power: supply: sbs-battery: simplify DT parsing
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / ppatomctrl.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26
27 #include "ppatomctrl.h"
28 #include "atombios.h"
29 #include "cgs_common.h"
30 #include "pp_debug.h"
31 #include "ppevvmath.h"
32
33 #define MEM_ID_MASK 0xff000000
34 #define MEM_ID_SHIFT 24
35 #define CLOCK_RANGE_MASK 0x00ffffff
36 #define CLOCK_RANGE_SHIFT 0
37 #define LOW_NIBBLE_MASK 0xf
38 #define DATA_EQU_PREV 0
39 #define DATA_FROM_TABLE 4
40
41 union voltage_object_info {
42 struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43 struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44 struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45 };
46
47 static int atomctrl_retrieve_ac_timing(
48 uint8_t index,
49 ATOM_INIT_REG_BLOCK *reg_block,
50 pp_atomctrl_mc_reg_table *table)
51 {
52 uint32_t i, j;
53 uint8_t tmem_id;
54 ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56
57 uint8_t num_ranges = 0;
58
59 while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60 num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62
63 if (index == tmem_id) {
64 table->mc_reg_table_entry[num_ranges].mclk_max =
65 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66 CLOCK_RANGE_SHIFT);
67
68 for (i = 0, j = 1; i < table->last; i++) {
69 if ((table->mc_reg_address[i].uc_pre_reg_data &
70 LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71 table->mc_reg_table_entry[num_ranges].mc_data[i] =
72 (uint32_t)*((uint32_t *)reg_data + j);
73 j++;
74 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
75 LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76 table->mc_reg_table_entry[num_ranges].mc_data[i] =
77 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78 }
79 }
80 num_ranges++;
81 }
82
83 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84 ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85 }
86
87 PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88 "Invalid VramInfo table.", return -1);
89 table->num_entries = num_ranges;
90
91 return 0;
92 }
93
94 /**
95 * Get memory clock AC timing registers index from VBIOS table
96 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97 * @param reg_block the address ATOM_INIT_REG_BLOCK
98 * @param table the address of MCRegTable
99 * @return 0
100 */
101 static int atomctrl_set_mc_reg_address_table(
102 ATOM_INIT_REG_BLOCK *reg_block,
103 pp_atomctrl_mc_reg_table *table)
104 {
105 uint8_t i = 0;
106 uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107 / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108 ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109
110 num_entries--; /* subtract 1 data end mark entry */
111
112 PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113 "Invalid VramInfo table.", return -1);
114
115 /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116 while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117 (i < num_entries)) {
118 table->mc_reg_address[i].s1 =
119 (uint16_t)(le16_to_cpu(format->usRegIndex));
120 table->mc_reg_address[i].uc_pre_reg_data =
121 format->ucPreRegDataLength;
122
123 i++;
124 format = (ATOM_INIT_REG_INDEX_FORMAT *)
125 ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126 }
127
128 table->last = i;
129 return 0;
130 }
131
132
133 int atomctrl_initialize_mc_reg_table(
134 struct pp_hwmgr *hwmgr,
135 uint8_t module_index,
136 pp_atomctrl_mc_reg_table *table)
137 {
138 ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
139 ATOM_INIT_REG_BLOCK *reg_block;
140 int result = 0;
141 u8 frev, crev;
142 u16 size;
143
144 vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
145 cgs_atom_get_data_table(hwmgr->device,
146 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
147
148 if (module_index >= vram_info->ucNumOfVRAMModule) {
149 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
150 result = -1;
151 } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
152 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
153 result = -1;
154 }
155
156 if (0 == result) {
157 reg_block = (ATOM_INIT_REG_BLOCK *)
158 ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
159 result = atomctrl_set_mc_reg_address_table(reg_block, table);
160 }
161
162 if (0 == result) {
163 result = atomctrl_retrieve_ac_timing(module_index,
164 reg_block, table);
165 }
166
167 return result;
168 }
169
170 /**
171 * Set DRAM timings based on engine clock and memory clock.
172 */
173 int atomctrl_set_engine_dram_timings_rv770(
174 struct pp_hwmgr *hwmgr,
175 uint32_t engine_clock,
176 uint32_t memory_clock)
177 {
178 SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
179
180 /* They are both in 10KHz Units. */
181 engine_clock_parameters.ulTargetEngineClock =
182 cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
183 ((COMPUTE_ENGINE_PLL_PARAM << 24)));
184
185 /* in 10 khz units.*/
186 engine_clock_parameters.sReserved.ulClock =
187 cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
188 return cgs_atom_exec_cmd_table(hwmgr->device,
189 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
190 &engine_clock_parameters);
191 }
192
193 /**
194 * Private Function to get the PowerPlay Table Address.
195 * WARNING: The tabled returned by this function is in
196 * dynamically allocated memory.
197 * The caller has to release if by calling kfree.
198 */
199 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
200 {
201 int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
202 u8 frev, crev;
203 u16 size;
204 union voltage_object_info *voltage_info;
205
206 voltage_info = (union voltage_object_info *)
207 cgs_atom_get_data_table(device, index,
208 &size, &frev, &crev);
209
210 if (voltage_info != NULL)
211 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
212 else
213 return NULL;
214 }
215
216 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
217 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
218 uint8_t voltage_type, uint8_t voltage_mode)
219 {
220 unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
221 unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
222 uint8_t *start = (uint8_t *)voltage_object_info_table;
223
224 while (offset < size) {
225 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
226 (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
227
228 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
229 voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
230 return voltage_object;
231
232 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
233 }
234
235 return NULL;
236 }
237
238 /** atomctrl_get_memory_pll_dividers_si().
239 *
240 * @param hwmgr input parameter: pointer to HwMgr
241 * @param clock_value input parameter: memory clock
242 * @param dividers output parameter: memory PLL dividers
243 * @param strobe_mode input parameter: 1 for strobe mode, 0 for performance mode
244 */
245 int atomctrl_get_memory_pll_dividers_si(
246 struct pp_hwmgr *hwmgr,
247 uint32_t clock_value,
248 pp_atomctrl_memory_clock_param *mpll_param,
249 bool strobe_mode)
250 {
251 COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
252 int result;
253
254 mpll_parameters.ulClock = cpu_to_le32(clock_value);
255 mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
256
257 result = cgs_atom_exec_cmd_table
258 (hwmgr->device,
259 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
260 &mpll_parameters);
261
262 if (0 == result) {
263 mpll_param->mpll_fb_divider.clk_frac =
264 le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
265 mpll_param->mpll_fb_divider.cl_kf =
266 le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
267 mpll_param->mpll_post_divider =
268 (uint32_t)mpll_parameters.ucPostDiv;
269 mpll_param->vco_mode =
270 (uint32_t)(mpll_parameters.ucPllCntlFlag &
271 MPLL_CNTL_FLAG_VCO_MODE_MASK);
272 mpll_param->yclk_sel =
273 (uint32_t)((mpll_parameters.ucPllCntlFlag &
274 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
275 mpll_param->qdr =
276 (uint32_t)((mpll_parameters.ucPllCntlFlag &
277 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
278 mpll_param->half_rate =
279 (uint32_t)((mpll_parameters.ucPllCntlFlag &
280 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
281 mpll_param->dll_speed =
282 (uint32_t)(mpll_parameters.ucDllSpeed);
283 mpll_param->bw_ctrl =
284 (uint32_t)(mpll_parameters.ucBWCntl);
285 }
286
287 return result;
288 }
289
290 /** atomctrl_get_memory_pll_dividers_vi().
291 *
292 * @param hwmgr input parameter: pointer to HwMgr
293 * @param clock_value input parameter: memory clock
294 * @param dividers output parameter: memory PLL dividers
295 */
296 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
297 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
298 {
299 COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
300 int result;
301
302 mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
303
304 result = cgs_atom_exec_cmd_table(hwmgr->device,
305 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
306 &mpll_parameters);
307
308 if (!result)
309 mpll_param->mpll_post_divider =
310 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
311
312 return result;
313 }
314
315 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
316 uint32_t clock_value,
317 pp_atomctrl_clock_dividers_kong *dividers)
318 {
319 COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
320 int result;
321
322 pll_parameters.ulClock = cpu_to_le32(clock_value);
323
324 result = cgs_atom_exec_cmd_table
325 (hwmgr->device,
326 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
327 &pll_parameters);
328
329 if (0 == result) {
330 dividers->pll_post_divider = pll_parameters.ucPostDiv;
331 dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
332 }
333
334 return result;
335 }
336
337 int atomctrl_get_engine_pll_dividers_vi(
338 struct pp_hwmgr *hwmgr,
339 uint32_t clock_value,
340 pp_atomctrl_clock_dividers_vi *dividers)
341 {
342 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
343 int result;
344
345 pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
346 pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
347
348 result = cgs_atom_exec_cmd_table
349 (hwmgr->device,
350 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
351 &pll_patameters);
352
353 if (0 == result) {
354 dividers->pll_post_divider =
355 pll_patameters.ulClock.ucPostDiv;
356 dividers->real_clock =
357 le32_to_cpu(pll_patameters.ulClock.ulClock);
358
359 dividers->ul_fb_div.ul_fb_div_frac =
360 le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
361 dividers->ul_fb_div.ul_fb_div =
362 le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
363
364 dividers->uc_pll_ref_div =
365 pll_patameters.ucPllRefDiv;
366 dividers->uc_pll_post_div =
367 pll_patameters.ucPllPostDiv;
368 dividers->uc_pll_cntl_flag =
369 pll_patameters.ucPllCntlFlag;
370 }
371
372 return result;
373 }
374
375 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
376 uint32_t clock_value,
377 pp_atomctrl_clock_dividers_ai *dividers)
378 {
379 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
380 int result;
381
382 pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
383 pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
384
385 result = cgs_atom_exec_cmd_table
386 (hwmgr->device,
387 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
388 &pll_patameters);
389
390 if (0 == result) {
391 dividers->usSclk_fcw_frac = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
392 dividers->usSclk_fcw_int = le16_to_cpu(pll_patameters.usSclk_fcw_int);
393 dividers->ucSclkPostDiv = pll_patameters.ucSclkPostDiv;
394 dividers->ucSclkVcoMode = pll_patameters.ucSclkVcoMode;
395 dividers->ucSclkPllRange = pll_patameters.ucSclkPllRange;
396 dividers->ucSscEnable = pll_patameters.ucSscEnable;
397 dividers->usSsc_fcw1_frac = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
398 dividers->usSsc_fcw1_int = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
399 dividers->usPcc_fcw_int = le16_to_cpu(pll_patameters.usPcc_fcw_int);
400 dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
401 dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
402 }
403 return result;
404 }
405
406 int atomctrl_get_dfs_pll_dividers_vi(
407 struct pp_hwmgr *hwmgr,
408 uint32_t clock_value,
409 pp_atomctrl_clock_dividers_vi *dividers)
410 {
411 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
412 int result;
413
414 pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
415 pll_patameters.ulClock.ucPostDiv =
416 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
417
418 result = cgs_atom_exec_cmd_table
419 (hwmgr->device,
420 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
421 &pll_patameters);
422
423 if (0 == result) {
424 dividers->pll_post_divider =
425 pll_patameters.ulClock.ucPostDiv;
426 dividers->real_clock =
427 le32_to_cpu(pll_patameters.ulClock.ulClock);
428
429 dividers->ul_fb_div.ul_fb_div_frac =
430 le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
431 dividers->ul_fb_div.ul_fb_div =
432 le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
433
434 dividers->uc_pll_ref_div =
435 pll_patameters.ucPllRefDiv;
436 dividers->uc_pll_post_div =
437 pll_patameters.ucPllPostDiv;
438 dividers->uc_pll_cntl_flag =
439 pll_patameters.ucPllCntlFlag;
440 }
441
442 return result;
443 }
444
445 /**
446 * Get the reference clock in 10KHz
447 */
448 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
449 {
450 ATOM_FIRMWARE_INFO *fw_info;
451 u8 frev, crev;
452 u16 size;
453 uint32_t clock;
454
455 fw_info = (ATOM_FIRMWARE_INFO *)
456 cgs_atom_get_data_table(hwmgr->device,
457 GetIndexIntoMasterTable(DATA, FirmwareInfo),
458 &size, &frev, &crev);
459
460 if (fw_info == NULL)
461 clock = 2700;
462 else
463 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
464
465 return clock;
466 }
467
468 /**
469 * Returns true if the given voltage type is controlled by GPIO pins.
470 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
471 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
472 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
473 */
474 bool atomctrl_is_voltage_controled_by_gpio_v3(
475 struct pp_hwmgr *hwmgr,
476 uint8_t voltage_type,
477 uint8_t voltage_mode)
478 {
479 ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
480 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
481 bool ret;
482
483 PP_ASSERT_WITH_CODE((NULL != voltage_info),
484 "Could not find Voltage Table in BIOS.", return false;);
485
486 ret = (NULL != atomctrl_lookup_voltage_type_v3
487 (voltage_info, voltage_type, voltage_mode)) ? true : false;
488
489 return ret;
490 }
491
492 int atomctrl_get_voltage_table_v3(
493 struct pp_hwmgr *hwmgr,
494 uint8_t voltage_type,
495 uint8_t voltage_mode,
496 pp_atomctrl_voltage_table *voltage_table)
497 {
498 ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
499 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
500 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
501 unsigned int i;
502
503 PP_ASSERT_WITH_CODE((NULL != voltage_info),
504 "Could not find Voltage Table in BIOS.", return -1;);
505
506 voltage_object = atomctrl_lookup_voltage_type_v3
507 (voltage_info, voltage_type, voltage_mode);
508
509 if (voltage_object == NULL)
510 return -1;
511
512 PP_ASSERT_WITH_CODE(
513 (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
514 PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
515 "Too many voltage entries!",
516 return -1;
517 );
518
519 for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
520 voltage_table->entries[i].value =
521 le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
522 voltage_table->entries[i].smio_low =
523 le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
524 }
525
526 voltage_table->mask_low =
527 le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
528 voltage_table->count =
529 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
530 voltage_table->phase_delay =
531 voltage_object->asGpioVoltageObj.ucPhaseDelay;
532
533 return 0;
534 }
535
536 static bool atomctrl_lookup_gpio_pin(
537 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
538 const uint32_t pinId,
539 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
540 {
541 unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
542 unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
543 uint8_t *start = (uint8_t *)gpio_lookup_table;
544
545 while (offset < size) {
546 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
547 (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
548
549 if (pinId == pin_assignment->ucGPIO_ID) {
550 gpio_pin_assignment->uc_gpio_pin_bit_shift =
551 pin_assignment->ucGpioPinBitShift;
552 gpio_pin_assignment->us_gpio_pin_aindex =
553 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
554 return true;
555 }
556
557 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
558 }
559
560 return false;
561 }
562
563 /**
564 * Private Function to get the PowerPlay Table Address.
565 * WARNING: The tabled returned by this function is in
566 * dynamically allocated memory.
567 * The caller has to release if by calling kfree.
568 */
569 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
570 {
571 u8 frev, crev;
572 u16 size;
573 void *table_address;
574
575 table_address = (ATOM_GPIO_PIN_LUT *)
576 cgs_atom_get_data_table(device,
577 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
578 &size, &frev, &crev);
579
580 PP_ASSERT_WITH_CODE((NULL != table_address),
581 "Error retrieving BIOS Table Address!", return NULL;);
582
583 return (ATOM_GPIO_PIN_LUT *)table_address;
584 }
585
586 /**
587 * Returns 1 if the given pin id find in lookup table.
588 */
589 bool atomctrl_get_pp_assign_pin(
590 struct pp_hwmgr *hwmgr,
591 const uint32_t pinId,
592 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
593 {
594 bool bRet = false;
595 ATOM_GPIO_PIN_LUT *gpio_lookup_table =
596 get_gpio_lookup_table(hwmgr->device);
597
598 PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
599 "Could not find GPIO lookup Table in BIOS.", return false);
600
601 bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
602 gpio_pin_assignment);
603
604 return bRet;
605 }
606
607 int atomctrl_calculate_voltage_evv_on_sclk(
608 struct pp_hwmgr *hwmgr,
609 uint8_t voltage_type,
610 uint32_t sclk,
611 uint16_t virtual_voltage_Id,
612 uint16_t *voltage,
613 uint16_t dpm_level,
614 bool debug)
615 {
616 ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
617
618 EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
619 EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
620 EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
621 EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
622 EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
623 EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
624 EFUSE_INPUT_PARAMETER sInput_FuseValues;
625 READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
626
627 uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
628 fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
629 fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
630 fInt fLkg_FT, repeat;
631 fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
632 fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
633 fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
634 fInt fSclk_margin, fSclk, fEVV_V;
635 fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
636 uint32_t ul_FT_Lkg_V0NORM;
637 fInt fLn_MaxDivMin, fMin, fAverage, fRange;
638 fInt fRoots[2];
639 fInt fStepSize = GetScaledFraction(625, 100000);
640
641 int result;
642
643 getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
644 cgs_atom_get_data_table(hwmgr->device,
645 GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
646 NULL, NULL, NULL);
647
648 if (!getASICProfilingInfo)
649 return -1;
650
651 if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
652 (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
653 getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
654 return -1;
655
656 /*-----------------------------------------------------------
657 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
658 *-----------------------------------------------------------
659 */
660 fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
661
662 switch (dpm_level) {
663 case 1:
664 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
665 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
666 break;
667 case 2:
668 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
669 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
670 break;
671 case 3:
672 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
673 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
674 break;
675 case 4:
676 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
677 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
678 break;
679 case 5:
680 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
681 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
682 break;
683 case 6:
684 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
685 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
686 break;
687 case 7:
688 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
689 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
690 break;
691 default:
692 printk(KERN_ERR "DPM Level not supported\n");
693 fPowerDPMx = Convert_ULONG_ToFraction(1);
694 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
695 }
696
697 /*-------------------------
698 * DECODING FUSE VALUES
699 * ------------------------
700 */
701 /*Decode RO_Fused*/
702 sRO_fuse = getASICProfilingInfo->sRoFuse;
703
704 sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
705 sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
706 sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
707
708 sOutput_FuseValues.sEfuse = sInput_FuseValues;
709
710 result = cgs_atom_exec_cmd_table(hwmgr->device,
711 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
712 &sOutput_FuseValues);
713
714 if (result)
715 return result;
716
717 /* Finally, the actual fuse value */
718 ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
719 fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
720 fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
721 fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
722
723 sCACm_fuse = getASICProfilingInfo->sCACm;
724
725 sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
726 sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
727 sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
728
729 sOutput_FuseValues.sEfuse = sInput_FuseValues;
730
731 result = cgs_atom_exec_cmd_table(hwmgr->device,
732 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
733 &sOutput_FuseValues);
734
735 if (result)
736 return result;
737
738 ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
739 fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
740 fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
741
742 fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
743
744 sCACb_fuse = getASICProfilingInfo->sCACb;
745
746 sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
747 sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
748 sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
749 sOutput_FuseValues.sEfuse = sInput_FuseValues;
750
751 result = cgs_atom_exec_cmd_table(hwmgr->device,
752 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
753 &sOutput_FuseValues);
754
755 if (result)
756 return result;
757
758 ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
759 fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
760 fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
761
762 fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
763
764 sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
765
766 sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
767 sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
768 sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
769
770 sOutput_FuseValues.sEfuse = sInput_FuseValues;
771
772 result = cgs_atom_exec_cmd_table(hwmgr->device,
773 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
774 &sOutput_FuseValues);
775
776 if (result)
777 return result;
778
779 ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
780 fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
781 fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
782
783 fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
784 fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
785
786 sKv_m_fuse = getASICProfilingInfo->sKv_m;
787
788 sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
789 sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
790 sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
791
792 sOutput_FuseValues.sEfuse = sInput_FuseValues;
793
794 result = cgs_atom_exec_cmd_table(hwmgr->device,
795 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
796 &sOutput_FuseValues);
797 if (result)
798 return result;
799
800 ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
801 fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
802 fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
803 fRange = fMultiply(fRange, ConvertToFraction(-1));
804
805 fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
806 fAverage, fRange, sKv_m_fuse.ucEfuseLength);
807
808 sKv_b_fuse = getASICProfilingInfo->sKv_b;
809
810 sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
811 sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
812 sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
813 sOutput_FuseValues.sEfuse = sInput_FuseValues;
814
815 result = cgs_atom_exec_cmd_table(hwmgr->device,
816 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
817 &sOutput_FuseValues);
818
819 if (result)
820 return result;
821
822 ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
823 fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
824 fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
825
826 fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
827 fAverage, fRange, sKv_b_fuse.ucEfuseLength);
828
829 /* Decoding the Leakage - No special struct container */
830 /*
831 * usLkgEuseIndex=56
832 * ucLkgEfuseBitLSB=6
833 * ucLkgEfuseLength=10
834 * ulLkgEncodeLn_MaxDivMin=69077
835 * ulLkgEncodeMax=1000000
836 * ulLkgEncodeMin=1000
837 * ulEfuseLogisticAlpha=13
838 */
839
840 sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
841 sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
842 sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
843
844 sOutput_FuseValues.sEfuse = sInput_FuseValues;
845
846 result = cgs_atom_exec_cmd_table(hwmgr->device,
847 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
848 &sOutput_FuseValues);
849
850 if (result)
851 return result;
852
853 ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
854 fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
855 fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
856
857 fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
858 fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
859 fLkg_FT = fFT_Lkg_V0NORM;
860
861 /*-------------------------------------------
862 * PART 2 - Grabbing all required values
863 *-------------------------------------------
864 */
865 fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
866 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
867 fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
868 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
869 fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
870 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
871 fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
872 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
873 fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
874 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
875 fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
876 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
877 fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
878 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
879 fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
880 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
881
882 fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
883 fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
884 fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
885
886 fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
887
888 fMargin_FMAX_mean = GetScaledFraction(
889 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
890 fMargin_Plat_mean = GetScaledFraction(
891 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
892 fMargin_FMAX_sigma = GetScaledFraction(
893 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
894 fMargin_Plat_sigma = GetScaledFraction(
895 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
896
897 fMargin_DC_sigma = GetScaledFraction(
898 le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
899 fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
900
901 fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
902 fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
903 fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
904 fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
905 fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
906
907 fSclk = GetScaledFraction(sclk, 100);
908
909 fV_max = fDivide(GetScaledFraction(
910 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
911 fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
912 fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
913 fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
914 fV_FT = fDivide(GetScaledFraction(
915 le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
916 fV_min = fDivide(GetScaledFraction(
917 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
918
919 /*-----------------------
920 * PART 3
921 *-----------------------
922 */
923
924 fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
925 fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
926 fC_Term = fAdd(fMargin_RO_c,
927 fAdd(fMultiply(fSM_A0, fLkg_FT),
928 fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
929 fAdd(fMultiply(fSM_A3, fSclk),
930 fSubtract(fSM_A7, fRO_fused)))));
931
932 fVDDC_base = fSubtract(fRO_fused,
933 fSubtract(fMargin_RO_c,
934 fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
935 fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
936
937 repeat = fSubtract(fVDDC_base,
938 fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
939
940 fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
941 fGetSquare(repeat)),
942 fAdd(fMultiply(fMargin_RO_b, repeat),
943 fMargin_RO_c));
944
945 fDC_SCLK = fSubtract(fRO_fused,
946 fSubtract(fRO_DC_margin,
947 fSubtract(fSM_A3,
948 fMultiply(fSM_A2, repeat))));
949 fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
950
951 fSigma_DC = fSubtract(fSclk, fDC_SCLK);
952
953 fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
954 fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
955 fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
956 fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
957
958 fSquared_Sigma_DC = fGetSquare(fSigma_DC);
959 fSquared_Sigma_CR = fGetSquare(fSigma_CR);
960 fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
961
962 fSclk_margin = fAdd(fMicro_FMAX,
963 fAdd(fMicro_CR,
964 fAdd(fMargin_fixed,
965 fSqrt(fAdd(fSquared_Sigma_FMAX,
966 fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
967 /*
968 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
969 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
970 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
971 */
972
973 fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
974 fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
975 fC_Term = fAdd(fRO_DC_margin,
976 fAdd(fMultiply(fSM_A0, fLkg_FT),
977 fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
978 fAdd(fSclk, fSclk_margin)),
979 fAdd(fMultiply(fSM_A3,
980 fAdd(fSclk, fSclk_margin)),
981 fSubtract(fSM_A7, fRO_fused)))));
982
983 SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
984
985 if (GreaterThan(fRoots[0], fRoots[1]))
986 fEVV_V = fRoots[1];
987 else
988 fEVV_V = fRoots[0];
989
990 if (GreaterThan(fV_min, fEVV_V))
991 fEVV_V = fV_min;
992 else if (GreaterThan(fEVV_V, fV_max))
993 fEVV_V = fSubtract(fV_max, fStepSize);
994
995 fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
996
997 /*-----------------
998 * PART 4
999 *-----------------
1000 */
1001
1002 fV_x = fV_min;
1003
1004 while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1005 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1006 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1007 fGetSquare(fV_x)), fDerateTDP);
1008
1009 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1010 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1011 fT_prod), fKv_b_fused), fV_x)), fV_x)));
1012 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1013 fKt_Beta_fused, fT_prod)));
1014 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1015 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1016 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1017 fKt_Beta_fused, fT_FT)));
1018
1019 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1020
1021 fTDP_Current = fDivide(fTDP_Power, fV_x);
1022
1023 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1024 ConvertToFraction(10)));
1025
1026 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1027
1028 if (GreaterThan(fV_max, fV_NL) &&
1029 (GreaterThan(fV_NL, fEVV_V) ||
1030 Equal(fV_NL, fEVV_V))) {
1031 fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1032
1033 *voltage = (uint16_t)fV_NL.partial.real;
1034 break;
1035 } else
1036 fV_x = fAdd(fV_x, fStepSize);
1037 }
1038
1039 return result;
1040 }
1041
1042 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1043 * @param hwmgr input: pointer to hwManager
1044 * @param voltage_type input: type of EVV voltage VDDC or VDDGFX
1045 * @param sclk input: in 10Khz unit. DPM state SCLK frequency
1046 * which is define in PPTable SCLK/VDDC dependence
1047 * table associated with this virtual_voltage_Id
1048 * @param virtual_voltage_Id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1049 * @param voltage output: real voltage level in unit of mv
1050 */
1051 int atomctrl_get_voltage_evv_on_sclk(
1052 struct pp_hwmgr *hwmgr,
1053 uint8_t voltage_type,
1054 uint32_t sclk, uint16_t virtual_voltage_Id,
1055 uint16_t *voltage)
1056 {
1057 int result;
1058 GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1059
1060 get_voltage_info_param_space.ucVoltageType =
1061 voltage_type;
1062 get_voltage_info_param_space.ucVoltageMode =
1063 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1064 get_voltage_info_param_space.usVoltageLevel =
1065 cpu_to_le16(virtual_voltage_Id);
1066 get_voltage_info_param_space.ulSCLKFreq =
1067 cpu_to_le32(sclk);
1068
1069 result = cgs_atom_exec_cmd_table(hwmgr->device,
1070 GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1071 &get_voltage_info_param_space);
1072
1073 if (0 != result)
1074 return result;
1075
1076 *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1077 (&get_voltage_info_param_space))->usVoltageLevel);
1078
1079 return result;
1080 }
1081
1082 /**
1083 * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1084 * @param hwmgr input: pointer to hwManager
1085 * @param virtual_voltage_id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1086 * @param voltage output: real voltage level in unit of mv
1087 */
1088 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1089 uint16_t virtual_voltage_id,
1090 uint16_t *voltage)
1091 {
1092 int result;
1093 int entry_id;
1094 GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1095
1096 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1097 for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1098 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1099 /* found */
1100 break;
1101 }
1102 }
1103
1104 PP_ASSERT_WITH_CODE(entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count,
1105 "Can't find requested voltage id in vddc_dependency_on_sclk table!",
1106 return -EINVAL;
1107 );
1108
1109 get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1110 get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1111 get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1112 get_voltage_info_param_space.ulSCLKFreq =
1113 cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1114
1115 result = cgs_atom_exec_cmd_table(hwmgr->device,
1116 GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1117 &get_voltage_info_param_space);
1118
1119 if (0 != result)
1120 return result;
1121
1122 *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1123 (&get_voltage_info_param_space))->usVoltageLevel);
1124
1125 return result;
1126 }
1127
1128 /**
1129 * Get the mpll reference clock in 10KHz
1130 */
1131 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1132 {
1133 ATOM_COMMON_TABLE_HEADER *fw_info;
1134 uint32_t clock;
1135 u8 frev, crev;
1136 u16 size;
1137
1138 fw_info = (ATOM_COMMON_TABLE_HEADER *)
1139 cgs_atom_get_data_table(hwmgr->device,
1140 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1141 &size, &frev, &crev);
1142
1143 if (fw_info == NULL)
1144 clock = 2700;
1145 else {
1146 if ((fw_info->ucTableFormatRevision == 2) &&
1147 (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1148 ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1149 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1150 clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1151 } else {
1152 ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1153 (ATOM_FIRMWARE_INFO *)fw_info;
1154 clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1155 }
1156 }
1157
1158 return clock;
1159 }
1160
1161 /**
1162 * Get the asic internal spread spectrum table
1163 */
1164 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1165 {
1166 ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1167 u8 frev, crev;
1168 u16 size;
1169
1170 table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1171 cgs_atom_get_data_table(device,
1172 GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1173 &size, &frev, &crev);
1174
1175 return table;
1176 }
1177
1178 /**
1179 * Get the asic internal spread spectrum assignment
1180 */
1181 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1182 const uint8_t clockSource,
1183 const uint32_t clockSpeed,
1184 pp_atomctrl_internal_ss_info *ssEntry)
1185 {
1186 ATOM_ASIC_INTERNAL_SS_INFO *table;
1187 ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1188 int entry_found = 0;
1189
1190 memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1191
1192 table = asic_internal_ss_get_ss_table(hwmgr->device);
1193
1194 if (NULL == table)
1195 return -1;
1196
1197 ssInfo = &table->asSpreadSpectrum[0];
1198
1199 while (((uint8_t *)ssInfo - (uint8_t *)table) <
1200 le16_to_cpu(table->sHeader.usStructureSize)) {
1201 if ((clockSource == ssInfo->ucClockIndication) &&
1202 ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1203 entry_found = 1;
1204 break;
1205 }
1206
1207 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1208 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1209 }
1210
1211 if (entry_found) {
1212 ssEntry->speed_spectrum_percentage =
1213 le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1214 ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1215
1216 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1217 (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1218 (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1219 ssEntry->speed_spectrum_rate /= 100;
1220 }
1221
1222 switch (ssInfo->ucSpreadSpectrumMode) {
1223 case 0:
1224 ssEntry->speed_spectrum_mode =
1225 pp_atomctrl_spread_spectrum_mode_down;
1226 break;
1227 case 1:
1228 ssEntry->speed_spectrum_mode =
1229 pp_atomctrl_spread_spectrum_mode_center;
1230 break;
1231 default:
1232 ssEntry->speed_spectrum_mode =
1233 pp_atomctrl_spread_spectrum_mode_down;
1234 break;
1235 }
1236 }
1237
1238 return entry_found ? 0 : 1;
1239 }
1240
1241 /**
1242 * Get the memory clock spread spectrum info
1243 */
1244 int atomctrl_get_memory_clock_spread_spectrum(
1245 struct pp_hwmgr *hwmgr,
1246 const uint32_t memory_clock,
1247 pp_atomctrl_internal_ss_info *ssInfo)
1248 {
1249 return asic_internal_ss_get_ss_asignment(hwmgr,
1250 ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1251 }
1252 /**
1253 * Get the engine clock spread spectrum info
1254 */
1255 int atomctrl_get_engine_clock_spread_spectrum(
1256 struct pp_hwmgr *hwmgr,
1257 const uint32_t engine_clock,
1258 pp_atomctrl_internal_ss_info *ssInfo)
1259 {
1260 return asic_internal_ss_get_ss_asignment(hwmgr,
1261 ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1262 }
1263
1264 int atomctrl_read_efuse(void *device, uint16_t start_index,
1265 uint16_t end_index, uint32_t mask, uint32_t *efuse)
1266 {
1267 int result;
1268 READ_EFUSE_VALUE_PARAMETER efuse_param;
1269
1270 efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1271 efuse_param.sEfuse.ucBitShift = (uint8_t)
1272 (start_index - ((start_index / 32) * 32));
1273 efuse_param.sEfuse.ucBitLength = (uint8_t)
1274 ((end_index - start_index) + 1);
1275
1276 result = cgs_atom_exec_cmd_table(device,
1277 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1278 &efuse_param);
1279 if (!result)
1280 *efuse = le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1281
1282 return result;
1283 }
1284
1285 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1286 uint8_t level)
1287 {
1288 DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1289 int result;
1290
1291 memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1292 memory_clock & SET_CLOCK_FREQ_MASK;
1293 memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1294 ADJUST_MC_SETTING_PARAM;
1295 memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1296
1297 result = cgs_atom_exec_cmd_table
1298 (hwmgr->device,
1299 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1300 &memory_clock_parameters);
1301
1302 return result;
1303 }
1304
1305 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1306 uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1307 {
1308
1309 int result;
1310 GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1311
1312 get_voltage_info_param_space.ucVoltageType = voltage_type;
1313 get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1314 get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1315 get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1316
1317 result = cgs_atom_exec_cmd_table(hwmgr->device,
1318 GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1319 &get_voltage_info_param_space);
1320
1321 if (0 != result)
1322 return result;
1323
1324 *voltage = le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1325
1326 return result;
1327 }
1328
1329 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1330 {
1331
1332 int i;
1333 u8 frev, crev;
1334 u16 size;
1335
1336 ATOM_SMU_INFO_V2_1 *psmu_info =
1337 (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
1338 GetIndexIntoMasterTable(DATA, SMU_Info),
1339 &size, &frev, &crev);
1340
1341
1342 for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1343 table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1344 table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1345 table->entry[i].usFcw_pcc =
1346 le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1347 table->entry[i].usFcw_trans_upper =
1348 le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1349 table->entry[i].usRcw_trans_lower =
1350 le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1351 }
1352
1353 return 0;
1354 }
1355
1356 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1357 struct pp_atom_ctrl__avfs_parameters *param)
1358 {
1359 ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1360
1361 if (param == NULL)
1362 return -EINVAL;
1363
1364 profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1365 cgs_atom_get_data_table(hwmgr->device,
1366 GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1367 NULL, NULL, NULL);
1368 if (!profile)
1369 return -1;
1370
1371 param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1372 param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1373 param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1374 param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1375 param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1376 param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1377 param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1378 param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1379 param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1380 param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1381 param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1382 param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1383 param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1384 param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1385 param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1386 param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1387 param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1388 param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1389 param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1390 param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1391 param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1392 param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1393 param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1394 param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1395 param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1396
1397 return 0;
1398 }
This page took 0.085856 seconds and 5 git commands to generate.