Merge remote-tracking branch 'keys/keys-next'
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / iceland_hwmgr.c
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Author: Huang Rui <ray.huang@amd.com>
23 *
24 */
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/fb.h>
28 #include "linux/delay.h"
29 #include "pp_acpi.h"
30 #include "hwmgr.h"
31 #include <atombios.h>
32 #include "iceland_hwmgr.h"
33 #include "pptable.h"
34 #include "processpptables.h"
35 #include "pp_debug.h"
36 #include "ppsmc.h"
37 #include "cgs_common.h"
38 #include "pppcielanes.h"
39 #include "iceland_dyn_defaults.h"
40 #include "smumgr.h"
41 #include "iceland_smumgr.h"
42 #include "iceland_clockpowergating.h"
43 #include "iceland_thermal.h"
44 #include "iceland_powertune.h"
45
46 #include "gmc/gmc_8_1_d.h"
47 #include "gmc/gmc_8_1_sh_mask.h"
48
49 #include "bif/bif_5_0_d.h"
50 #include "bif/bif_5_0_sh_mask.h"
51
52 #include "smu/smu_7_1_1_d.h"
53 #include "smu/smu_7_1_1_sh_mask.h"
54
55 #include "cgs_linux.h"
56 #include "eventmgr.h"
57 #include "amd_pcie_helpers.h"
58
59 #define MC_CG_ARB_FREQ_F0 0x0a
60 #define MC_CG_ARB_FREQ_F1 0x0b
61 #define MC_CG_ARB_FREQ_F2 0x0c
62 #define MC_CG_ARB_FREQ_F3 0x0d
63
64 #define MC_CG_SEQ_DRAMCONF_S0 0x05
65 #define MC_CG_SEQ_DRAMCONF_S1 0x06
66 #define MC_CG_SEQ_YCLK_SUSPEND 0x04
67 #define MC_CG_SEQ_YCLK_RESUME 0x0a
68
69 #define PCIE_BUS_CLK 10000
70 #define TCLK (PCIE_BUS_CLK / 10)
71
72 #define SMC_RAM_END 0x40000
73 #define SMC_CG_IND_START 0xc0030000
74 #define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/
75
76 #define VOLTAGE_SCALE 4
77 #define VOLTAGE_VID_OFFSET_SCALE1 625
78 #define VOLTAGE_VID_OFFSET_SCALE2 100
79
80 const uint32_t iceland_magic = (uint32_t)(PHM_VIslands_Magic);
81
82 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
83 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
84 #define MC_SEQ_MISC0_GDDR5_VALUE 5
85
86 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
87 enum DPM_EVENT_SRC {
88 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
89 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
90 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
91 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
92 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
93 };
94
95 static int iceland_read_clock_registers(struct pp_hwmgr *hwmgr)
96 {
97 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
98
99 data->clock_registers.vCG_SPLL_FUNC_CNTL =
100 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
101 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
102 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
103 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
104 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
105 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
106 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
107 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
108 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
109 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
110 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
111 data->clock_registers.vDLL_CNTL =
112 cgs_read_register(hwmgr->device, mmDLL_CNTL);
113 data->clock_registers.vMCLK_PWRMGT_CNTL =
114 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
115 data->clock_registers.vMPLL_AD_FUNC_CNTL =
116 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
117 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
118 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
119 data->clock_registers.vMPLL_FUNC_CNTL =
120 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
121 data->clock_registers.vMPLL_FUNC_CNTL_1 =
122 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
123 data->clock_registers.vMPLL_FUNC_CNTL_2 =
124 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
125 data->clock_registers.vMPLL_SS1 =
126 cgs_read_register(hwmgr->device, mmMPLL_SS1);
127 data->clock_registers.vMPLL_SS2 =
128 cgs_read_register(hwmgr->device, mmMPLL_SS2);
129
130 return 0;
131 }
132
133 /**
134 * Find out if memory is GDDR5.
135 *
136 * @param hwmgr the address of the powerplay hardware manager.
137 * @return always 0
138 */
139 int iceland_get_memory_type(struct pp_hwmgr *hwmgr)
140 {
141 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
142 uint32_t temp;
143
144 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
145
146 data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
147 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
148 MC_SEQ_MISC0_GDDR5_SHIFT));
149
150 return 0;
151 }
152
153 int iceland_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
154 {
155 /* iceland does not have MM hardware blocks */
156 return 0;
157 }
158
159 /**
160 * Enables Dynamic Power Management by SMC
161 *
162 * @param hwmgr the address of the powerplay hardware manager.
163 * @return always 0
164 */
165 int iceland_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
166 {
167 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1);
168
169 return 0;
170 }
171
172 /**
173 * Find the MC microcode version and store it in the HwMgr struct
174 *
175 * @param hwmgr the address of the powerplay hardware manager.
176 * @return always 0
177 */
178 int iceland_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
179 {
180 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
181
182 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
183
184 return 0;
185 }
186
187 static int iceland_init_sclk_threshold(struct pp_hwmgr *hwmgr)
188 {
189 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
190
191 data->low_sclk_interrupt_threshold = 0;
192
193 return 0;
194 }
195
196
197 static int iceland_setup_asic_task(struct pp_hwmgr *hwmgr)
198 {
199 int tmp_result, result = 0;
200
201 tmp_result = iceland_read_clock_registers(hwmgr);
202 PP_ASSERT_WITH_CODE((0 == tmp_result),
203 "Failed to read clock registers!", result = tmp_result);
204
205 tmp_result = iceland_get_memory_type(hwmgr);
206 PP_ASSERT_WITH_CODE((0 == tmp_result),
207 "Failed to get memory type!", result = tmp_result);
208
209 tmp_result = iceland_enable_acpi_power_management(hwmgr);
210 PP_ASSERT_WITH_CODE((0 == tmp_result),
211 "Failed to enable ACPI power management!", result = tmp_result);
212
213 tmp_result = iceland_get_mc_microcode_version(hwmgr);
214 PP_ASSERT_WITH_CODE((0 == tmp_result),
215 "Failed to get MC microcode version!", result = tmp_result);
216
217 tmp_result = iceland_init_sclk_threshold(hwmgr);
218 PP_ASSERT_WITH_CODE((0 == tmp_result),
219 "Failed to init sclk threshold!", result = tmp_result);
220
221 return result;
222 }
223
224 static bool cf_iceland_voltage_control(struct pp_hwmgr *hwmgr)
225 {
226 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
227
228 return ICELAND_VOLTAGE_CONTROL_NONE != data->voltage_control;
229 }
230
231 /*
232 * -------------- Voltage Tables ----------------------
233 * If the voltage table would be bigger than what will fit into the
234 * state table on the SMC keep only the higher entries.
235 */
236
237 static void iceland_trim_voltage_table_to_fit_state_table(
238 struct pp_hwmgr *hwmgr,
239 uint32_t max_voltage_steps,
240 pp_atomctrl_voltage_table *voltage_table)
241 {
242 unsigned int i, diff;
243
244 if (voltage_table->count <= max_voltage_steps) {
245 return;
246 }
247
248 diff = voltage_table->count - max_voltage_steps;
249
250 for (i = 0; i < max_voltage_steps; i++) {
251 voltage_table->entries[i] = voltage_table->entries[i + diff];
252 }
253
254 voltage_table->count = max_voltage_steps;
255
256 return;
257 }
258
259 /**
260 * Enable voltage control
261 *
262 * @param hwmgr the address of the powerplay hardware manager.
263 * @return always 0
264 */
265 int iceland_enable_voltage_control(struct pp_hwmgr *hwmgr)
266 {
267 /* enable voltage control */
268 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
269
270 return 0;
271 }
272
273 static int iceland_get_svi2_voltage_table(struct pp_hwmgr *hwmgr,
274 struct phm_clock_voltage_dependency_table *voltage_dependency_table,
275 pp_atomctrl_voltage_table *voltage_table)
276 {
277 uint32_t i;
278
279 PP_ASSERT_WITH_CODE((NULL != voltage_table),
280 "Voltage Dependency Table empty.", return -EINVAL;);
281
282 voltage_table->mask_low = 0;
283 voltage_table->phase_delay = 0;
284 voltage_table->count = voltage_dependency_table->count;
285
286 for (i = 0; i < voltage_dependency_table->count; i++) {
287 voltage_table->entries[i].value =
288 voltage_dependency_table->entries[i].v;
289 voltage_table->entries[i].smio_low = 0;
290 }
291
292 return 0;
293 }
294
295 /**
296 * Create Voltage Tables.
297 *
298 * @param hwmgr the address of the powerplay hardware manager.
299 * @return always 0
300 */
301 int iceland_construct_voltage_tables(struct pp_hwmgr *hwmgr)
302 {
303 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
304 int result;
305
306 /* GPIO voltage */
307 if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
308 result = atomctrl_get_voltage_table_v3(hwmgr,
309 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
310 &data->vddc_voltage_table);
311 PP_ASSERT_WITH_CODE((0 == result),
312 "Failed to retrieve VDDC table.", return result;);
313 } else if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
314 /* SVI2 VDDC voltage */
315 result = iceland_get_svi2_voltage_table(hwmgr,
316 hwmgr->dyn_state.vddc_dependency_on_mclk,
317 &data->vddc_voltage_table);
318 PP_ASSERT_WITH_CODE((0 == result),
319 "Failed to retrieve SVI2 VDDC table from dependancy table.", return result;);
320 }
321
322 PP_ASSERT_WITH_CODE(
323 (data->vddc_voltage_table.count <= (SMU71_MAX_LEVELS_VDDC)),
324 "Too many voltage values for VDDC. Trimming to fit state table.",
325 iceland_trim_voltage_table_to_fit_state_table(hwmgr,
326 SMU71_MAX_LEVELS_VDDC, &(data->vddc_voltage_table));
327 );
328
329 /* GPIO */
330 if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
331 result = atomctrl_get_voltage_table_v3(hwmgr,
332 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table));
333 PP_ASSERT_WITH_CODE((0 == result),
334 "Failed to retrieve VDDCI table.", return result;);
335 }
336
337 /* SVI2 VDDCI voltage */
338 if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
339 result = iceland_get_svi2_voltage_table(hwmgr,
340 hwmgr->dyn_state.vddci_dependency_on_mclk,
341 &data->vddci_voltage_table);
342 PP_ASSERT_WITH_CODE((0 == result),
343 "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;);
344 }
345
346 PP_ASSERT_WITH_CODE(
347 (data->vddci_voltage_table.count <= (SMU71_MAX_LEVELS_VDDCI)),
348 "Too many voltage values for VDDCI. Trimming to fit state table.",
349 iceland_trim_voltage_table_to_fit_state_table(hwmgr,
350 SMU71_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table));
351 );
352
353
354 /* GPIO */
355 if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
356 result = atomctrl_get_voltage_table_v3(hwmgr,
357 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table));
358 PP_ASSERT_WITH_CODE((0 == result),
359 "Failed to retrieve table.", return result;);
360 }
361
362 /* SVI2 voltage control */
363 if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
364 result = iceland_get_svi2_voltage_table(hwmgr,
365 hwmgr->dyn_state.mvdd_dependency_on_mclk,
366 &data->mvdd_voltage_table);
367 PP_ASSERT_WITH_CODE((0 == result),
368 "Failed to retrieve SVI2 MVDD table from dependancy table.", return result;);
369 }
370
371 PP_ASSERT_WITH_CODE(
372 (data->mvdd_voltage_table.count <= (SMU71_MAX_LEVELS_MVDD)),
373 "Too many voltage values for MVDD. Trimming to fit state table.",
374 iceland_trim_voltage_table_to_fit_state_table(hwmgr,
375 SMU71_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table));
376 );
377
378 return 0;
379 }
380
381 /*---------------------------MC----------------------------*/
382
383 uint8_t iceland_get_memory_module_index(struct pp_hwmgr *hwmgr)
384 {
385 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
386 }
387
388 bool iceland_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg)
389 {
390 bool result = true;
391
392 switch (inReg) {
393 case mmMC_SEQ_RAS_TIMING:
394 *outReg = mmMC_SEQ_RAS_TIMING_LP;
395 break;
396
397 case mmMC_SEQ_DLL_STBY:
398 *outReg = mmMC_SEQ_DLL_STBY_LP;
399 break;
400
401 case mmMC_SEQ_G5PDX_CMD0:
402 *outReg = mmMC_SEQ_G5PDX_CMD0_LP;
403 break;
404
405 case mmMC_SEQ_G5PDX_CMD1:
406 *outReg = mmMC_SEQ_G5PDX_CMD1_LP;
407 break;
408
409 case mmMC_SEQ_G5PDX_CTRL:
410 *outReg = mmMC_SEQ_G5PDX_CTRL_LP;
411 break;
412
413 case mmMC_SEQ_CAS_TIMING:
414 *outReg = mmMC_SEQ_CAS_TIMING_LP;
415 break;
416
417 case mmMC_SEQ_MISC_TIMING:
418 *outReg = mmMC_SEQ_MISC_TIMING_LP;
419 break;
420
421 case mmMC_SEQ_MISC_TIMING2:
422 *outReg = mmMC_SEQ_MISC_TIMING2_LP;
423 break;
424
425 case mmMC_SEQ_PMG_DVS_CMD:
426 *outReg = mmMC_SEQ_PMG_DVS_CMD_LP;
427 break;
428
429 case mmMC_SEQ_PMG_DVS_CTL:
430 *outReg = mmMC_SEQ_PMG_DVS_CTL_LP;
431 break;
432
433 case mmMC_SEQ_RD_CTL_D0:
434 *outReg = mmMC_SEQ_RD_CTL_D0_LP;
435 break;
436
437 case mmMC_SEQ_RD_CTL_D1:
438 *outReg = mmMC_SEQ_RD_CTL_D1_LP;
439 break;
440
441 case mmMC_SEQ_WR_CTL_D0:
442 *outReg = mmMC_SEQ_WR_CTL_D0_LP;
443 break;
444
445 case mmMC_SEQ_WR_CTL_D1:
446 *outReg = mmMC_SEQ_WR_CTL_D1_LP;
447 break;
448
449 case mmMC_PMG_CMD_EMRS:
450 *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP;
451 break;
452
453 case mmMC_PMG_CMD_MRS:
454 *outReg = mmMC_SEQ_PMG_CMD_MRS_LP;
455 break;
456
457 case mmMC_PMG_CMD_MRS1:
458 *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP;
459 break;
460
461 case mmMC_SEQ_PMG_TIMING:
462 *outReg = mmMC_SEQ_PMG_TIMING_LP;
463 break;
464
465 case mmMC_PMG_CMD_MRS2:
466 *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP;
467 break;
468
469 case mmMC_SEQ_WR_CTL_2:
470 *outReg = mmMC_SEQ_WR_CTL_2_LP;
471 break;
472
473 default:
474 result = false;
475 break;
476 }
477
478 return result;
479 }
480
481 int iceland_set_s0_mc_reg_index(phw_iceland_mc_reg_table *table)
482 {
483 uint32_t i;
484 uint16_t address;
485
486 for (i = 0; i < table->last; i++) {
487 table->mc_reg_address[i].s0 =
488 iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
489 ? address : table->mc_reg_address[i].s1;
490 }
491 return 0;
492 }
493
494 int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_iceland_mc_reg_table *ni_table)
495 {
496 uint8_t i, j;
497
498 PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
499 "Invalid VramInfo table.", return -1);
500 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
501 "Invalid VramInfo table.", return -1);
502
503 for (i = 0; i < table->last; i++) {
504 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
505 }
506 ni_table->last = table->last;
507
508 for (i = 0; i < table->num_entries; i++) {
509 ni_table->mc_reg_table_entry[i].mclk_max =
510 table->mc_reg_table_entry[i].mclk_max;
511 for (j = 0; j < table->last; j++) {
512 ni_table->mc_reg_table_entry[i].mc_data[j] =
513 table->mc_reg_table_entry[i].mc_data[j];
514 }
515 }
516
517 ni_table->num_entries = table->num_entries;
518
519 return 0;
520 }
521
522 /**
523 * VBIOS omits some information to reduce size, we need to recover them here.
524 * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
525 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
526 * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
527 * 3. need to set these data for each clock range
528 *
529 * @param hwmgr the address of the powerplay hardware manager.
530 * @param table the address of MCRegTable
531 * @return always 0
532 */
533 static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_iceland_mc_reg_table *table)
534 {
535 uint8_t i, j, k;
536 uint32_t temp_reg;
537 const iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
538
539 for (i = 0, j = table->last; i < table->last; i++) {
540 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
541 "Invalid VramInfo table.", return -1);
542 switch (table->mc_reg_address[i].s1) {
543 /*
544 * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write
545 * to mmMC_PMG_CMD_EMRS/_LP[15:0]. Bit[15:0] MRS, need
546 * to be update mmMC_PMG_CMD_MRS/_LP[15:0]
547 */
548 case mmMC_SEQ_MISC1:
549 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
550 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
551 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
552 for (k = 0; k < table->num_entries; k++) {
553 table->mc_reg_table_entry[k].mc_data[j] =
554 ((temp_reg & 0xffff0000)) |
555 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
556 }
557 j++;
558 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
559 "Invalid VramInfo table.", return -1);
560
561 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
562 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
563 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
564 for (k = 0; k < table->num_entries; k++) {
565 table->mc_reg_table_entry[k].mc_data[j] =
566 (temp_reg & 0xffff0000) |
567 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
568
569 if (!data->is_memory_GDDR5) {
570 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
571 }
572 }
573 j++;
574 PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
575 "Invalid VramInfo table.", return -1);
576
577 if (!data->is_memory_GDDR5) {
578 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
579 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
580 for (k = 0; k < table->num_entries; k++) {
581 table->mc_reg_table_entry[k].mc_data[j] =
582 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
583 }
584 j++;
585 PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
586 "Invalid VramInfo table.", return -1);
587 }
588
589 break;
590
591 case mmMC_SEQ_RESERVE_M:
592 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
593 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
594 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
595 for (k = 0; k < table->num_entries; k++) {
596 table->mc_reg_table_entry[k].mc_data[j] =
597 (temp_reg & 0xffff0000) |
598 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
599 }
600 j++;
601 PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
602 "Invalid VramInfo table.", return -1);
603 break;
604
605 default:
606 break;
607 }
608
609 }
610
611 table->last = j;
612
613 return 0;
614 }
615
616
617 static int iceland_set_valid_flag(phw_iceland_mc_reg_table *table)
618 {
619 uint8_t i, j;
620 for (i = 0; i < table->last; i++) {
621 for (j = 1; j < table->num_entries; j++) {
622 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
623 table->mc_reg_table_entry[j].mc_data[i]) {
624 table->validflag |= (1<<i);
625 break;
626 }
627 }
628 }
629
630 return 0;
631 }
632
633 static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
634 {
635 int result;
636 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
637 pp_atomctrl_mc_reg_table *table;
638 phw_iceland_mc_reg_table *ni_table = &data->iceland_mc_reg_table;
639 uint8_t module_index = iceland_get_memory_module_index(hwmgr);
640
641 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
642
643 if (NULL == table)
644 return -ENOMEM;
645
646 /* Program additional LP registers that are no longer programmed by VBIOS */
647 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
648 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
649 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
650 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
651 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
652 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
653 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
654 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
655 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
656 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
657 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
658 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
659 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
660 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
661 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
662 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
663 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
664 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
665 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
666 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
667
668 memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
669
670 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
671
672 if (0 == result)
673 result = iceland_copy_vbios_smc_reg_table(table, ni_table);
674
675 if (0 == result) {
676 iceland_set_s0_mc_reg_index(ni_table);
677 result = iceland_set_mc_special_registers(hwmgr, ni_table);
678 }
679
680 if (0 == result)
681 iceland_set_valid_flag(ni_table);
682
683 kfree(table);
684 return result;
685 }
686
687 /**
688 * Programs static screed detection parameters
689 *
690 * @param hwmgr the address of the powerplay hardware manager.
691 * @return always 0
692 */
693 int iceland_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr)
694 {
695 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
696
697 /* Set static screen threshold unit*/
698 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
699 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
700 data->static_screen_threshold_unit);
701 /* Set static screen threshold*/
702 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
703 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
704 data->static_screen_threshold);
705
706 return 0;
707 }
708
709 /**
710 * Setup display gap for glitch free memory clock switching.
711 *
712 * @param hwmgr the address of the powerplay hardware manager.
713 * @return always 0
714 */
715 int iceland_enable_display_gap(struct pp_hwmgr *hwmgr)
716 {
717 uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
718 CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
719
720 display_gap = PHM_SET_FIELD(display_gap,
721 CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE);
722
723 display_gap = PHM_SET_FIELD(display_gap,
724 CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
725
726 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
727 ixCG_DISPLAY_GAP_CNTL, display_gap);
728
729 return 0;
730 }
731
732 /**
733 * Programs activity state transition voting clients
734 *
735 * @param hwmgr the address of the powerplay hardware manager.
736 * @return always 0
737 */
738 int iceland_program_voting_clients(struct pp_hwmgr *hwmgr)
739 {
740 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
741
742 /* Clear reset for voting clients before enabling DPM */
743 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
744 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
745 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
746 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
747
748 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
749 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
750 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
751 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
752 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
753 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
754 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
755 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
756 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
757 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
758 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
759 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
760 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
761 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
762 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
763 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
764
765 return 0;
766 }
767
768 static int iceland_upload_firmware(struct pp_hwmgr *hwmgr)
769 {
770 int ret = 0;
771
772 if (!iceland_is_smc_ram_running(hwmgr->smumgr))
773 ret = iceland_smu_upload_firmware_image(hwmgr->smumgr);
774
775 return ret;
776 }
777
778 /**
779 * Get the location of various tables inside the FW image.
780 *
781 * @param hwmgr the address of the powerplay hardware manager.
782 * @return always 0
783 */
784 int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
785 {
786 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
787
788 uint32_t tmp;
789 int result;
790 bool error = 0;
791
792 result = iceland_read_smc_sram_dword(hwmgr->smumgr,
793 SMU71_FIRMWARE_HEADER_LOCATION +
794 offsetof(SMU71_Firmware_Header, DpmTable),
795 &tmp, data->sram_end);
796
797 if (0 == result) {
798 data->dpm_table_start = tmp;
799 }
800
801 error |= (0 != result);
802
803 result = iceland_read_smc_sram_dword(hwmgr->smumgr,
804 SMU71_FIRMWARE_HEADER_LOCATION +
805 offsetof(SMU71_Firmware_Header, SoftRegisters),
806 &tmp, data->sram_end);
807
808 if (0 == result) {
809 data->soft_regs_start = tmp;
810 }
811
812 error |= (0 != result);
813
814
815 result = iceland_read_smc_sram_dword(hwmgr->smumgr,
816 SMU71_FIRMWARE_HEADER_LOCATION +
817 offsetof(SMU71_Firmware_Header, mcRegisterTable),
818 &tmp, data->sram_end);
819
820 if (0 == result) {
821 data->mc_reg_table_start = tmp;
822 }
823
824 result = iceland_read_smc_sram_dword(hwmgr->smumgr,
825 SMU71_FIRMWARE_HEADER_LOCATION +
826 offsetof(SMU71_Firmware_Header, FanTable),
827 &tmp, data->sram_end);
828
829 if (0 == result) {
830 data->fan_table_start = tmp;
831 }
832
833 error |= (0 != result);
834
835 result = iceland_read_smc_sram_dword(hwmgr->smumgr,
836 SMU71_FIRMWARE_HEADER_LOCATION +
837 offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
838 &tmp, data->sram_end);
839
840 if (0 == result) {
841 data->arb_table_start = tmp;
842 }
843
844 error |= (0 != result);
845
846
847 result = iceland_read_smc_sram_dword(hwmgr->smumgr,
848 SMU71_FIRMWARE_HEADER_LOCATION +
849 offsetof(SMU71_Firmware_Header, Version),
850 &tmp, data->sram_end);
851
852 if (0 == result) {
853 hwmgr->microcode_version_info.SMC = tmp;
854 }
855
856 error |= (0 != result);
857
858 result = iceland_read_smc_sram_dword(hwmgr->smumgr,
859 SMU71_FIRMWARE_HEADER_LOCATION +
860 offsetof(SMU71_Firmware_Header, UlvSettings),
861 &tmp, data->sram_end);
862
863 if (0 == result) {
864 data->ulv_settings_start = tmp;
865 }
866
867 error |= (0 != result);
868
869 return error ? 1 : 0;
870 }
871
872 /*
873 * Copy one arb setting to another and then switch the active set.
874 * arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants.
875 */
876 int iceland_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
877 uint32_t arbFreqSrc, uint32_t arbFreqDest)
878 {
879 uint32_t mc_arb_dram_timing;
880 uint32_t mc_arb_dram_timing2;
881 uint32_t burst_time;
882 uint32_t mc_cg_config;
883
884 switch (arbFreqSrc) {
885 case MC_CG_ARB_FREQ_F0:
886 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
887 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
888 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
889 break;
890
891 case MC_CG_ARB_FREQ_F1:
892 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
893 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
894 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
895 break;
896
897 default:
898 return -1;
899 }
900
901 switch (arbFreqDest) {
902 case MC_CG_ARB_FREQ_F0:
903 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
904 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
905 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
906 break;
907
908 case MC_CG_ARB_FREQ_F1:
909 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
910 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
911 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
912 break;
913
914 default:
915 return -1;
916 }
917
918 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
919 mc_cg_config |= 0x0000000F;
920 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
921 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest);
922
923 return 0;
924 }
925
926 /**
927 * Initial switch from ARB F0->F1
928 *
929 * @param hwmgr the address of the powerplay hardware manager.
930 * @return always 0
931 * This function is to be called from the SetPowerState table.
932 */
933 int iceland_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr)
934 {
935 return iceland_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
936 }
937
938 /* ---------------------------------------- ULV related functions ----------------------------------------------------*/
939
940
941 static int iceland_reset_single_dpm_table(
942 struct pp_hwmgr *hwmgr,
943 struct iceland_single_dpm_table *dpm_table,
944 uint32_t count)
945 {
946 uint32_t i;
947 if (!(count <= MAX_REGULAR_DPM_NUMBER))
948 printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \
949 table entries to exceed max number! \n");
950
951 dpm_table->count = count;
952 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) {
953 dpm_table->dpm_levels[i].enabled = 0;
954 }
955
956 return 0;
957 }
958
959 static void iceland_setup_pcie_table_entry(
960 struct iceland_single_dpm_table *dpm_table,
961 uint32_t index, uint32_t pcie_gen,
962 uint32_t pcie_lanes)
963 {
964 dpm_table->dpm_levels[index].value = pcie_gen;
965 dpm_table->dpm_levels[index].param1 = pcie_lanes;
966 dpm_table->dpm_levels[index].enabled = 1;
967 }
968
969 /*
970 * Set up the PCIe DPM table as follows:
971 *
972 * A = Performance State, Max, Gen Speed
973 * C = Performance State, Min, Gen Speed
974 * 1 = Performance State, Max, Lane #
975 * 3 = Performance State, Min, Lane #
976 *
977 * B = Power Saving State, Max, Gen Speed
978 * D = Power Saving State, Min, Gen Speed
979 * 2 = Power Saving State, Max, Lane #
980 * 4 = Power Saving State, Min, Lane #
981 *
982 *
983 * DPM Index Gen Speed Lane #
984 * 5 A 1
985 * 4 B 2
986 * 3 C 1
987 * 2 D 2
988 * 1 C 3
989 * 0 D 4
990 *
991 */
992 static int iceland_setup_default_pcie_tables(struct pp_hwmgr *hwmgr)
993 {
994 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
995
996 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
997 data->use_pcie_power_saving_levels),
998 "No pcie performance levels!", return -EINVAL);
999
1000 if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) {
1001 data->pcie_gen_power_saving = data->pcie_gen_performance;
1002 data->pcie_lane_power_saving = data->pcie_lane_performance;
1003 } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) {
1004 data->pcie_gen_performance = data->pcie_gen_power_saving;
1005 data->pcie_lane_performance = data->pcie_lane_power_saving;
1006 }
1007
1008 iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU71_MAX_LEVELS_LINK);
1009
1010 /* Hardcode Pcie Table */
1011 iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
1012 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
1013 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
1014 iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
1015 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
1016 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
1017 iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
1018 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
1019 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
1020 iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
1021 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
1022 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
1023 iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
1024 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
1025 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
1026 iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
1027 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
1028 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
1029 data->dpm_table.pcie_speed_table.count = 6;
1030
1031 return 0;
1032
1033 }
1034
1035
1036 /*
1037 * This function is to initalize all DPM state tables for SMU7 based on the dependency table.
1038 * Dynamic state patching function will then trim these state tables to the allowed range based
1039 * on the power policy or external client requests, such as UVD request, etc.
1040 */
1041 static int iceland_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1042 {
1043 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
1044 uint32_t i;
1045
1046 struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
1047 hwmgr->dyn_state.vddc_dependency_on_sclk;
1048 struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
1049 hwmgr->dyn_state.vddc_dependency_on_mclk;
1050 struct phm_cac_leakage_table *std_voltage_table =
1051 hwmgr->dyn_state.cac_leakage_table;
1052
1053 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
1054 "SCLK dependency table is missing. This table is mandatory", return -1);
1055 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
1056 "SCLK dependency table has to have is missing. This table is mandatory", return -1);
1057
1058 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
1059 "MCLK dependency table is missing. This table is mandatory", return -1);
1060 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
1061 "VMCLK dependency table has to have is missing. This table is mandatory", return -1);
1062
1063 /* clear the state table to reset everything to default */
1064 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
1065 iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU71_MAX_LEVELS_GRAPHICS);
1066 iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU71_MAX_LEVELS_MEMORY);
1067 iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.vddc_table, SMU71_MAX_LEVELS_VDDC);
1068 iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.vdd_ci_table, SMU71_MAX_LEVELS_VDDCI);
1069 iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.mvdd_table, SMU71_MAX_LEVELS_MVDD);
1070
1071 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
1072 "SCLK dependency table is missing. This table is mandatory", return -1);
1073 /* Initialize Sclk DPM table based on allow Sclk values*/
1074 data->dpm_table.sclk_table.count = 0;
1075
1076 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
1077 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
1078 allowed_vdd_sclk_table->entries[i].clk) {
1079 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
1080 allowed_vdd_sclk_table->entries[i].clk;
1081 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
1082 data->dpm_table.sclk_table.count++;
1083 }
1084 }
1085
1086 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
1087 "MCLK dependency table is missing. This table is mandatory", return -1);
1088 /* Initialize Mclk DPM table based on allow Mclk values */
1089 data->dpm_table.mclk_table.count = 0;
1090 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
1091 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
1092 allowed_vdd_mclk_table->entries[i].clk) {
1093 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
1094 allowed_vdd_mclk_table->entries[i].clk;
1095 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
1096 data->dpm_table.mclk_table.count++;
1097 }
1098 }
1099
1100 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
1101 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
1102 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
1103 data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
1104 /* param1 is for corresponding std voltage */
1105 data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
1106 }
1107
1108 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
1109 allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
1110
1111 if (NULL != allowed_vdd_mclk_table) {
1112 /* Initialize Vddci DPM table based on allow Mclk values */
1113 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
1114 data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
1115 data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1;
1116 }
1117 data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count;
1118 }
1119
1120 allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
1121
1122 if (NULL != allowed_vdd_mclk_table) {
1123 /*
1124 * Initialize MVDD DPM table based on allow Mclk
1125 * values
1126 */
1127 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
1128 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
1129 data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
1130 }
1131 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
1132 }
1133
1134 /* setup PCIE gen speed levels*/
1135 iceland_setup_default_pcie_tables(hwmgr);
1136
1137 /* save a copy of the default DPM table*/
1138 memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct iceland_dpm_table));
1139
1140 return 0;
1141 }
1142
1143 /**
1144 * @brief PhwIceland_GetVoltageOrder
1145 * Returns index of requested voltage record in lookup(table)
1146 * @param hwmgr - pointer to hardware manager
1147 * @param lookutab - lookup list to search in
1148 * @param voltage - voltage to look for
1149 * @return 0 on success
1150 */
1151 uint8_t iceland_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table,
1152 uint16_t voltage)
1153 {
1154 uint8_t count = (uint8_t) (look_up_table->count);
1155 uint8_t i;
1156
1157 PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;);
1158 PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;);
1159
1160 for (i = 0; i < count; i++) {
1161 /* find first voltage equal or bigger than requested */
1162 if (look_up_table->entries[i].us_vdd >= voltage)
1163 return i;
1164 }
1165
1166 /* voltage is bigger than max voltage in the table */
1167 return i-1;
1168 }
1169
1170
1171 static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
1172 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
1173 uint16_t *lo)
1174 {
1175 uint16_t v_index;
1176 bool vol_found = false;
1177 *hi = tab->value * VOLTAGE_SCALE;
1178 *lo = tab->value * VOLTAGE_SCALE;
1179
1180 /* SCLK/VDDC Dependency Table has to exist. */
1181 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
1182 "The SCLK/VDDC Dependency Table does not exist.\n",
1183 return -EINVAL);
1184
1185 if (NULL == hwmgr->dyn_state.cac_leakage_table) {
1186 pr_warning("CAC Leakage Table does not exist, using vddc.\n");
1187 return 0;
1188 }
1189
1190 /*
1191 * Since voltage in the sclk/vddc dependency table is not
1192 * necessarily in ascending order because of ELB voltage
1193 * patching, loop through entire list to find exact voltage.
1194 */
1195 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
1196 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
1197 vol_found = true;
1198 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
1199 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
1200 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
1201 } else {
1202 pr_warning("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
1203 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
1204 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
1205 }
1206 break;
1207 }
1208 }
1209
1210 /*
1211 * If voltage is not found in the first pass, loop again to
1212 * find the best match, equal or higher value.
1213 */
1214 if (!vol_found) {
1215 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
1216 if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
1217 vol_found = true;
1218 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
1219 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
1220 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
1221 } else {
1222 pr_warning("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
1223 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
1224 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
1225 }
1226 break;
1227 }
1228 }
1229
1230 if (!vol_found)
1231 pr_warning("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
1232 }
1233
1234 return 0;
1235 }
1236
1237 static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
1238 pp_atomctrl_voltage_table_entry *tab,
1239 SMU71_Discrete_VoltageLevel *smc_voltage_tab) {
1240 int result;
1241
1242
1243 result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
1244 &smc_voltage_tab->StdVoltageHiSidd,
1245 &smc_voltage_tab->StdVoltageLoSidd);
1246 if (0 != result) {
1247 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
1248 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
1249 }
1250
1251 smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
1252 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
1253 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
1254
1255 return 0;
1256 }
1257
1258 /**
1259 * Vddc table preparation for SMC.
1260 *
1261 * @param hwmgr the address of the hardware manager
1262 * @param table the SMC DPM table structure to be populated
1263 * @return always 0
1264 */
1265 static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
1266 SMU71_Discrete_DpmTable *table)
1267 {
1268 unsigned int count;
1269 int result;
1270
1271 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
1272
1273 table->VddcLevelCount = data->vddc_voltage_table.count;
1274 for (count = 0; count < table->VddcLevelCount; count++) {
1275 result = iceland_populate_smc_voltage_table(hwmgr,
1276 &data->vddc_voltage_table.entries[count],
1277 &table->VddcLevel[count]);
1278 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
1279
1280 /* GPIO voltage control */
1281 if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
1282 table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
1283 else if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1284 table->VddcLevel[count].Smio = 0;
1285 }
1286
1287 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
1288
1289 return 0;
1290 }
1291
1292 /**
1293 * Vddci table preparation for SMC.
1294 *
1295 * @param *hwmgr The address of the hardware manager.
1296 * @param *table The SMC DPM table structure to be populated.
1297 * @return 0
1298 */
1299 static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
1300 SMU71_Discrete_DpmTable *table)
1301 {
1302 int result;
1303 uint32_t count;
1304 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
1305
1306 table->VddciLevelCount = data->vddci_voltage_table.count;
1307 for (count = 0; count < table->VddciLevelCount; count++) {
1308 result = iceland_populate_smc_voltage_table(hwmgr,
1309 &data->vddci_voltage_table.entries[count],
1310 &table->VddciLevel[count]);
1311 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDCI voltage table", return -EINVAL);
1312
1313 /* GPIO voltage control */
1314 if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control)
1315 table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
1316 else
1317 table->VddciLevel[count].Smio = 0;
1318 }
1319
1320 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
1321
1322 return 0;
1323 }
1324
1325 /**
1326 * Mvdd table preparation for SMC.
1327 *
1328 * @param *hwmgr The address of the hardware manager.
1329 * @param *table The SMC DPM table structure to be populated.
1330 * @return 0
1331 */
1332 static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
1333 SMU71_Discrete_DpmTable *table)
1334 {
1335 int result;
1336 uint32_t count;
1337 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
1338
1339 table->MvddLevelCount = data->mvdd_voltage_table.count;
1340 for (count = 0; count < table->MvddLevelCount; count++) {
1341 result = iceland_populate_smc_voltage_table(hwmgr,
1342 &data->mvdd_voltage_table.entries[count],
1343 &table->MvddLevel[count]);
1344 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDCI voltage table", return -EINVAL);
1345
1346 /* GPIO voltage control */
1347 if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
1348 table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
1349 else
1350 table->MvddLevel[count].Smio = 0;
1351 }
1352
1353 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
1354
1355 return 0;
1356 }
1357
1358 /**
1359 * Convert a voltage value in mv unit to VID number required by SMU firmware
1360 */
1361 static uint8_t convert_to_vid(uint16_t vddc)
1362 {
1363 return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
1364 }
1365
1366 int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
1367 {
1368 int i;
1369 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
1370 uint8_t * hi_vid = data->power_tune_table.BapmVddCVidHiSidd;
1371 uint8_t * lo_vid = data->power_tune_table.BapmVddCVidLoSidd;
1372
1373 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
1374 "The CAC Leakage table does not exist!", return -EINVAL);
1375 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
1376 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
1377 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
1378 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
1379
1380 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
1381 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
1382 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
1383 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
1384 }
1385 } else {
1386 PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
1387 }
1388
1389 return 0;
1390 }
1391
1392 int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
1393 {
1394 int i;
1395 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
1396 uint8_t *vid = data->power_tune_table.VddCVid;
1397
1398 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
1399 "There should never be more than 8 entries for VddcVid!!!",
1400 return -EINVAL);
1401
1402 for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
1403 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
1404 }
1405
1406 return 0;
1407 }
1408
1409 /**
1410 * Preparation of voltage tables for SMC.
1411 *
1412 * @param hwmgr the address of the hardware manager
1413 * @param table the SMC DPM table structure to be populated
1414 * @return always 0
1415 */
1416
1417 int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1418 SMU71_Discrete_DpmTable *table)
1419 {
1420 int result;
1421
1422 result = iceland_populate_smc_vddc_table(hwmgr, table);
1423 PP_ASSERT_WITH_CODE(0 == result,
1424 "can not populate VDDC voltage table to SMC", return -1);
1425
1426 result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
1427 PP_ASSERT_WITH_CODE(0 == result,
1428 "can not populate VDDCI voltage table to SMC", return -1);
1429
1430 result = iceland_populate_smc_mvdd_table(hwmgr, table);
1431 PP_ASSERT_WITH_CODE(0 == result,
1432 "can not populate MVDD voltage table to SMC", return -1);
1433
1434 return 0;
1435 }
1436
1437
1438 /**
1439 * Re-generate the DPM level mask value
1440 * @param hwmgr the address of the hardware manager
1441 */
1442 static uint32_t iceland_get_dpm_level_enable_mask_value(
1443 struct iceland_single_dpm_table * dpm_table)
1444 {
1445 uint32_t i;
1446 uint32_t mask_value = 0;
1447
1448 for (i = dpm_table->count; i > 0; i--) {
1449 mask_value = mask_value << 1;
1450
1451 if (dpm_table->dpm_levels[i-1].enabled)
1452 mask_value |= 0x1;
1453 else
1454 mask_value &= 0xFFFFFFFE;
1455 }
1456 return mask_value;
1457 }
1458
1459 int iceland_populate_memory_timing_parameters(
1460 struct pp_hwmgr *hwmgr,
1461 uint32_t engine_clock,
1462 uint32_t memory_clock,
1463 struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
1464 )
1465 {
1466 uint32_t dramTiming;
1467 uint32_t dramTiming2;
1468 uint32_t burstTime;
1469 int result;
1470
1471 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1472 engine_clock, memory_clock);
1473
1474 PP_ASSERT_WITH_CODE(result == 0,
1475 "Error calling VBIOS to set DRAM_TIMING.", return result);
1476
1477 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1478 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1479 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1480
1481 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1482 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1483 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1484
1485 return 0;
1486 }
1487
1488 /**
1489 * Setup parameters for the MC ARB.
1490 *
1491 * @param hwmgr the address of the powerplay hardware manager.
1492 * @return always 0
1493 * This function is to be called from the SetPowerState table.
1494 */
1495 int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1496 {
1497 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
1498 int result = 0;
1499 SMU71_Discrete_MCArbDramTimingTable arb_regs;
1500 uint32_t i, j;
1501
1502 memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
1503
1504 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1505 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1506 result = iceland_populate_memory_timing_parameters
1507 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1508 data->dpm_table.mclk_table.dpm_levels[j].value,
1509 &arb_regs.entries[i][j]);
1510
1511 if (0 != result) {
1512 break;
1513 }
1514 }
1515 }
1516
1517 if (0 == result) {
1518 result = iceland_copy_bytes_to_smc(
1519 hwmgr->smumgr,
1520 data->arb_table_start,
1521 (uint8_t *)&arb_regs,
1522 sizeof(SMU71_Discrete_MCArbDramTimingTable),
1523 data->sram_end
1524 );
1525 }
1526
1527 return result;
1528 }
1529
1530 static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
1531 {
1532 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
1533 struct iceland_dpm_table *dpm_table = &data->dpm_table;
1534 uint32_t i;
1535
1536 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
1537 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1538 table->LinkLevel[i].PcieGenSpeed =
1539 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1540 table->LinkLevel[i].PcieLaneCount =
1541 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1542 table->LinkLevel[i].EnabledForActivity =
1543 1;
1544 table->LinkLevel[i].SPC =
1545 (uint8_t)(data->pcie_spc_cap & 0xff);
1546 table->LinkLevel[i].DownThreshold =
1547 PP_HOST_TO_SMC_UL(5);
1548 table->LinkLevel[i].UpThreshold =
1549 PP_HOST_TO_SMC_UL(30);
1550 }
1551
1552 data->smc_state_table.LinkLevelCount =
1553 (uint8_t)dpm_table->pcie_speed_table.count;
1554 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1555 iceland_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1556
1557 return 0;
1558 }
1559
1560 static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1561 SMU71_Discrete_DpmTable *table)
1562 {
1563 return 0;
1564 }
1565
1566 uint8_t iceland_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
1567 uint32_t voltage)
1568 {
1569 uint8_t count = (uint8_t) (voltage_table->count);
1570 uint8_t i = 0;
1571
1572 PP_ASSERT_WITH_CODE((NULL != voltage_table),
1573 "Voltage Table empty.", return 0;);
1574 PP_ASSERT_WITH_CODE((0 != count),
1575 "Voltage Table empty.", return 0;);
1576
1577 for (i = 0; i < count; i++) {
1578 /* find first voltage bigger than requested */
1579 if (voltage_table->entries[i].value >= voltage)
1580 return i;
1581 }
1582
1583 /* voltage is bigger than max voltage in the table */
1584 return i - 1;
1585 }
1586
1587 static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1588 SMU71_Discrete_DpmTable *table)
1589 {
1590 return 0;
1591 }
1592
1593 static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1594 SMU71_Discrete_DpmTable *table)
1595 {
1596 return 0;
1597 }
1598
1599 static int iceland_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1600 SMU71_Discrete_DpmTable *table)
1601 {
1602 return 0;
1603 }
1604
1605
1606 static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1607 SMU71_Discrete_DpmTable *tab)
1608 {
1609 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
1610
1611 if(ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1612 tab->SVI2Enable |= VDDC_ON_SVI2;
1613
1614 if(ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control)
1615 tab->SVI2Enable |= VDDCI_ON_SVI2;
1616 else
1617 tab->MergedVddci = 1;
1618
1619 if(ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
1620 tab->SVI2Enable |= MVDD_ON_SVI2;
1621
1622 PP_ASSERT_WITH_CODE( tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
1623 (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
1624
1625 return 0;
1626 }
1627
1628 static int iceland_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
1629 struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
1630 uint32_t clock, uint32_t *vol)
1631 {
1632 uint32_t i = 0;
1633
1634 /* clock - voltage dependency table is empty table */
1635 if (allowed_clock_voltage_table->count == 0)
1636 return -EINVAL;
1637
1638 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
1639 /* find first sclk bigger than request */
1640 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
1641 *vol = allowed_clock_voltage_table->entries[i].v;
1642 return 0;
1643 }
1644 }
1645
1646 /* sclk is bigger than max sclk in the dependence table */
1647 *vol = allowed_clock_voltage_table->entries[i - 1].v;
1648
1649 return 0;
1650 }
1651
1652 static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
1653 bool strobe_mode)
1654 {
1655 uint8_t mc_para_index;
1656
1657 if (strobe_mode) {
1658 if (memory_clock < 12500) {
1659 mc_para_index = 0x00;
1660 } else if (memory_clock > 47500) {
1661 mc_para_index = 0x0f;
1662 } else {
1663 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1664 }
1665 } else {
1666 if (memory_clock < 65000) {
1667 mc_para_index = 0x00;
1668 } else if (memory_clock > 135000) {
1669 mc_para_index = 0x0f;
1670 } else {
1671 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1672 }
1673 }
1674
1675 return mc_para_index;
1676 }
1677
1678 static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1679 {
1680 uint8_t mc_para_index;
1681
1682 if (memory_clock < 10000) {
1683 mc_para_index = 0;
1684 } else if (memory_clock >= 80000) {
1685 mc_para_index = 0x0f;
1686 } else {
1687 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1688 }
1689
1690 return mc_para_index;
1691 }
1692
1693 static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1694 uint32_t sclk, uint32_t *p_shed)
1695 {
1696 unsigned int i;
1697
1698 /* use the minimum phase shedding */
1699 *p_shed = 1;
1700
1701 /*
1702 * PPGen ensures the phase shedding limits table is sorted
1703 * from lowest voltage/sclk/mclk to highest voltage/sclk/mclk.
1704 * VBIOS ensures the phase shedding masks table is sorted from
1705 * least phases enabled (phase shedding on) to most phases
1706 * enabled (phase shedding off).
1707 */
1708 for (i = 0; i < pl->count; i++) {
1709 if (sclk < pl->entries[i].Sclk) {
1710 /* Enable phase shedding */
1711 *p_shed = i;
1712 break;
1713 }
1714 }
1715
1716 return 0;
1717 }
1718
1719 static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1720 uint32_t memory_clock, uint32_t *p_shed)
1721 {
1722 unsigned int i;
1723
1724 /* use the minimum phase shedding */
1725 *p_shed = 1;
1726
1727 /*
1728 * PPGen ensures the phase shedding limits table is sorted
1729 * from lowest voltage/sclk/mclk to highest voltage/sclk/mclk.
1730 * VBIOS ensures the phase shedding masks table is sorted from
1731 * least phases enabled (phase shedding on) to most phases
1732 * enabled (phase shedding off).
1733 */
1734 for (i = 0; i < pl->count; i++) {
1735 if (memory_clock < pl->entries[i].Mclk) {
1736 /* Enable phase shedding */
1737 *p_shed = i;
1738 break;
1739 }
1740 }
1741
1742 return 0;
1743 }
1744
1745 /**
1746 * Populates the SMC MCLK structure using the provided memory clock
1747 *
1748 * @param hwmgr the address of the hardware manager
1749 * @param memory_clock the memory clock to use to populate the structure
1750 * @param sclk the SMC SCLK structure to be populated
1751 */
1752 static int iceland_calculate_mclk_params(
1753 struct pp_hwmgr *hwmgr,
1754 uint32_t memory_clock,
1755 SMU71_Discrete_MemoryLevel *mclk,
1756 bool strobe_mode,
1757 bool dllStateOn
1758 )
1759 {
1760 const iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
1761 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1762 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1763 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1764 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1765 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1766 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1767 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1768 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1769 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1770
1771 pp_atomctrl_memory_clock_param mpll_param;
1772 int result;
1773
1774 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1775 memory_clock, &mpll_param, strobe_mode);
1776 PP_ASSERT_WITH_CODE(0 == result,
1777 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1778
1779 /* MPLL_FUNC_CNTL setup*/
1780 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1781
1782 /* MPLL_FUNC_CNTL_1 setup*/
1783 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1784 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1785 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1786 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1787 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1788 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1789
1790 /* MPLL_AD_FUNC_CNTL setup*/
1791 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1792 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1793
1794 if (data->is_memory_GDDR5) {
1795 /* MPLL_DQ_FUNC_CNTL setup*/
1796 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1797 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1798 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1799 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1800 }
1801
1802 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1803 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1804 /*
1805 ************************************
1806 Fref = Reference Frequency
1807 NF = Feedback divider ratio
1808 NR = Reference divider ratio
1809 Fnom = Nominal VCO output frequency = Fref * NF / NR
1810 Fs = Spreading Rate
1811 D = Percentage down-spread / 2
1812 Fint = Reference input frequency to PFD = Fref / NR
1813 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1814 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1815 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1816 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1817 *************************************
1818 */
1819 pp_atomctrl_internal_ss_info ss_info;
1820 uint32_t freq_nom;
1821 uint32_t tmp;
1822 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1823
1824 /* for GDDR5 for all modes and DDR3 */
1825 if (1 == mpll_param.qdr)
1826 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1827 else
1828 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1829
1830 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1831 tmp = (freq_nom / reference_clock);
1832 tmp = tmp * tmp;
1833
1834 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1835 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1836 /* ss.Info.speed_spectrum_rate -- in unit of khz */
1837 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1838 /* = reference_clock * 5 / speed_spectrum_rate */
1839 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1840
1841 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1842 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1843 uint32_t clkv =
1844 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1845 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1846
1847 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1848 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1849 }
1850 }
1851
1852 /* MCLK_PWRMGT_CNTL setup */
1853 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1854 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1855 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1856 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1857 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1858 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1859
1860
1861 /* Save the result data to outpupt memory level structure */
1862 mclk->MclkFrequency = memory_clock;
1863 mclk->MpllFuncCntl = mpll_func_cntl;
1864 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1865 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1866 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1867 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1868 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1869 mclk->DllCntl = dll_cntl;
1870 mclk->MpllSs1 = mpll_ss1;
1871 mclk->MpllSs2 = mpll_ss2;
1872
1873 return 0;
1874 }
1875
1876 static int iceland_populate_single_memory_level(
1877 struct pp_hwmgr *hwmgr,
1878 uint32_t memory_clock,
1879 SMU71_Discrete_MemoryLevel *memory_level
1880 )
1881 {
1882 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
1883 int result = 0;
1884 bool dllStateOn;
1885 struct cgs_display_info info = {0};
1886
1887
1888 if (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) {
1889 result = iceland_get_dependecy_volt_by_clk(hwmgr,
1890 hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1891 PP_ASSERT_WITH_CODE((0 == result),
1892 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1893 }
1894
1895 if (data->vdd_ci_control == ICELAND_VOLTAGE_CONTROL_NONE) {
1896 memory_level->MinVddci = memory_level->MinVddc;
1897 } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1898 result = iceland_get_dependecy_volt_by_clk(hwmgr,
1899 hwmgr->dyn_state.vddci_dependency_on_mclk,
1900 memory_clock,
1901 &memory_level->MinVddci);
1902 PP_ASSERT_WITH_CODE((0 == result),
1903 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1904 }
1905
1906 if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1907 result = iceland_get_dependecy_volt_by_clk(hwmgr,
1908 hwmgr->dyn_state.mvdd_dependency_on_mclk, memory_clock, &memory_level->MinMvdd);
1909 PP_ASSERT_WITH_CODE((0 == result),
1910 "can not find MinMVDD voltage value from memory MVDD voltage dependency table", return result);
1911 }
1912
1913 memory_level->MinVddcPhases = 1;
1914
1915 if (data->vddc_phase_shed_control) {
1916 iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1917 memory_clock, &memory_level->MinVddcPhases);
1918 }
1919
1920 memory_level->EnabledForThrottle = 1;
1921 memory_level->EnabledForActivity = 1;
1922 memory_level->UpHyst = 0;
1923 memory_level->DownHyst = 100;
1924 memory_level->VoltageDownHyst = 0;
1925
1926 /* Indicates maximum activity level for this performance level.*/
1927 memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
1928 memory_level->StutterEnable = 0;
1929 memory_level->StrobeEnable = 0;
1930 memory_level->EdcReadEnable = 0;
1931 memory_level->EdcWriteEnable = 0;
1932 memory_level->RttEnable = 0;
1933
1934 /* default set to low watermark. Highest level will be set to high later.*/
1935 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1936
1937 cgs_get_active_displays_info(hwmgr->device, &info);
1938 data->display_timing.num_existing_displays = info.display_count;
1939
1940 //if ((data->mclk_stutter_mode_threshold != 0) &&
1941 // (memory_clock <= data->mclk_stutter_mode_threshold) &&
1942 // (data->is_uvd_enabled == 0)
1943 // && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
1944 // && (data->display_timing.num_existing_displays <= 2)
1945 // && (data->display_timing.num_existing_displays != 0))
1946 // memory_level->StutterEnable = 1;
1947
1948 /* decide strobe mode*/
1949 memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) &&
1950 (memory_clock <= data->mclk_strobe_mode_threshold);
1951
1952 /* decide EDC mode and memory clock ratio*/
1953 if (data->is_memory_GDDR5) {
1954 memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
1955 memory_level->StrobeEnable);
1956
1957 if ((data->mclk_edc_enable_threshold != 0) &&
1958 (memory_clock > data->mclk_edc_enable_threshold)) {
1959 memory_level->EdcReadEnable = 1;
1960 }
1961
1962 if ((data->mclk_edc_wr_enable_threshold != 0) &&
1963 (memory_clock > data->mclk_edc_wr_enable_threshold)) {
1964 memory_level->EdcWriteEnable = 1;
1965 }
1966
1967 if (memory_level->StrobeEnable) {
1968 if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
1969 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
1970 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1971 } else {
1972 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1973 }
1974
1975 } else {
1976 dllStateOn = data->dll_defaule_on;
1977 }
1978 } else {
1979 memory_level->StrobeRatio =
1980 iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
1981 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1982 }
1983
1984 result = iceland_calculate_mclk_params(hwmgr,
1985 memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn);
1986
1987 if (0 == result) {
1988 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1989 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1990 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1991 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1992 /* MCLK frequency in units of 10KHz*/
1993 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1994 /* Indicates maximum activity level for this performance level.*/
1995 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1996 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1997 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1998 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1999 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
2000 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
2001 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
2002 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
2003 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
2004 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
2005 }
2006
2007 return result;
2008 }
2009
2010 /**
2011 * Populates the SMC MVDD structure using the provided memory clock.
2012 *
2013 * @param hwmgr the address of the hardware manager
2014 * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2015 * @param voltage the SMC VOLTAGE structure to be populated
2016 */
2017 int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMU71_Discrete_VoltageLevel *voltage)
2018 {
2019 const iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2020 uint32_t i = 0;
2021
2022 if (ICELAND_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2023 /* find mvdd value which clock is more than request */
2024 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
2025 if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
2026 /* Always round to higher voltage. */
2027 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
2028 break;
2029 }
2030 }
2031
2032 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
2033 "MVDD Voltage is outside the supported range.", return -1);
2034
2035 } else {
2036 return -1;
2037 }
2038
2039 return 0;
2040 }
2041
2042
2043 static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
2044 SMU71_Discrete_DpmTable *table)
2045 {
2046 int result = 0;
2047 const iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2048 pp_atomctrl_clock_dividers_vi dividers;
2049 SMU71_Discrete_VoltageLevel voltage_level;
2050 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2051 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2052 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
2053 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
2054
2055 /* The ACPI state should not do DPM on DC (or ever).*/
2056 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2057
2058 if (data->acpi_vddc)
2059 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
2060 else
2061 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pp_table * VOLTAGE_SCALE);
2062
2063 table->ACPILevel.MinVddcPhases = (data->vddc_phase_shed_control) ? 0 : 1;
2064
2065 /* assign zero for now*/
2066 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
2067
2068 /* get the engine clock dividers for this clock value*/
2069 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2070 table->ACPILevel.SclkFrequency, &dividers);
2071
2072 PP_ASSERT_WITH_CODE(result == 0,
2073 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2074
2075 /* divider ID for required SCLK*/
2076 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2077 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2078 table->ACPILevel.DeepSleepDivId = 0;
2079
2080 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2081 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
2082 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2083 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
2084 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
2085 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
2086
2087 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2088 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2089 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2090 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2091 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2092 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2093 table->ACPILevel.CcPwrDynRm = 0;
2094 table->ACPILevel.CcPwrDynRm1 = 0;
2095
2096
2097 /* For various features to be enabled/disabled while this level is active.*/
2098 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2099 /* SCLK frequency in units of 10KHz*/
2100 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2101 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2102 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2103 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2104 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2105 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2106 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2107 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2108 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2109
2110 table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
2111 table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
2112
2113 /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
2114
2115 if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
2116 table->MemoryACPILevel.MinMvdd =
2117 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
2118 else
2119 table->MemoryACPILevel.MinMvdd = 0;
2120
2121 /* Force reset on DLL*/
2122 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2123 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
2124 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2125 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
2126
2127 /* Disable DLL in ACPIState*/
2128 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2129 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
2130 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2131 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
2132
2133 /* Enable DLL bypass signal*/
2134 dll_cntl = PHM_SET_FIELD(dll_cntl,
2135 DLL_CNTL, MRDCK0_BYPASS, 0);
2136 dll_cntl = PHM_SET_FIELD(dll_cntl,
2137 DLL_CNTL, MRDCK1_BYPASS, 0);
2138
2139 table->MemoryACPILevel.DllCntl =
2140 PP_HOST_TO_SMC_UL(dll_cntl);
2141 table->MemoryACPILevel.MclkPwrmgtCntl =
2142 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
2143 table->MemoryACPILevel.MpllAdFuncCntl =
2144 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
2145 table->MemoryACPILevel.MpllDqFuncCntl =
2146 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
2147 table->MemoryACPILevel.MpllFuncCntl =
2148 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
2149 table->MemoryACPILevel.MpllFuncCntl_1 =
2150 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
2151 table->MemoryACPILevel.MpllFuncCntl_2 =
2152 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
2153 table->MemoryACPILevel.MpllSs1 =
2154 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
2155 table->MemoryACPILevel.MpllSs2 =
2156 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
2157
2158 table->MemoryACPILevel.EnabledForThrottle = 0;
2159 table->MemoryACPILevel.EnabledForActivity = 0;
2160 table->MemoryACPILevel.UpHyst = 0;
2161 table->MemoryACPILevel.DownHyst = 100;
2162 table->MemoryACPILevel.VoltageDownHyst = 0;
2163 /* Indicates maximum activity level for this performance level.*/
2164 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2165
2166 table->MemoryACPILevel.StutterEnable = 0;
2167 table->MemoryACPILevel.StrobeEnable = 0;
2168 table->MemoryACPILevel.EdcReadEnable = 0;
2169 table->MemoryACPILevel.EdcWriteEnable = 0;
2170 table->MemoryACPILevel.RttEnable = 0;
2171
2172 return result;
2173 }
2174
2175 static int iceland_find_boot_level(struct iceland_single_dpm_table *table, uint32_t value, uint32_t *boot_level)
2176 {
2177 int result = 0;
2178 uint32_t i;
2179
2180 for (i = 0; i < table->count; i++) {
2181 if (value == table->dpm_levels[i].value) {
2182 *boot_level = i;
2183 result = 0;
2184 }
2185 }
2186 return result;
2187 }
2188
2189 /**
2190 * Calculates the SCLK dividers using the provided engine clock
2191 *
2192 * @param hwmgr the address of the hardware manager
2193 * @param engine_clock the engine clock to use to populate the structure
2194 * @param sclk the SMC SCLK structure to be populated
2195 */
2196 int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
2197 uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
2198 {
2199 const iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2200 pp_atomctrl_clock_dividers_vi dividers;
2201 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2202 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2203 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2204 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2205 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2206 uint32_t reference_clock;
2207 uint32_t reference_divider;
2208 uint32_t fbdiv;
2209 int result;
2210
2211 /* get the engine clock dividers for this clock value*/
2212 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
2213
2214 PP_ASSERT_WITH_CODE(result == 0,
2215 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2216
2217 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
2218 reference_clock = atomctrl_get_reference_clock(hwmgr);
2219
2220 reference_divider = 1 + dividers.uc_pll_ref_div;
2221
2222 /* low 14 bits is fraction and high 12 bits is divider*/
2223 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
2224
2225 /* SPLL_FUNC_CNTL setup*/
2226 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2227 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
2228 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2229 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
2230
2231 /* SPLL_FUNC_CNTL_3 setup*/
2232 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2233 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
2234
2235 /* set to use fractional accumulation*/
2236 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2237 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
2238
2239 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2240 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
2241 pp_atomctrl_internal_ss_info ss_info;
2242
2243 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
2244 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
2245 /*
2246 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
2247 * ss_info.speed_spectrum_rate -- in unit of khz
2248 */
2249 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
2250 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
2251
2252 /* clkv = 2 * D * fbdiv / NS */
2253 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
2254
2255 cg_spll_spread_spectrum =
2256 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
2257 cg_spll_spread_spectrum =
2258 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
2259 cg_spll_spread_spectrum_2 =
2260 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
2261 }
2262 }
2263
2264 sclk->SclkFrequency = engine_clock;
2265 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
2266 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
2267 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
2268 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
2269 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
2270
2271 return 0;
2272 }
2273
2274 static uint8_t iceland_get_sleep_divider_id_from_clock(struct pp_hwmgr *hwmgr,
2275 uint32_t engine_clock, uint32_t min_engine_clock_in_sr)
2276 {
2277 uint32_t i, temp;
2278 uint32_t min = (min_engine_clock_in_sr > ICELAND_MINIMUM_ENGINE_CLOCK) ?
2279 min_engine_clock_in_sr : ICELAND_MINIMUM_ENGINE_CLOCK;
2280
2281 PP_ASSERT_WITH_CODE((engine_clock >= min),
2282 "Engine clock can't satisfy stutter requirement!", return 0);
2283
2284 for (i = ICELAND_MAX_DEEPSLEEP_DIVIDER_ID;; i--) {
2285 temp = engine_clock / (1 << i);
2286
2287 if(temp >= min || i == 0)
2288 break;
2289 }
2290 return (uint8_t)i;
2291 }
2292
2293 /**
2294 * Populates single SMC SCLK structure using the provided engine clock
2295 *
2296 * @param hwmgr the address of the hardware manager
2297 * @param engine_clock the engine clock to use to populate the structure
2298 * @param sclk the SMC SCLK structure to be populated
2299 */
2300 static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
2301 uint32_t engine_clock, uint16_t sclk_activity_level_threshold,
2302 SMU71_Discrete_GraphicsLevel *graphic_level)
2303 {
2304 int result;
2305 uint32_t threshold;
2306 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2307
2308 result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
2309
2310
2311 /* populate graphics levels*/
2312 result = iceland_get_dependecy_volt_by_clk(hwmgr,
2313 hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock, &graphic_level->MinVddc);
2314 PP_ASSERT_WITH_CODE((0 == result),
2315 "can not find VDDC voltage value for VDDC engine clock dependency table", return result);
2316
2317 /* SCLK frequency in units of 10KHz*/
2318 graphic_level->SclkFrequency = engine_clock;
2319
2320 /*
2321 * Minimum VDDC phases required to support this level, it
2322 * should get from dependence table.
2323 */
2324 graphic_level->MinVddcPhases = 1;
2325
2326 if (data->vddc_phase_shed_control) {
2327 iceland_populate_phase_value_based_on_sclk(hwmgr,
2328 hwmgr->dyn_state.vddc_phase_shed_limits_table,
2329 engine_clock,
2330 &graphic_level->MinVddcPhases);
2331 }
2332
2333 /* Indicates maximum activity level for this performance level. 50% for now*/
2334 graphic_level->ActivityLevel = sclk_activity_level_threshold;
2335
2336 graphic_level->CcPwrDynRm = 0;
2337 graphic_level->CcPwrDynRm1 = 0;
2338 /* this level can be used if activity is high enough.*/
2339 graphic_level->EnabledForActivity = 1;
2340 /* this level can be used for throttling.*/
2341 graphic_level->EnabledForThrottle = 1;
2342 graphic_level->UpHyst = 0;
2343 graphic_level->DownHyst = 100;
2344 graphic_level->VoltageDownHyst = 0;
2345 graphic_level->PowerThrottle = 0;
2346
2347 threshold = engine_clock * data->fast_watermark_threshold / 100;
2348
2349 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2350 PHM_PlatformCaps_SclkDeepSleep)) {
2351 graphic_level->DeepSleepDivId =
2352 iceland_get_sleep_divider_id_from_clock(hwmgr, engine_clock,
2353 data->display_timing.min_clock_insr);
2354 }
2355
2356 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
2357 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2358
2359 if (0 == result) {
2360 graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
2361 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
2362 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
2363 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
2364 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
2365 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
2366 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
2367 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
2368 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
2369 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
2370 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
2371 }
2372
2373 return result;
2374 }
2375
2376 /**
2377 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
2378 *
2379 * @param hwmgr the address of the hardware manager
2380 */
2381 static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
2382 {
2383 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2384 struct iceland_dpm_table *dpm_table = &data->dpm_table;
2385 int result = 0;
2386 uint32_t level_array_adress = data->dpm_table_start +
2387 offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
2388
2389 uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) * SMU71_MAX_LEVELS_GRAPHICS;
2390 SMU71_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel;
2391 uint32_t i;
2392 uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0;
2393 memset(levels, 0x00, level_array_size);
2394
2395 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2396 result = iceland_populate_single_graphic_level(hwmgr,
2397 dpm_table->sclk_table.dpm_levels[i].value,
2398 (uint16_t)data->activity_target[i],
2399 &(data->smc_state_table.GraphicsLevel[i]));
2400 if (0 != result)
2401 return result;
2402
2403 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2404 if (i > 1)
2405 data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
2406 }
2407
2408 /* set highest level watermark to high */
2409 if (dpm_table->sclk_table.count > 1)
2410 data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
2411 PPSMC_DISPLAY_WATERMARK_HIGH;
2412
2413 data->smc_state_table.GraphicsDpmLevelCount =
2414 (uint8_t)dpm_table->sclk_table.count;
2415 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2416 iceland_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2417
2418 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2419 (1 << (highest_pcie_level_enabled + 1))) != 0) {
2420 highest_pcie_level_enabled++;
2421 }
2422
2423 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2424 (1 << lowest_pcie_level_enabled)) == 0) {
2425 lowest_pcie_level_enabled++;
2426 }
2427
2428 while ((count < highest_pcie_level_enabled) &&
2429 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2430 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
2431 count++;
2432 }
2433
2434 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
2435 (lowest_pcie_level_enabled + 1 + count) : highest_pcie_level_enabled;
2436
2437 /* set pcieDpmLevel to highest_pcie_level_enabled*/
2438 for (i = 2; i < dpm_table->sclk_table.count; i++) {
2439 data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
2440 }
2441
2442 /* set pcieDpmLevel to lowest_pcie_level_enabled*/
2443 data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
2444
2445 /* set pcieDpmLevel to mid_pcie_level_enabled*/
2446 data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
2447
2448 /* level count will send to smc once at init smc table and never change*/
2449 result = iceland_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2450
2451 if (0 != result)
2452 return result;
2453
2454 return 0;
2455 }
2456
2457 /**
2458 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2459 *
2460 * @param hwmgr the address of the hardware manager
2461 */
2462
2463 static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2464 {
2465 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2466 struct iceland_dpm_table *dpm_table = &data->dpm_table;
2467 int result;
2468 /* populate MCLK dpm table to SMU7 */
2469 uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
2470 uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
2471 SMU71_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel;
2472 uint32_t i;
2473
2474 memset(levels, 0x00, level_array_size);
2475
2476 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2477 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2478 "can not populate memory level as memory clock is zero", return -1);
2479 result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
2480 &(data->smc_state_table.MemoryLevel[i]));
2481 if (0 != result) {
2482 return result;
2483 }
2484 }
2485
2486 /* Only enable level 0 for now.*/
2487 data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
2488
2489 /*
2490 * in order to prevent MC activity from stutter mode to push DPM up.
2491 * the UVD change complements this by putting the MCLK in a higher state
2492 * by default such that we are not effected by up threshold or and MCLK DPM latency.
2493 */
2494 data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
2495 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel);
2496
2497 data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
2498 data->dpm_level_enable_mask.mclk_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2499 /* set highest level watermark to high*/
2500 data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
2501
2502 /* level count will send to smc once at init smc table and never change*/
2503 result = iceland_copy_bytes_to_smc(hwmgr->smumgr,
2504 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2505
2506 if (0 != result) {
2507 return result;
2508 }
2509
2510 return 0;
2511 }
2512
2513 struct ICELAND_DLL_SPEED_SETTING
2514 {
2515 uint16_t Min; /* Minimum Data Rate*/
2516 uint16_t Max; /* Maximum Data Rate*/
2517 uint32_t dll_speed; /* The desired DLL_SPEED setting*/
2518 };
2519
2520 static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_Ulv *pstate)
2521 {
2522 int result = 0;
2523 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2524 uint32_t voltage_response_time, ulv_voltage;
2525
2526 pstate->CcPwrDynRm = 0;
2527 pstate->CcPwrDynRm1 = 0;
2528
2529 //backbiasResponseTime is use for ULV state voltage value.
2530 result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
2531 PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
2532
2533 if(!ulv_voltage) {
2534 data->ulv.ulv_supported = false;
2535 return 0;
2536 }
2537
2538 if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 != data->voltage_control) {
2539 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
2540 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) {
2541 pstate->VddcOffset = 0;
2542 }
2543 else {
2544 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
2545 pstate->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
2546 }
2547 } else {
2548 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
2549 if(ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) {
2550 pstate->VddcOffsetVid = 0;
2551 } else {
2552 /* used in SVI2 Mode */
2553 pstate->VddcOffsetVid = (uint8_t)((hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2554 }
2555 }
2556
2557 /* used in SVI2 Mode to shed phase */
2558 pstate->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
2559
2560 if (0 == result) {
2561 CONVERT_FROM_HOST_TO_SMC_UL(pstate->CcPwrDynRm);
2562 CONVERT_FROM_HOST_TO_SMC_UL(pstate->CcPwrDynRm1);
2563 CONVERT_FROM_HOST_TO_SMC_US(pstate->VddcOffset);
2564 }
2565
2566 return result;
2567 }
2568
2569 static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr, SMU71_Discrete_Ulv *ulv)
2570 {
2571 return iceland_populate_ulv_level(hwmgr, ulv);
2572 }
2573
2574 static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
2575 {
2576 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2577 uint8_t count, level;
2578
2579 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
2580
2581 for (level = 0; level < count; level++) {
2582 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
2583 >= data->vbios_boot_state.sclk_bootup_value) {
2584 data->smc_state_table.GraphicsBootLevel = level;
2585 break;
2586 }
2587 }
2588
2589 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
2590
2591 for (level = 0; level < count; level++) {
2592 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
2593 >= data->vbios_boot_state.mclk_bootup_value) {
2594 data->smc_state_table.MemoryBootLevel = level;
2595 break;
2596 }
2597 }
2598
2599 return 0;
2600 }
2601
2602 /**
2603 * Initializes the SMC table and uploads it
2604 *
2605 * @param hwmgr the address of the powerplay hardware manager.
2606 * @param pInput the pointer to input data (PowerState)
2607 * @return always 0
2608 */
2609 int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
2610 {
2611 int result;
2612 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2613 SMU71_Discrete_DpmTable *table = &(data->smc_state_table);
2614 const struct phw_iceland_ulv_parm *ulv = &(data->ulv);
2615
2616 result = iceland_setup_default_dpm_tables(hwmgr);
2617 PP_ASSERT_WITH_CODE(0 == result,
2618 "Failed to setup default DPM tables!", return result;);
2619 memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table));
2620
2621 if (ICELAND_VOLTAGE_CONTROL_NONE != data->voltage_control) {
2622 iceland_populate_smc_voltage_tables(hwmgr, table);
2623 }
2624
2625 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2626 PHM_PlatformCaps_AutomaticDCTransition)) {
2627 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2628 }
2629
2630 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2631 PHM_PlatformCaps_StepVddc)) {
2632 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2633 }
2634
2635 if (data->is_memory_GDDR5) {
2636 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2637 }
2638
2639 if (ulv->ulv_supported) {
2640 result = iceland_populate_ulv_state(hwmgr, &data->ulv_setting);
2641 PP_ASSERT_WITH_CODE(0 == result,
2642 "Failed to initialize ULV state!", return result;);
2643
2644 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2645 ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter);
2646 }
2647
2648 result = iceland_populate_smc_link_level(hwmgr, table);
2649 PP_ASSERT_WITH_CODE(0 == result,
2650 "Failed to initialize Link Level!", return result;);
2651
2652 result = iceland_populate_all_graphic_levels(hwmgr);
2653 PP_ASSERT_WITH_CODE(0 == result,
2654 "Failed to initialize Graphics Level!", return result;);
2655
2656 result = iceland_populate_all_memory_levels(hwmgr);
2657 PP_ASSERT_WITH_CODE(0 == result,
2658 "Failed to initialize Memory Level!", return result;);
2659
2660 result = iceland_populate_smc_acpi_level(hwmgr, table);
2661 PP_ASSERT_WITH_CODE(0 == result,
2662 "Failed to initialize ACPI Level!", return result;);
2663
2664 result = iceland_populate_smc_vce_level(hwmgr, table);
2665 PP_ASSERT_WITH_CODE(0 == result,
2666 "Failed to initialize VCE Level!", return result;);
2667
2668 result = iceland_populate_smc_acp_level(hwmgr, table);
2669 PP_ASSERT_WITH_CODE(0 == result,
2670 "Failed to initialize ACP Level!", return result;);
2671
2672 result = iceland_populate_smc_samu_level(hwmgr, table);
2673 PP_ASSERT_WITH_CODE(0 == result,
2674 "Failed to initialize SAMU Level!", return result;);
2675
2676 /*
2677 * Since only the initial state is completely set up at this
2678 * point (the other states are just copies of the boot state)
2679 * we only need to populate the ARB settings for the initial
2680 * state.
2681 */
2682 result = iceland_program_memory_timing_parameters(hwmgr);
2683 PP_ASSERT_WITH_CODE(0 == result,
2684 "Failed to Write ARB settings for the initial state.", return result;);
2685
2686 result = iceland_populate_smc_uvd_level(hwmgr, table);
2687 PP_ASSERT_WITH_CODE(0 == result,
2688 "Failed to initialize UVD Level!", return result;);
2689
2690 table->GraphicsBootLevel = 0;
2691 table->MemoryBootLevel = 0;
2692
2693 /* find boot level from dpm table */
2694 result = iceland_find_boot_level(&(data->dpm_table.sclk_table),
2695 data->vbios_boot_state.sclk_bootup_value,
2696 (uint32_t *)&(data->smc_state_table.GraphicsBootLevel));
2697
2698 if (result)
2699 pr_warning("VBIOS did not find boot engine clock value in dependency table.\n");
2700
2701 result = iceland_find_boot_level(&(data->dpm_table.mclk_table),
2702 data->vbios_boot_state.mclk_bootup_value,
2703 (uint32_t *)&(data->smc_state_table.MemoryBootLevel));
2704
2705 if (result)
2706 pr_warning("VBIOS did not find boot memory clock value in dependency table.\n");
2707
2708 table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
2709 if (ICELAND_VOLTAGE_CONTROL_NONE == data->vdd_ci_control) {
2710 table->BootVddci = table->BootVddc;
2711 }
2712 else {
2713 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
2714 }
2715 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
2716
2717 result = iceland_populate_smc_initial_state(hwmgr);
2718 PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2719
2720 result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
2721 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2722
2723 table->GraphicsVoltageChangeEnable = 1;
2724 table->GraphicsThermThrottleEnable = 1;
2725 table->GraphicsInterval = 1;
2726 table->VoltageInterval = 1;
2727 table->ThermalInterval = 1;
2728 table->TemperatureLimitHigh =
2729 (data->thermal_temp_setting.temperature_high *
2730 ICELAND_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2731 table->TemperatureLimitLow =
2732 (data->thermal_temp_setting.temperature_low *
2733 ICELAND_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2734 table->MemoryVoltageChangeEnable = 1;
2735 table->MemoryInterval = 1;
2736 table->VoltageResponseTime = 0;
2737 table->PhaseResponseTime = 0;
2738 table->MemoryThermThrottleEnable = 1;
2739 table->PCIeBootLinkLevel = 0;
2740 table->PCIeGenInterval = 1;
2741
2742 result = iceland_populate_smc_svi2_config(hwmgr, table);
2743 PP_ASSERT_WITH_CODE(0 == result,
2744 "Failed to populate SVI2 setting!", return result);
2745
2746 table->ThermGpio = 17;
2747 table->SclkStepSize = 0x4000;
2748
2749 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2750 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2751 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2752 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2753 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2754 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2755 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2756 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2757 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2758 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2759
2760 table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2761 table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2762 table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2763
2764 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2765 result = iceland_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start +
2766 offsetof(SMU71_Discrete_DpmTable, SystemFlags),
2767 (uint8_t *)&(table->SystemFlags),
2768 sizeof(SMU71_Discrete_DpmTable) - 3 * sizeof(SMU71_PIDController),
2769 data->sram_end);
2770
2771 PP_ASSERT_WITH_CODE(0 == result,
2772 "Failed to upload dpm data to SMC memory!", return result);
2773
2774 /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
2775 result = iceland_copy_bytes_to_smc(hwmgr->smumgr,
2776 data->ulv_settings_start,
2777 (uint8_t *)&(data->ulv_setting),
2778 sizeof(SMU71_Discrete_Ulv),
2779 data->sram_end);
2780
2781 #if 0
2782 /* Notify SMC to follow new GPIO scheme */
2783 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2784 PHM_PlatformCaps_AutomaticDCTransition)) {
2785 if (0 == iceland_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_UseNewGPIOScheme))
2786 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2787 PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2788 }
2789 #endif
2790
2791 return result;
2792 }
2793
2794 int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU71_Discrete_MCRegisters *mc_reg_table)
2795 {
2796 const struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
2797
2798 uint32_t i, j;
2799
2800 for (i = 0, j = 0; j < data->iceland_mc_reg_table.last; j++) {
2801 if (data->iceland_mc_reg_table.validflag & 1<<j) {
2802 PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
2803 "Index of mc_reg_table->address[] array out of boundary", return -1);
2804 mc_reg_table->address[i].s0 =
2805 PP_HOST_TO_SMC_US(data->iceland_mc_reg_table.mc_reg_address[j].s0);
2806 mc_reg_table->address[i].s1 =
2807 PP_HOST_TO_SMC_US(data->iceland_mc_reg_table.mc_reg_address[j].s1);
2808 i++;
2809 }
2810 }
2811
2812 mc_reg_table->last = (uint8_t)i;
2813
2814 return 0;
2815 }
2816
2817 /* convert register values from driver to SMC format */
2818 void iceland_convert_mc_registers(
2819 const phw_iceland_mc_reg_entry * pEntry,
2820 SMU71_Discrete_MCRegisterSet *pData,
2821 uint32_t numEntries, uint32_t validflag)
2822 {
2823 uint32_t i, j;
2824
2825 for (i = 0, j = 0; j < numEntries; j++) {
2826 if (validflag & 1<<j) {
2827 pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]);
2828 i++;
2829 }
2830 }
2831 }
2832
2833 /* find the entry in the memory range table, then populate the value to SMC's iceland_mc_reg_table */
2834 int iceland_convert_mc_reg_table_entry_to_smc(
2835 struct pp_hwmgr *hwmgr,
2836 const uint32_t memory_clock,
2837 SMU71_Discrete_MCRegisterSet *mc_reg_table_data
2838 )
2839 {
2840 const iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
2841 uint32_t i = 0;
2842
2843 for (i = 0; i < data->iceland_mc_reg_table.num_entries; i++) {
2844 if (memory_clock <=
2845 data->iceland_mc_reg_table.mc_reg_table_entry[i].mclk_max) {
2846 break;
2847 }
2848 }
2849
2850 if ((i == data->iceland_mc_reg_table.num_entries) && (i > 0))
2851 --i;
2852
2853 iceland_convert_mc_registers(&data->iceland_mc_reg_table.mc_reg_table_entry[i],
2854 mc_reg_table_data, data->iceland_mc_reg_table.last, data->iceland_mc_reg_table.validflag);
2855
2856 return 0;
2857 }
2858
2859 int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
2860 SMU71_Discrete_MCRegisters *mc_reg_table)
2861 {
2862 int result = 0;
2863 iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
2864 int res;
2865 uint32_t i;
2866
2867 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
2868 res = iceland_convert_mc_reg_table_entry_to_smc(
2869 hwmgr,
2870 data->dpm_table.mclk_table.dpm_levels[i].value,
2871 &mc_reg_table->data[i]
2872 );
2873
2874 if (0 != res)
2875 result = res;
2876 }
2877
2878 return result;
2879 }
2880
2881 int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
2882 {
2883 int result;
2884 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
2885
2886 memset(&data->mc_reg_table, 0x00, sizeof(SMU71_Discrete_MCRegisters));
2887 result = iceland_populate_mc_reg_address(hwmgr, &(data->mc_reg_table));
2888 PP_ASSERT_WITH_CODE(0 == result,
2889 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
2890
2891 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table);
2892 PP_ASSERT_WITH_CODE(0 == result,
2893 "Failed to initialize MCRegTable for driver state!", return result;);
2894
2895 return iceland_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start,
2896 (uint8_t *)&data->mc_reg_table, sizeof(SMU71_Discrete_MCRegisters), data->sram_end);
2897 }
2898
2899 int iceland_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
2900 {
2901 PPSMC_Msg msg = has_display? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
2902
2903 return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1;
2904 }
2905
2906 int iceland_enable_sclk_control(struct pp_hwmgr *hwmgr)
2907 {
2908 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0);
2909
2910 return 0;
2911 }
2912
2913 int iceland_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
2914 {
2915 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2916
2917 /* enable SCLK dpm */
2918 if (0 == data->sclk_dpm_key_disabled) {
2919 PP_ASSERT_WITH_CODE(
2920 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2921 PPSMC_MSG_DPM_Enable)),
2922 "Failed to enable SCLK DPM during DPM Start Function!",
2923 return -1);
2924 }
2925
2926 /* enable MCLK dpm */
2927 if (0 == data->mclk_dpm_key_disabled) {
2928 PP_ASSERT_WITH_CODE(
2929 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2930 PPSMC_MSG_MCLKDPM_Enable)),
2931 "Failed to enable MCLK DPM during DPM Start Function!",
2932 return -1);
2933
2934 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
2935
2936 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2937 ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */
2938 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2939 ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */
2940 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2941 ixLCAC_CPL_CNTL, 0x100005);/*Read */
2942
2943 udelay(10);
2944
2945 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2946 ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */
2947 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2948 ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */
2949 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2950 ixLCAC_CPL_CNTL, 0x500005);/* write */
2951
2952 }
2953
2954 return 0;
2955 }
2956
2957 int iceland_start_dpm(struct pp_hwmgr *hwmgr)
2958 {
2959 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
2960
2961 /* enable general power management */
2962 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1);
2963 /* enable sclk deep sleep */
2964 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1);
2965
2966 /* prepare for PCIE DPM */
2967 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SOFT_REGISTERS_TABLE_12, VoltageChangeTimeout, 0x1000);
2968
2969 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0);
2970
2971 PP_ASSERT_WITH_CODE(
2972 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2973 PPSMC_MSG_Voltage_Cntl_Enable)),
2974 "Failed to enable voltage DPM during DPM Start Function!",
2975 return -1);
2976
2977 if (0 != iceland_enable_sclk_mclk_dpm(hwmgr)) {
2978 PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1);
2979 }
2980
2981 /* enable PCIE dpm */
2982 if (0 == data->pcie_dpm_key_disabled) {
2983 PP_ASSERT_WITH_CODE(
2984 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2985 PPSMC_MSG_PCIeDPM_Enable)),
2986 "Failed to enable pcie DPM during DPM Start Function!",
2987 return -1
2988 );
2989 }
2990
2991 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2992 PHM_PlatformCaps_Falcon_QuickTransition)) {
2993 smum_send_msg_to_smc(hwmgr->smumgr,
2994 PPSMC_MSG_EnableACDCGPIOInterrupt);
2995 }
2996
2997 return 0;
2998 }
2999
3000 static void iceland_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
3001 uint32_t sources)
3002 {
3003 bool protection;
3004 enum DPM_EVENT_SRC src;
3005
3006 switch (sources) {
3007 default:
3008 printk(KERN_ERR "Unknown throttling event sources.");
3009 /* fall through */
3010 case 0:
3011 protection = false;
3012 /* src is unused */
3013 break;
3014 case (1 << PHM_AutoThrottleSource_Thermal):
3015 protection = true;
3016 src = DPM_EVENT_SRC_DIGITAL;
3017 break;
3018 case (1 << PHM_AutoThrottleSource_External):
3019 protection = true;
3020 src = DPM_EVENT_SRC_EXTERNAL;
3021 break;
3022 case (1 << PHM_AutoThrottleSource_External) |
3023 (1 << PHM_AutoThrottleSource_Thermal):
3024 protection = true;
3025 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
3026 break;
3027 }
3028 /* Order matters - don't enable thermal protection for the wrong source. */
3029 if (protection) {
3030 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
3031 DPM_EVENT_SRC, src);
3032 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3033 THERMAL_PROTECTION_DIS,
3034 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3035 PHM_PlatformCaps_ThermalController));
3036 } else
3037 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3038 THERMAL_PROTECTION_DIS, 1);
3039 }
3040
3041 static int iceland_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3042 PHM_AutoThrottleSource source)
3043 {
3044 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
3045
3046 if (!(data->active_auto_throttle_sources & (1 << source))) {
3047 data->active_auto_throttle_sources |= 1 << source;
3048 iceland_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3049 }
3050 return 0;
3051 }
3052
3053 static int iceland_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3054 {
3055 return iceland_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3056 }
3057
3058 static int iceland_tf_start_smc(struct pp_hwmgr *hwmgr)
3059 {
3060 int ret = 0;
3061
3062 if (!iceland_is_smc_ram_running(hwmgr->smumgr))
3063 ret = iceland_smu_start_smc(hwmgr->smumgr);
3064
3065 return ret;
3066 }
3067
3068 /**
3069 * Programs the Deep Sleep registers
3070 *
3071 * @param pHwMgr the address of the powerplay hardware manager.
3072 * @param pInput the pointer to input data (PhwEvergreen_DisplayConfiguration)
3073 * @param pOutput the pointer to output data (unused)
3074 * @param pStorage the pointer to temporary storage (unused)
3075 * @param Result the last failure code (unused)
3076 * @return always 0
3077 */
3078 static int iceland_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3079 {
3080 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3081 PHM_PlatformCaps_SclkDeepSleep)) {
3082 if (smum_send_msg_to_smc(hwmgr->smumgr,
3083 PPSMC_MSG_MASTER_DeepSleep_ON) != 0)
3084 PP_ASSERT_WITH_CODE(false,
3085 "Attempt to enable Master Deep Sleep switch failed!",
3086 return -EINVAL);
3087 } else {
3088 if (smum_send_msg_to_smc(hwmgr->smumgr,
3089 PPSMC_MSG_MASTER_DeepSleep_OFF) != 0)
3090 PP_ASSERT_WITH_CODE(false,
3091 "Attempt to disable Master Deep Sleep switch failed!",
3092 return -EINVAL);
3093 }
3094
3095 return 0;
3096 }
3097
3098 static int iceland_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3099 {
3100 int tmp_result, result = 0;
3101
3102 if (cf_iceland_voltage_control(hwmgr)) {
3103 tmp_result = iceland_enable_voltage_control(hwmgr);
3104 PP_ASSERT_WITH_CODE((0 == tmp_result),
3105 "Failed to enable voltage control!", return tmp_result);
3106
3107 tmp_result = iceland_construct_voltage_tables(hwmgr);
3108 PP_ASSERT_WITH_CODE((0 == tmp_result),
3109 "Failed to contruct voltage tables!", return tmp_result);
3110 }
3111
3112 tmp_result = iceland_initialize_mc_reg_table(hwmgr);
3113 PP_ASSERT_WITH_CODE((0 == tmp_result),
3114 "Failed to initialize MC reg table!", return tmp_result);
3115
3116 tmp_result = iceland_program_static_screen_threshold_parameters(hwmgr);
3117 PP_ASSERT_WITH_CODE((0 == tmp_result),
3118 "Failed to program static screen threshold parameters!", return tmp_result);
3119
3120 tmp_result = iceland_enable_display_gap(hwmgr);
3121 PP_ASSERT_WITH_CODE((0 == tmp_result),
3122 "Failed to enable display gap!", return tmp_result);
3123
3124 tmp_result = iceland_program_voting_clients(hwmgr);
3125 PP_ASSERT_WITH_CODE((0 == tmp_result),
3126 "Failed to program voting clients!", return tmp_result);
3127
3128 tmp_result = iceland_upload_firmware(hwmgr);
3129 PP_ASSERT_WITH_CODE((0 == tmp_result),
3130 "Failed to upload firmware header!", return tmp_result);
3131
3132 tmp_result = iceland_process_firmware_header(hwmgr);
3133 PP_ASSERT_WITH_CODE((0 == tmp_result),
3134 "Failed to process firmware header!", return tmp_result);
3135
3136 tmp_result = iceland_initial_switch_from_arb_f0_to_f1(hwmgr);
3137 PP_ASSERT_WITH_CODE((0 == tmp_result),
3138 "Failed to initialize switch from ArbF0 to F1!", return tmp_result);
3139
3140 tmp_result = iceland_init_smc_table(hwmgr);
3141 PP_ASSERT_WITH_CODE((0 == tmp_result),
3142 "Failed to initialize SMC table!", return tmp_result);
3143
3144 tmp_result = iceland_populate_initial_mc_reg_table(hwmgr);
3145 PP_ASSERT_WITH_CODE((0 == tmp_result),
3146 "Failed to populate initialize MC Reg table!", return tmp_result);
3147
3148 tmp_result = iceland_populate_pm_fuses(hwmgr);
3149 PP_ASSERT_WITH_CODE((0 == tmp_result),
3150 "Failed to populate PM fuses!", return tmp_result);
3151
3152 /* start SMC */
3153 tmp_result = iceland_tf_start_smc(hwmgr);
3154 PP_ASSERT_WITH_CODE((0 == tmp_result),
3155 "Failed to start SMC!", return tmp_result);
3156
3157 /* enable SCLK control */
3158 tmp_result = iceland_enable_sclk_control(hwmgr);
3159 PP_ASSERT_WITH_CODE((0 == tmp_result),
3160 "Failed to enable SCLK control!", return tmp_result);
3161
3162 tmp_result = iceland_enable_deep_sleep_master_switch(hwmgr);
3163 PP_ASSERT_WITH_CODE((tmp_result == 0),
3164 "Failed to enable deep sleep!", return tmp_result);
3165
3166 /* enable DPM */
3167 tmp_result = iceland_start_dpm(hwmgr);
3168 PP_ASSERT_WITH_CODE((0 == tmp_result),
3169 "Failed to start DPM!", return tmp_result);
3170
3171 tmp_result = iceland_enable_smc_cac(hwmgr);
3172 PP_ASSERT_WITH_CODE((0 == tmp_result),
3173 "Failed to enable SMC CAC!", return tmp_result);
3174
3175 tmp_result = iceland_enable_power_containment(hwmgr);
3176 PP_ASSERT_WITH_CODE((0 == tmp_result),
3177 "Failed to enable power containment!", return tmp_result);
3178
3179 tmp_result = iceland_power_control_set_level(hwmgr);
3180 PP_ASSERT_WITH_CODE((0 == tmp_result),
3181 "Failed to power control set level!", result = tmp_result);
3182
3183 tmp_result = iceland_enable_thermal_auto_throttle(hwmgr);
3184 PP_ASSERT_WITH_CODE((0 == tmp_result),
3185 "Failed to enable thermal auto throttle!", result = tmp_result);
3186
3187 return result;
3188 }
3189
3190 static int iceland_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
3191 {
3192 return phm_hwmgr_backend_fini(hwmgr);
3193 }
3194
3195 static void iceland_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
3196 {
3197 iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
3198 struct phw_iceland_ulv_parm *ulv;
3199
3200 ulv = &data->ulv;
3201 ulv->ch_ulv_parameter = PPICELAND_CGULVPARAMETER_DFLT;
3202 data->voting_rights_clients0 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT0;
3203 data->voting_rights_clients1 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT1;
3204 data->voting_rights_clients2 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT2;
3205 data->voting_rights_clients3 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT3;
3206 data->voting_rights_clients4 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT4;
3207 data->voting_rights_clients5 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT5;
3208 data->voting_rights_clients6 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT6;
3209 data->voting_rights_clients7 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT7;
3210
3211 data->static_screen_threshold_unit = PPICELAND_STATICSCREENTHRESHOLDUNIT_DFLT;
3212 data->static_screen_threshold = PPICELAND_STATICSCREENTHRESHOLD_DFLT;
3213
3214 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3215 PHM_PlatformCaps_ABM);
3216 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3217 PHM_PlatformCaps_NonABMSupportInPPLib);
3218
3219 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3220 PHM_PlatformCaps_DynamicACTiming);
3221
3222 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3223 PHM_PlatformCaps_DisableMemoryTransition);
3224
3225 iceland_initialize_power_tune_defaults(hwmgr);
3226
3227 data->mclk_strobe_mode_threshold = 40000;
3228 data->mclk_stutter_mode_threshold = 30000;
3229 data->mclk_edc_enable_threshold = 40000;
3230 data->mclk_edc_wr_enable_threshold = 40000;
3231
3232 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3233 PHM_PlatformCaps_DisableMCLS);
3234
3235 data->pcie_gen_performance.max = PP_PCIEGen1;
3236 data->pcie_gen_performance.min = PP_PCIEGen3;
3237 data->pcie_gen_power_saving.max = PP_PCIEGen1;
3238 data->pcie_gen_power_saving.min = PP_PCIEGen3;
3239
3240 data->pcie_lane_performance.max = 0;
3241 data->pcie_lane_performance.min = 16;
3242 data->pcie_lane_power_saving.max = 0;
3243 data->pcie_lane_power_saving.min = 16;
3244
3245 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3246 PHM_PlatformCaps_SclkThrottleLowNotification);
3247 }
3248
3249 static int iceland_get_evv_voltage(struct pp_hwmgr *hwmgr)
3250 {
3251 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
3252 uint16_t virtual_voltage_id;
3253 uint16_t vddc = 0;
3254 uint16_t i;
3255
3256 /* the count indicates actual number of entries */
3257 data->vddc_leakage.count = 0;
3258 data->vddci_leakage.count = 0;
3259
3260 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
3261 pr_err("Iceland should always support EVV\n");
3262 return -EINVAL;
3263 }
3264
3265 /* retrieve voltage for leakage ID (0xff01 + i) */
3266 for (i = 0; i < ICELAND_MAX_LEAKAGE_COUNT; i++) {
3267 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
3268
3269 PP_ASSERT_WITH_CODE((0 == atomctrl_get_voltage_evv(hwmgr, virtual_voltage_id, &vddc)),
3270 "Error retrieving EVV voltage value!\n", continue);
3271
3272 if (vddc >= 2000)
3273 pr_warning("Invalid VDDC value!\n");
3274
3275 if (vddc != 0 && vddc != virtual_voltage_id) {
3276 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
3277 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
3278 data->vddc_leakage.count++;
3279 }
3280 }
3281
3282 return 0;
3283 }
3284
3285 static void iceland_patch_with_vddc_leakage(struct pp_hwmgr *hwmgr,
3286 uint32_t *vddc)
3287 {
3288 iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
3289 uint32_t leakage_index;
3290 struct phw_iceland_leakage_voltage *leakage_table = &data->vddc_leakage;
3291
3292 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
3293 for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) {
3294 /*
3295 * If this voltage matches a leakage voltage ID, patch
3296 * with actual leakage voltage.
3297 */
3298 if (leakage_table->leakage_id[leakage_index] == *vddc) {
3299 /*
3300 * Need to make sure vddc is less than 2v or
3301 * else, it could burn the ASIC.
3302 */
3303 if (leakage_table->actual_voltage[leakage_index] >= 2000)
3304 pr_warning("Invalid VDDC value!\n");
3305 *vddc = leakage_table->actual_voltage[leakage_index];
3306 /* we found leakage voltage */
3307 break;
3308 }
3309 }
3310
3311 if (*vddc >= ATOM_VIRTUAL_VOLTAGE_ID0)
3312 pr_warning("Voltage value looks like a Leakage ID but it's not patched\n");
3313 }
3314
3315 static void iceland_patch_with_vddci_leakage(struct pp_hwmgr *hwmgr,
3316 uint32_t *vddci)
3317 {
3318 iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
3319 uint32_t leakage_index;
3320 struct phw_iceland_leakage_voltage *leakage_table = &data->vddci_leakage;
3321
3322 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
3323 for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) {
3324 /*
3325 * If this voltage matches a leakage voltage ID, patch
3326 * with actual leakage voltage.
3327 */
3328 if (leakage_table->leakage_id[leakage_index] == *vddci) {
3329 *vddci = leakage_table->actual_voltage[leakage_index];
3330 /* we found leakage voltage */
3331 break;
3332 }
3333 }
3334
3335 if (*vddci >= ATOM_VIRTUAL_VOLTAGE_ID0)
3336 pr_warning("Voltage value looks like a Leakage ID but it's not patched\n");
3337 }
3338
3339 static int iceland_patch_vddc(struct pp_hwmgr *hwmgr,
3340 struct phm_clock_voltage_dependency_table *tab)
3341 {
3342 uint16_t i;
3343
3344 if (tab)
3345 for (i = 0; i < tab->count; i++)
3346 iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v);
3347
3348 return 0;
3349 }
3350
3351 static int iceland_patch_vddci(struct pp_hwmgr *hwmgr,
3352 struct phm_clock_voltage_dependency_table *tab)
3353 {
3354 uint16_t i;
3355
3356 if (tab)
3357 for (i = 0; i < tab->count; i++)
3358 iceland_patch_with_vddci_leakage(hwmgr, &tab->entries[i].v);
3359
3360 return 0;
3361 }
3362
3363 static int iceland_patch_vce_vddc(struct pp_hwmgr *hwmgr,
3364 struct phm_vce_clock_voltage_dependency_table *tab)
3365 {
3366 uint16_t i;
3367
3368 if (tab)
3369 for (i = 0; i < tab->count; i++)
3370 iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v);
3371
3372 return 0;
3373 }
3374
3375
3376 static int iceland_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
3377 struct phm_uvd_clock_voltage_dependency_table *tab)
3378 {
3379 uint16_t i;
3380
3381 if (tab)
3382 for (i = 0; i < tab->count; i++)
3383 iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v);
3384
3385 return 0;
3386 }
3387
3388 static int iceland_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
3389 struct phm_phase_shedding_limits_table *tab)
3390 {
3391 uint16_t i;
3392
3393 if (tab)
3394 for (i = 0; i < tab->count; i++)
3395 iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].Voltage);
3396
3397 return 0;
3398 }
3399
3400 static int iceland_patch_samu_vddc(struct pp_hwmgr *hwmgr,
3401 struct phm_samu_clock_voltage_dependency_table *tab)
3402 {
3403 uint16_t i;
3404
3405 if (tab)
3406 for (i = 0; i < tab->count; i++)
3407 iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v);
3408
3409 return 0;
3410 }
3411
3412 static int iceland_patch_acp_vddc(struct pp_hwmgr *hwmgr,
3413 struct phm_acp_clock_voltage_dependency_table *tab)
3414 {
3415 uint16_t i;
3416
3417 if (tab)
3418 for (i = 0; i < tab->count; i++)
3419 iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v);
3420
3421 return 0;
3422 }
3423
3424 static int iceland_patch_limits_vddc(struct pp_hwmgr *hwmgr,
3425 struct phm_clock_and_voltage_limits *tab)
3426 {
3427 if (tab) {
3428 iceland_patch_with_vddc_leakage(hwmgr, (uint32_t *)&tab->vddc);
3429 iceland_patch_with_vddci_leakage(hwmgr, (uint32_t *)&tab->vddci);
3430 }
3431
3432 return 0;
3433 }
3434
3435 static int iceland_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
3436 {
3437 uint32_t i;
3438 uint32_t vddc;
3439
3440 if (tab) {
3441 for (i = 0; i < tab->count; i++) {
3442 vddc = (uint32_t)(tab->entries[i].Vddc);
3443 iceland_patch_with_vddc_leakage(hwmgr, &vddc);
3444 tab->entries[i].Vddc = (uint16_t)vddc;
3445 }
3446 }
3447
3448 return 0;
3449 }
3450
3451 static int iceland_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
3452 {
3453 int tmp;
3454
3455 tmp = iceland_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
3456 if(tmp)
3457 return -EINVAL;
3458
3459 tmp = iceland_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
3460 if(tmp)
3461 return -EINVAL;
3462
3463 tmp = iceland_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
3464 if(tmp)
3465 return -EINVAL;
3466
3467 tmp = iceland_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
3468 if(tmp)
3469 return -EINVAL;
3470
3471 tmp = iceland_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
3472 if(tmp)
3473 return -EINVAL;
3474
3475 tmp = iceland_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
3476 if(tmp)
3477 return -EINVAL;
3478
3479 tmp = iceland_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
3480 if(tmp)
3481 return -EINVAL;
3482
3483 tmp = iceland_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
3484 if(tmp)
3485 return -EINVAL;
3486
3487 tmp = iceland_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
3488 if(tmp)
3489 return -EINVAL;
3490
3491 tmp = iceland_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
3492 if(tmp)
3493 return -EINVAL;
3494
3495 tmp = iceland_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
3496 if(tmp)
3497 return -EINVAL;
3498
3499 tmp = iceland_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
3500 if(tmp)
3501 return -EINVAL;
3502
3503 return 0;
3504 }
3505
3506 static int iceland_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr)
3507 {
3508 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
3509
3510 struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
3511 struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
3512 struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
3513
3514 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
3515 "VDDC dependency on SCLK table is missing. This table is mandatory\n", return -EINVAL);
3516 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
3517 "VDDC dependency on SCLK table has to have is missing. This table is mandatory\n", return -EINVAL);
3518
3519 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
3520 "VDDC dependency on MCLK table is missing. This table is mandatory\n", return -EINVAL);
3521 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
3522 "VDD dependency on MCLK table has to have is missing. This table is mandatory\n", return -EINVAL);
3523
3524 data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
3525 data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
3526
3527 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
3528 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
3529 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
3530 allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
3531 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
3532 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
3533
3534 if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
3535 data->min_vddci_in_pp_table = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
3536 data->max_vddci_in_pp_table = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
3537 }
3538
3539 if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count > 1)
3540 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
3541
3542 return 0;
3543 }
3544
3545 static int iceland_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
3546 {
3547 uint32_t table_size;
3548 struct phm_clock_voltage_dependency_table *table_clk_vlt;
3549
3550 hwmgr->dyn_state.mclk_sclk_ratio = 4;
3551 hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */
3552 hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */
3553
3554 /* initialize vddc_dep_on_dal_pwrl table */
3555 table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
3556 table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
3557
3558 if (NULL == table_clk_vlt) {
3559 pr_err("[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
3560 return -ENOMEM;
3561 } else {
3562 table_clk_vlt->count = 4;
3563 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
3564 table_clk_vlt->entries[0].v = 0;
3565 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
3566 table_clk_vlt->entries[1].v = 720;
3567 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
3568 table_clk_vlt->entries[2].v = 810;
3569 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
3570 table_clk_vlt->entries[3].v = 900;
3571 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
3572 }
3573
3574 return 0;
3575 }
3576
3577 /**
3578 * Initializes the Volcanic Islands Hardware Manager
3579 *
3580 * @param hwmgr the address of the powerplay hardware manager.
3581 * @return 1 if success; otherwise appropriate error code.
3582 */
3583 static int iceland_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
3584 {
3585 int result = 0;
3586 SMU71_Discrete_DpmTable *table = NULL;
3587 iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
3588 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
3589 bool stay_in_boot;
3590 struct phw_iceland_ulv_parm *ulv;
3591 struct cgs_system_info sys_info = {0};
3592
3593 PP_ASSERT_WITH_CODE((NULL != hwmgr),
3594 "Invalid Parameter!", return -EINVAL;);
3595
3596 data->dll_defaule_on = 0;
3597 data->sram_end = SMC_RAM_END;
3598
3599 data->activity_target[0] = PPICELAND_TARGETACTIVITY_DFLT;
3600 data->activity_target[1] = PPICELAND_TARGETACTIVITY_DFLT;
3601 data->activity_target[2] = PPICELAND_TARGETACTIVITY_DFLT;
3602 data->activity_target[3] = PPICELAND_TARGETACTIVITY_DFLT;
3603 data->activity_target[4] = PPICELAND_TARGETACTIVITY_DFLT;
3604 data->activity_target[5] = PPICELAND_TARGETACTIVITY_DFLT;
3605 data->activity_target[6] = PPICELAND_TARGETACTIVITY_DFLT;
3606 data->activity_target[7] = PPICELAND_TARGETACTIVITY_DFLT;
3607
3608 data->mclk_activity_target = PPICELAND_MCLK_TARGETACTIVITY_DFLT;
3609
3610 data->sclk_dpm_key_disabled = 0;
3611 data->mclk_dpm_key_disabled = 0;
3612 data->pcie_dpm_key_disabled = 0;
3613 data->pcc_monitor_enabled = 0;
3614
3615 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3616 PHM_PlatformCaps_UnTabledHardwareInterface);
3617
3618 data->gpio_debug = 0;
3619 data->engine_clock_data = 0;
3620 data->memory_clock_data = 0;
3621
3622 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3623 PHM_PlatformCaps_SclkDeepSleepAboveLow);
3624
3625 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3626 PHM_PlatformCaps_DynamicPatchPowerState);
3627
3628 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3629 PHM_PlatformCaps_TablelessHardwareInterface);
3630
3631 /* Initializes DPM default values. */
3632 iceland_initialize_dpm_defaults(hwmgr);
3633
3634 /* Enable Platform EVV support. */
3635 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3636 PHM_PlatformCaps_EVV);
3637
3638 /* Get leakage voltage based on leakage ID. */
3639 result = iceland_get_evv_voltage(hwmgr);
3640 if (result)
3641 goto failed;
3642
3643 /**
3644 * Patch our voltage dependency table with actual leakage
3645 * voltage. We need to perform leakage translation before it's
3646 * used by other functions such as
3647 * iceland_set_hwmgr_variables_based_on_pptable.
3648 */
3649 result = iceland_patch_dependency_tables_with_leakage(hwmgr);
3650 if (result)
3651 goto failed;
3652
3653 /* Parse pptable data read from VBIOS. */
3654 result = iceland_set_private_var_based_on_pptale(hwmgr);
3655 if (result)
3656 goto failed;
3657
3658 /* ULV support */
3659 ulv = &(data->ulv);
3660 ulv->ulv_supported = 1;
3661
3662 /* Initalize Dynamic State Adjustment Rule Settings*/
3663 result = iceland_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
3664 if (result) {
3665 pr_err("[ powerplay ] iceland_initializa_dynamic_state_adjustment_rule_settings failed!\n");
3666 goto failed;
3667 }
3668
3669 data->voltage_control = ICELAND_VOLTAGE_CONTROL_NONE;
3670 data->vdd_ci_control = ICELAND_VOLTAGE_CONTROL_NONE;
3671 data->mvdd_control = ICELAND_VOLTAGE_CONTROL_NONE;
3672
3673 /*
3674 * Hardcode thermal temperature settings for now, these will
3675 * be overwritten if a custom policy exists.
3676 */
3677 data->thermal_temp_setting.temperature_low = 99500;
3678 data->thermal_temp_setting.temperature_high = 100000;
3679 data->thermal_temp_setting.temperature_shutdown = 104000;
3680 data->uvd_enabled = false;
3681
3682 table = &data->smc_state_table;
3683
3684 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID,
3685 &gpio_pin_assignment)) {
3686 table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3687 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3688 PHM_PlatformCaps_RegulatorHot);
3689 } else {
3690 table->VRHotGpio = ICELAND_UNUSED_GPIO_PIN;
3691 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3692 PHM_PlatformCaps_RegulatorHot);
3693 }
3694
3695 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
3696 &gpio_pin_assignment)) {
3697 table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3698 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3699 PHM_PlatformCaps_AutomaticDCTransition);
3700 } else {
3701 table->AcDcGpio = ICELAND_UNUSED_GPIO_PIN;
3702 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3703 PHM_PlatformCaps_AutomaticDCTransition);
3704 }
3705
3706 /*
3707 * If ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable, Peak.
3708 * Current Control feature is enabled and we should program
3709 * PCC HW register
3710 */
3711 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID,
3712 &gpio_pin_assignment)) {
3713 uint32_t temp_reg = cgs_read_ind_register(hwmgr->device,
3714 CGS_IND_REG__SMC,
3715 ixCNB_PWRMGT_CNTL);
3716
3717 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
3718 case 0:
3719 temp_reg = PHM_SET_FIELD(temp_reg,
3720 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
3721 break;
3722 case 1:
3723 temp_reg = PHM_SET_FIELD(temp_reg,
3724 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
3725 break;
3726 case 2:
3727 temp_reg = PHM_SET_FIELD(temp_reg,
3728 CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
3729 break;
3730 case 3:
3731 temp_reg = PHM_SET_FIELD(temp_reg,
3732 CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
3733 break;
3734 case 4:
3735 temp_reg = PHM_SET_FIELD(temp_reg,
3736 CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
3737 break;
3738 default:
3739 pr_warning("[ powerplay ] Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!\n");
3740 break;
3741 }
3742 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3743 ixCNB_PWRMGT_CNTL, temp_reg);
3744 }
3745
3746 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3747 PHM_PlatformCaps_EnableSMU7ThermalManagement);
3748 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3749 PHM_PlatformCaps_SMU7);
3750
3751 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3752 VOLTAGE_TYPE_VDDC,
3753 VOLTAGE_OBJ_GPIO_LUT))
3754 data->voltage_control = ICELAND_VOLTAGE_CONTROL_BY_GPIO;
3755 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3756 VOLTAGE_TYPE_VDDC,
3757 VOLTAGE_OBJ_SVID2))
3758 data->voltage_control = ICELAND_VOLTAGE_CONTROL_BY_SVID2;
3759
3760 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3761 PHM_PlatformCaps_ControlVDDCI)) {
3762 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3763 VOLTAGE_TYPE_VDDCI,
3764 VOLTAGE_OBJ_GPIO_LUT))
3765 data->vdd_ci_control = ICELAND_VOLTAGE_CONTROL_BY_GPIO;
3766 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3767 VOLTAGE_TYPE_VDDCI,
3768 VOLTAGE_OBJ_SVID2))
3769 data->vdd_ci_control = ICELAND_VOLTAGE_CONTROL_BY_SVID2;
3770 }
3771
3772 if (data->vdd_ci_control == ICELAND_VOLTAGE_CONTROL_NONE)
3773 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3774 PHM_PlatformCaps_ControlVDDCI);
3775
3776 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3777 PHM_PlatformCaps_EnableMVDDControl)) {
3778 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3779 VOLTAGE_TYPE_MVDDC,
3780 VOLTAGE_OBJ_GPIO_LUT))
3781 data->mvdd_control = ICELAND_VOLTAGE_CONTROL_BY_GPIO;
3782 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3783 VOLTAGE_TYPE_MVDDC,
3784 VOLTAGE_OBJ_SVID2))
3785 data->mvdd_control = ICELAND_VOLTAGE_CONTROL_BY_SVID2;
3786 }
3787
3788 if (data->mvdd_control == ICELAND_VOLTAGE_CONTROL_NONE)
3789 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3790 PHM_PlatformCaps_EnableMVDDControl);
3791
3792 data->vddc_phase_shed_control = false;
3793
3794 stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3795 PHM_PlatformCaps_StayInBootState);
3796
3797 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3798 PHM_PlatformCaps_DynamicPowerManagement);
3799
3800 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3801 PHM_PlatformCaps_ActivityReporting);
3802
3803 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3804 PHM_PlatformCaps_GFXClockGatingSupport);
3805
3806 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3807 PHM_PlatformCaps_MemorySpreadSpectrumSupport);
3808 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3809 PHM_PlatformCaps_EngineSpreadSpectrumSupport);
3810
3811 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3812 PHM_PlatformCaps_DynamicPCIEGen2Support);
3813 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3814 PHM_PlatformCaps_SMC);
3815
3816 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3817 PHM_PlatformCaps_DisablePowerGating);
3818 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3819 PHM_PlatformCaps_BACO);
3820
3821 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3822 PHM_PlatformCaps_ThermalAutoThrottling);
3823 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3824 PHM_PlatformCaps_DisableLSClockGating);
3825 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3826 PHM_PlatformCaps_SamuDPM);
3827 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3828 PHM_PlatformCaps_AcpDPM);
3829 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3830 PHM_PlatformCaps_OD6inACSupport);
3831 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3832 PHM_PlatformCaps_EnablePlatformPowerManagement);
3833
3834 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3835 PHM_PlatformCaps_PauseMMSessions);
3836
3837 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3838 PHM_PlatformCaps_OD6PlusinACSupport);
3839 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3840 PHM_PlatformCaps_PauseMMSessions);
3841 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3842 PHM_PlatformCaps_GFXClockGatingManagedInCAIL);
3843 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3844 PHM_PlatformCaps_IcelandULPSSWWorkAround);
3845
3846
3847 /* iceland doesn't support UVD and VCE */
3848 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3849 PHM_PlatformCaps_UVDPowerGating);
3850 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3851 PHM_PlatformCaps_VCEPowerGating);
3852
3853 sys_info.size = sizeof(struct cgs_system_info);
3854 sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS;
3855 result = cgs_query_system_info(hwmgr->device, &sys_info);
3856 if (!result) {
3857 if (sys_info.value & AMD_PG_SUPPORT_UVD)
3858 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3859 PHM_PlatformCaps_UVDPowerGating);
3860 if (sys_info.value & AMD_PG_SUPPORT_VCE)
3861 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3862 PHM_PlatformCaps_VCEPowerGating);
3863
3864 data->is_tlu_enabled = false;
3865 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
3866 ICELAND_MAX_HARDWARE_POWERLEVELS;
3867 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
3868 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
3869
3870 sys_info.size = sizeof(struct cgs_system_info);
3871 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
3872 result = cgs_query_system_info(hwmgr->device, &sys_info);
3873 if (result)
3874 data->pcie_gen_cap = AMDGPU_DEFAULT_PCIE_GEN_MASK;
3875 else
3876 data->pcie_gen_cap = (uint32_t)sys_info.value;
3877 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
3878 data->pcie_spc_cap = 20;
3879 sys_info.size = sizeof(struct cgs_system_info);
3880 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
3881 result = cgs_query_system_info(hwmgr->device, &sys_info);
3882 if (result)
3883 data->pcie_lane_cap = AMDGPU_DEFAULT_PCIE_MLW_MASK;
3884 else
3885 data->pcie_lane_cap = (uint32_t)sys_info.value;
3886 } else {
3887 /* Ignore return value in here, we are cleaning up a mess. */
3888 iceland_hwmgr_backend_fini(hwmgr);
3889 }
3890
3891 return 0;
3892 failed:
3893 return result;
3894 }
3895
3896 static int iceland_get_num_of_entries(struct pp_hwmgr *hwmgr)
3897 {
3898 int result;
3899 unsigned long ret = 0;
3900
3901 result = pp_tables_get_num_of_entries(hwmgr, &ret);
3902
3903 return result ? 0 : ret;
3904 }
3905
3906 static const unsigned long PhwIceland_Magic = (unsigned long)(PHM_VIslands_Magic);
3907
3908 struct iceland_power_state *cast_phw_iceland_power_state(
3909 struct pp_hw_power_state *hw_ps)
3910 {
3911 if (hw_ps == NULL)
3912 return NULL;
3913
3914 PP_ASSERT_WITH_CODE((PhwIceland_Magic == hw_ps->magic),
3915 "Invalid Powerstate Type!",
3916 return NULL);
3917
3918 return (struct iceland_power_state *)hw_ps;
3919 }
3920
3921 static int iceland_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3922 struct pp_power_state *prequest_ps,
3923 const struct pp_power_state *pcurrent_ps)
3924 {
3925 struct iceland_power_state *iceland_ps =
3926 cast_phw_iceland_power_state(&prequest_ps->hardware);
3927
3928 uint32_t sclk;
3929 uint32_t mclk;
3930 struct PP_Clocks minimum_clocks = {0};
3931 bool disable_mclk_switching;
3932 bool disable_mclk_switching_for_frame_lock;
3933 struct cgs_display_info info = {0};
3934 const struct phm_clock_and_voltage_limits *max_limits;
3935 uint32_t i;
3936 iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
3937
3938 int32_t count;
3939 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3940
3941 data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
3942
3943 PP_ASSERT_WITH_CODE(iceland_ps->performance_level_count == 2,
3944 "VI should always have 2 performance levels",
3945 );
3946
3947 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
3948 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3949 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3950
3951 if (PP_PowerSource_DC == hwmgr->power_source) {
3952 for (i = 0; i < iceland_ps->performance_level_count; i++) {
3953 if (iceland_ps->performance_levels[i].memory_clock > max_limits->mclk)
3954 iceland_ps->performance_levels[i].memory_clock = max_limits->mclk;
3955 if (iceland_ps->performance_levels[i].engine_clock > max_limits->sclk)
3956 iceland_ps->performance_levels[i].engine_clock = max_limits->sclk;
3957 }
3958 }
3959
3960 iceland_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk;
3961 iceland_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk;
3962
3963 cgs_get_active_displays_info(hwmgr->device, &info);
3964
3965 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
3966
3967 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3968 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3969
3970 for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; count >= 0; count--) {
3971 if (stable_pstate_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
3972 stable_pstate_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk;
3973 break;
3974 }
3975 }
3976
3977 if (count < 0)
3978 stable_pstate_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].clk;
3979
3980 stable_pstate_mclk = max_limits->mclk;
3981
3982 minimum_clocks.engineClock = stable_pstate_sclk;
3983 minimum_clocks.memoryClock = stable_pstate_mclk;
3984 }
3985
3986 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
3987 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
3988
3989 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
3990 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
3991
3992 iceland_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3993
3994 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
3995 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock),
3996 "Overdrive sclk exceeds limit",
3997 hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock);
3998
3999 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
4000 iceland_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive;
4001 }
4002
4003 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
4004 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock),
4005 "Overdrive mclk exceeds limit",
4006 hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4007
4008 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
4009 iceland_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive;
4010 }
4011
4012 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
4013 hwmgr->platform_descriptor.platformCaps,
4014 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4015
4016 disable_mclk_switching = (1 < info.display_count) ||
4017 disable_mclk_switching_for_frame_lock;
4018
4019 sclk = iceland_ps->performance_levels[0].engine_clock;
4020 mclk = iceland_ps->performance_levels[0].memory_clock;
4021
4022 if (disable_mclk_switching)
4023 mclk = iceland_ps->performance_levels[iceland_ps->performance_level_count - 1].memory_clock;
4024
4025 if (sclk < minimum_clocks.engineClock)
4026 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock;
4027
4028 if (mclk < minimum_clocks.memoryClock)
4029 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock;
4030
4031 iceland_ps->performance_levels[0].engine_clock = sclk;
4032 iceland_ps->performance_levels[0].memory_clock = mclk;
4033
4034 iceland_ps->performance_levels[1].engine_clock =
4035 (iceland_ps->performance_levels[1].engine_clock >= iceland_ps->performance_levels[0].engine_clock) ?
4036 iceland_ps->performance_levels[1].engine_clock :
4037 iceland_ps->performance_levels[0].engine_clock;
4038
4039 if (disable_mclk_switching) {
4040 if (mclk < iceland_ps->performance_levels[1].memory_clock)
4041 mclk = iceland_ps->performance_levels[1].memory_clock;
4042
4043 iceland_ps->performance_levels[0].memory_clock = mclk;
4044 iceland_ps->performance_levels[1].memory_clock = mclk;
4045 } else {
4046 if (iceland_ps->performance_levels[1].memory_clock < iceland_ps->performance_levels[0].memory_clock)
4047 iceland_ps->performance_levels[1].memory_clock = iceland_ps->performance_levels[0].memory_clock;
4048 }
4049
4050 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4051 for (i=0; i < iceland_ps->performance_level_count; i++) {
4052 iceland_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4053 iceland_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4054 iceland_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4055 iceland_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4056 }
4057 }
4058
4059 return 0;
4060 }
4061
4062 static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
4063 {
4064 /*
4065 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
4066 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
4067 * whereas voltage control is a fundemental change that will not be disabled
4068 */
4069 return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4070 FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0);
4071 }
4072
4073 /**
4074 * force DPM power State
4075 *
4076 * @param hwmgr: the address of the powerplay hardware manager.
4077 * @param n : DPM level
4078 * @return The response that came from the SMC.
4079 */
4080 int iceland_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n)
4081 {
4082 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
4083
4084 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
4085 PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr),
4086 "Trying to force SCLK when DPM is disabled", return -1;);
4087 if (0 == data->sclk_dpm_key_disabled)
4088 return (0 == smum_send_msg_to_smc_with_parameter(
4089 hwmgr->smumgr,
4090 PPSMC_MSG_DPM_ForceState,
4091 n) ? 0 : 1);
4092
4093 return 0;
4094 }
4095
4096 /**
4097 * force DPM power State
4098 *
4099 * @param hwmgr: the address of the powerplay hardware manager.
4100 * @param n : DPM level
4101 * @return The response that came from the SMC.
4102 */
4103 int iceland_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n)
4104 {
4105 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
4106
4107 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
4108 PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr),
4109 "Trying to Force MCLK when DPM is disabled", return -1;);
4110 if (0 == data->mclk_dpm_key_disabled)
4111 return (0 == smum_send_msg_to_smc_with_parameter(
4112 hwmgr->smumgr,
4113 PPSMC_MSG_MCLKDPM_ForceState,
4114 n) ? 0 : 1);
4115
4116 return 0;
4117 }
4118
4119 /**
4120 * force DPM power State
4121 *
4122 * @param hwmgr: the address of the powerplay hardware manager.
4123 * @param n : DPM level
4124 * @return The response that came from the SMC.
4125 */
4126 int iceland_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n)
4127 {
4128 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
4129
4130 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
4131 PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr),
4132 "Trying to Force PCIE level when DPM is disabled", return -1;);
4133 if (0 == data->pcie_dpm_key_disabled)
4134 return (0 == smum_send_msg_to_smc_with_parameter(
4135 hwmgr->smumgr,
4136 PPSMC_MSG_PCIeDPM_ForceLevel,
4137 n) ? 0 : 1);
4138
4139 return 0;
4140 }
4141
4142 static int iceland_force_dpm_highest(struct pp_hwmgr *hwmgr)
4143 {
4144 uint32_t level, tmp;
4145 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
4146
4147 if (0 == data->sclk_dpm_key_disabled) {
4148 /* SCLK */
4149 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) {
4150 level = 0;
4151 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
4152 while (tmp >>= 1)
4153 level++ ;
4154
4155 if (0 != level) {
4156 PP_ASSERT_WITH_CODE((0 == iceland_dpm_force_state(hwmgr, level)),
4157 "force highest sclk dpm state failed!", return -1);
4158 PHM_WAIT_INDIRECT_FIELD(hwmgr->device,
4159 SMC_IND, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX, level);
4160 }
4161 }
4162 }
4163
4164 if (0 == data->mclk_dpm_key_disabled) {
4165 /* MCLK */
4166 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
4167 level = 0;
4168 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4169 while (tmp >>= 1)
4170 level++ ;
4171
4172 if (0 != level) {
4173 PP_ASSERT_WITH_CODE((0 == iceland_dpm_force_state_mclk(hwmgr, level)),
4174 "force highest mclk dpm state failed!", return -1);
4175 PHM_WAIT_INDIRECT_FIELD(hwmgr->device, SMC_IND,
4176 TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX, level);
4177 }
4178 }
4179 }
4180
4181 if (0 == data->pcie_dpm_key_disabled) {
4182 /* PCIE */
4183 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
4184 level = 0;
4185 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4186 while (tmp >>= 1)
4187 level++ ;
4188
4189 if (0 != level) {
4190 PP_ASSERT_WITH_CODE((0 == iceland_dpm_force_state_pcie(hwmgr, level)),
4191 "force highest pcie dpm state failed!", return -1);
4192 }
4193 }
4194 }
4195
4196 return 0;
4197 }
4198
4199 static uint32_t iceland_get_lowest_enable_level(struct pp_hwmgr *hwmgr,
4200 uint32_t level_mask)
4201 {
4202 uint32_t level = 0;
4203
4204 while (0 == (level_mask & (1 << level)))
4205 level++;
4206
4207 return level;
4208 }
4209
4210 static int iceland_force_dpm_lowest(struct pp_hwmgr *hwmgr)
4211 {
4212 uint32_t level;
4213 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
4214
4215 /* for now force only sclk */
4216 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4217 level = iceland_get_lowest_enable_level(hwmgr,
4218 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4219
4220 PP_ASSERT_WITH_CODE((0 == iceland_dpm_force_state(hwmgr, level)),
4221 "force sclk dpm state failed!", return -1);
4222
4223 PHM_WAIT_INDIRECT_FIELD(hwmgr->device, SMC_IND,
4224 TARGET_AND_CURRENT_PROFILE_INDEX,
4225 CURR_SCLK_INDEX,
4226 level);
4227 }
4228
4229 return 0;
4230 }
4231
4232 int iceland_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
4233 {
4234 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
4235
4236 PP_ASSERT_WITH_CODE (0 == iceland_is_dpm_running(hwmgr),
4237 "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.",
4238 return -1);
4239
4240 if (0 == data->sclk_dpm_key_disabled) {
4241 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
4242 hwmgr->smumgr,
4243 PPSMC_MSG_NoForcedLevel)),
4244 "unforce sclk dpm state failed!",
4245 return -1);
4246 }
4247
4248 if (0 == data->mclk_dpm_key_disabled) {
4249 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
4250 hwmgr->smumgr,
4251 PPSMC_MSG_MCLKDPM_NoForcedLevel)),
4252 "unforce mclk dpm state failed!",
4253 return -1);
4254 }
4255
4256 if (0 == data->pcie_dpm_key_disabled) {
4257 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
4258 hwmgr->smumgr,
4259 PPSMC_MSG_PCIeDPM_UnForceLevel)),
4260 "unforce pcie level failed!",
4261 return -1);
4262 }
4263
4264 return 0;
4265 }
4266
4267 static int iceland_force_dpm_level(struct pp_hwmgr *hwmgr,
4268 enum amd_dpm_forced_level level)
4269 {
4270 int ret = 0;
4271
4272 switch (level) {
4273 case AMD_DPM_FORCED_LEVEL_HIGH:
4274 ret = iceland_force_dpm_highest(hwmgr);
4275 if (ret)
4276 return ret;
4277 break;
4278 case AMD_DPM_FORCED_LEVEL_LOW:
4279 ret = iceland_force_dpm_lowest(hwmgr);
4280 if (ret)
4281 return ret;
4282 break;
4283 case AMD_DPM_FORCED_LEVEL_AUTO:
4284 ret = iceland_unforce_dpm_levels(hwmgr);
4285 if (ret)
4286 return ret;
4287 break;
4288 default:
4289 break;
4290 }
4291
4292 hwmgr->dpm_level = level;
4293 return ret;
4294 }
4295
4296 const struct iceland_power_state *cast_const_phw_iceland_power_state(
4297 const struct pp_hw_power_state *hw_ps)
4298 {
4299 if (hw_ps == NULL)
4300 return NULL;
4301
4302 PP_ASSERT_WITH_CODE((PhwIceland_Magic == hw_ps->magic),
4303 "Invalid Powerstate Type!",
4304 return NULL);
4305
4306 return (const struct iceland_power_state *)hw_ps;
4307 }
4308
4309 static int iceland_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4310 {
4311 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
4312 const struct iceland_power_state *iceland_ps = cast_const_phw_iceland_power_state(states->pnew_state);
4313 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4314 struct iceland_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table);
4315 uint32_t sclk = iceland_ps->performance_levels[iceland_ps->performance_level_count-1].engine_clock;
4316 struct iceland_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table);
4317 uint32_t mclk = iceland_ps->performance_levels[iceland_ps->performance_level_count-1].memory_clock;
4318 struct PP_Clocks min_clocks = {0};
4319 uint32_t i;
4320 struct cgs_display_info info = {0};
4321
4322 data->need_update_smu7_dpm_table = 0;
4323
4324 for (i = 0; i < psclk_table->count; i++) {
4325 if (sclk == psclk_table->dpm_levels[i].value)
4326 break;
4327 }
4328
4329 if (i >= psclk_table->count)
4330 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4331 else {
4332 /*
4333 * TODO: Check SCLK in DAL's minimum clocks in case DeepSleep
4334 * divider update is required.
4335 */
4336 if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR)
4337 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4338 }
4339
4340 for (i = 0; i < pmclk_table->count; i++) {
4341 if (mclk == pmclk_table->dpm_levels[i].value)
4342 break;
4343 }
4344
4345 if (i >= pmclk_table->count)
4346 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4347
4348 cgs_get_active_displays_info(hwmgr->device, &info);
4349
4350 if (data->display_timing.num_existing_displays != info.display_count)
4351 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4352
4353 return 0;
4354 }
4355
4356 static uint16_t iceland_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct iceland_power_state *hw_ps)
4357 {
4358 uint32_t i;
4359 uint32_t pcie_speed, max_speed = 0;
4360
4361 for (i = 0; i < hw_ps->performance_level_count; i++) {
4362 pcie_speed = hw_ps->performance_levels[i].pcie_gen;
4363 if (max_speed < pcie_speed)
4364 max_speed = pcie_speed;
4365 }
4366
4367 return max_speed;
4368 }
4369
4370 static uint16_t iceland_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
4371 {
4372 uint32_t speed_cntl = 0;
4373
4374 speed_cntl = cgs_read_ind_register(hwmgr->device,
4375 CGS_IND_REG__PCIE,
4376 ixPCIE_LC_SPEED_CNTL);
4377 return((uint16_t)PHM_GET_FIELD(speed_cntl,
4378 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
4379 }
4380
4381
4382 static int iceland_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input)
4383 {
4384 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
4385 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4386 const struct iceland_power_state *iceland_nps = cast_const_phw_iceland_power_state(states->pnew_state);
4387 const struct iceland_power_state *iceland_cps = cast_const_phw_iceland_power_state(states->pcurrent_state);
4388
4389 uint16_t target_link_speed = iceland_get_maximum_link_speed(hwmgr, iceland_nps);
4390 uint16_t current_link_speed;
4391
4392 if (data->force_pcie_gen == PP_PCIEGenInvalid)
4393 current_link_speed = iceland_get_maximum_link_speed(hwmgr, iceland_cps);
4394 else
4395 current_link_speed = data->force_pcie_gen;
4396
4397 data->force_pcie_gen = PP_PCIEGenInvalid;
4398 data->pspp_notify_required = false;
4399 if (target_link_speed > current_link_speed) {
4400 switch(target_link_speed) {
4401 case PP_PCIEGen3:
4402 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
4403 break;
4404 data->force_pcie_gen = PP_PCIEGen2;
4405 if (current_link_speed == PP_PCIEGen2)
4406 break;
4407 case PP_PCIEGen2:
4408 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
4409 break;
4410 default:
4411 data->force_pcie_gen = iceland_get_current_pcie_speed(hwmgr);
4412 break;
4413 }
4414 } else {
4415 if (target_link_speed < current_link_speed)
4416 data->pspp_notify_required = true;
4417 }
4418
4419 return 0;
4420 }
4421
4422 static int iceland_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4423 {
4424 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4425
4426 if (0 == data->need_update_smu7_dpm_table)
4427 return 0;
4428
4429 if ((0 == data->sclk_dpm_key_disabled) &&
4430 (data->need_update_smu7_dpm_table &
4431 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4432 PP_ASSERT_WITH_CODE(
4433 0 == iceland_is_dpm_running(hwmgr),
4434 "Trying to freeze SCLK DPM when DPM is disabled",
4435 );
4436 PP_ASSERT_WITH_CODE(
4437 0 == smum_send_msg_to_smc(hwmgr->smumgr,
4438 PPSMC_MSG_SCLKDPM_FreezeLevel),
4439 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4440 return -1);
4441 }
4442
4443 if ((0 == data->mclk_dpm_key_disabled) &&
4444 (data->need_update_smu7_dpm_table &
4445 DPMTABLE_OD_UPDATE_MCLK)) {
4446 PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr),
4447 "Trying to freeze MCLK DPM when DPM is disabled",
4448 );
4449 PP_ASSERT_WITH_CODE(
4450 0 == smum_send_msg_to_smc(hwmgr->smumgr,
4451 PPSMC_MSG_MCLKDPM_FreezeLevel),
4452 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4453 return -1);
4454 }
4455
4456 return 0;
4457 }
4458
4459 static int iceland_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input)
4460 {
4461 int result = 0;
4462
4463 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
4464 const struct iceland_power_state *iceland_ps = cast_const_phw_iceland_power_state(states->pnew_state);
4465 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4466 uint32_t sclk = iceland_ps->performance_levels[iceland_ps->performance_level_count-1].engine_clock;
4467 uint32_t mclk = iceland_ps->performance_levels[iceland_ps->performance_level_count-1].memory_clock;
4468 struct iceland_dpm_table *pdpm_table = &data->dpm_table;
4469
4470 struct iceland_dpm_table *pgolden_dpm_table = &data->golden_dpm_table;
4471 uint32_t dpm_count, clock_percent;
4472 uint32_t i;
4473
4474 if (0 == data->need_update_smu7_dpm_table)
4475 return 0;
4476
4477 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4478 pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk;
4479
4480 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
4481 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
4482 /*
4483 * Need to do calculation based on the golden DPM table
4484 * as the Heatmap GPU Clock axis is also based on the default values
4485 */
4486 PP_ASSERT_WITH_CODE(
4487 (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0),
4488 "Divide by 0!",
4489 return -1);
4490 dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2;
4491 for (i = dpm_count; i > 1; i--) {
4492 if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) {
4493 clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) /
4494 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
4495
4496 pdpm_table->sclk_table.dpm_levels[i].value =
4497 pgolden_dpm_table->sclk_table.dpm_levels[i].value +
4498 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
4499
4500 } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) {
4501 clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) /
4502 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
4503
4504 pdpm_table->sclk_table.dpm_levels[i].value =
4505 pgolden_dpm_table->sclk_table.dpm_levels[i].value -
4506 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
4507 } else
4508 pdpm_table->sclk_table.dpm_levels[i].value =
4509 pgolden_dpm_table->sclk_table.dpm_levels[i].value;
4510 }
4511 }
4512 }
4513
4514 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4515 pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk;
4516
4517 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
4518 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
4519
4520 PP_ASSERT_WITH_CODE(
4521 (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0),
4522 "Divide by 0!",
4523 return -1);
4524 dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2;
4525 for (i = dpm_count; i > 1; i--) {
4526 if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) {
4527 clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) /
4528 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
4529
4530 pdpm_table->mclk_table.dpm_levels[i].value =
4531 pgolden_dpm_table->mclk_table.dpm_levels[i].value +
4532 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
4533
4534 } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) {
4535 clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) /
4536 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
4537
4538 pdpm_table->mclk_table.dpm_levels[i].value =
4539 pgolden_dpm_table->mclk_table.dpm_levels[i].value -
4540 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
4541 } else
4542 pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value;
4543 }
4544 }
4545 }
4546
4547
4548 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4549 result = iceland_populate_all_graphic_levels(hwmgr);
4550 PP_ASSERT_WITH_CODE((0 == result),
4551 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4552 return result);
4553 }
4554
4555 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4556 /*populate MCLK dpm table to SMU7 */
4557 result = iceland_populate_all_memory_levels(hwmgr);
4558 PP_ASSERT_WITH_CODE((0 == result),
4559 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4560 return result);
4561 }
4562
4563 return result;
4564 }
4565
4566 static int iceland_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4567 struct iceland_single_dpm_table *pdpm_table,
4568 uint32_t low_limit, uint32_t high_limit)
4569 {
4570 uint32_t i;
4571
4572 for (i = 0; i < pdpm_table->count; i++) {
4573 if ((pdpm_table->dpm_levels[i].value < low_limit) ||
4574 (pdpm_table->dpm_levels[i].value > high_limit))
4575 pdpm_table->dpm_levels[i].enabled = false;
4576 else
4577 pdpm_table->dpm_levels[i].enabled = true;
4578 }
4579 return 0;
4580 }
4581
4582 static int iceland_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct iceland_power_state *hw_state)
4583 {
4584 int result = 0;
4585 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4586 uint32_t high_limit_count;
4587
4588 PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1),
4589 "power state did not have any performance level",
4590 return -1);
4591
4592 high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1;
4593
4594 iceland_trim_single_dpm_states(hwmgr, &(data->dpm_table.sclk_table),
4595 hw_state->performance_levels[0].engine_clock,
4596 hw_state->performance_levels[high_limit_count].engine_clock);
4597
4598 iceland_trim_single_dpm_states(hwmgr, &(data->dpm_table.mclk_table),
4599 hw_state->performance_levels[0].memory_clock,
4600 hw_state->performance_levels[high_limit_count].memory_clock);
4601
4602 return result;
4603 }
4604
4605 static int iceland_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input)
4606 {
4607 int result;
4608 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
4609 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4610 const struct iceland_power_state *iceland_ps = cast_const_phw_iceland_power_state(states->pnew_state);
4611
4612 result = iceland_trim_dpm_states(hwmgr, iceland_ps);
4613 if (0 != result)
4614 return result;
4615
4616 data->dpm_level_enable_mask.sclk_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4617 data->dpm_level_enable_mask.mclk_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4618 data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4619 if (data->uvd_enabled && (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1))
4620 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
4621
4622 data->dpm_level_enable_mask.pcie_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4623
4624 return 0;
4625 }
4626
4627 static int iceland_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4628 {
4629 return 0;
4630 }
4631
4632 int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4633 {
4634 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
4635
4636 int result = 0;
4637 uint32_t low_sclk_interrupt_threshold = 0;
4638
4639 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4640 PHM_PlatformCaps_SclkThrottleLowNotification)
4641 && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) {
4642 data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold;
4643 low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold;
4644
4645 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4646
4647 result = iceland_copy_bytes_to_smc(
4648 hwmgr->smumgr,
4649 data->dpm_table_start + offsetof(SMU71_Discrete_DpmTable,
4650 LowSclkInterruptThreshold),
4651 (uint8_t *)&low_sclk_interrupt_threshold,
4652 sizeof(uint32_t),
4653 data->sram_end
4654 );
4655 }
4656
4657 return result;
4658 }
4659
4660 static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
4661 {
4662 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4663
4664 uint32_t address;
4665 int32_t result;
4666
4667 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
4668 return 0;
4669
4670
4671 memset(&data->mc_reg_table, 0, sizeof(SMU71_Discrete_MCRegisters));
4672
4673 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table));
4674
4675 if(result != 0)
4676 return result;
4677
4678
4679 address = data->mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
4680
4681 return iceland_copy_bytes_to_smc(hwmgr->smumgr, address,
4682 (uint8_t *)&data->mc_reg_table.data[0],
4683 sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
4684 data->sram_end);
4685 }
4686
4687 static int iceland_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr)
4688 {
4689 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4690
4691 if (data->need_update_smu7_dpm_table &
4692 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4693 return iceland_program_memory_timing_parameters(hwmgr);
4694
4695 return 0;
4696 }
4697
4698 static int iceland_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4699 {
4700 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4701
4702 if (0 == data->need_update_smu7_dpm_table)
4703 return 0;
4704
4705 if ((0 == data->sclk_dpm_key_disabled) &&
4706 (data->need_update_smu7_dpm_table &
4707 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4708
4709 PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr),
4710 "Trying to Unfreeze SCLK DPM when DPM is disabled",
4711 );
4712 PP_ASSERT_WITH_CODE(
4713 0 == smum_send_msg_to_smc(hwmgr->smumgr,
4714 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4715 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4716 return -1);
4717 }
4718
4719 if ((0 == data->mclk_dpm_key_disabled) &&
4720 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4721
4722 PP_ASSERT_WITH_CODE(
4723 0 == iceland_is_dpm_running(hwmgr),
4724 "Trying to Unfreeze MCLK DPM when DPM is disabled",
4725 );
4726 PP_ASSERT_WITH_CODE(
4727 0 == smum_send_msg_to_smc(hwmgr->smumgr,
4728 PPSMC_MSG_MCLKDPM_UnfreezeLevel),
4729 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4730 return -1);
4731 }
4732
4733 data->need_update_smu7_dpm_table = 0;
4734
4735 return 0;
4736 }
4737
4738 static int iceland_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input)
4739 {
4740 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
4741 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4742 const struct iceland_power_state *iceland_ps = cast_const_phw_iceland_power_state(states->pnew_state);
4743 uint16_t target_link_speed = iceland_get_maximum_link_speed(hwmgr, iceland_ps);
4744 uint8_t request;
4745
4746 if (data->pspp_notify_required ||
4747 data->pcie_performance_request) {
4748 if (target_link_speed == PP_PCIEGen3)
4749 request = PCIE_PERF_REQ_GEN3;
4750 else if (target_link_speed == PP_PCIEGen2)
4751 request = PCIE_PERF_REQ_GEN2;
4752 else
4753 request = PCIE_PERF_REQ_GEN1;
4754
4755 if(request == PCIE_PERF_REQ_GEN1 && iceland_get_current_pcie_speed(hwmgr) > 0) {
4756 data->pcie_performance_request = false;
4757 return 0;
4758 }
4759
4760 if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) {
4761 if (PP_PCIEGen2 == target_link_speed)
4762 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4763 else
4764 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4765 }
4766 }
4767
4768 data->pcie_performance_request = false;
4769 return 0;
4770 }
4771
4772 int iceland_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
4773 {
4774 PPSMC_Result result;
4775 iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend);
4776
4777 if (0 == data->sclk_dpm_key_disabled) {
4778 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
4779 if (0 != iceland_is_dpm_running(hwmgr))
4780 printk(KERN_ERR "[ powerplay ] Trying to set Enable Sclk Mask when DPM is disabled \n");
4781
4782 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4783 result = smum_send_msg_to_smc_with_parameter(
4784 hwmgr->smumgr,
4785 (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask,
4786 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4787 PP_ASSERT_WITH_CODE((0 == result),
4788 "Set Sclk Dpm enable Mask failed", return -1);
4789 }
4790 }
4791
4792 if (0 == data->mclk_dpm_key_disabled) {
4793 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
4794 if (0 != iceland_is_dpm_running(hwmgr))
4795 printk(KERN_ERR "[ powerplay ] Trying to set Enable Mclk Mask when DPM is disabled \n");
4796
4797 if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
4798 result = smum_send_msg_to_smc_with_parameter(
4799 hwmgr->smumgr,
4800 (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask,
4801 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
4802 PP_ASSERT_WITH_CODE((0 == result),
4803 "Set Mclk Dpm enable Mask failed", return -1);
4804 }
4805 }
4806
4807 return 0;
4808 }
4809
4810 static int iceland_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4811 {
4812 int tmp_result, result = 0;
4813
4814 tmp_result = iceland_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4815 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result);
4816
4817 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
4818 tmp_result = iceland_request_link_speed_change_before_state_change(hwmgr, input);
4819 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result);
4820 }
4821
4822 tmp_result = iceland_freeze_sclk_mclk_dpm(hwmgr);
4823 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4824
4825 tmp_result = iceland_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4826 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result);
4827
4828 tmp_result = iceland_generate_dpm_level_enable_mask(hwmgr, input);
4829 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result);
4830
4831 tmp_result = iceland_update_vce_dpm(hwmgr, input);
4832 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result);
4833
4834 tmp_result = iceland_update_sclk_threshold(hwmgr);
4835 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result);
4836
4837 tmp_result = iceland_update_and_upload_mc_reg_table(hwmgr);
4838 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result);
4839
4840 tmp_result = iceland_program_memory_timing_parameters_conditionally(hwmgr);
4841 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result);
4842
4843 tmp_result = iceland_unfreeze_sclk_mclk_dpm(hwmgr);
4844 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result);
4845
4846 tmp_result = iceland_upload_dpm_level_enable_mask(hwmgr);
4847 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result);
4848
4849 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
4850 tmp_result = iceland_notify_link_speed_change_after_state_change(hwmgr, input);
4851 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result);
4852 }
4853
4854 return result;
4855 }
4856
4857 static int iceland_get_power_state_size(struct pp_hwmgr *hwmgr)
4858 {
4859 return sizeof(struct iceland_power_state);
4860 }
4861
4862 static int iceland_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4863 {
4864 struct pp_power_state *ps;
4865 struct iceland_power_state *iceland_ps;
4866
4867 if (hwmgr == NULL)
4868 return -EINVAL;
4869
4870 ps = hwmgr->request_ps;
4871
4872 if (ps == NULL)
4873 return -EINVAL;
4874
4875 iceland_ps = cast_phw_iceland_power_state(&ps->hardware);
4876
4877 if (low)
4878 return iceland_ps->performance_levels[0].memory_clock;
4879 else
4880 return iceland_ps->performance_levels[iceland_ps->performance_level_count-1].memory_clock;
4881 }
4882
4883 static int iceland_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4884 {
4885 struct pp_power_state *ps;
4886 struct iceland_power_state *iceland_ps;
4887
4888 if (hwmgr == NULL)
4889 return -EINVAL;
4890
4891 ps = hwmgr->request_ps;
4892
4893 if (ps == NULL)
4894 return -EINVAL;
4895
4896 iceland_ps = cast_phw_iceland_power_state(&ps->hardware);
4897
4898 if (low)
4899 return iceland_ps->performance_levels[0].engine_clock;
4900 else
4901 return iceland_ps->performance_levels[iceland_ps->performance_level_count-1].engine_clock;
4902 }
4903
4904 static int iceland_get_current_pcie_lane_number(
4905 struct pp_hwmgr *hwmgr)
4906 {
4907 uint32_t link_width;
4908
4909 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4910 CGS_IND_REG__PCIE,
4911 PCIE_LC_LINK_WIDTH_CNTL,
4912 LC_LINK_WIDTH_RD);
4913
4914 PP_ASSERT_WITH_CODE((7 >= link_width),
4915 "Invalid PCIe lane width!", return 0);
4916
4917 return decode_pcie_lane_width(link_width);
4918 }
4919
4920 static int iceland_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
4921 struct pp_hw_power_state *hw_ps)
4922 {
4923 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4924 struct iceland_power_state *ps = (struct iceland_power_state *)hw_ps;
4925 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
4926 uint16_t size;
4927 uint8_t frev, crev;
4928 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
4929
4930 /* First retrieve the Boot clocks and VDDC from the firmware info table.
4931 * We assume here that fw_info is unchanged if this call fails.
4932 */
4933 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
4934 hwmgr->device, index,
4935 &size, &frev, &crev);
4936 if (!fw_info)
4937 /* During a test, there is no firmware info table. */
4938 return 0;
4939
4940 /* Patch the state. */
4941 data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock);
4942 data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock);
4943 data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
4944 data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage);
4945 data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
4946 data->vbios_boot_state.pcie_gen_bootup_value = iceland_get_current_pcie_speed(hwmgr);
4947 data->vbios_boot_state.pcie_lane_bootup_value =
4948 (uint16_t)iceland_get_current_pcie_lane_number(hwmgr);
4949
4950 /* set boot power state */
4951 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
4952 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
4953 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
4954 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
4955
4956 return 0;
4957 }
4958
4959 static int iceland_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
4960 struct pp_hw_power_state *power_state,
4961 unsigned int index, const void *clock_info)
4962 {
4963 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
4964 struct iceland_power_state *iceland_power_state = cast_phw_iceland_power_state(power_state);
4965 const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
4966 struct iceland_performance_level *performance_level;
4967 uint32_t engine_clock, memory_clock;
4968 uint16_t pcie_gen_from_bios;
4969
4970 engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
4971 memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
4972
4973 if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
4974 data->highest_mclk = memory_clock;
4975
4976 performance_level = &(iceland_power_state->performance_levels
4977 [iceland_power_state->performance_level_count++]);
4978
4979 PP_ASSERT_WITH_CODE(
4980 (iceland_power_state->performance_level_count < SMU71_MAX_LEVELS_GRAPHICS),
4981 "Performance levels exceeds SMC limit!",
4982 return -1);
4983
4984 PP_ASSERT_WITH_CODE(
4985 (iceland_power_state->performance_level_count <=
4986 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
4987 "Performance levels exceeds Driver limit!",
4988 return -1);
4989
4990 /* Performance levels are arranged from low to high. */
4991 performance_level->memory_clock = memory_clock;
4992 performance_level->engine_clock = engine_clock;
4993
4994 pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
4995
4996 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
4997 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
4998
4999 return 0;
5000 }
5001
5002 static int iceland_get_pp_table_entry(struct pp_hwmgr *hwmgr,
5003 unsigned long entry_index, struct pp_power_state *state)
5004 {
5005 int result;
5006 struct iceland_power_state *ps;
5007 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
5008 struct phm_clock_voltage_dependency_table *dep_mclk_table =
5009 hwmgr->dyn_state.vddci_dependency_on_mclk;
5010
5011 memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
5012
5013 state->hardware.magic = PHM_VIslands_Magic;
5014
5015 ps = (struct iceland_power_state *)(&state->hardware);
5016
5017 result = pp_tables_get_entry(hwmgr, entry_index, state,
5018 iceland_get_pp_table_entry_callback_func);
5019
5020 /*
5021 * This is the earliest time we have all the dependency table
5022 * and the VBIOS boot state as
5023 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
5024 * state if there is only one VDDCI/MCLK level, check if it's
5025 * the same as VBIOS boot state
5026 */
5027 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
5028 if (dep_mclk_table->entries[0].clk !=
5029 data->vbios_boot_state.mclk_bootup_value)
5030 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
5031 "does not match VBIOS boot MCLK level");
5032 if (dep_mclk_table->entries[0].v !=
5033 data->vbios_boot_state.vddci_bootup_value)
5034 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
5035 "does not match VBIOS boot VDDCI level");
5036 }
5037
5038 /* set DC compatible flag if this state supports DC */
5039 if (!state->validation.disallowOnDC)
5040 ps->dc_compatible = true;
5041
5042 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
5043 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
5044 else if (0 != (state->classification.flags & PP_StateClassificationFlag_Boot)) {
5045 if (data->bacos.best_match == 0xffff) {
5046 /* For C.I. use boot state as base BACO state */
5047 data->bacos.best_match = PP_StateClassificationFlag_Boot;
5048 data->bacos.performance_level = ps->performance_levels[0];
5049 }
5050 }
5051
5052
5053 ps->uvd_clocks.VCLK = state->uvd_clocks.VCLK;
5054 ps->uvd_clocks.DCLK = state->uvd_clocks.DCLK;
5055
5056 if (!result) {
5057 uint32_t i;
5058
5059 switch (state->classification.ui_label) {
5060 case PP_StateUILabel_Performance:
5061 data->use_pcie_performance_levels = true;
5062
5063 for (i = 0; i < ps->performance_level_count; i++) {
5064 if (data->pcie_gen_performance.max <
5065 ps->performance_levels[i].pcie_gen)
5066 data->pcie_gen_performance.max =
5067 ps->performance_levels[i].pcie_gen;
5068
5069 if (data->pcie_gen_performance.min >
5070 ps->performance_levels[i].pcie_gen)
5071 data->pcie_gen_performance.min =
5072 ps->performance_levels[i].pcie_gen;
5073
5074 if (data->pcie_lane_performance.max <
5075 ps->performance_levels[i].pcie_lane)
5076 data->pcie_lane_performance.max =
5077 ps->performance_levels[i].pcie_lane;
5078
5079 if (data->pcie_lane_performance.min >
5080 ps->performance_levels[i].pcie_lane)
5081 data->pcie_lane_performance.min =
5082 ps->performance_levels[i].pcie_lane;
5083 }
5084 break;
5085 case PP_StateUILabel_Battery:
5086 data->use_pcie_power_saving_levels = true;
5087
5088 for (i = 0; i < ps->performance_level_count; i++) {
5089 if (data->pcie_gen_power_saving.max <
5090 ps->performance_levels[i].pcie_gen)
5091 data->pcie_gen_power_saving.max =
5092 ps->performance_levels[i].pcie_gen;
5093
5094 if (data->pcie_gen_power_saving.min >
5095 ps->performance_levels[i].pcie_gen)
5096 data->pcie_gen_power_saving.min =
5097 ps->performance_levels[i].pcie_gen;
5098
5099 if (data->pcie_lane_power_saving.max <
5100 ps->performance_levels[i].pcie_lane)
5101 data->pcie_lane_power_saving.max =
5102 ps->performance_levels[i].pcie_lane;
5103
5104 if (data->pcie_lane_power_saving.min >
5105 ps->performance_levels[i].pcie_lane)
5106 data->pcie_lane_power_saving.min =
5107 ps->performance_levels[i].pcie_lane;
5108 }
5109 break;
5110 default:
5111 break;
5112 }
5113 }
5114 return 0;
5115 }
5116
5117 static void
5118 iceland_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
5119 {
5120 uint32_t sclk, mclk, activity_percent;
5121 uint32_t offset;
5122 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
5123
5124 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency));
5125
5126 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5127
5128 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency));
5129
5130 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5131 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100);
5132
5133 offset = data->soft_regs_start + offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
5134 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
5135 activity_percent += 0x80;
5136 activity_percent >>= 8;
5137
5138 seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
5139
5140 seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en");
5141
5142 seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en");
5143 }
5144
5145 int iceland_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
5146 {
5147 uint32_t num_active_displays = 0;
5148 struct cgs_display_info info = {0};
5149 info.mode_info = NULL;
5150
5151 cgs_get_active_displays_info(hwmgr->device, &info);
5152
5153 num_active_displays = info.display_count;
5154
5155 if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
5156 iceland_notify_smc_display_change(hwmgr, false);
5157 else
5158 iceland_notify_smc_display_change(hwmgr, true);
5159
5160 return 0;
5161 }
5162
5163 /**
5164 * Programs the display gap
5165 *
5166 * @param hwmgr the address of the powerplay hardware manager.
5167 * @return always OK
5168 */
5169 int iceland_program_display_gap(struct pp_hwmgr *hwmgr)
5170 {
5171 uint32_t num_active_displays = 0;
5172 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
5173 uint32_t display_gap2;
5174 uint32_t pre_vbi_time_in_us;
5175 uint32_t frame_time_in_us;
5176 uint32_t ref_clock;
5177 uint32_t refresh_rate = 0;
5178 struct cgs_display_info info = {0};
5179 struct cgs_mode_info mode_info;
5180
5181 info.mode_info = &mode_info;
5182
5183 cgs_get_active_displays_info(hwmgr->device, &info);
5184 num_active_displays = info.display_count;
5185
5186 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0)? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
5187 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
5188
5189 ref_clock = mode_info.ref_clock;
5190 refresh_rate = mode_info.refresh_rate;
5191
5192 if(0 == refresh_rate)
5193 refresh_rate = 60;
5194
5195 frame_time_in_us = 1000000 / refresh_rate;
5196
5197 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
5198 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
5199
5200 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
5201
5202 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SOFT_REGISTERS_TABLE_4, PreVBlankGap, 0x64);
5203
5204 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SOFT_REGISTERS_TABLE_5, VBlankTimeout, (frame_time_in_us - pre_vbi_time_in_us));
5205
5206 if (num_active_displays == 1)
5207 iceland_notify_smc_display_change(hwmgr, true);
5208
5209 return 0;
5210 }
5211
5212 int iceland_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
5213 {
5214 iceland_program_display_gap(hwmgr);
5215
5216 return 0;
5217 }
5218
5219 /**
5220 * Set maximum target operating fan output PWM
5221 *
5222 * @param pHwMgr: the address of the powerplay hardware manager.
5223 * @param usMaxFanPwm: max operating fan PWM in percents
5224 * @return The response that came from the SMC.
5225 */
5226 static int iceland_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5227 {
5228 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
5229
5230 if (phm_is_hw_access_blocked(hwmgr))
5231 return 0;
5232
5233 return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm) ? 0 : -1);
5234 }
5235
5236 /**
5237 * Set maximum target operating fan output RPM
5238 *
5239 * @param pHwMgr: the address of the powerplay hardware manager.
5240 * @param usMaxFanRpm: max operating fan RPM value.
5241 * @return The response that came from the SMC.
5242 */
5243 static int iceland_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5244 {
5245 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = us_max_fan_pwm;
5246
5247 if (phm_is_hw_access_blocked(hwmgr))
5248 return 0;
5249
5250 return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_pwm) ? 0 : -1);
5251 }
5252
5253 static int iceland_dpm_set_interrupt_state(void *private_data,
5254 unsigned src_id, unsigned type,
5255 int enabled)
5256 {
5257 uint32_t cg_thermal_int;
5258 struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
5259
5260 if (hwmgr == NULL)
5261 return -EINVAL;
5262
5263 switch (type) {
5264 case AMD_THERMAL_IRQ_LOW_TO_HIGH:
5265 if (enabled) {
5266 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5267 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5268 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5269 } else {
5270 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5271 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5272 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5273 }
5274 break;
5275
5276 case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5277 if (enabled) {
5278 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5279 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5280 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5281 } else {
5282 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5283 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5284 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5285 }
5286 break;
5287 default:
5288 break;
5289 }
5290 return 0;
5291 }
5292
5293 static int iceland_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5294 const void *thermal_interrupt_info)
5295 {
5296 int result;
5297 const struct pp_interrupt_registration_info *info =
5298 (const struct pp_interrupt_registration_info *)thermal_interrupt_info;
5299
5300 if (info == NULL)
5301 return -EINVAL;
5302
5303 result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5304 iceland_dpm_set_interrupt_state,
5305 info->call_back, info->context);
5306
5307 if (result)
5308 return -EINVAL;
5309
5310 result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5311 iceland_dpm_set_interrupt_state,
5312 info->call_back, info->context);
5313
5314 if (result)
5315 return -EINVAL;
5316
5317 return 0;
5318 }
5319
5320
5321 static bool iceland_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5322 {
5323 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
5324 bool is_update_required = false;
5325 struct cgs_display_info info = {0,0,NULL};
5326
5327 cgs_get_active_displays_info(hwmgr->device, &info);
5328
5329 if (data->display_timing.num_existing_displays != info.display_count)
5330 is_update_required = true;
5331 /* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
5332 if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5333 cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
5334 if(min_clocks.engineClockInSR != data->display_timing.minClockInSR)
5335 is_update_required = true;
5336 */
5337 return is_update_required;
5338 }
5339
5340
5341 static inline bool iceland_are_power_levels_equal(const struct iceland_performance_level *pl1,
5342 const struct iceland_performance_level *pl2)
5343 {
5344 return ((pl1->memory_clock == pl2->memory_clock) &&
5345 (pl1->engine_clock == pl2->engine_clock) &&
5346 (pl1->pcie_gen == pl2->pcie_gen) &&
5347 (pl1->pcie_lane == pl2->pcie_lane));
5348 }
5349
5350 int iceland_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1,
5351 const struct pp_hw_power_state *pstate2, bool *equal)
5352 {
5353 const struct iceland_power_state *psa = cast_const_phw_iceland_power_state(pstate1);
5354 const struct iceland_power_state *psb = cast_const_phw_iceland_power_state(pstate2);
5355 int i;
5356
5357 if (equal == NULL || psa == NULL || psb == NULL)
5358 return -EINVAL;
5359
5360 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
5361 if (psa->performance_level_count != psb->performance_level_count) {
5362 *equal = false;
5363 return 0;
5364 }
5365
5366 for (i = 0; i < psa->performance_level_count; i++) {
5367 if (!iceland_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
5368 /* If we have found even one performance level pair that is different the states are different. */
5369 *equal = false;
5370 return 0;
5371 }
5372 }
5373
5374 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5375 *equal = ((psa->uvd_clocks.VCLK == psb->uvd_clocks.VCLK) && (psa->uvd_clocks.DCLK == psb->uvd_clocks.DCLK));
5376 *equal &= ((psa->vce_clocks.EVCLK == psb->vce_clocks.EVCLK) && (psa->vce_clocks.ECCLK == psb->vce_clocks.ECCLK));
5377 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
5378 *equal &= (psa->acp_clk == psb->acp_clk);
5379
5380 return 0;
5381 }
5382
5383 static int iceland_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5384 {
5385 if (mode) {
5386 /* stop auto-manage */
5387 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5388 PHM_PlatformCaps_MicrocodeFanControl))
5389 iceland_fan_ctrl_stop_smc_fan_control(hwmgr);
5390 iceland_fan_ctrl_set_static_mode(hwmgr, mode);
5391 } else
5392 /* restart auto-manage */
5393 iceland_fan_ctrl_reset_fan_speed_to_default(hwmgr);
5394
5395 return 0;
5396 }
5397
5398 static int iceland_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5399 {
5400 if (hwmgr->fan_ctrl_is_in_default_mode)
5401 return hwmgr->fan_ctrl_default_mode;
5402 else
5403 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
5404 CG_FDO_CTRL2, FDO_PWM_MODE);
5405 }
5406
5407 static int iceland_force_clock_level(struct pp_hwmgr *hwmgr,
5408 enum pp_clock_type type, uint32_t mask)
5409 {
5410 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
5411
5412 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
5413 return -EINVAL;
5414
5415 switch (type) {
5416 case PP_SCLK:
5417 if (!data->sclk_dpm_key_disabled)
5418 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5419 PPSMC_MSG_SCLKDPM_SetEnabledMask,
5420 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
5421 break;
5422 case PP_MCLK:
5423 if (!data->mclk_dpm_key_disabled)
5424 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5425 PPSMC_MSG_MCLKDPM_SetEnabledMask,
5426 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
5427 break;
5428 case PP_PCIE:
5429 {
5430 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
5431 uint32_t level = 0;
5432
5433 while (tmp >>= 1)
5434 level++;
5435
5436 if (!data->pcie_dpm_key_disabled)
5437 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5438 PPSMC_MSG_PCIeDPM_ForceLevel,
5439 level);
5440 break;
5441 }
5442 default:
5443 break;
5444 }
5445
5446 return 0;
5447 }
5448
5449 static int iceland_print_clock_levels(struct pp_hwmgr *hwmgr,
5450 enum pp_clock_type type, char *buf)
5451 {
5452 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
5453 struct iceland_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5454 struct iceland_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5455 struct iceland_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
5456 int i, now, size = 0;
5457 uint32_t clock, pcie_speed;
5458
5459 switch (type) {
5460 case PP_SCLK:
5461 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5462 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5463
5464 for (i = 0; i < sclk_table->count; i++) {
5465 if (clock > sclk_table->dpm_levels[i].value)
5466 continue;
5467 break;
5468 }
5469 now = i;
5470
5471 for (i = 0; i < sclk_table->count; i++)
5472 size += sprintf(buf + size, "%d: %uMhz %s\n",
5473 i, sclk_table->dpm_levels[i].value / 100,
5474 (i == now) ? "*" : "");
5475 break;
5476 case PP_MCLK:
5477 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5478 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5479
5480 for (i = 0; i < mclk_table->count; i++) {
5481 if (clock > mclk_table->dpm_levels[i].value)
5482 continue;
5483 break;
5484 }
5485 now = i;
5486
5487 for (i = 0; i < mclk_table->count; i++)
5488 size += sprintf(buf + size, "%d: %uMhz %s\n",
5489 i, mclk_table->dpm_levels[i].value / 100,
5490 (i == now) ? "*" : "");
5491 break;
5492 case PP_PCIE:
5493 pcie_speed = iceland_get_current_pcie_speed(hwmgr);
5494 for (i = 0; i < pcie_table->count; i++) {
5495 if (pcie_speed != pcie_table->dpm_levels[i].value)
5496 continue;
5497 break;
5498 }
5499 now = i;
5500
5501 for (i = 0; i < pcie_table->count; i++)
5502 size += sprintf(buf + size, "%d: %s %s\n", i,
5503 (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
5504 (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
5505 (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
5506 (i == now) ? "*" : "");
5507 break;
5508 default:
5509 break;
5510 }
5511 return size;
5512 }
5513
5514 static int iceland_get_sclk_od(struct pp_hwmgr *hwmgr)
5515 {
5516 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
5517 struct iceland_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5518 struct iceland_single_dpm_table *golden_sclk_table =
5519 &(data->golden_dpm_table.sclk_table);
5520 int value;
5521
5522 value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
5523 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
5524 100 /
5525 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5526
5527 return value;
5528 }
5529
5530 static int iceland_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5531 {
5532 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
5533 struct iceland_single_dpm_table *golden_sclk_table =
5534 &(data->golden_dpm_table.sclk_table);
5535 struct pp_power_state *ps;
5536 struct iceland_power_state *iceland_ps;
5537
5538 if (value > 20)
5539 value = 20;
5540
5541 ps = hwmgr->request_ps;
5542
5543 if (ps == NULL)
5544 return -EINVAL;
5545
5546 iceland_ps = cast_phw_iceland_power_state(&ps->hardware);
5547
5548 iceland_ps->performance_levels[iceland_ps->performance_level_count - 1].engine_clock =
5549 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5550 value / 100 +
5551 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5552
5553 return 0;
5554 }
5555
5556 static int iceland_get_mclk_od(struct pp_hwmgr *hwmgr)
5557 {
5558 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
5559 struct iceland_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5560 struct iceland_single_dpm_table *golden_mclk_table =
5561 &(data->golden_dpm_table.mclk_table);
5562 int value;
5563
5564 value = (mclk_table->dpm_levels[mclk_table->count - 1].value -
5565 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) *
5566 100 /
5567 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5568
5569 return value;
5570 }
5571
5572 uint32_t iceland_get_xclk(struct pp_hwmgr *hwmgr)
5573 {
5574 uint32_t reference_clock;
5575 uint32_t tc;
5576 uint32_t divide;
5577
5578 ATOM_FIRMWARE_INFO *fw_info;
5579 uint16_t size;
5580 uint8_t frev, crev;
5581 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
5582
5583 tc = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
5584
5585 if (tc)
5586 return TCLK;
5587
5588 fw_info = (ATOM_FIRMWARE_INFO *)cgs_atom_get_data_table(hwmgr->device, index,
5589 &size, &frev, &crev);
5590
5591 if (!fw_info)
5592 return 0;
5593
5594 reference_clock = le16_to_cpu(fw_info->usReferenceClock);
5595
5596 divide = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
5597
5598 if (0 != divide)
5599 return reference_clock / 4;
5600
5601 return reference_clock;
5602 }
5603
5604 static int iceland_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5605 {
5606 struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend);
5607 struct iceland_single_dpm_table *golden_mclk_table =
5608 &(data->golden_dpm_table.mclk_table);
5609 struct pp_power_state *ps;
5610 struct iceland_power_state *iceland_ps;
5611
5612 if (value > 20)
5613 value = 20;
5614
5615 ps = hwmgr->request_ps;
5616
5617 if (ps == NULL)
5618 return -EINVAL;
5619
5620 iceland_ps = cast_phw_iceland_power_state(&ps->hardware);
5621
5622 iceland_ps->performance_levels[iceland_ps->performance_level_count - 1].memory_clock =
5623 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5624 value / 100 +
5625 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5626
5627 return 0;
5628 }
5629
5630 static const struct pp_hwmgr_func iceland_hwmgr_funcs = {
5631 .backend_init = &iceland_hwmgr_backend_init,
5632 .backend_fini = &iceland_hwmgr_backend_fini,
5633 .asic_setup = &iceland_setup_asic_task,
5634 .dynamic_state_management_enable = &iceland_enable_dpm_tasks,
5635 .apply_state_adjust_rules = iceland_apply_state_adjust_rules,
5636 .force_dpm_level = &iceland_force_dpm_level,
5637 .power_state_set = iceland_set_power_state_tasks,
5638 .get_power_state_size = iceland_get_power_state_size,
5639 .get_mclk = iceland_dpm_get_mclk,
5640 .get_sclk = iceland_dpm_get_sclk,
5641 .patch_boot_state = iceland_dpm_patch_boot_state,
5642 .get_pp_table_entry = iceland_get_pp_table_entry,
5643 .get_num_of_pp_table_entries = iceland_get_num_of_entries,
5644 .print_current_perforce_level = iceland_print_current_perforce_level,
5645 .powerdown_uvd = iceland_phm_powerdown_uvd,
5646 .powergate_uvd = iceland_phm_powergate_uvd,
5647 .powergate_vce = iceland_phm_powergate_vce,
5648 .disable_clock_power_gating = iceland_phm_disable_clock_power_gating,
5649 .update_clock_gatings = iceland_phm_update_clock_gatings,
5650 .notify_smc_display_config_after_ps_adjustment = iceland_notify_smc_display_config_after_ps_adjustment,
5651 .display_config_changed = iceland_display_configuration_changed_task,
5652 .set_max_fan_pwm_output = iceland_set_max_fan_pwm_output,
5653 .set_max_fan_rpm_output = iceland_set_max_fan_rpm_output,
5654 .get_temperature = iceland_thermal_get_temperature,
5655 .stop_thermal_controller = iceland_thermal_stop_thermal_controller,
5656 .get_fan_speed_info = iceland_fan_ctrl_get_fan_speed_info,
5657 .get_fan_speed_percent = iceland_fan_ctrl_get_fan_speed_percent,
5658 .set_fan_speed_percent = iceland_fan_ctrl_set_fan_speed_percent,
5659 .reset_fan_speed_to_default = iceland_fan_ctrl_reset_fan_speed_to_default,
5660 .get_fan_speed_rpm = iceland_fan_ctrl_get_fan_speed_rpm,
5661 .set_fan_speed_rpm = iceland_fan_ctrl_set_fan_speed_rpm,
5662 .uninitialize_thermal_controller = iceland_thermal_ctrl_uninitialize_thermal_controller,
5663 .register_internal_thermal_interrupt = iceland_register_internal_thermal_interrupt,
5664 .check_smc_update_required_for_display_configuration = iceland_check_smc_update_required_for_display_configuration,
5665 .check_states_equal = iceland_check_states_equal,
5666 .set_fan_control_mode = iceland_set_fan_control_mode,
5667 .get_fan_control_mode = iceland_get_fan_control_mode,
5668 .force_clock_level = iceland_force_clock_level,
5669 .print_clock_levels = iceland_print_clock_levels,
5670 .get_sclk_od = iceland_get_sclk_od,
5671 .set_sclk_od = iceland_set_sclk_od,
5672 .get_mclk_od = iceland_get_mclk_od,
5673 .set_mclk_od = iceland_set_mclk_od,
5674 };
5675
5676 int iceland_hwmgr_init(struct pp_hwmgr *hwmgr)
5677 {
5678 iceland_hwmgr *data;
5679
5680 data = kzalloc (sizeof(iceland_hwmgr), GFP_KERNEL);
5681 if (data == NULL)
5682 return -ENOMEM;
5683 memset(data, 0x00, sizeof(iceland_hwmgr));
5684
5685 hwmgr->backend = data;
5686 hwmgr->hwmgr_func = &iceland_hwmgr_funcs;
5687 hwmgr->pptable_func = &pptable_funcs;
5688
5689 /* thermal */
5690 pp_iceland_thermal_initialize(hwmgr);
5691 return 0;
5692 }
This page took 0.163806 seconds and 5 git commands to generate.