i < pcie_table->count; i++) {
5384 if (pcie_speed != pcie_table->dpm_levels[i].value)
5385 continue;
5386 break;
5387 }
5388 now = i;
5389
5390 for (i = 0; i < pcie_table->count; i++)
5391 size += sprintf(buf + size, "%d: %s %s\n", i,
5392 (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x1" :
5393 (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
5394 (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
5395 (i == now) ? "*" : "");
5396 break;
5397 default:
5398 break;
5399 }
5400 return size;
5401 }
5402
5403 static inline bool fiji_are_power_levels_equal(const struct fiji_performance_level *pl1,
5404 const struct fiji_performance_level *pl2)
5405 {
5406 return ((pl1->memory_clock == pl2->memory_clock) &&
5407 (pl1->engine_clock == pl2->engine_clock) &&
5408 (pl1->pcie_gen == pl2->pcie_gen) &&
5409 (pl1->pcie_lane == pl2->pcie_lane));
5410 }
5411
5412 int fiji_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
5413 {
5414 const struct fiji_power_state *psa = cast_const_phw_fiji_power_state(pstate1);
5415 const struct fiji_power_state *psb = cast_const_phw_fiji_power_state(pstate2);
5416 int i;
5417
5418 if (equal == NULL || psa == NULL || psb == NULL)
5419 return -EINVAL;
5420
5421 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
5422 if (psa->performance_level_count != psb->performance_level_count) {
5423 *equal = false;
5424 return 0;
5425 }
5426
5427 for (i = 0; i < psa->performance_level_count; i++) {
5428 if (!fiji_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
5429 /* If we have found even one performance level pair that is different the states are different. */
5430 *equal = false;
5431 return 0;
5432 }
5433 }
5434
5435 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5436 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
5437 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
5438 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
5439 *equal &= (psa->acp_clk == psb->acp_clk);
5440
5441 return 0;
5442 }
5443
5444 bool fiji_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5445 {
5446 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5447 bool is_update_required = false;
5448 struct cgs_display_info info = {0,0,NULL};
5449
5450 cgs_get_active_displays_info(hwmgr->device, &info);
5451
5452 if (data->display_timing.num_existing_displays != info.display_count)
5453 is_update_required = true;
5454
5455 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5456 if(hwmgr->display_config.min_core_set_clock_in_sr != data->display_timing.min_clock_in_sr)
5457 is_update_required = true;
5458 }
5459
5460 return is_update_required;
5461 }
5462
5463 static int fiji_get_sclk_od(struct pp_hwmgr *hwmgr)
5464 {
5465 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5466 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5467 struct fiji_single_dpm_table *golden_sclk_table =
5468 &(data->golden_dpm_table.sclk_table);
5469 int value;
5470
5471 value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
5472 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
5473 100 /
5474 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5475
5476 return value;
5477 }
5478
5479 static int fiji_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5480 {
5481 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5482 struct fiji_single_dpm_table *golden_sclk_table =
5483 &(data->golden_dpm_table.sclk_table);
5484 struct pp_power_state *ps;
5485 struct fiji_power_state *fiji_ps;
5486
5487 if (value > 20)
5488 value = 20;
5489
5490 ps = hwmgr->request_ps;
5491
5492 if (ps == NULL)
5493 return -EINVAL;
5494
5495 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5496
5497 fiji_ps->performance_levels[fiji_ps->performance_level_count - 1].engine_clock =
5498 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5499 value / 100 +
5500 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5501
5502 return 0;
5503 }
5504
5505 static int fiji_get_mclk_od(struct pp_hwmgr *hwmgr)
5506 {
5507 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5508 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5509 struct fiji_single_dpm_table *golden_mclk_table =
5510 &(data->golden_dpm_table.mclk_table);
5511 int value;
5512
5513 value = (mclk_table->dpm_levels[mclk_table->count - 1].value -
5514 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) *
5515 100 /
5516 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5517
5518 return value;
5519 }
5520
5521 static int fiji_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5522 {
5523 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5524 struct fiji_single_dpm_table *golden_mclk_table =
5525 &(data->golden_dpm_table.mclk_table);
5526 struct pp_power_state *ps;
5527 struct fiji_power_state *fiji_ps;
5528
5529 if (value > 20)
5530 value = 20;
5531
5532 ps = hwmgr->request_ps;
5533
5534 if (ps == NULL)
5535 return -EINVAL;
5536
5537 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5538
5539 fiji_ps->performance_levels[fiji_ps->performance_level_count - 1].memory_clock =
5540 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5541 value / 100 +
5542 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5543
5544 return 0;
5545 }
5546
5547 static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
5548 .backend_init = &fiji_hwmgr_backend_init,
5549 .backend_fini = &fiji_hwmgr_backend_fini,
5550 .asic_setup = &fiji_setup_asic_task,
5551 .dynamic_state_management_enable = &fiji_enable_dpm_tasks,
5552 .dynamic_state_management_disable = &fiji_disable_dpm_tasks,
5553 .force_dpm_level = &fiji_dpm_force_dpm_level,
5554 .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
5555 .get_power_state_size = &fiji_get_power_state_size,
5556 .get_pp_table_entry = &fiji_get_pp_table_entry,
5557 .patch_boot_state = &fiji_patch_boot_state,
5558 .apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
5559 .power_state_set = &fiji_set_power_state_tasks,
5560 .get_sclk = &fiji_dpm_get_sclk,
5561 .get_mclk = &fiji_dpm_get_mclk,
5562 .print_current_perforce_level = &fiji_print_current_perforce_level,
5563 .powergate_uvd = &fiji_phm_powergate_uvd,
5564 .powergate_vce = &fiji_phm_powergate_vce,
5565 .disable_clock_power_gating = &fiji_phm_disable_clock_power_gating,
5566 .notify_smc_display_config_after_ps_adjustment =
5567 &tonga_notify_smc_display_config_after_ps_adjustment,
5568 .display_config_changed = &fiji_display_configuration_changed_task,
5569 .set_max_fan_pwm_output = fiji_set_max_fan_pwm_output,
5570 .set_max_fan_rpm_output = fiji_set_max_fan_rpm_output,
5571 .get_temperature = fiji_thermal_get_temperature,
5572 .stop_thermal_controller = fiji_thermal_stop_thermal_controller,
5573 .get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info,
5574 .get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent,
5575 .set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent,
5576 .reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default,
5577 .get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm,
5578 .set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm,
5579 .uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller,
5580 .register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt,
5581 .set_fan_control_mode = fiji_set_fan_control_mode,
5582 .get_fan_control_mode = fiji_get_fan_control_mode,
5583 .check_states_equal = fiji_check_states_equal,
5584 .check_smc_update_required_for_display_configuration = fiji_check_smc_update_required_for_display_configuration,
5585 .force_clock_level = fiji_force_clock_level,
5586 .print_clock_levels = fiji_print_clock_levels,
5587 .get_sclk_od = fiji_get_sclk_od,
5588 .set_sclk_od = fiji_set_sclk_od,
5589 .get_mclk_od = fiji_get_mclk_od,
5590 .set_mclk_od = fiji_set_mclk_od,
5591 };
5592
5593 int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
5594 {
5595 hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
5596 hwmgr->pptable_func = &tonga_pptable_funcs;
5597 pp_fiji_thermal_initialize(hwmgr);
5598 return 0;
5599 }
This page took 0.245277 seconds and 5 git commands to generate.